
A Comparison of Parallel Gaussian Elimination Solvers for the

Computation of Electrochemical Battery Models on the Cell

Processor

by

James R. Geraci

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

© Massachusetts Institute of Technology 2008. All rights reserved.

A uthor- v -.
Department of Electrical Engineering and Computer Science

May 22, 2008

Certified by
John L. Wyatt, Jr.

Professor
Thesis Supervisor

Certified by
Thomas A. Keim

Principal Research Engineer
'-I Thesis Supervisor

Accepted by
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

J UL 0 1 2008

LIBRARIES

/ Terry P. Orlando
Chairman, Department Committee on Graduate Students

A Comparison of Parallel Gaussian Elimination Solvers for the Computation of

Electrochemical Battery Models on the Cell Processor

by

James R. Geraci

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The rising cost of fossil fuels, together with a push for more eco-friendly methods of transportation,
has increased interest in and demand for electrically powered or assisted vehicles. The majority of these
electric or hybrid electric vehicles will be, for the foreseeable future, powered by batteries.

One of the major problems with batteries is their aging. For batteries, aging means that the maxi-
mum charge they can store decreases as number of charge/discharge cycles increases. Aging also means
that after a certain number of charge/discharge cycles, the battery will fail. In lead-acid batteries, one
of the major phenomenon that promotes battery failure is the development of a non-uniform concen-
tration gradient of electrolyte along the electrodes' height. This phenomenon is known as electrolyte
stratification.

This thesis develops a simple two-level circuit model that can be used to model electrolyte stratifica-
tion. The two-level circuit model is justified experimentally using digital Mach-Zehnder interferometry
and is explained theoretically by means of two different electrochemical battery models. The experi-
ments show how the usage of the electrode varies along its height while the simulations indicate that
the high resistivity of the lead dioxide electrode plays a major role in the development of a stratified
electrolyte.

Finally, computational issues associated with the computation of a sophisticated two dimensional
electrochemical battery model on the multicore Cell Broadband Engine processor are addressed in detail.
In particular, three different banded parallel Gaussian elimination solvers are developed and compared.
These three solvers vividly illustrate how performance achieved on the new multicore processors is
strongly dependent on the algorithm used.

Thesis Supervisor: John L. Wyatt, Jr.
Title: Professor

Thesis Supervisor: Thomas A. Keim
Title: Principal Research Engineer

Acknowledgments

This is the last thing I am writing. I am tired and want to go to sleep, so if I left you out and you are

supposed to be here, please forgive me.

First, I would like to thank my parents. They have been really supportive and have shared in all the

ups and downs of this experience with me. It is hard to imagine where I would have ended up if it had

not been for their participation in this process. Ever since I was young, they always encouraged me and

always believed in me and instilled in me a sense of self confidence that helped me get through this

process. They have provided a great example of what it means to be both parents and human beings.

I would like to thank my mom for making Christmas an extremely special time for me and the whole

family. I am not sure how you are able to always plan such a big event and make it such a success all

the time. I would like to thank my dad for talking with me about things that interest me and for being a

great dad.

Figure 0-1. My parents Sam and Kathy Geraci with my niece Sophia.

Next, I should thank my committee. Professor Wyatt, Professor Sadoway, and Professor Daniel all

contributed in a major way to this thesis. The two-volume model comes directly from conversations

with Professor Wyatt. Professor Sadoway was always excited about my work and even when he was

teaching classes with over 400 students in them, he somehow found time to think about my project and

take the time to share his ideas, thoughts, and insights with me. Finally, Professor Daniel took the time

to explain Newton's method to me, and he really thought about all the other numerical issues associated

with the solution of the models' numerics in this thesis and helped me make the thesis a better project

because of it.

I would also like to thank Professor Jaume Peraire, Le Duc Vinh and Dave Willis for their help with

the 2-D model's setup phase. These people gave freely of their time and every time I had a chance to

talk with them, they moved my project greatly forward.

Professor Yang-Shao Horn and Professor George Barbastathis allowed me to use their interferometer

which really helped the completeness of this thesis. Their student Laura Waller spent countless hours

helping me setup and image the physical processes in the lead-acid battery. Without her assistance, I

would never have been able to obtain experimental results.

Howard Song of Compact Power also provided a great boost to my research. His support allowed me

to have the freedom to work exclusively on my project for a while. Although is support only lasted a

semester, it gave me a respite from the TAing that I had been funding myself with and allowed me to

move my project forward greatly.

The High Performance Embedded Computing group at MIT Lincoln Labs was also fantastic. They

not only provided the financial support needed to do all of the work presented here concerning the Cell

Broadband Engine, but they also provided a wonderful atmosphere and place in which to do the work.

7

Bob Bond, Jeremy Kepner, Sharon Sacco, Han Kim, Nadya Bliss, and Sanjeev have been an excellent

group of people with whom I look forward to having a long fruitful relationship.

I would like to thank Professor Sul Seung-ki of Seoul National University for allowing me to visit his

lab and making me feel at home. Early on in my graduate career he once told me that he though I would

be a very good engineer. These simple positive words had a big positive impact on how I viewed myself

and my work.

I would also like to thank all of my siblings for their support. Sam and his wife Caroline, Rose and

her husband Jeff, Joe and his wife Sue, and Becca all helped in their own ways.

Next, I would like to thank my nieces and nephews. Seeing them at Christmas has been incredibly

fun. They are all very cute. I am looking forward to see how their lives develop. Among them, I have

gotten to know my nephew Sam III and my niece Sophia the best. I would like to thank Sam III for

his interest in and excitement about my work. It was very encouraging. I would like to thank my niece

Sophia for being truly excited about having me over to her house and for sharing her time with me. A

place like MIT can cause even the most confident person to doubt themselves at times, but my visits with

Sophia, and her parents, and their belief in me really helped me continue. It has been truly great to see

her growing up before my eyes.

I would like to thank my friend Sudarshan Raghunathan. Without his help in our January 2007 Playsta-

tion 3 programming class, I would not have been able to do the work on the PS3. Ghinwa Choueiter for

being a great student, a great friend and having me over for holidays. Andy Copeland for his long time

friendship and encouragement. Everest Huang, who was my freshman roommate, for his friendship,

advice, support, humor, tolerance, and all round greatness. Obrad Scepanovic for being like a brother

to me. Noriko Hara for showing me what Hemingway meant when he said, "Courage is grace under

8

Figure 0-2. My nephew Sebastian Geraci III.

Figure 0-3. My niece Sophia Geraci.

pressure." Also for sharing her curious and uplifting spirit with me. Brad Bond for listening to more

stories about more things than I probably should have shared. Christian Sevilla for being in touch and

being a great friend. Alice Chan for being a well read and very interesting person to spend time with

who proves that actuaries can be fun. Also for showing me the most impressive thesis defense I saw

in my almost 16 years at MIT. Ali Shoeb for being a great student and a really fun friend. Someday I

hope to be able to run as well as he does. Laura Jane Finn for showing me what citizenship means. Ali

Motamedi for discussing every topic under the sun with me. Bill Richoux for arranging the trip to the

world Curling Championship and the Chick-fil-A for my defense. Both are something I will remember

my whole life. Dina Katabi for being a captivating TA and for being a kind spirit to me. Agha Mirza for

being a great TA. I still remember most of his recitations even 15 years after the fact. Borjan Gagoski

for sending me a wonderful email at the end of my being his Stochastic Processes TA. Xuemin Chi for

talking with me about life, the universe, and everything. Chris Barnes for being my West Coast twin.

Bill Evans for his encouragement and checking up on me. For treating me like family and for keeping

me up to date with the news.

Finally, I would like to return to Professor Wyatt and my parents. Both of them provided me with

examples of how to teach and how to help a young person develop as a person. Because my parents took

great interest in me when I was young I was able to succeed as a young adult. In the same way because

Professor Wyatt took an interest in me as a person during my graduate student career, I believe that I

am a better person and that I will succeed on a human level because I now have not only my parents

excellent example but also his example to follow.

Contents

1 Purpose and Contributions 17

1.1 Introduction 17

1.2 Lead Acid Battery Structure 20

1.3 Primary Chemical Reactions of Lead Acid Batteries 25

1.4 Two Level M odel 26

1.5 Purpose 28

1.6 Contributions 29

2 Experimental Justification of Two Level Model 31

2.1 Experimental Setup 32

2.2 Experimental Data 35

2.3 Data Analysis 39

3 Physical Processes of the Lead-Acid Battery 43

3.1 Illustration of possible ionic action during discharge at the lead dioxide electrode 44

3.1.1 Initial Setup 45

3.1.2 Electro-neutrality 45

11

Charging the Double Layer

Faradaic Reaction

Transport Regime of Operation .

Discussion

Illustrations for Lead Electrode .

. 47

.......... 49

. 49

4 Two-Volume Model of the Lead Acid Battery

4.1 A simplified model of a finite volume element taken from the porous region of a lead

dioxide electrode

4.2 Derivation of fundamental equations for the reaction at the lead dioxide electrode . . .

4.2.1 Change of Porosity

4.2.2 Conservation of Charge

4.2.3 Ohm's Law in Solution

4.2.4 Conservation of Matter

4.2.5 Electrode Kinetics

4.2.6 Summary of equations for single volume

4.3 Two Volume Model Implementation

4.3.1 Boundary Conditions

4.3.2 Initial Conditions

4.4 Simulation Results

4.4.1 Initial Two-Volume Model Results...

4.4.2 The diffusion coefficient, Dc

4.4.3 The Interface Surface Area, SAint . .

12

element

62

.. 64

67

73

77

88

.. 90

93

lead model.

......................100

......................100

......................104

. 106

3.1.3

3.1.4

3.1.5

3.1.6

3.1.7

4.4.4 The transfer coefficients, ao and a .

4.4.5 The exchange current density, io0 .

4.4.6 Simple Model Summary

5 Two-dimensional model

5.1 Model Modifications

5.1.1 Porosity

5.2 Equations with geometry independent porosity

5.2.1 Equations for lead dioxide electrode ..

5.2.2 Equations for the lead electrode

5.2.3 Equations for the bulk electrolyte . . .

5.3 Sophisticated Numerical Model

5.3.1 Equations for all regions

5.4 Layout of Volumes

5.4.1 Two Dimensions

5.4.2 Special Considerations for Porosity . .

5.5 Numerics

5.5.1 Newton-Raphson

5.5.2 The Jacobian Matrix J

5.6 Simulations using 2-D Model

5.6.1 2-D Model Verification

5.6.2

5.6.3

Two-Level Model Justification via 2-D 1

Reason Discharge Rate affects Battery I

13

..... 118

...121

.122

..............123

. .124

.............. 125

.................. 125

......................126

......................129

. 135

. 138

. 139

......................143

. 149

......................149

vIodel 154

ife 159

. 111

..114

S. 116

117

S. 118

6 Numerics of Implementation in an Embedded Environment

6.1 Introduction

6.2 The Cell Broadband Engine

6.2.1 The PPE

6.2.2 The SPE

6.2.3 Unique Features of the Cell Broadband Engine . . .

6.3 Gaussian Elimination Solvers

6.3.1 Review of Gaussian elimination

6.3.2 Two Forward Elimination Algorithms

6.3.3 Out of Core LU Algorithm and Solvers

6.3.4 The Out of Core Algorithm's Two Implementations .

6.3.5 Out of Core Solver Revision 1 Performance

6.3.6 Out of Core Solver Revision 2 Performance

6.3.7 inCore LU Solver

6.3.8 inCore Accuracy

6.3.9 inCore Performance

6.4 Fault Tolerant Parallel Banded LU Algorithm

6.4.1 Fault Tolerant Algorithms

6.4.2 Implementation

6.4.3 Anatomy of an SPE Failure

6.4.4 Example, multiple single SPE failures

6.5 Preemptive/Cooperative multitasking environment .

14

161

.162

.163

. 165

.............. . 165

...167

.174

............... .176

...180

.181

.184

. 187

.190

...............195

.202

...............204

.207

.208

...............209

...............210

. 2 13

.2 16

6.5.1 Introduction 216

6.5.2 Multitasking via Fault Tolerance 216

6.6 Future Work 217

7 Conclusions

A Two-volume Model Code

B 2-D Model Setup Code

C 2-D Model Solver Code

219

221

233

471

Chapter 1

Purpose and Contributions

1.1 Introduction

Toyota, GM, Ford, Honda, and Mercedes-Benz all sell some type of hybrid electric vehicle. Toyota,

by 2010, plans to have at least 14 hybrid electric vehicles in its lineup and expects a total annual sale

of at least 1 million hybrid cars [1]. For its part, General Motors plans to introduce Lithium ion battery

powered hybrid cars by 2010 [2]. These trends show not just an increased interest but an actual concrete

increased investment in battery technology on the part of the automobile industry. Therefore, it is without

a doubt that the number of and importance of batteries will continue to grow.

With the increased interest in hybrid and electric cars, there is also an increased interest in answering

not only the question of what is the state-of-charge of a battery but also, what is the state-of-health of

the battery?

The state-of-charge of a battery simply describes the amount of charge left in the battery relative to

some maximum amount of charge. For example, if a battery is fully charged, one would say that it had

a 100% state-of-charge. If the battery were fully drained, one would say it had a 0% state-of-charge.

17

Over time, and with use, this maximum amount of charge decreases. Most laptop users have noticed

this effect. With a new laptop, they seem to experience long battery life. However, as time goes on, and

they use their laptop more and more, the battery life seems to get shorter and shorter even though they

may leave the laptop on the charger overnight or even for a few days. This shortening of battery life is

due to aging effects. It is this change in maximum charge that the state-of-health measurement tries to

quantify.

The state-of-health of a battery gives some idea of the how different the battery at the present time

is from the battery when it was new. This difference between the battery at the present time t = T

and some past initial time t = 0 depends greatly on how the battery was used. For example, a typical

flooded lead acid battery can be discharged from 100% of full charge down to 30% of full charge and

then recharged to 100% of full charge about 1500 times [3]. However, the same battery, if new, is good

for about 2200 cycles if it is only discharged from 100% of full charge down to 60% of full charge and

back [3]. The number of uses (cycles) that a battery can go through is called the cycle life of the battery.

This usage dependent battery aging is not a phenomenon exclusive to lead acid batteries. For example,

in the case of Lithium ion batteries, "volume changes in electrode particles during lithium insertion and

extraction create stresses which may induce cracking" [4]. The cracking is also a function of charge and

discharge amount and rate. Therefore, although the lead acid battery will be used as the basis for this

work, the same sorts of aging issues exist in other battery chemistries, fuel cells, and battery packs.

Not only is cycle life a strong function of how the battery is used, but also "cycle life is dependent

on a number of construction factors" [5] These construction factors include, but are not limited to: the

thickness of the plates, the active mass density of the active material, the concentration of the acid, and

the geometry of the electrodes [5, 6].

The numerous empirical models that allow estimates of the state-of-charge of a battery [7-12] look at

the terminal characteristics of the battery; however, they do not incorporate the physical geometry of the

battery. The goal of this thesis is to make progress toward a simple lead acid battery model that takes

into account the aging effects caused by geometry.

In order to develop an effective model for the state-of-health of a battery, our model must not only

take into account the usage of the battery as seen at the terminals, but also must somehow include

battery geometry information. One geometry related effect that has been noted in various places in the

literature is that the upper portion of the electrodes participate in the reaction much more than the lower

portion of the electrodes. In [13, p.296] "sampling tubes placed in various vertical positions" between

the electrodes were used to observe that the, "specific gravity scarcely changed at the bottom (of the

electrodes) during discharge while at the upper portion (of the electrodes), it decreased to 1.13 9 from

1.27 -3." While in [14, p.244] holographic laser interferometry was used to observe concentration

differences between the electrolyte at the top half of the battery and the bottom half of the battery leading

to the observation that the "upper part of the positive electrode (lead dioxide electrode) is more favoured

to undergo reaction than the lower part. This is due to the lower ohmic resistance in the upper region."

These electrolyte concentration differences between the upper half and lower half of the electrode are

significant because it has been found that decreased cycle life is directly related to increased level of

difference between the concentration in the upper and lower regions of the battery [15, p.196].

This idea of the upper half of the electrodes reacting more than the lower half of the electrodes is of

profound importance for this thesis, so as to better understand it, let us take some time to understand

and better visualize what an electrode is and what reactions are going on at the electrodes of a lead acid

battery. In the rest of this chapter, we will refer repeatedly to the quote from [14].

19

1.2 Lead Acid Battery Structure

First let us take a look at the structure of the electrode so as to better understand what an electrode

looks like and why there might be more ohmic resistance at the bottom of the electrode than the top of

the electrode.

A cell of a flooded lead-acid battery consists of a lead (Pb) electrode (fig. 1-1) and a lead dioxide

(Pb(IV)O2) electrode (fig. 1-2), both of which sit in a sulfuric acid (H2SO4) bath. Each electrode consists

of two major parts: an active material region where the primary chemical reaction takes place and a lead

(Pb) grid backbone, referred to as the "lead (Pb) current collector grid" [16]. The backbone grid carries

electrons between the active material region of the electrode and the lead (Pb) tab, which connects the

battery to the external circuit. The lead (Pb) grid current collector runs the entire length of the electrode

and also serves as a support framework to which the active material regions are attached.

Figure 1-1 (a) shows a face view photo of a lead (Pb) electrode. This photo clearly shows the lead

(Pb) active material region and the lead (Pb) grid current collector's lead (Pb) tab. However, the active

material region obscures the major portion of the lead (Pb) grid current collector. Therefore, for fig. 1-1

(b), the active material region of the electrode has been removed to reveal the lead (Pb) grid current

collector.

Figure 1-2 (a) shows a face view photo of a lead dioxide electrode. In this photo both the lead dioxide

active material region and the outline of the lead (Pb) grid current collector are visible. Figure 1-2 (b)

shows the profile view of a lead dioxide electrode.

From figs. 1-1 and 1-2, it can clearly be seen that both electrodes are much larger in the y-direction

than in the x-direction. Furthermore, current is only delivered to or taken from the top lead (Pb) tab of

each electrode. This is significant because it is this tall height that gives rise to the previously mentioned

20

(a) Photo of lead (Pb) plate with the lead (Pb)
active material region still attached. Here the
active material obscures the lead (Pb) grid cur-
rent collector.

(b) Photo of lead (Pb) plate with active material
region removed so that the lead (Pb) grid current
collect can clearly be seen.

Figure 1-1. A lead (Pb) plate taken from a Yuasa YTX20HL-BS-PW flooded lead-acid battery.

21

(a) Photo of lead dioxide plate (b) Photo of the profile of a lead
dioxide plate.

Figure 1-2. A lead dioxide plate taken from a Yuasa YTX20HL-BS-PW flooded lead-acid battery.

22

Lead Dioxide Lead (Pb)
Electrode Electrode

Figure 1-3. Illustration of a lead-acid battery cell.

ohmic drop. Essentially, electrons at the bottom of either electrode have to go further than electrons at

the top of the electrode to participate in the reaction.

Continuing with a little more background information, fig. 1-3 shows an illustration of how the two

electrodes might look sitting in a sulfuric acid bath. The view is a profile of each electrode like that seen

in fig. 1-2 (b).

The labels in fig. 1-4 (a) and fig. 1-4 (b) point out the major parts of each electrode. These parts

correspond to the major electrode parts labeled in fig. 1-1 and fig. 1-2. In fig. 1-4 (a) and fig. 1-4 (b), the

tall wide textured regions of each electrode represent the active material regions. While the tall skinny

solid shaded regions represent the lead (Pb) grid current collector and tab. For the Pb(IV)O2 plate the

active material is lead dioxide and for the Pb plate it is lead (Pb).

The active material region on each electrode is not one solid piece of material. Instead, it has a

consistency similar to that of packed sand. Figure 1-5 shows a drawing of a magnified cross section

23

Lead Dioxide Lead (Pb) Lead Dioxide
FI .rmrlrn

Lead (Pb)
F lcnI|rndn

Lead (Pb) Grid Current Collector Lead (Pb) Grid Current Collector

(a) The Pb Electrode (b) The Pb(IV)O 2 Electrode

Figure 1-4. Parts of the lead-acid battery cell.

from the active material region. This cross sectional area contains both solid material and liquid. Any

other randomly selected cross section of either electrode would look similar. While not shown explicitly

in the drawing, the solid material is a "persistent solid phase, called the solid matrix" [17]. The non-

solid phase is a void space filled with electrolyte. This kind of packed sand like material arrangement

is called a porous medium. This porous structure has the effect of greatly increasing the surface area at

which the charge transfer reaction can occur. Furthermore, while the diagram shows the lead dioxide

pieces as being separate and not connected, they are actually connected through material that exists in

the z-direction.

Lead(Pb)Tab Lead (Pb) Tab1-0

Figure 1-5. Illustration of how a cross section of the active material region of a lead-acid battery cell
might look. Notice how it is porous in nature instead of a single completely filled in solid piece.

1.3 Primary Chemical Reactions of Lead Acid Batteries

Now let us take a look at what reaction is being talked about in our quote of interest. When the

lead-acid battery cell is either discharged or charged, each plate of the cell undergoes its own primary

reaction. For the lead dioxide electrode, this reaction is:

Pb(IV)0 2 (s) + HSO 4 (aq) + 3H+ (aq) + 2e- ;- Pb(II)SO 4 (s) + 2H20 (1) (1.1)

For the lead (Pb) electrode the reaction is:

Pb (s) + HSO; (aq) + H+ (aq) ; Pb(II)SO4 (s) + 2H + (aq) + 2e- (1.2)

Adding these two equations together results in the overall system reaction shown in eq. (1.3).

Pb (s) + Pb(IV)O 2 (s) + 2H2SO4 (aq) ;- 2Pb(II)SO 4 (s) + 2H20 (1)

25

(1.3)

Sulfuric Acid(H2SO4)
Molecule \

(a) The concentration of sulfur
top half of the electrode than th

Lower Concentration
of Sulfuric Acid

ic acid is less in the (b) Because of the difference in concentration be-
.e lower half. tween the upper half and lower half of the elec-

trode, there is also a difference of potential between
the two halves.

Figure 1-6. The two level battery model.

During discharge, the lead dioxide electrode acts as a cathode and undergoes reduction thereby acting

as an electron sink. The lead (Pb) electrode acts as an anode and undergoes oxidation thereby acting as

an electron source.

1.4 Two Level Model

The reaction our quote is talking about is eq. (1.1). In this reaction, lead dioxide is combined with

sulfuric acid to produce lead sulfate and water. So, when the quote talks about the upper part of the

electrode being "more favoured to undergo reaction than the lower part", it means that more lead diox-

ide and sulfuric acid will be consumed at the upper part of the electrode than at the lower part of the

electrode. This implies that, at any given point in time, there will be less sulfuric acid at the top of the

26

electrode than at the bottom of the electrodes. This non-uniform sulfuric acid concentration is shown in

fig. 1-6(a).

Fig. 1-6(a) shows a lead acid battery cell. The cell consists of a pair of porous electrodes sitting

in a liquid sulfuric acid electrolyte bath. Drawn on top of each electrode is a resistor symbolizing the

ohmic drop which gives rise to the geometrically variable reaction rate. The sulfuric acid electrolyte

bath between the two electrodes has been divided into two levels, a top level and a bottom level. The

bottom level has more moles of sulfuric acid in it than the top half. This is because the top half of the

electrodes participate in the reaction more than the bottom half of the electrodes.

So that we can start translating fig. 1-6(a) into a practical implementable model, we next use Nernst's

equation eq. (1.4) to derive a simple circuit model for our two level approximate model. Nernst's equa-

tion says that there is a relationship between the concentration of a battery's electrolyte, the temperature,

and the battery cell's measured external potential.

Ece = E 1 - () nQ (1.4)

which relates cell potential to cell temperature and the electrolyte concentration of the cell (1.4) where

_ 1 1Q [H2S04J
2

Using Nernst's relationship and the observation about the ohmic drop along the height of the elec-

trodes from [14] we can create the simple circuit shown in fig. 1-6(b). The circuit consists of two

voltage sources connected in parallel by two resistors and two more resistors leading to the terminals

of the battery. From eq. (1.4), the voltage sources are dependent on electrolyte concentration C and

temperature T. For this thesis we will assume constant temperature T, but C is allowed to vary with

' Q is called the reaction quotient [18, p.543].

usage and therefore time. The trick now is to determine how C' (t) actually varies with time.

For notation purposes, throughout this thesis, physical battery state parameters will be highlighted in

color. Here C) has been highlighted in orange.

Continuing, if [14] is to be believed, then when the battery is either charged or discharged, V1 is

charged or discharged more than V2 because there is more resistance between V and the output terminals

than between V1 and the output terminals. This means that V1 participates in the reaction more than V2,

and therefore, the electrode surfaces near V, get cycled more and to a deeper depth of discharge than the

electrode surfaces near V2. Cycling more and to a deeper depth of discharge means, according to [3] that

the top half of the battery should fail before the bottom half of the battery. It is this uneven usage of the

battery at a constant temperature that we would like to be able to model and incorporate into a real time

state-of-health indicator.

1.5 Purpose

This thesis seeks to make progress toward a lead acid battery state-of-health monitor that can be used

in an embedded environment. Toward this goal, it will:

1. Experimentally justify the two level model of fig. 1-6(b) as a minimum order aging model.

2. Investigate and develop an understanding of the physical processes that are believed to give rise to

the two level model of fig. 1-6(b)

3. Demonstrate, via an appropriately sophisticated numerical model, that the investigated physical

processes do in fact show an unequal usage of the upper half and lower half of the battery elec-

trodes.

4. Investigate implementation issues that might be encountered when trying to implement fig. 1-6(b)

in a future embedded system.

1.6 Contributions

In doing these four things, a number of contributions will be made:

From 1 Experimental verification the two level model using a digital Mach-Zehnder interferometer instead

of the holographic interferometers that have been used to date. This will be the first known use of

digital interferometry for this system.

From 2 A unique visualization of the underlying molecular action that occurs during lead acid battery

discharge and a two volume model that can be used as a tool to explore the physical parameters

that influence the output of a lead acid cell.

From 3 A 2-D electrochemical battery model and an analysis of its abilities.

From 4 Three different Gaussian Elimination based direct solvers based on two different algorithms for

use on the Sony, Toshiba, IBM manufactured multicore Cell Broadband Engine. These solvers

highlight different ways in which performance can be gotten out of the new multicore processor

technologies. Furthermore, one of the solvers will be extended by making it erasure fault tolerant.

Chapter 2

Experimental Justification of Two Level Model

In this section, interferometry will be used to validate our two level model from section 1.4. These

results will also later be used to affirm that the 2d model of section 5.3 captures the physical phenomena

that leads to an uneven usage of the electrode along its height. The experiment here will produce a much

clearer image of the phenomena than can be found in [14]. Furthermore, it will observe the phenomena

using digital Mach-Zehnder interferometry instead of the holographic laser interferometry in the paper,

thereby using a second method to get the same result.

Interferometry is an appropriate tool for our job because interferometry can be used to provide mea-

surements of the change in index of refraction for a liquid [19, p.254]. The refractive index of sulfuric

acid, fig. 2-1, is almost linearly related to the concentration of the acid [20]. Therefore, interferome-

try has been extensively used as a tool for observing stratification and convection in lead acid batter-

ies [14,21-23].

The experimental results presented here will not only corroborate the findings of [14], but also justify

the two level model presented in section 1.4 and give credence to the idea that the 2d model of section 5.3

31

Relationship between electrolyte index of refraction and H2SO4 Molarity
1.42

1.41

1.4

1.39

1.38

1.37

1.36

1.35

1.34

1.33
C] 1 2 3 4 5 6 7

Concentration of Sulfuric Acid mollcm3
9 10

Figure 2-1. The index of refraction of sulfuric acid varies significantly with molarity of acid concen-
tration. Acid concentration varies with electrode usage. This relationship between refractive index,
concentration, and usage is why interferometry can be used to provide useful Information about
electrode utilization.

correctly captures the major physical phenomena that cause the difference in usage between the upper

half and lower half of the electrodes.

2.1 Experimental Setup

The Mach-Zehnder interferometer is regarded as "probably the most versatile interferometer for the

observation of refractive index fields." [24, p.309]. The operation of the Mach-Zehnder interferometer

is well documented and can be found in almost any book on interferometry [25]. The basic idea of the

interferometer is that it works by splitting the beam into an object beam and a reference beam. The two

32

.,!,.~

............... ~~....~~..~..........C.....
.. ;

...t

.............. ~ ~ ~ ~ ~ .-~~~.~~
..

A

A#

..

..

.

.

.

..

- I

I

*

beam paths will be of different length, so when they are rejoined, they will be slightly out of phase and

combine destructively. This destructive interference creates the fringe patterns seen at the CMOS sensor.

The experiments described here were run on a Mach-Zehnder interferometer co-owned by Professor

Barbastathis and Professor Shao-Horn of MIT's Department of Mechanical Engineering. The interfer-

ometer was constructed and operated by Laura Waller of MIT's Department of Electrical Engineering

and Computer Science. A labeled photo of the Mach-Zehnder interferometer with an outline of the test

cell drawn in is shown in fig. 2-2. A fully labeled drawing of the interferometer is shown in fig. 2-3.

Figure 2-2. The experimental setup was a standard digital Mach-Zehnder interferometer with phase-
shifting shown. Drawn onto the picture is the path the laser light would take.

Of note, the CMOS sensor is a Basler 504k. It has 12pm x 12pm square pixels in a 1280H x 1024V

grid. The sensor region is 15.26mm horizontal by 12.29mm vertical. It is a black and white sensor

that is capable of 500fps shooting. Although the laser was expanded to 2.54cm across, only the center

33

Object
collimator battery Setup CMOS sensor

60x microscope obiective Basler 504k
Smicron pinhole

F

HeNe laser \ /L632.8nm, 17mW

wave plates
I I)" /1 h; k

phase-shifting
mirror

translated by piezo-controlled stage with
a 5nm positional accuracy

Figure 2-3. The experimental setup was a standard digital Mach-Zehnder interferometer with phase-
shifting.

15.26mm horizontal by 12.29mm vertical of the beam was observed and recorded by the CMOS sensor.

The test cell was made up of three electrodes: two lead (Pb) electrodes and one lead dioxide electrode.

The lead dioxide electrode was positioned between the two lead (Pb) electrodes as was done in [14]. The

interelectrode spacing was 3.51mm between the left lead (Pb) electrode and the lead dioxide electrode

and 2.19mm between the lead dioxide electrode to the right lead (Pb) electrode.

The two lead (Pb) electrodes were 2.4mm thick and 15.20mm deep and over 102mm tall. The lead

dioxide electrode was 1.25mm thick and 15.20mm deep and greater than 102mm tall.

These electrodes were placed in the quartz glass cell described in fig. 2-4. The glass cell with the

electrodes positioned in it, was filled with 5 molar sulfuric acid and allowed to soak overnight. After

soaking, the glass cell was placed in the interferometer in the position shown in fig. 2-3 so that the laser

light could pass between the electrodes at the middle of the upper half of the cell, recombine with the

34

4i I

I
I

::

i

reference wave and then strike the CMOS sensor.

TOP VIEW

58.84mm 3 FACE VIEW

2o
2

Figure 2-4. The battery cell tank was made out of quartz glass ordered from McMaster Carr.

2.2 Experimental Data

The first experiment conducted was to take an interferogram of the cell at rest. This is seen in fig. 2-5.

The cells have been at rest for 10 hours at this point in time.

This interferogram clearly shows the three electrodes. The left-most electrode is a lead (Pb) electrode.

The middle electrode is the lead dioxide electrode and the right-most electrode, that is just on the right-

most edge of the diagram, is the other lead (Pb) electrode.

In each region, to the left of the left-most lead (Pb) electrode, between the left-most lead (Pb) electrode

and the lead dioxide electrode, and between the lead dioxide electrode and the lead (Pb) electrode there

are dark evenly spaced horizontal lines called fringes. These fringes are created as a result of the action of

the interference of the reference beam with the object beam. Each fringe represents the superposition of

35

the observation path waveform with that of a waveform coming from the reference path that is 7r + 2kir

out of phase with it, where k is an integer. These parallel evenly spaced lines means that there is a

uniform concentration of electrolyte in the obserived area.

Also seen on the image is an off angle oval set of concentric fringes. These fringes are concentric

around a point just above the middle of the right edge of the left-most lead (Pb) electrode. These fringes

are the result of a protective plastic mask that was poorly glued by the factory to the surface of the CMOS

sensor. These extra fringes will have no effect on the data taken as they will be of very small amplitude

in the data collection region and orthogonal to the data taken. Therefore, they will not constructively

add to the data and will have minimal effect on the results.

Figure 2-5. The parallel evenly spaced horizontal dark fringes show that the concentration of elec-
trolyte is uniform under rest.

In the second experiment the cell was discharged at a rate of 50mA. Fig.2-6 shows the interfero-

gram after 29 minutes of discharge. It clearly shows significant activity around the center-positioned

36

lead dioxide electrode. This activity takes the form of non-uniform spacing of the dark fringes. These

non-parallel unevenly spaced fringes are representative of a change in concentration at the surface of

the electrode. Halfway between the lead dioxide electrode and each of the lead (Pb) electrodes, the

fringes become almost uniform. At the surface of the lead electrodes, there is some bending of the dark

fringe patterns, but not nearly as much as seen at the lead dioxide electrode. This indicates that the

concentration variation at the surface of the lead (Pb) electrode is not as great as that at the surface of the

lead dioxide electrode. The concentration at the surface of the lead dioxide electrode dipping more than

the concentration at the surface of the lead (Pb) electrode makes sense if one remembers the discharge

reactions that take place at the lead dioxide electrode:

Pb(IV)O2 (s) + HSO 4 (aq) + 3H+ (aq) + 2e- - Pb(II)SO4 (s) + 2H20 (1) (2.1)

and the lead (Pb) electrode:

Pb (s) + HSO 4 (aq) + H+ (aq) - Pb(II)SO 4 (s) + 2H+ (aq) + 2e- (2.2)

H20 (1) is one of the products of the discharge reaction at the lead dioxide electrode, so not only is

the reaction consuming sulfuric acid, which dilutes the solution, but it is also dumping water into the

electrolyte which further dilutes the electrolyte. In contrast to this, the reaction at the lead (Pb) electrode

only consumes sulfuric acid and does not produce water. Therefore, it is reasonable to expect a greater

change in concentration at the lead dioxide electrode than at the lead (Pb) electrode.

Figure 2-6. The curved non-parallel unevenly spaced dark fringes show that discharge activity is
taking place between the battery electrodes. The parallel evenly spaced dark fringes to the left of
the left lead (Pb) electrode show that there is no reaction taking place outside the battery.

38

2.3 Data Analysis

"Since fringe displacement is a measure of optical path change due to the object, originally straight,

equidistant fringes, deformed by a one-dimensional concentration field, can be interpreted as plots of

concentration versus distance [24, 321]." Therefore, we should be able to get a two dimensional plot of

concentration from the images.

Measurements were taken from within the black box in fig. 2-7. There are several horizontal lines

drawn from the bulk electrolyte region into the region to the right of the lead dioxide electrode. These

lines are parallel and tangent to some of the fringes in the bulk electrolyte. Each time a horizontal line

is crossed by a fringe from above, 27r in phase has been lost. The first fringe crossing on a horizontal

line represents the loss of 1 x 27r the second represents the loss of 2 x 21r and so on so that the zth

fringe crossing represents a loss of z x 27r in phase. According to equation 5 of [24, p.283], a loss of 2wr

represents a change in index of refraction, An, of:

d 0.02564m
An = - . = 2.468 x 10-5 (2.3)Ao 632.8 x 10-9m

where d is the optical path length, in this case the inner width of the observation tank, 25.64mm was

used. A0 is the wavelength of the HeNe laser which is 632.8nm.

A red circle has been placed at a few sample crossings in fig. 2-7. The (x, y) position of each of

the fringe crossings was recorded. The x, y, z data of each fringe crossing was plotted in Matlab and is

shown in fig. 2-8. Data was collected for all horizontal fringes in the observation region.

As can be seen in fig. 2-8, the top portion of the electrode within the data collection region has an

observably lower acid concentration than the lower portion of the electrode. Since the potential of a

39

-61n -4n -21

rl/

Data Collection Region

Figure 2-7. The region just to the right of the lead dioxide electrode was used as the area from which
data was extracted.

battery is connected to the concentration via Nernst's equation eq. (1.4), the top half of the cell has a

lower, thus different potential than the bottom half, thereby justifying the two level model of fig.1-6(b).

Shape of concentration from bulk to right surface of lead dioxide electrode

'~far of Bulk Region

Figure 2-8. The results from the interferogram are translated here into a Matlab mesh plot which
clearly shows that the concentration of electrolyte dips closely at the surface of the lead dioxide
electrode. Furthermore, the size of the dip is greater at the top of the observation region than it is at
the bottom of the observation region.

0-

-1-

-2-

4-8-9 -0 C

-10

0

Chapter 3

Physical Processes of the Lead-Acid Battery

Chapter 2 showed that the top half of the electrode indeed participates in the reaction more than the

bottom half of the electrode as was stated in [14]. This chapter will focus on beginning to understand

the physical processes that cause C (t) to change with time.

We start our quest for understanding how the concentration in a lead-acid cell changes with time by

taking an intuitive look at the lead-acid battery'. We have already examined the physical structure of

the lead-acid cell and got to know the tangible parts of the cell in section 1.2. Next, we learn about

the primary chemical reactions occurring within a lead-acid cell. Finally, we will examine a set of

illustrations that visualize one possible way the chemical species involved in the primary reaction at

each of the electrodes interact when the electrodes undergo discharge, reaction eq. (1.1). The insight

developed by walking through these illustrations will be used in chapter 4 to create a simple two volume

model of the physical and chemical reactions that occur in a lead-acid battery.

'One of the most often cited works on lead-acid batteries is Bode [26].

43

Figure 3-1. An enlarged cross section of a part of the lead dioxide electrode. The section has been
divided up into finite volumes.

3.1 Illustration of possible ionic action during discharge at the lead dioxide elec-

trode.

An intuitive feel for what is physically going on during discharge can be developed by studying the

progression of illustrations in figs. 3-2-3-6. These figures show one possible way of visualizing the

processes that occur during discharge in a volume element randomly selected from the porous active

material region of the lead dioxide electrode. Such a volume element might come from dividing up a

section of electrode in a way like that shown in fig. 3-1.

For the time being we will simply be passive observers; we won't concern ourselves as to why the

discharge reaction happens, only what happens during discharge. The discharge reaction that takes

place within this volume element is eq. (3.1).

Pb(IV)O2 (s) + HSO 4 (aq) + 3H+ (aq) + 2e- -+ Pb(II)SO 4 (s) + 2H20 (1) (3.1)

44

The discharge reaction can occur because a valence shift on Pb4 + allows it to become Pb2+, enter

solution and interact with the sulfuric acid.

Pb4+ + 2e- * Pb2+ (3.2)

3.1.1 Initial Setup

Chemical equations such as eq. (3.1) and eq. (1.2) are written in terms of molar quantities. The volume

element being looked at in figs. 3-2-3-6 is too small to contain a mole of anything. The present section,

however, is an effort to understand the physical changes that occur because of reactions eq. (3.1) and

eq. (1.2), so in an effort to maintain consistency between figs. 3-2-3-6 and eq. (3.1), all quantities will

be talked about in units of moles.

Starting with fig. 3-2 (a), we note that the volume element has both a solid phase and a liquid

phase. The volume element's liquid phase contains one solvent, water (H20), and one acid, sulfuric

acid (H2SO 4). Furthermore, each mole of sulfuric acid is assumed to have dissociated into an equal

number of moles of H+ and HSO ions2 . In fig. 3-2 (a), no moles of water are shown, but three moles

of dissociated sulfuric acid have been drawn to stand out. Three moles of sulfuric acid have been drawn

because the reaction eq. (3.1) requires three H+ ions.

3.1.2 Electro-neutrality

The system, as drawn in fig. 3-2 (a), is electrically neutral. This means that the total number of

positive charges in the volume element equals the total number of negative charges. Electro-neutrality

2More accurately, in water, sulfuric acid would dissociate according to: H2S0 4 + H20 -+ H30+ + HSO and
sometimes further by HSO - + H20 -- H3O + SO2-. These dissociations are neglected in the diagrams in order to keep
the diagram as simple as possible.

PbO2
electrons

(a) A volume element from the lead dioxide porous
region with three moles of dissociated sulfuric acid
drawn to stand out against the rest of the elec-
trolyte.

(b) Two moles of electrons enter the volume
element's solid phase and perturb its electro-
neutrality.

Figure 3-2. The start of the reaction in a volume element from a lead dioxide electrode of a lead-acid
battery.

Pb02

can be stated in mathematical terms as:

zi[ii] = 0 (3.3)
<i>

where zi is the charge on species i and [i] is the concentration of species i.

Electro-neutrality means that the net charge of the entire system, and any subdivision of it, is zero.

If the system were slightly perturbed from electro-neutrality, an electric field would exist within the

system. Charge would move in order to neutralize that field and maintain electro-neutrality.

Before the reaction starts, the solid phase of the volume element is electrically neutral. There is an

equal number of moles of H + and HSO ions, so the liquid phase is also electrically neutral. Taken all

together, the whole volume element is electrically neutral. The system will take all necessary steps to

maintain this electro-neutrality.

3.1.3 Charging the Double Layer

Fig. 3-2 (b) shows two moles of electrons entering the volume element's solid phase. These electrons

come from the lead electrode through an external circuit. Now, the solid region has 2 moles of negative

charge in it (-2 for short), so the solid phase's electro-neutrality has been perturbed. Because of the two

electrons, the solid phase appears negative to the mobile ions in the liquid phase. So, the positive ions

in the liquid phase try to get close to the negative solid phase, fig. 3-3 (a). The result is that a double

layer capacitor now exists along the solid/liquid interface [27, p.17 1]. If the solid phase were made of

an inert material such as platinum, the story would end here with a double layer capacitor. However, the

electrode isn't made of something chemically inert such as platinum, it is made of something reactive

like Pb(IV)0 2 which participates in this reaction.

Pbp
2

(a) The positively charged H+ ions go to the
solid/liquid interface (aka electrode/electrolyte in-
terface) to get close to the negatively charged elec-
trons. In doing so, they create a double layer ca-
pacitor.

Figure 3-3. The system starts by charging the
before the faradaic reaction occurs.

(b) The electrode is made of Pb(IV)O 2 . At the
solid/liquid interface, one mole of Pb(IV)O 2 is
drawn to stand out.

double layer capacitor at the solid/liquid interface

3.1.4 Faradaic Reaction

In order to transfer charge from the solid phase to the liquid phase, both phases must be in contact

because electrons cannot pass through the liquid. The two phases are in contact only at the solid/liquid

interface. Therefore, the solid/liquid interface plays a critical role in the charge/discharge process. So

as to help use better understand this charge transfer process, a mole of Pb(IV)O 2 has been drawn at the

solid/liquid interface in fig. 3-3 (b).

Fig. 3-4 (a) shows the hydrogen ions bonding with'the lead sulfate's oxygen atoms at the solid/liquid

interface. In fig. 3-4(b), the reaction has now produced the two moles of water product of reaction as

required by eq. (3.1). The reaction proceeds with Pb4+ attracting the electrons and the SO2- ion, fig. 3-

5(a). The Pb(II)SO4 product needed for reaction eq. (3.1) is now created. Furthermore, the solid phase is

now electrically neutral, and the two moles of negative charge have been transfered from the solid phase

to the liquid phase.

3.1.5 Transport Regime of Operation

As seen in fig. 3-4 (b), the solid phase is electrically neutral; however, the liquid phase still has a -2

charge. An ionic current is needed in the liquid phase to conduct this -2 charge out of the volume ele-

ment. There are a number of conceivable compositions of this ionic current. One possible composition

might be to bring two moles of H + ions into the volume element. Another might be to send two moles

of HS04 ions out of the volume element. A third way would be to bring in some H + ions and to send

out some HSO4 ions such that the net charge moved into the volume element would be +2.

The third method is in fact what the system will do. Some positive ions will be transported into the

area from neighboring volume elements and some negative ions will be transported out of the volume

49

(a) The oxygens of the Pb(IV)0 2 join with the H + (b) Water is produced.
ions at the solid/liquid interface.

Figure 3-4. Water is formed as required by eq. (3.1). The solid phase has a plus 2 charge and the
liquid phase has a negative 4 charge.

element. Due to the fact that HSO ions and H + ions have different mobilities, the number of H + ions

that enter the area will not equal the number of HSO ions that exit the area. The transference number,

to, is the fraction of the ionic current carried by species i [27, 28, p. 13,p.65]. In our electrolyte, there are

only two charge carriers H+ and HSO-. H+ has a transference number of tH+ = t', so HSO- must

have a transference number of t'sO = 1 - t' fig. 3-5 (a) shows 2t_, of H + ions moving into the area

and 2 (1 - t') moles of HSOZ ions moving out of the area. In fig. 3-5 (b), all ion transport has stopped

and the liquid phase within this area is once again electrically neutral. The -2 charge is well on its way

to the lead electrode where it will neutralize the +2 charge that exists in the liquid phase near the lead

electrode. At this point, the reaction at the Pb(IV)O 2 electrode stops. Concurrently, the reaction at the

Pb electrode also stops.

(a) The Pb4+ at the solid/liquid interface attracts (b) The Pb4+ , electrons, and SO2- ion bond to-
the electrons and the SO2- . gether to become Pb(II)SO4 .

Figure 3-5. Two moles of negative charge have now been transfered to the electrolyte from the solid
phase.

--- I

(a) Positive and negative ions enter and leave the
volume element in an attempt to restore electroneu-
trality.

(b) 2 (1 - t_) moles of negative charge have left
the volume element and to moles of positive charge
have entered the volume element.

Figure 3-6. Electro-neutrality is maintained.

3.1.6 Discussion

It should be noted that in an actual system, the above described steps would not occur in a such a

serial manner and that electro-neutrality would never actually be violated. In fact, the moment electro-

neutrality is perturbed, all steps would occur in parallel in order to maintain electro-neutrality. From

the diagrams, we see that the electrode operates in three distinct regimes during discharge: the charging

of the double layer regime, faradaic transfer of charge across the electrode/electrolyte interface regime,

and a transport regime. For the purposes of this thesis, only the faradaic transfer and the transport

regimes will be important. This is because the applications looked at for this thesis all involve steady

state charge/discharge, so the small time delay introduced by the charging of the double layer will not

be consequential.

Next, we see that electrons stay in the solid phase. Protons stay in the liquid phase, and oxygen and

SO4- molecules cross the solid/liquid interface. This will be important in the next chapter to develop

our first elementary cell model.

During the kinetic regime of operation, a faradaic reaction transfers charge from the solid phase to the

liquid phase. This causes the fraction of the volume element's volume occupied by the solid phase to

change. Consequently, the fraction of the volume element's volume occupied by the liquid phase also

changes, but it changes in the opposite direction with that of the solid phase. Our models will have to

take this change of porosity into consideration.

As seen in the illustrations, part of the discharge process involves a faradaic or charge transfer reaction.

Our equations will have to model this reaction. Because the reaction takes place at the solid/liquid

interface, our model's kinetics equation will have to take into account the solid/liquid interface area.

The interface area, however, changes with time as the reaction progresses; Pb(IV)O 2 is converted into

52

Pb(II)SO4, which covers the electrode. Anywhere there is Pb(II)SO4, an insulator, the discharge reaction

cannot take place, so as time progresses, there is less and less electrode participating in the discharge

reaction.

At the beginning of the reaction, we see two moles of negatively charged electrons enter the volume

element and at the end of the reaction, we seen two moles of negative charge leave the volume element

via an ionic current. During the reaction, charge was neither created nor destroyed, so batteries obey the

law of conservation of charge.

At the beginning of the reaction, there were three moles of sulfuric acid. At the end of the reaction,

there were only 2t' moles remaining. The difference, 3- 2t' moles, was either consumed in the reaction

or transported out of the volume element, so batteries obey the law of conservation of matter.

From our diagrams and the discussion, we see that our model will have to have a change of porosity

relationship, a kinetics relationship, a conservation of charge relationship and a conservation of matter

relationship. We will develop these equations in section 4.1

3.1.7 Illustrations for Lead Electrode

A similar procedure can be used to illustrate the processes going on at the lead electrode, and figs. 3-

7-3-10 illustrate one possible path that could happen under cell discharge.

The reaction on the lead (Pb) electrode occurs because of a valence shift on the lead electrode allows

the Pb2+ to interact with the sulfuric acid in solution.

Pb -_ Pb2+ + 2e- (3.4)

Pb Pb

(a) A volume element from the lead (Pb) elec-
trode's porous region before the start of the reac-
tion

(b) To moles of electrons break off from a lead (Pb)
atom and leave the volume element.

Figure 3-7. The start of the reaction in a small volume element from a lead (Pb) electrode of a lead-
acid battery.

Pb Pb

(a) A H + ion is liberated from a HSO ion leav-
ing behind a SO2- ion.

(b) The SO2- ion moves to the solid/liquid inter-
face where it will join the Pb2+ in fig.3-9.

Figure 3-8. Lead sulfate joins with Pb2+ .

-4=0

(a) The SO2- and the Pb2 ion join to form
Pb(II)SO 4 . Two H+ ions remain in the liquid
phase.

(b) 2 (1 - t') mole of HSOý ions enter the liquid
phase as 2t' H + ions leave.

Figure 3-9. The porosity changes.

(a) A total of 2 moles of positive charge have left
the electrolyte.

Figure 3-10. Electro-neutrality is maintained.

Chapter 4

Two-Volume Model of the Lead Acid Battery

In this chapter, the intuition about the movement of ions and electrons during discharge in a lead acid

battery developed in chapter 3 will be translated into a set of equations. These equations will be used to

implement a simple two-volume model of the lead acid cell. Although this model will not capture the

two-level effects of fig. 1-6(b), it will still be useful in forwarding our understanding of the lead acid

cell's physics. A result of great importance, found in section 4.4.3, is that our simple model can be used

to argue that, in the absence of very detailed information about how the active area of the electrodes

evolves during reaction, (information which is unlikely to be practically obtainable),electrochemical

battery models should be used only to understand trends and not to try to predict the performance of a

specific battery cell. In section 5.3, the equations developed in this chapter will be extended to develop

a 2-dimensional model that captures the two-level effect of fig. 1-6(b).

57

4.1 A simplified model of a finite volume element taken from the porous region

of a lead dioxide electrode.

From section 3.1 we saw that the geometry within any volume element is quite complex. There are

many curved arbitrarily located solid particles within each volume element. Modeling these curved in-

terfaces would be quite difficult; however, the important kinetics of the reaction occur at the solid/liquid

interface, so it is important to have a model that incorporates a solid/liquid interface.

Therefore, we would like to develop a model that does not incorporate the complex geometry but still

captures the salient kinetics and transport phenomena. We can achieve this by first remembering some

calculus.

In calculus, we learn that if a curve is continuous and differentiable, then it can be reasonably approx-

imated by a sequence of steps, each step consisting of a flat line as seen in fig. 4-1 (a). As the number of

steps increases, the approximation improves as seen in fig. 4-1 (b). In much the same way, by looking at

part of a pore and focusing in on a very narrow region of the curved solid/liquid interface, it is reasonable

to approximate the curved solid/liquid interface within that narrow region by a smooth, flat interface, as

seen in fig. 4-2'.

Fig. 4-3 redraws the foreground volume element of fig. 4-2. The model in fig. 4-3 consists of a

solid region and a liquid electrolyte region that share a simple straight and flat interface. Gone is the

complicated geometry seen in section 3.1. This simple volume element will serve as the basis from

which the equations that govern the kinetics and transport phenomena of reactions eq. (1.1) and eq. (1.2)

will be derived.

Specializing the model in fig. 4-3 to the lead dioxide electrode gives fig. 4-4. In the diagram, one can

'This model comes as a result of conversations with Professor Wyatt.

58

f(x)

(a) A curve being approximated by two steps.

Figure 4-1. In calculus, differentiable curves
steps, the better the approximation.

f(x)

X

(b) The same curve as in (a) being approximated by
four steps.

can be approximated by steps. The larger number of

/1I1

Figure 4-2. The foreground shows the simplified volume element. Note how the curved surface of
the porous material (background) is being approximated by a straight plane. For a narrow enough
region, this is a reasonable approximation.

r

7-
r

--

· \

7=77777-1

by

Figure 4-3. A volume element from an electrode's porous region. The lower half consists entirely
of solid material. The upper half consists of liquid. If this element were from the lead dioxide elec-
trode, the solid region would consist of Pb(IV)O2 and Pb(II)SO 4. If it were from the lead electrode's
porous region, the solid region would consist of Pb and Pb(II)SO4. Note that, 6y = 3Ys + Syj. This
simple model still maintains all the elements needed to develop a solid understanding of the bat-
tery's electro-chemistry, but it has the added benefit of preventing the complicated geometry seen
in fig. 4-2 (b) from obscuring the processes going on during reaction.

see the flux densities of ions into and out of the liquid region, the solid region, and between the liquid

and solid regions.

In fig. 4-4, positive fluxes flow in the direction of the arrows. Here ji is the flux density of species

i in -~ 2 [-y] is the concentration of species 7 in . The incremental distances Sx, by, by8, byl,

6z all have units of centimeters and 6y = Jy, + 6 yI. Note that all z and y direction fluxes have been

ignored. This is done for the sole purpose of simplifying the derivation of the equations. This model can

be readily expanded to include fluxes which flow in two or three dimensions if one feels like doing so.

The fluxes shown in fig. 4-4 where selected because of their participation in the discharge of the

2A flux Ni is defined as Ni = jiArea

JH L

Jej
L

6 y1
R

Jy

Figure 4-4. A specialization of the model in fig. 4-3 to the lead dioxide area. Here only x-direction
flux densities are shown.

Pb(IV)O2 electrode as was seen in section 3.1. Fig. 3-2 (b) shows that there must be a flow of electrons

in the solid phase. In fig. 4-4, the flux densities of electrons into and out of our volume element are

labeled je and je,. 02- ions cross the solid/liquid interface in fig. 3-4 (a), so this flux density jo2- is

also included in our molecular model. Fig. 3-5 (a) shows an SO2- ion traversing the phase boundary,

so this flux so0 2- is also shown in fig. 4-4. Finally, there are two pairs of flux densities, jHt with jHSO,

and jH+ with jHSO-R that are entering and leaving the left and right sides of our model. These fluxes

come from the fact that fig. 3-6 shows flows of both H + and HSO ions.

The mathematical equations that describe the reaction at the Pb(IV)O 2 plate will be derived from the

flows seen in fig. 4-4, the chemical reaction described in eq. (1.1) and the assumption of electro-neutrality

eq. (3.3).

JH~

jHR

[H+]
JHSO-L [HS04] 4HSO

JS02

jO2-

PbO2/PbSO4 eR

4.2 Derivation of fundamental equations for the reaction at the lead dioxide elec-

trode

In this section, five equations will be derived. These are the Change of Porosity equation in sec-

tion 4.2.1, the Conservation of Charge equation in section 4.2.2, Ohm's Law in Solution in section 4.2.3,

Conservation of Matter equation in section 4.2.4 and the Electrode Kinetics equation in section 4.2.5.

Together these equations will describe the behavior of the four state variables :, (, 0s, and it. As the

equations in this thesis can become quite complex, color, where available, is used to draw the reader's

attention to these variables.

4.2.1 Change of Porosity

The porosity of a volume element denoted by : and defined to be the ratio of the void volume3

within a volume element to the total volume of the volume element [29]. As seen in the illustrations

of section 3.1, the amount of space within a volume element required by the solid phase changes due

to the fact that Pb(IV)0 2 molecules and Pb(II)SO 4 molecules are not the same size. During discharge

Pb(IV)O 2 molecules are converted into Pb(II)SO 4 molecules, and during charging, Pb(II)SO 4 molecules

are converted into Pb(IV)0 2 molecules. This conversion of one type of molecule into the other changes

the amount of space occupied by the solid phase within the volume element. Consequently, the amount

of space occupied by the volume element's liquid phase also changes. Hence, because the total volume

of a volume element is assumed to be fixed, the porosity of the volume element must also change.

In the simple cell, because 6x, 6y, and 6z are all known fixed quantities, the solid region's volume

can only change by changing 6y, which also changes by, and therefore affects the volume of the liquid

3For this model, the void volume is assumed to be filled with electrolyte.

62

region. Starting with,

AVolume Solid Phase AVolume Occupied by Pb(II)SO 4 AVolume Occupied by Pb(IV)O 2

At At At

= (volume
mole /Pb(II)SO4

A#moles Pb(II)SO4
At

volume
mole Pb(IV)0 2

A#moles Pb(IV)O 2
At

(MWPb(II)SO 4 A#moles Pb(II)SO 4 +

PPb(II)SO4

MWPb(IV)O,
PPb(IV)O2

A#moles Pb(IV)O 2

(4.1)

where MWj is the molecular weight of species i and pi is the density of species i. The time rate

of change of the number of moles of Pb(IV)O 2 and Pb(II)SO 4 can be related to each other and to the

divergence of the electron flow by using eq. (1.1) to give us

A#moles Pb(II)SO 4

At
A#moles Pb(IV)0 2

At

Substituting the results of eq. (4.2) into eq. (4.1) allows the following derivation:

(4.2)(e- - je- ,,
eR 2e)JZ

AVolume Solid Area _ (MWpb(II)SO4

At PPb(II)SO 4

X6z6y zA (yys) (MWPb(II)so 4

t PPb(II)SO 4

A(_) L(MWPb(I)so4
At PPb(II)SO 4

A () - MWPb(II)S04At L\ PP~~P(II)SO 4 /

MWPb(IV)O2
PPb(IV)O2

MWPb(IV)O2)

PPb(IV)02

MWPb(IV)O2

PPb(IV)O
2

(JeR 2 JeL) Z6y

(J• J•) 6z6y,

(J e R - J j e L (6, y -6 y '2 yje Rby -je1

(26.x- (1-.:26x /

(4.3)

Dividing the last of eqns. (4.3) by -1 gives

[(MWPb(II)S0 4 MWPb(IV)02 je e_
P Pb(II)SO4 Pb(IV)2 (2x (1 -

(4.4)

4.2.2 Conservation of Charge

As noted in section 3.1.6, batteries obey the law of conservation of charge, so we need an equation

to represent this law. Because of conservation of charge, there must also be a relationship between the

number of electrons produced or consumed within a volume element and the number of H+ and HS04

ions produce or consumed within the same volume element. Simply put, any charge that leaves the solid

phase within a volume element must enter the liquid phase of the same volume element. The converse

also holds true.

The relationship between the number of electrons produced or consumed within a volume element

and the total number of SO2- ions that cross the solid-liquid interface can be written as:

64

e(j 2JeL 6 6 y, = -jso2-SzS6x (4.5)

This relationship can be seen by first looking at fig. 3-2 where two moles of electrons enter the volume

and then seeing the one mole of S02- in fig. 3-5(a) cross the solid/liquid interface to become part of a

Pb(II)SO 4 molecule.

Expanding on eq. (4.5) to include the flux of 02- across the solid-liquid interface gives

Je) 6 zy, = -jso2- Szj x
2 4

02-6zx
2

Next, again using eq. (1.1) as our guide, we write down how the total number of H+ and HSO0 ions

changes with time.

A ([H+]6x6yj6z)
At jH - jH+) 6zsyI - 2jo2- 6z6z + JS02- 6z6

A ([HSOl]Jxzyyaz)
At

(4.8)-(jHSO - iHSOL) S6zy 1- Jso2-6z6x

Substituting from eq. (4.6) into eq. (4.7) and eq. (4.8) and then simplifying gives

A ([H+]6x5ylJz)
At

A ([HSOl]JxSyzSz)
At

jH - jH +~6zY +
3 (
2 Re

(JHS 4 R - HSO) z6y + (

- Je) 6y,6z

Je - Je ') y6z

(4.6)

(4.7)

(4.9)

(4.10)

writing both eq. (4.9) and eq. (4.10) in terms of porosity gives, i.e. using : =

([H '] ,-) ýx 6y jz + 1 (He -- e -) (1 - 6) y bz

A [HSO]) 1y6zAz ([HSOj) 666=- (ijHSO - JHSO) y6 - e (1 -) 6y6z
At 4R 4L

(4.11)

(4.12)

A([H±1.) a [HSOmus)In order for the liquid phase to maintain electro-neutrality, at •bxybz = A([HS 6yz must

be true, so we can set the right sides of eq. (4.11) equal to eq. (4.12) to get

-(J -3 (,JH) _ -j) (1 - f:) yjz

= -(Hso -HSO 4L) y+ (J4R 4L' e - J) (1 -)6y6z (4.13)

dividing both sides of the equation by 6xJSyz and combining like terms

[-(JH j HH+ S) + (JJ (1 - e)JX JX JX- (4.14)

The right side of eq. (4.14) is simply the divergence of the electron fluxes. The left side is the di-

vergence of the ionic fluxes. Grouping liquid region fluxes not by type of ion, but by the side of the

volume element into which the ion flows gives, and moving the electronic flux terms to the left side of

the equation gives,

[(JHso - jH+ (JHSo - (__ J__H4R 4L RO e JeL\ (1 =0 (4.15)

Now we will define net negative charge flowing in the liquid phase as

j3i = jHSO J - JH-' (4.16)

where i stands for the side of the volume element from which the charge is entering. Rewriting

eq. (4.15) in terms of eq. (4.16) gives

JIR J L) e +L)R (L1 -.)=o0 (4.17)

Equation eq. (4.17) shows that charge is conserved in the volume element. This means that the total

number of negative charges produced in the liquid phase is equal to the negative of the amount of negative

charge produced in the solid phase and vice versa.

4.2.3 Ohm's Law in Solution

In fig. 3-6, we saw ions leaving and entering our volume element. There are three ways in which

ions move: migration, diffusion, and convection. Our present model neglects convection, which is not

significant in the pores of the battery electrodes.

Ohm's Law in solution is very similar to the well known Ohm's Law from circuit theory in which

charge is transported by electrons. Ohm's law is expressed as

67

J= aE

a ((4.18)

Where J is current density in terms of Counombs, a is the conductivity (Coultmbs.) through which thecm2-s Volts.cm-s

electrons are flowing, and E ('t_) is the electric field in which the electrons are moving.

For the purpose of discussion, all derivatives will be made in the x direction and positive fluxes will

be flowing in the positive x direction.

Ohm's Law in solution is very similar to eq. (4.18) with a few modifications that will now be explored.

In the electrochemical cell's electrolyte, charge is not transported by electrons but instead by ions, and

depending on the solution, there may be multiple types of ions with different charges and signs. For this

discussion, H2 SO 4 is assumed to dissociate into only H+ and HSO ions.

The total number of ions of a certain species passing through an area per unit time is

Ni = [i] v A (4.19)

Where Ni has units of "o", [i] is moli is in M, and A is in cm. The flux per unit area ji, which has

units of 1ot "• is

Ni
Ji= -=A

= [i] vi (4.20)

the current passing through a unit area due to the movement of species i will be

68

ziFji = ziF [i] vi (4.21)

Where F is Faraday's constant e 96485 ouomb. The velocity of species i, vi, is representative not

of each individual ion, but of how ions of species type i on average behave in the medium. It is well

known that the velocity of a charged species in the presence of a constant field is proportional to the field

strength. In the lead acid cell's electrolyte, the field is the negative of the gradient of the electrochemical

potential, so

vi = ui -(x (4.22)

where ui is the mobility of species i. The mobility reflects the ease with which an ion of species i can

move through the medium in which it exists. This gives the current due to species i as

ziFjj = z1F [i] ui -,x (4.23)

The current passing through a unit area within the electrolyte will be the sum of the current due to the

movement of H+ ions and the current due to the movement of HSO4 ion as seen below,

(zH+FjH+ + ZHSO FjHSO ZH+F [H+] UH+ (- OhH+ ZHSF [HSO] UHso (-aiHS
(4.24)

The electrochemical potential of a species i, g, can be represented by an electric potential q plus a

chemical potential p [28]

(4.25)

where q is electric potential, F is Faraday's constant, zi is the charge carried by an ion of species i and

pi is the chemical potential of species i. Substitution of eq. (4.25) into eq. (4.24) yields,

(ZH+FjH+ + ZHSO FjHSO) ZH+FF oaxr= ZH+F [H+] UH+

+ ZHSo F [HSO] uHSO4 (z soHS04 F
ax

+ /-HSOa -))

rearranging gives

(zH+FjH+ + ZHSO•• jHSO) zHF 2 [H±+] UH+

+ H+F [H+] UH+ (

Ox

ax

+ z2 F2 [HSO4] UHSO4

+ ZHsoF [HSO-] UHSO-

=\ F [H+2 UH+ UH HSO± 2 [HS0] uHSO (
+ ZH+F [H+] UH+

Ox-H+
ax

+ ZHSO F [HSO] uHSO;
OxAHSO-
Ox

(4.27)

The chemical potential pi can be written

pi = RTln (ai) (4.28)

where R is the universal gas constant, T is absolute temperature and ai is the activity of species i.

+ x+---

(4.26)

/IHSO-4

7i, = zZF0 + pi

Activity is a function of the concentration of species i and can be written as a = y [i] where y is the

activity coefficient and [i] is the concentration of species i giving

pi = RTln (yi [i]) (4.29)

If there is no change in the concentration of chemical species i then '- = 0 and eq. (4.27) reduces to

(zH+JH+ + HSOIHSO)= (H2 [H] UH + zHso- F2 [HSO]uHSO (-) (4.30)

which is a function of the electric field alone, and thus simply the familiar ohm's law given in

eq. (4.18). Pattern matching with eq. (4.18) allows us to write the electrolyte conductivity rn as

K= (zH+F 2 [H+] UH+ + HSO - F 2 [HSO] HS (4.31)

which, fortunately, is a specialization of the definition of conductivity given in [27] to our system.

Substituting the definition of conductivity into eq. (4.27) gives

(zH+FjH+ + ZHsOFHSO = (-)
z H+F [H+UH+ f

(zHF2 [H] UH+ + z2 F2 [HSO] UHSO) OX

ZHSO F [HSO] UHS (4.32)
(zH+F 2 [H+] UH HSO2 [HSO] uHSO

71

In section 3.1.5, transference number of a species was defined to be the fraction of current carried by

that species. This is because physically, the t' the contribution to r, of a species [27, p.275] means that

t[is

zH F2 [H] 2uH+t= H+ (4.33)(z+F2 [H+] UH+ + ZHso F2 [HSO] UHSO)

substituting eq. (4.33) into eq. (4.32) gives

ZH+FjH+ + ZHso-FjHso-) = n ---- + 19H -Zx ZH+F O x ZHS (F xO

OFjH$ t (OHSOi)± O ý Ox

(Fjns;+FjHSO + =) + f Ox (1 - t) \ OxC (4.34)

substituting eq. (4.29) into eq. (4.34) gives

HS0 - Fb RT Oln (aH+) RT aln (aHS

= _o + RT aln (H+ [H_]) RT Oln (HSO [HSO-]
az + F x + F Ox

(4.35)

As is commonly done in the literature, we will assume unit activity but recognize that this assumption

is actually only valid for dilute solutions, whereas the sulfuric acid found in a lead acid battery is not a

dilute solution. Therefore, this approximation may lead to some error. Next, realizing that, because of

electro-neutrality, the concentrations of H+ and HSO are the same and equivalent to the electrolyte

72

concentration C, gives

jHSo - jH+ F= x + (2t - 1) RTF aln () (4.36)

dividing both sides by n and substituting j, = (JHSO0 - jH+) gives the final form of Ohm's Law in

solution

j-F _ -a (1 - 2t) RT ln((4.37))
S x F(4.37)

4.2.4 Conservation of Matter

The law of conservation of matter is used to keep track of how the concentration of the electrolyte

within the volume changes with time. We start with keeping track of how the total number of moles of

H + and HS04 ions change with time. The time rate of change of the total number of H + ions within

our volume element is given by eq. (4.11). Eq. 4.12 gives the time rate of change of the number of moles

of HSO2 ions. Both equations are reproduced here in eq. (4.38) and eq. (4.39) for ease of reference.

A ([Hj+]Jxy6z) - (jH+ j)6 y r - 3Je y,86z (4.38)
At 2 \eR L

A ([HSO ,]Sxytz) =-(JHSO - JHSO •)66y + (•e- 3e-) ySz (4.39)
At 4R

The first term on the right of both eq. (4.38) and eq. (4.39) describes the change in the total number of

a species due to the combined action of diffusion and migration. The second term on the right describes

the amount of ions consumed by the reaction. Initially, expressions for the influence of diffusion and

73

migration will be developed.

The H + ionic fluxes in eq. (4.38) in the term just to the right of the equal sign are due to the transport

phenomena of diffusion and migration. Using a first difference approximation for the derivative, the

H + fluxes can be written in the forms found in eq. (4.40) and eq. (4.41). Here [H+] with the (n - 1)

subscript means the concentration of H + ions in the small volume element to the left of the present

volume element. The (n) subscript is the index of the volume element presently under consideration.

(n + 1) is the index of the volume element to the right of volume element n. All volume elements are in

the same horizontal slice from the electrode like those seen in fig. 3-1.

jH+J 6zy1 = -DH+ ([H+](n) - [H (n-1) z yto-t+ Je6- Je) 6Z6y 8 (4.40)

jHn = -zDH+ [H+](n+) - [H+In) z y + (1 -) t e - z) (4.41)

The first term on the right in each of eq. (4.40) and eq. (4.41) represents the ionic flux that would flow

solely because of a concentration gradient of that ionic species. Here DH+ represents the diffusivity of

the H + in the electrolyte.

The second term on the right of these equations comes from the fact that when the reaction in eq. (1.1)

occurs within a volume element, there will be (je- - J) by,6z moles of negative charge transported

into the liquid phase from the solid phase. These negative charges need to be neutralized so that electro-

neutrality can be maintained. Moving some positive charges into the liquid phase of the volume element

and moving some negative charges out of the liquid phase of that volume element neutralizes these

negative charges and creates an ionic current within the electrolyte.

The fraction of the ionic current that is made up of positive H± ions is t'. For the system depicted

in fig. 4-3, a fraction 6 of these H + ions will come in from the left and a fraction 1 - 6 will come in

from the right. Moving ions like this will, of course, perturb the electro-neutrality of the neighboring

elements. This is fine because the reaction at the lead plate will produce two moles of positive charge in

the lead plate's liquid phase. This positive charge will attract the negative charge from the lead dioxide

plate and the system will maintain electro-neutrality by forcing an ionic current to flow between the two

plates that will neutralize the positive 2 charge at the lead plate and the negative 2 charge at the lead

dioxide plate.

By substituting eq. (4.40) and eq. (4.41) into eq. (4.38) we get eq. (4.42).

Diffusion

(A[H+]()y,) 1y) && = DH ([H+]n,_1) - 2[H](n) + [H+](n+i)\
At xz= DH+ JJ

-toj· - Jey) y + - 5-yz (4.42)

migration reaction

The right side of eq. (4.42) clearly shows the change in the total number of H + ions due to diffusion,

migration, and reaction. Grouping the migration and reactions terms results in

(A[H+](n)6Yl) Dx z -DH+ ([H+](n-1) - 2[H+](n) + [H+](n+l)J

±(3-2t~e) -(e)J yz (4.43)
75 6

75

An expression for the material balance of HSO ions can be found in a similar manner resulting in

eq. (4.44).

