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Abstract

Most of the known error-correcting procedures for digital communication involve
codes of fixed constraint length. In a two-way communication system, however, it is
possible to base the inclusion of redundancy on information concerning the results of
previous transmissions, which is received over a feedback channel. A wide variety of
sequential transmission procedures is thereby made possible. This report is concerned
with the asymptotic error-correcting capability of several types of sequential trans-
mission and the examination of a particular sequential transmission scheme. Before the
results can be summarized, however, several terms must be defined.

In sequential transmission schemes, as in one-way communication, there are two
general approaches to the encoding of information for transmission over a noisy channel.
The information or message sequence (which we assume is a binary sequence in which
each digit carries one bit of information) can, on the one hand, be divided into blocks of
fixed length, which are then encoded as separate units. Alternatively, the transmission
process may be a continuous one, in which bits are introduced into the encoder, and later
decoded, individually.

The term "decision feedback" is reserved for block-transmission systems in which a
code word of indefinite length is assigned to each possible message block. As much of
the code word is transmitted as is required for the intended message to be identified with
the required degree of reliability. The term "information feedback" applies to any con-
tinuous or block-transmission system in which each transmitted symbol is a function of
both the intended message and information available at the transmitter concerning the
results of previous transmissions.



Abstract (continued)

Bounds on the error exponent characterizing the asymptotic relation between the
specified probability of error and the average constraint length required to achieve it are
derived for several types of sequential transmission. It is shown that the error exponent
of a sequential sphere-packed code, which is the (decision-feedback) sequential analog of
a sphere-packed block code, is greater, at all rates less than capacity, than the largest
exponent obtainable with a fixed-constraint-length block code. It is conjectured that it
is at least as great as that of any realizable decision-feedback system. It is also shown,
however, that asymptotically better error correction is possible with an information-
feedback block-transmission system. Within the realm of information feedback, even
larger error exponents can be obtained with continuous systems.

The last point is illustrated by an example of an information-feedback continuous-
transmission system which assumes the existence of a noiseless feedback channel. Its
error exponent, as a function of the transmission rate, varies between the "sequential
dichotomy" exponent at zero rate, and the "fixed-length dichotomy" exponent at capacity.
(For all other systems mentioned, the exponent at capacity is zero.) Bounds are obtained
on the over-all constraint length at capacity. A computer simulation of the system
reveals that the average constraint length required to achieve an error probability of

10 15 at channel capacity is only approximately 1/7 of that required by the "optimum"
fixed-constraint-length block code, when the latter operates at only half capacity.
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I. INTRODUCTION

1.1 STATEMENT OF THE PROBLEM

It is a requirement of many communication systems that the information provided at

the receiver be an extremely accurate reproduction of the transmitted information. For

a given rate of transmission, an increase in either the signal power or its bandwidth

makes possible a reduction in the frequency of transmission errors. If, regardless of

the form of the transmitted signals and the type of detection used, the available power

and bandwidth are not sufficient to provide the required degree of reliability, some form

of redundancy must be added at the transmitter.

We shall confine ourselves to the consideration of communication through a discrete

memoryless channel. Such a channel is defined by a set of transition probabilities,

p(yj/xi), which gives the probability of receiving symbol yj(j=l, 2, . . ., m) when symbol

x.(i=l, 2, . .. , n) is transmitted. Shannon (1) has shown, for any discrete memoryless
1

channel, that if sufficient redundancy is added so that the rate of transmission is less

than the channel capacity, it is possible by proper encoding and decoding to make the

average probability of error after decoding arbitrarily small. This is not possible for

rates greater than capacity. Since the publication of this fundamental result, numerous

schemes have been devised to implement what the theorem had shown to be possible.

Most of these schemes envision a channel that allows transmission of information from

transmitter to receiver only. They necessarily involve fairly complex coding at the

transmitter and a decoding procedure of at least comparable (but usually considerably

greater) complexity at the receiver. Specifically, each information digit must be

involved in the determination of a number of transmitted symbols that increases as the

required average error probability decreases. In a one-way transmission system, for

fixed values of the channel capacity, transmission rate, and average probability of

error, this number is a constant known as the block length or constraint length.

In communication systems that have provisions for transmission in both directions,

it is possible to add redundancy in ways significantly different from the method used in

the coding schemes referred to above, by making use of information received through the

reverse channel. For example, the constraint length among the transmitted symbols can

be a variable quantity; a particular information digit need only influence the selection of

a sufficient number of transmitted symbols to allow it to be decoded with the required

degree of reliability. Furthermore, there is the possibility of having available, when

selecting a transmitted symbol, information concerning the effect of the channel on each

previous transmission. Thus, the presence of a feedback channel affords the oppor-

tunity to use a wide variety of sequential transmission procedures.

A second theorem of Shannon (2) states that the capacity, in the forward direction,

of a discrete memoryless channel is not increased by the availability of a channel oper-

ating in the reverse direction, even though the latter be noiseless and have unlimited
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capacity. We cannot hope, therefore, to use feedback to increase the maximum rate

at which we can communicate reliably. Nevertheless, there may be considerable

advantages to be gained by the use of feedback. It is the purpose of this report to

explore these possibilities. In order that we may be in a position to assess the rela-

tive importance of these possible advantages, it will be helpful to review the extent to

which the theoretical possibilities indicated by Shannon have been realized and the

practical difficulties that would be encountered in trying to implement these schemes.

1.2 A BRIEF HISTORY OF THE CODING EFFORT

Shannon's original theorem showed that by using long blocks of channel symbols as

code words, an arbitrarily small error probability could be achieved. Feinstein (3)

provided an upper bound to the probability of error that decreases exponentially with

the block length of the code. Elias (4) then found asymptotic upper and lower bounds on

the average probability of error for the best possible binary codes of a given length,

used in conjunction with the binary symmetric channel (BSC). (This channel is described

by the transition diagram of Fig. 1. The probability of a correct transmission is qo;

that of an incorrect transmission, known as the crossover probability, is po = 1 - q. )

The exponents in these bounds coincide for

rates greater than a certain critical rate (4).

°0 Elias also showed that the average probability

A of error for the best possible code of the

much smaller class of parity check-symbol

(pcs) codes has the same exponential behavior

as that for the class of all binary codes.

Mainly for reasons of mathematical

B tractability, most of the significant work
q0 in the construction of specific codes has

been restricted to binary codes. The evalu-

Fig. 1. The binary symmetric ation of these codes has been almost
channel. exclusively with respect to the binary sym-

metric channel.

Slepian (5) recognized that every group code is a pcs code, and vice versa. Because

of the optimum properties of pcs codes found by Elias, the search for good codes with

large block lengths can be restricted to the class of group codes. In Slepian's notation,

(n, k) indicates a group code comprised of 2kn-digit sequences. Slepian's decoding

scheme for group codes has the advantage of being a maximum-likelihood detection

scheme. However, the structure of group codes is not yet sufficiently well understood

to enable us to evaluate the minimum probability of error for an arbitrarily chosen

(n, k) pair or to construct the code that achieves it.

The second major direction taken by the coding effort has been the construction of

codes designed to achieve an arbitrarily small probability of error. The block lengths

2
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required are typically 100 digits or more. Elias (6) introduced an iterative decoding

scheme which can be used with an iterated Hamming (7) code, for example. This was

the first example of a code that achieves an arbitrarily small probability of error while

maintaining a nonzero transmission rate, although the rate is less than channel capacity.

The main problem with codes of large constraint length is that the decoding effort,

as measured by the amount of computation or the storage space required, increases

exponentially with the constraint length in maximum-likelihood detection. Wozencraft (8)

proposed a convolutional code for the binary symmetric channel in conjunction with a

sequential decoding scheme (which does not insist that the most likely sequence be

chosen). He obtained a partial bound (which does not converge for rates too close to

capacity) on the resulting average computational effort per decoded bit which grows

almost linearly with the constraint length of the code. At the same time the asymptotic

probability of error is equal to that of the best possible block code having the same

constraint length. An experimental investigation of this scheme (9) indicates that

during intervals when the number of transmission errors is much greater than the

expected number, which is quite small, the required number of computations per bit is

many times its average value. The number of consecutive bits for which this is true

tends to be proportional to the constraint length. Thus, in a code designed to produce

a very small probability of error, long delays in decoding are often encountered. These

delays, in turn, are responsible for large storage requirements at the receiver.

It is evident, therefore, that a practical system of this sort should enable the trans-

mitter to monitor closely the capacity of the channel, and provide the receiver with the

opportunity of requesting retransmission if the decoding effort should become over-

whelming. In fact, a knowledge of the channel capacity must be presumed by any

successful coding procedure in order that the attempted rate of transmission not exceed

the capacity, yet remain an appreciable fraction of the capacity, so that the trans-

mitting facilities are used to the limit of their capabilities. If the channel capacity is

not a static quantity, this implies the existence of transmitting facilities in the reverse

direction. This leads us quite naturally to the consideration of two-way communication

systems or, alternatively, communication with the aid of feedback.