A ([HSO4l(n)6yl) x
At

=DHSO4 ([HSO4I(n-1)= Dus
- 2[HSOL4]()

6y,6z + (
+ [HSO4](n+l)) 6yJSz

Je - le) z
6x)J

Again grouping migration and reaction effects

A ([HSO4](n)Syy) 6x6z =DHso-
At is

- 2[HSO]4() + [HS04](n+1)) 5yJSz

+ 3 - 2t\ (J Je J, (4.45)

In eq. (4.43) and eq. (4.45) there are two seemingly different coefficients DH+ and DHso . However,

due to electro-neutrality, [H+] = [HS04] = [H2 SO 4]. Therefore, from this point forward we will assume

that we are talking about sulfuric acid and call [H2 SO 4] as C. This allows us to write:

A (C ()6yS) 5xcz = Dc
At

C(n-1) - 2C((n) + C(n+l)) 5yJ6z +
5X 3-2t e - Je) 6y8,z (4.46)

Remembering that E- = Y allows us to rewrite eq. (4.46) in terms of porosity giving us

A (C(n): xybz = Dc(C(, _1) - 2C(n) + C(n+1)
At 61 cJy6z+ (je+

2 eR

(4.44)

-Je) (1

(4.47)

+ (1 - to) (J•e ez)

[HSOI](n-1)

Dividing both sides by 6x, 6y, and 6z gives

DA (C(D C(n_1) - 2C(n) + C((n+1) + 3 - 2t) (4.48)
At 6x2 2 6x

4.2.5 Electrode Kinetics

The electrode kinetics equation describes the rate at which charge will be exchanged between the

element's two phases due to a perturbation of the element's conditions from equilibrium. When the

Pb(IV)O 2 plate is connected to the Pb plate through an external circuit, the potential difference across

the solid/liquid junction in each volume element of each plate will change from its equilibrium potential.

The difference between the equilibrium potential and the potential difference across the solid/liquid

interface is called the over-potential, qr. When there is a nonzero over-potential in a volume element,

charge will be transported across the solid/liquid interface within that volume element. This will cause

electrons to flow in the external circuit from the Pb plate to the Pb(IV)O 2 plate or vice versa. Every tiny

volume element of the porous region of each electrode will contribute to this flow of electrons by either

producing or consuming electrons. The over-potential in a particular volume element will determine

how many electrons are either produced or consumed in a unit of time.

To find out how rapidly electrons are produced or consumed in a volume element due to a change in

the over-potential, we start by reviewing the concept of chemical equilibrium. In chemistry, the term

"equilibrium" doesn't mean the lack of chemical activity. Instead, it means that there is a net activity of

zero. Equation 1.1 shows the bi-directional chemical reaction that occurs at the lead dioxide electrode.

There are really two reactions going on at all times. These two reactions are called the forward reaction

77

(a) When a lead acid cell discharges, at the lead
dioxide electrode, negative charge is transported
from the solid phase to the liquid phase. This type
of current is referred to as a cathodic current.

(b) When a lead acid cell charges, at the lead diox-
ide electrode, negative charge is transported from
the liquid phase to the solid phase. This type of
current is referred to as an anodic current.

Figure 4-5. The cell reaction causes the exchange of charge between the two phases.

and back reaction. The forward reaction is the discharge reaction

Pb(IV)O2 (s) + HSO4 (aq) + 3H + (aq) + 2e- -- Pb(II)S0 4 (s) + 2H2 0 (1) (4.49)

and the back reaction is the charging reaction

Pb(II)S0 4 (s) + 2H20 (1) --- Pb(IV)O2 (s) + HSO (aq) + 3H + (aq) + 2e- (4.50)

When the lead dioxide electrode under goes discharge as in reaction eq. (4.49), the net effect is to

exchange negative charge from the solid phase into the liquid phase (i.e. in the cathodic direction) as

seen in fig. 4-5 (a). When the electrode is charged, negative charge is transported from the liquid phase to

the solid phase (i.e. in the anodic direction). At equilibrium, the rate of charge transport in the cathodic

direction equals that in the anodic direction, so the net amount of charge exchanged between the two

phases is zero; however, there is always charge being exchanged between the two phases.

The exchange of charge between the two phases is done so by the movement of SO2- and 02 - ions

as seen in figs. 3-4 and 3-5. The flows are drawn in fig. 4-6 (a). As depicted, these fluxes have units of

"•". At equilibrium, since the net amount of charge exchanged between the two phases is zero, the netsec

charge carried by the flow of these two ionic species across the solid/liquid interface is zero.

The fluxes of SO 2 - and 0 2- ions can be broken down into smaller fluxes as seen in fig. 4-7, where the

notation NA7 represents the flux of species i going from the solid to the liquid and Ni" to symbolize the

flux of species i going from the liquid to the solid. While discharging or charging, the sub-fluxes change

in magnitude as seen in fig. 4-7 (a) for the discharging case and fig. 4-7 (b) for the case of charging.

For the trans-interface flow of SO2- ions, the total flux, Nso2-, will be the difference Ns _ - No-

SOso

Nso - = Nso - Nso _ (4.51)

A similar expression can be found for the flux of 0 2- ions.

N02- = N 2- NO 2- (4.52)

These fluxes can also be seen in fig. 4-6 (a) and (b).

The total trans-interface flow of negative charge in terms of moles of negative charge per second can

be written as

NNegCharge O Z2IN 0 2- - ZS0o2 NSO2

= Zo2-jo2- X6 Z- OZSO2- 3SO2-J

= -2 (je - e) jz 6 y, + 2 (e 2 e 6Zy,

= - jeR - je) 6 z 6 y

(a) The charge that is exchanged between the two
phases is carried by SO- and 0 2- ions.

(b) The trans-solid/liquid interface fluxes decom-
posed into their constituent sub-fluxes. At equi-
librium, the two fluxes for each of the trans-
solid/liquid interface fluxes are equal in magnitude
but opposite in direction for a net flux of zero.

Figure 4-6. The trans-solid/liquid interface fluxes and their sub-fluxes

Thus, we need to find an expression for (ji - J-E) 6z6y,. Starting with Jso0 -, equation eq. (4.49)

says that for every mole of HSO4 consumed in the reaction, one mole of SO2- has to cross the solid/liq-

uid junction and become part of a lead sulfate molecule. Mathematically, this means that the time rate of

(4.53)

(a) The constituent fluxes during discharge. (b) The constituent fluxes during charge.

Figure 4-7. The sub-fluxes change in magnitude when the system is perturbed from equilibrium.

change of the number of moles of HSO- is proportional to the flux of SO2- that crosses the solid/liquid

interface as seen in eq. (4.54).

A t HxRyj6z = -Nso2 - (4.54)

Here 6yj was deliberately written outside the time difference because the electrode kinetics equation

focuses on ionic change due solely to reaction and not to volumetric changes or other effects that are

secondary to the reaction.

Now, as stated earlier, the flux of SOý- ions can be broken into two parts, one part that flows from

the liquid phase to the solid phase and another part that flows from the solid phase to the liquid phase.

The flow from the liquid phase to the solid phase will be called No, = jso2-x6z, and, as seen in

eq. (4.55), it is equal to - A([HSO4]) Sx6y1 6z. Here A([Hso]ts) I6x6ytz is the amount of HSO- that is81 At

81

being produced by the flux of SO2- ions going from the liquid phase to the solid phase in a time At.

The negative signs in eq. (4.54) and eq. (4.55) are due to the fact that HSO4 ions are actually consumed

when SO2- ions are transported from the liquid phase to the solid phase.

j1 o2-6Xz = - A t) 6xySz (4.55)
S04 -At

By considering the amount of HSO4 produced by the flux of SO2- that flows from the solid phase

to the liquid phase in a time At, eq. (4.56) can be written.

A ([HsO,]"')
J4 2-6

x 6z = A t (6x6y6z (4.56)

Because Nso2- is defined positive in the liquid to solid direction, so is jso2-. Thus eq. (4.56) is

subtracted from eq. (4.55) to get an expression for Nso2-.

As ([HSO A ([H4.57)
jso2-6xSz = j3s2-S 6x - j3s2- xz = - At Atyz (4.57)

The flux NI _ is dependent on there being an ample supply of HSO4 at the electrode/electrolyte

interface. At this point we choose to make the standard assumption that the forward reaction eq. (4.49)

is first order with respect to the concentration of HSO4 [18, p.502], which allows us to write:

A [HSO] t"
At = k1, [HSO] (4.58)

It should be noted that the assumption of first order for the reaction could be wrong. The flux No,

82

on the other hand, depends on the abundance of H + at the electrode surface giving

a [Hso]"A [= k 1, [H+] (4.59)
At

The reaction coefficients kt, and ks have units of _ and are short hand for

Ea

ki = Pie RT (4.60)

Equation eq. (4.60) is referred to as the Arrhenius equation [18, 28, p.88, p.511]. Here Ea,, the

activation energy, is the barrier energy that impedes progress toward the new lower energy state following

perturbation. R is the gas constant and T is absolute temperature. The product RT is the thermal energy

available for reaction. Pi, the frequency factor, represents the total number of attempts by SO2- ions to

be transported across the solid/liquid interface in the i direction. Pi has units of .

8i can be thought of as being made up of two parts. The first factor that goes into making up /i,

SAint, is the per unit volume surface area of the solid/liquid interface. It has units of 2-. The second

component, the standard rate constant ko, has units of

1i = SAint ko, (4.61)

Modeling the reaction as first order with respect to the concentration of HSO4 and H + , allows us

to write

A [HSO, ts" Ql,,(o,-,s++.e)

At = -,, [HSO-] e aj (4.62)

83

and

A [HSO]04s as]ns+ -- eq)

At = 3st [H+] e RT (4.63)

Here •, is the electrical potential in the solid phase, (b1 is the potential in the liquid phase, and Oeq is

the equilibrium potential of the electrode. The over-potential r7= / - @1 - #eq. F is Faraday's constant

which allows the conversion between the number of moles of an ion and the number of Coulombs of

that ion. The transfer coefficients ac and acl reflect the asymmetry of the activiation barrier [28]. a~st

and a,, must sum to unity [28]. The n is the number of moles of electrons involved in the reaction. For

a lead acid battery n = 2.

Substituting the right hand sides of eq. (4.63) and eq. (4.62) into the right hand side of eq. (4.57) and

using the left most side of that same equation, we get eq. (4.64).

j A kst [=HSO4] •e -RT + SA s [H+] e RT 6x6yz6z (4.64)
4m•S= -- int o e LT4.- f int, R0

The standard rate constant, however, is not what is used in the literature. Instead, the exchange current

density is reported. The exchange current density is usually denoted by io and has units of Coulom. The

exchange current density represents the amount of charge per unit area that is transported across the

solid/liquid interface in each direction at equilibrium.

At equilibrium, the amount of charge transported across the interface in the liquid to solid direction

by SO2- ions, terms of Coulombs is

ioSA t•6x6yz = Zso2- FSA sk [fiHSO-f] 6x'yt6z

= Zso FSAls kls [HSO]* 6x6y6z (4.65)
4 .· int 04

A similar expression can be written for i" . k0, then, can be written as,

ik = i0 (4.66)
zso2- F[HSO-]*;

Substituting expressions for k o and k01 into eq. (4.64) gives,

ils [HSO-] e if [H+] asnFFtI) a b
-S2-6x6z -SAi 1s 0 4e RT + SAS 1ei e RT [6x6z

zso0 2- FE [HSO] Zso2- F.7 [H+]
(4.67)

(S H io [HSO] ,,nF(-,,) s io [H+] ,nF(,)

jso 6z = - -SA 2F RT +SA••e a + SA 2F e RT 6x6•yz (4.68)

Since electro-neutrality is a fundamental assumption of this model, [HSO] = [H+] = C and

[HSO-] * = [H+]* = C*. C is the concentration of the electrolyte and C* is the bulk concentration

of the electrolyte. Also, by again looking at eq. (1.1) and noting that for every two moles of elec-

trons that are consumed, one mole of SO2- ions is transported from the liquid to the solid phase (i.e.

6z•y, = -jso- Sx3x), we get eq. (4.69).

(Je - JeL) 6z~y• io Q" (" CF(q) ctnF(-j))2 zy,=SAi-t C- e - e RT) Jxsy6z (4.69)

Assigning SAint = and rearranging eq. (4.69) we get eq. (4.70),

(-JL}) (1 _ zRRT.-x Cz io. (Q' inF(,i) ajnF(-i) (4.70)(xe 5ey 6X6z FC e RT - e RT (4.70)
Jx 6JxySz F C*

The notation als and a&l is particular to this derivation. In order to bring our notation more in line

with that of the literature, we introduce the idea of a cathodic current and an anodic current. The trans-

solid/liquid interface current is said to behave like a cathodic current when negative charge is being

transported from the electrode into the solution which is tantamount to e- consumption. Ironically

enough, negative charge is transported into the electrolyte when SO2- ions flow from the liquid phase

into the solid phase. The electrode interface current is said to be an anodic current when negative charge

is being transfered from the solution to the electrode which is tantamount to e- emission [28]. Therefore,

we can write al, as ac and a,, as a, where the c stands for cathodic and the a stands for anodic. This

gives us

(J -J1 -(l _ 1 io 7 aanF(7) acF(-7 j)
(1) C e RT - e RT (4.71)

ax 6y F C*

It should be stressed that a cathodic AND an anodic reaction occurs at each electrode. However, at

the cathode, the cathodic transport of charge in the cathodic direction is much greater than the transport

of charge in the anodic direction. At the anode, the opposite is true.

86

Summary of equations for single cell lead dioxide model

1. Change of Porosity

A [(MWPb(II)SO4

t PPb(II)SO4
(MWPb(IV)o 2)] (jeO) (-.

~(L (1 -J)
PPb(IV)O226

(4.72)

2. Conservation of Matter

At = :.DeAt

(C(n1) - 2C(() + (n+1))

5x2
(3 - 2t)(JVe - Je '(1) ()+ 2 (j6X

3. Electrode Kinetics

0 = (Je - Je\ (1 -

0 x
1 io (7 C anF(q)e RT5y F C*

acnF(-i)
--e RT

4. Conservation of Charge

0=(JIR - JLo6X•

5. Ohm's Law in Solution

Ot + RT Oln (C)
S + (1 - 2t) F

(4.73)

(4.74)

(4.75)
je(J - J-,

S+ 56X

jjF0 = K (4.76)

4.2.6 Summary of equations for single volume element lead model

The techniques just discussed for a lead dioxide volume element can readily be applied to a lead

volume element too. The reaction for the lead volume element would be eq. (1.2), and the finite volume

would look like fig. 4-8

JH+

JHSO

Je-

6y,

JYs

Figure 4-8. A simplified model of a section of an Pb electrode's porous region. The lower half
consists entirely of lead and lead sulfate. The upper half consists of electrolyte. Furthermore,
by = 6 y, + Jyl

1. Change of Porosity

(4.77)As MWPbSO4 eMWPb e- e

At PPbSO4 PPb 2Jx

2. Conservation of Matter

C(n'(n-1) - 2C (,) + C(+1) + 2t(1 i eLA,,-(,)_ DcAt JX2 + (X (4.78)

JH

[H4]

-L [HSO4] JHSO

Pb/PbS04 JeR

I

R

J

3. Electrode Kinetics

0 = JeR -JeL (1-Jx 1 i " (e anF()-tyFC~"'

4. Conservation of Charge

+ e - JE)(1 -)S+ (6x

5. Ohm's Law in Solution

+ (1dx

RT Din ((C1)
- 2t8F+F ax

- nF(e rl)
(4.79)

(4.80)0=(
jIR - 11L

(z 6

jiF0 = K (4.81)

4.3 Two Volume Model Implementation

In section 4.1, a set of equations that describe the phenomena observed in section 3.1 were derived.

Those equations are now used to develop a simple lead (Pb) acid battery cell model. Fig. 4-9 shows the

simplified cell model that was implemented. Moving from left to right, first there is the lead tab that acts

as an interface to the external circuit. Next, there is a simplified Pb(IV)O 2 electrode that consists of one

of the volume elements developed in section 4.1. Then there is the electrolyte basin. Then a simplified

Pb electrode, and finally another lead (Pb) tab. Fig. 4-10 shows the cell with all important dimensions

labeled.

H2S0 4 H2S04
(electrolyte) (electrolyte)

I 'I-
.1----------,---- I.. . .

- T C11 - PPb
(tab)

PbO2
(electrode)

H2SO V

bulk
electrolyte

- -

Figure 4-9. Simplified single cell model of a lead (Pb) acid battery.

At first glance, this model may seem too simple to be of use in the lab, in the field, or in the classroom.

However, if one were to think of each electrode as a collection of small elementary volumes, and if an

elementary volume were selected from each electrode and the bulk electrolyte region, as seen in fig. 4-

11, together these three elements should act as a battery. A battery cell, then, is a collection of these

smaller batteries. Therefore, the simplified model of fig. 4-10 should exhibit battery-like behavior.

90

Pb
(electrode)

c

Pb
(tab)

4 I , I 2SH2 SO4 :Pb(IV)2 6 b H2 S04

- - - -- - -_ - - - - - - --OPb

Figure 4-10. Simplified Single Cell Model with Dimensions Labeled

While the exact value of the output potential will most certainly not be representative of an actual

battery, the general shape of the time/potential and potential/current curves produced by our simple cell

should look very similar to those of a real battery. This simple model will give us the opportunity to

build up our intuition about how the model parameters affect the performance of the battery cell. This

intuition will be useful when implementing and debugging the larger and more complex model to be

developed in chapter 5.

Aside from the simplification done to the structure of each electrode, the simulations make four more

noteworthy approximations. First, the lead (Pb) tabs have infinite conductivity. Next, the electrolyte

basin has infinite capacity. That is to say the concentration of electrolyte in the bulk region between the

two electrodes is independent of time and usage. Third, there are no thermal effects, and finally, acid

is always assumed to be able to reach the active material. In other words, the Pb(II)SO 4 that forms at

the electrode/electrolyte interface does not make a barrier that impedes transport of electrolyte to the

electrode surface. Consequently, the electrode/electrolyte interface area is constant.

91

O Pb(IV)O 2

6xPb(IV)0 2 - --XZbIVO L , , , ..

Pb

5YPb Pb

6xPb

\I

Figure 4-11. Each electrode can be thought of being made up of thousands of little volumes like
the one described in section 4.1. If one were to take an elementary volume from each of the elec-
trodes and an elementary volume from the electrolyte, these three volumes should give battery like
behavior.

92

4.3.1 Boundary Conditions

The boundaries of interest in this model are the two electrode region/lead (Pb) tab interfaces and

the two electrode region/bulk electrolyte interfaces. How these boundaries effect the relevant fluxes is

important. In fig. 4-12, only the relevant x-direction fluxes have been drawn. It is true that the division

between the Pb(IV)O 2 and H2 SO 4 of the Pb(IV)0 2 electrode and the division between the Pb and H2 SO 4

of the Pb electrode also represent boundaries; however, these boundaries do not cause changes in the

equations, so they have not been drawn in fig. 4-12.

Pb(I
7H+L

-Pb(IV
HSO,

Pb

.Pb(I

/)02 Pb(IV)0 2 , Pb Pb
JH+ H H

02 H2S0 4 .Pb(IV)0 2 ' Pb H2S0 4 Pb
jHSOý: HSO HSO

3,, 3HSOHS

L----------LT,-r)
-112 4,4

)o2 Pb(Iv D2 jPb

" Pb02, -

- - - - - -

jPb

Pb P

R

Pb

Figure 4-12. Simplified single cell model with x-direction intra-phase fluxes

For the given labeled fluxes, there will be no flow of ions between a solid region and a liquid region.

Therefore, flux densities jPb(IV) 2 HPb(Ov +b, and*j"s must all be zero. Also, electrons cannot
4L R4R

flow from a solid region into a liquid region. Therefore, flux densities j Pb(IV) 2 and jPb must also beeR eL

zero. Applying these boundary conditions results in fig. 4-13.

Fig. 4-14 further simplifies the model by combining the H + and HSO4 fluxes of each electrode into

one electrolyte flux ji, where jl = JHSOZ - jH+. It is from the model in fig. 4-14 that eqs. (4.82)-(4.86)

93

c .

-Pb(IV)0 2

H2SO4 .Pb(IV) bH
3HSOR

-Pb
1H+
LI

ePb
HSO A

J -------- -- ---

Pb

.Pb(I jPbPb RPb

Pb eR

1)O2

Pb02

Figure 4-13. Simplified Single Cell Model with Boundary Conditions

for the lead dioxide electrode and eqs. (4.87)-(4.91) for the lead electrode were derived.

Lead Dioxide Electrode Reaction Equations w/ Boundary Conditions

1. Change of Porosity

112 L4

,k+1 ek At (MWpbso 4) , (MWPbO2 (2 y
PPbSO4) - PPbO2)] (2F6x6y~zJ

2. Conservation of Matter

k+ C - At.+,.k:.+1 MWPbSO4 MWPbo2PPbSO4) (PPb02)

S(res)
Jx 2

2F6x6ybz

- At (3 2t2 F6xcy5z

(4.82)

- -I
--- · I

I

H2S04

Hon
r

+ Atk+lD c (4.83)

H2S0 4

i-

IPb(IV)02
! R

H2S0 4

PbPb

-Pb(I

e"- PbO2

HS O -

112J 4

Figure 4-14. Simplified Single Cell Model with Boundary Conditions. Here the liquid fluxes jH+ and

jHSO- have been combined into ji = jHSO; - jH+

3. Conservation of Charge

.Ll

(4.84)
-R= Fck+ly6jz

4. Ohm's Law in Solution

k+1 j 1Fk+ F x
+ 01(res) + (1 - 2t_)

RT og (C(res))F - log (Ck+l))

5. Electrode Kinetics

(aanF(s k+-- lk+l-4eq))e RT

acnF(-T -- k+1+4eq)
- e RT) = 0

(4.85)

I
FSxySzz

1 i0 (Yk+ l

5y F C*

_

•Pb

IL

LI

-Pb
le L

(4.86)

Lead Electrode Reaction Equations w/ Boundary Conditions

1. Change of Porosity

k+1 -_ k _ At MWPbSO4 MWp b I

t PPbSO4 PPb)] (2FcxJycz)

2. Conservation of Matter

(MWPbSO4 MWPb
PPbSO4 PPb)

+ At-.k+lDc
ck ,22- Ck(res)

6X2k

2F6x6ybz2

+ At 1 -2t Fbx6y z

3. Conservation of Charge

4. Ohm's Law in Solution

jk+l _ I
IL - Fk+16y6z

jk+lF6xk+1 1 + 1(res) + (1 - 2t) FR (log (C:k+1)

5. Electrode Kinetics

1 iPb Ck+l

6y F C*
aanF(k+_l k+1- eq)

e RT
acnF(q k+1-s k+1 +'eq)

-- e RT) =0

(4.87)

j(k+l = Ck +
Ck

At -

(4.88)

(4.89)

- log (C(res))) = 0 (4.90)

I
FSx6ybz (4.91)

Model Variables peculiar to the Lead Dioxide Electrode
Symbol Meaning Initial Value Units

C Electrolyte Concentration 0.0049 Jo

or Electrolyte Potential 0 Ub

Ps Solid Potential 1.685 Coulomb
Porosity 0.5 unitless

jeP(Iv)O2 Flux of density of electrons entering the metal ___T_ mol

phase of the electrode's porous region
MWPb(IV)O 2 molecular weight of Pb(IV)O2 239.1988

PPb(IV)O 2 density of Pb(IV)O2 9.79
iPb(IV)0 2 Exchange Current Density le - 2 coWoms

by, Height of Solid Region 5.0 cm
ax width of porous region 0.03 cm

Jy height of porous region 10.0 cm
bz depth of porous region 7.5 cm
byl height of liquid region 5.0 cm

APbIvo2 solid/liquid interface area ± 6y c

aa Transfer Coefficient Anodic 0.575 unitless
ac Transfer Coefficient Cathodic 0.425 unitless
qeq electrode equilibrium potential 1.685 Joul

Table 4.1. Variables for Simple Model Lead Dioxide Electrode

4.3.2 Initial Conditions

Some initial conditions for our simulation come from [30,31]. Table 4.1 gives the physical parameters

related to the lead dioxide electrode. Table 4.2 for the physical parameters for the lead electrode, and

Table 4.3 for parameters common to both electrodes.

Model Variables peculiar to the Lead Electrode
Symbol Meaning Initial Value Units

C• Electrolyte Concentration 0.0049 m

(1) Electrolyte Potential 0 JoCesc.y"olu 1 ?enbSolid Potential -0.356 Coulomb

Porosity 0.5 unitless
j b Flux density of electrons leaving the metalphase of the electrode's porous region

MWPb molecular weight of Pb 207.2

PPb density of Pb 11.34 9
dPb Cou0ombs

i0 Exchange current density le - 2 cm2 bsec
by, Height of Solid Region 5.0 cm
6x width of porous region 0.03 cm
by height of porous region 10.0 cm
6z depth of porous region 7.5 cm
byl height of liquid region 5.0 cm

1 cm2

APt solid/liquid interface area b 3
a• Transfer Coefficient Anodic 0.775 unitless
ac Transfer Coefficient Cathodic 0.225 unitless
qeq electrode equilibrium potential -0.356

CoulombI

Table 4.2. Variables for Simple Model Lead Electrode

Model Variables Shared by both Electrodes
Symbol Meaning Initial Value Units

I Current being drawn from cell Coulombs

C(res) Electrolyte Concentration 0.0049 ml

tl(res) Electrolyte Potential 0 Colomb

MWpbso4 molecular weight of PbS04 303.2636
PPbSO4 density of PbS0 4 6.39 93

F Faraday's constant 96,487 couemb
mol-eldrons

R universal gas constant 8.3143 mol-K

t time 0 seconds
At time step size 0.1 seconds
to fraction of ionic current carried by H + in ab- 0.72 unitless

sence of diffusion
T absolute temperature 298 Kelvin
n number of electrons participating in reaction 2 unitless
K conductivity of the solution 0.79
D, Diffusion coefficient of electrolyte 3.02e - 5

Table 4.3. Variables for Simple Model Shared by both Electrodes

4.4 Simulation Results

The purpose of developing the simplified model was to create a tool that would help the user develop

insight into the workings of a lead-acid cell. The two-volume model developed does this by giving

the user access to all the parameters necessary to control the behavior of the lead-acid cell's primary

reactions. The benefit of this model over more complex models is that the major behaviors can be

observed without being clouded by the complexity of the implementation.

The equations that describe the behavior of the cell model seen in fig. 4-14 were implemented in

Matlab chapter A. To show how this model can be used to develop insight into the behavior of a lead-

acid battery, several different simulations were run in which none, one, or two model parameters were

modified from the values assigned to them in section 4.3.2. The parameters that were varied are, Dc,

SAint, •c, Oka, and io. The behavior of the model, and the effects that modifying the model parameters

had on the model's behavior are discussed below.

The discussion will make most sense if one keeps the Nernst equation in mind.

Ecell=E 11 - () lnQ (4.92)

4.4.1 Initial Two-Volume Model Results

We start by looking at a constant current discharge vs time plot. The cell was discharged at a rate

of 50mA for 1000 seconds. The initial conditions for the simulation are given in section 4.3.2. The

time/voltage discharge curve is shown in fig. 4-15.

Fig. 4-15 exhibits behavior like that of a discharging battery in that when a battery discharges, the cell

potential collapses. In fig. 4-15, the cell potential starts at 1.91988V, below the cell equilibrium potential

100

0
0

Cell Potential vs. Time

Figure 4-15. Cell potential vs. time curve of the simple cell of section 4.3 which was discharged at a
rate of 50mA for 1000 seconds.

of 2.041 Volts, and decreases from there. The potential seems to flatten off after about 300 seconds. This

is due to the fact that the rate at which electrolyte is diffusing from the bulk into each electrode is now

equal to the rate at which electrolyte is being consumed at each of the electrodes. Furthermore, because

the bulk electrolyte is assumed to be infinite capacity, the concentration of electrolyte in the bulk never

drops. The result is that the cell reaches an equilibrium and passes current without any further decrease

in potential. Therefore, after about 300 seconds, diffusion holds the concentration of the electrolyte in

each volume constant as can be seen in fig. 4-16.

Fig. 4-16 shows that the concentration of electrolyte at the Pb(IV)0 2 electrode drops more than the

concentration of electrolyte at the Pb electrode. This makes physical sense in that the reaction at the

Pb(IV)O2 electrode not only consumes sulfuric acid, but it also produces water which further dilutes the

local electrolyte concentration.

This effect is also clearly visible in fig. 3 and fig. 4 of [30]. Fig. 3 of [30] is reprinted here as

fig. 4-17. In fig. 4-17, it can be seen that during discharge, the concentration of the electrolyte at the lead

dioxide electrode decreases more than that at the lead (Pb) electrode. This result was also be verified by

101

Lead Dioxide Electrode Concentration vs. Time

0.00489S 0.004897

00488 200 40 600 00 1000
Seconds Seconds

(a) Lead dioxide electrode (b) Lead (Pb) electrode

Figure 4-16. The concentration of the electrolyte at each electrode during discharge.

the digital Mach-Zehnder laser interferometry experiments of chapter 2 and the more sophisticated 2-D

model of section 5.3 in section 5.6.

102

Lead Electrode Concentration vs. Time

ZITS

106 s :

0.0 0.2 0.4 0.6 0.8

0.0 0.2 0.4 0.6 0.8

7.0

6.0

5.0

4.0

.0
2.0

1.0

7.0

6.0

5.0

4.0
0
30
32s

.1.0

Fig. 3. Profiles of acid concentration during a discharge at 340
mA/cm'. The regions from left to right are: positive electrode, reser-
voir, separator, and negative electrode. X = 1.0is for I = 0.19 cm.

Figure 4-17.

103

=== a a 0 a a oa -..... ...I..

0000000 ° 00000000000 oon

0. ' .

0D0

-18* C

0E
z

0C

CU
L)

* I * - , I.' 2

'- "* *gg -

_ , ' l _ _, II ,~oo~D)1COMM

loe=m

3.0

2.0

1.0

0.0

4-
E

0E

Xa,

0

0
U

Lead Dioxide Electrode Concentration vs. Time

4-E
0

o

0

0Q

Seconds Seconds

(a) Lead dioxide electrode (b) Lead (Pb) electrode

Figure 4-18. The concentration of the electrolyte at each electrode during discharge. The electrolyte
diffusion coefficient has now been set to zero.

4.4.2 The diffusion coefficient, Dc

According to Nernst's equation eq. (4.92), the potential of an electrochemical system is a strong

function of the concentration at the electrode/electrolyte interface. Therefore, if the diffusion coefficient

were to go to zero, i.e. there is no diffusion from the bulk electrolyte into the electrodes, each electrode's

concentration would should experience the leveling off seen in fig. 4-16. This is vividly illustrated in

fig. 4-18. As a result, the cell potential would not level off like it did in fig. 4-15 but would instead

continue to collapse as seen in fig. 4-19.

On the other hand, if diffusion were incredibly fast, each electrode's concentration would only change

very little, fig. 4-20, so the cell potential should also experience minimal change, fig. 4-21.

In figs. 4-15, 4-16 and 4-18-4-21 the model produces believable diffusion like behavior in that ions

diffuse from areas of high concentration to low concentration. Furthermore, the model properly exhibits

a strong dependence of cell potential on electrolyte concentration as predicted by the Nernst Equation,

104

Lead Electrode Concentration vs. Time

1.91986

1.91984

1.91982

I. ' 10 2-0 100 2 00

Cell Potential vs. Time

300 400 500 600
Seconds

8 0 900 1000

Figure 4-19. Cell potential vs. time curve when there is no diffusion of electrolyte from the bulk elec-
trolyte into each electrode's porous region. The cell potential drops rapidly because the electrolyte
is being rapidly consumed as seen in fig. 4-18. Without electrolyte, the battery cannot do work, and
therefore, there is no EMF.

Lead Dioxide Electrode Concentration vs. Time

0.00489

0.004891

n nnARn -r
... 200 400 600

Seconds

E

:900
0r

800 1000

(a) Ldad dioxide electrode

Lead Electrode Concentration vs. Time

0.00489

0 .0 0 4 8 9 4 . -...

0.00488- -5

200 400 600 800 101
Seconds

10

(b) Lead (Pb) electrode

Figure 4-20. The concentration of the electrolyte at each electrode during discharge. The diffusion
coefficient in now effectively infinite, so the concentration does not change from its original value of
0.0049mol/cm3

105

I

0

o

0:
05

OlUXM

.........·..... ·;·.······· ·· ····· ·· ··

..

..LI Va

6407a1

1.9198(

1.91984

1.91982

1.9191

Cell Potential vs. Time

.-. 100 200 300 400 500 600 700 800 900 1000
Seconds

Figure 4-21. Cell potential vs. time curve when there is a fast diffusion rate of 10-2 A . The cell's
potential doesn't change because there is no change in concentration of electrolyte.

eqs. (1.4) and (4.92).

4.4.3 The Interface Surface Area, SAint

We now take a look at the cell potential vs time curve for our cell under charging conditions with

initial conditions from section 4.3.2, seen in fig. 4-22.

Fig. 4-22, does not look like what one might expect from a charging battery. Even though the charging

cell potential starts above the equilibrium cell potential of 2.041V, the cell potential decreases while

charging. This is not what is expected to happen. When a battery charges, one would expect the cell

potential to start above the equilibrium potential and be on an upward trajectory.

The reason the model does not behave realistically here lies in the fact that in a real cell, as the cell

charges or discharges, the electrode/electrolyte interface area changes. This effect has not yet been taken

into account in our model. Instead, a constant per unit volume electrode/electrolyte interface area of

6X6z = ' has been assumed. Furthermore, the electrolyte is assumed to always be in constant contact

with the entire electrode surface. This constant electrode/electrolyte interface area can be seen in the

106

1.11i8a

.... ·;....~.......;......

.....···· · · ·· · · · · · · ·· · · ·· · ·········.......... ;.....,

2.311

2.3117

>o 2.3117

2.3118

.3 1 8i........i.......i.......

Cell Potential vs. Time

100 200 300 400 500 600 700
Seconds

900 1000

Figure 4-22. Cell potential vs. time curve as the simple cell of section 4.3 is charged at a rate of 50mA
for 1000 seconds.

electrode kinetics equation eq. (4.86) which has been rewritten here in eq. (4.93).

I 1 i0 Ck+1 QIanF(Osk+l-1 k+1- eq) acnF(k+ 1-_sk+1+-•eq)+ e RT - e RT = 0 (4.93)
Fbx6ybz 6y F C*

SAint

In order to have the model exhibit more proper charging behavior, we must implement a model of the

electrode/electrolyte interface that incorporates the changes of the interface area due to reaction. When

developing a model for the interfacial surface area, it is important to understand that the active material

of interest is different in the case of discharging and charging. Under discharge

Pb(IV)O2 (s) + HSO (aq) + 3H+ (aq) + 2e- -- Pb(II)S0 4 (s) + 2H 20 (1)

Pb(IV)O2 is consumed, so the active material of interest is Pb(IV)O2 , but when charging,

Pb(II)SO 4 (s) + 2H20 (1) -- Pb(IV)O 2 (s) + HSO 4 (aq) + 3H + (aq) + 2e-

107

(4.94)

(4.95)

2 31164L- --- ~-'

(a) The surface area of the usable active material during
discharge is indicated by a dashed line. Active material is
usable if it is in contact with the sulfuric acid. Here the
active material is lead dioxide. The white are is lead sul-
fate, which does not participate in the discharge reaction
of the lead dioxide electrode eq. (4.94). Therefore, areas
covered by lead sulfate cannot be included in the active
interface area for the discharge reaction.

(b) When the battery charges, lead sulfate is necessary
for the reaction to proceed. The lead sulfate is shown in
white. The amount of lead sulfate in contact with the sul-
furic acid determines the electrode/electrolyte interface's
surface area. Here, as in fig. 4-23 (a), the interface is de-
lineated by a dashed black line.

Figure 4-23. Discharge and Charge Regime Interfacial Surface Areas.

Pb(II)SO 4 is consumed, so the active material of interest is Pb(II)SO 4 . Therefore, in a real battery,

there is a different SAi,t during charging and discharging. This difference of active interfacial area can

be seen in fig. 4-23. Interestingly enough, under both discharging and charging regimes of operation,

the amount of active material, and therefore active interfacial surface area always decreases independent

of the direction of current flow.

There have been numerous attempts to model the change in the electrode/electrolyte interface area.

Reference [32] provides a good summary of the more popular techniques. In general the electrode/elec-

108

trolyte interfacial surface area is modeled as:

"A = AmaxO 1 -- discharge (4.96)

A = Amax (1 - 0'1) -- charge (4.97)

where Amax is the maximum active surface area (), and l is the tortuosity exponent and 0 is the

state of charge of the battery [32, p44]." It would be virtually impossible to know Amax and there seems

to be little agreement on the value for the tortuosity exponent. Some want to use 1.5 [31,33] while other

prefer to use 0.5 [34,35]. Finally, state of charge 0 is defined as:

0 = Ah-1il (4.98)at ax 19-

where Q is the theoretical capacity (-) and OAh is the charge efficiency [32, p.4 5]4. The charge

efficiency supposedly improves model prediction during charging. Without it, "the accumulation rate

of inaccuracy is 5-15% on every step if this parameter is ignored. This parameter was not used in the

cell models published in literature [32, p.45]." It is unclear as to how the authors came up with these

numbers. Furthermore, it should be pointed out that charge efficiency is probably a fairly difficult term to

determine with any great degree of accuracy. However, the point remains that the models in the literature

can be expected to provide little more than general trends in battery operation. General trends are still

extremely useful as they can help us develop insight, but one should be careful and not try to use these

4While eq. (4.98), as reported in [32], uses a in the denominator on the right hand side, it seems like this is an error and
which should instead be aat

109

models in situations where they should not be used.

Another, more successful, interface area model used while charging is:

exp (yO) - exp (-y)
A = Amaxp -- charge (4.99)1 -exp (--y)

where p = 3.5 and -y = 3.7. But it is admitted that, "Exact morphology of porous electrode is not

fully understood. [32, p.4 5]" Basically, it seems that while all due diligence has been given to the models

for electrode/electrolyte interface area, they are just models to give general trends and not very accurate

beyond that. Since the interface area is critical to electrochemistry, this inability to precisely model the

morphology of the porous electrode limits these models to giving only trends and prevents them from

being used as exact representations of real batteries.

For our simple model, we choose a third and different model of the interface area which takes ad-

vantage of the porosity as an indicator of the available electrode/electrolyte interface area [16, 30]. The

model in [16, 30], has an interfacial surface area under discharge of the form,

discharge= -n (4.100)
Emax - Emrnin

and under charging the model in [30]5 proposes

SAcharge = Amax (- min max - (4.101)
Emax Emin Emax - Ernmin

-max and Emin are the maximum and minimum possible porosities one might find in a volume. (is a

fudge factor that is often set to 1 [16, 30] which is what is done for our model. Substituting eq. (4.100)

SThe model in [16] is only for discharge

110

into eq. (4.86) gives

1 1 - - k + I k anF(ok+1 k+1- eq) acnF(0k+1-OSk+1 +eq)
+ min e RT - e RT =0 (4.102)F6x6ybz by emax - Emin F C*

Discharge SAint model

which is the new electrode kinetics equation under discharge. The new electrode kinetics equation

under charging conditions is:

:) (mio Emax i 0 k+1 anF(Osk+1_O1k+1- acnF(q-sk+1_ k+1eq)

e RT -e RT 0

Fxy6z -by Em. - emin Emax --min F C*
Charge SAint model

(4.103)

Using these two electrode kinetics equations and the initial conditions from section 4.3.2 in the simu-

lations gives fig. 4-24.

The curves in fig. 4-24 are more believable than those in fig. 4-15 for a couple of reasons. First, both

curves head in the correct direction. The cell potential under discharge decreases while the cell potential

under charging increases. Also, neither curve plateaus as they did in the previous section. This shows

that, in spite of diffusion, because the interfacial surface area is decreasing, the output potentials can

change.

4.4.4 The transfer coefficients, a, and a,

Fig. 4-25 shows the constant current which must be applied to the model for 750 seconds, to produce

at the end of that time, the overpotential indicated. Charging currents are negative and discharging

111

0

Cell Potential vs. Time

2.3924

2.392

2.3916

2.3912

2.3908

ý00n
00 4 100 200 300 400 500 600 700 800 0

Seconds Seconds

(a) Discharge 50mA with eq. (4.100) as the model for (b) Charging 50mA with eq. (4.101) as the model for in-
interfacial surface area. terfacial surface area.

Figure 4-24. Discharge and Charge Curves using a dependent time varying electrode/electrolyte
interfacial surface area.

currents are positive. Therefore, the curve to the left of qlcell = 0 shows the charging behavior of the

battery while the portion of the curve to the right of 7ocell = 0 shows the discharging behavior of the cell.

Fig. 4-25 has many noteworthy characteristics. First, the larger the discharging current, the more the

cell's potential collapses, and the larger the charging current, the more the cell's potential increases. Said

in another way, the further the cell electrodes are perturbed from their respective equilibrium potentials,

the faster the reaction proceeds at that electrode. This is very reasonable behavior for a lead-acid cell.

The IV curve in fig. 4-25 also clearly shows that the cell exhibits an asymmetry in its behavior between

charging and discharging. Given a certain magnitude of current flow through the battery, it takes a

significantly larger deviation from cell equilibrium potential to have the battery charge than to have it

discharge at the same rate. This asymmetry is largely a function of the transfer coefficients a, and ac.

In fig. 4-25, a, does not equal ac. Setting the two transfer coefficients equal to each other largely, but

not completely, eliminates the asymmetry in the IV characteristic as seen in fig. 4-26. The remaining

112

Cell Potential vs. Time

.......... · ····........

.........

..

L.`"LC·

Overpotential cell vs. Current

Plot Produced -29-May-2006 23:26:07

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

50 40 30 20 10

1cell' mV

0 -10 -20 -30

Figure 4-25. Single Cell IV Characteristics after 750 seconds of charge or discharge. The cell was
always started from the same initial conditions for each current used.

113

II

...........
........
...

.....
...............

Overpotential Tlcell vs. Current
Plot Produced -29-May-2006 23:28:27

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

50 40 30 20 10 0 -10 -20 -30

Tcell, mV

Figure 4-26. This figure illustrates the dramatic effect that the transfer coefficients aa and a, have
on the behavior of the cell. The solid curve is the same curve as that in fig. 4-25 with values of a,
and aa coming from Table 4.1 and Table 4.2. The dashed curve comes from a simulation of the same
cell as that used to draw the solid curve with the exception that the two transfer coefficients are now
equal. Notice how the asymmetry of the solid curve has largely been eliminated in the dashed curve.

asymmetry is due to the interfacial surface areas not being equal between charge and discharge. Fig.

3.4.3 of [28, p.101] shows similar results.

4.4.5 The exchange current density, io

Finally, the shape of the IV curve is greatly influenced by the magnitude of the exchange current

densities, i'b(V)O' and iPb. The larger the exchange current density, the less the cell needs to be perturbed

from equilibrium potential in order to get a certain amount of current to pass through the cell. The effect

114

Overpotential 1 cell vs. Current

Plot Produced -30-May-2006 16:23:17

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

50 40 30 20 10
icell', mV

0 -10 -20

Figure 4-27. Single Cell IV Characteristics after 750 seconds of charge or discharge. The cell was
always started from the same initial conditions for each current used. The IV characteristics of
the cell show a strong dependence on the exchange current density found in the electrode kinetics
equation. For both curves, iPb(IV)0 2 b i pb

of increasing the exchange current density can be seen in fig. 4-27. In this figure, the solid blue line is

the same as the solid blue line in fig. 4-25. The exchange current densities iPb(IV)02 and iPb are both 10- 2

for the solid blue line and 10-1 for the dashed red line. Notice now how the same current output as the

blue line can be achieved by the red line with a much smaller perturbation from equilibrium. Fig. 3.4.2

of [28, p.101] shows similar results.

115

I I I

/

i i I I I

-30
Ii i

4.4.6 Simple Model Summary

The purpose of creating the simplified model was to develop a tool that would allow us to learn about

the internal dynamics of a lead-acid cell and the relationship between the cell's internal state and its

external responses. The model's simple geometry gives rise is a set of easily coded, computed, and

modified equations. The cell exhibits battery like IV behavior and has been demonstrated to correctly

show how several different internal physical parameters effect the cell behavior. Furthermore, the discus-

sion of section 4.4.3 about interfacial surface area exposes a fundamental weakness in electrochemical

models for lead-acid batteries. This weakness cannot be readily corrected and thereby limits the usabil-

ity of these sorts of fundamental models. However, the model can still be used to gain insight into the

processes that occur within a lead-acid battery. Using the insight gained from this model, we can now

develop a multidimensional model that is not constrained to a particular geometry or volume discretiza-

tion scheme like the one from fig. 4-14 that was used to derive our model's equations. This new 2-D

model will be able to capture the two-level effect that we are concerned about.

116

Chapter 5

Two-dimensional model

In the last chapter, a simplified model of a lead-acid cell was developed. While we started deriving

the equations for the model from the fixed geometry of fig. 4-3, the final equations eqs. (4.82)-(4.91),

are written in terms of porosity r and are not dependent on the initial geometry. However, the final

equations are dependent on the single volume per electrode discretization scheme used. This chapter

will modify the equations used from the previous model so that they are multidimensional, independent

of discretization scheme, and account for a factor known as tortuosity. Furthermore, it will present model

outputs that show that it captures the two-level discharge behavior of fig. 1-6(b).

Essentially, we will modify our equations so as to implement a macroscopic model very similar to

the one developed by Bernardi and Gu in [31]. Since both our fixed geometry model and a macroscopic

model are attempts at dealing with the complex porous nature of the electrodes, we begin our transition

from fixed geometry model to macroscopic model by taking a closer look at how porosity affects the

physical parameters of the system.

117

Figure 5-1. A bar of conductivity co. Electrons can move through it without running into obstructions
or having to change course.

5.1 Model Modifications

5.1.1 Porosity

As a reminder, in section 4.2.1, porosity was defined to be the ratio of the void volume within a region

to the total volume of the region. In our model, all void space is assumed to be filled with electrolyte, so

in our case, porosity is the ratio of the liquid phase volume to the total volume of a region. To understand

how the porosity can affect physical parameters of a battery, let us start with a solid conducting bar of

conductivity ao, as seen in fig. 5-1. Here there are no obstructions in the path of the electrons, so they

are able to move as freely as possible across the bar. Their movement is only limited by the value of the

bar's natural conductivity o0.

If the bar in fig. 5-1 were to have voids drilled into it at random points along its length as seen in

fig. 5-2, the voids would make it more difficult for electrons to traverse the bar. In other words, the voids

reduce the mobility of the electrons within the bar.

In section 4.2.3, we saw that conductivity is a strong function of charge carrier mobility. Now, since

the mobility of the electrons has decreased, the effective conductivity of the bar has also decreased. One

118

Figure 5-2. A bar of conductivity ao. The voids now obstruct the path of some of the electrons,

thereby reducing the mobility of the electrons. The lower mobility of the electrons means that the

bar has a lower conductivity.

could, in fact, replace the bar with voids, by a solid bar that has a lower conductivity but no voids. To

do this, one would multiply the conductivity of the bar with voids by the total solid volume of that bar

to get the conductance of the bar with voids. One would then divide that conductance by the volume of

the bar that has no voids. By this method, if ao is the conductivity of a solid bar without the presence of

pores, then

affx6yjz = (1 - U) ao6xjy6z

ce"f = (1 - E) •o (5.1)

might be an acceptable model for the conductivity of a solid bar of the same outer dimensions as the

porous bar.

Model eq. (5.1) fails to capture an effect know as tortuosity. Tortuosity describes how the location

of the voids in a material affect the properties of the material. In our case, tortuosity describes how the

conductivity of the bar is affected by the location of the voids. For example, the pore pattern in fig. 5-2

119

Figure 5-3. This bar has same porosity as the bar in fig. 5-2; however, because of the way in which
the voids are arranged, it has a much lower conductivity.

should have a quantifiably smaller effect on the movement of electrons than the pore pattern of fig. 5-3.

Therefore, one would expect the effective conductivity of the bar in fig. 5-3 to be much lower than that

of the bar in fig. 5-2. Our model eq. (5.1), however, would produce the same effective conductivity for

both bars.

To take tortuosity into effect, we might modify our model as follows,

aeff = (1 - ,)• o (5.2)

where / is a number that is chosen so as (1 - .e)3 realistically captures the tortuosity effect.

A similar development can be used for the liquid phase. This will result in an identical model in terms

of the liquid conductivity r,.

K.eff = EPOo (5.3)

The literature does not carry both the (1 - ,) term and the a terms around. Instead, only the : term is

used and a different tortuosity scale factor is used for the solid phase and the liquid phase. For the solid

120

phase, instead of using the tortuosity factor P, the tortuosity factor is represented by exm. In the liquid

phase, instead of P, the tortuosity factor is written as ex which is different than the solid phase's exm

factor. These two different parameters allow us to do away with the (1 - z) terms and simply write

eff .exm

Keff = exxo (5.4)

as our models for the solid and liquid conductivity of a solid bar that covers the same volume as the

bar with voids. Equations like those of eq. (5.4) are known as Bruggeman equations [27].

These models for tortousity allow us to replace a section of porous material with a section of contin-

uous material. Both the solid phase and liquid phases can now be thought of as continuous phases that

occupy the same space at the same time as seen in fig. 5-4. The movement between the two phases will

be described by our electrode kinetics equation.

5.2 Equations with geometry independent porosity

Applying the modifications discussed in the previous section to the equations developed in section 4.3

gives equations eq. (5.5)-eq. (5.18), where we are now using the flow of positive charge as our definition

of current. These equations are almost the same as those found in [31] with the exception of the diffusion

term in the Conservation of Matter equation, eqs. (5.6), (5.11) and (5.16). Their diffusion term has been

simplified for linear diffusion where as ours keeps all non-linearities.

121

Liquid Phase Solid Phase

Figure 5-4. The effective conductivity idea allows us to think of the solid phase as a continuum and
the liquid phase as a continuum. Both continua are thought of as occupying the same space at
the same time. Movement of charge between the two continua is dictated by the electrode kinetics
equation.

5.2.1 Equations for lead dioxide electrode

1. Change of Porosity

d 2 1
8t 2F

L MWPbSO4
PPbSO4

MWPbO2 1i
PbV it =

PPbO2 J

2. Conservation of Matter

(O)t + V . (-cexDVC) + V -2 itt = 0
Bt 2F

3. Electrode Kinetics

S- SA b(IV)2 (an(s-t-0)o)F
V - i - SAintio C e RT 2 acn(-;f -4Qs+ ,kVN)O)F

-- e RT = 0

122

(5.5)

(5.6)

(5.7)

4. Conservation of Charge

7 -ij + V7- is = 0

V-il +V - (- exmnsVs) = 0

5. Ohm's Law in Solution

i - (-r ex) + ex", (1 - 2to) F Vln (()) = 0

5.2.2 Equations for the lead electrode

1. Change of Porosity

0: 1 [MWPb MWPbSO4] .i 1 =0
t 2F L PPb PPbS04

2. Conservation of Matter

+ V - (-,eDVC) + (2F j V it

3. Electrode Kinetics

iPb (f
V - it + SAint oF C*

aan(0s -0 -o-b)F
RT

- cn(- RT +)F
- e RT = 0

123

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

4. Conservation of Charge

V7. i+V i = 0

V -i + V (- -exMo0SV,) = 0

5. Ohm's Law in Solution

ii - (ex () +
f-(-::(Vo)

ex• r (1 - 2t) F Vln+-F-n

5.2.3 Equations for the bulk electrolyte

1. Change of Porosity

2. Conservation of Matter

\at(!

3. Conservation of Charge

4. Ohm's Law in Solution

ii - (- Vc) +
(- (1(

RT
- 2t) F Vmln

124

(5.13)

(C)) = 0 (5.14)

= 0
at

(5.15)

(5.16)

(5.17)V -it=0

()) = 0 (5.18)

5.3 Sophisticated Numerical Model

There is a striking similarity between the equations for each region, so they can be replaced by one

set of universally applicable equations, eqs. (5.19)-(5.22).

5.3.1 Equations for all regions

1. Change of Porosity

a
±SFop {V (enffV1) + V (-effVln (.))} = 0 (5.19)

2. Conservation of Matter

t (EC') + V - (-DeffVC) + SFMB {V . (-•e"ffV,) + V . (-"Vln (C)) = 0 (5.20)

3. Electrode Kinetics

- e RT)= 0 (5.21)

4. Conservation of Charge

V- (-r;eV 1)+. (-KVln (C))+ V (- oeffV) = o

125

(5.22)

e (-V . (C an(-s-6 -,teq)F
V-(-KEefVQ1) +V. (- effVln (C)) -SAintio * e RT

Where neff and eff come from Ohm's Law in Solution,ecVII III ILI~UI 11ULCVI

RTit = -1 lex ex (2t+ - 1) Vln (C)F
,eff

eeff

-= effVI + -,CeVln (C)

and SFop, SFmb, SAint, 0eq, and a are region dependent and are given by,

SFcop =

- I [MWPbS0 4 MWPbO2 lead dioxide e
2F PPbSO4 PPbO 2

O electrolyte
1 [Wpb MWPbsO 4 lead (Pb) elec

2F [PPb PPbSO4

) lead dioxide electrode

SFmb = 0tO electrolyte

) lead (Pb) electrode

(SA"Iv)02 lead dioxide electrode
SAnt= 0 electrolyte

SA P lead (Pb) electrode

b(Iv)o 2 lead dioxide electrode

0eq = 0 electrolyte

,0eq lead (Pb) electrode

fe"aPb(I)o2 lead dioxide electrode
aeff = electrolyte

r.em aP b lead (Pb) electrode

(5.23)

(5.24)

lectrode

trode

(5.25)

(5.26)

(5.27)

(5.28)

5.4 Layout of Volumes

The 2-D model tries to emulate the behavior of the lead-acid cell that is made up of a single lead

dioxide electrode, a single lead electrode and a sulfuric acid bath. Such a lead-acid cell can be seen

in fig. 1-3. The region to be simulated was divided up using a staggered grid like that first suggested

126

in [36] and detailed in [37]. When using a staggered grid, there are two or more different grids on which

properties are centered. In the case of the present model, one grid is called the FV grid. This stands for

Flux Volume grid. Fluxes and the porosity - are centered at the center of these grids. The other type of

grid is the PV grid. This stands for Potential Volume grid. The properties C, 61, and ~, are centered at

the center of volumes on this grid. Why the porosity is not centered on this grid will become apparent

during the following discussion.

Fig. 5-5 shows a 1-dimensional cell model with a staggered grid layout in which only the fluxes are

centered on a grid that is offset from the properties , C, - , and Qt.

LeadDioxide Lead (Pb)Dioxide Electrolyte Electrode
Electrode

Electrod

0= Point where , s, c, 8 are defined
= Fluxes due to differences

in potentials or concentrations

Figure 5-5. A one dimensional model of a lead (Pb) acid battery that has been divided up into finite
volumes. The potentials 01, 0s, the concentration C, and the physical property 6 are all defined in
the center of the volumes.

Defining all the property values at the center of the volumes creates the problem that the flux densities

between the properties in adjacent volumes will now be discontinuous when the porosities f of the

two volumes are not equal. Unequal porosities means a discontinuity in properties like conductivity

and diffusion coefficient on the boundaries between volumes. This, in turn, means that fluxes will

be discontinuous on the boundaries. This is a problem for the finite volume method which uses the

127

divergence theorem to convert volume integrals into surface integrals. The flux densities will be ill

defined on the boundaries, so it will be impossible to take surface integrals on the boundaries. To avoid

this problem, the properties c;, 1., and C are all staggered off the grid that - is defined on, fig. 5-6.

Lead Lead (Pb)Dioxide Electrolyte Electrode
ElectrodeElectrod

= Point where 4, 4 and c are defined PV I
o= Point where e: is defined

= Fluxes due to differences
in potentials or concentrations

PV = Potential Grid Volume
FV = Flux Grid Volume

Figure 5-6. A one dimensional model of a lead (Pb) acid battery that has been divided up into two
staggered grids of finite volumes.

The fluxes, which are defined to be between the values C, 0s, and 1t, are now all in regions of constant

material property and are well defined on the borders of the PV volumes which pass through the centers

of the FV volumes. Furthermore, all the derivatives used to determine the fluxes are now second order

centered differences as opposed to the right sided/left sided derivatives that would be needed when only

one grid was being used. They are centered differences because the derivatives that create the fluxes are

now defined at the center of the FV grid instead of at the center of the PV grid.

The PV volumes now overlap two different FV volumes, but this is ok as the divergence theorem uses

surface integrals, so the contribution of to the divergence of a PV volume from the left side of the PV

128

volume and the right side of the PV volume can be computed independently and simply added together

to get the total divergence for that PV volume.

Finally, the PV volumes on each end are not the same size as the other PV volumes. Accounting

for this sort of difference is the type of small problem that makes programming tricky. The problem

was dealt with by saying that each PV is made up of two Side Volumes (SV). Then each of these Side

Volumes can either exist or not exist. If they exist, then they can contribute to the overall divergence of

the volume. If they do not exist, then they do not contribute to the divergence. By testing to see if an SV

exists before trying to compute the equations for that SV, we can now use the same set of equations for

all PVs.

5.4.1 Two Dimensions

Moving to two dimensions is a little more tricky. The physical property E; is still defined at the center

points of the FV volumes and the potentials Qr, 0, and the concentration C are still all defined in the

center of the staggered PV volumes; however, the PV volumes now are not only offset in the x direction

but also in the y direction as seen in fig. 5-7.

129

Lead
Dioxide Lead (Pb)

Electrode Electrolyte Electrode

.................. I I I . 1 L 1

*= Point where 4~, , and c are defined
O= Point where r is defined

Figure 5-7. A two dimensional model of a lead (Pb) acid battery that has been divided up into two
staggered grids of finite volumes.

130

Now, the questions becomes, where should the fluxes be defined? One cannot simply draw a flux from

one PV to its nearest neighbor because this would run along a boundary where at least two FVs meet.

The porosity, conductivity and other physical properties would not be defined at these boundaries.

This problem is tackled by noticing how each of the PVs can be subdivided into 4 different sections

in much the same way that each of the PVs in the one dimensional model were subdivided into two

sections, fig. 5-8. These are the 4 corners of the PVs, so the areas are called Corner Volumes or CVs.

Each CV is associated with a different FV.

Lead
Dioxide Lead (Pb)

Electrode Electrolyte Electrode

I............... I I ... I

S= Point where 4, 4, and c are defined
Each PV contains o= Point where c is Sdefined

four
Corner Volumes

CV

Figure 5-8. Each PV contains four CVs.

Now any CV and its neighbors to the norm of its surfaces will all be within the same FV and therefore

flux densities between these CVs will be continuous as shown in fig. 5-9.

131

Lead
Dioxide Lead (Pb)

Electrode Electrolyte Electrode

...........1........... I I I I I I

.................

*= Point where 4, 4, and c are defined
O= Point where c is defined

S = Location where a flux is defined (only shown on
one representative PV)

Figure 5-9. Each PV has eight fluxes defined at Gaussian quadrature points on its four faces.

The trick then becomes how to determine the potential properties within a CV. This is done by bilinear

interpolation. Bilinear interpolation takes a weighted average of the potential properties of the four PVs

nearest the CV in question, as illustrated in fig. 5-10. The potential value of a CV will be found for the

Gaussian quadrature point within the CV.

Continuing, like the end PVs of the one dimensional model, the corner and edge PVs of the two

dimensional model will have some CVs, that don't exist. Therefore, like the SVs, the CVs also contain

the property 'exist'. For example, the PV in the upper left corner contains 4 CVs, but UL, UR, and LL

have their 'exist' property set to FALSE as seen in fig. 5-11.

132

~111

Lead
Dioxide Lead (Pb)

Electrode Electrolyte Electrode

..... I .I. . .I I

*= Point where 4, s, and c are defined
o= Point where v is defined

-- = Location where a flux is defined (only shown on
one representative PV)
= Point used by bilinear interpolation to figure out
flux at

Figure 5-10. The eight fluxes on the four faces or the PV volumes are computed using bilinear inter-

polation.

133

~I

Lead
Dioxide Lead (Pb)

Electrode Electrolyte Electrode

................. I I I I I 1

.I..I..I.I....I.I.

i

'I II.................................. I/' F"JL UYL UR = Point where 4, 4, and c are defined
PV .= Point where c is defined

U- L U L -.

I LL
I LF LI- FVI___

Figure 5-11. Each of the PVs are made up of 4 CVs; however, at the edges of the battery cell, some
of those CVs might not exist.

134

5.4.2 Special Considerations for Porosity

The staggered grid solves the discontinuity of fluxes at physical boundaries problem, but in this case

it creates the possibility of non-physical behavior of : as it time steps. This non-physical behavior,

however, is not a result of taking too large of a time step, but comes from the fact that both .- and the

fluxes needed to figure out the divergence of current from an FV volume are defined at the center of the

FV volume as seen in fig. 5-12. To see how non-physical behavior might arise from having C and the

fluxes defined at the same point, let us follow a line of reasoning similar to that in [38, p. 137].

Fig. 5-12 shows our staggered FV volumes and PV volumes. At the edge of a few of the PV volumes

are labeled fluxes. These fluxes' magnitudes are labeled in a 50, 100, 50, 100, 50 alternating pattern in

the x-direction.

Now, our model for the change in porosity, eq. (5.19), requires computing V -it for the FV volume of

interest, so let us try to compute 9 from fig. 5-12 and ignore the y-direction for the time being.

(i (c)+il (b) i l(b)+iL(a)(a) 2 2
ax 6x 6X

i1 (c) - it (a) (5.29)
= (5.29)

However, it (c) = it (a), so we would think that 2 = 0 when in fact it is not. This kind of situationOx

can lead to more severe numerical stabilities and needs to be avoided.

Therefore, three different models for porosity, therefore, were explored in for this thesis. The first

model simply computed the divergence of the current around each FV volume as described above. This

resulted in terrible numerical instabilities in the a solution. However, this did not translate into major

135

numerical instabilities in the other variables as the size of the perturbations were small over the simu-

lation time of interest. Next, a constant '- model was tried. This resulted in believable stable numerical

output of C, 4,, ¢. Finally, V - it for an was approximated by taking one fourth of V - it for each of

the PV volumes that intersect the FV volume and summing them. This produced numerically stable and

physically believable , behavior, but it did not result in a noteworthy difference in C, 6,, ¢1 from the C,

(,, 41 produced by the constant ,. model. The simulations presented here all employ the last model of

It is interesting that the only other electrochemical battery model known by this author to employ

a staggered grid, [34], also does not include the change of porosity equation among its main set of

equations that it solves implicitly. After talking about the equations used to solve for C(, ¢1, ¢, pressure

and fluid velocity in the x and y directions, [34, p.2056] merely suggests that the model, "can be used to

determine the electrode porosity evolution." Then it goes on to exclude the equation that would be used to

determine the evolution of porosity from its list of model equations and their numerical implementation,

Table 1 of [34]. It, therefore, uses a constant porosity approximation. This issue of what to do with the

porosity equation should be addressed in future work.

136

PV Grid

I- I ·II -I I ----

I I I II

I- -- ----

50

Iq
I-

rI

/ Grid

FV of
intere

- -- - - - - I - - - - - - - I - - - - - - - - - - - - -

Figure 5-12. The fluxes needed to compute the divergence of the current from an FV volume are
defined at the center of FV volumes.

137

st

h

5.5 Numerics

The non-linear coupled partial differential equations section 5.3.1 were spatially discretized on the

grid described in section 5.4 using the finite volume method. The code that performs this is in chap-

ter B. Backward Euler was used to approximate the time derivative for eq. (5.20). The set of non-linear

equations, eqs. (5.20)-(5.22), was solved using Newton-Raphson [39, p.373].

When used, the porosity equation, eq. (5.19), was incremented separately from the other equations. At

the beginning of each time step, = (t + 1) was computed explicitly using a (t), C (t) and 01 (t). . (t + 1)

was then substituted into eqs. (5.20)-(5.22). This was done because e is not defined on the PV grid but

on the FV grid. Therefore, it does not fit into the 9-point stencil used on the PV grid.

One has to be careful, however, when using Forward Euler as using too large of a time step can lead

to numerical instabilities under certain conditions [40]. The reason for the instabilities is different from

that just presented in section 5.4.2 where the physical layout of the volumes could lead to problems.

I this case it is the time stepping that leads to problems. To see this let us look at a summary of the

example in [40]. In the situation

= -a,, a > O (5.30)at

when discretized as

a - -aAt (5.31)
at At

to get

t+l = _ - Ata: = (1 - Ata) a (5.32)

138

we see that

t+l = (1 - At)N +l :t-N (5.33)

Therefore, in order for eq. (5.33) to be numerically stable, I (1 - Ata) I < 1 must be true, so At < 2

Therefore, the system was tested over for orders of magnitude of dt from 0.01s to 100s. No oscillations

in C, C, 0,, and 61 were found. This is most likely due to the fact that oscillations occur when one has a

system of = -a.; where as our system is of the form = f (t, :(t)) where the right hand side of thedt dt

last equation is a function of time and only a weak function of I effectively making the system ' = f (t)

where f (t) is independent of f- (t). In such a system, no oscillatory behavior should be observed due to

time step size.

5.5.1 Newton-Raphson

Newton-Raphson is an iterative procedure for finding the solution vector S of a system of coupled

non-linear equations G (S) = 0. It is used in this thesis to compute solutions to C, ¢,, and q1 in every

PV volume. It starts with an initial approximation to the solution vector S which we shall call so, and

it tries to refine that approximation to come up with a better approximation to the solution vector. This

new approximation to S is called s1. It then takes the guess s' and uses it to try to get a better estimate of

S called s2. The process continues until sk is sufficiently close to S. In general, the relationship between

the kth estimate and the k + 1 estimate can be found by expanding G (S) = 0 via the Taylor series and

keeping the linear terms as seen below:

G (sk+1) o G (sk) + J (sk) (sk+ 1 - sk) (5.34)

139

Setting G (sk+ l) = 0 allows us to rewrite eq. (5.34) as

S-k+1 = Sk__ j-1 (sk) G (sk) (5.35)

Now the right hand term of eq. (5.35) is the inverse of a matrix times a vector. This results in a vector,

i.e. x = J-1 (sk) G (sk). Because computing an inverse is computationally extremely expensive, one

would never want to compute it. Therefore, instead of finding x via the inverse, x is the solution to the

system of equations in eq. (5.36),

J (s k) x = G (Sk) (5.36)

and is found using a method other than inverting the Jacobian matrix. In this thesis, x will be found

using banded Gaussian elimination which will be explained in section 6.3.1. Eq. 5.37 explicitly shows

where solving the system of linear equations is involved in the Newton step.

sk+1 = Sk - j-1 (sk) G (sk) (5.37)

J(sk)x=G(sk)

From here on out, eq. (5.36) will be written as

Jx = r (5.38)

Where J = J (Sk) and r = G (sk). It should be clear now that Newton-Raphson involves two steps.

The first step involves determining the residual vector r and the Jacobian J. The second step involves

solution of eq. (5.38).

140

Newton-Raphson, forms the basis for our time stepping algorithm which can be found in Algorithm

1. Each iteration through 1.4 is a Newton step. Each iteration through 1.4 in which the time counter t

is incremented at 1.15 is called a time step. Each time step, therefore, consists of one or more Newton

steps.

141

Input: A system of non-linear equations G(S (t = 0)) = 0 at time t = 0
Result: A time sequence of system states S (t) , Vt < tmax
// set time step to zero

1.1 t t- 0;
// set Newton step to zero

1.2 k <- 0;
// Initial guess of S(1)

1.3 So
+- S (t = 0);

1.4 while t < t,,, do
// Update Porosity

1.5 (t + 1) <- update_porosity (((t) ,1 (t) , (t));
// Set up Residual vector r

1.6 rk - computeresiduaLvector(S (t) , sk, r);
// Set up Jacobian matrix J

1.7 Jk <- setupJacobian(S (t) ,sk,J);
1.8 jk _ applyBoundaryConditions (Jk);
1.9 jk _ apply _preconditioner(Jk);

// compute x vector

1.10 xk -- Gaussian_Solver (jk, rk);
/ / Compute updated estimate of S (t + 1)

1.11 S k +l Sk - Xk;

1.12 if I|rll| < 6r and |Ixk 0l < 6x then
// save S

1.13 S (t + 1) (sk+1
// Reset the Newton step counter to zero

1.14 k <-- 0;
// Increment the time index

1.15 t - + 1;
// Initial guess of next S(t+1)

1.16 so --- S (t);

1.17 end
// Increment the Newton step counter k

1.18 k - k + 1;
1.19 end

Algorithm 1: The Newton-Raphson procedure for the system.

142

5.5.2 The Jacobian Matrix J

The Jacobian matrix J has three notable features that will be discussed below.

Banded Jacobian Matrix

First, it is banded as seen in fig. 5-13. Fig. 5-13 is a Matlab spy plot of an example Jacobian produced by

our system. The non-zero elements of the matrix are shown by the colored points. White space denotes

elements with zero values. The solvers in section 6.3 take advantage of this special structure to try to

speed up the calculations by only performing elimination between the two outer bands.

Jacobian matrix for 4092x4092 system

Figure 5-13. Notice the banded structure of the matrix. The size of the system was 4092 x 4092.

143

Asymmetric Jacobian Matrix

Next, the matrix is not symmetric. This is due to the fact that a nine point stencil is being used and each

volume has a number of different variables in it. A nine point stencil consists of a center volume its

eight nearest neighbors: the upper left neighbor, the neighbor directly above the volume, the upper right

neighbor, the neighbor to the left of the volume, the neighbor to the right of the volume, the neighbor to

the lower left of the volume, the neighbor directly below the volume and the neighbor to the lower right

of the volume.

Since each volume has multiple variables associated with it, the distance (in number of variables) from

the first variable of the center volume to the last variable of the lower right neighbor is greater than the

distance from the first variable of the center volume to the first variable of the upper left neighbor. The

pivots of the Jacobian matrix are always one of the variables of the center volume under consideration.

Thus, the matrix cannot be symmetric.

Jacobian Matrix Condition Number

Finally, the Jacobian matrix of a particular Newton step at 1.8 is poorly conditioned, with condition

number on the order of 1 x 1012. This number 1 x 1012 means that the largest eigenvalue of the Jacobian

is 12 orders of magnitude larger than the smallest eigenvalue. This is important because the condition

number gives us a rough estimate of the number of digits of precision that will be lost when solving

systems like eq. (5.38). For example, when using double precision, one has about 16 decimal places of

precision to work with. If a system has a condition number of 1 x 1012, then at most only the first 4

digits of the solution could be considered accurate.

There are many different methods for improving the condition number of a matrix before performing

144

operations with the matrix. Operating on a matrix with the goal of improving the condition number

of a matrix before using the matrix is known as preconditioning the matrix. The operations that are

performed on the matrix that improve the condition number of that matrix are known as a preconditioner.

The preconditioner we focus on is row scaling. We also discuss how different physical properties affect

the condition number. This information could be used to develop an improved preconditioner.

Jacobian Matrix Row and Column Scaling

Row scaling, multiplying an entire row of a matrix and its corresponding right hand side by a scale factor,

was used to improve the condition number of the Jacobian matrix. In particular, eq. (5.20) was scaled

up by a factor of 30,000. Eq. 5.22 was scaled down by a factor of 50, and eq. (5.21) was multiplied by

a factor of 10. These row scalings improved the condition number of the Jacobian by about 3 orders of

magnitude from around 1 x 1012 to around 5 x 10', giving our solutions about 6 to 7 digits of precision

instead of the 3 to 4 digits of the non-preconditioned Jacobian matrix. Fig. 5-14 shows the condition

numbers of the preconditioned Jacobian matrices from the first 1004 Newton steps. This was for a

discharge rate I=1.0, a time step size of 1 second, and a model that employed a 22x31 PV volume grid.