The first instance of the use of feedback for error-correcting purposes is provided

by Chang (10). In Chang's iterative discarding system, an example of what he terms

an information-feedback system, the reverse channel is used to indicate each received

symbol to the sender. If the symbol received through the feedback channel agrees with

the symbol originally sent, it is confirmed by the transmission of the next symbol. If

the two symbols disagree, the sender transmits a special erasure symbol followed by

the correct symbol. When the feedback channel is error-free, the error probabilities

decay to zero at an exponential rate with each subsequent confirmed symbol. Other-

wise they converge to constants. This scheme can be used to transmit at capacity only

under very special circumstance - namely, when there is no residual information (10)

in an erased symbol.
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Under the appropriate conditions, Chang's iterative discarding scheme is an example

of a system in which information is transmitted essentially error-free, at channel

capacity, without the use of coding. (Channel capacity was first shown to have signifi-

cance in the absence of coding by Kelly (11), who showed that a gambler can increase

his capital at an exponential rate governed by the capacity of the channel through

which he receives his "inside information. ") Elias (12) has shown that the presence of

noiseless feedback makes possible communication at channel capacity, without coding

or delay, over a continuous forward channel characterized by additive, white Gaussian

noise.

In summary, then, although we cannot hope to increase the forward capacity of a

discrete memoryless channel by using feedback, we might hope to reduce the average

constraint length required to achieve a given probability of error. This would imply a

reduction both in the average decoding complexity and in the average decoding delay.

If, in addition, the variance of the decoding effort, which results primarily from short-

term fluctuations in channel behavior, can be decreased, storage requirements at the

receiver would be considerably reduced.

1.3 BLOCK-TRANSMISSION VERSUS CONTINUOUS-TRANSMISSION SYSTEMS

Whether or not we have available a feedback channel, there are two possible

approaches to the encoding of information for transmission over a noisy channel.

Suppose, for the sake of argument, that the information is in the form of a binary

sequence of 0's and l's, the two digits being equally likely in every position; that is,

each digit of the sequence carries one bit of information. (If the information is not in

this form, converting it to a binary sequence of independent digits is a useful inter-

mediate step in matching the information source to the channel.) We may choose to

divide the information sequence into blocks of fixed length and, by a prearranged

encoding scheme, assign a code word composed of channel symbols to each infor-

mation block. Each of the code words is then transmitted as an independent unit. If

the received sequence of symbols is decoded as any information block other than the

intended one, an error is said to have occurred.

On the other hand, we may use a continuous or homogeneous type of transmission

system in which the information bits are introduced into the encoder one at a time.

Since they are also decoded individually, we speak of a per-digit probability of error

when evaluating such a scheme. Wozencraft's convolutional encoding and sequential

decoding scheme is an example of a continuous transmission system with a fixed con-

straint length. Bits enter the encoder at a constant rate and have an opportunity to

influence a fixed number of transmitted symbols. (The reader should not be misled

into thinking that the transmission process is sequential in any way. Although the

system can be improved through the use of a reverse channel (13), only one-way com-

munication is implied by Wozencraft (8). The word "sequential" refers to the system-

atic search procedure used in decoding, which is much simpler to implement than

4
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maximum likelihood detection.) Attention will be given later to a continuous system

employing a variable constraint length. In this case, bits are introduced as they are

needed to maintain a fixed rate of transmission. Each bit affects as many transmitted

symbols as is necessary to enable it to be decoded with the required degree of

reliability.

The distinction between block transmission and continuous transmission has not

been stressed in one-way systems, at least partly because the error exponent for

Wozencraft's sequential decoding procedure coincides with the best that can be achieved

with block coding. However, there is no a priori reason for expecting the best possible

error exponents for the two types of transmission to be the same. In fact, it turns out

that in the case of sequential transmission, larger exponents can be achieved with con-

tinuous systems.

5



II. THE NATURE OF SEQUENTIAL TRANSMISSION

2.1 CLASSIFICATION OF FEEDBACK SYSTEMS

We stated previously that the presence of a feedback channel makes possible a wide

variety of sequential transmission schemes. Any sequential procedure can be described

by listing, for each possible combination of transmitted message (or information

sequence) and set of symbols received through the feedback channel, the symbol to be

transmitted next. When the information provided by the feedback symbols about the

results of previous transmissions is used to select the next transmitted symbol, we

are dealing with an information-feedback system. In general, the feedback channel

will be noisy; consequently, the sender may not have precise knowledge of the results

of his previous transmissions. In the sequel, however, the specific schemes presented

will assume that the feedback channel is noise-free, so that we may determine the

greatest possible advantages that feedback can afford.