Column scaling, or multiplying each entry in a matrix column by a factor, is the equivalent of a units

change (e.g. milligrams to kilograms) for the corresponding variable. Some attempts were made to use

column scaling to improve condition number, but no noteworthy results were achieved.

Column pivoting, or re-arranging the order of the variables in the solution vector, was also attempted.

The idea was to try to bring larger values onto the diagonal in an attempt to make the matrix as close

to diagonally dominant as possible. It resulted in a non-preconditioned Jacobian condition number on

the order of 1 x 1011; however, once our simple preconditioner was applied, the condition number was

145

..... i..I I I I I I I

IIi
............ i.. ,

..

.i.

100 200 300 400 500
Newton Step

600 700 800 900 1000

Figure 5-14. Condition number for first 1004 preconditioned Jacobian matrices. The size of the
system was 4092 x 4092. All Jacobian matrices were preconditioned using the same set of row
scaling coefficients.

again on the order of 5 x 109.

Even 5 x 10' is still an uncomfortably large condition number. It is possible, and perhaps even

probably, that more time spent studying the application of preconditioning to these equations could

yield a more robust solution. If this model is applied to other problems and cases, such work may be

necessary or desirable in the future.

146

4.9

4

'0

x 109 Condition Number for first 1004 Newton steps

Matrix Size N 1057 2016 3936
Condition Number 1.1 x 1012 1.6 x 1012 2.2 x 1012

Band Size 212
lead dioxide conductivity a 80

lead (Pb) conductivity a 48000

Table 5.1. Matrix Size with band size of 212. Time step size of 1 second and discharge parameter I of
0.5.

Band Size 212 284 318 354
Condition Number 2.22 x 1012 3.97 X 1012 4.82 x 1012 5.71 x 1012

Matrix Size e 4025
lead dioxide conductivity a 80

lead (Pb) conductivity u 48000

Table 5.2. Band Size with matrix size of approximately 4025. Time step size of 1 second and discharge
parameter I of 0.5.

Effects of Physical Properties on Condition Number

Condition number of the Jacobian matrix J changes very little with matrix size as evidenced by the data

in Table 5.1. Changing the band size also changed the condition number very little, Table 5.2.

The condition number of the Jacobian matrix J decreases rapidly with decreasing lead (Pb) conduc-

tivity until the lead (Pb) conductivity is less than that of lead dioxide. Then decreasing lead dioxide

conductivity becomes more important for decreasing the condition number of the Jacobian matrix J.

Other values, such as the diffusion coefficient, also can change the condition number of the Jacobian

matrix as seen in Table 5.4; however, decreasing lead (Pb) conductivity seems to have the most dramatic

effect.

147

lead dioxide conductivity o
lead (Pb) conductivity o 800 80 8 1

48000 3.95 x 1012 3.97 x 1012 3.98 x 1012
4800 3.96 x 1011

480 3.97 x 1010
4.8 3.75 x 109 6.67 x 108

1 3.02 x 109 1.62 x 10"

Table 5.3. Matrix Size of 4092
parameter I of 0.5. Entries in

x 4092 with band size of 284. Time step size of 1
the grid are condition numbers.

Diffusion Coefficient 3.0 x 105 0.3 300
Condition Number 3.97 x 1012 9.02 x 1010 5.7 x 1010

Table 5.4. Matrix Size of 4092 x 4092 with band size of 284. Time step size of 1 second and discharge
parameter I of 0.5. Lead dioxide conductivity of 80 and lead (Pb) conductivity of 48000.

148

second and discharge

5.6 Simulations using 2-D Model

5.6.1 2-D Model Verification

The 2-D model was verified by showing that it behaves like the results of the interferometry exper-

iments and examples of battery behavior in the literature. Because of the limitations of the model, we

will only concern ourselves with battery like behavior and not exact potentials and concentrations.

2-D Model Potential Curves

We start by checking that the potential seen across the battery terminals is as we would expect it. Fig.

5-15 shows that the battery cell potential as seen at the terminals of the battery, under discharge, starts

below the open circuit potential of the battery cell and continues to decrease throughout the time of

discharge. This behavior is typical of a discharging battery.

Fig. 5-16 shows the terminal potential of the same battery cell discharged at 4 different rates. It has

the feature that the faster the discharge rate, the smaller the terminal potential. That is to say, the faster

the discharge rate, the further the battery cell has to be perturbed from its equilibrium potential in order

to achieve that discharge rate. This effect was also seen in the two-volume model developed in chapter 4

and shown in fig. 4-25. Also, the faster the discharge rate, the more rapidly the battery cell potential

decreases while discharging. This can be seen in fig. 5-16 where the battery cell potential decrease with

time is only visible for a discharge rate of I = 2.0. The potential decreases with time at the slower

discharge rates too, but when plotted on the scale of fig. 5-16, the effect is not apparent.

149

Battery Cell Potential as a function of time.
Discharge Current = 2.0

Time (Seconds)

Figure 5-15. The terminal potential under discharge is below the equilibrium potential of the battery
and continues to decrease throughout the period of discharge.

150

Battery Cell Potential as a function of time and discharge current.

20 40 60
Time (Seconds)

80 100 120

Figure 5-16. The starting potential of the discharge curve is smaller for higher discharge rates. This
means that the electrodes are being perturbed more from equilibrium when discharging at a higher
rate.

151

2.02

2

1.98

S1.96
0

o. 1.94

m 1.92

1.9

I CCa

-I = 0.1
.I = 0.5

.......... , i
S1=2

".

- YXI~I\%.\~;Y C Wli3·~~~·6:~~~ sU\z~~;U. ~· ·O~.~30:O'*X:R~vh

1_114

I gig

8a*. _1

2-D Model Concentration Profile Curves

Next, we look at the concentration profile during discharge and compare it to the results of the interfer-

ogram. The interferogram, fig. 2-6, had two striking features. First, it showed more reaction at the top

of the observation region than at the bottom of the observation region. Then it showed that the change

in concentration during discharge at the lead dioxide electrode was greater than that at the lead (Pb)

electrode. The concentration profile shown here in fig. 5-17 exhibits both of these same behaviors.

PbO 2 conductivity electrode is 80 S/cm
After 12s of discharge at I = 1.0
.

........

S
E

g

o

t-.

40 /
(.

#0d`P

urumns fromn Top Lft of Ce

Figure 5-17. Like the experiments, the 2-D model exhibits a greater decrease In the concentration
of electrolyte at the top of the electrodes than at the bottom of the electrodes and mostly constant
concentration in the bulk electrolyte. Fig. 5-18 shows the region being observed In the simulation.

In fig. 5-17, the axis labeled "Rows from Top Left of Cell" corresponds to the y direction of the

cell. The bottom of the cell would be at position 31 on this axis. The axis labeled "Columns from Top

Left of Cell" corresponds to the x direction of the cell. The value zero on this axis corresponds to the

left-most part of the lead dioxide electrode. The value 22 on this axis corresponds to the right most

152

Top Left of Cell Lead (Pb)
Lead Dioxide Point (0,0) in Matlab Electrode

Electrode Concentration Profile Plots (0,21) in MatlabElectrod

Bottom Right of Cell
Region Point (30,21) in Matlab

Considered by Concentration Profile Plots
2-D Model

Figure 5-18. Illustration of a lead-acid battery cell. All concentration profile plots

portion of the lead electrode. Each electrode is 8 volumes wide and the electrolyte is 6 volumes wide.

Therefore, the lead dioxide electrode occupies the entires region encompassed by positions 0 through 7

on the "Columns" axis and 0 through 30 on the "Rows" axis. The electrolyte takes up 8 through 13 on

the "Columns" axis and 0 through 30 on the "Rows" axis. Finally, the lead electrode takes up 14 through

21 on the "Columns" axis and 0 through 30 on the "Rows" axis. The mapping of the data in fig. 5-17 is

further explained by fig. 5-18. The z direction on this plot shows the concentration of the electrolyte at

a given position within the cell.

For further verification, if one were to look at any cross section of concentration taken at a given

row across the "columns" axis, one would see that it looks very similar to the plots in fig. 4-17. Plot

fig. 4-17 comes from [30] which was a one dimensional model. Both plots show that the reduction in

153

concentration of electrolyte during discharge at the lead dioxide electrode is greater than that at the lead

(Pb) electrode. This corresponds to what was observed on the interferogram with a notable change in

concentration at the lead dioxide electrode and only a small change in concentration at the lead (Pb)

electrode.

5.6.2 Two-Level Model Justification via 2-D Model

We now use the 2-D model to justify the two-level model of fig. 1-6. In order to justify the model,

we first show that the resistance drop along the height of the electrodes creates the difference in usage of

electrolyte between the top of the electrodes and the bottom of the electrodes. Then we will show that

there exists a difference in potential difference between the electrodes along the height of the electrodes

thus justifying the two different potentials in our two-level model.

Two-Level Model Resistor Justification

The 2-D model was used to simulate two simple experiments to justify the resistors of fig. 1-6. The

first experiment was done by varying the conductivity of lead dioxide while holding the conductivity of

lead (Pb) constant at 48000 S/cm. The results of this experiment can be seen in fig. 5-19. The second

experiment done was the same as the first except now the conductivity of lead dioxide was held constant

at 80 S/cm while the conductivity of lead (Pb) was varied. The results of decreasing the conductivity of

lead (Pb) can be seen in fig. 5-20.

Fig. 5-19 clearly shows that the reducing the resistivity of lead dioxide by an order of magnitude

almost eliminates the non-uniform usage of electrolyte along the height of BOTH electrodes. Further-

more, fig. 5-20 shows that the resistivity of lead (Pb) must increase by three orders of magnitude before

it has a discernible effect on the concentration profile. Two conclusions can be drawn from these plots.

154

PbO2 conductivity is 80 S/cm
After 12s of discharge at I = 1.0

- l or Celt

PbO2 conductivity 320 S/cm

After 12s of discharge at I = 1.0
.,-'i""' ·i ···..

x 1

.a 4.9..

E 4.88

f 4.86-
4.84

° 4.82
C•o

PbO2 conductivity is 160 S/cm
After 12s of discharge at I = 1.0

.....'".

x 1(

o 4.9.

S4.88.
0 4.861

o 4.84 -....... O
e 0S 4 .8 2

-.. "

u 4.8 *.: 40 o0

)" 2020 10~
ns From Ton.,. 0 " 0 0 0

-r- Of Cell

PbO2 conductivity is 800 S/cm
After 12s of discharge at I = 1.0

•.: ... ·......
x11

E 4.9.

E 4.88
o 4.86

Columns rom Top Left ofCe 0 0

a-4.84 crc I .·` : .~ : ·.........
.. 0

U 4.82

oV4.8

0.t .. · 20a, nn.
Columns FrmS Top Left of Cell 0 0

Figure 5-19. Results from four different simulations. Together they show that increasing the conduc-
tivity of the lead dioxide electrode eliminates the non-uniform usage of both electrodes.

First, it does appear that the non-uniform usage of the electrodes is, at least in-part, a side effect of

the resistance drop down the height of the electrodes and therefore the resistor portion of the two-level

model is well justified. Second, it appears that the high resistivity of lead dioxide electrode is the main

factor in the creation of the non-uniform usage profiles. This could be one clue as to why, "The cycle

life of lead/acid batteries is often limited by the positive plates [41]."

155

U

0

C
0

0
0U

c,

Columns orn

U I

p' ··

~i .,.I.

'''''~

"""

· · · ·;

· · ·..;

.... ~

~''''
""'
~···.-
···-

Pb conductivity is 48000 S/cm
After 12s of discharge at I = 1.0

.

S xl
E .

S 4.9.o

485 4

Pu.

o . ; .

4.8

c 4.75
0r 20

0 20
Columns 0-uuoro e

art of, O Coll

Pb conductivity is 480 S/cm
After 12s of discharge at I = 1.0

.........·.....

Pb conductivity is 4800 S/cm
After 12s of discharge at I = 1.0

.- !.·'" · ··....

xl

S 4.9.

S 4.85 "

4.8 i

o .. i .. ·...S4.75
2 4

20
X 109

Srm Top Left Of Cel 00

PbO conductivity 48 S/cm
After 12s of discharge at I = 1.0

...........

E
-0

E
C
0

Ce-

o,
nis ror

Figure 5-20. Results from four different simulations. Together they show that decreasing the con-
ductivity of the lead (Pb) electrode by almost two orders of magnitude does not have an effect on
electrode usage.

Two-Level Model Two Voltage Sources Justification

Next, we show that the potential difference between the electrodes at the top half of the battery cell is

different than that between the electrodes at the bottom half of the battery cell thereby justifying the use

of two different potentials within our two-level model.

Fig. 5-21 and fig. 5-22 show the potential between the electrodes for each row simulated in the ex-

periments from section 5.6.2. The upper-left plot in fig. 5-21 shows a dramatic rise in potential between

the electrodes from the top of the battery cell to the bottom of the battery cell. Certainly one cannot

156

E

0
oE
e.

C

0o

NO0CD

Columns ?roi

. -- W enI

4.85-

- -- t t;ell

consider the 1.95V difference between the electrodes found at the top of the battery cell (row 0) to be

the same potential as the 2.02V found at the bottom of the battery cell (row 30). The sequence of im-

ages also shows that as lead dioxide's conductivity is artificially increased, thereby making electrode use

more uniform along the height, the potential difference along the height of the electrode becomes more

uniform. Fig. 5-22 shows similar results for lead (Pb) .

PbO2 conductivity is 80 S/cm

After 12s of discharge at I = 1.0

- - : . . : .-.

0 2 4 6 1 10 12 14 16 18 20 22 24 8 26 :
Row from top of battery cell

PbO2 conductivity is 320 SIcm
After 12s of discharge at I = 1.0

r0

0) L2

o

4) .u.02*L 1.10
C

0 2 4 ; 8 10 12 14 11 20 24 22 4 2 30

Row from top of battery cell

PbO2 conductivity is 160 S/cm
After 12s of discharge at I = 1.0

. ..: : - : : : - - : - . .

...................

.; i "i i i

PbO2 conductivity is 800 S.cm

After 12s of discharge at I = 1.0

0 2 4 6 0 10 12 14 16 18 20 n 24 28 28 30
Row from top of battery cell

Figure 5-21. Results from four different simulations. Together they show that electrode usage isn't
affected by decreasing the conductivity of the lead (Pb) electrode until the conductivity of the lead
(Pb) electrode is on the order 4800 S/cm.

157

~2.03C

2.02

L01C I
*

e!

SIAS

C 1.4
C

2114

,..................

I4

Z."4

...... ·-.............

.·. ··· · ···............
%

. | II rJMI--

(n
a)Pb conductivity is 48000 S/cm-'
2 After 12s of discharge at 1= 1.0

2 0 2 4 6 10 12 14 1 1 24 26...........2 30...................C

Pb conductivity is 480 S/cm2 After 12s of discharge at =1.0a)a)

C 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

SRow from top of battery cell

SPb conductivity is 480 S/cm
,o After 12s of discharge at I = 1.0

Q)

0 0 2 4 6 8 10 12 14 16 19 20 22 24 26 23 30

SRow from top of battery cell

Pb conductivity is 4800 S/cm
0 After 12s of discharge at I = 1.0

2.

9 192

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

SRow from top of battery cell

Pb conductivity is 48 S/cm
S After 12s of discharge at I = 1.0

1.96 "

r 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30g Row from top of battery cell

Figure 5-22. Results from four different simulations. Together they show that electrode usage isn't
affected by decreasing the conductivity of the lead (Pb) electrode until the conductivity of the lead
(Pb) electrode is on the order 4800 S/cm.

158

5.6.3 Reason Discharge Rate affects Battery Life

It was observed in [41] that, "Increasing the discharge current density decreases the battery life." It is

theorized that if the discharge rate increases, more of the delivered charge will come from the top of the

battery cell. Thereby, taking the top of the cell to a greater depth of discharge which means that it will

fail sooner than the portion of the battery not taken to such a great depth of discharge. Fig. 5-23 shows

concentration profiles of the 16 x 11 cell discharged at four different rates. The plots are battery cell

concentration profiles after the same amount of charge has been removed from each cell. This shows that

the faster the discharge rate, the larger fraction of charge taken from the top of the electrodes. Therefore,

the faster one discharges a battery cell, the deeper the depth of discharge at the top of the electrodes and

the sooner those parts of the electrode will fail. Therefore, the rate of discharge is also very important

to aging.

159

Concentration with constant time current product of 20

C

In
z

.- nm topLeff oCe1 I

Figure 5-23. The same number of Coulombs of charge were removed from identical cells; however,
the charge was removed at different rates. This shows that the rate of discharge is an Important
factor in aging.

160

Chapter 6

Numerics of Implementation in an Embedded

Environment

This chapter introduces the Cell Broadband Engine@ as a possible compute platform for an electro-

chemical battery model in section 6.2. It reviews Gaussian elimination in section 6.3.1. It introduces

two elimination algorithms and three implementations of those algorithms in sections 6.3.3 and 6.3.7.

The code for the implementations can be found in chapter C. The performance of the three implemen-

tations is discussed at length in sections 6.3.5, 6.3.6 and 6.3.9. This discussion vividly illustrates the

performance achievable on the new multicore processors is extremely dependent on the algorithm and

its implementation. It presents a fault tolerant implementation of one of the Gaussian elimination solvers,

section 6.4. Finally it gives recommendations for future work, section 6.6.

161

6.1 Introduction

The compute platform for the battery condition monitoring system has, to date, been little more than a

Voltmeter or Ammeter. These devices are extremely energy efficient, cost effective, reliable, and provide

a considerable amount of relevant information about the amount of charge stored in the battery. In order

for a platform to be considered as a replacement for the simple meters used today, it not only has to have

all of their advantages but also has to provide information that cannot be obtained by simple voltmeter

and ammeter measurements. Information about the battery's state-of-health, a measure of its useful age,

is such a beneficial piece of information.

As noted in chapter 1, battery geometry plays an important role in battery aging. Ammeter and

Voltmeter measurements alone cannot give information about battery geometry or aging. Including

battery geometry information into an on-board battery monitoring system requires an extended set of

sensors with more compute power.

The compute power for the battery condition monitoring system will likely come from some type

of microprocessor. The trend in desktop microprocessor design is toward multicore processors [42].

Moreover, Toshiba's announcement of the Cell-Broadband-Engine-based 4-core SpursEngine® [43],

capable of 48 Gflops single precision performance at only around 15W of power on a 65nm process [44],

indicates that multicore processors will soon make a strong entrance into the embedded processor space.

Consequently, battery models, whether embedded or otherwise, will most likely be implemented on a

multicore compute platform. The Voltmeter and Ammeters will remain, but only act as sensors feeding

information to the more advanced digital platform.

Unfortunately, programming the new multicore processors is a challenge for which the software in-

dustry is ill prepared [45,46]. The problem of developing algorithms that effectively harness the power

162

of multicore processors is presently viewed as such a challenge that Intel and Microsoft have together

announced more than $20 million dollars in investment in joint ventures with UC Berkeley and UI

Urbana-Champaign to investigate this issue [47]. A consortium of companies including IBM, AMD,

Sun Microsystems, Nvidia, and Hewlett-Packard have announced a $6 million dollar joint venture with

Stanford University to promote research in how to write code for multicore systems [48].

Therefore, in order to advance our understanding of and explore issues associated with writing al-

gorithms for multicore processors, the 2-D battery model of section 5.3 was implemented on the Cell

Broadband Engine. As stated in section 5.3, at each Newton step a system of equations like eq. (5.38)

was solved using Gaussian elimination. For this thesis three different Gaussian elimination solvers were

developed and used with the 2-D battery model. Each solver is more complex than the previous solver.

Each solver builds off the knowledge and experienced gained in writing the previous solver. Their de-

velopment highlights the dependence of achieved performance on algorithm implementation and the

difficulty in actually achieving the theoretical performance of multicore processors.

6.2 The Cell Broadband Engine

The Cell Broadband Engine (CBE) is best known as the compute brains of Sony's Playstation 3. It is

the first truly heterogeneous multicore microprocessor available to mass markets. It is capable of over

250 Gflops single precision and around 26 Gilops double precision performance at about 45W on a 45nm

process at 3.2Ghz. By comparison, Sandia National Laboratories' ASCI Red, the first teraflop computer,

"was 104 cabinets housing 10,000 Pentium Pros and spread out over 2500 square feet. It consumed a

mere 500kw" [49]. ASCI Red was the world's fastest supercomputer from introduction in June 1997

until June 2000 [50].

163

SPE SPE SPE SPE SPE SPE

PPE

16B/cycle
47.7GB/sec

V

Figure 6-1. The Cell Broadband Engine is a nine core heterogeneous microprocessor. There are
eight Synergistic Processing Elements (SPE) and one Power PC Element (PPE). All nine elements
are interconnected by a high speed Element Interconnect Bus (EIB). The CBE differs from previous
processors in its low Watts/Gflop count, its high on chip and off chip bandwidth, and its ability to
quickly send short messages between processor cores.

A drawing of the internals of the CBE is shown in fig. 6-1. The CBE consists of nine cores con-

nected by a high speed data bus. Fig. 6-1 shows eight Synergistic Processor Elements (SPE) and one

PowerPC Processor Element (PPE) clustered around a ring data bus labeled the EB in the figure. The

EIB (Element Interconnect Bus) is capable of transmitting 96B/clock cycle for an internal bandwidth of

286GB/second.

164

Bandwidth:
0100GB/secISPE
*25GB/sec off chip

SPE Performance:
*25.6Gflops float/SPE
01.75Gflops double/SPE

16B/cy

SPE

6.2.1 The PPE

The PPE is a complete 64-bit Power PC processor. It is designed to be the master processor for the

system, running the operating system (OS), launching the SPE threads, and helping deal work out to the

SPEs. It has full branch prediction capabilities, 32kB of Level 1 instruction cache and 32kB of Level I

data cache. It has 512kB of Level 2 cache. It has a complete AltiVec® engine for vector math operations

and is capable of fused multiply add operations, something the x86 cannot do. Like all PowerPCs, it

is Big Endian as opposed to the Little Endian format used by the x86. In spite of all these advanced

features, there has been high dissatisfaction with its performance.

6.2.2 The SPE

The SPEs are complete processors that are highly tuned for high performance vector math at low

power consumption. Each SPE consists of two parts: a Synergistic Processor Unit (SPU) and a Memory

Flow Controller (MFC). The SPU consists of local memory and a compute engine. It is responsible for

the computation. The Memory Flow Controller (MFC) is a Direct Memory Access (DMA) controller

that acts as a coprocessor to the SPU. Its only function is to handle all the SPU's off core memory

accesses.

While the SPEs do not have any cache, they do have 256kB of local storage (LS) that has to be used for

both code storage and data storage. Furthermore, they have 128 128-bit general purpose vector registers

for an extra 2kB of on SPE memory. The lack of cache forces the programmer to manually control all

memory accesses through the MFC. While this gives the programmer greater control and possibly leads

to greater performance, it also makes programming the processor extremely challenging.

Like the PPE, the SPEs are Big Endian machines, and they too can perform fused multiply add opera-

165

tions and support fully pipelined single precision arithmetic. However, the single precision floating point

on the SPE is limited in use in that it does not support all of the rounding modes in the full IEEE-754

specification but only supports truncation. Also, single precision floating point denorms are all rounded

to zero. Denorms are numbers that whose magnitude is smaller than the smallest normalized number

that can be represented in floating point [51]. Both of these limitations come from the CBE's origin as a

graphics processor for the Playstation 3.

Double precision floating point operations on the SPEs do support all of the rounding modes of IEEE-

754. However, double precision is not pipelined properly. Double precision operations take 13 clock

cycles to complete and both processor pipelines stall during the first seven clock cycles of a double pre-

cision operation. Clearly this results in a reduction of system performance, and the SPEs are collectively

only capable of about 14Gflops of double precision math.

While each SPE can run a complete OS, it is not recommended because the SPEs lack the hardware

necessary for effective branch prediction. SPEs also lack any instruction cache or data cache, both of

which are helpful when running an OS as these free the programmer from having to explicitly control

the flow of data to and from the processors' on-chip memory.

As stated above, all SPE memory accesses are performed by a dedicated DMA controller. This con-

troller frees the SPU from having to deal with the memory access. The result is that the SPU can continue

its computing in parallel with the MFC gets or puts of data from or to memory. All memory accesses

are performed at 16 byte boundaries, however, ideally all data should be aligned to 128 byte boundaries.

Attempting to access memory that is not located on a 16-byte boundary results in a segmentation fault

and crashes the processor. All accesses are at least 128 bits (16 bytes) wide. Memory accesses of sizes

smaller than 128-bits (16 bytes) are retrieved as part of a 128-bit chunk of data; however, making the

166

small data part of a 128-bit chunk requires extra setup time as seen in fig. 6-3(b), so small memory

accesses are strongly discouraged [52, p.456]. The minimum recommended memory access size is 128

bytes. This is because the SPE cache line width is 128 bytes. A 128 byte access fills the cache line and

therefore makes the most effective use of the hardware. The maximum data that can be transfered in one

DMA request is 16kB.

The SPEs perform all data operations on 128-bit vectors. The SPEs perform a Single Instruction for

the Multiple Data (SIMD) elements of the 128-bit vector. In the case of single precision floating point

data (32-bit), an SPE can operate on up to 4 floats at a time. In the case of double precision floating

point data (64-bit), the SPEs can operate on up to two double at a time. When operating on scalar data,

that data is stored in the vector register's preferred slot. For single precision floating point and for 32-bit

integer data the preferred slot is usually bits 0 to 31 of the 128-bit vector register. In the case of double

precision floating point data, it is bits 0 to 63 of the vector register. The rest of the register is left empty,

but any operation performed on the scalar data is still performed on the entire 128-bit vector register.

6.2.3 Unique Features of the Cell Broadband Engine

Besides the heterogeneous nature of the CBE and the fact that all memory accesses from the SPEs

must be controlled manually, there are four features that set the CBE apart from previous high perfor-

mance computing systems. First is the amount of power consumed by the CBE. As seen in fig. 6-2(a),

the total power used by the CBE has decreased dramatically since its introduction in 2006 from about

105 Watts to about 45 Watts at 3.2Ghz operating frequency [53-55]. The 45nm CBE, therefore, can

achieve about 5.5Gflops/Watt as opposed to ASCI Red's 2Mflops/Watt. This is a more than 2000x im-

provement in performance per Watt in under 10 years. Because of this lower power consumption, and

167

120

110

100

90

U 80

70

so

so50

Approximate Power Consumption of Cell Broadband Engine as a Function of Process
250

200

E

150

1
"5 90 85 s 75 70 65 6o 55 50 45 "'55 90 a5 80 75 70 65 80 55 50 45

Process Size in nm Process Size in nm

(a) Two die shrinks have resulted in a 58% reduction in power (b) Two die shrinks have resulted in a 51% reduction in die area.
consumed by the Cell when operating at 3.2Ghz.

Figure 6-2. Since its introduction, the Cell Broadband Engine has undergone two major die shrinks
that have reduced area and power consumption.

therefore high performance per Watt, the CBE enables one to start thinking about new environments

where high performance computing can become feasible.

The second distinguishing feature of the processor is its compact size. When built on a 45nm process,

the CBE only requires 115.46mm2 of die area [54]. This is a reduction of required area of over 2 million

times from the 232, 257, 600mm2 required by ASCI Red [56]. While it is impossible to think of putting

ASCI Red into an automobile, or other embedded environment, for the CBE, it is quite possible.

The third unique feature of the CBE is the extremely high bandwidth both on and off the chip, fig.

6-3(a). Latency is a function of bandwith, and it too is an important performance parameter, fig. 6-3(b).

Data for these plots was obtained by repeatedly putting a single piece of data from the processor into

main memory and then figuring out the average memory put time. Data for both of these curves was

taken by the author on a Sony Playstation 3 with 256MB of XDR memory, Fedora Core 6 and IBM Cell

168

¶q,,

'i
............i . .,•, , t.............., •.............. •............. t........................ i....... i i....... " • : i.............. i........i............. i
............-, i i............. i

.. 1: Z
: b:

..................... i............. • ..-.-r· * ·· · ·· ' ·· · I I I I I····

B.

..

....
B 'C.·N

-

Area of Cell Broadband Engine as a Function of Process

Bandwidth Means
Plot Produced -29-Jul-2007 21:22:08

: : : :: . ::.. :.. ; I ::1 : : :::: : 5: ::::::::::: : : : .:: : ::: I: ! :; ::l:: :::: :.::. ::::::::-I: : : :.: : ::: :::1.!! :
. ,• . .. o , ,... , • : : .

. . . .l
. :• . . , . . . • • : • •..• , :

...- .• ..:: . -. .• . . . -..: : , .. . ,... : r.. .-.. • : •

....,.i ..i. .i.ii -i i..i..i..i.i,.... i,...... .,. l.:E .• .U .-]-.]-::i. ii
. . .]]! .]] -.• - .- --.-:. ..: .i -. ; -

....:::I::: Ijjlt:::::::: Zii:i] ... i] il:::: : : :::: :.....::::...
....i.ii iiii.i..I. i.ii

..:. . :'; . :... . t .: . .. : : . .:... . :...... . .:... . :. ;

.... i i: i] ii i • iii....i:
": :]i[]i]]]]ii]] :·]i] i:i:i] iii : : :-: :: ?: ji !i~i: i: :] i] i : :::i j]] : :.i...i..7:::.: :::a .I 11 IfIii ::: ii..: :::i: :::i :::i :::

10
-1

n-2

Latency Means
Plot Produced -29-Jul-2007 21:25:16

10
0

10 10 10 10 10 100 101 102 10

Message Size in Bytes Message Size in Byt

(a) The Cell Broadband Engine can achieve its theoretical (b) The Cell Broadband Engine can
bandwidth for larger DMA sizes. transfers of up to 16kb.

Figure 6-3. The Cell Broadband Engine was designed for excellent memory VO.

104 10s

es

support single DMA

Broadband Engine Software Development Kit (SDK) 2.1 with xlc++ compiler version 0.8.2.

The bandwidth curve shows that, for larger data transfer sizes, the Cell Broadband Engine can ap-

proximately achieve its theoretical processor to main memory bandwidth of 25GB/sec. The bandwidth

limited region of data transfer starts at transfers of 1024 bytes. The dashed line is drawn between the

data points in order to help the eye follow the shape of the curve and is not meant to indicate actual

achievable performance.

The latency curve is also very revealing. As previously mentioned, there is an extra performance

penalty for memory transfers of fewer than 16 bytes. This can clearly be seen in fig. 6-3(b) where a

memory transfer of 16 bytes has a latency of 0.06ps, but a transfer of on 8 bytes requires 0.151Ls, 2.5

times the required time for 16 bytes. Curiously enough, the latency dominated region of memory transfer

operation seems to extend out to 1024 byte transfers. This is greater than the 128 bytes of the SPE cache

lines. Therefore, even though IBM recommends a minimum data transfer size of 128 bytes, it can be

169

102

101

0..

• 10
•

10rrcc
M 1

.. ..."" ''" '. W

. . .:.. .. .:..] .]....•. • ..:..:..::. ..].:..: ,.:..

... :: .. .W t

: : ; : • ; : . . .: : : : : :• : . . .: : :..... ...:. ...: : .: : :: : : :::: : : :::: : ! i iii ii ! !B ~ i i! i i i ii: i~ i i r ·ii!i i!i!i! !] i! !i~

..

.

"""' ' """'' '""""'"""'',v'''

said that the CBE doesn't start to perform its best, for single transfers from single SPEs, until the data

transfer size is at least 8x the cache line size. A minimum 128 byte transfer size is recommended more

likely because there are 8 SPEs. If each of the 8 SPEs individually requests 128 bytes of memory at

once, then these 8 requests will together be the same as a 1024 byte off chip request. This will put the

CBE into its bandwidth limited region of performance, fig. 6-3(a). All data points on the plot after 1024

bytes are multiples of 128 bytes, so the latency curve represents the best possible performance. As in

the case of the bandwidth curve, the dashed line does not indicate actual achievable performance, but is

only drawn to help delineate the shape of the curve.

This high bandwidth, combined with low latency, fig. 6-3(b), opens doors to new algorithms because

one can more easily move large amounts of data and hide the data transfer costs with less computation

than in previous systems.

The last unique feature of the CBE to be mentioned here is its very high intercore communication

rate. This rate is more than 20x the communication rate found in previous and very expensive Infiniband

systems and over 100x the performance of ethernet base systems, fig. 6-4 [57]. The small amount of

time required for round trip intercore communication (fig. 6-5(a)) allows for more frequent intercore

synchronizations, fig. 6-5(b). For example, a single SPE-PPE-SPE round trip communication only re-

quires 0.3psec when using a Playstation 3 running Fedora Core 7 with IBM SDK 3.0 and xlc++ compiler

version 0.9. Synchronizing all six usable Playstation 3 SPEs takes only 1.351Lsec. The sublinear increase

in required synchronization time can be explained by the fact that all the SPEs can talk to the PPE simul-

taneously, so the SPE-PPE phase of the synchronization happens in parallel while the PPE-SPE phase

happens serially. These fast synchronizations mitigate the harmful effects of core synchronization and

therefore allow for more flexibility in algorithm design.

170

MPICH-VMI Latency for PMB PingPong Benchmark (2 processes, 1 process per node) vs. CBE mailboxes
. s

101 102 10 104

Message Size (bytes)
10s 10 107

Figure 6-4. The CBE SPEs have the ability to send short messages between each other more than
an order of magnitude faster than even the fastest Infiniband connected processors.

171

1o

CI=,

S102
=L 10

0CS,4'

I A-1

I····l;·;·~i~~i I·ri~~· ~ ~ ·;·;; · · · · li~ iiii· · i i ··. ;.; ·. ·,..·......;;;.....
i iii ... i3

..; ; --- ;. , .; .;.;.... ,. .; - .; - -...... - . - - .- . ; -... . . -v - .---.. ,- ,- ,. - . .

. . . . , ,, . ,• ..:..... ; ., . , *. .; ; .; ,.... ,•;... .. , . .: ; ; ,; . . .; .; . : : •:; : : :; :; ; ; ;.•: : ::::: : :::::::: : : ::l::: : : : :s:: : : :::::...... ; " ! 'I- ".. 14 61 1---.... .".! ;

. ..::::: .:: .:: I:l: . .::: .:.::: : ?:. : : :..... i :::i::i:i iiiii ::::::::? :::j ::? :::.531 :::...... :::::::...::::.::: :::::::::......:::::

.I.,'.fl............ :;.. - -4:::::::::::•:;••:::•i::i:•:•• :i•::::•::•:•::• •;i:::::::1:••i•ii:::'; ; :-'ý ;:. ::* W •:i::::::: H :) :::: :•i
S. 9. " ,

·· ·:·· :.)]-. 'iii I ...ll 1 ·j 3 .I3.. j 3. 3 311 iA.i) : y inet1 :1: 3
.... 'iii~i...a~r:.: .::: :::i:i ::::li::: : : :::i ::li f i:: : :::i:::: : : :::::i :: i : :::::i : ::: : : ::: ::: ::" " ! "- ;• ! "i~i - • ! : " ·:" : " " "-• '• _U-:--"-:!L:: "" " :: : -- '

.. ;* * V: .--:• !.=.
.... I

:··!···.c.,,....... In .iniba .:n:: : :. . :

... 3, : - : •!-NIB M a! ilboxe.:::.....,,,:.:.; •... ..:. .;:,..i,,::,.% ;,.......::-:.:C' 2! "i.. ..:.•.• ..'.:.; 3'.. 1 - .!.C · ·:.22 .·.',;".'•···· ...-.N :. •-i·I R·Iii ··''·. ···ii i• :iii :•::' :::::: :::.••i .• • ••.• :::!:•:.::!!!::::::::::!

.. . ,. ,: ;:;; : .• : ..;....;....... , ,. . ,: .;fl:: .D-. ," -::iiiii i i i eiiii . ii ii
.... :.,. ,,,...,: .. .: ...: :::: :. ...: .: ., ,:::-.. -T...: : ::::::: : : ::::::: ::::: : "•::: : : : ::::::: ! "" I: '": :" ":'-['-: : :: ::: i : ::: :: : : :: :: : ::: :: : : : ::::: : :::::: : : ::::: .!!![!!!![•![!.!•[!(!!!![!:!!!!![![[!: :! : !:! :!:.:•ji: ::::::::!!:!..!:::: ::i : j::! ::ij::~. -- -T C P

.... "i '• ""' ... ' 'J ... Infin''and...... i' "'' "" "Infinlband

- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~B " :" i:" Ei••• '''"•"• •/lU•Mailboxes; ; ;. ;;;i .; ;.; ;;i ; • ;;;;;] ; ; ";;;;i ; ; ;;;;'! / _¥

0oIv
10

. i i i I i I l llll I· ·

- I

pSeconds for round trip PPE to SPE mail box communication

Number of SPEs

(a) For the synchronization scheme used in our LU solver, SPE-
PPE-SPE round trip communication (synchronization) time
grows sub-linearly with the number of SPEs.

(b) Using pointers to memory mapped mailbox registers allows
for millions of SPE-PP-SPE synchronizations per second.

Figure 6-5. Addressing memory mapped SPE system registers via pointers in C is an effective
method for fast communication of short messages between CBE SPEs. The data for these plots
was taken on a PS3 running Fedora core 7 with IBM SDK 3.0 and xlc++ complier version 0.9.

172

c0o

0

Millions of round trip mail box 5ynchronizations/second

These four features: lower power, small size, high bandwidth, and fast intercore communication

allow us to think of using the high computing capability of the CBE in embedded applications. As of

this writing, the only way to get access to a CBE, however, is by buying a Playstation 3 or an IBM

BladeCenter QS20 or BladeCenter QS21 system. These systems are all pre-made, so we cannot use

them to try to take advantage of the lower power or small size aspect of the CBE. Therefore, we will

focus on trying to use the high bandwidth and fast intercore communication to our advantage when the

two forward elimination algorithms and the three implementations of those algorithms are discussed in

the next section.

173

6.3 Gaussian Elimination Solvers

The parallel Gaussian elimination solvers developed in this thesis provide a high performance way of

solving the system of equations Jx = r. r is the residual produced at each Newton step and x is the

correction needed at each Newton step. In our case, J is the N x N Jacobian matrix produced by the

2-D battery model of section 5.3. The system Jx = r needs to be solved at each Newton step.

Gaussian elimination for sparse matrices is not a new area of research. One of the best known suites of

sparse LU solvers (closely related to Gaussian elimination) is the SuperLU suite of solvers. These solvers

are: SuperLU [58], SuperLUMT [59], and SuperLUDIST [60]. SuperLU is for sequential machines,

SuperLUMT is for shared memory parallel machines with up to 32 processors and SuperLU_DIST is for

distributed memory machines. Both SuperLU and SuperLUMT can partial pivot, while SuperLUDIST

uses static pivoting. Static pivoting tries to select the best arrangement of the rows before the LU solve

begins. All of the SuperLU solvers use Newton's method help ensure the numerical accuracy of the

solutions [61, p.6,p.91.

None of the solvers presented here partial pivot, instead they use the static pivoting with Newton re-

finement as is done in SuperLUDIST. Partial pivoting, however, is an important future goal. Because

the CBE can be configured to behave as a shared memory machine, a partial-pivoting-parallel-sparse LU

(Gaussian elimination) solver is probably an achievable goal; however, implementing it on the CBE will

most likely be a more difficult task than implementing it on a standard shared memory parallel machine

as not only does one have to control the synchronization of the processors, one also has to explicitly con-

trol all memory movement. Implementing a partial-pivoting-parallel-sparse LU (Gaussian elimination)

solver will have to be done in stages as the development tools for, the programming techniques for, and

the understanding of this new architecture improve.

174

Although they do not partial pivot, the solvers presented here represent significant contributions in

that they are guaranteed to work for a large class of problems that involve either symmetric positive

definite or diagonally dominant matrices. Furthermore, when used with Newton refinement, they work

for more problems outside that realm as shown by the battery model example of this thesis. Finally,

they represent the first implementations of parallel sparse Gaussian elimination tailored for the CBE and

thereby contribute to the base of experience that is needed in order to develop even more advanced and

robust Gaussian solvers on this new architecture.

These solvers differ from the SuperLU family in a variety of ways including the following ways.

SuperLU is a serial program while these Gaussian solvers are all parallel. SuperLUMT is a shared

memory algorithm that relies on the processor to control memory accesses and relies on the processors

having data caches. These algorithms all require and implement explicit control of the memory accesses.

Finally, SuperLUDIST requires the use of the Message Passing Interface, MPI, while MPI is too large

to work on the small SPE cores of the CBE. Therefore, a different non-MPI system of message passing

between processor cores is utilized.

Two different algorithms and three different solvers based on those algorithms were developed. The

algorithm names are the "out of core algorithm" and the "inCore algorithm." The three implementations

names are called: out of core solver revision 1, out of core solver revision 2, and inCore solver. All of

the solvers are implemented in double precision on the Cell Broadband Engine. While they all solve

systems of equations by forward elimination and then back substitution, the three achieve very different

performance. This section describes the two algorithms, investigates the three solvers and explains

why they achieve different performance. Reading through the development of these three solvers will

hopefully convey the sense that a mastery of the computer architecture on with the solver is being

175

implemented is vital for achieving good compute performance. Before diving into the solvers, however,

a brief review of Gaussian elimination is presented.

6.3.1 Review of Gaussian elimination

Gaussian elimination can be used to solve the system Jx = r by forward elimination followed by

back substitution. The goal of the forward elimination sweep is to produce an upper triangular matrix

that can be used in the back substitution step of the algorithm.

Forward elimination takes a pivot of a matrix and makes all values below that pivot equal to zero. The

row that the pivot belongs to is called the present base row. Any row that has elimination performed on

it is called an elimination row. The row that is presently having elimination performed on it is called the

present elimination row. All rows in the matrix except the last row will act as a base row at some point

during forward elimination. Also, with the exception of the top row, all rows in the matrix will have

elimination performed on them at some point during the forward elimination sweep.

The result of the elimination operation is that all data elements in the same column as and below the

base row pivot will become zero. The other elements of the elimination rows usually also change. If a

Algorithm 2: Basic Dense Gaussian Forward Elimination algorithm.

176

Input: The Jacobian matrix, J at a Newton iteration and the residual vector, r
Result: Forward elimination is performed on the Jacobian and the residual vector

2.1 for i -- 1 to N do
2.2 for j -- i to N do

// Perform elimination on row j
2.3 J3 ,i * Jj,i/Ji,i
2.4 for k - i to N do
2.5 Jj,k - Jj ,k - Jj,i X Ji,k

2.6 r rj - Jj,i x ri

2.7 end

2.s end

2.9 end

I N I

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
nz= 11626 nz= 11626

(a) This Jacobian is produced by a 5-point stencil. Notice (b) The half band size hbS and the band size b are two
the internal band and the two outer bands. important parameters.

Figure 6-6. The matrices of interest are banded in nature.

base row element is zero, then elimination will have no effect on any of the elements in the same column

as the base row element. This fact will be exploited to greatly speed up the computation.

Since these solvers are being developed in conjunction with the 2-D battery model of section 5.3, let

us take a look at the kind of system they will be used to solve. First, the Jacobian is being stored in

memory in row major order. This means that all elements of a row are stored in contiguous memory

addresses. Next, the 2-D model's Jacobian J has a special banded structure as seen in fig. 6-6(a). The

banded structure of the Jacobian comes from the fact that the battery model used to tests these solvers

used a 5-point nearest neighbor stencil.

The Jacobian matrix produced by the battery model is extremely sparse, fig. 6-7. The algorithms

will try to take advantage of this sparsity and banded structure to help speed up computation. Because

anything outside the right most or left most band edge is zero, and elimination has no effect if the base

row element is zero, elimination need only be performed on data elements that lie between and include

177

99.7

99.6

S9.5

99.4

99.3

Matrix Sparsity as a function of Square Jacobian Matrix Size

2242 3264
Size of Square Jacoblan Matrix, N

Figure 6-7. The Jacobian is extremely sparse.

the two outermost bands. Because useful computation can only occur between the bands of the Jacobian

matrix, Algorithm 2 can be modified to become Algorithm 3. In Algorithm 3 hbS is the number of

columns of the matrix from the pivot to the right most element of the outer band of a particular row

as seen in fig. 6-8. b is the total width of the band. Because bandwidth is frequently used to mean the

amount of data that can be transfered between the processor to the memory, the term band size will be

used when referring to b. b does not have to equal, and in fact does not equal, for the Jacobian matrices

of interest, 2 x hbS as explained in 5.5.

Input: The Jacobian matrix, J at a Newton iteration and the residual vector, r
Result: Forward elimination is performed on the Jacobian and the residual vector

3.1 for i -- 1 to hbS do
3.2 for j 4- i to i + hbS do

// Perform elimination on row j
3.3 Jj,i -- J,/Ji,i
3.4 for k -- i to hbS do
3.5 Jj,k ~ Jj,k - Jj,i X Ji,k

3.6 r rj - Jj,i x r
3.7 end

3.8 end

3.9 end

Algorithm 3: Basic Banded Gaussian Forward Elimination algorithm.

178

........- .'. i .> ...,
.. 2 .•.

•

...

.. • , :#

........

Or

- hbS

b

Matrix data be
actively process
by forward elimina n
Direction of motion
ofE

I" N

Figure 6-8. In banded Gaussian elimination, only a small
given base row.

amount of information is operated on for a

Banded forward elimination operates only on a small hbS x hbS sized square of the matrix at any

given time. An example of this square of data is highlighted in fig. 6-6(b). This block of actively being

operated upon data will be called a "work block." As previously stated, the data that is being operated

on always lies between the two extreme bands of the matrix, so any values outside the outer bands will

always be zero. Data between the bands that is initially zero, however, can become non-zero during

the process of elimination. The zero values that become non-zero values are called fillins. The area

of present operation of data moves from the upper left of the matrix to the lower right as elimination

progresses, fig. 6-8. More specifically, the "work block" slides from the upper left to the lower right one

row and one column at a time.

179

6.3.2 Two Forward Elimination Algorithms

Two forward elimination algorithms were developed. From these two algorithms, three distinct Gaus-

sian elimination solvers were written. Each builds off either the code base or the knowledge obtained

from the previous solvers. Therefore, the order of development in time is important. The order of

development is as follows: out of core solver revision 1, out of core solver revision 2, inCore solver.

Out of core solver rev 1 and rev 2 share a common code source. The major difference between the

two implementations is the way data is stored in memory. Also, rev 1 was implemented with IBM

Software Development Kit (SDK) 1.1 whereas rev 2 utilized SDK 2.1. "Out of Core" means that all data

is stored off the Cell Processor and only moved onto the processor when it is needed for computation.

Immediately after computation, the data is moved off the processor back into main memory. The idea

behind this algorithm is the streaming data model of computation [62]. The rows were thought of as a

continuous stream of data that flows into and out of the processor. The second algorithm implemented

as a solver was the author named "inCore" algorithm. It is embodied in the inCore solver. It does not

share a code base with the out of core solvers, however, it does try to make use of many of the things

learned by implementing those solvers. It is called an "in core" algorithm because data is moved onto

the chip and persists there until the algorithm can no longer possibly ever use the data again. Thus, the

data remains "in core."

180

6.3.3 Out of Core LU Algorithm and Solvers

The out of core LU solvers were written first. There are two slightly different incarnations of this

solver. Their differences in implementation and performance will be explored below, but first their

common algorithm, Algorithm 4, is explained. The basic idea of the algorithm is that an SPE brings a

row of data from main memory into the SPE local store, performs elimination on it, and then sends the

row back to main memory.

Using this basic idea as our guide, the number of compute operations and memory accesses performed

by the algorithm can be tabulated. The compute operations and memory accesses are summarized in ta-

ble 6.1. The compute/memory ratio in the table indicates that the algorithm will improve in performance

as the width of the band increases. Also, it seems that performance is independent of the matrix height

and width, N.

Even though the basic idea of the algorithm is sound, it would be a terrible waste of time if every

time the processor wanted to perform elimination on a row, it stopped to get the row from memory,

performed elimination on it, and then stopped again to put the results of the computations back into

memory. Instead, the processor fetches its next elimination row, Algorithm 4.9, but instead of waiting

for that row to arrive, the processor preforms elimination on the elimination row it presently has in its

local memory, Algorithm 4.13. Then the processor puts the row it just performed elimination on back

into memory, Algorithm 4.15, and waits for both the row fetch and row put to complete, Algorithm 4.16.

Then the loop repeats with the next elimination row.

Implementing the next elimination row pre-fetch requires the SPE to have two buffers for elimination

rows. While the SPE is performing elimination on the row in one buffer, the other buffer is receiving

the next row from memory. Once elimination is completed on the first row, the SPE switches to the

181

Input: The Jacobian matrix, J at a Newton iteration with half-band size hbS and the residual vector, r
Result: Forward elimination is performed on the Jacobian and the residual vector

4.1 for i -- 1 to N - 1 do
// Fetch base row i from main memory

4.2 Jlocal,i = postrecv (J[P[i], i : i + hbS])

// Fetch first elimination row for this SPU, i+spuid from main
memory

4.3 if i + spuid < N then
4.4 Jlocal,i+spuid = postrecv(J[P[i + spuid],i + spuid : i + spuid+ hbS])
4.5 end

// Wait for base row and first elimination row to arrive
4.6 waitf orcompletion (Jlocal,i, Jlocal,i+spuid)

4.7 for j - i + spuid to i + hbS do
// Pre-fetch next elimination row for this SPU, j+spuid from

main memory
4.8 ifj + spuid < N then
4.9 1 Jlocal,j+spuid = postlrecv(J[P[j + spuid],j + spuid: j + spuid+ hbS])

4.10 -end
// Perform elimination on row j

4.11 Jlocal,j [i] - Jlocal,j [i/Jlocal,i[i]
4.12 for k ' i + 1 to i + hbS do
4.13 JlcaI,j [k] -- Jloca,ij U] x Jlocal,i [k]
4.14 end

// Post the updated row back to main memory
4.15 po s tsend (Jlocal,j)

// Wait for all pending posts
4.16 waitforcompletion (J1ocaljJloca,j)
4.17 end

// Wait before starting next base row
4.18 notifyPPE
4.19 end

Algorithm 4: Out of Core algorithm for parallel forward elmination.

182

Out of Core Algorithm Operation Count

Compute Operations
Multiplies N (hbS 2)
Subtracts N (hbS 2)

Total Compute 2N (hbS 2)
Memory Access Operations
Memory Reads N (hbS)

Memory Writes N (hbS)
Total Memory Access 2N (hbS)

Compute to Memory Access Ratio
Compute/Memory hbS

Table 6.1. Performance of the out of core algorithms.

buffer that has just received a row and starts elimination on the data in that buffer. In the mean time,

the original compute buffer is now receiving the next elimination row. This process of using two buffers

of alternating functionality, one for elimination and one for memory accessing, is known as double

buffering. Double buffering helps ensure that, the processor never stops to get data from memory.

Unfortunately, it still stops when writing data back to memory, Algorithm 4.15.

The out of core solver is SIMDized [63]. SIMD is an acronym that stands for Single Instruction

Multiple Data. Elimination fits perfectly into this classification of computation. There is only one

operation that needs to be performed on every element in an elimination row. Ideally the computer could

perform the elimination operation on every elimination row element in a single pass. No machine can

do this right now, but it is common to find machines that can do the same operation on two double

precision numbers at once. The SPEs have vector registers that allow operating on two double precision

numbers at one time. This allows the SPEs to perform elimination on two columns at a time. All solver

implementations take advantage of this feature.

SPE level parallelization is achieved by assigning rows to SPEs in a round robin fashion. Initially

183

rows are assigned to SPEs by their SPE number also known as their rank aka spuid. SPE 0 would get

row 0, SPE 1 gets row 1 and so on and so forth. Each SPE knows how many SPEs there are. For the

purpose of illustration, assume there are Z of them. If an SPE is performing elimination on row k, at the

same time it is fetching row k + Z.

6.3.4 The Out of Core Algorithm's Two Implementations

As mentioned earlier, there are two incarnations of the out of core algorithm. The first written incar-

nation is called out of core solver revision 1. The second later written incarnation is called out of core

solver revision 2. They differ in both the software used to develop the solvers and the way they store

data in memory.

Out of core solver revision 1 was implemented using the IBM Cell Broadband Engine SDK 1.1. This

incarnation stores its data in dense form in memory. This means that all matrix entries are stored in row

major order in memory. The memory storage pattern for a single row of data for the out of core solver

revision 1 can be seen in fig. 6-9. The entire row is stored in memory and retrieved from memory when

needed. The position of the pivot within the memory storage block changes depending upon the row.

Out of core solver revision 2 was implemented using IBM Cell Broadband Engine SDK 2.1. It stores

its data in a custom sparse form in main memory. The sparse storage format utilized by both the out

of core solver and the inCore solver is shown in fig. 6-10. The position of the pivot is at a fixed offset

within the memory block for all rows. In the case of storing things in a dense format, when a row was

brought in for elimination, all the data members were already properly aligned. However, with the new

sparse format, there needs to be an extra step of aligning the data before elimination can be performed.

This alignment step will be shown to have a dramatic effect on solver performance.

184

Pivot position within
storage format varies
with row number

N

r[k] k

_I. I -I
Size (in doubles) =
(volumeRow*numPVColumns
+ volumeColumn)*numVars

Size (in doubles) =
svLength - (volumeRow*numPVColumns
+ volumeColumn)*numVars

Figure 6-9. The memory storage pattern of each row of the Jacobian matrix for out of core solver
Revision 1.

Pivot position
fixed within
storage format

b
r[k] khbS

I-Size (in doubles) =
(numPVColumns)*numVars

Size (in elements) =
(numPVColumns+l)*numVars

Figure 6-10. The memory storage pattern of each row of the Jacobian matrix for both out of core
solver Revision 2 and the inCore solver.

185

1 I1

111l

Both SDK 1.1 and SDK 2.1 were alpha level products; however, SDK 2.1 was significantly more

reliable than SDK 1.1. Since SDK 1.1 was a very alpha level product, IBM felt it had the right to change

the API when it introduced SDK 2.1. Therefore, programs written for SDK 1.1 cannot work on a later

SDKs. Programs written on SDK 2.1 can be quickly migrated to SDK 3.0. Both products, SDK 1.1 and

SDK 2.1 are now defunct and have been replaced by the IBM SDK for Multicore Acceleration, Version

3, aka SDK 3.0. Neither SDK 1.1 nor SDK 2.1 is obtainable through regular channels as of the writing

of this document.

186

6.3.5 Out of Core Solver Revision 1 Performance

Four different matrices were used to test the performance of out of core solver revision 1. These

matrices were generated by the 2d battery model and are of sizes: 1224x1224, 2142x2142, 3264x3264,

4284x4284. All four tested matrix sizes had the same half band size hbS of 210 doubles. The tests were

conducted on a Playstation 3 (PS3). The maximum matrix size was limited because the PS3 only has

256MB of XDR system memory and the matrices were stored in dense format in the system memory.

Fig. 6-11 shows the performance of the solver for all four matrix sizes. Gigaflops (Gflops) were

computed using:

hbS 2 • N
Gflops = * N (6.1)

At (1024)3

Where hbS is the half band size of the matrix as defined in fig. 6-8 and N is the length and width of

the matrix also shown in fig. 6-8. The number of SPEs used during the computation are listed on the x

axis. The y axis displays the Gflops attained by the solver. It is a loglog plot.

Included on the graph are several straight dotted lines that diverge rather quickly from the dashed data

lines. These straight dotted lines represent the linear speed up lines. The linear speed up lines delineate

the theoretical best performance (as measured in Gflops) that could be achieved as more processors are

added. From this plot, it is clear that the solver does not come anywhere close to achieving a linear speed

up as more SPEs are added.

Failure to achieve linear speed up, however, does not mean that the absolute performance of the

solver is bad. In fig. 6-12, the performance of out of core solver revision 1 is compared to Matlab

solving the same system of equations on a 2Ghz AMD Opteron 246 processor. The theoretical maximum

187

Out of Core Solver Rev 1 Half Band Size of 210 SDK 1.1 Jaunary/February 2007
E
0

U)

0U,Eo
0
V0.C,,

U)

CL0

M0)1o

E
0
0.aEo

U,o

0.0

0 Number of SPUs

Figure 6-11. Out of core solver revision 1 has modest performance, but does not achieve a linear

speedup.

performance of the Opteron 246 is 4Gflops double precision.

This plot shows that the performance of the solver is fairly independent of matrix size. This is because

on the matrix parameter N was varied while the band size was held constant. Varying only N simply

creates a linear increase in the total number of compute operations needed by the forward elimination

sweep. These new compute operations can be computed in a linear increase in time. Therefore, there

should be no change in Gflops performance due to an increase in N. For that reason, all future perfor-

mance tests will have hbS varied while N will be held approximately constant. This is logical from a

theoretical perspective; however, as will soon be shown with out of core solver revision 2, this is not

necessarily the case.

For larger matrix sizes, out of core solver rev 1 seems to perform better than UMFPACK as called

by Matlab. The out of core solver rev 1, however, does not come close to the performance of LAPACK

188

as called by Matlab. LAPACK's performance is fairly independent of matrix size, but UMFPACK's

varies greatly. The decrease in UMFPACK performance probably has to do with the size of the matrix

compared to the size of the 1MB of L2 data cache on the Opteron 246 processor. Once the matrix

exceeds a certain size, it no longer fits entirely into the L2 cache, so UMFPACK then has to start going

back to main memory which slows things down. This is our first example of where matrix size can effect

performance.

Performance of Matlab on Opteron 246 vs CBE on Playstation 3 LU solvers

-D1
z
> 1

-o
V

S0.7943
E
0
u 0.631

o 0.5012U-

0.3981

0.3162

I LL4 2242
Size of the Jacobian Matrix, N

5204 4284

Figure 6-12. Out of core solver revision 1 beats UMFPACK as called by Matlab for larger matrix sizes,
but it does not come close to the performance of LAPACK.

189

* I

" Sparse/MATLAB (UMFPACK)
41-Dense/MATLAB (LAPACK)
+ CBE/6SPE
0 CBE/5 SPE

CBE/4 SPE
* CBE/3 SPE

CBE/2 SPE
0' CBE/1 SPE

I

·-·

~..~~~................................

...

4•'11

6.3.6 Out of Core Solver Revision 2 Performance

Fig. 6-13 shows the performance of the second revision of the out of core algorithm vs the number of

SPEs used to perform forward elimination. The width N of the matrix was held approximately constant

at N • 33500 while the half band width hbS was varied from 66 all the way to 282.

Out of Core Solver Rev 2 performance is almost independent of number of SPEs

1 2 3 4 5 6 7 8 9 10 11
Number of SPEs

12 13 14 15 16

Figure 6-13. The performance of the out of core solver revision 2 is almost independent of number
of SPEs employed. Furthermore, there seem to be two distinct performance regions.

There are a number of points of interest in fig. 6-13. First, there are now 16 SPEs because, instead of

using a Playstation 3, this data was taken on an IBM BladeCenter QS20. Time on the QS20 system was

donated by Dr. Rodric Rabbah of IBM at Thomas J. Watson. The QS20 consists of two CBEs linked

together by a high speed bus on the same motherboard. They have access to 1GB of system memory

(512GB each).

The extra SPEs provide a much clearer view as to the attainable scalability of the solver. While the

190

-*-hbSlze =66
-- hbSize =102

- -hb Size =174
-*-hbSize =210
-0-hbSize=246 ---- ---.-hbSize =282I..i

S .i. . i i 1....I.

U.7

11

extra memory, combined with the new sparse representation, allows the LU solver to tackle much larger

problems.

Returning to fig. 6-13, there seems to be some performance gain up to 4 SPEs instead of three SPEs

as in the first revision of the solver in fig. 6-11. This speed up comes from a speed up in the synchro-

nization of the SPEs afforded by the move from IBM SDK 1.1 to IBM SDK 2.1. IBM SDK 2.1 allows

programmers to map certain SPE system registers to global memory. This allows other SPEs and the

PPE to write to these registers via pointers to those registers. IBM SDK 1.1, did not have this function-

ality. Instead users called IBM-provided libraries that allowed access to these registers. The internal

operation of these libraries was unknown, however, the library calls are more than 20 times slower than

using pointers. Unfortunately, the mapping of the system registers did not work completely properly, so

a hybrid combination of using IBM's library calls and pointers was adopted. This lead to the improved

performance, but not to the level that one might hope. The mapping of system registers problem has

been fixed in the new IBM SDK 3.0.

Second, performance appears to only gradually decrease with added SPEs beyond 4 SPEs. This seems

to indicate that performance is not being limited by the computation or by the synchronization of the

SPEs. Instead, at this point, the performance is probably being dominated by waiting for the put to

memory that occurs at the end of each row, Algorithm 4.15.

Third, there seems to be two different distinct levels of performance based on the half band size of

the matrix. The higher level of performance contains matrices with half band size of 282, 210 and 138.

The lower level of performance contains matrices of half band size 246, 174, 102, and 66. The cause of

this anomaly can be understood by looking at the data from a different angle. Instead of plotting curves

where the half band size if fixed and the number of SPEs varies, in fig. 6-14 we plot curves where the

191

number of SPEs is fixed and the half band size is allowed to vary.

Gflops as a function of SPEs and half band size for Rev 2 of out of core LU solver N = 33500
0.7

-0-16 SPE
-15 SPE
-14 SPE

0.6 -13 SPE
12 SPE

-11 SPE
0.5 10SPE

-9 SPEAL
-8 SPE

0.4 -7 SPE
SI. -6 SPE

o -......... -5 SPE
. A-4 SPE

0.3 -O-3 SPE
-- 2 SPE
-- 1 SPE -

0 .2 " " ' -"-... " "........ ".......

=-.5 _ - "---•---
°

0.1- -- -m

%0 100 150 200 250 300
Half Band Size In doubles

Figure 6-14. Plotting the same data as in fig. 6-13 against hbS shows distinct spikes in performance
for hbS = 138, 210, and 282.

As was seen in fig. 6-13, fig. 6-14 also shows some speed up for the first 4 SPEs, but there is none

for adding more than four SPEs. Also, one can now see that there is, in general, a slight increase in

performance for an increase in the band size of the matrix.

However, the most prominent feature of the plot are the huge spikes of performance at half band sizes

138, 210, and 282. Since waiting for the put to memory, Algorithm 4.15, is theorized to be the biggest

time constraint, we will try to find a reason as to why the writes to memory of those sizes would be any

faster than those of the other sizes. One possibility is outlined at [52, p.456] where it reads, "Transfers

of less than one cache line (128 bytes) should be used sparingly; excessive use of short transfers wastes

bus and memory bandwidth."

Now, the total bytes transfered is not the half band size times the size of a double. Instead, it is the full

192

/ .
fI 0A l···8~ ···

band size plus the two extra datum for the residual and the line number. The formula for the full number

of bytes transfered is: bytes transfered per row = (2*hbS - 4)*sizeof(double).

Out of Core Solver Rev 2 performance depends greatly on transfer size
U.7

0.6

0.5

0.4

0.3

0.2

0.1

I
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Band byte size in multiples of 128

Figure 6-15. The spikes in performance occur at multiples of the cache line size of 128 bytes.

Fig. 6-15 shows the same data as fig. 6-14 except for the x axis has been changed to reflect the data

transfered in multiples of 128 bytes. The performance peaks occur at exactly a multiple of the cache

line size of 128 bytes. There is even a slight upturn in performance at 8x128 bytes. This is 1024 bytes

and that corresponds to the measured start of the bandwidth limited region of performance in fig. 6-3.

This seems to strengthen the idea that the put and not SPE synchronization time is what is delaying the

performance.

If this were the case, though, why isn't there an obvious spike in performance for the out of core solver

rev 1 on the 3264 matrix as each of its rows is 204x the size of the cache line? The reason is probably

that the performance of the out of core solver revision 1 is not limited by the memory put. Instead, it

193

-0-16SPE
*4 SPE
*- 3SPE
-* -2 SPE ...
-0-1SPE . *

p0
............. . ,~··

q* ~ 'I

I 9

* r * 'S~ :...-...;.... .i:·r~·:\ ····i

* *.~i '.,.

I: I I i I~i. i.....:.....i· · · · ·· · ·

is limited by the extremely slow SPE synchronization step. This is indicated by the dramatic drop in

performance seen when going from 3 SPEs to 4 and 5 SPEs.

Finally, even at its best performance level, the second revision does not come close-to the performance

of the first revision. This is most likely due to the fact that in rev 1, the data was brought into an SPE

and there was no adjusting necessary to get it to align properly. However, rev 2 requires quite a bit of

adjustment. This adjustment involves some divides and some modulos, so the operation is slow, thus

slowing the computation down.

194

6.3.7 inCore LU Solver

The out of core LU solvers showed that performance can be very dependent on memory access latency.

Fig. 6-14 seemed to indicate that memory access latency could have a greater effect on performance

than the addition of more processors. Therefore, the inCore algorithm tries to completely hide memory

accesses with computation.

Designing an algorithm that successfully overlaps memory access with computation requires a good

understanding of the data flow.

It is known that the working blocks are small in size, so start by assuming that there is a processor that

can store an entire working block in its on-chip high-speed memory. The rest of the matrix, however,

must reside in some off chip memory.

Next, look at how the working block evolves with time. Starting with Fig. 6-16, it can be seen that the

difference between the first working block and the second working block only happens around the edge

of the working block. The top row and the bottom row are different. Also, the left column and right

column are different, but most of the data remains the same. Therefore, there is no reason to send that

data out to memory and then bring it back onto the core as was required by the out of core algorithm.

Because the top row is the base row, it does not have elimination performed on it. A copy of it must

stay on chip while elimination is being performed from it, but a copy of it can also be transmitted to main

memory while the computation proceeds. Moving the top row of the present working block out to main

memory and moving the bottom row of the next working block in from main memory can happen in

parallel with the data computation as neither gets operated on during elimination under the first working

block.

Nothing needs to be done with the left column as that column is guaranteed to be all zeros, so the trick

195

First Base Row M
I ._arnnd Ra ROw_ Rnw

-4

FR
XI

N I1

I
..,, Data in Second Work Block

but not in First Work Block

(a) (b)

Figure 6-16. The basic idea of the inCore algorithm.

is how to get the right column onto the processor. Remember, the data is represented as contiguous rows

in memory. Therefore, data elements of columns are strided across memory. According to latency curve

fig.6-3(b), getting one double (eight bytes) would be prohibitively time consuming, so there has to be a

better way to get the column data into SPE local store. The answer is instead of just storing the half-band

size of data needed for immediate computation, the whole band is stored in on processor memory. This

brings the column on chip for free since there is plenty of bandwidth for bringing on the full band size of

data instead of just the half-band of data that has been shown for purposes of explaining the algorithm.

Therefore, the actual situation is more like that shown in fig. 6-17. The tradeoff is that we cannot store

as large a working area as we would if we only stored the half row.

The total number of computes and memory accesses can now be tabulated as was done for the out of

core algorithm. The tabulation is summarized in table 6.2. In the table we see that the compute/memory

196

TO XDR

First Base Row liv(

r --------- -----I
First Work Block i

r "
Second Work Block.

Eliminated/
Column

-- · · ~

TO XDR

I' N .I

Figure 6-17. The inCore solver actually stored the complete band of data in local memory.

access ratio for the inCore algorithm is hbS 2 as opposed to the out of core algorithm's hbS. This indicates

that, for a large enough problem, the perturbations in memory performance should be negligible when

compared to overall performance.

Furthermore, there are only 2N memory accesses for the inCore algorithm as opposed to the 2N (hbS)

needed by the out of core algorithm. The hbS difference between the two total memory accesses can be

a huge difference. Putting numbers to it for effect, for a 33500x33500 matrix with half-band size of 210

and a band size of 416, almost 43.6GB of data would be moved by the out of core algorithm. In the case

of the inCore algorithm, a 33500x33500 matrix with half-band size of 210 and a band size of 416 would

only require 0.207GB of data would have to be moved.

SPE level parallelization is achieved in the inCore algorithm by assigning blocks of rows to each of

the SPEs, fig.6-18(a). Parallelization requires the additional memory access of transferring of the next

base row to all of the other SPEs, as shown in fig. 6-18.

197

inCore Algorithm Operation Count

Compute Operations
Multiplies N (hbS 2)

Subtracts N (hbS 2)
Total Compute 2N (hbS 2)

Memory Access Operations
Memory Reads N
Memory Writes N

Total Memory Access 2N
Total Bytes Moved 2N x b x sizeof(double)

Compute to Memory Access Ratio
Compute/Memory hbS 2

Table 6.2. Performance of the inCore algorithm.

XDR

7 First Wo Block (FWB)
•j Second Wo lock (SWB)
- FWB Base Ro
= SWB Base Row
= SWB Last Row

I| N '

(a) Rows are assigned by blocks to the SPEs.

T-r rfh-r

ToXD
from
speO V

From '
XDR
to

spe0

- Firs
-i Sec
m FWI
= SWI
= SWI
II FWB

(b) The SPE that sends
the new bottom row.

the base row to memory receives

Figure 6-18. The basic idea of the inCore algorithm.

198

TO XDR.v °

// spuid: numerical id of SPE

// jnhpc: number of rows of band below and including the diagonal in

a given column

// hbS: number of columns to the right of the diagonal in a given

column
// nSR: number of rows stored in an SPE's Local Store

// lastRowOwner: spuid of the SPE that will perform elimination on

the last row of the matrix

// pbr: present base row

// per: present elimination row

// brPtr: pointer to pbr

// nxtbrPtr: pointer to the next base row

// myRows: Array in SPE LS of rows presently being operated on

// brArray: Array containing pbr and nxtbrPtr

// myMinRow: minimum row number of rows in myRows

// myMaxRow: maximum row number of rows in myRows

// pbrOwner: spuji of SPE that is in charge of sending out pbr after

and elimination set

// myRowsElimStartIndex: index in myRows of the first elimination row

for the present base row

// myRowsElimRowIndex: index in myRows of the present elimination row

// J: Jacobian stored in main memory

// pbrPvt: value of the pivot element in the pbr

// perPvt: index of the pivot element in the per

// invpbr_factor: 1/pbrPvt

// adjFact: number used to multiply pbr value in elimination step

// numSPE: number of SPE presently running algorithm

// lastBaseRow: row number of last base row

// numVars: number of physical variables in each volume

// numRows: number of rows in J

Algorithm 5: Definitions of variables used in Algorithms 6 and 7

199

Result: Forward elimination is performed on the Jacobian and the residual vector
6.1 pbr -- 0;
6.2 nSR (- computenumStoredRows ();

// e:.ch :nitial blork of nSR rows yr.m main memory

6.3 myRows --- inDMA(J[spuid*nSR:(spud,, + 1)*nSR- 1, :]);
6.4 brArray[0] -- inDMA(J[0]);

/ foregin Computotatiodo
.5 forpbr-0toN-1do

// Ass:.ign brPtr and nxtbrPtr poin:rs dependci.g on pbr

brPtr -- brArray[pbr%2];
nxtbrPtr -- brArray[(pbr + 1)%2];
// Assi gn myMinRow and myMaxRow valu.es
myMinRow -- myRows[01;
myMaxRow -- myRows[(nSR - 1)];
/ / ,,&As-ign pbrOwner, put pbr i, nto main memory, get row hbS rows

ahead
pbrOwner --- 0
if pbr > myMinRow && pbr < myMaxRow then

pbrOwner t 1
J[pbr] 4- outDMA(brPtr);
if pbr < las tBaseRow then

I myRows[(pbr - myMinRow)%nSR] --- inDMA(J[pbr + hbSJ)
end

end
// Perform elimination on myRows

El iminationOnRows (brPt r,myRows,pbr,nxtbr Ptr)

wait-f or.DMAs ();
// Synchronize SPEs via the PPE
notify..PPE ();
wai tf or.PPE ();

6.22 end

Algorithm 6: In Core algorithm forward elimination procedure.

200

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

Input: brP tr,myRows,pbr,nxtbr P t r
Result: Forward elimination is performed on the rows in myRows
// Compute inverse of pbrPvt

7.1 inv_pbr_factor -- 1\pbrPvt;

// Compute index into myRows of first row to do elimination on

7.2 if pbr - myMinRow > 0 then
7.3 1 myRowsElimStartIndex ~- pbr - myMinRow + 1;
7.4 else

7.5 1 myRowsElimStartIndex-- 0;
7.6 end

Perform elimination on rows stored in myRows

i - 0 to nSR - pbrOwner do
b 4- (myRowsElimStartIndex+ i)%nSR;

per 4- JacobianRowNumber(myRows[bl)
if per = numRows - 1 or per = pbr + j nhpc - pbr%numVars - 1 then

i -- nSR - pbrOwner + 1
end
if per < pbr + j nhpc - pbr%numVars then

// Find per column below pbrPvt

pec -- perPvt - (per - pbr)

adj Fact 4- myRows[b, pec] * inv_pbr_factor
// Perform Elimination on the Row

for j 4- 0 to hbS - pbr%numVars do

myRows[b, pec + j] -- myRows[b, pec + j] - adj Fact * brPtr[pbrPvt + j]

end
// Broadcast nxtbrPtr to all SPEs

if per = pbr + 1 then
for k - 0 to numSPE- I do

spuid[brArray((pbr + 1)%2)] -- put(myRows[bj)
end

end
end

Algorithm 7: The Elimination Procedure for the In Core Algorithm.

201

//

for7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

7.20

7.21

7.22

7.23

7.24

7.25 end
,

6.3.8 inCore Accuracy

The solution vectors x computed on the CBE were compared to those computed on Matlab for the

first 1506 Newton steps. Matlab computed XMatlab by:

XMatlab - JCBE\rCBE (6.2)

Where JCBE and rCBE were the Jacobian and residuals produced by our 2-D battery simulation on

the CBE.

(XCBE - XMatlab) (6.3)
XCBE

The max percent differences and average percent differences are plotted in fig. 6-19(a) and 6-19(b).

Fig. 6-19(a) shows a number of large spikes, however, most solutions are similar between those of

Matlab and the inCore solver. Since Matlab partial pivots and our solver does not partial pivot, this

seems to indicate that partial pivoting is not really required for this system. The matrix was tested for

diagonal dominance, but it was found to not be diagonally dominant.

Furthermore, recalling that our solvers do not partial pivot, the infrequency of large percent differences

indicates that the overhead of partial pivoting is not necessary for this system. Instead of doing all the

overhead required by partial pivoting, an occasional extra Newton iteration is accepted.

202

5WOO pNewvton Stop

(a) Max percent difference between Matlab com-
puted x and that computed on the Cell Broadband
Engine.

(b) Mean percent difference between Matlab com-
puted x and that computed on the Cell Broadband
Engine.

Figure 6-19.

203

MxlrIm of PeRrcet Di ý for first 1506 Newto steps
U.I

"W~ step

n
r IAL

i

iI"L o•J 1 P

6.3.9 inCore Performance

Fig.6-20 shows the performance of the inCore solver vs the number of SPEs used to perform forward

elimination. The matrices used to test the performance of the inCore solver are the same matrices used

to test the performance of out of core solver revision 2 with the addition of a few larger matrices. The

larger matrices were not tested on out of core solver rev 2 simply because the tests were being conducted

on donated computer time. For review, the width N of the matrix was held approximately constant at

N r 33500 while the half band size hbS was varied from 66 all the way to 462.

It is immediately obvious from fig. 6-20 that the inCore solver represents a tremendous improvement

in performance over both of the out of core solvers. The largest matrix tested on out of core solver rev

2 had a half band size of 282 doubles. Out of core solver rev 2 achieved 0.56Gflops on this matrix. By

comparison, the inCore solver was able to achieve 2.6Gflops. This is a factor of about 4.6x improvement

in performance! By increasing the half band size to 462 doubles, a performance of 3.2Gflops was

obtained. This is 5.7x faster than possible with the out of core solvers!

The inCore solver performance is a strong function of problem size and number of SPEs used. Hold-

ing the problem size steady and adding SPEs decreases the compute time/SPE synchronization ratio. At

some point, the compute time becomes negligible, and the SPEs spend all their time waiting to synchro-

nize and waiting for memory accesses.

While the performance of the solver seems to be directly tied to the band size, the inCore algorithm

does not appear to have the same band size dependent performance spiking as was demonstrated by out

of core solver rev 2 in fig. 6-15. This is because most of the memory accesses are well hidden by the

inCore solver.

204

Gflops achieved by inCore solver for various band sizes and a matrix size of= 33500

-fl half band Size =462
-$-half band Size =408
-*-half band Size =354

3 -*- half band Size =282
-*-half band Size =210 ..
- -half band Size =138 -i -

25- -linear speed up half band Size =138
-N-half band Size =66 -
- -- linear speed up half band Size =66 ,

2 2
(0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of SPEs

Figure 6-20. The inCore algorithm achieves approximately 11% of theoretical 16 SPE processor per-

formance of 28Gflops.

205205

2

0 1.5

1

0.5

inCore performance does not vary greatly with matrix band size

8 9 10 11 12 13 14 15 16 17 1819 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Band byte size in multiples of 128

Figure 6-21. The inCore algorithm is much less susceptible to performance fluctuation due to matrix
band size than the out of core algorithm.

206

-m16 SPE
*4SPE
-*-3SPE
-0-2 SPE'"" ''"'"'
0-1 SPE -

Ur

OL

J~i.

-r -

*~ *r

-...
p p p p p p p p p p p p p j j j j j p I P P

3

'

6.4 Fault Tolerant Parallel Banded LU Algorithm

With Toshiba's announcement of a four SPE variant of the Cell Broadband Engine that it intends to

embed into its next generation television systems [64], one can see how today's multicore processors

will become tomorrow's embedded processors. One place where multicore processors will likely be

embedded in the future is in automotive applications. There are over six million new passenger cars

added to US roads every year [65]. Assuming the number of processor cores stays between four and

eight, if all of the cores from these machines were assembled into systems of 100,000+ cores, one could

make between 240 and 480 new 100,000+ core machines every year.

The automobile's harsh operating conditions will certainly lead to as many core failures as would be

experienced in the nice air conditioned homes in which most supercomputers live. That is to say that

if a 100,000+ core installed system can expect to experience a core failure every hour, then 100,000+

different embedded systems with multicore processors can expect to experience at least the same number

of core failures in the same amount of time. By our rough estimate, that would be somewhere around

360 cars that would fail in some way or another every hour. Therefore, as applications like drive by

wire, brake by wire, and monitoring of electrical systems in electric vehicles and hybrid electric vehicles

become increasingly common, fault tolerance in these environments will become increasingly important.

Another place where fault tolerant algorithms might be of interest are in aircraft and space applica-

tions. It has been well known for a long time that cosmic rays can "induce Soft Errors in integrated

circuits and breakdown of power devices. [66]" As transistors get smaller this effect will become more

significant. The issue of cosmic rays has become so important that Intel has just been granted two patents

for chip level devices that can detect strikes by cosmic rays [67, 68].

A strike by a cosmic ray is a very localized event and can knock out a single core on a multicore chip.

207

If the chip is in a spacecraft, it would be impossible to replace; therefore, it would be important for the

algorithm running on the chip to be fault tolerant so as to be able to continue operation.

More insidious than a core erasure failure would be if the cosmic ray simply created a soft error.

That is that it changed some data somehow. This problem can also be avoided by the use of the fault

tolerance method combined with a cosmic ray sensor like those recently patented by Intel. It might work

something like this, once a cosmic ray strike is detected, all data from the area of the strike is considered

faulty. The system declares the effected cores as faulty, and takes them off line. Then the cores are tested

for integrity and once they pass the tests, they are restarted. This process of removing a core and then

restarting it is the same as multitasking which is discussed in section 6.5

6.4.1 Fault Tolerant Algorithms

Langou and Dongarra [691 and Plank and Dongarra [70] have been working on fault tolerant algo-

rithms for installed systems for quite some time now. Langou [69] points out that as systems grow into

the hundreds of thousands of processor range, one can expect a processor failure almost hourly. His

fault tolerant algorithms correctly identify and cleverly implement solutions to these erasure failures for

single systems that contain large sets of interconnected cores and processors.

Langou's algorithms catch erasure errors and return the system to its effective running state within a

matter of moments. However, his systems require 2n extra cores for every n2 original cores [71]. In a

large scale system this makes sense in that as the number of processors goes to infinity the cost of not

using the 2n for computation goes to zero relative to the original n2 processors. On smaller systems,

however, the cost is tremendous. For example, on a 64 processor machine, 16 processors would have to

be dedicated to fault tolerance. This is 25% of the total system performance. Therefore, instead of having

208

a system where backup processors are waiting to operate when there is a fault, on smaller systems, it

might be more practical to have all functional processors working and upon a failure, redistribute the

load among the remaining working processors. This would allow the system to always operate at its

maximum albeit diminished performance.

6.4.2 Implementation

The synchronization step is the key to the mechanics of the fault tolerant algorithm. In the non-fault

tolerant implementation of the LU algorithm, the PPE counts the number of SPEs that checked in. When

the number of SPEs that have checked in equals the number of working SPEs, the PPE individually tells

each of the SPEs that they may begin working again.

In the fault tolerant implementation of the solver, not only does the PPE count the number of SPEs

that check in, but it also keeps track of which SPEs have checked in. If one or more of the SPEs fails to

check in within a give period of time, the algorithm declares those SPEs as failed, kills their threads, and

redistributes their load to the remaining working SPEs which then continue with the forward elimination.

While this sounds straight forward, the difficulty lies in the fact that the working SPEs store all the

rows they are presently working on in their local store. Therefore, if an SPE fails, all modifications that

have been done through elimination to those rows are lost.

Since the LU algorithm is being done "in place," the previous base rows needed for elimination have

been written over, so it is not possible to go back to the original matrix. Therefore, it is not possible to

restart the calculation without first recreating the Jacobian matrix.

There are two obvious solutions to this problem. The first solution is to keep a second copy of the

original Jacobian matrix and residual vector handy. This may seem like overkill, but if the matrix is

209

sparse and stored in sparse form, this might be an acceptable solution. However, if the Jacobian matrix

is large, it may not be practical to store a second copy in memory or on disk, which means this method

won't work.

A second solution is to use a form of checkpointing as suggested in [70] where periodic snapshots of

the matrix called checkpoints are stored in memory. This is a perfectly acceptable solution even though

it requires rolling back the calculation to the most recent checkpoint. By using the enormous bandwidth

of the CBE it is possible to implement continuous in place checkpointing. This eliminates the need to

repeat any calculations.

To implement continuous checkpointing, each SPE sends the row that it has just performed elimination

on out to main memory. This write to memory can be hidden by the elimination operation on the next

row. Furthermore, once elimination has been performed on a row, the row is tagged with the number of

the base row that has just been used to performed the elimination. This extra tag is called the ebr field

which is short of "eliminated by base row."

An example of this tagging and exporting process can be seen in fig. 6-22. This diagram shows 20

rows that have been divided among four SPEs. The present base row is row number 3. Rows with red

dots to their right are the rows that the owning SPE is presently performing elimination on. Rows with

arrows to their right are the rows that the SPE is presently writing back to XDR memory.

6.4.3 Anatomy of an SPE Failure

Figure 6-23 shows the anatomy of a single SPE failure. The elimination sweep begins with row zero

as the base row. All of the SPEs successfully complete elimination on their stored rows and successfully

write those rows back to XDR memory. While working on the next set of rows, spe2 fails and does

210

spe0

spel

spe2

spe3

spe0

Row Eliminating from Base Row 3
. Out to XDR

0 a Present
1 Elimination Row
2 ebr
3
4
5
6
7
8
9
10
11

12
13
14
15

16
17
18
19
f20

21
22

0

-0-@

@

$

Figure 6-22. In addition to the data movements necessary for the inCore LU algorithm, the fault

tolerant algorithm has each SPE send each row that it has completed elimination on to XDR system

memory. Further more, once an SPE completes elimination on a row, and just before sending that

row to XDR system memory, the SPE updates the row's ebr field.

211

3
3
3

2
2

3
3
3

2
3
3

2
2
3
3

SPEE

SPEI

SPE2

SPE3

SPEe

ebr
1

2
3
4
5
6

Reassign 7
Rows 8

10
11
12
13
14
15
16
17
18
19
20

Figure 6-23. This figure shows 20 rows divided among 4 SPEs. All SPEs successfully complete their
rows in the first work block. However, on the second work block, spe2 fails, does not complete
rows 13 and 14, and does not check in. Therefore, the algorithm redistributes spe2's rows among
the remaining 3 SPEs. These SPEs then restart computing from the beginning of the second work
block. Before operating on a row, each SPE checks that rows ebr to see if it is less than the pbr. If
the ebr is less than the pbr, elimination is performed. Otherwise, no operations are performed on
that row and the SPE continues on to the next row. Furthermore, the SPEs are renumbered so that
they always range from zero to numWorkingSPEs where numWorkingSPEs

not complete elimination on rows 13 and 14. Therefore, it does not update the ebr field for those

rows. The synchronization barrier detects this failure and redistributes spe2's rows among the three

remaining SPEs. It also reassigns names to the SPEs so that the SPEs are always numbered from zero

to 'NUMworkingSPEs'. This is done because there are for loops in the code that look from zero to a

max 'NUMworkingSPEs'. This small readjustment helps performance because the PPE only looks for

SPEs in the space of working SPEs and not in the space of all SPEs. Other implementations, say with

linked lists, might be able to perform the same functions without the renumbering, but these alternative

implementations have yet to be explored.

212

second base row 0
///////////////// 1

SPE1//////////////// 1

///////////////// 1 SPE////7//////////// 1/////////////'//// 1

0

0
///////////////// 1
////777////////// 1 SPE3
///////////////// 1
///////////////// 1 II
///////////////// 1 SPE 2
//////////////// 1

Continuing with the right hand side of Figure 6-23, the computation resumes from the base row at

which the fault occurred, which, in this example, is row 1. Each SPE would try to perform elimination

on all of its stored rows (except the base row). Since most of the row's ebr fields match that of the

present base row, no elimination is performed on those rows. Only rows 13 and 14 whose ebr field is

less than the present base row have elimination performed on them.

The addition of the ebr field seems to degrade performance by about 10% as compared to the non-fault

tolerant implementation of the algorithm. This is because each SPE always checks the ebr field before

performing elimination. This testing creates a conditional jump which, as pointed out in section 6.2, is

very hard on the SPE's performance. There are certainly ways to code around this problem, but as of

this writing, they have not been explored. Furthermore, it may be possible to do away with the ebr field

in future implementations.

6.4.4 Example, multiple single SPE failures

Figure 6-24 shows the fault tolerant algorithm in action. Here, 6 SPEs start working on a 4096x4096

matrix. Every 8th Newton step, an SPE fails when the LU sweep gets to base row 2118. Each time

the system detects a failure, it successfully redistributes the workload and continues the solve. During

the intervals of "Normal Computing", the system is collecting timing data and using that timing data to

calculate the mean and standard deviation of the total calculation time. An SPE is declared 'failed' when

it takes more than 6 standard deviations than the mean check-in time.

It can be noted that the final 2 SPE compute time of 0.81 seconds is not exactly three times that of

the original 6 SPE compute time of 0.3 seconds. This comes from the fact that the speedup of adding

four processors to the original two is not linear. This is, in part, due to the back solve being computed

213

Fault tolerant LU solver with multiple single SPE failures with 6 initial SPEs
1.j

1.2

1.1

1

0.9
U)

0 0.8

0.7

0.6

0.5

0.4

.

4 SPEs

.... 5 SPEs
6 SPE-s

AAAAAAA

0 . 10 15 20 25 30 35 40
Newton Iteration

Figure 6-24. This diagram shows that the fault tolerance built into the LU algorithm is capable of
handing multiple individual SPE failures.

exclusively on the PPE as it adds a fixed amount of time to the solve independent of the original number

of SPEs used.

The fault tolerance does not introduce additional error into the calculations, fig. 6-25. Again, four

individual SPE failures occur at different times. The failure times are marked by vertical dashed green

lines. The failures occur at time steps: 6,14,32, and 48. The data produced under fault conditions, shown

with red stars, exactly matches the data produced when no fault occurs.

214

2 SPEs.............................. • • 1 4,

32SPE s

No SPE Failures
Single SPE Failure

_______ · · · · · · ·

Verification of model accuracy in the presence of SPE faults

Time Step

Figure 6-25. This diagram shows that the fault tolerance built into the LU algorithm does not lead to
any numerical inaccuracies. SPE erasure failures at time steps 6, 14, 32, and 48.

215

0
o13.
0

a-

m

6.5 Preemptive/Cooperative multitasking environment

6.5.1 Introduction

Langou uses his fault tolerance scheme exclusively for fault tolerance. That leaves the problem of mul-

titasking. It is generally agreed that preemptive multitasking is the most costly form of context switching

for these multicore environments. The cost of swapping data in and out of cache many times a second as

is done in today's single core machines is too great. Instead, it is recommended that application-yielding

context switching be used [52, p.3 5 1]. But the problem with application yielding context switching,

also known as cooperative multitasking, is that sometimes certain applications don't yield. Therefore, a

method is needed to force cooperation while not context switching many times each second.

6.5.2 Multitasking via Fault Tolerance

Being able to dynamically redistribute the compute load among SPEs can be used as the basis for a

preemptive/cooperative multitasking environment for multicore systems. The multitasking environment

is preemptive in that a system scheduler can preempt any process running on any core at any time. The

multitasking environment is cooperative in that all processes are fault tolerant in the manner described in

the previous section and therefore can dynamically readjust themselves to a new number of cores without

disturbing the stability of the entire system, thereby cooperating with the system. The environment is

multitasking in that it can now truly run more than one process at any give point in time.

Presently, in large multiprocessor systems, once a process claims a certain number of processors or

cores, that process holds onto those cores until the process exits. The problem with this is that there is

no way to determine if a program will ever actually exit. This leads to a scheduling problem in that it

is very difficult to schedule core usage when it is impossible to determine when cores will be free. To

216

get around this problem, usually a limited number of cores less than the maximum number of cores are

allocated to a particular process. The remaining cores are kept in reserve just in case other users might

need the system in the future. Now, if the algorithms were fault tolerant, then the entire system could be

allocated to a particular process and cores could be reclaimed by a system scheduler from that process

as needed.

The way this works is as follows, an original process is started on all system cores. At some time in

the future, another process cames along and requests a certain number of cores. Even though all cores

are presently being used by the original process, the system scheduler can get some cores for the new

process by first creating erasure failures on some of the original process' cores. This will kick the first

process off that set of cores. The scheduler can then begin running the new process on the freed-up

cores. Since the original process is fault tolerant, it would detect the erasure faults and re-adjust itself to

the new number of cores and continue computing albeit at a slower pace.

Figure 6-26 shows the PPE reclaiming resources from a fault tolerant process. In this example, the

LU algorithm starts with all six available SPEs. At Newton step 6, while the system is performing

elimination from base row forty, the PPE kills four SPE threads. These four SPEs do not check in on

time, so the synchronization barrier redistributes the work between the remaining two SPEs. Those two

SPEs continue computation from base row forty and complete the solve.

6.6 Future Work

As stated earlier, the Gaussian elimination solvers presented here do not partial-pivot. It is well know

that if a matrix is diagonal dominant or if the matrix is symmetric positive definite, then partial pivoting

is never needed. Even if the matrix does not fit into one of those two special categories, sometimes

217

Fault tolerant LU decomposition, PPE initiates 4 simultaneous SPE failures

............ S P...... 6 S P E
*4 Failures
SSPE

.

. ...

........ .U .MU1.MUE MMMM8M0MM00M0000MM11 00

VVV9 10 15 20 25
Newton Iteration

30 35 40

Figure 6-26. This figure shows that the fault tolerant LU algorithm is capable of dealing with multiple
simulatneous SPE failures. Furthermore, the failures in this figure were caused by the PPE killing
four SPE threads.

partial pivoting is still not required. However, if it may be needed in other situations. Therefore, future

work will have to address and incorporate the issue of partial pivoting.

The second half of the multitasking environment, the process of dynamically creating threads and then

synchronizing those threads with the original process threads, is a bit more difficult, however, the basic

idea remains the same. Further work needs to be done before the results with that half of the multitasking

environment are released.

218

1.2

1.1

0.9

0.8

0.7

0.6

0.5

0.4

q

Chapter 7

Conclusions

This thesis has shown that the two level model presented in the introduction is a reasonable model

to start with when trying to incorporate a state-of-health metric into an embedded battery condition

monitoring system. Furthermore, it has shown that the physical phenomena that cause the uneven usage

of the electrodes are well understood and can be reproduced on a computer. It has shown that while the

computer simulations produce behavior like that of a battery, because of an inability to systematically

model the morphology of the electrode/electrolyte interface surface area and because the models are

poorly conditioned, one should not expect more than simple behavior out of the models. This, however,

does not mean that the models are without merit or use as they are, for the most part, solidly grounded

in the physics of the lead-acid cell. By manipulating battery parameters and seeing how those changes

effect the battery behavior, one can get a feel for what physical parameters are important for one's

application.

Finally, this thesis explored the computational side of battery modeling. In particular, it explored the

new Cell Broadband Engine. It showed that even though the new multicore processors make claims of

219

multi-Gflop performance, it is the way that the algorithm is implemented that finally determines how

much performance can be gotten out of the chip. It also showed that it is vital to try to take advantage

of the unique features of the new multicore processors when trying to program them, and it showed

how features that can be taken for granted on serial processors can no longer be taken for granted on

multicore machines. Instead, new techniques will have to be developed to tackle old problems.

The path for future work is obvious. Having developed a good understanding of the physics that drives

the two-level model, and having developed a good understanding of what kind of system we could expect

to implement that two-level model on, it would be interesting to actually develop the two-level model.

When implemented, however, the model would have to be somewhat different than just a two level

version of the 2-D model developed in this thesis as it would have to avoid the interfacial surface area

problem if it were to have any chance of being robust enough to be useful.

220

Appendix A

Two-volume Model Code

% James Geraci
% July 21st, 2004
% Single Cell Battery Model
% Complete Model Using Direct Method
% Updated March 28, 2006
% Updated May 24, 2006
% Used for Thesis Data April 30, 2008
tic
t= cputime;
% Cell Parameters
phires = 0;
c_res = 0.0049;

tnp = 0.72 % unitless transfer coefficient
N= 2;
D = le-2;%3.02e-5 % Diffusion Coefficient of Electrolyte cm^2/s

D = 3.02e-5 % Diffusion Coefficient of Electrolyte cm^2/s
%cD = 0;
Kappa = 0.79 % Siemens/cm
Upb_0 = -. 356 % Standard Pb Electrode Potential
Upbx_0O = 1.685 % Standard Pbx Electrode Potential
U_0 = Upbx0O - Upb_0O % Standard Cell Potential
F = 96487 % Coulomb/eq
T = 298 % Kelvin
R = 8.3143 % J/molK
I = 0.05 % Amps Drawn from the battery
dt = 0.1 % seconds Time Step size
Pb_c = 0.0049 % mol/cm^3 Initial Concentration in Pb area

221

Pbxc = 0.0049
i_Pb = le-2
iPbx = le-2
Ve = 45.0
Vo = 17.5

% mol/cm^3 Initial Concentration in Pbx area
%A/cm^2 exchange current density at Pb electrode
%A/cm^2 exchange current density at Pbx electrode
% cm^3/mol Molar Volume of Electrolyte
% cm^3/mol Molar Volume of Water

Upbx = Upbx_0O;% - (((3-2* tnp)*(R*T))/(N*F))*log(c_res);
Upb = Upb0O;% - (((1-2*tnp)*(R*T))/(N*F))*log(c_res);
U_eq = Upbx-Upb
duration = 10000;
offpoint = 110000;
margin = le-14;
% Dimensions of Cell
Pbdx = 0.03 %9cm
Pbdxsqrd = Pbdx*Pb_dx;
Pb dy = 10.0 % cm
Pbdys = 5.0 % cm
Pbdy_1 = Pb dy-Pbdys % cm
Pbdz = 7.5 %cm

Pbxdx = 0.03 % cm
Pbxdxsqrd = Pbx_dx*Pbx dx;
Pbxdy = 10.0 % cm
Pbxdys = 5.0 % cm
Pbxdy_l = Pb_dy-Pb_dy_s
Pbxdz = 7.5 % cm

% cm

Pbasl = 1.55/2
Pbals = 0.45/2
%Pbasl = 0.5
%Pbals = 0.5

Pbxals = 1.15/2
Pbxasl = 0.85/2
%Pbxals = 0.5
%Pbx_asl = 0.5

PbSO4 rho = 6.39
Pbxrho = 9.79
Pbrho = 11.34

% unitless
% unitless

% unitless
% unitless

% unitless
% unitless

% unitless
% unitless

% g/cm^3 PbSo4
%g/cm^3 Pb02

% g/cm^3 Pb

PbSO44MW = 303.2626 %g PbSo4
Pb_MW = 207.2 % g Pb
PbVf = (PbSO4_MW/PbSO4_rho - PbMW/Pb_rho)

222

PbSO4_MW = 303.2626 %g PbSo4
PbxMW = 239.1988 %g Pb02
Pbx_Vf = (PbSO4_MW/PbSO4_rho - Pbx_MW/Pbx_rho)

Pb_counter = 0;
Pbx_counter = 0;
Pb_scale = (1-2* tnp)/2;
Pbx scale = (3-2* tnp)/2;
olsscale = 1-2*tnp;

Pbphi_s = -. 356;
Pb_phi_l = 0;

Pbx_eps = 0.5;
Pb eps = 0.5;
Pbxphis = 1.685;
Pbxp'hil = 0;

Pbxepsmax = 0.65;
Pbxepsmin = 0.3;
Pbepsmax = 0.65;
Pbepsmin = 0.3;
PbAmax = 1/Pb_dy;
PbxAmax = 1/Pbx_dy;
PbAh = (i_Pb*PbAmax)/(F*c_res) % nnnn/cm^2
Pbx_Ah = (iPbx*PbxAmax)/(F*cres) % nnnn/cm^2

% Start Dynamic part of simluation

PbN_I = I/(F*Pb_dz*Pbdy_l);
Pbx_N._1 = I/(F*Pbx_dz*Pbx_dy_1);

Pbcv = Pbc;
Pbgsl = (Pb_asl*N*F)/(R*T);
Pbgls = (Pb_als*N*F)/(R*T);

Pbcv = Pbc;
Pbphi_lv = Pb_phil;
Pbphi_sv = Pb_phis;
PbNv = Pb_N_1;
Pbepsv = Pb_eps;

Pbx_cv = Pbx_c;

223

Pbxgsl = (Pbx_asl*N*F)/(R*T);
Pbx_gls = (Pbx_als*N*F)/(R*T);

Pbxcv = Pbx_c;
Pbxphilv = Pbx_phil;
Pbxphisv = Pbx_phi_s;
PbxNv = Pbx_N_1;
Pbx_epsv = Pbx_eps;
SumV = [1;
SumNf = [1;
SumL = [];

while Pbxcounter < duration & Pbx_c > 3e-3 & Pbx_c < 8e-3,
if I > 0

% Pbxa = 0;
% Pbx_b = 0;

Pbxa = 1;%;0.5;
Pbx_b = 0;
else

% Pbxa = 0;%0.5;
% Pbx_b = 0;

Pbx_a = 0.1;%0.5;
Pbx_b = 1;

end
Pbx_counter = Pbxcounter + 1;
Pbx_I = I/(F*Pbx_dx*Pbxdy*Pdybxdz);
Pbx_eps_dt = -(PbVf*Pbx_I)/2;
Pbxeps = Pbxeps + dt*Pbxepsdt;
Pbx_c = Pbxc + dt*(Pbx_c/Pbxeps)*Pbxeps_dt + (Pbxeps*D*dt*(c_res

- Pbx_c))/Pbx_dxsqrd - dt*Pbx_scale*Pbx I;

Pbx_N_1 = I/(F*Pbx_eps*Pbxdy*Pbx_dz);
A= 1;

% Pbx_phil = -(PbxNl*F*Pbxdx)/Kappa + phires - ols_scale ((R*T)/F)
*(c_res/Pbx_c-1);

Pbxphil = -(Pbx_N_1*F*Pbxdx)/Kappa + phires - ols_scale ((R*T)/F)
*(log(c_res)-log(Pbx_c));

Pbx_error = 1;
Pbxstep = 0.1;
while abs(Pbx_error) >= margin,

Pbxstep = Pbx_step *.999;
if Pbx_error >0

Pbx_phis = Pbx_phis - Pbxstep;
elseif Pbx_error < 0

Pbx_phis = Pbx_phis + Pbx_step;
end

224

Pbx_Nf = I/(F*Pbxdx*Pbxdy*Pbxdz);
A = -exp(Pbx_gls(Pbx phi_1-Pbx_phi_s + Upbx));
B = exp(Pbxgsl (Pbxphi_s-Pbx_phi_ - Upbx));

Pbx error = PbxNf + ((Pbx_eps-Pbxepsmin)/(Pbx_epsmax-Pbxepsmin)) ^

Pbxa ...
* ((Pbx_epsmax-Pbx_eps)/(Pbxepsmax - Pbx_epsmin)) ^ Pbx_b*Pbx_Ah*

Pbx_c*(A + B);
end

SumL = [SumL; Pbx_Ah*Pbxc*(A+B)];
SumNf = [SumNf; PbxNf];
SumV = [SumV; A+B];

Pbx_cv = [Pbx_cv Pbx-c];
Pbxphilv = [Pbxphilv Pbx_phi_l];

Pbx_phi_sv = [Pbx_phi_sv Pbx_phi_s];
Pbx_Nv = [Pbx_Nv Pbx_N_1];
Pbxepsv = [Pbx_epsv Pbxeps];

end

while Pbcounter < duration & Pb_c > 3e-3 & Pb_c < 8e-3,
if I > 0
Pba = 1;%0.5;
Pbb = 0;

% Pb_a = 0;
% Pbb = 0;
else
Pba = 0.1;
Pbb = 1;

% Pb_a = 0;
% Pb_b = 0;
end
Pb-counter = Pbcounter + 1;
PbI = I/(FPb_dx*Pb_dy*Pb_dz);
Pbeps_dt = -(Pb.Vf*Pb_I)/2;

Pbeps = Pb.eps + dt*Pb eps_dt;
Pbc = Pbc + dt*(Pbc/Pbeps)*Pbeps-dt +(Pb-eps e*Ddt*(c_res-Pb.c))

/Pb_dxsqrd + dt*Pbscale*PbI;

Pb_N_I = I/(F*Pb_eps*Pbdy*Pb_dz);

% Solve for phi_1 using OLS
% Pb-phil = (PbN_1*F*Pb-dx)/Kappa + phires + ols scale ((R*T)/F)

*(Pbc/c_res -1);
Pb-phil = (Pb.N_1*F*Pb_dx)/Kappa + phi_res + olsscale*((R*T)/F)*(

log(Pbc)-log(c_res));

Pberror = 1;

225

Pbstep = 0.1;
while abs(Pb_error) >= margin,

Pbstep = Pb_step 0.999;
if Pb_error < 0

Pb_phi_s = Pb_phi_s - Pb_step;
elseif Pb_error > 0

Pb_phi_s = Pbphi_s + Pbstep;
end

Pb_Nf = I/(F*Pbdx*Pb_dy*Pb_dz);%(Pbx_N_1)*(Pbx_dy_1)*Pbx_dz;
A = -exp(Pb_gls*(Pb_phi_1-Pb_phi_s+Upb));
B = exp(Pb_gsl*(Pb_phi_s-Pb phi_1-Upb));
Pb_error = Pb_Nf - ((Pb_eps-Pb_epsmin)/(Pb_epsmax-Pbepsmin))^Pba

*((Pbepsmax-Pbeps) /(Pb_epsmax-Pb_epsmin)) ̂ Pb_bPbAh*Pbc *(A
+ B);

end

Pb_cv = [Pb_cv Pb_c];
Pb_phi_lv = [Pb_phi_lv Pb_phi_l];

Pb_phi_sv = [Pb_phi_sv Pb_phis];
PbNv = [Pb.Nv PbNI];
Pb_epsv = [Pb_epsv Pb_eps];

end

TIMEUSED = cputime-t
timel = [0: dt:duration*dt];
time = [dt:dt:duration*dt];

figure (2)
plot(time ,PbNv(2: length (PbNv)))
titleString = 'Lead-Electrode ~Liquid-Flux ,Density .vs .. Time';
title (titleString);
xlabel ('Seconds')
grid on
zoom on
hold on
if I > 0
batteryprinter (strcat ('discharging ' , titleString));
else
batteryprinter(strcat ('charging ', titleString));
end
%print

figure (3)

226

plot(time , Pbphilv (2: length (Pb_philv)))
%plot(Pb_phi_lv v)
titleString = 'Lead-Electrode-Liquid-Potential vs.-Time';
title (titleString);
xlabel ('Seconds')
grid on
zoom on
hold on
if I > 0
batteryprinter (strcat (' discharging ' , titleString));
else
batteryprinter (strcat ('charging ' , titleString));
end
%print

figure (4)
plot(time , Pb_phisv (2: length (Pb_phisv)))
%plot(Pb phi_sv)
titleString = 'Lead-Electrode-Solid-Potential vs..-Time'
title (titleString);
xlabel('Seconds')
grid on
zoom on
hold on
if I > 0
batteryprinter(strcat('discharging ',titleString));
else
batteryprinter(strcat('charging ' ,titleString));
end
%print

figure (5)
Pboverpotential = Pb_phi_sv(2: length(Pbphisv)) - Pb_phi_lv(2: length(

Pb_.phi_lv));
plot (time , Pboverpotential)
%plot (Pb overpotential)
titleString = 'LeadElectrode Overpotential, vs .. Time';
title (titleString);
xlabel('Seconds')
grid on
zoom on
hold on
if I > 0
batteryprinter(strcat('discharging ' ,titleString));
else
batteryprinter(strcat('charging ', titleString));

227

end
%print

figure (6)
plot (time , Pbepsv (2: length (Pb_epsv)))
%plot (Pbdy_sv)
titleString = 'Lead-Electrode Porosity vs..-Time';
title (titleString);
xlabel ('Seconds')
grid on
zoom on
hold on
if I > 0
batteryprinter (strcat ('discharging ', titleString));
else
batteryprinter (strcat ('charging ' , titleString));
end
%print

figure (7)
plot(time , Pbcv(2: length(Pb_cv)), 'LineWidth ' ,4)
title(titleString , 'LineWidth' , 4, 'FontSize' , 22,
set (gca , 'LineWidth' , 4, 'FontSize' , 22 , 'FontWeig
%plot (Pb_cv)
titleString = 'Lead-Electrode, Concentration _vs..Ti
title (titleString);
xlabel (' Seconds ')
ylabel (' Concentration -of H_2SO_4-(mol/cm^3) ')
grid on
zoom on
hold on
if I > 0
ymin = 0.00488;
ymax = 0.0049;

'FontWeight' , 'b');
;ht' , 'b');

me';

else
ymin = 0.0049;
ymax = 0.00492;

end
v = axis();
v(3) = ymin;
v(4) = ymax;
axis (v);
y = [ymin:(ymax-ymin)/5: ymax];
p = 6;
set (gca , 'YTick' ,y, ' YTickLabel' ,{ num2str (y(1) ,p) ; num2str (y(2) ,p) ; num2str (y

(3) ,p); num2str(y(4) ,p); num2str(y(5) ,p); num2str(y(6) ,p)})

228

if I > 0
batteryprinter (strcat ('discharging ' , titleString));
else
batteryprinter (strcat ('charging ', titleString));
end
%print

figure (12)
plot(time ,Pbx_Nv(2: length(Pbx_Nv)))
titleString = 'Lead-Dioxide -Electrode -Liquid -Flux.Density -vs. Time';
title (titleString);
xlabel ('Seconds')
grid on
zoom on
hold on
if I > 0
batteryprinter(strcat (' discharging', titleString));
else
batteryprinter(strcat('charging ',titleString));
end
%print

figure (13)
plot(time, Pbx philv (2: length (Pbx philv)))
%plot (Pbxphilv)
titleString = 'Lead-Dioxide -Electrode -LiquidP otential -vs .. Time';
title (titleString);
xlabel ('Seconds')
grid on
zoom on
hold on
if I > 0
batteryprinter(strcat('discharging ', titleString));
else
batteryprinter(strcat('charging ',titleString));
end
%print

figure (14)
plot (time , Pbx_phi_sv (2: length (Pbx_phi_sv)))
%plot (Pbx.phi_sv)
titleStrin g = 'LeadDioxide Electrode - Solid-Potential,-vs .,Time';
title (titleString);
xlabel ('Seconds')
grid on
zoom on

229

hold on
if I > 0
batteryprinter(streat('discharging' , titleString));
else
batteryprinter(strcat ('charging ' , titleString));
end
%print

figure (15)
%Pbxoverpotential = Pbx_phi_sv (2: length (Pbxphisv)) - Pbx_philv (2: length

(Pbxphilv));
Pbxoverpotential = Pbx_phisv-Pbxphi_lv;
length (time)
length (Pbx overpotential)
plot (time , Pbx_overpotential (2: length (Pbx_overpotential)))
%plot (Pbx_overpotential);
titleString = 'Lead-Dioxide-Electrode Overpotential vs..Time'
title (titleString);
xlabel ('Seconds')
grid on
zoom on
hold on
if I > 0
batteryprinter(strcat('discharging ' ,titleString));
else
batteryprinter(strcat('charging ',titleString));
end
%print

figure (16)
plot(time , Pbx_epsv(2: length(Pbx epsv)))
%plot (Pbxdysv)
titleString = 'LeadDioxide-Electrode ~Porosityvs..Time'
title (titleString);
xlabel ('Seconds')
grid on
zoom on
hold on
if I > 0
batteryprinter(strcat ('discharging' , titleString));
else
batteryprinter (strcat ('charging ' , titleString));
end
%print
9C%
figure (17)
plot (time , Pbx cv (2: length (Pbxcv) , ' LineWidth ' ,4)

230

title(titleString , 'LineWidth' , 4, 'FontSize' , 22, 'FontWeight' , 'b');
set(gca , 'LineWidth' , 4, 'FontSize' , 22, 'FontWeight' , 'b');
%plot (Pbx cv)
titleString = 'Lead-Dioxide-Electrode Concentration vs..Time'
title (titleString);
xlabel ('Seconds ')
ylabel (' Concentration -of H_2SO_4.(mol/cm^3) ')
grid on
zoom on
hold on
vldx = axis();

if I > 0
ymin = 0.00488;
ymax = 0.0049;
else

ymin = 0.0049;
ymax = 0.00492;

end
vldx(3) = ymin;
vldx(4) = ymax;
axis (vldx);
y = [ymin:(ymax-ymin)/5:ymax];
p = 6;
set(gca , 'YTick' ,y, 'YTickLabel ' ,{ num2str(y(1) ,p); num2str(y(2) ,p); num2str(y

(3) ,p) ; num2str (y (4) ,p); num2str (y(5) ,p); num2str (y(6) ,p) })

if I > 0
batteryprinter(strcat ('discharging ', titleString));
else
batteryprinter (strcat ('charging ', titleString));
end
%print

cellpotential = Pbx_phisv (2: length (Pbx _phi sv)) -Pb_phi sv (2: length (
Pbxphisv));

figure (18)
plot (time, cellpotential , 'r' , 'LineWidth' , 4)
%plot (cellpotential)
title (titleString , 'LineWidth' , 4, 'FontSize' , 22, 'FontWeight' , 'b');
set(gca , 'LineWidth' , 4, 'FontSize' , 22 , 'FontWeight' , 'b');
titleString = 'Cell Potential .vs .,Time'
title (titleString);
ylabel (' Volts ')
xlabel ('Seconds')

231

grid
zoom
hold
if I

on
on
on
> 0

battery printer (strc at ('discharging ' , titleString)) ;
else
batteryprinter (strcat ('charging ', titleString));
end
%print

v = axis ()

%print
ymin = v(3) ;
ymax = v(4) ;
y = [ymin:(ymax-ymin)/5:ymax];
p = 8;
set (gca , 'YTick' ,y , 'YTickLabel ' , {num2str (y (1) ,p); num2str (y (2) ,p); num2str (y

(3) ,p); num2str (y (4) ,p); num2str (y (5) ,p); num2str (y(6) ,p)})

toc

232

Appendix B

2-D Model Setup Code

Listing B.1. StdAfx.h
/* @author James Geraci

// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently , but
// are changed infrequently
//

#ifndef _StdAfx_H
#define _StdAfxH

define WIN32_LEANAND-MEAN
Windows headers

#define UL 0
#define UR 1
#define LL 2
#define LR 3

// Exclude rarely-used stuff from

#define TOP 0
#define RIGHT 1
#define LEFT 2
#define BOITOM 3

#define qhpc 0
#define qphilc 1
#define qphisc 2

233

#define qprc 3
#define qvyc 4
#define qv xc 5

#define NUM_CVperPV 4

#include <libspe2 .h>
#include <pthread .h>
#include <time .h>
#include <stdio.h>
#include <libmisc .h>
//#include <tchar.h>
//#include <tchar.h>
#include <memory.h>
#include <malloc .h>
#include <math.h>
#include <assert.h>
//#include <emmintrin.h>
//#include "acml.h"
//#include "acml_mv . h"

#include "myGlobals .h"
#include "common.h"
//#include "ctdef.h"
//#include "mat.h"
//#include " matrix.h"
//#include "engine.h"
#include "matrixData .h"
//#include " mySolvers .h"

#include "electrodeChemData .h"
#include "ldxElectrodeChemData .h"
#include "ldElectrodeChemData .h"
#include "electrolyteElectrodeChemData .h"

#include "cellSizeData .h"
#include "volumeSpatialData .h"
#include "electrodeSizeData .h"
#include "volumeChemData. h"
#include "volumelConditions .h"
#include "PVIConditions. h"
#include "FV.h"
// TODO: reference additional headers your program requires here
#include "ldxElectrode .h"
#include "IdElectrode .h"
#include "Electrolyte.h"

234

#include "CV.h"
#include "ULCV.h"
#include "URCV.h"
#include "LLCV.h"
#include "LRCV.h"

#include "PV.h"
//#include " leftPV. h"
//#include " rightPV.h"
#include "OLPV. h"
#include "ORPV.h"
#include "OLULPV.h"
#include "UPV.h"
#include "OLLLPV.h"
#include "ORURPV. h"
#include "ORLRPV. h"

#include "BPV.h"
#endif

235

Listing B.2. StdAfx.cpp
// stdafx. cpp : source file that includes just the standard includes
// FVbatterModel.pch will be the pre-compiled header
// stdafx. obj will contain the pre-compiled type information

#include "StdAfx .h"

// TODO: reference any additional headers you need in STDAFX.H
// and not in this file
// left over from Windows world

236

Listing B.3. Electrode.h
/* @author James Geraci

1/

i fn d e f _ELECTRODEMl
#define _ELECTRODEH
#include "matrixData .h"
#include "FV.h"
#include "PV.h"
#include "cellSizeData .h"

class Electrode

{
public:

Electrode (void);
Electrode (char ,,FV** myFV, PV** myPV, matrixData , electrodeSizeData

* ,electrodeChemData , volumeChemData , volumelConditions ,
PVIConditions);

public:
virtual ~Electrode (void);

FV* returnLeftFVptr (void);
FV* returnRightFVptr (void);

protected :
cellSizeData * mycsData;
int index;

double myDx;
double myeps;
double mydx;
int numFVColumns;
int numFVRows;
int numFVZrows;

int numPVColumns;
int numPVRows;
int numPVZrows;

double xWidth;
double yHeight;
double zDepth;

double FVvdx;
double FVvdy;
double FVvdz;

double PVvdx;

237

double PVvdy;
double PVvdz;

int presFVColumn;
int presFVRow;

int presPVColumn;
int presPVRow;

int numFVVolumes;
int numPVVolumes;

int FVstartColumn;
int PVstartColumn;

matrixData * myData;
volumeSpatialData** vsData;
volumeSpatialData** PVvsData;
electrodeSizeData * myeData;
electrodeChemData myelectrodeChemData;
volumeChemData myvCData;
volumelConditions myiData;
PVIConditions mypviData;
FV •* myFv;
PV * myPv;

private:
void makeLeftElectrode (FV**,PV**);
void makeRightElectrode (FV**,PV**);
void makeElectrolyte(FV**,PV**);

#endif

238

Listing B.4. Electrode.cpp

@author James Geraci

Sets up the battery Cell by creating e d

* making each electrode away of the other electrodes.

#include "StdAfx .h"
#include "Electrode .h"
#include <iostream>

Electrode ::Electrode (void)

{

Electrode ::Electrode (char* pos , FV** myFv, PV** myPv, matrixData * myMatrix
electrodeSizeData * eData,

electrodeChemData myChem,
volumeChemData myVol,
volumelConditions iData
PVIConditions pviData)

myData = myMatrix;
myeData = eData;
myelectrodeChemData = myChem;
myvCData = myVol;
myiData = iData;
mypviData = pviData;

mycsData = eData->mycsData;
numFVColumns = eData->getnumFVColumns () ;
numFVRows = eData->getnumFVRows() ;
numFVZrows = eData->getnumFVZrows ();

numFVVolumes = numFVColumns numFVRows*numFVZrows;

numPVColumns = eData->getnumPVColumns () ;
numPVRows = eData->getnumPVRows() ;
numPVZrows = eData->getnumPVZrows ();

numPVVolumes = numPVColumns numPVRows*numPVZrows;

yHeight = eData->getyHeight();
xWidth = eData->getxWidth();
zDepth = eData->getzDepth();

239

FVvdx = (double) xWidth/numFVColumns;
FVvdy = (double) yHeight/numFVRows;
FVvdz = (double) zDepth/numFVZrows;

PVvdx = (double) xWidth/numFVColumns;
PVvdy = (double) yHeight /numFVRows;
PVvdz = (double) zDepth/numFVZrows;

FVstartColumn = myeData->getFVstartColumn();
PVstartColumn = myeData->getPVstartColumn();

try{
vsData = (volumeSpatialData**) new char [numFVVolumes*

sizeof (volumeSpatialData ,)];
}

catch(std :: bad_alloc) {
std ::cout << "Couldn 't -Allocate _vsData -array !" << std ::endl;

exit(-1);
}

for(int counter = 0; counter < numFVVolumes; counter++)

{
vsData[counter] = NULL;

index =0;
presFVColumn = 0;
presFVRow = 0;
while (presFVRow < numFVRows)
{

while (presFVColumn < numFVColumns)
{

try{
vsData[index] = new volumeSpatialData(

FVvdx, FVvdy, FVvdz, presFVColumn , presFVRow

,0);}
catch (std :: badalloc)

{
std ::cout << "Failed -to-allocate ,

volumeSpatialData ,Object .number," <<
index << std::endl;

exit(-1);

presFVColumn ++;
index ++;

240

}
presFVColumn = 0;
presFVRow ++;
}

if (! strcmp (pos ,"ldx"))

{
makeLeftElectrode (myFv, myPv) ;

else if(!strcmp(pos ,"Electrolyte"))
{

makeElectrolyte (myFv,myPv);
}
else if(!strcmp(pos,"ld"))
{

makeRightElectrode (myFv,myPv);
}

}

Electrode ::~Electrode (void)

{
for(int counter = 0; counter < numFVVolumes; counter++)
{

delete vsData [counter];
}
for(int counter = 0; counter < numPVVolumes; counter++)
{

delete PVvsData[counter] ;
}
delete [] vsData;
delete [] PVvsData;

}

void Electrode :: makeLeftElectrode (FV** myFv,PV** myPv){
index = FVstartColumn;
presFVRow = 0;
presFVColumn = FVstartColumn;

while (presFVRow < numFVRows)

{
while (presFVColumn < numFVColumns+FVstartColumn)

{
try{

int f = index -(presFVRow*(mycsData->getElectrolyteFVColumns ()
+ mycsData->getldFVColumns ()) +

241

FVstartColumn) ;
myFv[index] = new FV(vsData[f] , myData, myeData, &myvCData, &

myelectrodeChemData , & myiData);
f = f;

}
catch(std :: badalloc)

{
std ::cout << "Cannot-,allocate,-FVJnumber," << index << std ::

endl;
exit(-1);

}
presFVColumn ++;
index ++;

}
presFVColumn = FVstartColumn;
presFVRow ++;
index = index + mycsData->getElectrolyteFVColumns() + mycsData->

getldFVColumns () ;
}

int aa;
int baseIndex;
try{

PVvsData = (volumeSpatialData**) new char [numPVVolumes* sizeof(
volumeSpatialData)] ;

}
catch(std ::bad_alloc){

std ::cout << "Couldn' t Allocate _vsData-array !" << std ::endl;
exit(-1);

}

index = PVstartColumn;
presPVRow = 0;
presPVColumn = PVstartColumn;
while(presPVRow < numPVRows){

while (presPVColumn < numPVColumns+PVstartColumn) {
try{

PVvsData[index] = new volumeSpatialData(PVvdx,PVvdy,PVvdz,
presPVColumn , presPVRow , 0);

}
catch(std ::bad_alloc)

{
std :: cout << "Failed -to-allocate -volumeSpatialData -Object

.number," << index << std :: endl;
exit(-1);

}
presPVColumn ++;

242

index ++;

}
presPVRow ++;

presPVColumn = PVstartColumn;
}

// Now initialize the Property Volumes
// Make the top Row
index = PVstartColumn;
presPVRow = 0;
presPVColumn = PVstartColumn;
baseIndex = numPVColumns+index -1;
try {

aa = index -(presPVRow*(mycsData->getElectrolytePVColumns ()
+ mycsData->getldPVColumns ()) + PVstartColumn);

myPv [index] = new OLULPV(PVvsData [aa] ,myData,&myvCData, myeData,&
mypviData);

}
catch(std ::bad_alloc)

{
std ::cout << "Out-ofMemory!" << std ::endl;
exit(-1);

}

index ++;
// Inner volumes

while(index < baseIndex)
{

try{
aa = index -(presPVRow *(mycsData->getElectrolytePVColumns ()

+ mycsData->getldPVColumns ()) + PVstartColumn

myPv[index] = new UPV(PVvsData[aa],myData,&myvCData ,myeData,&
mypviData);

catch(std ::badalloc)
{

std ::cout << "Out-ofMemory!" << std ::endl;
exit(-1);

index ++;

// Upper Right Most volume

243

try{
aa = index -(presPVRow*(mycsData->getElectrolytePVColumns()

+ mycsData->getldPVColumns ()) + PVstartColumn);
myPv[index] = new UPV(PVvsData [aa],myData,&myvCData, myeData,&mypviData

}
catch(std :: badalloc)

{
std ::cout << "Out-of -Memory!" << std ::endl;
exit(-1);

presPVRow ++;
presPVColumn = PVstartColumn;
index = presPVRow*(mycsData->getldxPVColumns () + mycsData->

getElectrolyteFVColumns () + mycsData->getldFVColumns ())
+ PVstartColumn;

/, **

/ ************************** Now make Middle Rows of PV Volumes

while (presPVRow != numPVRows -1) {
baseIndex = numPVColumns+index -1;
try {

aa = index -(presPVRow *(mycsData->getElectrolytePVColumns ()
+ mycsData->getldPVColumns ()) +

PVstartColumn) ;
myPv [index] = new OLPV(PVvsData[aa],myData,&myvCData, myeData,&

mypviData) ;

}
catch(std ::bad alloc)

{
std ::cout << "Out-of Memory!" << std ::endl;
exit(-1);

}

index ++;

// Inner volumes
while(index < baselndex)

{
try{

aa = index -(presPVRow*(mycsData->getElectrolytePVColumns ()
+ mycsData->getldPVColumns ())+

PVstartColumn) ;

244

myPv[index] = new PV(PVvsData[aa] ,myData,&myvCData, myeData
,&mypviData) ;

}
catch(std :: badalloc)

{
std :: cout << "Out-ofMemory!" << std ::endl;

exit(-1);

}
index ++;

}

// Right Most volume
try{

aa = index -(presPVRow*(mycsData->getElectrolytePVColumns ()
+ mycsData->getldPVColumns ()) +

PVstartColumn) ;
myPv[index] = new PV(PVvsData[aa] ,myData,&myvCData, myeData,&

mypviData);

}
catch(std : bad_alloc)

{
std :: cout << "Out-of.,Memory!" << std :: endl;
exit(-1);

}
presPVRow ++;
presPVColumn = PVstartColumn;
index = presPVRow(mycsData->getldxPVColumns () + mycsData->

getElectrolyteFVColumns () + mycsData->getldFVColumns ())
+ PVstartColumn;

}

/************************** Now make Bottom Row of PV Volumes
*********************************** */

baselndex = numPVColumns+index -1;
presPVColumn = PVstartColumn;
try{

aa = index -(presPVRow*(mycsData->getElectrolytePVColumns ()
+ mycsData->getldPVColumns ()) +

PVstartColumn) ;
myPv[index] = new OLLLPV(PVvsData[aa] ,myData,&myvCData, myeData,&

mypviData) ;
}

245

catch (std :: bad alloc)

{
std ::cout << "Out-of Memory!" << std ::endl;
exit(-1);

index ++;
// Lower volumes

while(index < baselndex)

{
try{

aa = index -(presPVRow*(mycsData->
getElectrolytePVColumns ()

+ mycsData->getldPVColumns ()
) + PVstartColumn);

myPv[index] = new BPV(PVvsData[aa],myData,&
myvCData, myeData ,&mypviData) ;

}
catch (std :: bad_alloc)

{
std ::cout << "Out-of-Memory!" << std ::endl;
exit(-1);

}
index ++;

}

// Lower Right Most volume
try{

aa = index -(presPVRow *(mycsData->getElectrolytePVColumns()
+ mycsData->getldPVColumns ()) +

PVstartColumn) ;

myPv[index] = new BPV(PVvsData[aa], myData,&myvCData, myeData,&
mypviData) ;

}
catch (std :: bad_alloc)

{
std ::cout << "Out-ofMemory!" << std ::endl;
exit(-1);

}
presPVRow ++;
presPVColumn = PVstartColumn;
index = presPVRow*(mycsData->getldxPVColumns () + mycsData->

getElectrolyteFVColumns() + mycsData->getldFVColumns ())
+ PVstartColumn;

return;

246

void Electrode :: makeRightElectrode (FV** myFv,PV** myPv){
index = FVstartColumn;
presFVRow = 0;

presFVColumn = FVstartColumn;

while (presFVRow < numFVRows)

{
while (presFVColumn < numFVColumns+FVstartColumn)

{
try(

int f = index -(presFVRow*(mycsData->
getElectrolyteFVColumns()

+ mycsData->getldxFVColumns ())
+ FVstartColumn);

myFv[index] = new FV(vsData[f], myData, myeData, &
myvCData, & myelectrodeChemData , & myiData);

f =f;
}

catch (std :: bad_alloc)
{

std ::cout << "CannotLallocateFVnumber." <<
index << std :: endl;

exit(-1);

}
presFVColumn ++;
index ++;

}
presFVColumn = FVstartColumn;
presFVRow ++;
index = index + mycsData->getElectrolyteFVColumns() + mycsData

->getldxFVColumns () ;
}

int aa;
int baseIndex;
try{

PVvsData = (volumeSpatialData**) new char [numPVVolumes*sizeof(
volumeSpatialData)];

catch(std :: badalloc){
std :: cout << "Couldn' tAllocate -vsData-array !" << std :: endl;
exit(-1);

}

index = 0;
presPVRow = 0;

247

presPVColumn = PVstartColumn
while (presPVRow < numPVRows) {

while (presPVColumn < numPVColumns+PVstartColumn) {
try {

PVvsData[index] = new volumeSpatialData (PVvdx ,PVvdy ,PVvdz,
presPVColumn, presPVRow ,0);

}
catch(std ::bad_alloc)

{
std ::cout << "Failed-to allocate volumeSpatialData Object,

number-" << index << std ::endl;
exit(-1);

}
presPVColumn ++;
index ++;

}
presPVRow ++;
presPVColumn = PVstartColumn;

}
// Now initialize the Property Volumes
// Make the top Row
index = PVstartColumn;
presPVRow = 0;
presPVColumn = PVstartColumn;
baselndex = numPVColumns+index -1;
try{

aa = index -(presPVRow*(mycsData->getElectrolytePVColumns ()
+ mycsData->getldxPVColumns ())+

PVstartColumn) ;
myPv [index] = new UPV(PVvsData [aa],myData,&myvCData ,myeData,&

mypviData);

}
catch (std :: bad_alloc)

{
std ::cout << "Out-of -Memory!" << std ::endl;
exit(-1);

}

index ++;
// Inner volumes
while(index < baseIndex)

{
try{

aa = index -(presPVRow *(mycsData->getElectrolytePVColumns ()
+ mycsData->getldxPVColumns ()) +

PVstartColumn) ;
myPv [index] = new UPV(PVvsData [aa], myData,&myvCData , myeData

248

,&mypviData);
}

catch(std :: badalloc)

{
std ::cout << "Out-of-Memory!" << std ::endl;
exit(-1);

index ++;

// Upper Right Most volume
try{

aa = index -(presPVRow*(mycsData->getElectrolytePVColumns()
+ mycsData->getldxPVColumns ())+

PVstartColumn) ;
myPv [index] = new ORURPV(PVvsData [aa] ,myData,&myvCData, myeData,&

mypviData);

}
catch(std ::badalloc)

{
std ::cout << "Out-of Memory!" << std ::endl;
exit(-1);

}
presPVRow ++;
presPVColumn = PVstartColumn;
index = presPVRow (mycsData->getldxPVColumns () + mycsData->

getElectrolyteFVColumns() + mycsData->getldFVColumns ())
+ PVstartColumn;

/************************** Now make Middle Rows of PV Volumes
********************************** */

while (presPVRow != numPVRows - 1) {
baseIndex = numPVColumns+index -1;

try{
aa = index -(presPVRow*(mycsData->getElectrolytePVColumns ()

+ mycsData->getldxPVColumns ())+
PVstartColumn) ;

myPv[index] = new PV(PVvsData[aa], myData,&myvCData, myeData,&
mypviData);

}
catch(std ::badalloc)
{

std ::cout << "Out-of-Memory!" << std ::endl;
exit(-1);

249

index++;

// Inner volumes
while(index < baselndex)

{
try {

aa = index -(presPVRow*(mycsData->
getElectrolytePVColumns ()

+ mycsData->getldxPVColumns ())+
PVstartColumn) ;

myPv[index] = new PV(PVvsData[aa], myData,&myvCData, myeData
,&mypviData);

}
catch(std ::bad alloc)
{
std ::cout << "Out-of-Memory!" << std ::endl;
exit(-1);

}
index ++;

}

// Right Most volume
try {

aa = index -(presPVRow*(mycsData->getElectrolytePVColumns ()
+ mycsData->getldxPVColumns ()) +

PVstartColumn) ;
myPv [index] = new ORPV(PVvsData [aa] ,myData,&myvCData,

myeData,&mypviData) ;

}
catch (std :: badalloc)

{
std ::cout << "Out-of Memory!" << std ::endl;
exit(-1);

presPVRow ++;
presPVColumn = PVstartColumn;
index = presPVRow (mycsData->getldxPVColumns () + mycsData->

getElectrolyteFVColumns() + mycsData->getldFVColumns ())
+ PVstartColumn;

}

** ************ ******************* *************************** * ************

/***** ******************** Now make Bottom Row of PV Volumes

250

baseIndex = numPVColumns+index -1;
presPVColumn = PVstartColumn;
try{

aa = index -(presPVRow*(mycsData->getElectrolytePVColumns ()
+ mycsData->getldxPVColumns ()) +

PVstartColumn) ;

myPv [index] = new BPV(PVvsData [aa] ,myData,&myvCData ,myeData,&
mypviData);

}
catch(std: badalloc)

std::cout << "Out-of Memory!" << std ::endl;
exit(-1);

}

index ++;
// Lower volumes
while(index < baselndex)
{

try{
aa = index -(presPVRow*(mycsData->

getElectrolytePVColumns ()
+ mycsData->getldxPVColumns ()) +

PVstartColumn) ;
myPv[index] = new BPV(PVvsData[aa],myData,&myvCData,

myeData,&mypviData) ;
}
catch(std ::bad_alloc)
{
std ::cout << "Out-of Memory!" << std ::endl;
exit(-1);
}
index ++;

// Lower Right Most volume
try{

aa = index -(presPVRow *(mycsData->getElectrolytePVColumns ()
+ mycsData->getldxPVColumns ())+

PVstartColumn) ;
myPv[index] = new ORLRPV(PVvsData[aa] ,myData,&myvCData,

myeData,&mypviData) ;

I

251

catch (std :: bad_alloc)

{
std ::cout << "Out-of Memory!" << std: endl;
exit(-1);

}
presPVRow ++;
presPVColumn = PVstartColumn;
index = presPVRow (mycsData->getldxPVColumns () + mycsData->

getElectrolyteFVColumns() + mycsData->getldFVColumns ())
+ PVstartColumn;

return;
}

void Electrode :: makeElectrolyte (FV** myFv,PV** myPv){
index = FVstartColumn;

presFVRow = 0;
presFVColumn = FVstartColumn;

while (presFVRow < numFVRows)

{
while (presFVColumn < numFVColumns+FVstartColumn)

{
try{

int f = index -(presFVRow*(mycsData->
getldxFVColumns ()

+ mycsData->getldFVColumns ())+
FVstartColumn) ;

myFv[index] = new FV(vsData[f] , myData, myeData, &
myvCData, & myelectrodeChemData , & myiData);

f= f;

}
catch(std ::badalloc)
{
std :: cout << "Cannot allocate _FV-numberJ" << index

<< std::endl;
exit(-1);

}
presFVColumn ++;
index ++;

}
presFVColumn = FVstartColumn;
presFVRow ++;
index = index + mycsData->getldxFVColumns () +

mycsData->getldFVColumns () ;
}

252

int aa;
int baselndex;
try{

PVvsData = (volumeSpatialData **) new char [numPVVolumes*
sizeof (volumeSpatialData)] ;

}
catch(std ::badalloc){

std ::cout << "Couldn ' t -Allocate -vsData-array " << std ::endl

exit(-1);

}

index = 0;
presPVRow = 0;
presPVColumn = PVstartColumn;
while (presPVRow < numPVRows) {

while (presPVColumn < numPVColumns+PVstartColumn) {
try {
PVvsData[index = new volumeSpatialData(PVvdx,PVvdy,PVvdz,

presPVColumn, presPVRow, 0) ;

}
catch(std :: bad_alloc)

{
std :: cout << "Failed to allocate.-volumeSpatialData-Object

number," << index << std::endl;
exit(-1);

}
presPVColumn ++;
index ++;
}

presPVRow ++;
presPVColumn = PVstartColumn;

}
// Now initialize the Property Volumes
// Make the top Row
index = PVstartColumn;
presPVRow = 0;
presPVColumn = PVstartColumn;
baselndex = numPVColumns+index -1;

// Inner volumes
while(index <= baseIndex)

{
try{

aa = index -(presPVRow*(mycsData->
getElectrolytePVColumns ()

+ mycsData->getldPVColumns ()) +

253

PVstartColumn) ;
myPv[index] = new UPV(PVvsData[aa],myData,&

myvCData, myeData ,& mypviData) ;

}
catch(std ::bad _alloc)

{
std ::cout << "Out-of Memory!" << std ::endl;
exit(-1);

I
index ++;

I

presPVRow ++;
presPVColumn = PVstartColumn;
index = presPVRow*(mycsData->getldxPVColumns () + mycsData->

getElectrolyteFVColumns () + mycsData->getldFVColumns ())
+ PVstartColumn;

/, ***

/************************** Now make Middle Rows of PV Volumes
********************************** ,/

/, **

while(presPVRow != numPVRows -1){
baseIndex = numPVColumns+index -1;

// Inner Volumes
while(index <= baseIndex)
{

try{
aa = index -(presPVRow*(mycsData->getldxPVColumns ()

+ mycsData->getldPVColumns ())+
PVstartColumn) ;

myPv[index] = new PV(PVvsData[aa],myData,&myvCData
,myeData,&mypviData);

}
catch(std : bad-alloc)

{
std ::cout << "Out-of.Memory!" << std ::endl;
exit(-1);

index ++;
}

presPVRow ++;
presPVColumn = PVstartColumn;
index = presPVRow* (mycsData->getldxPVColumns () + mycsData->

getElectrolyteFVColumns() + mycsData->getldFVColumns ())

254

+ PVstartColumn;

}

/************************** Now make Bottom Row of PV Volumes
*********************************** */

baselndex = numPVColumns+index -1;
presPVColumn = PVstartColumn;
while(index <= baseIndex)

{
try{

aa = index -(presPVRow*(mycsData->getldxPVColumns ()
+ mycsData->getldPVColumns ())+

PVstartColumn) ;
myPv[index] = new BPV(PVvsData[aa],myData,&

myvCData, myeData ,&mypviData);

}
catch(std ::bad_alloc)

{
std :: cout << "Out-ofMemory!" << std ::endl;
exit(-1);
}
index ++;

}
presPVRow ++;
presPVColumn = PVstartColumn;
index = presPVRow*(mycsData->getldxPVColumns () + mycsData->

getElectrolyteFVColumns () + mycsData->getldFVColumns ())
+ PVstartColumn;

return;
}

FV* Electrode :: returnLeftFVptr(void) {
return myFv[O];

}

FV* Electrode :: returnRightFVptr (void){
return myFv[numFVColumns -1];

}

Listing B.5. IdxElectrode.h
/* @author James Geraci

255

if nde f ILDXELECTRODEIH
de fine _LDXELECTRODEH
#include "Electrode .h"
#include "ldxElectrodeChemData .h"

class IdxElectrode :
public Electrode

{
public:

IdxElectrode(void);
ldxElectrode (FV**,PV**, matrixData *, electrodeSizeData) ;

public:
~ IdxElectrode (void);

private :
static const ldxElectrodeChemData myChem;
static const volumeChemData vCD;
static const volumelConditions vIC;
static const PVIConditions pviC;

;#enf

#endif

256

Listing B.6. IdxElectrode.cpp

* @author James Geraci
* object needed to create a lead dioxide electrode

#include "StdAfx .h"
#include "ldxElectrode .h"

//const IdxElectrodeChemData ldxElectrode :: myChem (0. 72/* tnp */, 0.0002/* inot

/*, -8.29187e-7/1mbScale */, 23.02 60/* myVf/) ;
const ldxElectrodeChemData ldxElectrode ::myChem(0.72/* tnp */,0.0002/* inot */

,-8.08399e-6/* mbScale */ ,23.0260/*myVf*/);
const volumeChemData ldxElectrode ::vCD(298/*T*/,100/*Amax*/,2800/*Qmax*/

,0.8/1soc / ,1/ eta/ ,1.5/N/als/ ,0.51/N/asl*I /,3.0e-5/1*Dx/,3.0e-5/1*Dy*I

80/* sigx */,80/* sigy /*,0.79/ KappaxI/

,0.79/1 Kappay */ ,1/ k / ,1/*m*/
,0.5 /*exm/ ,1.5 /*ex*/,1.685 /
phieq /,

4.9e-3/, hnot / ,0.35 /, epsnot /, 1/

mySign */, 10 e-2/ mux /, 10 e-2/*
mu_y*/,35/* betax */,35/* betay ,/)

const volumelConditions ldxElectrode ::vIC(0.35/*eps*/ ,0,0);
const PVIConditions ldxElectrode ::pviC (4.9e-3/*hp*/,0/* phi_1 /,1.685/* phis

*/, atmospheric pressure/*p*/,0/* v.y / ,0/* vx /) ;

ldxElectrode ::ldxElectrode (void)

{
)

ldxElectrode ::ldxElectrode (FV** myFV, PV** myPV, matrixData * myMatrix,
electrodeSizeData * eD): Electrode ("ldx",myFV,myPV, myMatrix , eD,myChem,vCD
,vIC, pviC)

{
}

ldxElectrode ::ldxElectrode(void)

{
}

257

Listing B.7. IdElectrode.h
/* @author James Geraci

ifn d e f _LDELECTRODEH
de fine LDELECTRODEJI
#include "Electrode .h"
#include "ldElectrodeChemData .h"

class IdElectrode :
public Electrode

{
public:

IdElectrode (void);
IdElectrode (FV**,PV** , matrixData •, electrodeSizeData) ;

public:
p IdElectrode (void);
static const IdElectrodeChemData myChem;
static const volumeChemData vCD;
static const volumelConditions vIC;
static const PVIConditions pviC;

#endif

258

Listing B.8. IdElectrode.cpp

* @author James Geraci
* needed to construct a

#include "StdAfx .h"
#include "IdElectrode .h"

lead electrode

const IdElectrodeChemData IdElectrode ::myChem(0.72,0.002,2.2801e-6,-29.1873
/* myVf */) ;

const volumeChemData IdElectrode ::vCD(298/* T/,100/*Amax*/,2471/*Qmax/ ,0.8
/, soc / ,1/* eta , 1.5/N/* als ,0.5/N/* asl */ ,3.0e-5/Dx*/ ,3.0e-5/*Dy*/,

48000/* sigx */,48000/* sigy */,0.79/*
Kappax /,0.79/ Kappay*/,1/ k */,1/
m*/,0.5 /*exm*/,1.5 /*ex*/,

-0.356/ phieq / ,4.9e-3/* hnot */ ,0.35/*

epsnot */,- 1/, mySign /, 10 e-2/, mux

*/, 10e-2/, mu_y */,
35/* beta_x*/,35/* beta_y /);

const volumelConditions IdElectrode ::vIC(0.35 ,0,0);
const PVIConditions IdElectrode :: pviC (4.9e-3/, hp*/,0/* phil */,-0.356/* phi_s

*/, atmospheric pressure/*p*/ ,0/* vy /,0/ v_x */) ;

IdElectrode :: IdElectrode (void)

IdElectrode : :
electrodeS
vIC, pviC)

IdElectrode (FV** myFV, PV** myPV, matrixData * myMatrix,
izeData * eD): Electrode ("ld",myFV,myPV, myMatrix ,eD,myChem,vCD,

IdElectrode ::~IdElectrode(void)
{

259

Listing B.9. PV.h
/* @author James Geraci

#ifndef _PV_H
#define _PV_H
#include "FV.h"
#include "CV.h"
#include "ULCV. h"
#include "URCV.h"
#include "LLCV.h"
#include "LRCV.h"

class PV

{
public:

PV(void);
PV(volumeSpatialData *, matrixData *,volumeChemData*, electrodeSizeData

* , PVIConditions) ;
public:

virtual ~PV(void);

void computeDerivatives (void);
void computeIValues (void);
void setupJacobian (void);
void setupFvPointers(FV** myFv);
void initializeSize (void) ;
void initializembScale (void) ;
void computeDiv (void);
void computeDivTwo(void);
void computeDensity (void);
void initializePressure (void) ;
void computeAVEpressures (void);
void computeAVEhps (void);
// double midCurrents [4];
//void resetmidCurrents (void);

protected :
CV** myCV;
matrixData * myMatrix;
double* fluxVptr;
double* divVptr;
double * divVtwoptr;
double * pVptr;
double * Vptr;
double** iVptr;
double** Jacobptr;

// Functions

260

void initializeMatrix (matrixData *);
void initializePosition (volumeSpatialData , matrixData ,

electrodeSizeData *) ;
void initializeOtherPositions (void);
// void initializeSize (volumeSpatialData*);

void setInitialConditions (PVIConditions *);
void initializeVolumeChem(volumeChemData*);
void initializeCVsizes (void);
void setMyVolume(double*);
void tellCVPVvolume(void);
void setupCVPressurePointers (void);
void setupCVConcentrationPointers (void);
void computeAVExPressures(void);
void computeAVEyPressures (void);
void computeAVEhpx (void);
void computeAVEhpy (void);

// 2d model
void setURFV(FV**,CV*);
void setULFV(FV**,CV*);
void setLLFV(FV**,CV*);
void setLRFV(FV**,CV) ;

void computelVmb (void);
virtual void computelVdoc(void);
void computelVek (void);
void computelVconteq (void);
void computeIVcomvy (void);
void computelVcomvx(void);

// Electrode Kinetics Jacobian Equations

void ekJ(void);
void ekJeps (void);
//void ekJhp(void);
void ekJhpz(void);
void ekJphisz(void);
void ekJphilz(void);

// Divergence of Current Jacobian Equations
void docJ(void);

void docJtphil (double);
void docJpphil (double) ;
void docJphil(double);
void docJnphil (double);
void docJbphil (double);
,/

261

docJthp (double);
docJphp (double);
docJhp (double);
docJnhp (double);
docJbhp (double);
docJphisz (void);
docJphilz (double);
docJhpz (double);

void
void
void
void
void
void
void
void

void
void
void
void
void

// M
void

aterial Balance
mbJ(void);

Jacobian Equations

void mbJhpz(void);
// void mbJthp(void);
// void mbJphp(void);
// void mbJhp(void);
// void mbJnhp(void);
// void mbJbhp(void);
// void mbJtnhp(void) ;
// void mbJtphp(void) ;
// void mbJbphp(void);
//void mbJbnhp(void);
// Continuity Equation Jacobian Equations
void conteqJ(void);
void conteqJv_x(void);

conteqJv_y
conteqJhp (
conteqJthp
conteqJbhp
conteqJnhp
conteqJphp

// Conservation of Momentum Y Jacobian
void comvyJ(void);
void comvyJv_y (void);
void comvyJhp(void);
void comvyJp(void);

Equations

// Conservation of Momentum X Jacobian Equations
void comvxJ(void);
void comv_xJvx(void);

262

docJtphis
docJpphis
docJphis (
docJnphis
docJbphis

(void
(void
void)
(void
(void

void
void
void
void
void
void

(void
void)
(void
(void
(void
(void

void comvxJhp(void);
void comv_xJp(void);

// Time Derivatives

double dhdt;
double setdhdt (void);

// Position information for Cell
int myColumn;
int myRow;
int myZrow;
int JRow;
int JRowBuffer;
int offset;
// Size Data
double mydx;
double mydy;
double mydz;

// Positioning Data
int rowLength;
int maxPvlndex;
int nextJRow;

// FV grid Information
int numFVColumns;
int numFVRows;

//int maxPvlndex;
int numPVColumns;
int numPVRows;
int numPVvolumes;
int dn;
int nv ;

// Used in Calculating Addresses
int prevV;
int presV;
int nextV;

int topV;
int lowerV;

// present volume 's properties
int hpc;
int phisc;
int philc;

263

int pc;
int v_yc;
int vxc;
// previous volume 's properties
int phpc;
int pphisc;
int pphilc;
int ppc;
int pvyc;
int pv_xc;
// next volume 's properties
int nhpc;
int nphisc;
int nphilc;
int npc;
int nv_yc;
int nvxc;
// top previous volume 's properties
int tphpc;
int tpphisc;
int tpphilc;
int tppc;
int tpv_yc;
int tpvxc;
// top next volume 's properties
int tnhpc;
int tnphisc;
int tnphilc;
int tnpc;
int tnv_yc;
int tnv_xc;
// top volume 's properties
int thpc;
int tphisc;
int tphilc;
int tpc;
int tvyc;
int tv xc;
// bottom previous volume 's properties
int bphpc;
int bpphisc;
int bpphilc;
int bppc;
int bpvyc;
int bpv_xc;

// bottom next volume 's properties
int bnhpc;

264

int bnphisc;
int bnphilc;
int bnpc;
int bnv_yc;
int bnvxc;

// lower volume 's properties
int bhpc;
int bphisc;
int bphilc;
int bpc;
int bv_yc;
int bv_xc;

// present volume 's properties for Jacobian Indexing

int jhpc;
int jphisc;
int jphilc;
int jpc;
int jv_yc;
int jvxc;

// previous volume 's properties for Jacobian Indexing

int jphpc;
int jpphisc;
int jpphilc;
int jppc;
int jpv_yc;
int jpvxc;

// next volume 's properties for Jacobian Indexing
int jnhpc;
int jnphisc;
int jnphilc;
int jnpc;
int jnv_yc;
int jnv_xc;

// top previous volume 's properties for Jacobian Indexing
int jtphpc;
int jtpphisc;
int jtpphilc;
int jtppc;
int jtpv_yc;
int jtpv_xc;

// top next volume 's properties for Jacobian Indexing
int jtnhpc;
int jtnphisc;
int jtnphilc;
int jtnpc;
int jtnv_yc;

265

int jtnv_xc;
// top volume's properties for Jacobian Indexing

int jthpc
int jtphisc;
int jtphilc;
int jtpc;
int jtvyc;
int jtvxc;

// lower previous volume 's properties for Jacobian Indexing
int jbphpc;
int jbpphisc ;
int jbpphilc;
int jbppc;
int jbpvyc;
int jbpvxc;

// lower next volume's properties for Jacobian Indexing
int jbnhpc;
int jbnphisc;
int jbnphilc;
int jbnpc;
int jbnvyc;
int jbnv_xc;

// lower volume's properties for Jacobian Indexing
int jbhpc;
int jbphisc;
int jbphilc;
int jbpc;
int jbvyc;
int jbvxc;

int divc ;
double phieq;
double mySign;
double hnot;
double mbScale;
double myVolume;
static const int philg = 1; // 1 = phil before phis
static const int phisg = 2; // 1 = phis before phil

#endif

266

Listing B.10. PV.cpp

" @author James Geraci
" creates a PV volume. These store the states : concentration, phil, phis

, & pressure
" and each PV contains 4 CVs

#include "StdAfx h"
#include "PV.h"
#include <iostream>
using namespace std;
PV: :PV(void)
{
}

PV: :PV(volumeSpatialData * sData , matrixData moD,
volumeChemData* vcData, electrodeSizeData * esData,
PVIConditions* pviC){

myCV = (CV**) new char [NUM_CVperPV*sizeof(CV*)];
myCV[UL] = new ULCV();
myCV[UR] = new URCV();
myCV[LL] = new LLCV();
myCV[LR] = new LRCV() ;

for(int index = 0; index < NUMCVperPV; index++){
myCV[index]-> setPosition (index);

}
initializeMatrix (mD);
initializePosition(sData ,mD, esData);
initializeOtherPositions ();
initializeVolumeChem(vcData);
setInitialConditions (pviC);
return;

}

PV:: PV(void)
{

for(int index = 0; index < NUM_CVperPV; index++){
delete myCV[index];

}
delete [] myCV;

}

void PV:: initializeMatrix(matrixData *mData)
{

267

myMatrix = mData;
fluxVptr = mData->myfluxV();
divVptr = mData->mydivV();
divVtwoptr = mData->mydivVtwo();
pVptr = mData->mypsV();
Vptr = mData->mysV();
iVptr = mData->myiV();
Jacobptr = mData->myJacobian();
numFVColumns = mData->myFVColumns() ;
numFVRows = mData->myFVRows () ;

for(int index = 0; index < NUMCVperPV; index++){
myCV[index]->fluxVptr = mData->myfluxV();
myCV[index]->pVptr = mData->mypsV();
myCV[index]->Vptr = mData->mysV();
myCV[index]->iVptr = mData->myiV();
myCV[index]->Jacobptr = mData->myJacobian ();
myCV[index]->numFVColumns = mData->myFVColumns () ;
myCV[index]->numFVRows = mData->myFVRows() ;
myCV[index]->avePressures_y = mData->myavePressures_y ();
myCV[index]->avePressures _x = mData->myavePressures_x ();
myCV[index]->AVEhpx = mData->myAVEhpx();
myCV[index]->AVEhpy = mData->myAVEhp_y();

return;
}

void PV:: initializePosition (volumeSpatialData *sData , matrixData * mData,
electrodeSizeData * eData)

jhpc = mData->myJhpc ();
myColumn = sData->getColumn();
myRow = sData->getRow();
myZrow = sData->getZrow ();
rowLength = mData->mysvLength ();
rowLength = mData->mysvLength ();
numPVColumns = mData->myPVColumns() ;
numPVvolumes = mData->myPVColumns () mData->myPVRows () mData->myPVZrows) ;
maxPvIndex = mData->myPVColumns () mData->myPVRows() ,*mData->myPVZrows () -1;

presV = /, eData->getP VstartColumn ()+ /myColumn + myRow*mData->myPVColumns
() ; //myColumn;

prevV = presV -1;
nextV = presV+1;
topV = presV - mData->myPVColumns() ;
lowerV = presV + mData->myPVColumns() ;

268

if (mode == 0)
JRow = presV;
nextJRow = numPVvolumes;

}else{
JRow = myVars*presV;
nextJRow = 1;

}

for(int index = 0; index < NUMCVperPV; index++){
// Cell Position Data Initialization
myCV[index]->myColumn = sData->getColumn();
myCV[index]->myRow = sData->getRow();
myCV[index]->myZrow = sData->getZrow();
myCV[index]->rowLength = mData->mysvLength () ;
myCV[index]->maxPvIndex = mData->myPVColumns () ,mData->myPVRows() emData

->myPVZrows () -1;

myCV[index]->presV = myColumn + myRow*mData->myPVColumns ();
myCV[index]->prevV = presV-1;
myCV[index]->nextV = presV+1;
myCV[index]->topV = presV - mData->myPVColumns();
myCV[index]->lowerV = presV + mData->myPVColumns() ;

if (mode == 0)
myCV[index]->JRow = presV;

}else{
myCV[index]->JRow = myVars*presV;

}
}
return;

}

void PV:: initializeOtherPositions (void)
{

if (mode == 0){
dn = 1;
nv = numPVvolumes;

}else{
dn = myVars;
nv = 1;

}
dive = presV;

/*******Need to Adjust Index********/
/* *********************************/

if (myVars%2){
offset = presV%2;

269

}else {
offset = 0;

// These are for Jacobian Indexing
//jhpc = numPVColumns*myVars+offset ;
jphpc = jhpc-dn;
jnhpc = jhpc+dn;
// jthpc = offset;
jthpc = jhpc - numPVColumns*myVars;
jbhpc = jhpc + (numPVColumns)*myVars;
jtnhpc = jthpc + myVars;
jtphpc = jthpc - myVars;
jbnhpc = jbhpc + myVars;
jbphpc = jbhpc - myVars;

jphilc = jhpc +
jpphilc = jphpc +
jnphilc = jnhpc +
jtphilc = jthpc +
jbphile = jbhpc +
jtnphilc = jtnhpc
jtpphilc = jtphpc
jbnphilc = jbnhpc
jbpphilc = jbphpc

jphisc = jhpc +
jpphisc = jphpc +
jnphisc = jnhpc +
jtphisc = jthpc +
jbphisc = jbhpc +
jtnphisc = jtnhpc
jtpphisc = jtphpc
jbnphisc = jbnhpc
jbpphisc = jbphpc

philg *nv;
philg *nv;
philg *nv;
philg*nv;
philg *nv;

philg *nv ;
philg *nv ;
philg *nv ;
Dhilga nv:

phisg*nv ;
phisg nv;
phisg nv;
phisg nv;
phisg *nv;
+ phisg*nv;
+ phisg*nv;
+ phisg*nv;
+ phisg*nv;

jpc = jhpc + 3*nv;
jppc = jphpc + 3*nv;
jnpc = jnhpc + 3*nv;
jtpc = jthpc + 3*nv;
jbpc = jbhpc + 3*nv;
jtnpc = jtnhpc + 3*nv;
jtppc = jtphpc + 3*nv;
jbnpc = jbnhpc + 3*nv;
jbppc = jbphpc + 3*nv;

jvyc = jhpc + 4*nv;

270

jpv-yc
jnvyc
jtvyce
jbv yc
jtnvyc
jtpv yec

jbnv yc
jbpv yc

jv_xc =

jpvxc

jnyxc
jtv xc
jbvxc
jtnv_ xc
jtpv xc
jbnvxc
jbpv _xc

: jphpc + 4*nv;
: jnhpc + 4*nv;

jthpc + 4*nv;
- jbhpc + 4*nv;
= jtnhpc + 4*nv;

= jtphpc + 4*nv;

= jbnhpc + 4*nv;

= jbphpc + 4*nv;

jhpc + 5*nv;

: jphpc + 5*nv;
= jnhpc + 5*nv;

= jthpc + 5*nv;
- jbhpc + 5Snv;
= jtnhpc + 5*nv;
= jtphpc + 5*nv;
= jbnhpc + 5*nv;
= jbphpc + 5*nv;

// These are for iVptr and Vptr Indexing

hpc = dn*presV;
phpc = hpc-dn;
nhpc = hpc+dn;
thpc = dn*topV;
bhpc = dn*lowerV;
tnhpc = thpc + myVars;
tphpc = thpc - myVars;
bnhpc = bhpc + myVars;
bphpc = bhpc - myVars;

philc = dn*presV + philg*nv;
pphilc = phile - dn;
nphilc = philc + dn;
tphilc = dn*topV + philg*nv;
bphilc = dn*lowerV + philg*nv;
tnphilc = tphilc + myVars;
tpphilc = tphilc - myVars;
bnphilc = bphilc + myVars;
bpphilc = bphilc - myVars;

phisc = dn*presV + phisg*nv;
pphisc = phisc - dn;
nphisc = phisc + dn;
tphisc = dn*topV + phisg*nv;
bphisc = dn*lowerV + phisg*nv;
tnphisc = tphisc + myVars;

271

tpphisc = tphisc - myVars;
bnphisc = bphisc + myVars;
bpphisc = bphisc - myVars;

pc = dn*presV + 3*nv;
ppc = pc - dn;
npc = pc + dn;
tpc = dn*topV + 3*nv;
bpc = dn*lowerV + 3*nv;
tnpc = tpc + myVars;
tppc = tpc - myVars;
bnpc = bpc + myVars;
bppc = bpc - myVars;

v_yc = dn*presV + 4* nv;
pvyc = v_yc - dn;
nvyc = vyc + dn;
tvyc = dn*topV + 4*nv;
bvyc = dn*lowerV + 4*nv;
tnv_yc = tv_yc + myVars;
tpvyc = tv_yc - myVars;
bnvyc = bv_yc + myVars;
bpvyc = bv_yc - myVars;

v_xc = dn*presV + 5*nv;
pvxc = v_xc - dn;
nvxc = v_xc + dn;
tvxc = dn*topV + 5*nv;
bvxc = dn*lowerV + 5*nv;
tnvxc = tvxc + myVars;
tpvxc = tvxc - myVars;
bnvxc = bvxc + myVars;
bpvxc = bvxc - myVars;

for(int index = 0; index < NUMCVperPV; index++){
// These are for Jacobian Indexing
//jhpc = numPVColumns*myVars+ offset ;

myCV[index]->jhpc = jhpc;
myCV[index]->jphpc = jhpc-dn;
myCV[index]->jnhpc = jhpc+dn;

// jthpc = offset;
myCV[index]->jthpc = jhpc - numPVColumns*myVars;
myCV[index]->jbhpc = jhpc + (numPVColumns)*myVars;
myCV[index]->jtnhpc = jthpc + myVars;
myCV[indexl->jtphpc = jthpc - myVars;
myCV[index]->jbnhpc = jbhpc + myVars;
myCV[index]->jbphpc = jbhpc - myVars;

272

myCV[index]->jphilc = jhpc +
myCV[index]->jpphilc = jphpc +
myCV[index]->jnphilc = jnhpc +
myCV[index]->jtphilc = jthpc +
myCV[index]->jbphilc = jbhpc +
myCV[index]->jtnphilc = jtnhpc
myCV[index]->jtpphilc = jtphpc
myCV[index]->jbnphilc = jbnhpc
myCV[index]->jbpphilc = jbphpc

myCV[index]->jphisc = jhpc +
myCV[index]->jpphisc = jphpc +
myCV[index]->jnphisc = jnhpc +
myCV[index]->jtphisc = jthpc +
myCV[index]->jbphisc = jbhpc +
myCV[index]->jtnphisc = jtnhpc
myCV[index]->jtpphisc = jtphpc
myCV[index]->jbnphisc = jbnhpc
myCV[index]->jbpphisc = jbphpc

myCV[indexl->jpc =
myCV[index]->jppc
myCV[index]->jnpc =

myCV[index]->jtpc
myCV[index]->jbpc =

myCV[index]->jtnpc
myCV[index]->jtppc
myCV[index]->jbnpc
myCV[index]->jbppc

philg nv;
philg*nv;
philg *nv;
philg *nv;
philg *nv;
philg *nv;
philg nv;
philg *nv;
philg *nv;

phisg*nv;
phisg*nv ;
phisg*nv ;
phisg*nv ;
phisg*nv ;
+ phisg*nv;
+ phisg*nv;
+ phisg*nv;
+ phisg*nv;

jhpc + 3*nv;
jphpc + 3*nv;
jnhpc + 3*nv;
jthpc + 3*nv;
jbhpc + 3*nv;

= jtnhpc + 3*nv;
jtphpc + 3*nv;

= jbnhpc + 3*nv;
= jbphpc + 3*nv;

myCV[index]->jvyc = jhpc + 4*nv;
myCV[index]->jpv_yc = jphpc + 4*nv;
myCV[index]->jnv_yc = jnhpc + 4*nv;
myCV[index]->jtv_yc = jthpc + 4*nv;
myCV[index]->jbv_yc = jbhpc + 4*nv;
myCV[index]->jtnvyc = jtnhpc + 4*nv;
myCV[index]->jtpvyc = jtphpc + 4*nv;
myCV[index]->jbnvyc = jbnhpc + 4*nv;
myCV[index]->jbpvyc = jbphpc + 4*nv;

myCV[index]->jv_xc = jhpc + 5*nv;
myCV[index]->jpv_xc = jphpc + 5*nv;
myCV[index]->jnvxc = jnhpc + 5*nv;
myCV[index]->jtvxc = jthpc + 5*nv;
myCV[index]->jbvxc = jbhpc + 5*nv;
myCV[index]->jtnv_xc = jtnhpc + 5*nv;

273

myCV[index]->jtpvxc = jtphpc + 5*nv;
myCV[index]->jbnv_xc = jbnhpc + 5*nv;
myCV[index]->jbpvxc = jbphpc + 5*nv;

myCV[index]->hpc = dn*presV;
myCV[index]->phpc = hpc-dn;
myCV[index]->nhpc = hpc+dn;
myCV[index]->thpc = dn*topV;
myCV[index]->bhpc = dn*lowerV;
myCV[index]->tnhpc = thpc + myVars;
myCV[index]->tphpc = thpc - myVars;
myCV[index]->bnhpc = bhpc + myVars;
myCV[index]->bphpc = bhpc - myVars;

myCV[index]->philc = dn*presV + philg*nv;
myCV[index]->pphilc = philc - dn;
myCV[index]->nphilc = philc + dn;
myCV[index]->tphilc = dn*topV + philg*nv;
myCV[index]->bphilc = dn*lowerV + philg*nv;
myCV[index]->tnphilc = tphilc + myVars;
myCV[index]->tpphilc = tphilc - myVars;
myCV[index]->bnphilc = bphilc + myVars;
myCV[index]->bpphilc = bphilc - myVars;

myCV[index]->phisc = dn*presV + phisg*nv;
myCV[index]->pphisc = phisc - dn;
myCV[index]->nphisc = phisc + dn;
myCV[index]->tphisc = dn*topV + phisg*nv;
myCV[index]->bphisc = dn*lowerV + phisg*nv;
myCV[index]->tnphisc = tphisc + myVars;
myCV[index]->tpphisc = tphisc - myVars;
myCV[index]->bnphisc = bphisc + myVars;
myCV[index]->bpphisc = bphisc - myVars;

myCV[index]->pc = dn*presV + 3*nv;
myCV[index]->ppc = pc - dn;
myCV[index]->npc = pc + dn;
myCV[index]->tpc = dn*topV + 3*nv;
myCV[index]->bpc = dn*lowerV + 3*nv;
myCV[index]->tnpc = tpc + myVars;
myCV[index]->tppc = tpc - myVars;
myCV[index]->bnpc = bpc + myVars;
myCV[index]->bppc = bpc - myVars;

myCV[index]->v_yc = dn*presV + 4*nv;
myCV[index]->pvyc = vyc - dn;
myCV[index]->nvyc = vyc + dn;

274

myCV[index]->tv_yc = dn*topV + 4*nv;
myCV[index]->bv_yc = dn*lowerV + 4*nv;
myCV[index]->tnv_yc = tvyc + myVars;
myCV[index]->tpv_yc = tvyc - myVars;
myCV[index]->bnv_yc = bvyc + myVars;
myCV[index]->bpv_yc = bvyc - myVars;

myCV[index]->v_xc = dn*presV + 5*nv;

myCV[index]->pv_xc = vxc - dn;
myCV[index]->nv_xc = vxc + dn;
myCV[index]->tv_xc = dn*topV + 5*nv;
myCV[index]->bvxc = dn*lowerV + 5*nv;
myCV[index]->tnvxc = tv_xc + myVars;
myCV[index]->tpvxc = tvxc - myVars;
myCV[index]->bnvxc = bvxc + myVars;
myCV[index]->bpvxc = bvxc - myVars;

}

for(int index = 0; index < NUM_CVperPV; index++){
myCV[index]->myNvalues () ;
myCV[index]->setupMyNbrHood ();

}
return;

};

void PV:: initializeVolumeChem(volumeChemData * vData)

{
phi_eq = vData->getphieq();
hnot = vData->gethnot();
mySign = vData->getmySign();
return;

}

/* *** ,/

/***************** ComputVolume Sizes ****************/

void PV:: initializeSize (void)

{
initializeCVsizes ();
setMyVolume(&myVolume);
tellCVPVvolume () ;
setupCVPressurePointers();
setupCVConcentrationPointers ();
return;

v

void PV:: initializeCVsizes (void){

275

for(int index = 0; index < NUMCVperPV; index++){
if (myCV[index]->exist){

myCV[index]->computedxSize();
myCV[index]->computedySize();
myCV[index]->computedzSize() ;
myCV[index]->computemyVolume () ;
// myCV[index]->setQscalex ();
// myCV[index]-> setQscaley () ;

return;

void PV:: setMyVolume (double * myV) {
myVolume = 0;
for(int index = 0; index < NUMCVperPV; index++){

if(myCV[index]-> exist)){
*myV += myCV[index]-->returnmyVolume ();

return ;

void PV:: tellCVPVvolume(void) {
for(int index = 0; index < NUMCVperPV;

if(myCV[index]->exist){
myCV[index]->setpvVolume (myVolume) ;

index++){

return ;

void PV:: setupCVPressurePointers (void) {
for(int index=0; index < NUMCVperPV; index++){

if(myCV[index]->exist){
myCV[index]->setupPressurePointers (myVolume);

return;

}

void PV:: setupCVConcentrationPointers (void){
// printf("Setting up CV Pointers\n");
for(int index=0; index < NUMCVperPV; index++){

if (myCV[index]->exist){

276

myCV[index]->setupConcentrationPointers (myVolume)

}

return;

/***************** Initialize mbScale ******************/

void PV:: initializembScale (void)

for(int index = 0; index < NUMCVperPV; index++){

if (myCV[index]->exist) {
mbScale = myCV[index]->returnmbScale ();

}

return;

}

void PV:: setInitialConditions (PVIConditions* iData)

Vptr [hpc]
Vptr [philc
Vptr [phisc
Vptr [pc]
Vptr [v_yc]
Vptr [v_xc]
return ;

iData->gethp () ;
iData->getphi 1
iData ->getphi _ s
iData->getp ();
iData->getvy ()
iData ->getv _x ()

void PV:: initializePressure (void){
if(myRow == 0)

Vptr[pc] = atmospheric_pressure;

// if(myVolume > 1 && myVolume < 300){
for(int index = 0; index < NUM_CVperPV;

if(myCV[index]->exist){
myCV[index]->initialPressure();

index++){

// printf("My Volume = %d\n",myColumn+myRow*myVars);

// }
return;

void PV:: computeDerivatives (void){
for(int index = 0; index < NUM_CVperPV; index++){

277

();
();

if (myCV[index]->exist) {
myCV[index]->setdhdt ();
myCV[index]->setdmv_ydt ();
myCV[index]->setdmv _xdt ();
myCV[index]-> setddensi tydt ();

return;

}

void PV:: computeAVEpressures (void) {
computeAVEyPressures ();
computeAVExPressures ();
return;

}

void PV:: computeAVEhps(void) {
computeAVEhpx ()
computeAVEhpy) ;
return;

}

void PV:: computeAVEhpx (void) {
for(int index = 0; index < NUM_CVperPV;

if (myCV[index]->exist) {
myCV[index]->computeAVEhpx ();

return ;

void PV:: computeAVEhpy (void) {
for(int index = 0; index < NUM_CVperPV;

if (myCV[index]-> exist) {
myCV[index]->computeAVEhpy (;

return ;

void PV:: computeAVEyPressures (void) {
for(int index = 0; index < NUMCVperPV; index++){

if (myCV[index]->exist){
myCV[index]->computeAVEyPressures () ;

return ;

278

index++)

index++){

void PV:: computeAVExPressures (void) {
for(int index = 0; index < NUMCVperPV; index++){

if(myCV[index]->exist){
myCV[index]->computeAVExPressures ();

}

return;

/*************** Setup FV Pointers ******************/

void PV::setupFvPointers(FV** myFv) {
if (myCV[UL]-> e x i s t)

setULFV (myFv,myCV[UL]) ;
if (myCV[UR]-> exist)

setURFV(myFv,myCV[UR]);
if (myCV[LL]-> exist)

setLLFV (myFv, myCV [LL]) ;
if (myCV[LR]->exist)

setLRFV (myFv ,myCV[LR]);
return;

void PV:: setULFV (FV** FVp, CV* myCV){
myCV->myFV = FVp [(myRow-1)*numFVColumns+(myColumn-1)];
return;

void PV::setURFV(FV** FVp, CV* myCV){
myCV->myFV = FVp [(myRow- 1)* numFVColumns +(myColumn)];
return;

};

void PV::setLLFV(FV** FVp, CV* myCV){
myCV->myFV = FVp [(myRow) *numFVColumns+(myColumn- 1)];
return;

void PV:: setLRFV (FV** FVp, CV* myCV){
myCV->myFV = FVp [(myRow) * numFVColumns+(myColumn)];
return ;

279

void PV:: setupJacobian ()

JRowBuffer = JRow;
mbJ () ;

// if(JRow < 1){ -

// unsigned int cmd_status;
unsigned int ou;
unsigned int mask = 0;
int xxx = 0;
// printf("JRow = %d\n",JRow);
/* for(int index = 0; index < 2; index++){
sp e _mfcio get (myMatrix->speids [0],

(unsigned int)myMatrix->spu_buffers [O],
(void *) myMatrix->JacobianStorage , myMatrix->alignedRowSize

,0,0,0);
} */

//xxx = spemfcio_tags
SPE_TAGIMMEDIATE, &

tatus read (myMatrix->speids [0], 0,
ou);

JRow += nextJRow;
docJ () ;

JRow += nextJRow;
ekJ () ;

if(myVars == 6)
JRow += nextJRow;

comv_xJ() ;
JRow += nextJRow;
comv_yJ () ;
JRow += nextJRow;
conteqJ ();

}
JRow = JRowBuffer;
//xxx = spe _mfcio_tag _status read (myMatrix->speids [0]

NULL);
// myMatrix->sendPVJRows () ;
// myMatrix->checkDMAqueueStatus () ;
//printf("The tag status is Ox%x with the return value
return ;

/** /

/*********** Contribution from Each of the 4 X volumes ******/
/*********** Material Balance Equation **********************
/+++++++++++++++++++++++++++++usenesessessesssess sse/

A~Sseck~~ScSess~~c)cEssnssesesesesessasesne eses/

280

,mask, SPETA GALL,

of %d\n ", ou, xxx);

/* ******** Compute Equations **************************/

void PV:: computelValues (void){
computelVmb () ;
computelVdoc ();
computelVek ();
if(myVars == 6){

computelVcomv_x () ;
computeIVcomv_y () ;
computelVconteq ();

}
return;

};

void PV:: computelVmb(void) {
for(int index = 0; index < NUM_CVperPV; index++){

if (myCV[index]->exist) {
iVptr [hpc][0] += myCV[index]->setdhdtCV ()

+ myCV[index]->setDiffusionCV ()
+ myCV[index]->setConvectionCV ()
+ mbScale*myCV[index]->setdocCVjl ();

return ;

void PV:: computelVdoc (void) {
for(int index = 0; index < NUMCVperPV; index++){

if(myCV[index]->exist){
// iVptr[philc][0] += myCV[index]->setdocCV() ;
iVptr [JRow+1] [0] += myCV[index]->setdocCV () ;

return ;

void PV:: computelVek(void) {
for(int index = 0; index < NUM_CVperPV; index++){

if(myCV[index]->exist) {
// iVptr [phisc][0] += myCV[index]->setdocCVjl () + myCV[index]->setekCV

iVptr [JRow+2][0] += myCV[index]->setdocCVjl () + myCV[index]->setekCV
() ;

return ;

281

void PV:: computelVcomvy (void) {
for(int index = 0; index < NUM_CVperPV; index++){

if (myCV[index]->exist) {
iVptr[v_yc][0] += 0;/*myCV[index]->setdmvydtCV() ;
+ myCV[index]->setdpdyCV ()
+ myCV[index]->setGravitySource_yCV() ; /

return ;

void PV:: computelVcomvx (void) {
for(int index = 0; index < NUM_CVperPV; index++){

if (myCV[index]->exist) {
iVptr[pc][0] += 0;/*myCV[index]->setdmvxdtCV() ;
+ myCV[index]->setdpdxCV ()
+ myCV[index]->setGravitySource _xCV() ; ,/

return;
};

void PV:: computelVconteq (void) {
for(int index = 0; index < NUM_CVperPV; index++){

if (myCV[index]-> exist){
iVptr[vxc][0] += O;//myCV[index]->setContEqCV() ;

return ;

void PV:: computeDivTwo(void)
if (myCV[UR]-> exist) {

divVtwoptr [4* presV +0]
divVtwoptr [4* presV +2]

}else{
divVtwoptr [4* presV +0]
divVtwoptr [4* presV +2]

}
if (myCV[UL]-> exist){

divVtwoptr [4* presV +0]
divVtwoptr [4* presV +3]

}else{

+= myCV[UR]->setdocCVjlx ()/2;
+= myCV[UR]->setdocCVjly ()/2;

+= 0;
+= 0;

+= myCV[UL]->setdocCVjlx ()/2;
+= myCV[UL]->setdocCVjly ()/2;

282

divVtwoptr [4* presV +0]
divVtwoptr [4* presV +3]

if (myCV[LR]-> ex i s t){
divVtwoptr [4* presV + 1]
divVtwoptr [4* presV +2]

}else {
divVtwoptr [4* presV + 1I
divVtwoptr [4* presV +2]

}
if (myCV[LL]-> ex i s t){

divVtwoptr [4* presV + 1]
divVtwoptr [4* presV +3]

} else {
divVtwoptr [4* presV + 1]
divVtwoptr [4* presV +3]

}
return;

+= myCV[LR]->setdocCVjlx ()/2;
+= myCVfLR]->setdocCVjly () /2;

+= 0;
+= 0;

+= myCV[LL]->setdocCVjlx () /2;
+= myCV[LL]->setdocCVjly ()/2;

void PV:: computeDiv (void) {
for(int index = 0; index < NUMCVperPV; index++){

if(myCV[index]->exist) {
divVptr [dive] += myCV[index]-> setdocCVjl ();

return;
};

void PV:: computeDensity (void){
for(int index = 0; index < NUM_CVperPV; index++){

if (myCV[index]->exist) {
myCV[index]->setDensityCV ();

return ;

/************* EK Jacobian Equations *****************/

void PV::ekJ(void){
/* docJtphil (1) ;
docJpphil (1) ;
docJphil (1) ;
docJnphil (1) ;

283

+= 0;
+= 0;

docJbphil (1);

docJphilz (1);
docJhpz(1);

docJthp(1)M
docJphp (1);
docJhp(1);
docJnhp (1);
docJbhp (1) ;

//ekJeps();

// ekJhp();
ekJhpz();

ekJphisz();
ekJphilz ();
// ekJphis();
//ekJphil ();
return ;

void PV::ekJeps(void){
for(int index = 0; index < NUMCVperPV; index++){

if(myCV[index]->exist){
// Jacobptr[JRow][epsc] = Jacobptr[JRow][epsc] + myCV[x]->

ekJeps();

return ;

void PV::ekJhpz(void){
for(int index = 0; index < NUMCVperPV;

if (myCV[index]-> exist) {
myCV[index]->ekJhp (JRow);
myCV[index]->ekJxNhp(JRow);
myCV[index]->ekJyNhp (JRow);
myCV[index]->ekJxyNhp(JRow);

return ;

void PV:: ekJphisz(void){
for(int index = 0; index < NUMCVperPV; index++){

if (myCV[index]-> exist){
myCV[index]->ekJphis (JRow);

284

index++){

myCV[index]->ekJxNphis (JRow);
myCV[index]->ekJyNphis (JRow);
myCV[index]->ekJxyNphis (JRow);

}

return;
};

void PV::ekJphilz(void){
for(int index = 0; index < NUMCVperPV; index++){

if (myCV[index]-> exist) {
myCV[index]->ekJphil (JRow);
myCV[index]->ekJxNphil (JRow);
myCV[i ndex]-> ekJyNphi I (JRow) ;
myCV[index]->ekJxyNphil (JRow);

}

return;

};

void PV:: ekJphis(void){
for(int index = 0; index < NUMCVperPV; index++){

if (myCV[index]-> exist){
myCV[index]-> ekJph is (JRow) ;

}
}
return ;

};

void PV:: ekJphil(void){
for(int index = 0; index < NUMCVperPV; index++){

if (myCV[index]->exist){
myCV[index]->ekJphil (JRow) ;

}
}
return;

},

/*** ********* DOC Jacobian Equations *****************/

void PV::docJ(void){
docJphilz (1);
docJhpz (1);

docJthp (1) ;
docJphp (1);

285

docJhp (1) ;
docJnhp (1) ;
docJbhp (1) ;

docJphisz ();
return;

};

/* *** ,/

/* ********* DOC Jacobian Phil ************************************/
/, *** ,/

void PV::docJphilz (double scale){
for(int index = 0; index < NUMCVperPV; index++){

if (myCV[index]->exist) {
myCV[index]->myDOCJphil(JRow, scale);
myCV[index]->myDOCJxNphil(JRow, scale);
myCV[index]->myDOCJyNphil(JRow, scale);
myCV[index]->myDOCJxyNphil(JRow, scale);

}
}
return;

/, ********* DOC Jacobian HP *********************************** ,/

void PV::docJhpz(double scale){
for(int index = 0; index < NUMCVperPV; index++){

if (myCV[index]-> e xist){
myCV[index]->myDOCJhp(JRow, scale);
myCV[index]->myDOCJxNhp(JRow, scale);
myCV[index]->myDOCJyNhp(JRow, scale);
myCV[index]->myDOCJxyNhp(JRow, scale);

}
}
return;

/* ********* DOC Jacobian Phis ************************************ /

void PV:: docJphisz(void) {
for(int index = 0; index < NUM_CVperPV; index++){

if (myCV[index]->exist) {
myCV[index]->myDOCJphis(JRow);
myCV[index]->myDOCJxNphis (JRow);
myCV[index]->myDOCJyNphis (JRow) ;

286

myCV[index]->myDOCJxyNphis (JRow) ;

}
}
return;

/************** doc Jacobian phis terms ********************/

void PV:: docJtphis(void){
if(myCV[UL]->exist){

Jacobptr[JRow][jtphisc] += myCV[UL]->myJyphis () ;

}
if(myCV[UR]->exist){

Jacobptr[JRow][jtphisc] += myCV[URJ->myJyphis() ;

}
return;

};

void PV::docJpphis(void){
if (myCV[UL]-> ex ist) {

Jacobptr[JRow][jpphisc] += myCV[UL]->myJxphis() ;

}
if (myCV[LL]->exist){

Jacobptr[JRow][jpphisc] += myCV[LL]->myJxphis();

}
return;

void PV::docJphis(void){
for(int index = 0; index < NUM_CVperPV; index++){

if(myCV[index]->exist){
Jacobptr[JRow][jphisc i += myCV[index]->myJphis () ;

}
}
return;

},

void PV:: docJnphis(void){
if (myCV[UR]-> ex ist) {

Jacobptr[JRow][jnphisc] += myCV[UR]->myJxphis ();
}
if (myCV[LR]-> ex ist){

Jacobptr[JRow][jnphisc] += myCV[LR]->myJxphis();

}
return;

287

void PV:: docJbphis(void){
if (myCV[LL]->exist){

Jacobptr[JRow][jbphisc] += myCV[LL]->myJyphis () ;
}
if(myCV[LR]->exist)

Jacobptr[JRow][jbphisc] += myCV[LR]->myJyphis ();

return;

};

/********* DOC Jacobian Phil *************************************/

void PV:: docJtphil(double scale){
if (myCV[UL]-> ex ist) {

Jacobptr[JRow][jtphilc += scale *myCV[UL]->myJyphil();

if (myCV[UR]-> ex ist) {
Jacobptr [JRow J[j tp h ilc I += scale *myCV[UR]->myJyphil () ;

return;

void PV:: docJpphil(double scale){
if(myCV[UL]->exist){

Jacobptr[JRow][jpphilc] += scale *myCV[ULJ->myJxphil() ;
}
if (myCV[LL]->exist){

Jacobptr[JRow][jpphilc += scale *myCV[LLl->myJxphil() ;

return;

void PV:: docJphil (double scale){
for(int index = 0; index < NUMCVperPV; index++){

if (myCV[index]-> exist){
Jacobptr[JRow][jphilc += scale *myCV[index]->myJphil() ;

return;

void PV: :docJnphil(double scale){
if (myCV[UR]-> ex ist) {

288

Jacobptr[JRow][jnphilc] += scale *myCV[UR]->myJxphil ();

}
if(myCV[LR]->exist){

Jacobptr[JRow][jnphilci += scale *myCV[LR]->myJxphil ();

return;

void PV:: docJbphil(double scale){
if (myCV[LL]->exist){

Jacobptr[JRow][jbphilc] += scale *myCV[LL]->myJyphil();

}
if (myCV[LR]->exist){

Jacobptr[JRow][jbphilc] += scale *myCV[LR]->myJyphil();

}
return;

*;

/1 ** ,/

/************** doc Jacobian hp terms **********************/

void PV:: docJthp(double scale){
if (myCV[UL]-> ex ist) {

Jacobptr [JRow][jthpc] += (scale *myCV[UL]->myDOCJyhp(1))/Vptr[thpc];

if (myCV[UR]-> ex ist){
Jacobptr [JRow][jthpc] += (scale *myCV[UR]->myDOCJyhp(1))/Vptr[thpc];

return;

void PV:: docJphp (double
if (myCV[UL]-> ex ist) {

Jacobptr[JRow][jphpc

if (myCV[LL]-> ex ist) {
Jacobptr[JRow][jphpc

scale){

] += (scale *myCV[UL]->myDOCJxhp (1))/Vptr[phpc];

i += (scale *myCV[LL]->myDOCJxhp(I))/Vptr[phpc];

return;

void PV::docJhp(double scale){
for(int x = 0; x < NUM_CVperPV; x++){

if (myCV[x]-> exist){
Jacobptr[JRow][jhpc] += (scale *myCV[x]->myDOCJhp(1))/Vptr[hpc];

}

289

}
return;

void PV:: docJnhp (double scale){
if(myCV[UR]->exist){

Jacobptr[JRow][jnhpc] += (s

}
if (myCV[LR]-> exist) {

Jacobptr[JRow][jnhpc] += (s

cale *myCV[UR]->myDOCJxhp (I)) / Vptr[nhpc];

c a I e *myCV[LR]->myDOCJxhp (1)) / Vptr[nhpc];

return;

void PV::docJbhp(double scale){
if (myCV[LL]-> ex ist) {

Jacobptr[JRow][jbhpc] += (s

}
if (myCV[LR]-> ex ist){

Jacobptr[JRow][jbhpc] += (s

cale *myCV[LL]->myDOCJyhp ()) / Vptr[bhpc];

cale *nmyCV[LR]->myDOCJyhp (1))/Vptr[bhpc];

return;

};

/**********Material Balance Jacobian Equations ********/
/,** */
void PV::mbJ(void){

// mbJthp() ;
// mbJphp ();

// mbJhp () ;
// mbJnhp();
//mbJbhp () ;
//mbJbnhp () ;
//mbJbphp () ;
// mbJtnhp () ;
//mbJtphp () ;
mbJhpz();

docJtphil (mbScale) ;
docJpphil (mbScale) ;
docJphil (mbScale);
docJnphil (mbScale) ;
docJbphil (mbScale) ;

docJphilz (mbScale);

290

docJhpz (mbScale);

docJthp (mbScale) ;
docJphp (mbScale) ;
docJhp (mbScale) ;
docJnhp (mbScale) ;
docJbhp (mbScale) ;

return;

void PV::mbJhpz(void){
for(int index = 0; index < NUM_CVperPV; index++){

if (myCV[index]->exist) {
// printf("jhpc = %d for index = %d\n",jhpc,index);
myCV[index]->myMBJhp(JRow) ;
myCV[index]->myMBJxNhp(JRow) ;
myCV[index]->myMBJyNhp(JRow);
myCV [i n de x]->myMBJxyNhp (JRow) ;

return;

};

void PV:: mbJtnhp(void){
if (myCV[UR]-> exist){

Jacobptr[JRow][jtnhpc] += myCV[UR]->myJxyhp() ;

}
return;

};

void PV::mbJtphp(void){
if (myCV[UL]->exist) {

Jacobptr [JRow][jtphpc] += myCV[UL]->myJxyhp () ;

}
return;

};

void PV:: mbJbnhp(void){
if (myCV[LR]-> ex ist) {

Jacobptr [JRow][jbnhpc] += myCV[LR]->myJxyhp () ;

}
return;

};

void PV:: mbJbphp(void){
if (myCV[LL]-> ex ist) {

291

Jacobptr[JRow][jbphpc] += myCV[LL]->myJxyhp () ;

}
return;

};

void PV:: mbJthp(void){
if (myCV[UL]-> ex ist) {

Jacobptr[JRow][jthpc] += myCV[UL]->myJyhp();

if (myCV[UR]-> exist) {
Jacobptr[JRow][jthpc] += myCV[UR]- >myJyhp () ;

return ;

void PV:: mbJphp(void){
if (myCV[UL]-> ex i st) {

Jacobptr[JRow][jphpc] + = myCV[UL]->myJxhp () ;

}
if (myCV[LL]-> ex ist) {

Jacobptr[JRow][jphpc] += myCV[LL]->myJxhp () ;

}
return;

};

void PV::mbJhp(void){
for(int index = 0; index < NUM_CVperPV; index++){

if (myCV[index]->exist){
Jacobptr[JRow][jhpc] += myCV[index]->myJhp () ;

}
}
return;

};

void PV::mbJnhp(void){
if (myCV[UR]-> exist){

Jacobptr [JRow][jnhpc] += myCV[UR]->myJxhp () ;

}
if (myCV[LR]-> exist){

Jacobptr[JRow][jnhpc] += myCV[LR]->myJxhp () ;

}
return;

};

void PV::mbJbhp(void){
if (myCV[LL]-> exist) {

Jacobptr [JRow][jbhpc] += myCV[LL]->myJyhp () ;

292

}
if (myCV[LR]-> exist) {
Jacobptr[JRow][jbhpc] + = myCV[LR]->myJyhp () ;

return;

/******* Continuity Equation Jacobian Equations *******/

void PV::conteqJ(void){
conteqJv_x ();
// conteqJvy();
// conteqJhp() ;
// conteqJthp ();
// conteqJbhp();
// conteqJnhp();
// conteqJphp();
return;

void PV::conteqJhp(void){
for(int index = 0; index < NUMCVperPV; index++){

if (myCV[index]-> exist) {
Jacobptr [JRow][jhpc] += myCV[index]->contEqJhp() ;

}

return;

void PV:: conteqJv._x(void){
for(int index = 0; index < NUM.CVperPV; index++){

if(myCV[index]->exist){
if(Jacobptr[JRow][jv_xc] == 0){
// printf("Not using computed Jacobptr[%dJ[%d] = %f\n",JRow,

jv.xc , Jacobptr[JRow][jv.xc]) ;
Jacobptr[JRow][jv_xc] = 1; /* September 27, 2007 */

}else{
// printf(" Using computed Jacobptr[%d][%d] = %.16f\n",JRow,

jvxc , Jacobptr[JRowl[jvxc 1) ;
Jacobptr [JRow][jv xc] += myCV[index]->contEqJv.x ();

// Jacobptr[JRow][jv xc] = 1;
}

}
}
//Jacobptr[JRow][jvxc] = 1;
return ;

293

void PV::conteqJvy(void){
for(int index = 0; index < NUMCVperPV; index++){

if(myCV[index]->exist) {
Jacobptr[JRow][jvyc] += myCV[index]->contEqJv _y();

}
if(Jacobptr[JRow][jv_yc] == 0){

// printf("Not using computed Jacobptr[%d][%d] = %f\n",JRow,jvyc
Jacobptr[JRow][jv_yc) ;

Jacobptr [JRow][jvyc] = 1; /* September 27, 2007 */
}else{
// printf("Using computed Jacobptr[%d][%d] = %.16f\n",JRow,jvyc

Jacobptr[JRow][jv yc) ;

return ;

void PV::conteqJbhp(void){
if (myCV[LL]-> exist){

Jacobptr [JRow][jbhpc]

}
if(myCV[LR]->exist){

Jacobptr [JRow] [jbhpc]

+= myCV[LL]->contEqJbhp ();

+= myCV[LR]->contEqJbhp ();

return ;

void PV:: conteqJthp(void){
if(myCV[UL]->exist){

Jacobptr [JRow][jthpc] += myCV[UL]->contEqJthp ();

}
if(myCV[UR]->exist){

Jacobptr [JRow][jthpc] += myCV[UR]->contEqJthp ();
}
return;

};

void PV::conteqJnhp(void){
if (myCV[UR]-> exist) {

Jacobptr [JRow][jnhpc] += myCV[UR]->contEqJnhp();

if(myCV[LR]-> exist){
Jacobptr [JRow][jnhpc] += myCV[LR]->contEqJnhp();

return ;

294

void PV::conteqJphp(void){
if(myCV[UL]->exist){

Jacobptr [JRow][jphpc]

if (myCV[LL]-> e x i s t){
Jacobptr[JRow][jphpc]

+= myCV[UL]->contEqJphp();

+= myCV[LL]->contEqJphp ();

return ;

***/

** Conservation of Momentum Y Jacobian Equations ****/
id PV::com*****v(void)
sid PV::comvyJ(void){
comvyJv_y () ;
// comvyJhp();
//comv_yJp () ;
return;

void PV::comvyJvy(void){
for(int index = 0; index < NUMCVperPV; index++){

if(myCV[index]->exist){
// Jacobptr[JRow][jv_yc] += myCV[index]->comvyJvy () ;

Jacobptr[JRow][jv yc] = 1.0;

return;
};

void PV::comvyJhp (void) {
for(int index = 0; index < NUMCVperPV; index++){

if (myCV[index]-> exist) {
Jacobptr [JRow][jhpc] += myCV[index]->comvyJhp() ;
// Jacobptr[JRow][jhpc] = 1->45;

return ;

void PV::comvyJp(void){
for(int index = 0; index < NUMCVperPV; index++){

if(myCV[index]-> exist){

295

// Jacobptr[JRow][jpc] += 1.45;

}
}
return;

/*** Conservation of Momentum X Jacobian Equations ****/

void PV::comv_xJ(void){
// comv_xJv_x();
// comv_xJhp();
comv_xJp();
return;

void PV:: comv_xJv_x(void) {
for(int index = 0; index < NUM_CVperPV; index++){

if(myCV[index]->exist){
Jacobptr[JRow][jv xc] += myCV[index]->comv_xJv_x();
//Jacobptr[JRow][jvxc] += 1.45;

}
}
return;

};

void PV::comv_xJhp (void) {
for(int index = 0; index < NUMCVperPV; index++){

if(myCV[index]->exist) {
Jacobptr[JRow][jhpc] += myCV[index]->comvxJhp();
// Jacobptr[JRow][jhpc] += 1.45;

}
}
return;

};

void PV::comv_xJp(void){
for(int index = 0; index < NUMCVperPV; index++){

if(myCV[index]->exist){
Jacobptr[JRow][jpc] = 1.0;

}
return;

296

Listing B.11. ORURPV.h
/* @author James Geraci

ifnde f _ORURPVII
#define _ORURPVH
#include "PV.h"

class ORURPV :
public PV

{
public:

ORURPV(void) ;
ORURPV(volumeSpatialData *, matrixData *, volumeChemData ,

electrodeSizeData, PVIConditions);
public:

SORURPV(void) ;

protected :
void computelVdoc (void);
};

#endif

297

Listing B.12. ORURPV.cpp

* @author James Geraci
* creates an Outer Right

#include "StdAfx .h"
#include "ORURPV.h"

Upper Right PV

ORURPV:: :ORURPV(void)

}

ORURPV::ORURPV(volumeSpatialData * sData , matrixData * mD, volumeChemData,
vcD,

electrodeSizeData esData , PVIConditions * pviC):PV(sData
, mD, vcD, esData , pviC){

myCV[UL]->exist = false;
myCV[UR]->exist = false;
myCV[LL]->exist = true;
myCV[LR]->exist = false;

ORURPV: : ORURPV(void)
{
}

void ORURPV:: computelVdoc (void) {
for(int x = 0; x < 4; x++){

if (myCV[x]-> exist){
// iVptr[philc][0] = iVptr[philc][0] + myCV[x]->setdocCV() +

mySign*myCV[x]->inCurrentCV () ;
iVptr[JRow+1][0] = iVptr[philc][0] + myCV[x]->setdocCV() + mySign*

myCV[x]->inCurrentCV () ;

return;

298

Listing B.13. OLPV.h
/* @author James Geraci

#ifndef _OLPVH
#define _OLPVJI
#include "PV.h"

class OLPV :
public PV

{
public:

OLPV(void) ;
OLPV(volumeSpatialData , matrixData * ,volumeChemData ,

electrodeSizeData *,PVIConditions,) ;
public:

SOLPV(void);

protected:

#endif

299

Listing B.14. OLPV.cpp

* @author James Geraci
* creates an outer left PV

#include "StdAfx .h"
#include "OLPV.h"

OLPV: :OLPV(void)

{
}

OLPV::OLPV(volumeSpatialData * sData , matrixData * mD, volumeChemData* vcD,
electrodeSizeData, esData , PVIConditions * pviC):PV(sData

, mD, vcD, esData , pviC){
myCV[UL]->exist = false;
myCV[UR]->exist = true;
myCV[LL]->exist = false;
myCV[LR]->exist = true;

}

OLPV: : -OLPV(void)

{
}

300

Listing B.15. OLLLPV.h
/* @author James Geraci
,/

#ifndef _OLLLPV-I
#define _OLLLPVH
#include "PV.h"

class OLLLPV :
public PV

{
public :

OLLLPV(void);
OLLLPV(volumeSpatialData ,, matrixData * ,volumeChemData*,

electrodeSizeData , PVIConditions ,);
public:

-OLLLPV(void);

protected:

};

#endif

301

Listing B.16. OLLLPV.cpp

* @author James Geraci
* creates an outer left lower left PV

#include "StdAfx .h"
#include "OLLLPV.h"

OLLLPV: : OLLLPV(void)

{
}

OLLLPV::OLLLPV(volumeSpatialData * sData, matrixData * mD, volumeChemData*
vcD,

electrodeSizeData * esData , PVIConditions pviC) :PV(sData
, mD, vcD, esData , pviC){

myCV[UL]->exist = false;
myCV[UR]->exist = true;
myCV[LL]->exist = false;
myCV[LR]->exist = false;

}

OLLLPV::~ OLLLPV(void)

{
}

302

Listing B.17. ORLRPV.h
/* @author James Geraci

#ifndef _ORLRPVHI
#define _ORLRPVJI
#include "PV.h"

class ORLRPV :
public PV

{
public:

ORLRPV(void) ;
ORLRPV(vol umeS patialData , matrixData *, volumeChemData*,

electrodeSizeData *, PVIConditions) ;

public:
~ORLRPV(void) ;

protected :

;#endif

#endif

303

Listing B.18. ORLRPV.cpp

* @author James Geraci

* creates an Outer Right Lower
,/

Right PV

#include "StdAfx .h"
#include "ORLRPV.h"

ORLRPV: : ORLRPV (v oid)

{
}

ORLRPV::ORLRPV(volumeSpatialData* sData, matrixData mD, volumeChemData*

vcD,
electrodeSizeData * esData , PVIConditions * pviC) :PV(sData

, mD, vcD, esData , pviC){
myCV[UL]->exist = true;
myCV[UR]->exist = false;
myCV[LL]->exist = false;
myCV[LR]->exist = false;

ORLRPV:

{
}

: -ORLRPV(void)

304

Listing B.19. UPV.h
/* @author James Geraci

#ifndef _UPVII
#define _UPVH
#include "PV.h"

class UPV:
public PV

{
public:

UPV(void);
UPV(volumeSpatialData *, matrixData *,volumeChemData ,

electrodeSizeData , PVIConditions,) ;
public:

SUPV(void);
protected :
void computelVdoc (void);
I;
#endif

305

Listing B.20. UPV.cpp

* @author James Geraci
* creates an Upper PV

#include "StdAfx .h"
#include "UPV.h"

UPV::UPV(void)

{
}

UPV::UPV(volumeSpatialData sData, matrixData * mD, volumeChemData* vcD,
electrodeSizeData * esData, PVIConditions * pviC):PV(sData

, mD, vcD, esData , pviC){
myCV[UL]->exist = false;
myCV[UR]->exist = false;
myCV[LL]->exist = true;
myCV[LR]->exist = true;

}

UPV: : UPV(void)

{
}
void UPV:: computeIVdoc (void){

for(int x = 0; x < 4; x++){
if (myCV[x]-> exist) {

// iVptr[philc [O] = iVptr[philc [O] + myCV[x]->setdocCV() +
mySign*myCV[x]->inCurrentCV () ;

iVptr [JRow+ 1][0] += myCV[x]->setdocCV() + mySign*myCV[x]->inCurrentCV

}
}
return;

306

Listing B.21. ORPV.h
/* @author James Geraci

#ifndef _ORPVH
#define _ORPVH
#include "PV.h"

class ORPV :
public PV

{
public :

ORPV(void) ;
ORPV(volumeSpatialData , matrixData *,volumeChemData*,

electrodeSizeData *, PVIConditions) ;
public:

~ORPV(void);

protected:

#endif

307

Listing B.22. ORPV.cpp

* @author James Geraci
* creates an Outer Right PV

#include "StdAfx.h"
#include "ORPV.h"

ORPV: :ORPV(void)

{
}

ORPV::ORPV(volumeSpatialData * sData , matrixData * mD, volumeChemData vcD,
electrodeSizeData esData , PVIConditions * pviC):PV(sData

, mD, vcD, esData , pviC){
myCV[UL]->exist = true;
myCV[UR]->exist = false;
myCV[LL]->exist = true;
myCV[LR]->exist = false;

}

ORPV: :ORPV(void)

{
}

308

Listing B.23. OLULPV.h
/* @author James Geraci

#ifndef _OLULPV.H
#define _OLULPV-I
#include "PV.h"

class OLULPV :
public PV

{
public:
OLULPV(void);
OLULPV(volumeSpatialData , matrixData *, volumeChemData*, electrodeSizeData *,

PVIConditions,) ;
public:

~OLULPV(void);
protected :

void computelVdoc (void);

#endif

309

Listing B.24. OLULPV.cpp

* @author James Geraci
* creates an Outer Left

#include "StdAfx .h"
#include "OLULPV.h"

OLULPV: : OLULPV(void)
{
}

OLULPV:
vcD,

Upper Left PV

:OLULPV(volumeSpatialData * sData , matrixData * mD, volumeChemData *

myCV
myCV
myCV
myCV

OLULPV:

{

electrodeSizeData* esData , PVIConditions pviC):PV(sData
, mD, vcD, esData , pviC){

[UL]->exist = false;
[UR]->exist = false;
[LL]->exist = false;
[LR]->exist = true;

: ~ OLULPV(void)

void OLULPV:: computelVdoc(void) {
for(int index = 0; index < 4; index++){

if (myCV[index]->exist) {
// iVptr[philc][O] += myCV[index]->setdocCV

iVptr [JRow+1][0] += myCV[index]->setdocCV ()
+ mySign*myCV[index]->inCurrentCV ();

return;

310

Listing B.25. BPV.h

Bottom
to any
James

Potential Volume
region

Geraci

#ifndef _BPVH
#define _BPVH
#include "PV.h"

class BPV :
public PV

public:

public:

BPV(void);
BPV(volumeS patialData *, matrixData *, volumeChemData ,

electrodeSizeData, ,PVIConditions,) ;

~BPV(void);

protected :

#end
#endif

311

* BPV. h
* Generic
" @author

Listing B.26. BPV.cpp

* BPV. cpp Bottom Row PV

* Generic to all regions
* @author James Geraci

#include "StdAfx .h"
#include "BPV.h"

BPV: :BPV(void)

{
}

BPV::BPV(volumeSpatialData sData , matrixData * mD,
volumeChemData vcD , electrodeSizeData esData,

PVIConditions pviC) :PV(sData , mD, vcD, esData , pviC){

myCV[UL]->exist = true;
myCV[UR]->exist = true;
myCV[LL]->exist = false;
myCV[LR]->exist = false;

BPV:: BPV(void)

{
}

312

Listing B.27. CV.h

, @author James Geraci

#ifndef _CVH
#define _CVIH
#include "StdAfx .h"
class FV;

class CV
{
public:

CV(void);
public:

pCV(void);

double returnmbScale (void);
void setpvVolume(double);
virtual
virtual
void in
virtual
virtual
virtual
virtual
virtual

void setupPressurePointers (double) = 0;
void setupConcentrationPointers (double) = 0;

itialPressure (void) ;
void computeAVEyPressures(void) = 0;
void computeAVExPressures(void) = 0;
void computeAVEhpy (void) = 0;
void computeAVEhpx (void) = 0;
void myNvalues(void) = 0;

void setupMyNbrHood(void);
bool exist;

// double Qscalex;
// double Qscaley;
double Qvalue(int);
double pQvalue (int);
// void setQscalex(
// void setQscaley(
FV myFV;
double mydx;
double mydy;
double mydz;

double
double
double

void);
void);

Qdx;
Qdy;
Qdz;

313

double mydx2;
double invmydx;
double invmydx2;
double mydxsqrd;

double mydy2;
double invmydy;
double invmydy2;
double mydysqrd;

double mydz2;
double invmydz;
double invmydz2;
double mydzsqrd;

void setPosition(int);
double dhdtCV;
double dhdt;
double ddensitydt;
double dmvxdt;
double dmvxdtCV;
double dmvydt;
double dmvydtCV;
double dp_yCV;
double pdensity;
double density;
double docCV;

double ekCV;

void computedxSize(void);
void computedySize(void);
void computedzSize (void);
void computemyVolume (void) ;
double returnmyVolume (void);
void setDensityCV (void);

// MB
double setdhdt(void);
double setddensitydt (void);
double setdhdtCV (void);
double setDiffusionCV (void);
double setConvectionCV (void);

//double myJhp(void);

314

//double myJxhp(void);
//double myJyhp(void);
//double myJxyhp(void);

void myMBJhp(int);
void myMBJxNhp(int);
void myMBJyNhp(int);
void myMBJxyNhp(int);
double divME (double ,double);
double divMEx (double, double ,double);
double divMEy (double, double ,double);
double divxN(double ,double);
double divxNx (double, double ,double);
double divxNy (double, double ,double);
double divyN(double , double);
double divyNx (double, double ,double);
double divyNy(double, double ,double);
double divxyN(double double);
double divxyNx (double , double , double);
double divxyNy (double, double , double);
double myFdx(void);
double myFdy(void);

// DOC
double setdocCV (void);
double setdocCVjl (void);
double setdocCVjlx (void);
double setdocCVjly (void);
double setdocCVse (void);
double myFjlx (void);
double myFsex(void);
double myFjly(void);
double myFsey(void);
double myJphil(void);
//double myDOCJphil(void) ;
// double myJyphil (void);
//double myDOCJhp(int);
//double myDOCJxhp(int);
//double myDOCJyhp(int) ;
void myDOCJhp(int, double);
void myDOCJxNhp(int, double);
void myDOCJyNhp(int , double) ;
void myDOCJxyNhp(int , double);
void myDOCJphil(int, double);
void myDOCJxNphil(int , double);
void myDOCJyNphil(int double);
void myDOCJxyNphil(int, double);

315

void myDOCJphis(int);
void myDOCJxNphis(int);
void myDOCJyNphis(int);
void myDOCJxyNphis(int);
double inCurrentCV (void); // Used only with the top row

// EK

double setekCV(void);
double myArea(void);
double expTerm(void);
double ekJeps (void);
void ekJhp(int);
void ekJxNhp (int);
void ekJyNhp (int);
void ekJxyNhp(int);

void ekJphis (int);
void ekJxNphis (int);
void ekJyNphis(int);
void ekJxyNphis(int);

void ekJphil(int);
void ekJxNphil(int);
void ekJyNphil(int);
void ekJxyNphil (int);

// Conservation of Momentum X
double setdmvxdt (void);
double setdmvxdtCV (void);
double comvXsetAdvection xFaceCV(void);
double comv XsetAdvection_yFaceCV (void);
double comvXsetPressurexFaceCV (void);
virtual double setdpdxCV(void) = 0;
double comvXsetViscosity xFaceCV(void);
double comvXsetViscosityyFaceCV (void);
double setGravitySourcexCV (void);
double comvxJhp(void);
virtual double comv_xJp(void) = 0;
double comvxJv_x(void);

// Conservation of Momentum Y
double setdmv_ydt(void);
double setdmvydtCV(void);
double comv_YsetAdvection_xFaceCV (void);
double comv _YsetAdvectionyFaceCV(void);
double comv_YsetPressure_yFaceCV (void);
virtual double setdpdyCV(void) = 0;
double comv_YsetViscosity_xFaceCV (void);

316

double
double
double
double

comv _YsetViscosity_yFaceCV (void) ;
setGravitySource_yCV (void);
comv_yJhp (void) ;
comvyJv_y (void) ;

// Continuity Equation
double setContEqCV(void);
double contEqJv_x(void);
double contEqJvy(void);
double contEqJhp(void);
double contEqJthp(void);
double contEqJbhp(void);
double contEqJphp(void);
double contEqJnhp(void);

protected :
double
double
double
double
double
double

int my
double
double
double
double
double
double
double
double
double
double

public:

myxNorm;
myyNorm;
mydxSide;
mydySide;
nbrdxSide;
nbrdySide;

Position;
gls ;
gsl;
overp;
myexpTerm;
myFVdx;
mzFVdy;
myVolume;
pvVolume;
myPVvolumeFraction;
Area;

double * outerXdensityAVE;
double * outerYdensityAVE;

// Data Matrix Pointers
double * fluxVptr;
double pVptr;
double * Vptr;
double** iVptr;
double** Jacobptr;
double avePressures _y;
double avePressures _x;
double * AVEhpx;

317

double* AVEhpy;
double* Pptr [4];
double * Cptr [4];

// -Position information for Cell
int myColumn;
in t myRow;
int myZrow;
int JRow;
int JRowBuffer;

// Positioning Data
int rowLength;
int maxPvIndex;

// FV grid Information
int numFVColumns;
int numFVRows;

// Used in Calculating Addresses
int prevV;
int presV ;
int nextV;

int topV;
int lowerV;
// present volume 's properties
int hpc;
int phisc;
int philc;
int pc;
int v_yc;
int v_xc;
// previous volume 's properties
int phpc;
int pphisc;
int pphilc;
int ppc;
int pvyc;
int pv_xc;
// next volume 's properties
int nhpc;
int nphisc;
int nphilc;
int npc;
int nv_yc;
int nv_xc;

318

// top previous volume 's properties
int tphpc;
int tpphisc;
int tpphilc ;
int tppc;
int tpv_yc;
int tpvxc;
// top next volume 's properties

int tnhpc;
int tnphisc;
int tnphilc;
int tnpc;
int tnv_yc;
int tnv_xc;
// top volume 's properties
int thpc;
int tphisc;
int tphilc;
int tpc;
int tvyc;
int tv xc;

// lower previous volume 's properties

int bphpc;
int bpphisc;
int bpphilc;
int bppc;
int bpvyc;
int bpvxc;
// lower next volume 's properties
int bnhpc;
int bnphisc;
int bnphilc;
int bnpc;
int bnvyc;
int bnv_xc;

// lower volume 's properties

int bhpc;
int bphisc;
int bphilc;
int bpc;
int bv_yc;
int bv_xc;

// present volume 's properties for Jacobian Indexing
int jhpc;

319

int jphisc;
int jphilc;
int jpc;
int jvyc;
int jvxc;

// previous volume 's properties for Jacobian Indexing
int jphpc;
int jpphisc;
int jpphilc;
int jppc;
int jpv_yc;
int jpv_xc;

// next volume 's properties for Jacobian Indexing
int jnhpc;
int jnphisc;
int jnphilc;
int jnpc;
int jnvyc;
int jnvxc;

// top previous volume 's properties for Jacobian Indexing
int jtphpc;
int jtpphisc;
int jtpphilc;
int jtppc;
int jtpvyc;
int jtpvxc;

// top next volume 's properties for Jacobian Indexing
int jtnhpc;
int jtnphisc;
int jtnphilc;
int jtnpc;
int jtnvyc;
int jtnvxc;

// top volume 's properties for Jacobian Indexing
int jthpc;
int jtphisc;
int jtphilc;
int jtpc;
int jtvyc;
int jtvxc;

// lower previous volume 's properties for Jacobian Indexing
int jbphpc;
int jbpphisc;
int jbpphilc;
int jbppc;
int jbpv_yc;
int jbpvxc;

320

// lower next volume 's properties for Jacobian Indexing
int jbnhpc;
int jbnphisc;
int jbnphilc;
int jbnpc;
int jbnv_yc;
int jbnvxc;

// lower volume 's properties for Jacobian Indexing
int jbhpc;
int jbphisc;
int jbphilc;
int jbpc;
int jbvyyc;
int jbvxc;

/* Important for Quadrature */
/* xNorm direction values */
int myxNhpc;
int myxNphisc;
int myxNphilc;
int myxNpc;
int myxNvyc;
int myxNvxc;
/* yNorm direction values */
int myyNhpc;
int myyNphisc;
int myyNphilc;
int myyNpc;
int myyNvyc;
int myyNvxc;
/* xyNorm direction values */
int myxyNhpc;
int myxyNphisc;
int myxyNphilc;
int myxyNpc;
int myxyNvyc;
int myxyNvxc;

int myQnbrs [24];

/* Important for Quadrature */
/* jxNorm direction values */
int jxNhpc;
int jxNphisc;
int jxNphilc;
int jxNpc;
int jxNvyc;

321

int jxNv_xc;
/* yNorm direction values */
int jyNhpc;
int jyNphisc;
int jyNphilc;
int jyNpc;
int jyNvyc;
int jyNv xc;
/* xyNorm direction values */
int jxyNhpc;
int jxyNphisc;
int jxyNphilc;
int jxyNpc;
int jxyNvyc;
int jxyNv_xc;

double myQhpc;
double myQphisc;
double myQphilc;
double myQpc;
double myQvyc;
double myQvxc;

};

#endif

322

Listing B.28. CV.cpp

* CV. cpp
* @author James Geraci
* Implements the equations COP, MB, EK which control
* the change of the concentration , phil , and phis with time
* also sets up the Jacobian

#include "StdAfx .h"
#include "CV.h"
#include <stdio.h>

CV::CV(void)

{
myFV =(FV) NULL;
exist = true;

}

CV: :-CV(void)

{
}

void CV:: setupMyNbrHood (void) {
/* my values */
myQnbrs [0] = hpc;
myQnbrs [1] = philc;
myQnbrs [2] = phisc;
myQnbrs [3] = pc;
myQnbrs [4] = v_yc;
myQnbrs [5] = v.xc;

/* xNorm direction values */
myQnbrs [6] = myxNhpc;
myQnbrs [7] = myxNphilc;
myQnbrs [8] = myxNphisc;
myQnbrs [9] = myxNpc;
myQnbrs [10] = myxNv.yc;
myQnbrs [11] = myxNvxc;
/* yNorm direction values */
myQnbrs [1 2] = myyNhpc;
myQnbrs [13] = myyNphilc;
myQnbrs [14] = myyNphisc;
myQnbrs [15] = myyNpc;
myQnbrs [16] = myyNv-yc;
myQnbrs [1 7] = myyNvxc;
/* xyNorm direction values */

323

myQnbrs [18] = myxyNhpc;
myQnbrs [19] = myxyNphilc;
myQnbrs [20] = myxyNphisc;
myQnbrs [2 1] = myxyNpc;
myQnbrs [22] = myxyNv_yc;
myQnbrs [23] = myxyNv xc;
return;

};

double CV:: returnmbScale (void) {
return myFV->mbScale;

};

void CV:: setPosition(int x){
myPosition = x;

}

void CV:: computedxSize (void){
mydx = (myFV->returndx ())/2;
mydx2 = 2*mydx;
invmydx = 1/mydx;
invmydx2 = 1/mydx2;
mydxsqrd = mydx*mydx;
return;

}

void CV:: computedySize (void){
mydy = (myFV->returndy())/2;
mydy2 = 2*mydy;
invmydy = 1/mydy;
invmydy2 = 1/mydy2;
mydysqrd = mydy*mydy;
return;

}

void CV:: computedzSize (void) {
mydz = (myFV->returndz());
mydz2 = 2*mydz;
invmydz = 1/mydz;
invmydz2 = 1/mydz2;
mydzsqrd = mydz*mydz;
return;

I

void CV:: computemyVolume(void) {
myVolume = mydx*mydy*mydz;
myFV->setCVvolume (myPosition , myVolume);

324

return;
}

double CV:: returnmyVolume (void) {
return myVolume;

}

void CV:: setpvVolume(double vol){
pvVolume = vol;
myPVvolumeFraction = myVolume/pvVolume;
myFV->setCVvolumeRatio (myPosition , myPVvolumeFraction) ;
return;

}

void CV:: initialPressure(void){
*(Pptr [RIGHT]) = *(Pptr [TOP]);
*(Pptr [LEFT]) = (Pptr [TOP]);
*(Pptr [BOTIDM]) = (Pptr [TOP])

- density *gy *(1+myFV->returnVECy () *(Vptr [hpc]-myFV->hnot)) *mydy;
return;

}

void CV:: setDensityCV (void) {
density = slope*(Vptr [hpc])+intercept;
pdensity = slope *(pVptr[hpc])+intercept;
return;

};

double CV:: inCurrentCV (void){
return mydx* l;

/****** Jacobian Derivate Values ******/

double CV:: divME(double MPx, double MPy) {
return divMEx(MPx,(double) 1.0 ,(double) 1.0) + divMEy(MPy,(double) 1.0,(

double) 1.0);

}

double CV::divMEx(double MPx, double Qhp, double QxNhp){
return - MPx*(mydy*myxNorm(mydxSide*myQscale/Qhp + nbrdxSide myQxNscale

/QxNhp)) /myFV->returnQdx () ;
}

325

double CV:: divMEy(double MPy, double Qhp, double QyNhp){
return - MPy*(mydx*myyNorm*(mydySide*myQscale/Qhp + nbrdySide*myQyNscale /

QyNhp)) /myFV->returnQdy() ;
}

/* xN */

double CV:: divxN(double MPx,double MPy){
return divxNx(MPx,(double) 1.0 ,(double) 1.0) + divxNy(MPy,(double) 1.0 ,(

double) 1.0);
}

double CV::divxNx(double MPx, double Qhp, double QxNhp){
return - MPx*(mydy*myxNorm*(mydxSide*myQxNscale/Qhp + nbrdxSide*myQscale/

QxNhp)) /myFV->returnQdx () ;
}

double CV::divxNy(double MPy, double Qhp, double QyNhp){
return - MPy*(mydx*myyNorm*(mydySide*myQxNscale/Qhp + nbrdySide myQxyNscale

/QyNhp)) /myFV->return Qdy () ;
}
/, **** ,/

/* yN */

double CV:: divyN(double MPx, double MPy){
return divyNx(MPx,(double) 1.0 ,(double) 1.0) + divyNy(MPy,(double) 1.0,(

double) 1.0);
}

double CV:: divyNx (double MPx, double Qhp, double QxNhp){
return - MPx*(mydy*myxNorm (mydxSide*myQyNscale/Qhp + nbrdxSide*

myQxyNscale/QxNhp)) /myFV->returnQdx () ;
}

double CV:: divyNy (double MPy, double Qhp, double QyNhp){
return - MPy*(mydx*myyNorm*(mydySide*myQyNscale/Qhp + nbrdySide *myQscale/

QyNhp)) /myFV->returnQdy () ;
}
/,**** ,/

/* xyN */

double CV:: divxyN(double MPx, double MPy){
return divxyNx(MPx,(double) 1.0,(double) 1.0) + divxyNy(MPy,(double) 1.0,(

double) 1.0);
}
double CV:: divxyNx(double MPx, double Qhp, double QxNhp){

326

return - MPx*(mydy*myxNorm*(mydxSide*myQxyNscale/Qhp + nbrdxSide*
myQyNscale /QxNhp)) /myFV->returnQdx () ;

}

double CV:: divxyNy(double MPy, double Qhp, double QyNhp){
return - MPy*(mydx*myyNorm*(mydySide*myQxyNscale/Qhp + nbrdySide*

myQxNscale /QyNhp)) /myFV->returnQdy () ;

}
/1 ** ,/

/*********** Compute Quadrature Values ****************************/

double CV::Qvalue(int Q){
return myQscale Vptr [myQnbrs [Q]]

+ myQxNscale* Vptr [myQnbrs [Q+myQxNnbr]]
+ myQyNscale * Vptr [myQnbrs [Q+myQyNnbr]]
+ myQxyNscale* Vptr [myQnbrs [Q+myQxyNnbr]];

}

double CV::pQvalue(int dk){
return myQscale*pVptr [myQnbrs [dk]]

+ myQxNscale*pVptr [myQnbrs [dk+myQxNnbr]]
+ myQyNscale *pVptr [myQnbrs [dk+myQyNnbr]]
+ myQxyNscale*pVptr [myQnbrs [dk+myQxyNnbr]];

/******************* Work for EK****************************/

double CV:: setekCV(void) {
// overp = (Vptr[phisc] - Vptr[philc] - myFV->phieq);
overp = (Qvalue(qphisc) - Qvalue(qphilc) - myFV->phieq);
gls = ((myFV->als)*N*F)/(R*myFV->T);
gsl = ((myFV->asl)*N*F)/(R*myFV->T);
// ekCV = -myArea () *(myFV->io)*(Vptr[hpc]/myFV->hnot)*expTerm ()mydx*

mydy;
ekCV = -myArea () *(myFV->io) *(Qvalue (qhpc) /myFV->hnot) *expTerm () *mydx*mydy

return ekCV;
};

double CV:: myArea(void) {
if(I >= 0) // discharge

{
Area = (myFV->Amax)*(myFV->soceta ());

}
else{

Area = (myFV->Amax)*(1-myFV->soceta ());
}

327

return Area;

double CV:: expTerm(void) {
myexpTerm = exp(gsl*overp) - exp(-gls*overp);
return myexpTerm;

};

double CV:: ekJeps (void) {
return 0;

void CV:: ekJhp (int JR) {
Jacobptr [JR] [jhpc] += -myArea () *((myFV->io myQscale) /(myFV->hnot))*

myexpTerm*mydx*mydy;
return;

};

void CV::ekJxNhp(int JR){
Jacobptr [JR] [jxNhpc] += -myArea ()((myFV->io myQxNscale)/(myFV->hnot))*

myexpTerm*mydx*mydy;
return;

};

void CV::ekJyNhp(int JR){
Jacobptr [JR] [jyNhpc] += -myArea() *((myFV->io*myQyNscale)/(myFV->hnot))*

myexpTerm*mydx*mydy;
return;

};

void CV::ekJxyNhp(int JR){
Jacobptr [JR] [jxyNhpc] += -myArea() *((myFV->io*myQxyNscale)/(myFV->hnot))

*myexpTerm*mydx*mydy;
return;

};

void CV::ekJphis(int JR){
Jacobptr [JR] [j phisc] += -myArea ()*myFV->io*(Qvalue (qhpc)/myFV->hnot)*

myQscale *(gsl *exp (gsl * overp)+gls *exp(- gls *overp)) *mydx*mydy;
return;

};

void CV:: ekJxNphis (int JR){
Jacobptr [JR][jphisc] += - myArea () *myFV->io *(Qvalue (qhpc)/myFV->hnot),

myQxNscale *(gsl *exp(gsl *overp)+gls *exp(- gls * overp)) *mydx*mydy;
return ;

328

void CV::ekJyNphis(int JR){
Jacobptr [JR][jphisc] += -myArea()*myFV->io*(Qvalue(qhpc)/myFV->hnot)*

myQyNscale (gsl *exp (gsl *overp)+gls *exp(-gls *overp))*mydx*mydy;
return;

void CV::ekJxyNphis(int JR){
Jacobptr [JR][jphisc] += -myArea()*myFV->io*(Qvalue(qhpc)/myFV->hnot)*

myQxyNscale(gsl exp(gsl overp)+gls exp(- gls overp))*mydx*mydy;
return;

};

void CV::ekJphil(int JR){
Jacobptr [JR][jphilc] += myArea()*myFV->io*(Qvalue(qhpc)/myFV->hnot)*

myQscale*(gsl*exp(gsl*overp)+gls*exp(-gls*overp))*mydx*mydy;
return;

void CV::ekJxNphil(int JR){
Jacobptr [JR][jphilc] += myArea()*myFV->io*(Qvalue(qhpc)/myFV->hnot)*

myQxNscale *(gsl *exp(gsl *overp)+gls *exp(- gls *overp))*mydx*mydy;
return;

void CV::ekJyNphil(int JR){
Jacobptr [JR][jphilc] += myArea()*myFV->io*(Qvalue(qhpc)/myFV->hnot)*

myQyNscale *(gsl *exp(gsl *overp)+gls *exp(- gls *overp)) *mydx*mydy;
return;

void CV::ekJxyNphil(int JR){
Jacobptr [JR][jphilc] += myArea()*myFV->i o (Qvalue(qhpc)/myFV->hnot)*

myQxyNscale*(gsl *exp (gsl *overp)+gls *exp(- gls *overp)) *mydx*mydy;
return;

/* *** */
/******************** Work for DOC **************************1 /

double CV:: setdocCV(void) {
docCV = setdocCVjl() + setdocCVse();
return docCV;

};

329

double CV:: setdocCVjl (void) {
return setdocCVjlx () + setdo cCVjly();

double CV:: setdocCVjlx(void){
return myFjlx()*mydy;

double CV:: setdocCVjly (void){
return myFjly()*mydx;

};

double CV:: setdocCVse (void) {
return myFsex()*mydy + myFsey()*mydx;

};

double CV:: myFjly (void) {
return (myyNorm)*myFV->returnFjly (myPosition);

double CV::myFjlx (void){
return myxNorm*myFV->returnFjlx

};

double CV:: myFsey(void) {
return myyNorm*myFV->returnFsey

};

double CV::myFsex(void) {
return myxNorm*myFV->returnFsex

(myPosition);

(myPosition) ;

(myPosition) ;

/* *** DOC PHIL J ****** */

void CV::myDOCJphil(int JR,double scale){
Jacobptr [JR][jphilc] += scale *divME(myFV->returnKeffx () ,myFV->returnKeffy

());
return;

};

void CV::myDOCJxNphil(int JR, double scale){
Jacobptr [JR][jxNphilc] += scale*divxN(myFV->returnKeffx () ,myFV->

returnKeffy ());
return ;

330

void CV::myDOCJyNphil(int JR, double scale){
Jacobptr [JR][jyNphilc] += scale*divyN(myFV->returnKeffx () ,myFV->

returnKeffy ());
return;

};

void CV::myDOCJxyNphil(int JR, double scale){
Jacobptr [JR][jxyNphilc] += scale*divxyN(myFV->returnKeffx (),myFV->

returnKeffy ());
return;

};

/* ***** DOC HP J ****** */

void CV::myDOCJhp(int JR,double scale){
Jacobptr [JR][jhpc] += scale *(divMEx(myFV->returnKeffx () ,(double) 1.0,(double

)1.0)
+ divMEy(myFV->returnKeffy () ,(double) 1.0 ,(double)

1.0));
return;

};

void CV::myDOCJxNhp(int JR, double scale){
Jacobptr [JR][jxNhpc] += scale *(divxNx(myFV->returnKeffx () ,(double) 1.0 ,(

double) 1.0)
+ divxNy(myFV->returnKeffy () ,(double) 1.0,(

double) 1.0));
return;

void CV::myDOCJyNhp(int JR, double scale){
Jacobptr [JR][jyNhpc] += scale *(divyNx(myFV->returnKeffx () ,(double) 1.0,(

double) 1.0)
+ divyNy(myFV->returnKeffy () ,(double) 1.0 ,(

double) 1.0));
return;

};

void CV::myDOCJxyNhp(int JR, double scale){
Jacobptr [JR][jxyNhpc] += scale *(divxyNx(myFV->returnKeffx () ,(double) 1.0,(

double) 1.0)
+ divxyNy(myFV->returnKeffy () ,(double)

1.0 ,(double) 1.0));
return;

331

// HP Jacobian Contributions
double CV::myDOCJhp(int JR){

return mydy*(myFV->returnolsKscalex () /(myFV->returndx()))
+ mydx*myFV->returnolsKscaley ()/(myFV->returndy ());

},

double CV::myDOCJxhp(int JR){
return -mydy*myFV->returnolsKscalex ()/(myFV->returndx ());

};

double CV::myDOCJyhp(int JR){
return -mydxmyFV->retu rno lsKscaley()/(myFV->returndy());

};

/********************* /

/* *** DOC PHIS J ******s s

void CV::myDOCJphis(int JR){
Jacobptr[JR][jphisc] += divME(myFV->returnsigeffx(),myFV->returnsigeffy ()

return;
};

void CV::myDOCJxNphis(int JR){
Jacobptr[JR][jxNphisc] += divxN(myFV->returnsigeffx (),myFV->returnsigeffy

());
return;

};

void CV::myDOCJyNphis(int JR){
Jacobptr [JR][jyNphisc] += divyN(myFV->returnsigeffx () ,myFV->returnsigeffy

());
return;

};

void CV::myDOCJxyNphis(int JR){
Jacobptr[JR][jxyNphisc] += divxyN(myFV->returnsigeffx () ,myFV->

returnsigeffy ());
return;

};

/******************* Time Derivatives for MB *************** */
double ****CV:: setdhdt (void)******* */

double CV:: setdhdt(void){

332

dhdt = (Qvalue(qhpc) -
return dhdt;

pQvalue (qhpc)) / dt;

double CV:: setddensitydt(void){
ddensitydt = slope *dhdt;
return ddensitydt;

double CV:: setdhdtCV (void) {
dhdtCV = myFV->returneps ()*dhdt*mydx*mydy;
return dhdtCV;

double CV:: setDiffusionCV(void){
return myFdx()*mydy + myFdy()*mydx;

};

double CV:: setConvectionCV (void){
return 0;

};

void CV::myMBJhp(int JR){
Jacobptr [JR][jhpc] += (mydx*mydy*myFV->returneps ()*myQscale) /dt

+ divME(myFV->returnDeffx () ,myFV->returnDeffy ());
return;

};

void CV::myMBJxNhp(int JR){
Jacobptr [JR][jxNhpc] += (mydx*mydy*myFV->returneps()*myQxNscale)/dt

+ divxN(myFV->returnDeffx () ,myFV->returnDeffy ());
return;

};

void CV::myMBJyNhp(int JR){
Jacobptr [JR] [jyNhpc] += (mydx*mydy*myFV->returneps ()*myQyNscale) / dt

+ divyN(myFV->returnDeffx () ,myFV->returnDeffy ());
return;

void CV::myMBJxyNhp(int JR){
Jacobptr [JR][jxyNhpc] += (mydx*mydy*myFV->returneps ()*myQxyNscale) / dt

+ divxyN(myFV->returnDeffx () ,myFV->returnDeffy ());
return;

};double CV:

double CV::myFdx(void){

333

return myxNorm*myFV->returnFdx (myPosition);

double CV:: myFdy(void) {
return myyNorm*myFV->returnFdy (myPosition);

/***************** Conservation of Momentum Y *************** */

double CV:: setdmv _ydt (void)

dmv_ydt = (density*Vptr [vye] - pdensity *pVptr [v_ye])/dt;
return dmvydt;

double CV::setdmvydtCV (void) {
dmv_ydtCV = dmvydt*mydx*mydy;
return dmv_ydtCV;

};

double CV:: comv_YsetAdvection_xFaceCV (void){
return * outerXdensityAVE *myxNorm*mydy* Vptr [v xc]* Vptr [vye yc];

double CV:: comv_YsetAdvection_yFaceCV (void) {
return * outerYdensityAVE *myyNorm*mydy* Vptr [vyc] Vptr [vyc];

double CV:: comv_YsetPressure_yFaceCV (void) {
return myFV->returnFp_y (myPosition);

double CV:: comv_YsetViscosity_xFaceCV (void) {
return myxNorm mydy*Vptr [v yc]myFV->returnFvi

};

double CV:: comv_YsetViscosity_yFaceCV (void) {
return myyNorm*mydx*Vptr [vyc]*myFV->returnFvi

sc_x (myPosition);

sc_y (myPosition) ;

double CV:: setGravitySource _yCV (void) {
return -density g _y *(l+myFV->returnVECy () *(Vptr [hpc] - myFV->hnot))

mydx*mydy;

};double CV

double CV:: comvyyJv_y (void){

334

return (mydx*mydy* density) dt;

double CV::comvyJhp(void) {
return (mydx*mydy*Vptr [v_yc]* slope) / dt

- gy mydx*mydy*
(slope +2*myFV->returnVECy () *slope *Vptr [hpc]+ intercept -slope myFV->hnot)

};

/***************** Conservation of Momentum X *************** */

double CV:: setdmvy _xdt (void)

dmv_xdt = (density*Vptr [vxc] - pdensity *pVptr[v_xc]) /dt;
return dmv_xdt;

double CV:: setdmvxdtCV (void) {
dmv_xdtCV = dmvxdt*mydx*mydy;
return dmv_xdtCV;

double CV:: comv_XsetAdvection_xFaceCV (void) {
return * outerXdensityAVE *myxNorm*mydy* Vptr [vxc]i

double CV:: comvXsetAdvectionyFaceCV (void) {
return * outerYdensityAVE *myyNorm*mydy* Vptr [v.xc] *

Vptr [vxc];

Vptr [vyc];

double CV:: comvXsetPressurexFaceCV(void) {
return myFV->returnFp_x (myPosition) ;

double CV:: comv_XsetViscosityxFaceCV (void) {
return myxNorm*mydy*Vptr [v xc]*myFV->returnFvisc _x (myPosition);

double CV:: comvXsetViscosityyFaceCV (void) {
return myyNorm*mydx*Vptr [v_xc]*myFV->returnFvisc _y (myPosition);

};

double CV:: setGravitySource xCV (void) {
return density *gx*(1l+myFV->returnVECx () *(Vptr [hpc] - myFV->hnot)) mydx

335

* mydy ;

double CV:: comvxJvx (void) {
return (mydx*mydy*density)/dt;

double CV::comvxJhp (void) {
return (mydx*mydy*Vptr[v xc]*slope)/dt

- g_x*mydx*mydy*
(slope + intercept + 2*myFV->returnVECy()*slope*(Vptr[hpc]

));
myFV->hnot

*/ ********************Continuity Equation*/
/, **************** Continuity Equation ******************* /

double CV:: setContEqCV(void) {
return ddensitydt *mydx*mydy

+ * outerXdensityAVE *mydy*myxNorm* Vptr [v_xc]
+ * outerYdensityAVE *mydx*myyNorm* Vptr [v yc];

double CV:: contEqJvx(void){
return * outerXdensityAVE *mydy*myxNorm;

};

double CV:: contEqJvy(void){
return * outerYdensityAVE*mydx*myyNorm;

};

double CV:: contEqJhp (void) {
return slope*mydx*mydy

+ (Vptr [vxc]myxNorm*mydy
+ Vptr[v_yc]*myyNorm*mydx)/2;

};

double CV:: contEqJthp (void){
return (myyNorm* Vptr[v_yc]*mydx)/2;

};

double CV:: contEqJbhp(void){
return (myyNorm*Vptr [v_yc]mydx) /2;

336

double CV:: contEqJphp(void) {
return (myxNorm*Vptr[v_xc]*mydy)/2;

};
double CV:: contEqJnhp (void) {

return (myxNorm*Vptr[vxc]*mydy)/2;

337

Listing B.29. ULCV.h

@author James Geraci

#ifndef _ULCVH
#define _ULCVH
#include "StdAfx .h"
#include "CV.h"
//class FV;

class ULCV
public CV

{
public:

ULCV(void) ;
public:

_ ULCV(void);
void setupPressurePointers (double);
void setupConcentrationPointers (double);
void computeAVEyPressures (void);
void computeAVExPressures (void);
void computeAVEhpy (void);
void computeAVEhpx (void);
double setdpdxCV (void);
double setdpdyCV (void);
double comvxJp (void);
void myNvalues(void);

};

#endif

338

Listing B.30. ULCV.cpp

* ULCV. cpp
* @author James Geraci
* Implements the equations COP, MB, EK which
* the change of the concentration , phil , and
* also sets up the Jacobian

#include
#include
#include
#include
#include

"StdAfx . h"
"ULCV. h"
<stdio .h>
"CV. h"

ULCV:: ULCV(void) {
myxNorm = - 1;
myyNorm = 1;
mydxSide = 1;
mydySide = -1;
nbrdxSide = -1;
nbrdySide = 1;

}

ULCV: :ULCV(void) {

void ULCV:: myNvalues(void) {
/* xNorm direction values */
myxNhpc = phpc;
myxNphisc = pphisc;
myxNphilc = pphilc;
myxNpc = ppc;
myxNvyc = pv_yc;
myxNvxc = pvxc;
/* yNorm direction values */
myyNhpc = thpc;
myyNphisc = tphisc;
myyNphilc = tphilc;
myyNpc = tpc;
myyNv_yc = tv_yc;
myyNv_xc = tv _xc;
/* xyNorm direction values *,

myxyNhpc = tphpc;
myxyNphisc = tpphisc ;
myxyNphilc = tpphilc;
myxyNpc = tppc ;
myxyNv_yc = tpv_yc;

/

339

control

phis with time

myxyNvxc = tpv_xc;

/* Jacobian Points */
/* xNorm direction values */
jxNhpc = jphpc;
jxNphisc = jpphisc ;
jxNphilc = jpphilc;
jxNpc = jppc;
jxNvyc = jpvyc;
jxNv_xc = jpvxc;
/* yNorm direction values ,/
jyNhpc = jthpc;
jyNphisc = jtphisc;
jyNphilc = jtphilc ;
jyNpc = jtpc;
jyNvyc = jtvyc;
jyNvxc = jtvxc;
/* xyNorm direction values •
jxyNhpc = jtphpc
jxyNphisc = jtpphisc ;
jxyNphilc = jtpphilc ;
jxyNpc = jtppc;
jxyNv_yc = jtpv _yc;
jxyNv_xc = jtpv_xc;

/

return;
};

void ULCV: setupPressurePointers (double vol){
// printf("You are using this version of the function\n");
Pptr [TOP] = &(avePressures y [topV]);
Pptr [RIGHT] = &(Vptr [pc]) ;
Pptr [LEFT] = &(avePressures _x [myColumn-l+myRow*numFVColumns]);
Pptr [BOTIOM] = &(Vptr[pc]);
return;

}

void ULCV:: setupConcentrationPointers (double vol){
Cptr [TOP] = &(AVEhp_y[topV]);
Cptr [RIGHT] = &(Vptr [hpc]) ;
Cptr [LEFT] = &(AVEhp_x [myColumn-l+myRow*numFVColumns]) ;
Cptr [BOTIOM] = &(Vptr [hpc]);
outerXdensityAVE = Cptr[LEFT];
outerYdensityAVE = Cptr[TOP];
return;

v

void ULCV:: computeAVEyPressures (void) {

340

*(Pptr[TOP]) = (Vptr[tpc] + Vptr[pc])/2;
return;

}

void ULCV:: computeAVExPressures (void) {
*(Pptr[LEFT]) = (Vptr[pc]+Vptr[ppc]) /2;
return;

void ULCV:: computeAVEhpy (void) {
*(Cptr[TOP]) = (Vptr[thpc] + Vptr[hpc])/2;
return;

void ULCV:: computeAVEhpx (void) {
*(Cptr[LEFT]) = (Vptr[hpc] + Vptr[phpc])/2;

return;

double ULCV:: setdpdxCV (void) {
return mydy*(Vptr [pc] - (Vptr [pc]+Vptr [ppc])/2);

I

double ULCV:: setdpdyCV (void) {
return mydx((Vptr [tpc]+Vptr [pc])/2- Vptr [pc]);

double ULCV:: comv_xJp (void) {
return -(mydy*Vptr [pc]/2);

}

341

Listing B.31. URCV.h

* @author James Geraci

#ifndef _URCVIH
#define _URCVTI
#include "StdAfx .h"
#include "CV.h"
//class FV;

class URCV:public CV

{
public:

URCV(void) ;
public:

SURCV(void);
void setupPressurePointers(double);
void setupConcentrationPointers (double);
void computeAVEyPressures (void);
void computeAVExPressures(void);
void computeAVEhpy (void) ;
void computeAVEhpx (void) ;
double setdpdxCV (void);
double setdpdyCV (void);
double comv_xJp(void);
void myNvalues(void);

};#nf

#endif

342

Listing B.32. URCV.cpp

* URCV. cpp
* @author James Geraci
* Implements the equations COP, MB, EK which control
* the change of the concentration , phil , and phis with time
* also sets up the Jacobian

#include "StdAfx .h"
#include "URCV.h"
#include <stdio.h>

URCV:: URCV(void)

myxNorm = 1;
myyNorm = 1;
mydxSide = - 1;
mydySide = - 1;
nbrdxSide = 1;
nbrdySide = 1;

URCV : : -URCV(void)

{

void URCV:: myNvalues (void) {
/* xNorm direction values
myxNhpc = nhpc;
myxNphisc = nphisc;
myxNphilc = nphilc;
myxNpc = npc;
myxNvyc = nv-yc;
myxNvxc = nvxc;
/* yNorm direction values
myyNhpc = thpc;
myyNphisc = tphisc;
myyNphilc = tphilc;
myyNpc = tpc;
myyNv_yc = tvyc;
myyNvxc = tvxc ;
/* xyNorm direction value
myxyNhpc = tnhpc;
myxyNphisc = tnphisc;
myxyNphilc = tnphilc;
myxyNpc = tnpc;

,/

s */

343

myxyNvyc
myxyNv_xc

= tnvyc;
= tnv_ xc

/* xNorm direction values */
jxNhpc = jnhpc;
jxNphisc = jnphisc ;
jxNphilc = jnphilc;
jxNpc = jnpc;
jxNvyc = jnv_yc;
jxNvxc = jnv_xc;
/* yNorm direction values */
jyNhpc = jthpc
jyNphisc = jtphisc;
jyNphilc = jtphilc;
jyNpc = jtpc;
jyNv_yc = jtv yc;
jyNvxc = jtv_ xc;
/* xyNorm direction values */
jxyNhpc = jtnhpc
jxyNphisc = jtnphisc ;
jxyNphilc = jtnphilc ;
jxyNpc = jtnpc;
jxyNvyc = jtnvyc;
jxyNv_xc = jtnvxc;

return ;

void URCV:: setupPressurePointers (double vol){
Pptr [TOP] = &(avePressures_y [topV]);
Pptr [RIGHT] = &(avePressures_x [myColumn+myRow*numFVColumns]);
Pptr [LEFT] = &(Vptr [pc]);
Pptr [BOTITOM] = &(Vptr[pc]);
return;

}

void URCV:: setupConcentrationPointers (double vol){
Cptr [TOP] = &(AVEhpy [topV]) ;
Cptr [RIGHT] = &(AVEhpx[myColumn+myRow*numFVColumns]);
Cptr [LEFT] = &(Vptr [hpc]);
Cptr [BOTIOM] = &(Vptr[hpc]);
outerXdensityAVE = Cptr [RIGHT];
outerYdensityAVE = Cptr [TOP];
return;

}

void URCV:: computeAVEyPressures(void){
*(Pptr [TOP]) = (Vptr[tpc] + Vptr[pc]) /2;

344

return;

}

void URCV:: computeAVExPressures (void) {
*(Pptr[RIGHT]) = (Vptr[npc]+Vptr[pc])/2;
return;

}

void URCV:: computeAVEhpy (void
*(Cptr[TOP]) = (Vptr[thpc]+ Vptr [hpc]) /2;

return ;

void URCV:: computeAVEhpx (void) {
*(Cptr[RIGHT]) = (Vptr[nhpc]+Vptr[hpc])/2;
// printf("The value AVEhpx in UR is %f with outerXdensityAVE %f\n", (

Cptr[RIGHT]) , outerXdensityA VE) ;
return;

}

double URCV:: setdpdxCV (void) {
return mydy*((Vptr [npc]+Vptr [pc])/2- Vptr [pc]);

}

double URCV:: setdpdyCV (void) {
return mydx ((Vptr [tpc]+Vptr [pc])/2- Vptr [pc]);

}

double URCV:: comv_xJp (void) {
return (mydy*Vptr [pc]/2);

}

345

Listing B.33. LLCV.h
/,

* @author James Geraci

#ifndef ILLCVH
#define _LLCVH
#include "StdAfx.h"
#include "CV.h"
//class FV;

class LLCV:public CV

{
public:

LLCV(void) ;
public:

SLLCV(void);
void setupPressurePointers (double);
void setupConcentrationPointers (double);
void computeAVEyPressures (void);
void computeAVExPressures (void);
void computeAVEhpy (void);
void computeAVEhpx (void);
double setdpdxCV (void);
double setdpdyCV (void);
double comvxJp(void);
void myNvalues(void);

#endif

346

Listing B.34. LLCV.cpp
/, *

* LLCV. cpp
* @author James Geraci
* Implements the equations COP, MB, EK which control
* the change of the concentration , phil , and phis with time
* also sets up the Jacobian

#include "StdAfx .h"
#include "LLCV.h"
#include <stdio-.h>

LLCV : :LLCV(void)
{

myxNorm = - 1;
myyNorm = - 1;
mydxSide = 1;
mydySide = 1;
nbrdxSide = -1;
nbrdySide = -1;

}

LLCV: : LLCV(void)
{
}

void LLCV:: myNvalues (void) {
/* xNorm direction values */
myxNhpc = phpc;
myxNphisc = pphisc;
myxNphilc = pphilc;
myxNpc = ppc;
myxNvyc = pv_yc;
myxNvxc = pv_xc;
/* yNorm direction values */
myyNhpc = bhpc;
myyNphisc = bphisc;
myyNphilc = bphilc ;
myyNpc = bpc;
myyNv_yc = bv_yc;
myyNv_xc = bv_xc;
/* xvNorm direction values
myxyNhpc = bphpc;
myxyNphisc = bpphisc;
myxyNphilc = bpphilc;
myxyNpc = bppc;

347

myxyNv_yc = bpv_yc;
myxyNv_xc = bpvxc;

/* Jacobian Values */
/s xNorm direct-ion values */
jxNhpc = jphpc;
jxNphisc = jpphisc;
jxNphilc = jpphilc;
jxNpc = jppc;
jxNv_yc = jpv_yc;
jxNv_xc = jpv_xc;
/* yNorm direction values ,/
jyNhpc = jbhpc;
jyNphisc = jbphisc;
jyNphilc = jbphilc;
jyNpc = jbpc;
jyNvyc = jbvyc;
jyNv_xc = jbvxc;
/* xyNorm direction values */
jxyNhpc = jbphpc;
jxyNphisc = jbpphisc;
jxyNphilc = jbpphilc;
jxyNpc = jbppc;
jxyNvyc = jbpv_yc;
jxyNvxc = jbpvxc;

return ;

void LLCV:: setupPressurePointers (double vol){
Pptr [TOP] = &(Vptr[pc]);
Pptr [RIGHT] = &(Vptr [pc]);
Pptr [LEFT] = &(avePressures _x [myColumn-l+myRow*numFVColumns]);
Pptr [BOTIDM] = &(avePressures_y [presV]);
return;

}

void LLCV:: setupConcentrationPointers (double vol){
Cptr [TOP] = &(Vptr [hpc]);
Cptr [RIGHT] = &(Vptr [hpc]);
Cptr [LEFT] = &(AVEhpx [myColumn-l+myRow*numFVColumns]) ;
Cptr [BOITOM] = &(AVEhpy[presV]);
outerXdensityAVE = Cptr[LEFT];
outerYdensityAVE = Cptr[BOTIOM];
return;

v

void LLCV:: computeAVEyPressures(void) {

348

*(Pptr[BOTTOM]) = (Vptr[pc] + Vptr[bpc])/2;
return ;

void LLCV:: computeAVExPressures (void) {
*(Pptr[LEFT]) = (Vptr[pc]+Vptr[ppc])/2;
return;

}

void LLCV:: computeAVEhpy (void) {
*(Cptr[BOITOM]) = (Vptr[hpc] + Vptr[bhpc])/2;
return;

}

void LLCV:: computeAVEhpx (void) {
*(Cptr[LEFT]) = (Vptr[hpc]+Vptr[phpc])/2;
return;

}

double LLCV:: setdpdxCV (void
return mydy*(Vptr[pc] - (

}

Vptr[p]+Vptr[pp])/2)
Vptr [pc]+Vptr [ppc]) /2);

double LLCV::setdpdyCV (void) {
return mydx*(Vptr[pc] - (Vptr[pc]+Vptr[bpc]) /2);

}

double LLCV:: comv_xJp(void){
return -(mydy*Vptr [pc]/2);

}

349

Listing B.35. LRCV.h

* @author James Geraci

#ifndef _LRCVH
#define _LRCV_H
#include "StdAfx .h"
#include "CV.h"
//class FV;

class LRCV:public CV
{
public:

LRCV(void) ;
public:

~LRCV(void);

void setupPressurePointers (double);
void setupConcentrationPointers (double);
void computeAVEyPressures (void);
void computeAVExPressures (void);
void computeAVEhpy (void) ;
void computeAVEhpx(void);
double setdpdxCV (void);
double setdpdyCV (void);
double comv_xJp(void);
void myNvalues(void);

#endif

350

Listing B.36. LRCV.cpp

* LRCV. cpp
* @author James Geraci
* Implements the equations COP, MB, EK which
* the change of the concentration , phil , and
* also sets up the Jacobian

#include "StdAfx .h"
#include "LRCV.h"
#include < stdio .h>

LRCV: :LRCV(void)

{
myxNorm = 1;
myyNorm = - 1;
mydxSide = - 1;
mydySide = 1;
nbrdxSide = 1;
nbrdySide = -1;
// printf("You have made a LRCV\n");

LRCV: :LRCV(void)

{
}

void LRCV:: myNvalues(void) {
/* xNorm direction values */
myxNhpc = nhpc;
myxNphisc = nphisc;
myxNphilc = nphilc;
myxNpc = npc;
myxNv_yc = nv_yc;
myxNvxc = nv_xc;
/* yNorm direction values */
myyNhpc = bhpc;
myyNphisc = bphisc;
myyNphilc = bphilc;
myyNpc = bpc;
myyNv_yc = bvyc;
myyNv_xc = bv_xc;
/* xyNorm direction values */
myxyNhpc = bnhpc;
myxyNphisc = bnphisc;
myxyNphilc = bnphilc;

351

control
phis with time

LRCV:

: - LRCV(void)

{
}

myxyNpc
myxyNvyc
myxyNv_xc

/* Jacobian Values *

/* xNorm direction v
jxNhpc = jnhpc;
jxNphisc = jnphisc;
jxNphilc = jnphilc;
jxNpc = jnpc;
jxNv_yc = jnv_yc;
jxNv_xc = jnv_xc;
/* yNorm direction v
jyNhpc = jbhpc;
jyNphisc = jbphisc;
jyNphilc = jbphilc;
jyNpc = jbpc;
jyNvyc = jbv_yc;
jyNvxc = jbv_xc;
/* xyNorm direction
jxyNhpc = jbnhpc;
jxyNphisc = jbnphisc
jxyNphilc = jbnphilc
jxyNpc = jbnpc;
jxyNvyc = jbnvyc;
jxyNvxc = jbnvxc;

return;

alues

alues */

values ,/

void LRCV:: setupPressurePointers (double vol){
Pptr [TOP] = &(Vptr [pc]);
Pptr [RIGHT] = &(avePressures_x [myColumn+myRow*numFVColumns]);
Pptr [LEFT] = &(Vptr [pc]) ;
Pptr [BOTIOM] = &(avePressures y [presV]);
return;

I

void LRCV:: setupConcentrationPointers (double){
Cptr [TOP] = &(Vptr [hpc]);
Cptr [RIGHT] = &(AVEhp_x [myColumn+myRow*numFVColumns]) ;
Cptr [LEFT] = &(Vptr [hpc]) ;
Cptr [BOTlOM] = &(AVEhp_y [presV]);
outerXdensityAVE = Cptr[RIGHT];
outerYdensityAVE = Cptr [BOTIOM];
return;

I

352

bnpc;
bnvyc
bnvxc

void LRCV:: computeAVEyPressures (void) {
*(Pptr[BOTTOM]) = (Vptr[pc] + Vptr[bpc])/2;
return;

}

void LRCV:: computeAVExPressures (void) {
*(Pptr[RIGHT]) = (Vptr[npc]+Vptr[pc]) /2;
return;

}

void LRCV:: computeAVEhpy (void) {
*(Cptr[BOTIOM]) = (Vptr[hpc] +
return ;

void LRCV:: computeAVEhpx (void) {
*(Cptr[RIGHT]) = (Vptr[nhpc]+V
return ;

Vptr [bhpc]) /2;

ptr[hpc])/2;

double LRCV::setdpdxCV (void) {
return mydy((Vptr [npc]+Vptr [pc])/2- Vptr [pc]);

}

double LRCV::setdpdyCV (void){
return mydx(Vptr [pc] - (Vptr [pc]+Vptr [bpc]) /2);

}

double LRCV:: comvxJp (void){
return (mydy*Vptr[pc]/2);

}

353

Listing B.37. electrodeSizeData.h
/* @author James Geraci

i fn de f ELECTRODESIZEDATA_H
define _ELECTRODESIZEDATAH
class electrodeSizeData

{
public:

electrodeSizeData(void);
electrodeSizeData(double , double , double, int , int, int, int, int

int , int , int , int , int , cellSizeData);
public:

~ electrodeSizeData (void);

public:
cellSizeData* mycsData;
void setFVColumns(int);
void setFVRows(int);
void setFVZrows(int);
void setFVStartColumn (int);

void setxWidth (double);
void setyHeight(double);
void setZdepth (double);

double getyHeight(void);
double getxWidth(void);
double getzDepth(void);

int getnumFVColumns (void);
int getnumFVRows(void);
int getnumFVZrows (void);

int getnumPVColumns (void);
int getnumPVRows(void);
int getnumPVZrows (void);

int getFVstartColumn(void) ;
int getFVstartRow (void);

int getPVstartColumn(void) ;
int getPVstartRow (void) ;

private :

int numFVColumns;

354

int numFVRows;
int numFVZrows;

int numPVColumns;
int numPVRows;
int numPVZrows;

int FVstartColumn;
int FVstartRow;

int PVstartColumn;
int PVstartRow;

double xWidth;
double yHeight;
double zDepth;

;#

#endif

355

Listing B.38. electrodeSizeData.cpp

* @author James Geraci
* Used in the creating of electrodes to set the physical sizes and
* grid sizes and how they relate to each other
,/

#include "StdAfx .h"
#include "electrodeSizeData h"
#include "cellSizeData .h"

electrodeSizeData :: electrodeSizeData (void)

{
numFVZrows = 1;

}

electrodeSizeData :: electrodeSizeData (void)

{

electrodeSizeData: electrodeSizeData (double w, double h, double d, int FVc
int FVr, int FVz,

int

PVc

int

PVr

int

PVz

int

FVsr

int

FVsc

int

PVsr

int

356

PVsc

cellSizeDa

csData
)

xWidth = w;
yHeight = h;
zDepth = d;
numFVColumns = FVc;
numFVRows = FVr;
numFVZrows = FVz;
numPVColumns = PVc;
numPVRows = PVr;
numPVZrows = PVz;
FVstartRow = FVsr;
FVstartColumn = FVsc;

PVstartRow = PVsr;
PVstartColumn = PVsc;
mycsData = csData;

}
void electrodeSizeData :: setFVColumns (int nColumns)

{
numFVColumns = nColumns;
return;

};

void electrodeSizeData:: setFVRows(int nRows)

numFVRows = nRows;
return;

};

void electrodeSizeData :: setFVZrows(int nZrows)

{
numFVZrows = nZrows;
return;

};

void electrodeSizeData ::setFVStartColumn (int sColumn)
{

FVstartColumn = sColumn;
return;

357

void electrodeSizeData :: setyHeight(double H)

{
yHeight = H;
return;

void electrodeSizeData :: setxWidth(double W)

{
xWidth = W;
return;

void electrodeSizeData ::setZdepth (double D)

zDepth = D;
return;

Iint electrodeSizeData:: getnumFVColumns (void)
return numFVColumns;

int electrodeSizeData :: getnumFVRows(void)

{
return numFVRows;

int electrodeSizeData :: getnumFVZrows (void)
{

return numFVZrows;

int electrodeSizeData :: getnumPVColumns (void)

{
return numPVColumns;

int electrodeSizeData :: getnumPVRows(void)

return numPVRows;

int electrodeSizeData :: getnumPVZrows (void)

358

return numPVZrows;

{;

double

{

double

{

};

double

{
};

:: getyHeight (void)

:: getxWidth (void)

:: getzDepth (void)

electrodeSizeData :: getFVstartColumn(void)

return FVstartColumn;

electrodeSizeData :: getFVstartRow (void)

return FVstartRow;

electrodeSizeData :: getPVstartColumn(void)

return PVstartColumn;

electrodeSizeData :: getPVstartRow (void)

return PVstartRow;

359

electrodeSizeData

return yHeight;

electrodeSizeData

return xWidth;

electrodeSizeData

return zDepth;

int
{

int

};

int

int

Listing B.39. volumeChemData.h
/* @author James Geraci

if nde f VOLUMECHEMDATAH
de fine _VOLUMECHEMDATAH

class volumeChemData

{
public:

volumeChemData (void) ;
volumeChemData (double , double , double , double , double , double , double,

double , double , double ,
double , double, double, double, double, double, double,

double , double , double, double ,
double , double , double , double);

public:
SvolumeChemData (void);

public:
double getAmax(void);
double getT(void);
double getals(void);
double getasl(void);
double getDx (void);
double getDy (void);
double getsigx(void);
double getsigy(void);
double getKx (void);
double getKy (void);
double getMux (void);
double getMuy (void);
double getBetax (void);
double getBetay (void);
double getk (void);
double getm(void);
double getexm(void);
double getex(void);
double getphi_eq(void);
double gethnot(void);
double getepsnot (void);
double getmySign(void);
double getQmax(void);
double getSoc (void);
double getEta(void);

private :
double T; // Temp in Kelvin

360

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

#endif

361

Amax ;
Qmax;
soc ;
eta ;
als;
asl ;
Dx;
Dy;
sigx ;
sigy ;
Kx;
Ky;
mu_x ;
muy ;
betax ;
betay ;
k;
m;
exm;
ex;
phi _eq;
hnot;
epsnot;
mySign;

/-
1/
/1
I-
I!

//
//
//

/1
II
I-
1/
II
II
I-
I!

Maximum interfacial area
Maximum Charge/cm ̂ 3
state of charge
scale factor for SOC
transfer coefficient anodic
transfer coefficient cathodic
diffusion coefficient in x-direction
diffusion coefficient in y-direction
conductivity of metal in Ohm/cm^2
conductivity of metal in Ohm/cm^2
conductivity o felectrolyte ohm/cm^2
conductivity o felectrolyte ohm/cm^2
Kinematic viscosity x cm^2/s
Kinematic viscosity y cm^2/s
Volume expansion coefficient x cm^3/
Volume expansion coefficient y cm^3/

mol
mol

Listing B.40. volumeChemData.cpp

* @author James Geraci

* sets initial physical parameters for

#include "StdAfx.h"
#include "volumeChemData.h"

volumeChemData :: volumeChemData(void)

{
}

volumeChemData :
volumeChemData (

double alsl ,

all volumes

double Tl,double Amaxl, double Q, double sc, double eda,
double asll ,
double Dxl, double Dyl, double sig lx ,double sig ly ,double Klx,

double Kly,double kl,
double ml,double exml,double exl ,double phi_eql ,double hnotl

, double epsnotl,
double cSign , double mu_xl, double muyl , double beta_xl,

double betayl){
T = TI;
Amax = Amaxl;
als = alsl
asl = asll;
Dx = Dxl;
Dy = Dyl;
sigx = siglx;
Kx = Klx;
sigy = sigly;
Ky = Kly;
mu_x = muxl;
mu_y = muyl;
betax = betaxl;
betay = betayl;
k = kl;

m = ml;
exm = exml;
ex = exl;
phi_eq = phieql;
hnot = hnotl;
epsnot = epsnotl;
mySign = cSign;
Qmax = Q;
SOC = SC;

eta = eda;

362

volumeChemData ::~ volumeChemData (void)
{
}

double volumeChemData:: getAmax (void)
{

return Amax;
};

double volumeChemData ::getT (void)
{

return T;
};

double volumeChemData:: getals (void)
{

return als;
};

double volumeChemData:: getasl(void)
{

return asl;
};

double volumeChemData:: getDx(void)
{

return Dx;
};

double volumeChemData:: getDy (void)
{

return Dy;
};

double volumeChemData:: getsigx (void)
{

return sigx;
};

double volumeChemData:: getsigy (void)
{

return sigy
};

363

double volumeChemData :: getKx (void)

{
return Kx;

};

double volumeChemData:: getKy (void)

{
return Ky;

};

double volumeChemData:: getMux(void)

{
return mu_x;

};

double volumeChemData ::getMuy (void)

{
return muy;

};

double volumeChemData:: getBetax (void)

{
return betax;

};

double volumeChemData:: getBetay (void)

{
return betay;

};

double volumeChemData:: getk(void)

{
return k;

};

double volumeChemData:: getm(void)

{
return m;

};

double volumeChemData:: getexm(void)

{
return exm;

};

double volumeChemData:: getex (void)
{

364

return ex;

double

{

};

double{

double
{double{

double
{

};

volumeChemData:

return phieq;

volumeChemData:

return hnot;

volumeChemData:

return epsnot;

volumeChemData:

return mySign;

volumeChemData :

return Qmax;

volumeChemData:

return soc;

volumeChemData :: getEta (void)

return eta;

: getphi_eq (void)

: gethnot (void)

: getepsnot (void)

: getmySign(void)

: getQmax (void)

: getSoc (void)

365

Listing B.41. PVIConditions.h
/* @author James Geraci

#ifndef _PVIConditions_H
#define _PVIConditions_H

class PVIConditions

{
public:

PVIConditions (void);
PVIConditions (double

public:
,double , double , double , double , double) ;

- PVIConditions (void);

double
double
double
double
double
double

double
double
double
double
double
double

gethp (void) ;
getphi_l (void
getphi_s (void
getp (void) ;
getvy (void);
getv_x (void);

hp;
phi _
phi_s
P;

v _x;

#endif

366

public :

private

Listing B.42. PVIConditions.cpp

* @author James Geraci
* sets initial values for concentration,

#include "StdAfx .h"
#include "PVIConditions .h"
#include <iostream>
using namespace std;
PVIConditions :: PVIConditions (void)

phil, and phis

PVIConditions :: PVIConditions (double h,double 1,double s ,double pl , double
vyl , double vxl)

hp = h
phil = 1;
phis = s;

p = pl;

v_y =vy ;vx = vxl;
v-x = V x1

}

PVIConditions :~PVIConditions (void)

{
}

double PVIConditions:: gethp (void)
{

return hp;

double

{
PVIConditions:: getphi_l(void)

return phi_l;

double PVIConditions:: getphi _s (void)

return phi-s;

double PVIConditions
return p;

:: getp (void) {

367

double PVIConditions:: getv _y (void) {
return vy;

};

double PVIConditions ::getv_x (void) {
return v_x;

368

Listing B.43. Electrolyte.h
/* @author James Geraci

i fn d e f _ELECTROLYTE_H
#define _ELECTROLYTEH

#include "Electrode .h"

class Electrolyte :
public Electrode

{
public:

Electrolyte (void);
Electrolyte (FV**,PV**,matrixData *, electrodeSizeData) ;

public:
~ Electrolyte (void);

private:
static const electrolyteElectrodeChemData myChem;
static const volumeChemData vCD;
static const volumeIConditions vIC;
static const PVIConditions pviC;

#endif

369

Listing B.44. Electrolyte.cpp

* @author James Geraci

* Contains the parameters necessary to set up an eletrolyte 'electrode

#include "StdAfx .h"
#include "Electrolyte.h"

const electrolyteElectrodeChemData Electrolyte ::myChem;
const volumeChemData Electrolyte ::vCD(298/*T*/,O/*Amax*/,1/*Qmax*/,O/ soc /

,0/* eta */,0/* als */,0/* asl*/ ,0.3e-5/*Dx/ ,0.3e-5/*Dy*/,
0/* sigx */,0/* sigy */ ,0.79/* Kappax /

,0.79 / Kappay /,1/, k */ ,1/*m*/ ,0.5
/*exm*/ ,1.5 /*ex*/,0/*phieq*/,

4.9 e-3/* hnot */, 1/* epsnot */,0/* mySign
/,10e-2/ mux /, I Oe-2/* muy */,35
/* beta_x / ,35/* betay /);

const volumelConditions Electrolyte vIC(1 ,0,0);
const PVIConditions Electrolyte ::pviC (4.9e-3/*hp*/,O0/phiI /,0/* phi_s /,

atmospheric _pressure /*p*/, 0/ vy */,0/ v_x /);

Electrolyte Electrolyte(void)

{
}

Electrolyte :: Electrolyte (FV** myFV, PV** myPV, matrixData * Matrix,
electrodeSizeData * eDat):Electrode ("Electrolyte " ,myFV,myPV, Matrix ,eDat,
myChem, vCD, vIC , pviC)

{
}

Electrolyte : Electrolyte (void)

{
}

370

Listing B.45. electrodeChemData.h
/* @author James Geraci

#ifndef _ELECTRODECHEMDATAM
define _ELECTRODECHEMDATAH

class electrodeChemData

{
public:

electrodeChemData (void) ;
electrodeChemData (double , double , double , double) ;

public:
virtual -electrodeChemData (void);

public:
double getmyVf(void);
double getmbScale (void);
double getolsScale(void);
double getio(void);
double gettnp (void);

protected :

static const double PbSO4_MW;
static const double PbSO4-rho;

virtual void settnp(double);
virtual void setmbScale(double)
virtual void setolsScale(void);
virtual void setmyio(double);
virtual void setmyVf(double);
void ecDatalnit(double, double,
double myTnp;
double myVf;
double mbScale;
double olsScale;
double myio;

double , double);

};
#endif

371

Listing B.46. electrodeChemData.cpp
/* @author James Geraci

* electrodeChemData. cpp
* Generic to any electrode
* @author James Geraci
* Set/Fectch some physical properties for each electrode

#include "StdAfx .h"
#include "electrodeChemData .h"

const double
const double

electrodeChemData ::PbSO4vMW = 303.2626; // g
electrodeChemData ::PbSO4_rho = 6.39; // g/cm^3

electrodeChemData :: electrodeChemData (void)
{

electrodeChemData :
, double vf)

:electrodeChemData (double Tnp, double io , double mbscale

ecDatalnit (Tnp, io , mbscale , vf) ;

electrodeChemData ::~ electrodeChemData (void)
{

void electrodeChemData:
double vf)

:ecDatalnit(double Tnp, double io , double mbS,

settnp (Tnp);
setmbScale (mbS) ;
setolsScale();
setmyio (io);
setmyVf(vf) ;
return;

void electrodeChemData:: settnp(double Tnp)

{
myTnp = Tnp;
return;

372

void electrodeChemData ::setmbScale(double mb)
{

mbScale = mb;
return;

void electrodeChemData:: setolsScale()

{
olsScale = -(1-2*myTnp)*(R*298)/F;
return;

};

void electrodeChemData :: setmyio (double io)

myio = io;
return;

void electrodeChemData :: setmyVf(double vf)

myVf = vf;
return;

double electrodeChemData ::getmbScale (void)

return mbScale;

I

double electrodeChemData ::getolsScale (void)

return olsScale;

double electrodeChemData ::gettnp (void)

{
return myTnp;

double electrodeChemData:: getmyVf (void)

return myVf;

double electrodeChemData ::getio (void)
{

373

return myio;

374

Listing B.47. IdxElectrodeChemData.h
/* @author James Geraci

i fn d e f _LDXELECTRODECHEMDATAH
de fine _LDXELECTRODECHEMDATA_-
#include "electrodeChemData .h"

class IdxElectrodeChemData :
public electrodeChemData

public:
ldxElectrodeChemData (void);
IdxElectrodeChemData (double , double , double , double) ;

public :
- IdxElectrodeChemData (void) ;

protected :
static
static

const double PbO2JMW;
const double PbO2_rho;

void setmbScale();
void setmyVf();

#endif

375

Listing B.48. IdxElectrodeChemData.cpp

* @author James Geraci

* electrode Chem Data object specific for a lead dioxide electrode

#include "StdAfx .h"
#include "ldxElectrodeChemData .h"

const double ldxElectrodeChemData ::PbO2_MW = 239.1988; // g
const double IdxElectrodeChemData ::PbO2_rho = 9.79; // g/cm^3

ldxElectrodeChemData ::ldxElectrodeChemData (void)

{

ldxElectrodeChemData :: IdxElectrodeChemData (
double vf): electrodeChemData (Tnp, io ,mbS,

double
vf)

Tnp,double io,double mbS,

IdxElectrodeChemData :: IdxElectrodeChemData (void)

I

void ldxElectrodeChemData ::setmbScale ()

mbScale = -(3-2*myTnp) /(2 F) ;
return;

I;

void IdxElectrodeChemData ::setmyVf()

myVf = PbSO4IMW/PbSO4_rho - PbO2_MW/PbO2_rho;
return ;

Listing B.49. electrolyteElectrodeChemData.h
/* @author James Geraci

i fn d e f ELECTROLYTEELECTRODECHEMDATA-H
de fine ELECTROLYTEELECTRODECHEMDATA-M
#include "electrodeChemData .h"

376

class electrolyteElectrodeChemData
public electrodeChemData

{
public:

electrolyteElectrodeChemData (void);
public:

p electrolyteElectrodeChemData (void);
#};
#endif

377

Listing B.50. electrolyteElectrodeChemData.cpp

* @author James Geraci

* an electrolyte electrode specific electrochemData object

#include "StdAfx .h"
#include "electrolyteElectrodeChemData .h"

electrolyteElectrodeChemData :: electrolyteElectrodeChemData (void):
electrodeChemData (0.72 ,0 ,O ,0)

{

electrolyteElectrodeChemData : : electrolyteElectrodeChemData(void)

{
}

378

Listing B.51. IdElectrodeChemData.h
/* @author James Geraci

i fn d e f _LDELECTRODECHEMDATAH
de fine ILEDELECTRODECHEMDATAH
#include "electrodeChemData .h"

class IdElectrodeChemData :
public electrodeChemData

IdElectrodeChemData (void);
IdElectrodeChemData (double ,double, double, double);

- IdElectrodeChemData (void) ;

protected :
static
static

const double PbMW;
const double Pbrho;

void setmbScale();
void setmyVf();

#endif

379

public:

public:

Listing B.52. IdElectrodeChemData.cpp

* @author James Geraci
* electrode chem data object needed to create a lead electrode

#include "StdAfx .h"
#include "ldElectrodeChemData .h"

const double
const double

IdElectrodeChemData ::PbMW = 207.2; // g
IdElectrodeChemData ::Pb_rho = 11.34; // g/cm^3

IdElectrodeChemData ::IdElectrodeChemData (void)
{

IdElectrodeChemData ::IdElectrodeChemData (double
double vf) :electrodeChemData (Tnp, io ,mbS, vf)

Tnp,double io , double mbS,

IdElectrodeChemData : : IdElectrodeChemData (void)

{

void ldElectrodeChemData ::setmbScale ()

mbScale = (2*myTnp-1)/(2*F);
return;

};

void IdElectrodeChemData :: setmyVf()

{
myVf = PbMW/Pbrho - PbSO4_MW/PbSO4_rho;
return ;

380

Listing B.53. volumSpatialData.h
/* @author James Geraci

ifn de f VOLUMESPATIALDATA-M
de fine VOLUMESPATIALDATAH

class volumeSpatialData

{
public:

volumeSpatialData (void);
volumeSpatialData (double , double, double, int , int, int);

public:
volumeSpatialData (void);

public:
double getxWidth(void);
double getyHeight (void);
double getzDepth(void);

int getColumn(void);
int getRow(void);
int getZrow(void);

double mydx;
double mydy;
double mydz;

int myColumn;
int myRow;
int myZrow;

};

#endif

381

Listing B.54. volumeSpatialData.cpp

* @author James Geraci

* provides each volume with knowledge of its

#include "StdAfx .h"
#include "volumeSpatialData.h"

volumeSpatialData :: volumeSpatialData (void)

own location within the cell

volumeSpatialData ::
volumeSpatialData (double dx, double dy, double dz, int

Column, int Row, int Zrow)

mydx = dx;
mydy = dy;
mydz = dz;

myColumn = Column;
myRow = Row;
myZrow = Zrow;

I

volumeSpatialData : :- volumeSpatialData (void)

double
{

}

double
{

double

{

}

volumeSpatialData:: getxWidth (void)

return mydx;

volumeSpatialData ::getyHeight (void)

return mydy;

volumeSpatialData:: getzDepth (void)

return mydz;

int volumeSpatialData :: getColumn(void)

{
return myColumn;

382

}

int volumeSpatialData :: getRow (void)

{
return myRow;

I

int volumeSpatialData ::getZrow(void)

f
return myZrow;

}

383

Listing B.55. myGlobals.h
/* @author James Geraci

ifnde f JMYGLOBALSH
#define _MYGLOBALSI

#include "StdAfx .h"
#include <errno .h>
#include <stdio.h>
extern double dt; // seconds
extern int tSteps;
extern double duration; // Total Simulation time
extern double N; // Number of Moles Participating in Reaction
extern double F; // Coulomb/eq
extern double R; // J/molK
extern double gx; // gravity in the x direction cm/s ^2
extern double gy; // gravity in the y direction cm/s ^2
extern int myVars;
extern int myVols;
extern double ePor; // Electrolyte Porosity
extern double I ; // current
//extern int fluxesPerVar;
extern int directionsPerFlux;
extern int fluxesPerVol;
extern double slope ; // slope of concentration density relationship
extern double intercept; // intercept of concentration density

relationship
extern double atmospheric pressure ; // g/(cm s^2)
extern int mode;
extern "C" void ppupthreadfunction (void);
extern int NldxColumns;
extern int NEColumns;
extern int NldColumns;
extern int NRows;
extern int version;
extern double Qpnt;
extern double Qscalex;
extern double Qscaley;
extern double myQscale;
extern double myQxNscale;
extern double myQyNscale;
extern double myQxyNscale;
extern int myQxNnbr;
extern int myQyNnbr;
extern int myQxyNnbr;
extern double shapeDataForMatlab [3];
extern double FVshapeDataForMatlab [3];

384

#endif

385

Listing B.56. myGlobals.cpp

* @author James Geraci

* Contains global variables related to physical properties and

* variables needed to setup the matrices

#include "myGlobals .h"
#include "StdAfx .h"
#include <stdio.h>
#include <errno .h>

extern double dt = 0.1; // seconds
extern int tSteps = 120000; // total number of time steps to be taken
extern double I = 1.0; // current
//extern double I = 0; // current
// Probably don 't want to touch these
extern double duration = tSteps*dt; // Total Simulation time
extern double N = 2; // Number of Moles Participating in Reaction

extern double F = 96487; // Coulomb/eq
extern double R = 8.3143; // J/molK
extern double gx = 0; // cm/s ^2
extern double gy = -980.6650; // cm/s ^2 in -y direction
extern int myVars = 6;
extern int myVols =7;
extern double ePor = 1;
//extern int fluxesPerVar = 4;
extern int directionsPerFlux = 4;
extern int fluxesPerVol = 7;
extern double slope = 5.5387e-2;
extern double intercept = 1.01;
//extern double atmospheric _pressure = 1013250; // g/(cm s ^2)

extern double atmospheric _pressure = 1; // g/(cm s^2)
extern int mode = 0; // Base Mode or Skyline default is Base Mod

extern int NldxColumns = 0;
extern int NEColumns = 0;
extern int NldColumns = 0;
extern int NRows = 0;
extern int version = 0;
extern double Qpnt = 1/ sqrt (3);
extern double Qscalex = (2-Qpnt)/2;
extern double Qscaley = (2-Qpnt)/2;
extern double myQscale = Qscaley*Qscalex;
extern double myQxNscale = Qscaley*(1-Qscalex);
extern double myQyNscale = (1 - Qscaley) *(Qscalex);
extern double myQxyNscale = (1 - Qscaley) *(1- Qscalex);
extern int myQxNnbr = 1*myVars;
extern int myQyNnbr = 2*myVars;

386

extern int myQxyNnbr= 3*myVars;
extern double shapeDataForMatlab [3] = {0,0,0};
extern double FVshapeDataForMatlab [3] = {0 ,0 ,0};

387

Listing B.57. FV.h
/* @author James Geraci

#ifndef _FVH
#define _FV_H
#include "volumeSpatialData.h"
#include "StdAfx .h"

class FV

{
public:

FV(void);
FV(volumeSpatialData , matrixData *, electrodeSizeData *,volumeChemData

electrodeChemData * , volumelConditions,);
public:

~FV(void);

double returnQhp(int);
double returnQxNhp(int);
double returnQyNhp (int);
void computeQvalues (void);
double returnQvalue (int , int,
void computeFluxes (void);
void computeMaterialProperti
void computeDiv(void);
void setupPvPointers(void);

double returnDeffx
double returnDeffy

double returnKeffx
double returnKeffy

int , int);

es (void);

(void
(void

(void);
(void);

double returnolsKscalex (void);
double returnolsKscaley (void);

double returnsigeffx(void);
double returnsigeffy(void);

double returnDVx(void);
double returnDVy (void);

double returnVECx (void);
double returnVECy (void);

double returndx(void);

388

double returndy (void);
double returndz(void);

double
double
double

returnQdx (void
returnQdy (void
returnQdz (void

double returnFdx (int);
double returnFdy (int);

double returnFjlx(int);
double returnFsex (int);

double returnFjly
double returnFsey

int);
int);

double returnFvisc_x(int);
double returnFviscy(int);

double returnFpx (int);
double returnFp_y(int);

void computeNextEPS (void);
void computeNextSOC (void);
double returneps(void);
void setdx (double);
void setCVvolume (int , double);
void setCVvolumeRatio (int , double);

double soceta (void);

Diffusion Flux in x and
uFdx;
bFdx;
lFdy;
rFdy;

Flux Liquid Electrical
uFlex;
bFlex;
IFley;
rFley;

Flux Solid Electrical
uFsex;
bFsex;
IFsey;
rFsey;

Chemical Flux

y directions

389

//
int
int
int
int
//

int
int
int
int
//

int
int
int
int
//

int uFlncx;
int bFlncx;
int IFlncy;
int rFlncy;
// Flux density ... huh?
int uFjlx;
int bFjlx;
int IFjly ;
int rFjly;
// viscosity flux
int uFvx;
int bFvx;
int IFvy;
int rFvy;
// pressure flux
int uFpx;
int bFpx;
int IFpy;
int rFpy;

double T;
double Amax; // Interfacial Factor
double als; // liquid to Solid Factor
double asl; // Solid
double gc;
double ga;
double io;

double Dx;
double Dy;
double eps;
double soc;
double eta;
double sigx;
double Kx;
double sigy;
double Ky;
double mu.x; // dynamic viscosity x g/(cm s)
double muy; // dynamic viscosity y g/(cm s)
double beta_x; // volume expansion coefficient x cm^3/mol
double beta_y; // volume expansion coefficient y cm^3/mol
double invKp; // permeability
double d; // mean diameter of particle
double k;
double m;
double exm;
double ex;

390

double hnot;
double epsnot;
double phieq;
double epsspan;
bool charging;
double mySign;
double mbScale;

double Qmax;

protected :
// Data
double *
double *

double *

double *
double *

double *
double *

double * *
double * *

int
int
int
int

int
int
int
int

void
void
void
void

double
double
double
double

Matrix Pointers
fluxVptr;
divVptr ;
divVtwoptr;
epsVptr ;
socVptr ;
pVptr;
Vptr ;
iVptr;
Jacobptr;

numPVColumns;
numPVRows;
numPVZrows;
totalPVvolumes;

numFVColumns;
numFVRows;
numFVZrows;
totalFVvolumes;

setULPV(void
setURPV(void
setLLPV(void
setLRPV (void

Attributes

dx2;
invdx;
invdx2;
dxsqrd;

// Spatial
double dx;
double dy;
double dz;

391

double
double
double
double

double
double
double
double

double
double
double

double
double
double
double
double

// phy
double
double
double
double
double

double
double
double
double
double
double

dy2;
invdy;
invdy2;

.dysqrd;

dz2;
invdz;
invdz2;
dzsqrd;

Qdx;
Qdy;
Qdz;

myVolume;
myCVvolume [4];
myCVvolumeRatio [4];
qVptr [24];
myDiv;

sical attributes
tnp;
mbScale;
olsScale ;
myVf;
myVfd2;

Deffx;
Deffy;
Keffx;
Keffy;
sigeffx
sigeffy

double olsKscalex
double olsKscaley

// functions
void initializeMatrix (matrixData);
void initializePosition(volumeSpatialData*, matrixData*,

electrodeSizeData *) ;
void initializeOtherPositions (void);
void initializeSize(volumeSpatialData*);
void initializeElectrodeChem (electrodeChemData);
void initializeVolumeChem(volumeChemData*);

392

void setlnitialConditions (volumelConditions*);

setMaterialPropertyEffectiveValue (double* ,double, double);
setMaterialPropertyPermeability (void);
computeFlux (double ,double ,double ,double, double);
computeCurrent (double ,double, double);

// Position
int
int
int
int
int

information
myColumn;
myRow;
myZrow;
JRow;
JRowBuffer;

for Cell

// Positioning Data
int rowLength;

// Used in
int
int
int
int
int

Calculating
pprevV;
prevV;
presV;
nextV ;
nnextV;

int topV;
int lowerV;

int offSet;
int numVars;

// present
int

volume 's properties
epsc;

// Upper Left PV volume's properties
int ulPVdiv;
int ulPVhpc;
int ulPVphilc;
int ulPVphisc;
int ulPVpc;

// Upper Right PV volume 's properties
int urPVdiv;
int urPVhpc;
int urPVphilc;
int urPVphisc;
int urPVpc;

393

void
void
void
void

Addresses

// Lower Left PV volume 's properties
int llPVdiv;
int llPVhpc;
int llPVphilec ;
int llPVphisc ;
int llPVpc;

// Lower Right PV volume 's properties
int IrPVdiv;
int IrPVhpc;
int IrPVphilc;
int IrPVphisc;
int IrPVpc;

// Upper Left Qvalues volume 's properties
static const int
static const int
static const int
static const int

// Upper Right Q volume'
static const int
static const int
static const int
static const int

// Lower Left Q volume 's
static const int
static const int
static const int
static const int

// Lower Rigth Q volume'
static const int
static const int
static const int
static const int

// Defines
static const int
static const int
static const int
static const int
static const int
static const int

ulQhpc = 0;
ulQphilc = 1;
ulQphisc = 2;
ulQpc = 3;

s properties
urQhpc = 6;
urQphilc = 7;
urQphisc = 8;
urQpc = 9;
properties
llQhpc = 12;
llQphilc = 13;
IlQphisc = 14;
llQpc = 15;

s properties
IrQhpc = 18;
IrQphilc = 19;
IrQphisc = 20;
IrQpc = 21;

myUL = 3;
myUR = 2;
myLL = 1;
myLR = 0;
philg = 1; // I = phil before phis
phisg = 2; // 1 = phis before phil

#endif

394

Listing B.58. FV.cpp

" @author James Geraci
" object that contains
" these objects control
* and the evolution of

#include "FV.h"
#include "StdAfx .h"

the description
all the fluxes

the porosity

of the FV volumes
within the model

FV: :FV(void)

{

FV::FV(volumeSpatialData sData
volumeChemData * vcData,

* iData)

, matrixData *mD, electrodeSizeData esData,
electrodeChemData * ecData , volumelConditions

initializeMatrix (mD) ;
initializePosition (sData ,mD, esData);
initializeOtherPositions ();
initializeSize (sData);
initializeElectrodeChem (ecData);
initializeVolumeChem(vcData);
setInitialConditions (iData);
return;

F

FV:: :FV(void)

{
}

void FV:: initializeMatrix(matrixData *mData)

{
fluxVptr = mData->myfluxV();
epsVptr = mData->myepsV();
socVptr = mData->mysocV();
pVptr = mData->mypsV();
Vptr = mData->mysV();
iVptr = mData->myiV();
divVptr = mData->mydivV();
divVtwoptr = mData->mydivVtwo();
Jacobptr = mData->myJacobian() ;
numPVColumns = mData->myPVColumns () ;
numPVRows = mData->myPVRows () ;
numPVZrows = mData->myPVZrows() ;
totalPVvolumes = numPVColumns*numPVRows*numPVZrows;

395

numFVColumns = mData->myFVColumns () ;
numFVRows = mData->myFVRows () ;
numFVZrows = mData->myFVZrows();
totalFVvolumes = numFVColumns*numFVRows*numFVZrows;

return;
}

void FV:: initializePosition (volumeSpatialData * sData , matrixData * mData,
electrodeSizeData * eData)

{
// Cell Position Data Initialization

myColumn = sData->getColumn ()+eData->getFVstartColumn ();
myRow = sData->getRow () ;
myZrow = sData->getZrow () ;

// rowLength = mData->mysvLength() ;

presV = myColumn + myRow*mData->myFVColumns ();
// pprevV = presV-2;

prevV = presV-1;
nextV = presV+1;
//nnextV = presV+2;

topV = presV - mData->myFVColumns() ;
lowerV = presV + mData->myFVColumns ();
return;

void FV:: initializeOtherPositions (void)

{
return;

void FV:: initializeSize (volumeSpatialData * sData)

I
// Cell Size Data Initialization
dx = sData->getxWidth ();
dy = sData->getyHeight();
dz = sData->getzDepth ();

myVolume = dx*dy*dz;

dx2 = 2*dx;
invdx = 1/dx;
invdx2 = 1/dx2;
dxsqrd = dx*dx;

396

Qdx = dx *(1 - Qpnt);

dy2 = 2*dy;
invdy = 1/dy;
invdy2 = 1/dy2;
dysqrd = dy*dy;
Qdy = dy*(1 - Qpnt);

dz2 = 2*dz;
invdz = 1/dz;
invdz2 = 1/dz2;
dzsqrd = dz*dz;
Qdz = dz *(1 - Qpnt);
return;

void FV:: initializeElectrodeChem(electrodeChemData *cData)

{
tnp = cData->gettnp ();
mbScale = cData->getmbScale();
olsScale = cData->getolsScale ();
myVf = cData->getmyVf();
myVfd2 = myVf/(2* F);
io = cData->getio();
return;

void FV:: initializeVolumeChem(volumeChemData * vData)

T = vData->getT ();
Amax = vData->getAmax ();
Qmax = vData->getQmax ();
soc = vData->getSoc();
eta = vData->getEta();
als = vData->getals();
asl = vData->getasl();
gc = (als*R*T*N)/(F);
ga = (asl*R*T*N) /(F);
Dx = vData->getDx ();
Dy = vData->getDy ();
sigx = vData->getsigx();
sigy = vData->getsigy();
Kx = vData->getKx ();
Ky = vData->getKy();
mux = vData->getMux();
mu_y = vData->getMuy ();
betax = vData->getBetax();

397

beta_y = vData->getBetay()
k = vData->getk();
m = vData->getm()
exm = vData->getexm();
ex = vData->getex ();
hnot = vData->gethnot();
epsnot = vData->getepsnot ()
mySign = vData->getmySign();
phieq = vData->getphieq();
return;

void FV:: setupPvPointers(void){
if (mode == 0)

offSet = totalPVvolumes;
numVars = 1;

}else {
offSet = 1;
numVars = myVars;

}

setULPV () ;
setURPV () ;
setLLPV () ;
setLRPV() ;

uFjlx = (presV)*directionsPerFlux;
bFjlx = uFjlx+l;
1Fjly = bFjlx+l;
rFjly = lFjly+l;

uFdx = (presV+2*totalFVvolumes)*directionsPerFlux;
bFdx = uFdx+l;
IFdy = bFdx+l;
rFdy = lFdy+l;

uFsex = (presV+1*totalFVvolumes)*directionsPerFlux;
bFsex = uFsex+l;
lFsey = bFsex+l;
rFsey = IFsey+l;

uFlncx = (presV+3*totalFVvolumes)*directionsPerFlux;
bFlncx = uFlncx+l;
IFlncy = bFlncx+l;
rFlncy = IFlncy+l;

398

uFlex = (presV+4*totalFVvolumes)*directionsPerFlux;
bFlex = uFlex+l;
iFley = bFlex+1;
rFley = IFley+l;

uFvx = (presV+5*totalFVvolumes)*directionsPerFlux;
bFvx = uFvx+l;
IFvy = bFvx+l;
rFvy = lFvy+l;

uFpx = (presV+6*totalFVvolumes)*directionsPerFlux;
bFpx = uFpx+l;
IFpy = bFpx+l;
rFpy = lFpy+l;
return;

void FV:: setULPV(void){
ulPVdiv = myRow*(numPVColumns) + myColumn;
ulPVhpc = numVars*(myRow*(numPVColumns) + myColumn);
ulPVphilc = ulPVhpc + philg*offSet;
ulPVphisc = ulPVhpc + phisg*eoffSet;
ulPVpc = ulPVhpc + 3* offSet;
return;

void FV:: setURPV(void) {
urPVdiv = myRow*(numPVColumns) + myColumn + 1;
urPVhpc = numVars *(myRow*(numPVColumns) + myColumn + 1);
urPVphilc = urPVhpc + philg*offSet;
urPVphisc = urPVhpc + phisg*offSet;
urPVpc = urPVhpc + 3* offSet;
return;

void FV:: setLLPV(void) {
llPVdiv = (myRow+l)*(numPVColumns) + myColumn;
llPVhpc = numVars*((myRow+l)*(numPVColumns) + myColumn);
llPVphilec = llPVhpc + philg*offSet;
llPVphisc = llPVhpc + phisg*offSet;
llPVpc = llPVhpc + 3* offSet;
return;

void FV:: setLRPV(void){
IrPVdiv = (myRow+l)*(numPVColumns) + myColumn + 1;
IrPVhpc = numVars*((myRow+l)*(numPVColumns) + myColumn + 1);

399

IrPVphilc = IrPVhpc + philg*offSet;
IrPVphisc = IrPVhpc + phisg*offSet;
IrPVpc = IrPVhpc + 3* offSet;
return;

FV:: setInitialConditions (volumelConditions* iData)

eps = iData->geteps ();
epsVptr [presV] = eps;
socVptr[presV] = soc;
soc = socVptr[presV];
Vptr[hpc] = iData->gethp () ;
Vptr[phi_lc] = iData->getphil();
Vptr[phi_sc] = iData->getphi_s ();
Vptr[jlxc] = iData->getjlx();
return ;

}

void FV:: setMaterialPropertyEffectiveValue (double * EffectivePropertyValue
double PropertyValue , double tortuosityFactor){

*EffectivePropertyValue = PropertyValue*pow(eps , tortuosityFactor);
return;
};
void FV:: setMaterialPropertyPermeability (){

invKp = (180*pow((1-eps) ,2))/(pow(eps,3)*pow(d,2));
return;

};

void FV:: computeFlux (double
double spacing){

* Flux = -EMPV*(V2 -
return;

void FV:: computeFlux (double
double spacing){

Flux = -EMPV(V2 -
return;

* Flux, double EMPV, double V2, double VI,

Vl)/spacing;

* Flux, double EMPV, double V2, double V1,

Vl) / spacing;

void FV:: computeCurrent(double * Fjl , double Fle , double Flc){
*Fjl = Fle + Flc;
return ;

400

void

{

//
//

//
//
//
//-

double FV::returnQvalue (int v, int xNv, int yNv, int xyNv){
return myQscale*Vptr[v]

+ myQxNscale*Vptr [xNv]
+ myQyNscale*Vptr [yNv]
+ myQxyNscale*Vptr [xyNv];

};

void FV:: computeQvalues (void) {
/* Upper Right CV Quadrature values */
qVptr [urQhpc] = returnQvalue (urPVhpc, ulPVhpc , IrPVhpc , llPVhpc);
qVptr[urQphilc] = returnQvalue (urPVphilc ,ulPVphilc , IrPVphilc ,11PVphilc);
qVptr [urQphisc] = returnQvalue (urPVphisc , ulPVphisc ,IrPVphisc , llPVphisc);
qVptr [urQpc] = returnQvalue (urPVpc ,ulPVpc ,lrPVpc ,llPVpc);

/* Upper Left CV Quadrature values */
qVptr [ulQhpc] = returnQvalue (ulPVhpc ,urPVhpc , llPVhpc ,IrPVhpc);
qVptr [ulQphilc] = returnQvalue (ulPVphilc , urPVphilc , llPVphilc , IrPVphilc);
qVptr [ulQphisc] = returnQvalue (ulPVphisc , urPVphisc, llPVphisc , IrPVphisc);
qVptr [ulQpc] = returnQvalue (ulPVpc ,urPVpc , llPVpc ,IrPVpc);

/* Lower Left CV Quadrature values */
qVptr [llQhpc] = returnQvalue (llPVhpc , IrPVhpc ,ulPVhpc ,urPVhpc);
qVptr[llQphilc] = returnQvalue (llPVphilc , IrPVphilc , ulPVphilc ,urPVphilc);
qVptr [llQphisc] = returnQvalue (llPVphisc , IrPVphisc , ulPVphisc , urPVphisc);
qVptr [llQpc] = returnQvalue (llPVpc , IrPVpc , ulPVpc , urPVpc);
/* Lower Right CV Quadrature values */
qVptr [lrQhpc] = returnQvalue (lrPVhpc , llPVhpc , urPVhpc , ulPVhpc);
qVptr [lrQphilc] = returnQvalue (lrPVphilc , llPVphilc , urPVphilc , ulPVphilc);
qVptr [lrQphisc] = returnQvalue (lrPVphisc , llPVphisc , urPVphisc , ulPVphisc);
qVptr [lrQpc] = returnQvalue (lrPVpc , llPVpc , urPVpc, ulPVpc);
return;

};

void FV::computeFluxes (void){
// Compute Diffusion Fluxes

computeFlux(&fluxVptr [uFdx], Deffx , Vptr[urPVhpc], Vptr [ulPVhpc], dx) ;
computeFlux(&fluxVptr[bFdx], Deffx , Vptr[IrPVhpc], Vptr[llPVhpc], dx) ;
computeFlux(&fluxVptr[IlFdy], Deffy , Vptr[ulPVhpc], Vptr[llPVhpc], dy) ;
computeFlux(&fluxVptr[rFdy], Deffy , Vptr[urPVhpc], Vptr[lrPVhpc], dy) ;

*/

computeFlux(&fluxVptr[uFdx], Deffx , Vptr[urPVhpc], Vptr[uIPVhpc], Qdx) ;
computeFlux(&fluxVptr[bFdx], Deffx , Vptr[IrPVhpc , Vptr[IlPVhpc], Qdx);
computeFlux(&fluxVptr[lFdy], Deffy , Vptr[uIPVhpc], Vptr[lPVhpc],Qdy) ;

401

computeFlux(&flux Vpt r [rFdy], Deffy , Vptr[urPVhpc], Vptr[IrPVhpc], Qdy) ;

// printf("Qdx = %f and Qdy = %f with Qpnt = %f\n",Qdx,Qdy, Qpnt);

computeFlux(&
computeFlux(&
computeFlux(&
computeFlux(&

fluxVptr
fluxVptr
fluxVptr
fluxVptr

// Compute Viscosity
computeFlux(&fluxVptr
computeFlux(&fluxVptr
computeFlux(&fluxVptr
computeFlux(&fluxVptr

[uFdx
[bFdx
[1Fdy
[rFdy

Fluxes
[uFvx]
[bFvx]
[1Fvy]
[rFvy]

, Deffx , qVptr [urQhpc] , qVptr [ulQhpc] ,Qdx)
, Deffx , qVptr [lrQhpc] , qVptr [llQhpc] ,Qdx)

, Deffy , qVptr [ulQhpc], qVptr [llQhpc] ,Qdy)
, Deffy , qVptr [urQhpc] , qVptr [lrQhpc] ,Qdy)

,mux slope , Vptr [urPVhpc], Vptr
,mux*slope , Vptr [IlrPVhpc], Vptr
,muy *slope , Vptr [ulPVhpc], Vptr
,muy *slope , Vptr [urPVhpc], Vptr

// Compute Chemical Potential Fluxes
computeFlux(& flux Vptr [uFlncx], olsKscalex

ulPVhpc]) , dx);
computeFlux(& flux Vptr [bFlncx], olsKscalex

llPVhpc]) , dx);
computeFlux(&fluxVptr[IFlncy], olsKscaley

llPVhpc]) , dy) ;
computeFlux(& flux Vptr [rFlncy i, olsKscaley

IrPVhpc]) , dy);

// Compute Chemical Potential Fluxes
computeFlux(&fluxVptr [uFlncx], olsKscalex

ulQhpc]) ,Qdx) ;
computeFlux(&fluxVptr [bFlncx], olsKscalex

llQhpc]) ,Qdx);
computeFlux(&fluxVptr [1Flncy], olsKscaley

llQhpc]) ,Qdy) ;
computeFlux(&fluxVptr [rFlncy], olsKscaley

IrQhpc]) ,Qdy);

[ulPVhpc]
[llPVhpc]
[llPVhpc]
[lrPVhpc]

,dx)
,dx)
,dy)
,dy)

, log (Vptr[urPVhpc]) , log (Vptr[

, log (Vptr[lrPVhpc]) , log (Vptr[

, log (Vptr[ulPVhpc]) , log (Vptr[

, log (Vptr[urPVhpc]) , log (Vptr[

, log (qVptr [urQhpc]) , log (qVptr [

, log (qVptr [lrQhpc]) ,log (qVptr [

, log (qVptr [ulQhpc]) ,log (qVptr[

, log (qVptr [urQhpc]) ,log (qVptr[

// Compute Liquid Current Fluxes

computeFlux(& flux Vptr [uFlex], Keffx
computeFlux(&fluxVptr[bFlex], Keffx
computeFlux (&flux Vptr [IFley 1, Keffy
computeFlux (&flux Vp tr [rFley], Keffy
*1

computeFlux(&fluxVptr [uFlex],
computeFlux(&fluxVptr [bFlex],
computeFlux(&fluxVptr [1Fley],
computeFlux(&fluxVptr [rFley],

Keffx
Keffx
Keffy
Keffy

Vptr[urPVphilc]
Vptr[IrPVphilc]
Vptr[ulPVphilc]
Vptr[urPVphilc]

qVptr [urQphilc]
qVptr [lrQphilc]
qVptr [ulQphilc]
qVptr [urQphilc]

Vptr [uP Vphi c

Vptr [lP Vphilc
Vptr[liP Vphilc
Vptr[IrPVphilc

qVptr [ulQphilc
qVptr [llQphilc
qVptr [llQphilc
qVptr [lrQphilc

402

],dx);
],dx);
],dy);
],dy);

],Qdx);
],Qdx);
],Qdy);
],Qdy);

computeFlux(& fluxVptr [uFjlx i, Keffx
computeFlux(&fluxVptr [bFjlx], Keffx
computeFlux(& flux Vptr [I Fjly 1, Keffy

computeFlux(&flux Vptr [rFjly], Keffy

// Compute Solid Current Fluxes
computeFlux(&fluxVptr [uFsex], sigeffx

, Vptr[urPVphilc],

, Vptr[IrPVphilc],
, Vptr[ulPVphilc],
, Vptr[urPVphilc],

Vptr [u P Vphilc], dx) ;
Vptr[llP Vphilc], dx);

Vptr[llP Vphilc],dy);

Vptr[IrPVphilc],dy);

, qVptr [urQphisc], qVptr [ulQphisc] ,Qdx)

computeFlux(&fluxVptr [bFsex], sigeffx , qVptr [lrQphissc], qVptr [llQphisc],Qdx)

computeFlux(&fluxVptr [Fsey], sigeffy ,qVptr[ulQphisc] qVptr [llQphisc] ,Qdy)

computeFlux(&fluxVptr[rFsey], sigeffy ,qVptr[urQphisc] qVptr[lrQphisc],Qdy)

computeFlux(&fluxVptr[uFsex], sigeffx
computeFlux(& flux Vptr [bFsex], sigeffx

computeFlux(&flux Vptr [IFsey I, sigeffy

computeFlux(&flux Vptr [rFsey], si g effy
,/

Vptr[urPVphisc], Vptr[ulPVphisc],dx);
, Vptr[IrPVphisc], Vptr[llPVphisc],dx);
, Vptr[ulPVphisc], Vptr[llPVphisc],dy);
, Vptr[urPVphisc], Vptr[IrPVphisc],dy);

// Compute the Liquid Phase ElectroChemical Fluxes

computeCurrent(&fluxVptr [uFjlx], fluxVptr [uFlex], fluxVptr [uFlncx]) ;
computeCurrent(&fluxVptr [bFjlx], fluxVptr [bFlex], fluxVptr [bFlncx]) ;
computeCurrent(&fluxVptr [1Fjly], fluxVptr [1Fley], fluxVptr [1Flncy]) ;
computeCurrent(&fluxVptr [rFjly], fluxVptr [rFley], fluxVptr [rFlncy]) ;

// Compute Pressure Fluxes
computeFlux(&fluxVptr [uFpx], 1, Vptr [urPVpc], Vptr [ulPVpc
computeFlux(&fluxVptr [bFpx], 1, Vptr [lrPVpc], Vptr [llPVpc

computeFlux(&fluxVptr [1Fpy], 1, Vptr [ulPVpc], Vptr [llPVpc
computeFlux(&fluxVptr [rFpy], 1, Vptr [urPVpc], Vptr [lrPVpc
return ;

};

void FV:: computeMaterialProperties (void){
setMaterialPropertyEffectiveValue(&Deffx ,Dx,ex) ;
setMaterialPropertyEffectiveValue(&Deffy ,Dy,ex) ;
setMaterialPropertyEffectiveValue(&Keffx ,Kx, ex) ;
setMaterialPropertyEffectiveValue(&Keffy ,Ky,ex) ;
setMaterialPropertyEffectiveValue(&sigeffx , sigx ,exm);
setMaterialPropertyEffectiveValue(&sigeffy , sigy ,exm);
setMaterialPropertyPermeability();
olsKscalex = Keffx*olsScale;
olsKscaley = Keffy*olsScale;
return;

403

void FV:: computeDiv(void){
myDiv = (divVptr [ulPVdiv]) *myCVvolumeRatio [myUL]

+ divVptr [urPVdiv] myCVvolumeRatio [myUR]
+ divVptr [llPVdiv]*myCVvolumeRatio[myLL]
+ divVptr [lrPVdiv]* myCVvolumeRatio[myLR];

return;

};

void FV:: computeDiv(void){
myDiv = divVtwoptr[ulPVdiv + 1]

+ divVtwoptr[ulPVdiv + 2]
+ divVtwoptr[urPVdiv + 1]
+ divVtwoptr[urPVdiv + 3]
+ divVtwoptr[llPVdiv + 0]
+ divVtwoptr[llPVdiv + 2]
+ divVtwoptr[lrPVdiv + 0]
+ divVtwoptr[lrPVdiv + 3];

return;

/* ********* EPS ******************* /

void FV:: computeNextEPS (void) {
eps = eps + (dt*myVfd2*myDiv)/myVolume;

epsVptr[presV] = eps;
// printf("Pres %d Updated EPS with %0.16f\n and myDiv %0.16f

and dt %f and myVfd2 %f\n",presV, eps ,myDiv, dt, myVfd2);
return;

}

/* ******** SOC *******************/

void FV:: computeNextSOC (void)
{

soc = soc + mySign*(dt*myDiv)/Qmax;
socVptr[presV] = soc;
return;

/* ****** Diffusion Fluxes ********* */

404

double FV:: returnFdx (int p){
if(p == UL II p == UR)

return fluxVptr[bFdx];
else if(p == LL I p == LR)

return fluxVptr[uFdx];
else
return 0;

};

double FV:: returnFdy (int p){
if(p == UL I P == LL)

return fluxVptr [lFdy];
else if (p == UR 1I p == LR)

return fluxVptr[rFdy];
else
return 0;

/ *** Quadrature Concentrations ****/

double FV::returnQhp(int p){
if(p == UR)

return qVptr[llQhpc];
else if(p == UL)

return qVptr [lrQhpc];
else if(p == LL)

return qVptr [urQhpc];
else if(p == LR)

return qVptr[ulQhpc];
else
return 0;

double FV::returnQxNhp(int p){
if(p == UR)

return qVptr[lrQhpc];
else if(p == UL)

return qVptr[llQhpc];
else if(p == LL)

return qVptr[ulQhpc];
else if(p == LR)

return qVptr[urQhpc];
else
return 0;

405

double FV:: returnQyNhp(int p){
if(p == UR)

return qVptr[ulQhpc];
else if(p == UL)

return qVptr[urQhpc];
else if(p == LL)

return qVptr[IrQhpc];
else if(p == LR)

return qVptr[llQhpc];
else
return 0;

};

/* Current in Solution Fluxes ******/

double FV::returnFjlx(int p){
if(p == UL II p == UR)

return fluxVptr[bFjlx];
else if(p ==LL II p ==LR)

return fluxVptr[uFjlx];
else
return 0;

double FV::returnFjly(int p){
if(p == UL II p == LL)

return fluxVptr[lFjly];
else if (p == UR I p == LR)

return fluxVptr[rFjly];
else
return 0;

/* Current in Solid Fluxes *********/

double FV::returnFsex(int p){
if(p == UL II p == UR)

return fluxVptr[bFsex];
else if (p == LL II p == LR)

return fluxVptr[uFsex];
else
return 0;

406

double FV:: returnFsey (int p) {
if(p == UL I p == LL)

return fluxVptr[1Fsey];
else if (p == UR I1 p == LR)

return fluxVptr[rFsey];
else
return 0;

};

/* x direction Material Coefficients */
/, * ********************************* /

double FV:: returnDeffx (void){
return Deffx;

};

double FV:: returnKeffx (void) {
return Keffx;

};

double FV:: returnolsKscalex (void){
return olsKscalex;

};

double FV:: returnsigeffx(void){
return sigeffx;

};

double FV::returnDVx (void) {
return mux;

};

double FV::returnVECx (void) {
return betax;

};

double FV:: returndx (void) {
return dx;

};

double FV:: returnQdx (void){
return Qdx;

};* y direction Material Coefficients

/, y direction Material Coefficients ,/

407

double FV:: returnDeffy (void){
return Deffy;

double FV:: returnKeffy (void){
return Keffy;

};

double FV:: returnolsKscaley (void){
return olsKscaley;

};

double FV:: returnsigeffy(void) {
return sigeffy;

};

double FV:: returnDVy (void) {
return mu_y;

};

double FV:: returnVECy (void) {
return beta_y;

};

double FV:: returndy (void) {
return dy;

};

double FV:: returndz (void) {
return dz;

};

double FV:: returnQdy (void) {
return Qdy;

};

double FV:: returnQdz (void) {
return Qdz;

void FV::setdx(
dx = d;
return;

double d) {

void FV::setCVvolume(int position , double vol){

408

myCVvolume[position] = vol;
return;

};
void FV:: setCVvolumeRatio(int position , double volRatio){

myCVvolumeRatio[position] = volRatio;
return;

};
double FV:: returneps(void){

return eps;

double FV:: soceta(void
return pow(soc

};

) {
, eta);

double FV::
return 0;

};

double FV::
return 0;

};

double FV::
return 0;

double FV::
return 0;

returnFvisc_x (int position){

returnFviscy (int position) {

returnFp_x(int position){

returnFp_y(int position){

409

Listing B.59. cellSizeData.h

* cellSizeData .h

* @author James Geraci

i fn d e f _CELLSIZEDATAH
#define _CELLSIZEDATAH

class cellSizeData

{
public :

cellSizeData (void);
public :

ScellSizeData (void) ;

public:
void setnumofElectrodes (int);

void setldxFVColumns (int);
void setElectrolyteFVColumns (int);
void setldFVColumns (int);

void setldxPVColumns (int);
void setElectrolytePVColumns (int);
void setldPVColumns (int);

void setnumFVRows (int);
void setnumPVRows(int);

void setnumFVZrows(int);
void setnumPVZrows (int);

void computeTotalFVColumns (void);
void computeTotalPVColumns (void);

void computeTotalFVVolumes (void);
void computeTotalPVVolumes (void);

int getldxFVColumns (void);
int getElectrolyteFVColumns(void);
int getldFVColumns (void);

410

int getldxPVColumns (void) ;
int getElectrolytePVColumns(void);
int getldPVColumns (void);

int getnumPVZrows (void) ;
int getnumPVRows(void);
int getnumPVColumns (void);

int getnumFVZrows (void) ;
int getnumFVRows(void);
int getnumFVColumns (void) ;

int gettotalFVVolumes (void);
int gettotalPVVolumes (void) ;

int getnumofElectrodes (void);

private:
int numofElectrodes

int ldxFVColumns;
int ElectrolyteFVColumns;
int ldFVColumns;

int ldxPVColumns;
int ElectrolytePVColumns;
int IdPVColumns;

int numFVRows;
int numFVZrows;
int numFVColumns;

int numPVRows;
int numPVZrows;
int numPVColumns;

int totalFVColumns;
int totalPVColumns;

int totalFVVolumes;
int totalPVVolumes;

#endif

411

Listing B.60. cellSizeData.cpp

* cellSizeData . cpp
" @author James Geraci
* provides the interface
* in each region of the

to set/fetch
battery cell

the number of columns and rows

#include
#include
#include

"StdAfx .h"
"cellSizeData .h"

cellSizeData :: cellSizeData (void)

cellSizeData :: cellSizeData (void)
{
}

void cellSizeData:: setnumofElectrodes(int nE){
numofElectrodes = nE;
return;

void cellSizeData:: setldxFVColumns(int
ldxFVColumns = ldxFVc;
return ;

ldxFVc) {

};

void cellSizeData ::setElectrolyteFVColumns (int eFVc){
ElectrolyteFVColumns = eFVc;
return;

};

void cellSizeData :: setldFVColumns (int IdFVc){
ldFVColumns = IdFVc;
return;

};

void cellSizeData ::setldxPVColumns(int IdxPVc){
ldxPVColumns = IdxPVc;
return;

};

void cellSizeData :: setElectrolytePVColumns (int ePVc){
ElectrolytePVColumns = ePVc;

412

return;

void cellSizeData :: setldPVColumns(int IdPVc){
IdPVColumns = IdPVc;
return;

1;

void cellSizeData ::setnumFVRows(int FVrows){
numFVRows = FVrows;
return;

void cellSizeData ::setnumPVRows(int PVrows){
numPVRows = PVrows;
return;

void cellSizeData::
numFVZrows
return;

void cellSizeData::
numPVZrows
return;

setnumFVZrows (int FVZrows){
= FVZrows;

setnumPVZrows (int PVZrows) {
= PVZrows;

void cellSizeData :: computeTotalFVColumns (void) {
totalFVColumns = ldxFVColumns + ElectrolyteFVColumns + IdFVColumns;
return;

};

void cellSizeData :: computeTotalPVColumns (void){
totalPVColumns = ldxPVColumns + ElectrolytePVColumns + IdPVColumns;
return;

};

void cellSizeData :: computeTotalFVVolumes (void){
totalFVVolumes = totalFVColumns *numFVRows* numFVZrows;
return;

void cellSizeData :: computeTotalPVVolumes (void){
totalPVVolumes = totalPVColumns *numPVRows*numPVZrows;

413

return ;

int cellSizeData :: getnumPVZrows (void){
return numPVZrows;

int cellSizeData :: getnumPVRows(void) {
return numPVRows;

int cellSizeData :: getnumPVColumns (void){
return totalPVColumns;

int cellSizeData :: getnumFVZrows (void){
return numFVZrows;

int cellSizeData :: getnumFVRows(void){
return numFVRows;

int cellSizeData :: getnumFVColumns (void){
return totalFVColumns;

int cellSizeData :: gettotalFVVolumes(void){
return totalFVVolumes;

int cellSizeData:: gettotalPVVolumes(void){
return totalPVVolumes;

int cellSizeData :: getnumofElectrodes (void){
return numofElectrodes;

int cellSizeData :: getldxFVColumns (void){
return IdxFVColumns;

414

int cellSizeData :: getElectrolyteFVColumns(void) {
return ElectrolyteFVColumns;

int cellSizeData :: getldFVColumns (void){
return ldFVColumns;

int cellSizeData :: getldxPVColumns (void){
return ldxPVColumns;

int cellSizeData ::getElectrolytePVColumns(void) {
return ElectrolytePVColumns;

int cellSizeData :: getldPVColumns (void) {
return IdPVColumns;

415

Listing B.61. volumelConditions.h
/* @author James Geraci

if n d e f VOLUMEICONDITIONSH
d e f i n e VOLUMEICONDITIONSH

class volumeIConditions
{
public :

volumelConditions (void);
volumeIConditions (double, double, double);

public :
~ volumelConditions (void);

public :
double geteps(void);
double getjlx(void);
double getjly(void);

private:
double eps;
double jlx;
double jly;

};#d

#endif

416

Listing B.62. volumelConditions.cpp

* @author James Geraci
* sets Initial Conditions for FV volumes

#include "StdAfx .h"
#include "volumelConditions .h"

volumelConditions :: volumelConditions (void)

{
}

volumelConditions:: volumelConditions(double e,double x,double y)

{
eps = e;
jlx = x;
jly = y;

volumelConditions::~ volumelConditions(void)

{
}

double volumelConditions:: geteps(void)
{

return eps;
};

double volumelConditions:: getjlx (void)

{
return jlx;

};

double volumelConditions:: getjly (void)

{
return jly;

};

417

Listing B.63. matrixData.h
/* @author James Geraci

ifnde f _MATRIXDATA±I
#d efine _MATRIXDATAH
#include "cellSizeData .h"
#include <stdio .h>

#include
#include
#include

<libspe2 .h>
"common. h"
"ctdef .h"

class matrixData

{
public :

matrixData (void);
matrixData (cellSizeData *, int);

public :
matrixData (void);

public :

ppupthreaddata_t * datas;
speprogram handle_ t ph;
// spe program _handle _t spu
//void * ppu pthreadfunction (voi
void startSPEs (const char*);
// CONTROLBLOCK_T* myCB;
void restoreiVindex(void);
// void sendNUM_SPUS(void);
void sendSPE_RANKS(void);
void sendData(int);
char filename [1024];
void openDataFile(const char*);
void closeDataFile(void);
void writeDataFiletoDisk (void);
double collectedDataCounter;
double collectedDataVars;
FILE* Vfile;
FILE* Vfilebefore;
FILE* Vfileafter;
void writeVtoDisk (double , int);
void writeiVbeforetoDisk (double
void writeiVaftertoDisk (double*,
void writeJtoDisk(double , int);
double collectedData [5];
int collectedDataSize;

_prog ;
d *);

,int);
int);

418

//void checkDMAqueueStatus(void);
// void sendPVJrows(int);

unsigned int cmd_status;
int alignedRowSize;
int neededExtraBytes
int jhpc;
double * val_CRS, col_ind , row ptr;

int sparseMatrixSize ;
int ActualsparseMatrixSize
unsigned int *nzInRow;

unsigned int spubuffers;

double ** myJacobian (void);
double a myfluxV (void);
double* mysocV(void);
double * mydivV(void);
double * mydivVtwo(void);
double * myepsV(void);
double * myiV(void) ;

double * mysV(void);
double * mypiV(void) ;
double * mybiV (void);
double * mypsV(void) ;
double * myRowBuffer(void);
double * myExtraBufferl (void);
double * myavePressures x (void);
double * myavePressures y (void);
double * myAVEhpx(void);
double * myAVEhpy(void);
//double * rhs_address (void);

int * myintBuffer(void);

int
int
int
int

myJacobByteSize (void) ;
myJacobSize (void);
mysvLength (void) ;
mySvByteSize(void) ;

int myPVColumns (void);
int myPVRows(void);
int myPVZrows(void);

int myFVColumns(void);
int myFVRows(void);
int myFVZrows(void);
int myJhpc (void);
int ReturnTotalFVvolumes (void);

419

double * myJacobianStorage (void);
// double * JacobianStorageBackup (void) ;
void setpiV(void);
//void resetiV(void);
void resetdivV(void);
void resetdivVtwo(void);
void resetJacobian(void);
void resetRowBuffer(void);
void resetFluxes (void);
void restoresV (void);
void storesV (void);
// void copyiV2rhs(void);
// void copyrhs2iV(void);
/* void cpJacobiantoMatlab (void); ,/

/, void cpurJacobiantoMatlab (void); ,/
/, void cplVtoMatlab(void) ; */
/, void cpSVtoMatlab (void); */
/, void cppSVtoMatlab (void) ; */

void setInitialSV (void);
void cpfluxVtoMatlab (void); */

/, void cpdivVtoMatlab(void) ; */
/, void cpepsVtoMatlab (void) ; /
/* void cpsocVtoMatlab(void);*\/ */

void applyBoundaryConditions (void);
void applyPreConditioner (void);

/* void getSVfromMatlab(void); */
/, void getlVfromMatlab(void); */
/, void computnlVinMatlab (void); */
/, void makeGraphs (void); */

void computelV (void);
//void computelV(speid _t *, double , double*);
void clearColumn(int);
//void startSPUs (void);
void barrier(void);
// void barrier2(void);
// unsigned int SPUaddress[6];
bool SPU_read;
// spe_context_ptrt * speids;
// double** rhs;
// unsigned int sum;
unsigned int sumdelta;
int present _baserow;
//double rhsBuffer;
double* bufaddrf;
int svLength ; // = numColumns*numRows*6;
int hbWidth;
int hbWbytes;

420

int bWidth;
int bWbytes;
double* JacobianStorage;
double * JacobianStorageBackup;
double** Jacobian;
double * sV;
double** iV; // intermediate values vector

double * iV2;
//unsigned int iV2;
double iVx;
double iVy;
double * avePressures _y;
double* avePressures _x;

private:
void startNSPEs (int);
const char* myProg;
void setupCB (void);
CONTROLBLOCK_T cb CACHEALIGNED:
int * xSPE;
unsigned int numFailed;
// spemfc_command_areat * spucmd;
// int pvt;
int edge;
int NUMSPE;
unsigned int workingSPEs;
double et_start ,etend, et_total;
double etstartrowx ,etend_rowx ,et_total_rowx;
double et_start_bs ,et_end_bs , et_total_bs;
double barrier2_timetotal , barrier2_timestart , barrier2_timeend;
int computePivot (int);
unsigned int r;
double mean;
double std;
double stdTime;
double AveTime;
double TotalTime;
double elapsedTime;
double tictime;
double toc_time;
double tic;
double toc;
double elapsed;
bool first_call;
// Engine *ep;
//MATFile *pmat;
// mxArray *fluxVmat, *divVmat, *epsVmat, *socVmat, *psVmat, *

421

sVmat, * iVmat, * savesVmat , * piVmat , rowBuffermat , * JacobianMat;
double * fluxV;
double * divV;
double * divVtwo;
double * epsV;
double * socV;
double * psV;

double * savesV;

double * piV; // the Past difference
double * biV; // the Past difference

double* extraBufferl;
double * AVEhpy;
double * AVEhp x;
int* intBuffer;

double maxpivot_value;
unsigned int maxpivot;

int svByteSize;
int FVsvLength;
int FVsvByteSize;
int JacobSize;
int JacobByteSize;
int eyeMaker;

int ldxPVColumns;
int ElectrolytePVColumns;
int IdPVColumns;

int f;
int rc;
int numPVColumns;
int numPVRows;
int numPVZrows;
int totalPVvolumes;

int numFVColumns;
int numFVRows;
int numFVZrows;
int totalFVvolumes;

int reference;
int phisc;
int philc;

422

int refB;
int ekBoundary;

#endif

423

Listing B.64. matrixData.cpp

* @author James Geraci
* @second author Sudarshan Raghunathan
* contains all data vectors and jacobian matrix

#include "matrixData .h"
#include "StdAfx .h"
#include <iostream>
#include<sys/time .h>
#include <stdio.h>
#include <errno .h>

extern "C"{
void ppupthread_function (void arg){

ppupthread data_t * datap = reinterpret cast <ppupthreaddata_t*>(arg);
int rc ;
rc = pthreadsetcanceltype (PTHREADICANCELASYNCHRONOUS, NULL);
unsigned int entry = SPEDEFAULTENTRY;
spe_stop_info_t stop_info;
if ((rc = specontextrun (datap->speid , &entry , 0, datap->argp, NULL, &

stop_info)) < 0){
fprintf(stderr , "Failed -spe_context_run (rc-=d,_errno-=d,_ strerror-=s)\n

rc , errno , strerror(errno));
exit(l);

}

// checkResults("pthread_setcanceltype ()\n", rc);

// printf("RC = %d\n",rc);
pthreadexit (NULL);
return NULL;

}
typedef void* (*PPF)(void*);
}

PPF px = ppu_pthreadfunction;

static inline double gettime()
{

timeval t;
if (gettimeofday(&t, 0) != 0)

perror ("gettimeofday");

return (t. tv_usec / 1000000.0) + t. tv_sec ;
}

424

matrixData ::~ matrixData (void)

freealign ((void*) val_CRS);
free_align ((void*) rowptr);
freealign ((void*) colind);
freealign ((void*) nzInRow);

// free_align ((void*) rhs);
// free align ((FILE*) Vfile);
freealign ((void*)divV);
free align
free align
free align
free align
free align
free align
free align
free align
free align
free align
free_ aign
free align
free align
free align
free align
free align

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void

*)fluxV);
*)epsV) ;
*)socV) ;
•)psV);
•)sV);
*) savesV) ;
*)iV);
*)piV);
*)extraBufferl);
*) intBuffer);
*) JacobianStorage);
*) Jacobian) ;

) avePressures_y);
) avePressures _x);

•)AVEhpx) ;
•)AVEhpy) ;

matrixData :: matrixData (cellSizeData * csData , int Nspu)

Vfile = NULL;
NUMSPE = Nspu;
numFailed = 0;
TotalTime = 0;
AveTime = 100;
stdTime = 100;
mean = 0;
std = 0;

first_call = true;
collectedDataCounter = 0;
collectedDataVars = 5;
ldxPVColumns = csData->getldxPVColumns ();
ElectrolytePVColumns = csData->getElectrolytePVColumns();
IdPVColumns = csData->getldPVColumns ();
numPVColumns = csData->getnumPVColumns () ;

425

numPVRows = csData->getnumPVRows() ;
numPVZrows = csData->getnumPVZrows ();
totalPVvolumes = numPVColumns*numPVRows*numPVZrows;
//printf("numPVColumns = %d, numPVRows = %d, myVars = %d\n",numPVColumns,

numPVRows, myVars) ;
refB = 1; // always 1
ekBoundary = 2; // change to 2 for phil before phis
reference = (totalPVvolumes -1)*myVars + refB;
numFVColumns = csData->getnumFVColumns () ;
numFVRows = csData->getnumFVRows() ;
numFVZrows = csData->getnumFVZrows ();
totalFVvolumes = numFVColumns*numFVRows*numFVZrows;

svLength = totalPVvolumes*myVars;
svByteSize = svLength*sizeof(double);
std ::cout << "Original -svByteSize," << svByteSize << std ::endl;

FVsvLength = totalFVvolumes*myVars; // Used to be totalFVvolumes*(myVars
+2), but I don 't know why

FVsvByteSize = FVsvLengthe sizeof (double);
// Compute Number of Variables in Sparse Matrix
int ADEGH = 5, totalPVvolumes - 2*(totalPVvolumes /numPVRows) - 2*(

numPVRows - 1) - 2;
int R = totalPVvolumes - numPVRows*(ElectrolytePVColumns);
int F = ADEGH - 2*numPVRows - 5*ElectrolytePVColumns*numPVRows + 2*(

ElectrolytePVColumns+1) ;
int B = ADEGH - 5*(ElectrolytePVColumns + 1)*numPVRows + 2*(

ElectrolytePVColumns + 1);

int niner = 1;
// hbWidth = (numPVColumns+l)*myVars;
hbWidth = (numPVColumns+l+niner)*myVars; // modified September 18
hbWidth += hbWidth%2;
hbWbytes = hbWidth *sizeof(double);
// jhpc = numPVColumns*myVars;
jhpc = (numPVColumns+niner)*mrnyVars; // modified September 18
//jhpc = hbWidth ;//numPVColumns*myVars;
bWidth = jhpc + hbWidth;
std ::cout << std ::endl << "jhpc.=." << jhpc << "-hbWidth-=.-" << hbWidth

<< std::endl;
bWbytes = bWidth*sizeof(double);

// neededExtraBytes = ((myVars-1) + (myVars-1)%2)*sizeof(double) +
b Wb y t e s /Q UADALIGNMENT;

neededExtraBytes = myVars*sizeof(double) + bWbytes%9QUAD.ALIGNMENT;

426

// alignedRowSize = bWbytes+neededExtraBytes + 2* sizeof(double) /* for
rhs */;

alignedRowSize = bWbytes + 4* sizeof(double);// + neededExtraBytes/* for
rhs */;

// bWidth = alignedRowSize/sizeof(double);
bWidth += 4; // This adds the space at the end for the iV and pbr count
std ::cout << "bWidth-=-" << bWidth << "_bWbytes.=_" << bWbytes << std ::

endl
<< "hbWidth.='" << hbWidth << "-hbWbytes.=-"<< hbWbytes << std

:: endl
<< ".needed-ExtraBytes =_" << neededExtraBytes << "-alignedRowSize

=-" << alignedRowSize << std ::endl;

JacobSize = svLength *(bWidth);
std :: cout << "Number-ofElements-in -the -Jacobian," << JacobSize << std::

endl;
JacobByteSize = JacobSize sizeof (double); //svByteSize*alignedRowSize;
// std :: cout << "Jacob Byte size = " << JacobByteSize << " jhpc = " <<

jhpc << std :: endl ;
ActualsparseMatrixSize = 5*ADEGH + R + F + B;
int maxnzPerRow = 16;
sparseMatrixSize = myVars*maxnzPerRow*totalPVvolumes;
f = totalFVvolumes*fluxesPerVol directionsPerFlux sizeof(double);
// printf("'f = %d\n", totalFVvolumes*fluxesPerVol *directionsPerFlux* sizeof(

double));
try{

valCRS = (double,) malloc align (sparseMatrixSize *sizeof(double) ,7);
row ptr = (double,) mallocalign (sparseMatrixSize *sizeof(double) ,7);
col ind = (double,) malloc align (sparseMatrixSize *sizeof(double) ,7);
nzInRow = (unsigned int *) malloc_align(svLength*sizeof (unsigned int) ,7)

spu.buffers = (unsigned int*) mallocalign(NUMSPE*sizeof(unsigned int)
,7) ;

//rhs = (double**) malloc_align (svLength * sizeof(double*) , 7);
socV = (double*) malloc_align (totalFVvolumes*sizeof(double) ,7);
fluxV = (double*) malloc_align(f,7);
divV = (double*) malloc_align (totalPVvolumes*sizeof(double) ,7);
divVtwo = (double*) malloc_align (4* totalPVvolumes*sizeof(double) ,7);
epsV = (double *) malloc_align (totalFVvolumes*sizeof (double) ,7);
// can put divV here too.
psV = (double*) malloc _align(svByteSize ,7);
sV = (double*) malloc_align(svByteSize ,7);
savesV = (double*) malloc align(svByteSize ,7);
iV = (double**) mallocalign (svLength * sizeof(double*) , 7);
piV = (double*) mallocalign(svByteSize ,7);
biV = (double*) malloc align(svByteSize ,7);
iV2 = (double*) malloc align(svByteSize*sizeof(double) ,7);

427

extraBufferl = (double*) mallocalign(svByteSize ,7);
intBuffer = (int*) malloc_align(svLength*sizeof(int) ,7);
//spu_rhs = reinterpretcast <double *>(mallocalign (svByteSize * 2, 7));
Jacobian = (double**) mallocalign (svLength*sizeof(double*) ,7);
JacobianStorage = (double *) malloc_align (JacobByteSize ,7);
JacobianStorageBackup = (double *) malloc_align (JacobByteSize ,7);
avePressures _y = reinterpret _cast <double*>(malloc_align (numFVRows*

numPVColumns*sizeof (double) ,7));
avePressures _x = reinterpret _cast <double*>(malloc_align (numFVColumns*

numPVRows*sizeof(double) ,7));
AVEhp_y = reinterpret _cast <double* >(malloc align (numFVRows*

numPVColumns* sizeof (double) ,7));
AVEhp_x = reinterpret _cast <double* >(malloc align (numFVColumns*

numPVRows* sizeof (double) ,7)) ;
SPUread = reinterpret _cast <bool*>(malloc align (NUMSPE* sizeof(bool) ,7)

//printf("The size of a bool is %d and the size of unsigned int is %d\n
", sizeof(bool), sizeof(unsigned int));

//p rin tf("numFVRows*numPVColumns = %d\n ",numFVRows*numPVColumns);
resetJacobian () ;
for(int i =0; i < svLength; i++){

Jacobian [i] = & JacobianStorage [ibWidth];

}
//printf("You are starting to assign rhs pointers\n");

for(int index = 0; index < svLength; index++){
// rhs[index] = &JacobianStorage[(index+1)*bWidth - 2];
iV[index] = &JacobianStorage [(index+1)*bWidth - 2];
JacobianStorage [(index+l)*bWidth - 3] = - 1;
//iV2[index] = (unsigned int) &JacobianStorage [(index+l)*bWidth - 2];

}
//printf("You have assigned rhs pointers\n");
}
catch (std : bad_alloc)

{
std :: cout << "Aligned- Malloc _Align -has Failed !" << std ::endl;
exit(-1);

}
for(int d = 0; d < sparseMatrixSize ; d++)

{
valCRS[d] = 0;
rowptr[d] = -1;
colind[d] = -1;

}
xSPE = reinterpret cast <int >(malloc_align (NUMSPEsizeof(int) ,7));
// iV2 = &iV[01[0];
memset(JacobianStorage ,0 , JacobByteSize) ;
memset(JacobianStorageBackup ,0, JacobByteSize) ;

428

memset(fluxV ,0, f);
memset(socV ,0, totalFVvolumes*sizeof (double));
memset (divV ,0 , totalPVvolumes *size of (double)) ;
memset(epsV ,-0, totalFVvolumes*sizeof (double)) ;
memset(piV ,0, svByteSize) ;
// memset(iV,0, svByteSize);
memset(sV,O , svByteSize) ;
memset(psV,0, svByteSize) ;
memset(extraBufferl ,0, svByteSize);
memset(savesV ,0, svByteSize);

// memset(spu buffers ,O,2*NUMSPU*sizeof(unsigned int));
// memset(rhs ,O,2*svByteSize);

//printf("Matrix construction completed.\n");
//printf(" spubuffers has been set to %d\n",spu_buffers[O]);

}

void matrixData:: restoreiVindex (void){
for(int index = 0; index < svLength; index++){

iV[index][1] = (double) index;

}
return;

}

void matrixData:: startSPEs (const char* myP){
myProg = myP;
// NUMSPE = I;
//printf("About to start SPEs\n");
try{

cb = reinterpret _cast <CONTROLBLOCKT*>(malloc align (NUMSPE* sizeof (
CONTROLBLOCKT) , 7)) ;

}catch(std ::bad_alloc){
//printf("cb was not properly allocated\n");
exit(-1);

}
for(int p = 0; p < NUMSPE; p++){

cb[p]. original_rankmodified = 0;
}
try{
datas = reinterpret _cast <ppu -pthread _data _t >(malloc _align (NUMSPE* sizeof

(ppu.pthread_data-t) ,7));
}catch(std ::bad_alloc){

//printf("datas not propely allocated\n");
exit(-1);

}
//printf("cb and datas ok\n");

429

int rc = 0 ;

workingSPEs = 0;
//printf("The number of physical SPEs is %d\n",spe_cpuinfo_get(

SPE_COUNTPHYSICALCPUNODES, -1)) ;

//printf("The number of usable SPEs is %d\n", specpuinfo_get(

SPECOUNT_USABLESPES, - 1));

// Get the SPE threads running
startNSPEs (NUMSPE) ;
// workingSPEs = 0;
// startNSPEs (NUMSPE)

//printf("YOU GOT PAST the THREAD CREATES with %d WORKINGSPES out of %d
requested SPEs\n ", workingSPEs , NUMSPE) ;

setupCB () ;

// printf("YOU GOT IN FRONT OF THE BARRIER\n");
barrier ();
//p rin tf("YOU GOT PAST THE BARRIER\n");

sendData (NUMSPE) ;
// mData->barrier2 ();
barrier();
sendSPERANKS() ;
barrier ();
sendSPERANKS() ;
barrier();
return;

void matrixData startNSPEs (int Nspe){
int wspeStart = workingSPEs;
int pp;
for (int i = wspeStart; i < Nspe + wspeStart; i++) {
/* Create context */

//printf("going to create spe %d\n", i);
if ((datas [i]. speid = spe_contextcreate (SPEMAPPS, NULL)) == NULL){

fprintf (stderr , "Failed s pe con text create (errno/od-strerror=%s)\n
" , errno , strerror(errno));

exit (3+i);

}
// std ::cout << "past spe_contextcreate" << std:: endl;
// std::cin >> pp;
/* Open Program Image */

if ((ph = speimageopen (myProg)) == NULL){
fprintf (stderr , "Failed spe_image_open(errno=-%dstrerror=%s)\n"

errno , strerror(errno));
exit (3+i);

430

// std:: cout << "past spe_image_open " << std :: endl ;
// std ::cin >> pp;
/* Load program */
if ((rc = spe_programload (datas[i].speid ,ph)) != 0){

fprintf (stderr , "Failed.speprogram_load(errno-%d-.strerror-=s)\n"
, errno, strerror(errno));

exit (3+i);

}
// std::cout << "past spe_programload" << std :: endl;
// std :: cin >> pp;
spe_image_close(ph);

// //printf("About to Initialize Data\n");
/* Initialize data */
datas [i]. argp = reinterpret_cast <CONTROL_BLOCK_T*>(cb) ;
/* Create thread */
if ((rc = pthreadcreate (&datas[i].pthread , NULL, px, &datas[i]))

!= 0)
{

fprintf (stderr , "Failed pthread create (errno=%d-strerror-=s)\n" ,
errno , strerror(errno));

exit (3+i);
}else{
workingSPEs++;
cb [i]. working = 1; // SPE i is working

}
std ::cout << "past -pthread-create" << std ::endl;

// std :: cin >> pp;
//spe.context destroy(datas[i . speid);
// pthreadcancel(datas[i].pthread);

//close((int) datas[i].pthread);
// std::cin >> pp;

}

void matrixData ::setupCB (void) {
TotalTime = 0;
AveTime = 100;
stdTime = 100;
mean = 0;
std = 0;
int SPE_index = 0;
// printf("Entering setupCB\n");

431

for (int spu = 0; spu < workingSPEs; spu++) {
//printf("SPE_index = %d and spu = %d\n", SPE_index, spu);

if(cb[spu].working == 1){
// RS: First launch all
// RS: but pass in the
// RS: Then fill-in the
cb [SPE_index]. rank

the threads without the control block,
logical rank of the thread as the argp
control-block parameters

= SPEindex;

if (!cb[SPE_index]. original rank-_modified) {
cb[SPE_index]. original_rank = SPEindex;
cb[SPE_index]. original rank_modified = 1;
//printf(" \n\n\n\n\n\n modifying original rank of \n\n\n");
//printf("The original rank of %d is %d", cb[SPEindex]. rank,cb[

SPE_index]. original_rank);

}
cb[SPEindex]. oldrank = spu;
cb[SPEindex]. local_storeaddr = reinterpretcast<uint32_t>(

spels_areaget(datas [spu]. speid));
//printf("Obtained a new SPU id: Oxx, with localstore_addr = Ox%x\n

// datas[spu . speid , cb[spu . local_store_addr);
cb [SPEindex]. svLength = svLength;
cb [SPEindex]. matrixData addr = reinterpret _cast <uint32_t >(

JacobianStorage);
//printf("The address of JacobianStorage is Ox%x\n",JacobianStorage);

//p rintf(" The
cb [SPEindex].
cb [SPEindex].
cb [SPEindex].
cb[SPEindex].
cb [SPEindex].

address of Row Storage is Ox%x\n",myiV());
hbWidth = hbWidth;
bWidth = bWidth;
alignedRowSize = alignedRowSize;
jhpc = jhpc;
numVars = myVars;

cb [SPEindex]. control_addr
spe.psareaget (datas [spu]

= reinterpret _cast <uint32_t >(
speid ,

SPEL

)

//printf("PPE says that SPU%d has a mailbox at Ox%x\n",spu,cb[spu].
control _addr+SPU_OUTMBOX);

cb[SPEmindex]. signal_ I addr = reinterpret cast <uint32t >(
spe_psarea get(datas [spu]. speid ,

SPE_

432

cb[SPEindex]. signal_2_addr = reinterpret_cast<uint32_t >(
speps_area_get (datas [spu]. speid ,

SPE_

cb[SPEindex].spudata_addr = reinterpretcast <uint32_t >(spubuffers)

cb[SPEindex].command_addr = reinterpretcast <uint32_t >(
spepsareaget (datas [spu]. speid ,

SPE_MFC_

cb[SPEindex].base_row_addr = reinterpret cast <uint32 t>(&cb [spu]);
cb[SPEindex]. working = (uint32t) 1;
cb[SPE_index]. workingSPEs = workingSPEs;
datas [SPE_index].speid = datas[spu].speid;
datas[SPE_index].pthread = datas[spu].pthread;
SPEindex ++;
// SPU_RunCtl = Oxl ;

}else{
pthread cancel (datas [spu]. pthread) ;
pthread _join(datas [spu].pthread , NULL) ;
// spe_contextdestroy (datas [0]. speid) ;
//printf("SPE%d has just had its context destroyed %d\n",spu,cb[spu

J. originalrank);
int x = spe_context_destroy (datas [spu]. speid);

}
}
while(SPE_index < workingSPEs){

cb I[SPEindex]. working = 0;
SPEindex ++;

}
return;

};

void matrixData ::barrier (void) {
memset(xSPE,0,NUMSPE* sizeof(int));
numFailed = workingSPEs;
// Wait for all the SPUs to initialize their data

433

tictime = gettime ();
toctime = tic_time;
elapsedTime = toc_time-tic_time;

while(numFailed != 0 && elapsedTime < AveTime + 5*stdTime){
toctime = gettime ();
elapsedTime = toc_time-tic _time;

for(int i = 0; i < workingSPEs; i++){
if (* ((unsigned int) (cb [i]. control _ addr+SPUMBOXSTAT)) & (unsigned

int)OxFF) {
r = *((unsigned int *)(cb[i].control_addr + SPU_OUTMBOX));
xSPE[r] = 1;
numFailed -- ;

}
}

}

if(numFailed != 0){
for(int i = 0; i < workingSPEs; i++){

cb[i].working = xSPE[i];
}

present _base row -= 1;

setupCB () ;

workingSPEs -= numFailed;

for(int i = 0; i < NUMSPE; i++){
cb [i]. workingSPEs -= numFailed;

}
}
return;

}

void matrixData :: sendData(int dat){
// uint32_t nspu = NUMSPU;
for(unsigned int spu = 0; spu < workingSPEs; spu ++){

*((unsigned int *)(cb[spu].controladdr + SPUINMBOX)) = dat;
}
return;

}

void matrixData :: sendSPE_RANKS(void) {
for (unsigned int spu = 0; spu < workingSPEs; spu ++)

434

*((unsigned
return ;

void rnatrixData:: c
// memcpy((void

JacobByteSize
int pvt;
int jmod;
int Joffset;
int testme = 0;
int nolll = 0;

spu_buffers;
tic = gettime();
ettotal = 0;
ettotal_rowx =
ettotalbs = 0;
barrier2 time to

int *)(cb[spu].control_addr + SPUJNMBOX)) = spu;

omputelV (void) {
,) JacobianStorageBackup, (void*) JacobianStorage

);

0;

tal = 0;

first_call = false;
//sum = 0;
present_base_row = 0;
//printf("Going to pack the RHS\n");

//printf("Going to unstall the %d SPUs\n",workingSPEs);

sendSPE_RANKS () ;
// sendData(500);
et_start_rowx = gettime();
// writeJtoDisk(JacobianStorage ,JacobSize);
while(present_baserow < svLength - 1) {

// while(presentbase_row < 5) {
etstart = gettime();

barrier ();

et._end = gettime();
ettotal += et_end-etstart;

present base _row ++;

max_pivot = presentbase_row;

barrier2_time start = gettime();
// Have the PPE restart the SPEs

/, if(collectedDataCounter == 7
== 0){

&& presentbaserow == 20 && nolll

435

//printf("\n\n\n\n\n starting some SPEs\n\n\n\n");
nolll = 1;

startNSPEs (I);
numFailed = -1;
}*/

for(unsigned int spu
*((unsigned int *)

= 0; spu < workingSPEs; spu ++){
(cb[spu].control_addr + SPUAINMBOX)) = numFailed;

if(numFailed !=0){
barrier ();
sendSPERANKS();

// numFailed = 0;
barrier2_time_end = gettime();
barrier2_time_total += barrier2_timeend-barrier2_time start;

// Have the PPE stop some SPEs

if(collectedDataCounter == 5 && presentbase_row == 40 && nolll == 0){
*((unsigned
*((unsigned
*((unsigned
*((unsigned

int
int
int
int

*)(cb[2]. control addr
*)(cb[3]. control addr
*)(cb [4]. control addr
*)(cb[5]. control addr

+ 28* sizeof(char))) = 0;
+ 28* sizeof(char))) = 0;
+ 28*sizeof(char))) = 0;
+ 28*sizeof(char))) = 0;

nolll = 1;
pthreadcancel
pthreadcancel
pthreadcancel
pthreadcancel

(datas
(datas
(datas
(datas

[2].
[3].
[4].
[5].

pthread
pthread
pthread
pthread

et_end_rowx = gettime ();
ettotal_rowx += et_endrowx-etstart rowx;

// }
// writeJtoDisk(JacobianStorage ,JacobSize);
// BACK SUBSTITUTION BEGIN
etstartbs = gettime();

for(int k = 0; k < svLength; k++){
iV2[k]= iV[k][0];

}
for (int j = svLength - 1; j >= 0;

pvt = computePivot(j);
jmod = j%myVars;

j--) {

436

Joffset = j*bWidth + pvt;
for (int k = 1; k < hbWidth - jmod && k+j < svLength; k++) {

iV2[j] -= JacobianStorage [Joffset + k] ,iV2[j + k];

}
iV2[j] = iV2[j]/ JacobianStorage [Joffset];
}

for(int k = 0; k < svLength; k++){
iV[k][O] = iV2[k];

}
II END

// writeJtoDisk (JacobianStorage , JacobSize);
etendbs = gettime();
et_totalbs = et_endbs - et_start_bs;
// printf(" Finished Newton iteration.\n"); fflush (stdout);

//sum = 0;
present_baserow = 0;
toc = gettime ();
elapsed = toc-tic ;
collectedDataCounter ++;
//printf("Number of Newton Iterations %f\n", collectedDataCounter);

TotalTime += elapsed;
AveTime = TotalTime/collectedDataCounter;
std += (elapsed - AveTime) *(elapsed - AveTime);
stdTime = std/collectedDataCounter;
//printf("Elased Time = %f\n", elapsed);
//printf("LU Time = %f\n", et_total_rowx);

//printf(" Total timeSPUs = %f\n",ettotal);
//printf(" Barrier 2 Time = %f\n", barrier2_timetotal);

//printf("Back Solve Time = %f\n", et_total_bs);
//printf("Average Time is %1.16f\n",AveTime);

//printf("Standard Deviation of time is %1.16f\n",stdTime);
collectedData [0] = elapsed;
collectedData [1] = et_total_rowx;
collectedData [2] = et_total;
collectedData [3] = barrier2_time total;
collectedData [4] = et_totalbs;
// if (collectedDataCounter < 100)
writeDataFiletoDisk ();
// else

int ma trixData :: myPVColumns()

{
return numPVColumns;

437

};

int matrixData ::myPVRows()

{
return numPVRows;

};

int matrixData ::myPVZrows()

{
return numPVZrows;

};

int matrixData :: myFVColumns()

{
return numFVColumns;

int matrixData ::myFVRows()

{
return numFVRows;

};

int matrixData ::myFVZrows()

{
return numFVZrows;

};

int matrixData:: ReturnTotalFVvolumes () {
return totalFVvolumes;

double ** matrixData :: myJacobian()

{
return Jacobian;

};

double * matrixData ::myfluxV() {
return fluxV;

double* matrixData ::mydivV()
{

return divV;
};

double* matrixData ::mydivVtwo()

{

438

return divVtwo;

};

double , matrixData ::myepsV()

{
return epsV;

};

double* matrixData ::mysocV()

{
return socV;

};
double** matrixData ::myiV()

{
return iV;

double, matrixData ::mypiV()

{
return piV;

};
double, matrixData ::mybiV()

{
return biV;

};

double , matrixData ::mysV()

{
return sV;

};

double , matrixData ::mypsV()

{
return psV;

};

double * matrixData ::myavePressures_y (){
return avePressuresy;

};

double * matrixData ::myavePressures_x(){
return avePressuresx;

};

439

double * matrixData ::myAVEhp_y(){
return AVEhp_y;

double* matrixData ::myAVEhp_x(){
return AVEhp_x;

};

int matrixData:: myJacobByteSize ()

{
return JacobByteSize;

int matrixData :: myJacobSize ()
{

return JacobSize;
};

int matrixData :: mysvLength ()
{

return svLength;
};

void matrixData ::setpiV ()
{

for(int counter = 0; counter < svLength; counter++)

{
biV[counter] = iV[counter](iV[0];

piV[counter] = fabs(iV[counter][0]);

}
return;

int matrixData :: myJhpc (void)
{

return jhpc;

void matrixData :: resetiV()

{
memset(iV,0, svByteSize) ;
return;

I
void matrixData ::resetdivV ()
{

440

memset (divV ,0, totalPVvolumes * sizeof (double));
return ;

void matrixData ::resetdivVtwo()

memset(divVtwo ,0,4* totalPVvolumes* sizeof(double)) ;
return ;

void matrixData:: resetFluxes ()

memset (fluxV ,0 , f);
return;

}

double * matrixData ::myJacobianStorage (){
return JacobianStorage;

}

void matrixData :: resetJacobian ()

memset(JacobianStorage ,0 , JacobByteSize) ;
// for(int index = 0; index < svLength; index++){

// rhs[index] = &JacobianStorage[(index+1)*bWidth - 2];
//iV[index] = &JacobianStorage[(index +)* bWidth - 2];
//JacobianStorage [(index+l)*,bWidth - 3] = -1;
//iV2[index] = (unsigned int) &JacobianStorage[(index+1)*bWidth - 2];

// }
return;

};

void matrixData :: openDataFile (const char* filename) {
snprintf(file_name , 1024, "testData .dat");
printf ("\n.\n,\n,\n the , file -name- is _%s\n,\n.\n" , file _name) ;
if ((Vfile = fopen (filename ,"wb")) == NULL)

printf ("File -could -not -be-opened .\n");
return;

}

void matrixData :: closeDataFile(void){
fwrite ((void *)&collectedDataCounter , sizeof(double) , 1 , Vfile);
fwrite ((void *)&collectedDataVars , sizeof(double) , 1 , Vfile);
printf ("Going.-to -close -Datafile \n");
// if(Vfile != NULL){
fflush (Vfile);
fclose (Vfile);

441

// }
return

void matrixData :: writeDataFiletoDisk (void) {
fwrite ((void *) collectedData , sizeof(double) , 5 , Vfile);
return;

}

void matrixData:: writeVtoDisk (double * vectorName , int vectorLength) {
if((Vfile = fopen("myVector. dat","w")) == NULL)
printf("File -could not -be-opened .\n");

else {
fwrite ((void *) vectorName , sizeof(double) , vectorLength , Vfile);

fclose (Vfile)
return;

void matrixData : writeJtoDisk(double * vectorName , int vectorLength){
static int count;
static char filename [1024];
printf(filename , 1024, "myMatrixJacob%dspu_ od.dat" , NUMSPE, co
if((Vfile = fopen(filename ,"w")) == NULL)

printf ("File -could. not beopened.\n");
else{

fwrite ((void *) vectorName , sizeof(double) , vectorLength , Vfile);

}
// fflush(Vfile);

// fclose(Vfile);
count ++;

return;

unt);

void matrixData :: writeiVbeforetoDisk (double * vectorName , int vectorLength) {
if ((Vfilebefore = fopen("iVbefore. dat","w")) == NULL)

printf("File-could-not-be-opened .\n");
else{

//printf("The number of bytes to write is %d\n",vectorLength*sizeof(
double));

fwrite((void) vectorName , sizeof(double) , vectorLength , Vfilebefore);

}
fclose (Vfilebefore) ;

return ;

void matrixData:: writeiVaftertoDisk (double * vectorName , int vectorLength){

442

fclose

(Vfile) ;

return

;

if((Vfileafter = fopen("iVafter .dat","w")) == NULL)
pri ntf ("File -could not -beopened .\n");

else {
fwrite ((void *) vectorName , sizeof(double) , vectorLength , Vfileafter);

fclose (Vfileafter);
return;

v

void rnatrixData restoresV ()

memcpy((void*)sV,(void *) psV,
return ;

svByteSize);

void mratrixData : storesV ()

memcpy((void*)psV,(void *) sV, svByteSize);
return ;

int matrixData :: mySvByteSize()

{
return svByteSize;

};

double * matrixData ::myExtraBufferl ()

return extraBufferl;

}; atrxData

int * matrixData myintBuffer()

return intBuffer;
};

/*********** Boundary Conditions for Row Major *********/

void rnatrixData ::applyBoundaryConditions (void){
int clearRow;

// EK Rows

443

for(int j = 0; j < numPVRows; j++){
for(int i = 0; i < ElectrolytePVColumns; i++){

clearRow = myVars*ldxPVColumns + myVars*i + ekBoundary + j*myVars*
numPVColumns;

iV[clearRow][O] = 0;
memset ((void *) &Jacobian [clearRow] [0] ,O, alignedRowSize) ;
Jacobian [clearRow] [computePivot (clearRow)] = 1;

}
}

// Doc Row

clearRow = reference;
iV[clearRow][O] = 0;
memset((void*) &Jacobian [reference][0] ,0, alignedRowSize) ;

clearColumn (clearRow) ;
Jacobian [clearRow][computePivot (clearRow)] = 1;

return;

void matrixData:: clearColumn(int elimColumn) {
int pivot;
int elimPosition;

for (int pRow = 0; pRow < svLength; pRow++){
pivot = computePivot(pRow);
elimPosition = elimColumn + pivot - pRow;
if(elimPosition >= 0 && elimPosition < bWidth){

Jacobian [pRow][elimPosition] = 0;

}

int matrixData :: computePivot (int pRow){
if (myVars%2){

return jhpc/*numPVColumns*myVars*/ + pRow%myVars + (pRow/myVars)%2;
}else{

return jhpc/ *numPVColumns*myVars / + pRow%myVars;

static double vector_infnorm(double* x, int length)
{

double max, maxposition;
max = fabs(x[0]);

444

maxposition = 0;
for(int k = 1; k < length; k++){

if(fabs(x[k]) > max)

{
max = fabs(x[k]);
maxposition = k;

}

return max;

}

/*********** PreConditioner for Row Major **************/

void matrixData ::applyPreConditioner (void){
int index = 0;
for(int x = 0; x <= svLength/myVars; x++){

for(int r = 0; r < bWidth; r++){
index = x*myVars;
if(index < svLength){

Jacobian[index][r] = Jacobian[index][r]*30*1000;

I
if(index+l < svLength){

Jacobian[index+1][r] = Jacobian [index +1][r]/50;

if(index+2 < svLength){
Jacobian[index+2][r] = Jacobian [index+2][r]*10;

}
}

return;

// void matrixData :: applyPreConditioner (void){
// double myMax;

// int end = totalPVvolumes*2;
// for(int index = totalPVvolumes; index < end; index++){
// for(int r = 0; r < svLength ; r++){
// extraBufferl [r = Jacobian[index][r];
// // std::cout << extraBufferl[r] << std::endl;

// }

// myMax = vector_inf_norm(extraBufferl , svLength);
// // std :: cout << myMax;

445

// myMax = sqrt (fabs (myMax)) ;
// for(int p = O; p < svLength ; p++){
// Jacobian[index][p] = Jacobian [index][p]/myMax;

// }
// iV[index][0] = iV[index][0]/myMax;

//return }
// return ;
1/ 1:

446

Listing B.65. FVbatteryModel.cpp
/* Copyright (c) 2007 Massachusetts Institute of Technology

* Permission is hereby granted , free of charge , to any person obtaining a

copy of
* this software and associated documentation files (the "Software ") , to

deal in
* the Software without restriction , including without limitation the

rights to
* use , copy, modify , merge, publish , distribute , sublicense , and/or sell

copies of
* the Software , and to permit persons to whom the Software is furnished to

do so,
* subject to the following conditions:

* The above copyright notice and this permission notice shall be included
in all

* copies or substantial portions of the Software.

* THE SOFTWARE IS PROVIDED "AS IS ", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR

* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
, FITNESS

* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR

* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER

* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

* FVbatterModel. cpp - 2 Dimensional Electrochemical Battery Model main
program

* @author James Geraci
* @second author Sudarshan Raghunathan
*/

// FVbatterModel.cpp : Defines the entry point for the console application.

#include "StdAfx .h"
#include <iostream>
#include "FV.h"
#include "PV.h"
#include <time .h>
#include <signal.h>
#include <assert .h>

447

FILE* Vfile;
int biVcount;
int tStep;
int battery_model_simluation (const char *,int);

void exit_routine (matrixData , FV**, PV**,Electrode**, electrodeSizeData *,
cellSizeData) ;

void exit_routine(matrixData myMatrix , FV** myFv, PV** myPv,
Electrode ** myElectrodes , electrodeSizeData **

electSizeVector ,
cellSizeData csData) {

//printf("Stop All the SPUs\n");
// unsigned int EXIT = NUMSPE + 1;
// for(unsigned int spu = 0; spu < NUMSPE; spu ++)

// {
// spe_in_mbox_write(datas[spu].speid, &EXIT, 1,

SPEMBOXANYJVONBLOCKING);
// p thread kill (datas[spu]. pthread ,O) ;

// }

int numVolumes;
int i;
int rc;

myMatrix->closeDataFile ();
//printf(" Closing Data File\n");
delete myMatrix;

for (i = 0; i < csData->gettotalFVVolumes () ; i++){
delete myFv[i];

}

for(i = 0; i < csData->gettotalPVVolumes() ; i++){

delete myPv[i];

}

for('i = 0; i < csData->getnumofElectrodes (); i++)

delete myElectrodes [i];
}

for (i = 0; i < csData->getnumofElectrodes (); i++)
delete electSizeVector [i];

}

448

delete csData;
delete [] myElectrodes;
delete [] myFv;
delete [] myPv;

// for(int i = 0; i < NUMSPE; i++){
// rc = pthread_join(datas[i].pthread,O0);
// assert(rc == 0);
// rc = specontext_destroy(datas[i]. speid);

// assert(rc == 0);

// }

/* Close Program Image */
// if ((rc = spe_imageclose (ph)) == -I)

// {
// f//printf (stderr, "Failed spe image_close(errno=%ld strerror=%s)\n

errno , strerror(errno));
// exit (3+ i);

// }

// freealign (datas);
//printf("\n \n Clean UP is FINISHED\n \n");

return;

}

void writeJtoDisk(double * vectorName , int vectorLength){

static int count;
static char file_name[1024];

sn//printf(file_name , 1024, "myJacob%d_%d. dat ", version , count);

if((Vfile = fopen(filename ,"w")) == NULL)

//printf("File could not be opened.\n");
else{

fwrite ((void *)vectorName , sizeof(double) , vectorLength , Vfile);

}
fflush (Vfile);
fclose (Vfile);
count++;
return;

}

void writeJtoDisk(double* vectorName, int vectorLength){
static int count;

449

static char file_name [1024];
snprintf(filename , 1024, "myJacob%d_%od.dat" , tStep , biVcount);
if ((Vfile = fopen (filename ,"w")) == NULL)

printf("File could not -be-opened .\n");
else {

//printf("Now writing Jacobian\n");
fwrite ((void) shapeDataForMatlab , sizeof(double) , 3, Vfile);
fwrite ((void *)vectorName , sizeof(double) , vectorLength , Vfile);

}
fflush(Vfile);
fclose (Vfile);
count ++;

return ;

void writeJaftertoDisk (double* vectorName , int vectorLength) {
static int count;
static char file_name [1024];
snprintf(file name , 1024, "myJacob%d_%dafter.dat" , version, count);
if((Vfile = fopen(file_name ,"w")) == NULL)

printf ("Filecould -not -be-opened .\n");
else {

fwrite ((void *)vectorName , sizeof(double) , vectorLength , Vfile);

}
fflush (Vfile);
fclose (Vfile);
count ++;
return ;

void writeJfaraftertoDisk (double vectorName , int vectorLength) {
static int count;
static char file_name[1024];
snprintf(file_name , 1024, "myJacob%d_%dfarafter .dat" , version ,count);
if ((Vfile = fopen(filename , "w")) == NULL)

printf ("File -could -not-be-opened .\n");
else {

fwrite ((void *)vectorName , sizeof(double) , vectorLength , Vfile);

fflush (Vfile);
fclose (Vfile);
count ++;
return ;

void writeiVtoDisk (double * vectorName , int vectorLength) {

450

static int count;
static char filename [1024];
snprintf(filename , 1024, "myiV%d_%d. dat" , tStep , count);
// snprintf(file_name , 1024, "myiV_%d. dat", tStep);
if ((Vfile = fopen (filename , "w")) == NULL)

printf("File -could -not -beopened. \n");
else {

fwrite ((void *) shapeDataForMatlab , sizeof(double) , 3 , Vfile);
fwrite ((void ,)vectorName , sizeof(double) , vectorLength , Vfile);

}
fflush (Vfile);
fclose (Vfile);
count ++;
return ;

void writeEPStoDisk(double* vectorName , int vectorLength){
static int count;
static char filename[1024];
snprintf(file_name , 1024, "myEPS%d_0od.dat" , tStep , count
if((Vfile = fopen(file_name, "w")) == NULL)

printf("File-could -not be-opened .\n");
else {

fwrite((void) FVshapeDataForMatlab , sizeof(double) , 3,
fwrite ((void) vectorName , sizeof(double) , vectorLength

Vfile);
SVfile);

fflush (Vfile);
fclose (Vfile);
count ++;
return ;

void writebiVtoDisk (double * vectorName , int vectorLength) {
// static int count;
static char filename [1024];
snprintf(filename , 1024, "mybiV%d_%7od.dat" , tStep , biVcount);
// sn//printf(filename, 1024, "myiVcd.dat", tStep);
if((Vfile = fopen(filename ,"w")) == NULL)

printf ("File -could -not -be-opened.\n");
else {

fwrite ((void ,) shapeDataForMatlab , sizeof (double) , 3 , Vfile);
fwrite ((void ,) vectorName , sizeof(double) , vectorLength , Vfile);

}
fflush (Vfile);
fclose (Vfile);
biVcount ++;

451

return;

void writepiVtoDisk (double* vectorName , int vectorLength) {
static int count;
static char file_name[1024];
snprintf(file_name , 1024, "mypiV%d_%d.dat" , tStep , count);
// sn//printf(filename , 1024, "myiV_%/d. dat ", tStep);
if((Vfile = fopen(file_name ,"w")) == NULL)

printf ("File, could, not-be-opened .\n");
else {

fwrite ((void *) shapeDataForMatlab , sizeof (double) , 3 , Vfile);
fwrite ((void *)vectorName , sizeof(double) , vectorLength , Vfile);

}
fflush (Vfile);
fclose (Vfile);
count ++;
return;

}
void writeSVtoDisk(double* vectorName , int vectorLength){

// static int count;
static char file-name[1024];
snprintf(file_name , 1024, "mySVd_%d.dat" , tStep ,biVcount-1);
if((Vfile = fopen(file_name ,"w")) == NULL)

printf ("File,-could -not -beopened.\n");
else {

fwrite ((void *) shapeDataForMatlab , sizeof(double) , 3 , Vfile);
//fflush (Vfile);
fwrite ((void *) vectorName , sizeof(double) , vectorLength , Vfile);

}
fflush (V file);
fclose (V file);
// count++;
return;

void writeSVtoDisk (double * vectorName , int vectorLength){
static int count;
static char file name[1024];
sn// printf (file name , 1024, " mySV_'cd. dat ", count);
if((Vfile = fopen(file_name ,"w")) == NULL)

//printf("File could not be opened.\n");
else{

fwrite ((void *) vectorName , sizeof(double) , vectorLength , Vfile);

}
fflush (Vfile) ;
fclose (Vfile) ;

452

count++;
return;

}

static inline double IV_vectorinfnorm (double** x, int length)

{
double max, max_position
max = fabs(x[0][0]);
max_position = 0;
for(int k = 1; k < length; k++){

if(fabs(x[k][0]) > max)

{
max = fabs(x[k][0]);
maxposition = k;

}
}
return max;

static inline double vectorinfnorm (double x, int length)

{
double max, max_position;
max = fabs(x[0]);
max_position = 0;
for(int k = 1; k < length; k++){

if(fabs(x[k]) > max)

{
max = fabs(x[k]);
maxposition = k;

}
}
return max;

}

* Replaces x with x - y
,/

static inline void IVinplace_subtract(double* x, double** y, int length)

for(int i = 0;i < length; x[i] -= y[i][0], i ++);
}

int battery model_simulation (const char *programtoload , int NSPE){
matrixData * myMatrix;
Electrode ** myElectrodes;
cellSizeData * csData;
FV ** myFv;

453

PV ** myPv;
electrodeSizeData ** electSizeVector;

//mysig_buf = reinterpret cast <sig _buft>(malloc_align (16*NUMSPU* sizeof
(sig_buf_t) ,7));

mode = 1; // Want a skyline Jacobian
double DeltaTester = 0;
double ResidualTester = 0;
int pass = 0;
tStep = 0;
double DeltaLimit = 7.5e-8;// for gmres le-8 for \\ le-15

double ResidualLimit = 7.5e-8;// for gmres le-8 for \\ le-15
double totalTime = 0;

csData = new cellSizeData();
csData->setnumofElectrodes (3);

csData->setldxFVColumns (NldxColumns);
csData->setElectrolyteFVColumns (NEColumns);
csData->setldFVColumns (NldColumns) ;
c sData ->setnumFVRows (NRows);
csData->setnumFVZrows (1) ;

csData->setldxPVColumns (csData->getldxFVColumns () +1);
csData->setElectrolytePVColumns (csData->getElectrolyteFVColumns ()-1);
csData->setldPVColumns (csData->getldFVColumns () +1);

double IdxHeight = 10.0;
double ElectrolyteHeight = 10.0;
double IdHeight = 10.0;

double ldxDepth = 7.0;
double ElectrolyteDepth = 7.0;
double IdDepth = 7.0;

double ldxWidth = 0.03;
double ElectrolyteWidth = 0.03;
double IdWidth = 0.03;

csData->computeTotalFVColumns () ;
csData->computeTotalPVColumns () ;

csData->setnumPVRows (csData->getnumFVRows () +1);
csData->setnumPVZrows (1) ;

454

csData->computeTotalFVVolumes ()
csData->computeTotalPVVolumes () ;

try {
myMatrix = new matrixData (csData ,NSPE);

}
catch (std ::badalloc) {

// std :: cout << "Couldn 't Allocate myMatrix!" << std ::endl;

exit(-1);

}

/* Information used by Matlab to format output */

FVshapeDataForMatlab [0] = (double) myVars;
FVshapeDataForMatlab [1] = (double) csData->getnumFVColumns ();

printf ("The-number-of-FVcolumns -is-%f\n", FVshapeDataForMatlab [1]);

FVshapeDataForMatlab [2] = (double) csData->getnumFVRows();
printf ("The-number-of-FV.rows, is,%f\n" ,FVshapeDataForMatlab [2])

shapeDataForMatlab [0] = (double) myVars;
shapeDataForMatlab [1] = (double) csData->getnumPVColumns ();

shapeDataForMatlab [2] = (double) csData->getnumPVRows();
printf ("Thenumber-ofPVrowsis~%f\n", shapeDataForMatlab [2]);

myMatrix->openDataFile (program_to_load);

try{
myFv = (FV**) new char [(csData->gettotalFVVolumes())*sizeof(FV*)];

}
catch(std :: bad_alloc){

//std::cout << "Couldn't Allocate myFv array!" << std::endl;

exit(-1);

}

for(int counter = 0; counter < csData->gettotalFVVolumes() ; counter++){
myFv[counter] = NULL;

};

try{
myPv = (PV**) new char [(csData->gettotalPVVolumes())*sizeof(PV*)];

}
catch(std ::badalloc){

//std::cout << "Couldn't Allocate myFv array!" << std::endl;
exit(-1);

}

for(int counter = 0; counter < csData->gettotalPVVolumes () ; counter++)

455

myPv[counter = NULL;

};

try {
electSizeVector = (electrodeSizeData **) new char [csData->

getnumofElectrodes ()sizeof (electrodeSizeData ,)];

}
catch(std :: badalloc){

// std ::cout << "Couldn ' t Allocate electSize Vector!" << std ::endl;
exit(-1);

}

try{
electSizeVector[0] = new electrodeSizeData(ldxWidth ,IdxHeight ,ldxDepth,

csData->getldxFVColumns () ,
csData->getnumFVRows () ,
csData->getnumFVZrows () ,

csData->getldxPVColumns () ,
csData->getnumPVRows() ,
csData->getnumPVZrows () ,

0,0,0,0, csData) ;

}
catch(std ::bad_alloc) {

//std ::cout << "Couldn't Allocate electSizeVector[O]!" << std ::endl;
exit(-1);

}
try{

electSizeVector [1] = new electrodeSizeData(ElectrolyteWidth,
ElectrolyteHeight ,ElectrolyteDepth ,

csData->
getElectrolyteFVColumns()
, csData->getnumFVRows() ,
csData->getnumFVZrows () ,

csData->
getElectrolytePVColumns()
, csData->getnumPVRows() ,
csData->getnumPVZrows () ,

0, csData ->getldxFVColumns ()
,0 ,csData->
getldxPVColumns () ,csData)

}
catch(std ::bad_alloc){

//std :: cout << "Couldn't Allocate electSizeVector[]]!" << std ::endl;

456

exit(-1);

}
try{

electSizeVector [2] = new electrodeSizeData(ldWidth , IdHeight , IdDepth,
csData->getldFVColumns () ,

csData->getnumFVRows() ,
csData->getnumFVZrows () ,

csData->getldPVColumns () ,
csData ->getnumPVRows () ,
csData->getnumPVZrows ()

O,csData->getldxFVColumns ()+
csData ->
getElectrolyteFVColumns ()
,0,

csData->getldxPVColumns () +
csData->
getElectrolytePVColumns()
, csData) ;

}
catch(std ::badalloc){

// std ::cout << "Couldn' t Allocate electSizeVector[2]!" << std ::endl;
exit(-1);

}

try{
myElectrodes = (Electrode **) new char [csData->getnumofElectrodes ()

sizeof (Electrode ,)];

}
catch(std ::bad_alloc) {

// std :: cout << "Couldn 't Allocate myElectrodes !" << std :: endl;
exit(-1);

}

try{
myElectrodes [0] = new IdxElectrode (myFv, myPv, myMatrix , electSizeVector

[01])
}
catch(std ::bad_alloc){

//std:: cout << "Couldn 't Allocate myElectrodes [0] IdxElectrode!" << std
: endl ;

exit(-1);

for(int FvCounter = 0; FvCounter < csData->gettotalFVVolumes() ; FvCounter
++){

457

myFv[FvCounter] = myFv[FvCounter];

try {
myElectrodes [1] = new Electrolyte

[1]);

catch(std ::bad_alloc) {
//std::cout << "Couldn't Allocate

: endl ;
exit(-1);

}

(myFv, myPv, myMatrix,electSizeVector

myElectrodes [] Electrolyte!" << std

for (int FvCounter = 0; FvCounter < csData->gettotalFVVolumes () ; FvCounter

myFv[FvCounter] = myFv[FvCounter];

try {
myElectrodes [2] =

[2]);
new IdElectrode (myFv, myPv, myMatrix , electSizeVector

catch(std :: bad_alloc){
//std :: cout << "Couldn 't Allocate

:: endl;
exit(-1);

myElectrodes [2] ldElectrode!" << std

for(int FvCounter = 0; FvCounter < csData->gettotalFVVolumes() ; FvCounter

++)

{
myFv[FvCounter] = myFv[FvCounter];

}

for(int FvCounter = 0; FvCounter < csData->gettotalFVVolumes() ; FvCounter

++)

myFv[FvCounter]->setupPvPointers ();

}

for(int PvCounter = 0; PvCounter < csData->gettotalPVVolumes() ; PvCounter
++) {

myPv[PvCounter]-> setupFvPointers(myFv);
myPv[PvCounter]-> initializeS i ze ();
myPv [PvCounter]->initializembScale ();

I

458

for(int PvCounter = 0; PvCounter < csData->gettotalPVVolumes() ; PvCounter
++) {

myPv [PvCounter]->computeDensity ();
myPv[PvCounter]->initializePressure ();

}

myMatrix->storesV ();

// //printf("Haven't crashed yet\n");
// return 0;

pass ++;

// startSPUs (myMatrix , program _to_load) ;
myMatrix->startSPEs (program_to load) ;

writeS VtoDisk (myMatrix->mysV () , myMatrix->mysvLength ());
myMatrix->resetdivVtwo ();
while(tStep < tSteps)

{
//std::cout << "Time Step is " << tStep << "dt is " << dt << "I is

" << I <<std :: endl;
// // std :: cout << "Matrix Data svLength " << myMatrix->svLength

<< " with rows " << myMatrix->myPVRows() << std : endl ;
for(int FvolumeCounter = 0; FvolumeCounter < csData->

gettotalFVVolumes() ; FvolumeCounter++)

{
myFv [FvolumeCounter]->computeDiv () ;

}
for(int FvolumeCounter = 0; FvolumeCounter < csData->

gettotalFVVolumes() ; FvolumeCounter++)
{

if (pass==l){
myFv [FvolumeCounter]->computeNextEPS ();
myFv [FvolumeCounter]->computeNextSOC () ;

}
}

// if(pass == 1){
// writeEPStoDisk (myMatrix->myepsV (), myMatrix->

ReturnTotalFVvolumes ()) ;
// }
myMatrix->resetdivVtwo ();
// Compute the Material Properties
for(int FvolumeCounter = 0; FvolumeCounter < csData->

gettotalFVVolumes() ; FvolumeCounter++)

{
myFv[FvolumeCounter]->computeMaterialProperties ();

459

// Compute the Fluxes
for(int FvolumeCounter = 0; FvolumeCounter < csData->

gettotalFVVolumes() ; FvolumeCounter++)

myFv[FvolumeCounter]->computeQvalues ();
myFv [FvolumeCounter]->computeFluxes () ;

I

myMatrix->resetdivV ();
for (int PvCounter = 0; PvCounter < csData->gettotalPVVolumes() ;

PvCounter ++)

{
myPv [PvCounter]->computeDiv ();
myPv [PvCounter]->computeDivTwo ();
myPv [PvCounter]-> computeDensity () ;

I

for(int PvCounter = 0; PvCounter < csData->gettotalPVVolumes();
PvCounter ++)

{
myPv [PvCounter]->computeAVEpressures () ;
myPv [PvCounter]->computeAVEhps ();

)

// Compute Intermediate value from fluxes
for(int PvCounter = 0; PvCounter < csData->gettotalPVVolumes() ;

PvCounter ++)

myPv[PvCounter]->computeDerivatives () ;

for(int PvCounter = 0; PvCounter < csData->gettotalPVVolumes() ;
PvCounter++)

{
myPv [PvCounter]->computelValues () ;
myPv [PvCounter]-> setupJacobian ();

ResidualTester = IV _vector _i nf _norm (myMatrix->myiV () ,myMatrix->
mysvLength ()) ;

// writeJtoDisk (myMatrix ->myJacobianStorage () , myMatrix->
myJacobSize ()) ;

////std : cout << "iV norm = " << IV_vector.inf norm (myMatrix->myiV() ,

460

myMatrix->mysvLength (<) << std :: endl ;
// std :: cin >> testerA ;
// if(pass == 2){

//cout << "The Jacobian Byte Size is " << myMatrix->myJacobSize()
<< endl;

// cout << "Waiting after write, press enter to continue" << endl;
// cin >> myBaby;
// if(pass == 3){
// exit routine (myMatrix , myFv, myPv, myElectrodes ,

electSize Vector , csData) ;
// return 0;
// }
//printf("The tStep = %d Pass = %d and DeltaTester = %.16f and

ResidualTester = %.16f\n", tStep , pass , DeltaTester, ResidualTester)

// write i VtoDisk (myMatrix->myiV() , myMatrix->mySvByteSize ()) ;
// }

//myMatrix->copy i V2rhs () ;
//w rite iVtoDisk (myMatrix->myiV () , myMatrix->mySvByteSize ()) ;

// }

myMatrix->applyBoundaryConditions ();
myMatrix->applyPreConditioner () ;
// writeJtoDisk (myMatrix ->myJacobianStorage () ,

myMatrix->myJacobSize ()) ;
myMatrix->restoreiVindex () ;

// exit _ routine (myMatrix , myFv, myPv, myElectrodes , electSizeVector , csData

// return 0;
////printf ("computing iv\n"); fflush(stdout);
myMatrix->computelV () ;
// writeJaftertoDisk (myMatrix->myJacobianStorage (), myMatrix->

myJacobSize ());
// exitroutine (myMatrix , myFv, myPv, myElectrodes , electSizeVector ,

csData) ;
// return O;
// double a testData = reinterpretcast <double *>(malloc-align(

myMatrix->bWidth* s iz e of(double)* myMatrix->svLength ,7));
// testData [0] = (double) tStep;
// testData[1] = 6.3;
// myMatrix->spu buffers[0] =10;
// //p rintf(" Spu _data _addr = Ox%x\n ", myMatrix->spu _buffers [0]) ;

461

// spe _mfcio get (datas[0]. speid ,(unsigned int) testData , (void*)
cb[O]. spu_data _addr ,2* sizeof(double) ,0,0,0);

// if(pass > 1){
// spe _mfcio get (datas [0]. speid ,(unsigned inmt)myMatrix->spu _buffers

[0] ,(void) testData , myMatrix->alignedRowSize ,0, 0,0) ;
// spe_mfcio get (myMatrix->speids [O] ,(unsigned int)myMatrix->

spu _buffers [0],
// (void *) myMatrix->JacobianStorage , myMatrix->alignedRowSize , 0, 0, 0) ;
//spe _mfcio _tag _status read (myMatrix->speids [0], 0, SPE_TAGALL, NULL);

// }
// writeJtoDisk (myMatrix->myJacobianStorage (), myMatrix->myJacobSize

// myMatrix->copy rhs2iV () ;
////printf("Now writing Jacobian\n");
// myMatrix->writeCollectedDatatoDisk () ;

// myMatrix->copyrhs2iV () ;
// writeJtoDisk (myMatrix->myJacobianStorage (), myMatrix->

myJacobSize ());

// writeSVtoDisk (myMatrix->mysV() , myMatrix->mysvLength ()) ;
// exit _ ro utine (myMatrix , myFv, myPv, myElectrodes ,

electSize Vector , csData) ;
// return 0;
// writeS VtoDisk (myMatrix ->mysV () , myMatrix->mysvLength ()) ;

// //std::cout << "Test IV norm = " << vector infnorm(myMatrix
->myiV(), myMatrix->mysvLength ()) << std:: endl ;

IVinplace _subtract (myMatrix->mysV() , myMatrix->myiV() , myMatrix->
mysvLength ()) ;

myMatrix->setpiV () ;
if ((tStep%1) == 0) {

writebiVtoDisk (myMatrix->mybiV () ,myMatrix->mysvLength ());

}
DeltaTester = vectorinfnorm (myMatrix->mypiV () ,myMatrix->mysvLength

());
//tester = 0;

// std::cout << "DeltaTester Value = " << DeltaTester << "
ResidaulTester Value = " << ResidualTester << std::endl;

////printf("Tester Value = %f\n",tester);
// // std:: cout << "sV norm = " << vector_infnorm(myMatrix->mysV

(), myMatrix->mysvLength ())<< std :: endl ;
//exit_routine (myMatrix , myFv, myPv, myElectrodes , electSizeVector , csData

//return 0;

462

// return 0;
// writeJfaraftertoDisk (myMatrix->myJacobianStorage () ,myMatrix->

myJacobSize ()) ;
if(DeltaTester <= DeltaLimit && ResidualTester <= ResidualLimit)

{

myMatrix->storesV ();
if ((tStep%l) == 0){
writeSVtoDisk (myMatrix->mysV() , myMatrix->mysvLength ()) ;

}
// totalTime = totalTime+
tStep ++;

if(tStep >= (int) 5){
I = 0;

}
pass = 0;

}

myMatrix->resetJacobian();
myMatrix->resetFluxes ();
pass ++;

}
if(tStep == tSteps){
////p rintf ("Running Exit Routine\n");
exitroutine (myMatrix ,myFv,myPv, myElectrodes , electSizeVector , csData) ;
return 0;

}
return 0;

int main(int argc , char* argv[])

{
biVcount = 0;
NldxColumns = atoi(argv[2]);
NEColumns = atoi(argv[3]);
NldColumns = atoi (argv [4]);
NRows = atoi(argv[5]);
int NUMSPE = atoi(argv[10]);
// I = atoi(argv[8J);
I = 0.25;
tSteps = atoi(argv[7]);
//dt = atoi(argv[6]);
dt = 100.0;
version = atoi(argv[9]);
battery _model simulation (argv [1] ,NUMSPE);

463

return 0;

464

Listing B.66. common.h

• common. h
• SPU parameters
* @author James Geraci

// -,- mode: c++ -*-
if nde f _COMMON-H
#define _COMMONIH

#include <stdint.h>
#include <math.h>
#include <simdmath.h>

typedef uint32_t uintptr32_t;
#define DMALISTALIGNED __attribute__ ((aligned (8)));
#define QWORDALIGNED __attribute__ ((aligned (16)));
#define CACHEALIGNED __attribute__((aligned(128)));

#define QUADALIGNMENT 16

#define MAX_BYTES_ONEDMA 16384

#define doubleByteSize sizeof(double)

// Branch hint macros
#define LIKELY(exp) __builtin_expect(exp, true)
#define UNLIKELY(exp) __builtinexpect (exp , false)

#define SIGNALOFFSET 12
#define SPU_OUTMBOX 4
#define SPUINMBOX 12
#define SPUMBOXSTAT 20
#define MFC_CMDSTATUS 20
#define MFC_QSTATUS 260
#define PRXYQUERYTYPE 516
#define PRXY_QUERYMASK 540
#define PRXY_TAGSTATUS 556

typedef struct {
uint32_t brLSaddr[4];
uint32_t rank;

465

uint32_t localstoreaddr;
uint32_t controladdr;
uint32_t signal_l_addr;

uint32_t signal_2_addr;
uint32_t matrixDataaddr;
uint32_t command_addr;
uint32_t svLength;
uint32_t rhs_addr;
uint32_t sol_addr;
uint32_t hbWidth;
uint32 t alignedRowSize;

uint32_t jhpc;
uint32_t numVars;
uint32_t bWidth;
uint32_t sig_buf;
uint32 t spu_dataaddr;
uint32_t baserowaddr;
uint32_t numStoredRows;
uint32_t working;
uint32_t workingSPEs;
uint32_t oldrank;
uint32_t original_rank;
uint32_t original_rankmodified;
uint32_t padding [4];

} CONTROLBLOCK T;

typedef struct dma_listelem{
union {

unsigned int a1132;
struct{

unsigned int stall : 1;
unsigned int reserved : 15;
unsigned int nbytes : 16;

}bits;
}size;
unsigned int ealow;

} dmalistelem_t;
#endif

466

Listing B.67. Makefile
##

Target

PROGRAM_ppu = FVbatteryModel
OBJS= StdAfx.o matrixData .o Electrode .o CV.o electrodeSizeData .o OLLLPV.o

ORLRPV.o volumeChemData.o UPV.o FVbatteryModel.o
electrolyteElectrodeChemData .o ORPV.o PVIConditions.o OLULPV.o BPV.o
Electrolyte .o ldxElectrode .o ldElectrode .o IdElectrodeChemData .o
volumeSpatialData.o myGlobals.o ORURPV.o electrodeChemData.o PV.o FV.o
OLPV.o cellSizeData .o volumeIConditions.o ldxElectrodeChemData .o ULCV.o
URCV.o LLCV.o LRCV.o

##
Local Defines
##
IMPORTS = -lspe2 -lmisc -Isimdmath -lpthread

##
make. footer
##
INCLUDE+= -I. -I.. -I/opt/cell/sysroot/opt/cell/sdk/usr/include
LIBS = /opt/cell/sysroot/opt/cell/sdk/usr/lib
CXX=/opt/ibmcmp/xlc / cbe/9.0/bin / ppuxlc++
CXXFLAGS= -qcpluscmt -M-ma $(INCLUDE) -qaltivec -qenablevmx
#OPTFLAGS=-03

RM= rm
RMFLAGS=- f

.cc.s:

$(CXX) $(CXXFLAGS) $(OPTFLAGS) -S $< -g -o $@

.cc.o:

$(CXX) $(CXXFLAGS) $(OPTFLAGS) -c $< -g -o $@

.S.O:

$(ASM) $(INCLUDE) -o $@ $<

$(PROGRAMppu) : $(OBJS)
$(CXX) $(CXXFLAGS) -g -o $@ $^ -L$(LIBS) -W1,-m, elf32ppc -R$(LIBS)

$ (IMPORTS)

clean :

467

$ (RM) $ (RMFLAGS)
$ (RM) $ (RMFLAGS)

468

Listing B.68. Run file
.. /FVbatteryModel spu_prog 7 7 7 30 1 50 1 1 6

469

470

Appendix C

2-D Model Solver Code

471

Listing C.1. out of core solver rev2
/* Copyright (c) 2007 Massachusetts Institute of Technology

* Permission is hereby granted , free of charge , to any person obtaining a
copy of

* this software and associated documentation files (the "Software"), to
deal in

* the Software without restriction , including without limitation the
rights to

* use , copy, modify , merge, publish , distribute , sublicense , and/or sell
copies of

* the Software , and to permit persons to whom the Software is furnished to
do so,

* subject to the following conditions:

* The above copyright notice and this permission notice shall be included
in all

* copies or substantial portions of the Software.

* THE SOFTWARE IS PROVIDED "AS IS ", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR

* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
, FITNESS

* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR

* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER

* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

/* @author James Geraci
,/

// James Geraci
// 6.189 MultiCoreProgramming
// January 23, 2007

#include <spu_mfcio .h>
#include <libmisc .h>
#include <stdio .h>
#include <spu_intrinsics .h>
#include <vec_literal.h>
#include <string .h>
//#include <simdmath/divd2. h>
//#include <sys/time.h>
#include "common.h"

472

CONTROLBLOCKT * cb CACHE.ALIGNED;

int my_rank;
in t NUMSPUS;
// uint32_t * row_pointers;
int twodoublebyteSize;
double baserowfactor;
double adjustFactor;
double inv_baserow_factor;
vector double vFactor;

int presentbase_row;
int present elim row;
int future_elim_row;
int presentelimcolumn;
int nbr;

int JacobRowSize;
int hbW;
int vectorhbW;
int vectorbW;
int vectorbWend;
int hbWbyteSize;
int hbWbufferByteSize;
int jhpc;
int last_row;
int bWbyteSize;

int pbrPivot;
int erPivot;
int rows_to_get;
int num_rows_to_store;
//int rowbool;
unsigned int mymessage[4] CACHEALIGNED;

static inline int
computePivot(int pRow){

return (jhpc + pRow%cb[myrank]. numVars - pRow%2)/2;
}

static inline int
computeOffset(int row, int pbr){

return computePivot (row) -(row-pbr)-pbrPivot%2;

}
static inline void

473

getdata(void ,rowbuf, uint32_t row, uint32_t tag){
mfcget((char*) row_buf , cb [my_rank]. matrixDataaddr + row* JacobRowSize

/* row pointers [row] / , bWbyteSize , tag , 0 , 0);
}

static inline void
put_data(void *row_buf , uint32_t row, uint32_t tag){
mfcput((char*) row_buf , cb[my_rank]. matrixData_addr + row*JacobRowSize /*

rowpointers [row]*/ , bWbyteSize , tag , 0 , 0);
}

static inline void
compute_data(vector double brow_buf , vector double e_row_buf, int pbr){

erPivot = computePivot (presentelim row);
int lameOffset = (present_elim_row -(pbr-pbr%2))/2;
// present_elim column = erPivot - (present_elimrow -(pbr-pbr%2))/2;
presentelim_column = erPivot - lameOffset;
// if(present_elimcolumn < 0){

//printf("The erPivot is %d and Offset is %d with PBR = %d and PER
= %d with diff = %d, hbW=%d and PEC = %d\n",

// erPivot , lameOffset , pbr, present _elim _row , present_elimrow - pbr
hbW, present_elim_column);

//}
adjustFactor = spu_extract (erow_buf[present elim_column],

present _base row %2)* inv _base_row _factor;
vFactor = spusplats(adjustFactor);/*
if(present_elimrow == pbr+l && pbr == 0){

printf("pbrPivot = %d and erPivot = %d and pec = %d with adjustFactor
= %f\n ",

pbrPivot , erPivot , present elimcolumn , adjustFactor) ;
printf("The base row is %d with factor is %f and the inv is %f\n",pbr

base_row_factor , inv_base row_factor);

},/
for(int index = 0; index < vector_hbW - (pbr%cb[my_rank].numVars)/2;

index ++){
e row _buf [present_elim_column+index]

= spu_nmsub (vFactor , b_row _buf[pbrPivot+index], erow_buf [
present_elim_column+index]);

}
// if(pbr == 0){
// printf("The factor at the end of the b_row is %.16f and %.16f\n",

spu extract(b_rowbuf [vector_bWend ,O0) , spu_extract (b_row_buf
vector_bWend],1));

// printf("vectorbW_end = %d\n", vector_bW_end);

// }
vFactor = spu_insert((double) 0.0, vFactor , 1);

e_row_buf [vector_bW_end] = spunmsub (vFactor, b_row_buf[vector_bWend],

474

e_row_buf [vector_bW _end]);

int main(uint64_t speid, uint64_t argp, uint64_t envp){
rowstoget = 1;
my message [3] = 1;
int ppusentnextbaserow = 0;
nbr = 0;
adjustFactor = 0;

unsigned int output = 0x00000001;
spuwritech (SPU_WrOutMbox, output); // Tell the PPU that we are here

do{
// printf(" The Channel count is now Ox%x\n", spu_readchcnt(

SPU_WrOutMbox)) ;
}while(spu_readchcnt (SPUWrOutMbox)) ;

NUMSPUS = spu_readch(SPURdInMbox); // Wait for all the SPU to catch
up

spu_writech (SPU_WrOutMbox, 1);

int message = NUMSPUS;
myrank = spu_readch (SPURdInMbox);

spu_writech (SPUWrOutMbox, 1);

cb = reinterpret _cast <CONTROLBLOCK_T*>(malloc_align (NUMSPUS* sizeof(
CONTROLBLOCK_T) , 7)) ;

mfc get (cb, argp , NUMSPUS* sizeof (CONTROLBLOCKT) ,0,0,0);
mfc write _tag _mask(l< <0);
mfcreadtag_statusall () ;

two_double _byteSize = 2* sizeof(double);

hbW = cb [myrank]. hbWidth;
printf ("SPU hbW.==%d\n" ,hbW);

hbW += hbW%2;
hbWbyteSize = hbW* sizeof(double);
vector_hbW = hbW/2;
bWbyteSize = cb [myrank]. bWidthe sizeof (double);
vector_bW = cb[my rank].bWidth /2;
vector_bW_end = vector_bW - 1;
jhpc = cb[myrank].jhpc;

JacobRowSize = bWbyteSize;
last_row = cb[myrank].svLength-1;
printf ("JacobRowSize-=-%d\n" , JacobRowSize) ;

475

// row_pointers = reinterpret_cast<uint32_t*>(malloc_align(sizeof(uint32_t
)*cb[myrank]. svLength ,7));

uint32_t rowSwapBuffer;
num_rowsto_store = hbW/NUMSPUS;
pri ntf ("SPU/%do has9%d rows -to -store -for -a- total ,memory•-consumption •of%d,

bytes \n",
my rank , num_rows to_store , num rows_to_store*bWbyteSize) ;

for(int row = 0; row < cb[my_rank]. svLength ; row++){
row pointers [row] = reinterpret_cast <uint32_t >(cb[my_rank].

matrixData addr + row*JacobRowSize);
}

//numrows_tostore = 1;
// vector double + myRows
// = reinterpret cast <vector double*>(malloc _align
// (bWbyteSize num rows_to _store , 7)) ;

// memset(reinterpret cast <void*>(myRows) ,0, (cb[my rank]. bWidth)sizeof(
double) *num.rows_to _store) ;

vector double* baserow = reinterpret cast <vector double*>(
malloc align (bWbyteSize ,7)) ;

vector double* elimrow = reinterpret cast <vector double*>(
malloc align (bWbyteSize ,7)) ;

vector double* nextelimrow = reinterpret cast<vector double*>(
malloc align (bWbyteSize ,7)) ;

memset(reinterpret cast <void*>(base row) , 0, bWbyteSize) ;
memset(reinterpret cast <void *>(elim-row) , 0, bWbyteSize) ;
memset(reinterpret cast <void *>(nextelimrow) , O, bWbyteSize);

unsigned int * sigdata = reinterpret _cast <unsigned int*>(malloc_align (
two_double-byteSize ,7)) ;

sig_data [0] = myrank+l;
sigdata[1] = 0;

int hbPbr;
// unsigned int* myRowsaddr
// = reinterpretcast <unsigned int*>(malloc align (2* sizeof(unsigned int)

,7));
/// myRowsaddr[O] = reinterpretcast <unsigned int>(myRows);
// printf("myRows = Ox%x\n and myRows_addr[O] = Ox%x",myRows,myRowsaddr

[01);
// mfcput(reinterpre t _ cast <char*>(myRows_addr) ,
// reinterpret_cast <char*>(cb[my_rank]. spu_dataaddr) , sizeof(

unsigned int), 0, 0, 0);

476

// mfc_read_tag _status all () ;

vector double temp_elim_row;
int ad = 1;
bool GO = true;

// myRows[computePivot(0)] = spu splats(6.0);
// printf("The address of myRows is Ox%x\n with Pivot %d",myRows,

computePivot (0));
my_rank = spu_readch (SPU_RdlnMbox);
spu_writech(SPU_WrOutMbox,1); // Tell the PPU that we are here

my_rank = spureadch(SPU_RdlnMbox);
// static int barrierhere = 0;
//if(! barrierhere){
// preload_data(myRows,O,O,hbW);
// barrierhere = 1;

// }
while (GO) {

//preloaddata(void *rowbuf, uint32_t
numrows) {
printf("The first two data points i.n

spu _extract (myRows[computePivot (0)
computePivot (0)1,1));

row, uint32_t tag, uint32_t

myRows are %f and %f\n",
1,0), spu_extract(myRows[

for(present_baserow = 0; presentbase row < last_row ; present-baserow
++){

// for(present_base_row = 0; presentbase_row < hbW; present_baserow++)

pbrPivot = computePivot (present base _r
// if(present-base-row == 0)
// memcpy((void *) baser
// else{
// FETCH BASE ROW
get_data (base_row , present _base row ,0);
// END
// }
nbr = presentbase row + 1;
presentelimrow = nbr + myrank*rows
hbPbr = presentbase _row + hbW - prese

if (present_elim_row <= lastrow){

//FETCH FIRST
get_data(elimrow , presentelim_row ,0);

477

ow , (void *)myRows, bWbyteSize) ;

_to get ;
nt _base _row%cb [myrank]. numVars

//FETCHEND
mfc_read_tagstatus_all () ; //BARRIER
// Unpack the base row scale factor

base_row_factor = spu_extract (base row [pbrPivot],
present _base _row %2);

inv_baserow factor = l/baserow_factor;
//inv _base row_factor = 1/spu extract(base_row[pbrPivot],

presentbase _row %2);
// if(present_base_row == 0)

// printf("The Base Row Factor is %.16f and %.16f\n",spu_extract(
base_row [pbrPivot 1,0) , spu extract (base row [pbrPivot 1,1)) ;

for (; present _elimrow+NUMSPUS <= lastrow
&& present _elim_row+NUMSPUS < hbPbr; present elim_row +=

NUMSPUS) {

future_elimrow = presentelim_row + NUMSPUS;
//FETCH

get data (next elim_row , future_elimrow ,0);
// printf(" Fetching Row %d on SPU %d \n",future elim row , my_rank)

//FETCHEND
compute data (base_row , elim_row , present _base _row);

//SEND

put_data (elimrow , presentelimrow ,0);
//printf(" Sending Row%d on SPU %d \n",present _elim _row , myrank)

//SEND _END

mfc_readtag statusall() ; //BARRIER
tempelim-row = nextelimrow;
next_elimrow = elimrow;
elimrow = tempelim-row;

} // END of for-loop elimination

compute _data (base_row , elim_row , present _base _row);

//SEND FINAL
put _data (elimrow , present_-elim _row ,0);
//SEND_END
mfc readtag _status _all () ; //BARRIER

} //END of if (presentelim_row <= lastbase_row)

478

mfc_put(sigdata ,(unsigned int*)cb[my rank]. sigbuf ,
twodoublebyteSize , 0 , , 0);

spu readch (SPU_RdInMbox) ;
// printf("%f\n", spu extract (myRows, 0) ;

} // ENDS base row loop
message = spureadinmbox();
if (message == NUMSPUS+I)

GO = false;
} // Ends Major While loop

printf ("SPUV%d-is -Exiting \n", myrank);
return 0;

}

479

Listing C.2. inCore solver
/* Copyright (c) 2007 Massachusetts Institute of Technology

* Permission is hereby granted , free of charge , to any person obtaining a
copy of

* this software and associated documentation files (the "Software") , to
deal in

* the Software without restriction , including without limitation the
rights to

* use , copy , modify , merge , publish , distribute , sublicense , and/or sell
copies of

* the Software , and to permit persons to whom the Software is furnished to
do so,

* subject to the following conditions:

* The above copyright notice and this permission notice shall be included
in all

* copies or substantial portions of the Software.

* THE SOFTWARE IS PROVIDED "AS IS ", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR

* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
, FITNESS

* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR

* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER

* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

/* @author James Geraci

// James Geraci
// Thesis
// August 15, 2007

#include <spu _mfcio .h>
#include <libmisc .h>
#include <stdio.h>
#include <spu_intrinsics .h>
#include <unistd .h>
#include <string .h>
#include "common.h"
#include <assert.h>

480

CONTROLBLOCK_T* cb CACHEALIGNED;
extern int _etext;
extern int _edata;
extern int _end;
static inline void printfData(void);
static inline dma_listelemt * createDMAlist(unsigned int , unsigned int,

unsigned int);
//void report _memoryinfo (void){

// //printf(" & etext = %p\n", &_etext);
// //printf(" & edata = %p\n", &_edata);
// //printf(" & end = %p %f\n", & _end, (float) ((int) & _end)/1024);
// //p rintf(" sbrk(0) = %p = %d = %f\n",sbrk(0) , (int) sbrk(0) ,(float) ((

int) sbrk(0))/1024);
// //printf(" bytes on Heap%d\n", (int) sbrk(0) - (int) &-end);
// //printf(" Kbytes on Heap %f\n", (float) ((int) sbrk(0) - (int) &_end)

/1024);

// }

int my_rank;
static int NUMSPES;
//static uint32_t* rowpointers;
static int twodoublebyteSize;
static int hbS;
static int vector_hbS;
static int vector_bS;
static int vectorbSend;
static int vector_nI;
static int jhpc;
static int lastrow;
static int IrOffset;
static uint32_t bSbyteSize;
static int numExtraRows;
static int numStoredRows;
static int numStoredRowsBefore;

double adjustFactor;
double inv_baserowfactor;
unsigned int * base_row.addr;
vector double* myRows;
vector double* base_row;
vector double* nxtBaseRow;
vector double vFactor;
int workingSPEs;
int present_elimcolumn;
int pbrPivot;
int erPivot;
int Joffset;

481

int Joffset2;
int myMinRow;
int myMaxRow;
int pbrOwner;
int extraRows;
double NewtonIter;
double nxtNewtonIter;
unsigned int dma_listsize;
unsigned int hbSbyteOffset;
unsigned int pbrByteOffset;
int numFailed;
int lastRowOwner;
int sRows;
int message;
int matrixAddr;
uint64_t cbLocation;
int sbsRow;
dma_list_elemt myDMAlist;

static inline int
computePivot(int pRow){

return (jhpc + pRow%cb[myrank]. numVars - pRow%2)/2;

}

static inline void
computenumStoredRows (void) {

numStoredRows = hbS/workingSPEs;
//printf("\n SPE %d thinks workingSPEs = %d\n",my rank, workingSPEs);
// //printf("numStoredRows is %d\n",numStoredRows);
numExtraRows = hbS%workingSPEs;
for(int index = 0; index < workingSPEs; index++){

// if(cb[index]. working == 1){
cb [index]. numStoredRows = numStoredRows;
if(index < numExtraRows){

cb [index]. numStoredRows += 1;
// }

}
}
//printf("The Number of Stored Rows for SPE%d is %d\n",my_rank,

numStoredRows) ;
numStoredRows = cb [my rank]. numStoredRows;
numStoredRowsBefore = 0;

for(int index = 0; index < my_rank; index++){
if (cb [index]. working){
numStoredRowsBefore += cb [index]. numStoredRows;

}

482

}
return;

}

void determineLastRowOwner (int pbOff) {
lastRowOwner = 0;
extraRows = (cb[my_rank]. svLength - pbOff)%hbS;
sbsRow = cb [myrank]. svLength /1* - pbOff*/ - extraRows;

if(extraRows == 0 && myrank == workingSPEs - 1){
lastRowOwner = 1;
// //printf("SPE%d is the last Row Owner\n",my_rank);

} else {
if(sbsRow + numStoredRowsBefore < (cb[my_rank]. svLength /1- pbOff*/)

&& sbsRow + numStoredRowsBefore + numStoredRows >= (cb[my_rank].
svLength / - pbOff,/))

{
lastRowOwner = 1;
// //printf("SPE%d is the last Row Owner\n",myrank);
sRows = (cb [myrank]. svLength /* - pbOff,/) - sbsRow -

numStoredRowsBefore;

}
}
return;

};

static inline void resetDMAlist(int pbOff){
free _align ((void *) myDMAlist);
matrixAddr = cb[my_rank . matrixData_addr + numStoredRowsBefore *bSbyteSize

//printf("FOR SPE%d numStoredRowsBefore is %d\n",my_rank,
numStoredRowsBefore) ;

myDMAlist = createDMA_list(&dma_list_size ,matrixAddr + pbOff*bSbyteSize ,
numStoredRows bSbyteSize) ;

}

static inline void
preloaddata(uint32_t rowbuf, uint32_t brbuf, uint32_t num_rows, uint32_t

tag , uint32_t offx){
spumfcdma32((volatile *) rowbuf, (unsigned int) myDMAlist,

dmalist_size , 0 , MFCGETL_CMD) ;
spu mfcdma32 (reinterpret _cast <void *>(brbuf) , cb [my _rank]. matrixData _addr

+ offx , bSbyteSize , tag, MFC_GET_CMD);
// spu_mfcdma32 (reinterpret_cast<void>(row_buf) , cb[my_rank].

matrixData_addr , bSbyteSize , tag , MFCGETCMD);
spu _ mfcstat (MFCTAGUPDATEALL);
return;

}

483

static inline dma_list_elem_t*
createDMAlist (unsigned int * dls , unsigned int ea_low , unsigned int nbytes)

{
dma_listelemt * mylist;
unsigned int index = 0;
unsigned int nbytes2 = nbytes;

if (! nbytes)
return 0;

// first , determine num elements in myDMAlist
while(nbytes2 > 0){

unsigned int sz2;

sz2 = (nbytes2 < MAX3BYTES_ONEDMA) ? nbytes2 : MAXBYTESONEDMA;
nbytes2 -= sz2;
index++;

}

mylist = reinterpret _cast <dma list elem _t>(malloc_align (index*sizeof(
dma_list_elem) ,7)) ;

index = 0;
while(nbytes > 0){

unsigned int sz;

sz = (nbytes < MAXBYTESONEDMA) ? nbytes : MAXABYTESONEDMA;

mylist [index]. size . a1132 = sz;
mylist [index]. ea_low = ealow;
nbytes -= sz;
ealow += sz;
index ++;

}
edls = index*sizeof(dmalist_elem-t);
// return index* sizeof (dma_list_elemt);
return mylist;

}

/********** resetting the LU ********** */

static inline void reSetLU(int *pb){
//printf("SPE %d is adjusting workingSPEs from %d to %d by %d\n",my-rank,

workingSPEs , workingSPEs-numFailed , numFailed) ;
workingSPEs -= numFailed;

484

// //printf("Getting the new cb\n");
// Reget the control block with new ranks and all
spu_mfcdma32 (cb, cbLocation , NUM-SPES sizeof (CONTROLBLOCKT) ,0,

MFC_GET_CMD) ;
mfc _write _tag _mask (< <0);
spu mfcstat (MFCTAG_UPDATEALL);
// //printf("new cb received\n");

// Readjust 'myrank'
for(int search_ranks = 0; searchranks < workingSPEs; searchranks++){

if(cb[search_ranks]. old_rank == myrank){
// //printf("making SPE%d into SPE%d\n",cb[searchranks].old_rank

cb[search_ranks . rank);
my_rank = cb[search_ranks].rank;
cb [search_ranks].old rank = myrank;

}
}

mfe put (reinterpret _cast <char*>(base _row _addr) ,
reinterpret _ecast <char*>(cb [my_rank]. base_row _addr) ,4* sizeof(

unsigned int) , 0, 0, 0);

spu mf cstat (MFCTAGUPDATEALL) ;
spu writech (SPUWrOutMbox, 1) ;
spureadch (SPURdInMbox);
//printf("Got The one asdjfkal; sdfajs; ldfjas; djfl; l; sadjfl;asd\n");
mfc get (cb, cbLocation , NUMSPES*sizeof (CONTROLBLOCKT) ,0,0,0);
spu mf cstat (MFCTAGUPDATE.ALL);

// Reallocate myRows buffer
free align ((void *) myRows);
// //printf("Number of Stored Rows Old = %d\n",numStoredRows);
computenumStoredRows () ;
// //printf("Number of Stored Rows New = %d\n",numStoredRows);
myRows = reinterpret cast <vector double*>(malloc -align

(bSbyteSize *numStoredRows ,7));
memset ((void *) myRows, 0 , bSbyteSize *numStoredRows);

// Recreate DMAlist and bring matrix back in
resetDMAlist (*pb) ;
//if(myrank == 1){
// Use the below to simply restart the LU from pbr = 0;
// preload_data (reinterpretcast <uint32_t >(myRows) , reinterpret cast <

uint32_t >(base_row),
// numStoredRows , 0);
// }

485

// Use the below to restart the LU in mid-computation
preloaddata (reinterpret _cast <uint32_t >(myRows) ,reinterpret _cast <uint32-_t

>(base_row) ,
numStoredRows ,O ,*pb*bSbyteSize) ;

//printf("Below is //printfData while resetting SPE%d\n",my_rank);
// printfData () ;
// return ;

// reset starting condition

pbrOwner = 0;
determineLastRowOwner (* pb);
myMinRow = spu_extract(myRows[vectorbS _end],1);

if (lastRowOwner && myMinRow >= sbsRow) {
myMaxRow = spuextract(myRows[(sRows-1)*vectorbS + vector_bS_end],1);

}else{
myMaxRow = spuextract (myRows[(numStoredRows -1)*vectorbS +

vector_bS_end] ,1);
}
//printf("The presentbase_row is being resent by SPE%d\n",my_rank);
//printf("SPE%d has a min row of %d and a max row of %d for base row of

%d\n ", myrank, myMinRow, myMaxRow, *pb);
* pb -= 1;
numFailed = 0;
//printf("SPE %d now thinks that numFailed is %d\n",my_rank , numFailed);
return;

static inline void Printfdata (void){
// printf("cb[%dJ. rank = %d\n ",my_rank , cb[my_rank]. rank) ;
// p rintf(" cb[%d]. old_rank = %d\n ",myrank , cb[my_rank i. old_rank) ;
// printf("cb[%d]. local_storeaddr = Ox%x\n",my_rank ,cb[my_rank].

localstore_addr);
//p r i n tf (" cb[%d]. matrixData _addr = Ox%x\n ", my rank , cb [my rank].

matrixData _addr) ;
// printf (" cb[%d J. control _addr = Ox%x\n ", myrank , cb[my rank]. control _addr)

// printf("cb[%d]. base rowaddr = Ox%x\n", my_rank, cb[my_rank].
base _rowaddr);

//p rin tf (" cb[%d]. brLSaddr [0] = Ox%x\n ", my_rank , cb[my_rank i. brLS_addr
[0]) ;

// printf (" cb[%d]. working = Ox%x\n ", my_rank , cb[my_rank i. working);
//p rin tf (" cb[%d J. workingSPEs = %d\n", my_rank , cb[my_rank]. workingSPEs);
return;

}

static inline void
compute_data(vector double * browbuf, vector double* Jacob , int pbr,

486

vector double* nbr){

pbrPivot = computePivot(pbr);
int pbrModVars = pbr%cb [myrank]. numVars;
int pbrMod2 = pbr%2;
int per;
int Joff;
int perxx;
int addrsa;
int subN = (pbrModVars)/2;

if(pbr-myMinRow >= 0)
Joff = pbr-myMinRow + 1;

else
Joff = 0;

inv_base _row_factor = 1/spuextract(browbuf[pbrPivot],pbrMod2);

for(int index = 0; index < numStoredRows - pbrOwner; index++){
Joffset = ((Joff + index)%numStoredRows)*vectorbS ;

per = (int) spu_extract(Jacob[Joffset + vectorbS_end],l);
if(spuextract (Jacob[Joffset + vector_nI],1) < pbr II pbr == 0){

//if(my_rank == 0 && pbr == 500)
////printf("SPE%d is calling compute in Newton Iter %f\n",my_rank,

Newtonlter);
if((per == cb[myrank].svLength - 1) I per == pbr + hbS - pbrModVars

- 1){
index = numStoredRows - pbrOwner + 1000;

}
if(per > pbr && per < pbr + hbS - pbrModVars){

erPivot = computePivot(per);
int pbbb = (per-(pbr-pbrMod2))/2;
presentelim.column = erPivot - pbbb;
perxx = per*bSbyteSize;
Joffset2 = Joffset + present_elimcolumn;

adjustFactor
= spu extract (Jacob[Joffset2] ,pbrMod2)*inv_base row_factor;

vFactor = spu_splats(adjustFactor);
addrsa = cb[myrank]. matrixData_addr + perxx;
for(int index2 = 0; index2 < vector_hbS - subN; index2++){

Jacob[Joffset2 + index2]
= spu_nmsub(vFactor ,b_row_buf[pbrPivot + index2],

Jacob[Joffset2 + index2]);

}
vFactor = spuinsert(0.0,vFactor ,1);

487

Jacob[Joffset + vector_bSend]
= spu_nmsub(vFactor , b_row buf[vector_bSend],

Jacob[Joffset + vector_bSend]);
// Here is where we write the pbr into the row;
Jacob[Joffset + vectorinI] = spuinsert((double)pbr,Jacob[Joffset

+ vectornl],1);

// Here is where we write the modified row back into main memory
s p u _ mfc s t a t (MFCTAG_UPDATEALL) ;
spu_mfcdma32 ((char *) &Jacob [Joffset], cb [my_rank]. matrixDataaddr

+ per*bSbyteSize ,
bSbyteSize , 0 , MFCPUT_CMD) ;

if(__builtin_expect(per == pbr+1,0)){
for(int index3 = 0; index3 < workingSPEs; index3++){

//if(cb[index3 i. working) {
spu_mfcdma32(&Jacob [Joffset],

cb[index3].local_store_addr + cb[index3].brLS_addr
[0] + ((pbr + 1)%2)*bSbyteSize ,

bSbyteSize ,0 ,MFC_PUT_CMD) ;
//}

}
}

return;

main(uint64_t speid, uint64_t argp, uint64_t envp){
// // printf(" Returning \n");
// return 0;
Newtonlter = (double) 0.0;
nxtNewtonIter = (double)0.0;
int Kg = 0;
// report -memory _info () ;
twodoublebyteSize = 2 sizeof(double);
float dd = (256.0 - (float)((int) &_end)/1024);
bool GO = true;
cbLocation = argp;
// Begin
// Setup Function
lastRowOwner = 0;
sRows = 0;
spu.writech(SPUWrOutMbox,1); // Tell the PPU that we are here

488

NUMSPES = spu_readch(SPU_RdInMbox); // Wait for all the SPU to catch up
spu _writech (SPUWrOutMbox, 1);

message = NUMSPES;
my_rank = spu_readch (SPURdInMbox);
// End Setup Function

// Begin
// This doesn 't change
cb = reinterpret _cast <CONTROLBLOCK_T*>(malloc _align (NUMSPES* sizeof (

CONTROLBLOCKT) ,7));
memset ((void *) cb, 0 , NUMSPES* sizeof (CONTROLBLOCK_T)) ;

spu_mfcdma32 (cb, cbLocation , NUMSPES* sizeof (CONTROLBLOCKT) ,0 ,
MFCGET_CMD) ;

mfc _write _tag _mask(l< <0);
spumfcstat (MFC_TAGUPDATEALL);

// printfData () ;
workingSPEs = cb[myrank]. workingSPEs;
hbS = cb[my_rank]. hbWidth;

hbS += hbS%2;
vector_hbS = hbS/2;

bSbyteSize = cb[my_rank].bWidth*sizeof (double);
hbSbyteOffset = hbS*bSbyteSize;
vector_bS = cb[my-rank].bWidth/2;
vector_bS_end = vector-bS - 1;
vectornI = vectorbS - 2; // The data is READY for the coming Newton

Iteration
jhpc = cb[myrank].jhpc;

lastrow = cb[myrank].svLength-1;
IrOffset = lastrow*bSbyteSize;

base-row = reinterpret cast <vector double*>(malloc-align(2*bSbyteSize ,7))

memset((void*) base-row , 0, bSbyteSize*2);
nxtBaseRow = base_row;

base_rowaddr = reinterpret _cast <unsigned int*>(malloc_align (4* sizeof(
unsigned int) ,7));

memset((void *) base_row.addr, 0, 4* sizeof(unsigned int));
baserowaddr [0] = reinterpret cast <unsigned int >(base_row);

489

extraRows = (cb[my_rank]. svLength)%hbS;
sbsRow = cb[myrank]. svLength-extraRows;

int LastBlockStart = sbsRow;
// End This doesn 't change-

// Begin
// Setup Function 2
computenumStoredRows ();
myRows = reinterpret _cast <vector double*>(malloc _align

(bSbyteSize*numStoredRows ,7));
memset((void *) myRows, 0, bSbyteSize *numStoredRows);

mfc_put (reinterpret _cast <char*>(base _row addr) ,
reinterpret _cast <char*>(cb [my rank]. base row _addr) ,4* sizeof (

unsigned int) , 0, 0, 0);

spu _mfcstat (MFCTAG_UPDATEALL);
spuwritech (SPUWrOutMbox, 1);
my_rank = spu_readch (SPU_RdInMbox);

mfcget (cb, argp , NUMSPES* sizeof (CONTROLBLOCKT) ,0,0,0) ;
spu _mfcstat (MFC_TAG_UPDATEALL);

// determineLastRowOwner(O) ;

// END WTF does this do?
matrixAddr = cb [my_rank]. matrixData_addr + numStoredRowsBefore,

bSbyteSize;
myDMAlist = createDMAlist(&dma_listsize ,matrixAddr, numStoredRows*

bSbyteSize);
// report _memory _info () ;
spu _writech (SPUWrOutMbox, 1) ;
myrank = spu-readch (SPURdInMbox);
// END Setup Function 2
//printf("FOR SPE %d numStoredRowsBefore is %d\n",myrank,

numStoredRowsBefore);
while (GO) {
base-row = reinterpret_cast <vector double*>(cb [my_rank]. brLS _addr [0]);
nxtBaseRow = reinterpret _cast <vector double*>(cb [myrank]. brLS addr

[0] + bSbyteSize);
determineLastRowOwner (0);
// printf("SPE %d says lastRowOwner == %d\n",my-rank, lastRowOwner);
resetDMAlist (0) ;
LastBlockStart = sbsRow;
NewtonIter++;
preload data (reinterpret _cast <uint32_t >(myRows) , reinterpret _cast <

490

uint32_t >(base_row) ,
numStoredRows ,0 ,0);

pbrOwner = 0;
myMinRow = - 1;
myMaxRow = - 1;
// france
for(int present_baserow = 0; present_baserow < last_row;

present _base_row++){
// if(myrank == 0)
// //p rintf("the present base row is %d\n",present_baserow);

pbrByteOffset = present_baserow*bSbyteSize;

baserow = reinterpret _cast <vector double >(cb [myrank]. brLS addr
[0] + (present _base_row%2)*bSbyteSize);

nxtBaseRow = reinterpret _cast <vector double*>(cb [myrank]. brLS_addr
[0] + ((present_base row +1)%2)*bSbyteSize);

int compute = 1;
if(myMinRow >= LastBlockStart && presentbase_row > myMaxRow){

compute = 0;
}else{

if(present_baserow > myMaxRow){
myMinRow = spuextract(myRows[vector_bSend] ,1);

if (lastRowOwner && myMinRow >= sbsRow) {
myMaxRow = spu extract(myRows[(sRows-1)*vectorbS +

vectorbS _end],1);
}else {

myMaxRow = spu _extract(myRows[(numStoredRows-1)*vectorbS +
vectorbS_end],1);

}
}

}
pbrOwner = 0;
if (presentbaserow >= myMinRow && presentbaserow <= myMaxRow){

pbrOwner = 1;
if(present_baserow < LastBlockStart){

spu_mfcdma32 ((char *) &myRows [((present _base _row -myMinRow)%
numStoredRows) * vector_bS],

cb [my_rank]. matrixDataaddr + pbrByteOffset +
hbSbyteOffset , bSbyteSize , 0 , MFC_GET_CMD);

}
spumfcdma32 ((char *) base_row,

cb [myrank]. matrixData _addr + pbrByteOffset,
bSbyteSize , 0 , MFCPUT_CMD);

491

if (compute) {
compute _data (base_row ,myRows, present _base _row , nxtBaseRow) ;

}

spu _ m fcstat (MFCTAG_UPDATEALL) ;
// int ps = my_rank;

Kg = 0;

if(present_baserow == 2118 && ((my_rank == Kg &&
workingSPEs == NUMSPES && Newtonlter == 50.0) 1

(workingSPEs
NUMSPES-1 &&
my_rank == Kg
&& Newtonlter
== 100.0) |

(workingSPEs
NUMSPES-2 &&
nmyrank == Kg
&& Newtonlter
== 200.0) I

(workingSPEs
NUMSPES-3 &&
myrank == Kg
&& Newtonlter
== 300.0)

)){

if(0){
// if(presentbase_row == 2118 && (my_rank == Kg II myrank

-= Kg-1) && workingSPEs == NUMSPES && Newtonlter == 5.0){
return 0;

}else{

spu_writech (SPU_WrOutMbox, my_rank) ;
}
numFailed = spu_readch (SPURdInMbox);
if(numFailed != 0){

//printf("The number Failed is %d\n",numFailed);
reSetLU(&present _base_row) ;
// //printf("SPE %d is now totally done with resetting during

present base row of %d\n",my_rank , present_baserow);

}

} // ENDS base row loop
//printf("SPE %d says lastRowOwner == %d\n ",myrank ,lastRowOwner);

492

// It needs to be determined at run time who owns the last row to put.
if (lastRowOwner) {

// // //printf("SPE%d is sending out the last Row\n",myrank);
spu-mfcdma32 ((char *) &myRows [((last row -myMinRow)%numStoredRows) *

vector_bS] , cb[myrank]. matrixData_addr + IrOffset,
bSbyteSize , 0 , MFCPUTCMD) ;

spu mf cstat (MFC_TAGUPDATEALL) ;

message = spu_read_in_mbox();
if (message == NUMSPES+1)

GO = false;
} // Ends Major While loop
return 0;

}

493

Listing C.3. Makefile
##
Target
##

PROGRAMppu = FVbatteryModel
OBJS= StdAfx.o matrixData .o Electrode .o CV.o electrodeSizeData.o OLLLPV.o

ORLRPV.o volumeChemData.o UPV.o FVbatteryModel.o
electrolyteElectrodeChemData .o ORPV.o PVIConditions.o OLULPV.o BPV.o
Electrolyte .o ldxElectrode .o IdElectrode .o IdElectrodeChemData .o
volumeSpatialData.o myGlobals.o ORURPV.o electrodeChemData.o PV.o FV.o
OLPV.o cellSizeData.o volumelConditions.o ldxElectrodeChemData.o ULCV.o
URCV.o LLCV.o LRCV.o

##
Local Defines
##
IMPORTS = -Ispe2 -lmisc -Isimdmath -lpthread

##
make.footer
##
INCLUDE+= -I. -I.. -I/opt/cell/sysroot/opt/cell/sdk/usr/include
LIBS = /opt/cell /sysroot/opt/cell /sdk/usr/lib
CXX=/opt /ibmcmp/ xlc / cbe /9.0/bin / ppuxlc++
CXXFLAGS= -qcpluscmt -M-ma $(INCLUDE) -qaltivec -qenablevmx
#OPTFLAGS=-03

RM-rm
RMFLAGS=- f

.cc.s:
$(CXX) $(CXXFLAGS) $(OPTFLAGS) -S $< -g -o $@

.cc.O:

$(CXX) $(CXXFLAGS) $(OPTFLAGS) -c $< -g -o $@

$ (ASM) $ (INCLUDE) - o $@ $<

$ (PROGRAMppu) : $ (OBJS)
$(CXX) $(CXXFLAGS) -g -o $@ $^ -L$(LIBS) -Wl,-m,elf32ppc -R$(LIBS)

$ (IMPORTS)

clean :

494

$ (RM) $ (RMFLAGS)
$(RM) $ (RMFLAGS)

495

496

Bibliography

[1] Toyota's hybrid plans for 2010. "http://www.soultek.com/blog/2006/06/

toyotas-hybrid-plans- f or- 2010. html% ", March 2008.

[2] AP contributed. GM to make lithium-ion hybrids in 2010. "http: / /money. cnn. com/2 0 0 8 /

03 /04 /autos/gml i thium_hybrids /index. htm", March 2008.

[3] K. Peters. Review of factors that affect the deep cycling performance of valve-regulated lead/acid

batteries. Journal of Power Sources, (59):9-13, 1996.

[4] John Christensen and John Newman. Stress generation and fracture in lithium insertion materials.

J Solid State Electrochem, 10:293-319, March 2006.

[5] P.Ruetschi. Aging mechanisms and service life of lead-acid batteries. Journal of Power Sources,

(127):33-44, 2004.

[6] D. Berndt. Valve-regulated lead-acid batteries. Journal of Power Sources, (100):29-46, 2001.

[7] S. Piller, M. Perrin, and A. Jossen. Methods for state-of-charge determination and their applica-

tions. Journal of Power Sources, 96:113-120, 2001.

497

[8] B. Le Pioufle, J.F. Fauvarque, and P. Delalande. A performing lead acid cell state of charge indica-

tor based on data fusion. Electrochemical Society Proceeding, 16, 1996.

[9] V.H. Johnson. Battery preformance models in advisor. Journal of Power Sources, 4806:1-9, 2002.

[10] Wootaik Lee, Daeho Choi, and Myoungho Sunwoo. Modelling and simulation of wehicle electric

power system. Journal of Power Sources, 109:58-66, 2002.

[11] A.H. Anbuky and P.E. Pascoe. VRLA battery state-of-charge estimation in telecommunication

power systems. IEEE Transactions on Industrial Electronics, 47(3):565-573, 2000.

[12] S. Rodrigues, N. Munichandraiah, and A.K. Shukla. A review of state-of-charge indication of

batteries by means of a.c. impedance measurements. Journal of Power Sources, 87:12-20, 2000.

[13] Y. Morimoto, Y. Ohya, K. Abe, T. Yoshida, and H. Morimoto. Computer simulation of the dis-

charge reaction in lead-acid batteries. J.Electrochem.Soc.:Electrochemical Science and Technol-

ogy, 135(2):293-298, 1988.

[14] C.W. Chao. Continuous monitoring of acid stratification during charge/discharge by holographic

laser interferometry. Journal of Power Sources, 55:243-246, 1995.

[15] R.J. Ball, R. Kurian, R. Evans, and R. Stevens. Failure mechanisms in valve regulated lead/acid

batteries for cyclic applications. Journal of Power Sources, 109:189-202, 2002.

[16] E.C. Dimpault-Darcy, T.V. Nguyen, and R.E. White. A two-dimensional mathematical model of a

porous lead dioxide electrode in a lead-acid cell. Journal of Electrochemical Society, 135(2):278-

285, 1988.

498

[17] Jacob Bear and Yehuda Bachmat. Introduction to Modeling of Transport Phenomena in Porous

Media. Kluwer Academic Publishers, Boston, Massachusetts, 1990.

[18] Theodore L. Brown, Jr. H. Eugene LeMay, and Bruce E. Bursten. Chemistry The Central Science,

7th Edition. Prentice Hall Publishing, Upper Saddle River, New Jersey 07458, 1997.

[19] Charles M. Vest. Holographic Interferometry. Wiley, New York, 1979.

[20] ed. David R. Lide. Concentrative Properties of Aqueous Solutions: Density, Refractive Index,

Freezing Point Depression, and Viscosity, in CRC Handbook of Chemistry and Physics, Internet

Version 2006. Taylor and Francis, Boca Raton, FL, 2006.

[21] E Alavyoon, A. Eklund, EH. Bark, R. I. Karlsson, and D. Simonsson. Theoretical and experimen-

tal studies of free convection and stratification of electrolyte in a lead acid cell during recharge.

Electrochimica Acta, 36(14):2153-2164, 1991.

[22] A. Eklund and R.I. Karlsson. Free convection and stratification of electrolyte in the lead-acid cell

without/with a separator during cycling. Electrochemica Acta, 37(4):681-694, 1992.

[23] EH. Bark and Alavyoon. Convection in electrochemical systems. Applied Scientific Research,

53:11-34, 1994.

[24] Rolf H. Muller. Advances in Electrochemistry and Electrochemical Engineering, volume 9. Inter-

science, New York, 1973.

[25] P. Hariharan. Basics of Interferometry, Second Edition. Academic Press, Burlington, MA, 2007.

[26] Hans Bode. Lead Acid Batteries, Translated by Brodd/Kordesch. Wiley-Interscience, New York,

1977.

499

[27] John S. Newman. Electrochemical Systems. Prentice-Hall, Inc, Englewood Cliffs, N.J., 1991.

[28] Allen Bard and Larry Faulkner. Electrochemical Methods, Second Edition. John Wiley and Sons,

Inc, New Jersey, 2001.

[29] John Newman and William Tiedemann. Porous-electrode theory with battery applications. AIChE,

21(1):25-41, 1975.

[30] Hiram Gu, T.V. Nguyen, and R.E. White. A mathematical model of a lead-acid cell, discharge,

rest, and charge. Journal of Electrochemical Society, 134(12):2953-2960, 1987.

[31] Dawn M. Bernardi and Hiram Gu. Two-dimensional mathemtical model of a lead-acid cell. Journal

of Electrochemical Society, 140(8):2250-2258, 1993.

[32] A. Tenno, R. Tenno, and T. Suntio. Charge-discharge behavior of VRLA batteries model calibration

and application for state estimation and failure detection. Journal of Power Sources, 103:42-53,

2001.

[33] T.V. Nguyen, R.E. White, and H. Gu. The effects of separator design on the discharge performance

of a starved lead acid cell. Journal of Electrochemical Society, 137(10):2998-3004, 1990.

[34] W.B. Gu, C.Y. Wang, and B.Y. Liaw. Numerical modeling of coupled electrochemical and transport

processes in lead-acid batteries. Journal of Electrochemical Society, 144(6):2053-2061, 1997.

[35] D. Simonsson P. Ekdunge. The discharge behaviour of the porous lead electrode in lead acid

battery.ii. Journal of Applied Electrochemistry, 19:136-141, 1989.

500

[36] J.E. Welch, F.H. Harlow, J.P. Shannon, and B.J. Daly. The MAC method: A computing technique

for solving viscous, incompressible, transient fluid flow problems involving free surfaces. Report

LA-3425, Los Alamos Scientific Laboratory, 1966.

[37] Suhas V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation,

Washington, 1980.

[38] H.K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics, The Finite

Volume Method. Prentice Hall, Essex, England, 1995.

[39] Gilbert Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, 1986.

[40] R. Sureshkumar. Forward and backward euler methods. "http: / /web .mit .edu/10 . 001/

Web/Course_Notes/Di fferential_Equat ions_Note%s/node3 .html", May

2008.

[41] G. Papzov and D. Pavlov. Influence of cycling current and power profiles on the cycle life of

lead/acid batteries. Journal of Power Sources, 62:193-199, 1996.

[42] Saman Amarasinghe. Multicore programming primer and programming competition introduc-

tion. "http: //cag.csail.mit.edu/ps3/lectures/6.189-lecturel-intro.

pdf ", January 2007.

[43] Wikipedia. Spursengine. "http : / /en. wikipedia . org/wiki / Spurs Engine", Novem-

ber 20 2007.

501

[44] Toshiba starts sample shipping of spursengine sel000 high-performance stream proces-

sor. "http: / /www. toshiba. co. jp/about/press/2008_04/pr0801.htm", April 8

2008.

[45] Kate Greene. The trouble with multi-core computers, adding more cores to a computer makes

it faster, but it also makes it tricky to program. how will computer scientists cope? Technology

Review, November 1 2006.

[46] Ron Wilson. Multicore software problems edging toward center stage. Electronics Design, Strat-

egy, News, April 6 2007.

[47] Associated Press. Microsoft and Intel join UC-Berkeley and U. of Illinois to push parallel comput-

ing. The Mercury News, March 19 2008.

[48] John Markoff. Race is on to advance software for chips. New York Times, April 30 2008.

[49] C.Demerjian. Intel 80 core chip revealed in full detail. "http: / /www. theinquirer .net/

default. aspx?article=37572", February 112007.

[50] Jack Dongarra. "http: / /top500 .org", April 1 2008.

[51] Wikipedia. Denormal number. "http: / /en.wikipedia. org/wiki/Denormal_

number", May 2 2008.

[52] Cell Broadband Engine Programming Handbook. IBM Systems and TEchnology Group, Hopewell

Junction, NY, April 2007.

[53] M. Riley, B. Flachs, S. Dhong, G. Gervais, S. Weitzel, M. Wang, D. Boerstler, M. Bolliger, J. Keaty,

J. Pille, R. Berry, O. Takahashi, Y. Nishino, and T. Uchino. Implementatin of the 65nm cell broad-

502

band engine. In IEEE 2007 Custom Integrated Circuits Conference CICC. IEEE, September 21-24

2007.

[54] 0. Takahashi, C. Adams, E. Behnen, O. Chiang, S. Cottier, P. Coulman, J. Culp, G. Gervais,

M. Gray, Y. Itaka, C. Johnson, F. Kono, L.Maurice, K. McCullen, L. Nguyen, Y. Nishino, H. Noro,

J. Pille, M. Riley, S. Tokito, T. Wagner, and H. Yoshihara. Migration of cell broadband engine from

65nm soi to 45nm soi. In IEEE 2008 International Solid-State Circuits Conference ISSCC. IEEE,

February 3-7 2008.

[55] Thomas Lippert. At the limits of scalability? In 13th SIAM Conference on Parallel Processing for

Scientific Computing. SIAM, March 12-14 2008.

[56] James L. Tomkins. The asci red tops supercomputer. "http: //www.sandia. gov/ASCI/

Red/ ", April 7 2008.

[57] NCSA. Latency results from pallas mpi benchmarks. "http: / /vmi. ncsa. uiuc. edu/

performance /pmb_l t .php ", March 23 2005.

[58] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H. Liu.

A supernodal approach to sparse partial pivoting. SIAM J. Matrix Analysis and Applications,

20(3):720-755, 1999.

[59] James W. Demmel, John R. Gilbert, and Xiaoye S. Li. An asynchronous parallel supernodal algo-

rithm for sparse gaussian elimination. SIAM J. Matrix Analysis and Applications, 20(4):915-952,

1999.

503

[60] Xiaoye S. Li and James W. Demmel. SuperLUDIST: A scalable distributed-memory sparse direct

solver for unsymmetric linear systems. ACM Trans. Mathematical Software, 29(2): 110-140, June

2003.

[61] James W. Demmel, John R. Gilber, and Xiaoye S. Li. Superlu users' guide. "http: //crd.

ibl. gov/ ~xiaoye / SuperLU/superlu_ug. pdf ", November 2007.

[62] Bill Thies. Multicore programming primer and programming competition introduc-

tion, streamit language. "http: //cag. csail.mit. edu/ps3/1lectures/6.

189-lecture8-streamit.pdf ", January 2007.

[63] Phil Sung. Multicore programming primer and programming competition introduction,

simd programming on cell. "http://cag.csail.mit.edu/ps3/recitation6/6.

18 9 - reci tation6 .pdf ", January 2007.

[64] Toshiba showcases latest advanced technologies at ces 2008. "http: / /www. tacp . toshiba.

com/news /newsarticle .asp?newsid=191 ", April 8 2008.

[65] Bureau of Transportation Statistics USDOT. Table 1-17: New and used passenger car sales

and leases. "http: //www. bts. gov/publications/national_transportation_

statistics /htm%1/ table_01_17. html ",February 2 2007.

[66] J.L. Leray. Effects of atmospheric neutrons on devices, at sea level and in avionics embedded

systems. Microelectronics Reliability, 47:1827-1835, September 2007.

[67] Eric C. Hannah. System with response to cosmic ray detection. United States Patent, January 2007.

Patent No. 7,166,847.

504

[68] Eric C. Hannah. Cosmic ray detectors for integrated circuit chips. United States Patent, December

2007. Patent No. 7,309,866.

[69] J. Langou, Z. Chen, G. Bosilca, and J. Dongarra. Recovery patterns for iterative methods in a

parallel unstable environment. SIAM J. Sci. Comput., 30(1):102-116, 2007.

[70] James S. Plank, Youngbae Kim, and Jack J. Dongarra. Fault tolerant matrix operations for networks

of workstations using diskless checkpointing. Journal of Parallel and Distributed Computing,

43:125-138, 1997.

[71] Remi Delmas, Julien Langou, and Jack Dongarra. Fault-tolerant algorithms for dense linear al-

gebra. In 13th SIAM Conference on Parallel Processing for Scientific Computing. SIAM, March

12-14 2008.

505