A decision-feedback system is defined by Chang (10) as one in which redundancy is

added only at the request of the receiver, when he is not sufficiently certain about what

has been transmitted. We shall use the term "decision feedback" in the following spe-

cific sense, in connection with block transmission. We assume that there is available

at the transmitter an indefinitely long code word corresponding to each possible infor-

mation block. Transmission of the appropriate code word continues until the received

segment can be decoded with the required reliability. At this point the receiver indi-

cates his satisfaction by the transmission of a prearranged symbol (or set of symbols).

On receiving this symbol, the sender begins transmitting the code word corresponding

to the next information block.

As the required reliability is increased, the average transmitted code-word length

increases and a decoding decision is made more infrequently. Consequently, a high-

reliability, decision-feedback system requires almost insignificant capacity in the

reverse direction. However, the presence of the feedback channel is essential if the

transmission is to be more than a one-shot operation.

It will be seen that information-feedback systems of a block type can provide expo-

nentially better error correction than decision-feedback systems having the same average

constraint length. The reason is that the former enable the sender to discriminate

more effectively against those incorrect messages that have become most probable

and simultaneously increase the probability of the correct message.

2.2 A DESCRIPTION OF SEQUENTIAL BLOCK-TRANSMISSION SYSTEMS

If we wish to compare the capabilities of various types of transmission systems,

we must first find a general representation for each type of system from which its

properties can be derived. We do this now for the class of sequential block type

of transmission systems, which includes all decision-feedback systems as well as

6
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information-feedback systems using block transmission. This representation, which is

an extension of one often used with block type of systems with fixed constraint lengths,

will be particularly useful in connection with information-feedback systems.

Since the usefulness of the model depends on the ease with which the channel noise

can be represented, we shall confine our efforts to systems which have a binary sym-

metric channel in the forward direction. The effect of the channel noise on a block of

N transmissions is then represented by a sequence of N O's and l's, in which a 0

is used to represent a correct reception and a 1 indicates a crossover.

The reverse channel is not restricted in any way. It may be noisy or noiseless,

and it may have any number of input and output symbols. In fact, the transmission of

information about the symbols received may be only one of its functions.

A total of, let us say, M bits is to be transmitted over the forward channel by the

choice of 1 of 2M equally likely messages. The sender determines each transmitted

symbol according to the message selected and his knowledge of the results of all previ-

ous transmissions. The receiver decodes the received sequence of binary symbols as

the most probable message as soon as the probability of error in doing so has been

reduced to a specified value, which we shall call Pe.

The receiver's decision process can be summarized by dividing the possible received

sequences of length N, N a 1, into 2 M+1 disjoint sets. Corresponding to each message is

the set comprised of those sequences that are decoded as that message. The remaining

set consists of all those sequences for which no decision is made at length N. Only those

sequences which are not extensions of decodable sequences are listed. Nevertheless, the

total number of sequences listed can be kept finite only by an agreement to terminate the

transmission process after a prearranged number of transmissions.

A somewhat more detailed picture of the transmission process is afforded by a set

of tables, one for each value of N, like that in Fig. 2. In each table there are 2M rows,

n, n2N

m,

m2M

Fig. 2. Typical decoding table.
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each one identified with a different message. The 2 N noise sequences are listed across

the top of the table, from left to right, in order of decreasing probability. Sequences

with the same number of crossovers, being equally probable, are listed according to

the binary numbers they represent, in decreasing numerical order. In each square of

the table is listed the received sequence that would result from the selection of the

message corresponding to its row and the occurrence of the noise sequence corre-

sponding to its column. A square is left blank if the corresponding message-noise pair

would result in a decision prior to the Nt h transmission.

Regardless of the message chosen, the appropriate noise sequence can cause any of

the possible received sequences to occur. Therefore, each received sequence that is

listed for a given value of N appears exactly once in each row. If a received sequence

is decoded on the Nt h transmission, it is associated with the message corresponding to

the row in which it appears farthest to the left. If this happens to be the jth row, and if

we designate by Pn. the probability of the noise sequence corresponding to the square
1

in the ith row in which the sequence appears, the resulting probability of error is

2M 2M

Pn 1EP
i=l n i i-l ni
iij

If this is no larger than Pe, the sequence under consideration will, in fact, be decoded

on the Nt h transmission.

2.3 THE SEQUENTIAL ERROR EXPONENT

The asymptotic average error probability, Pe' of a transmission system of fixed

constraint length can be expressed in the form

P 2-E 1(R, C)N
e

in which the relation x y is used as an abbreviation for

lim log x lim log y
N- N N-o N

and N is the constraint length, R is the transmission rate, and C is the channel

capacity. Thus E1 characterizes the asymptotic error behavior of the system.

In a sequential system, on the other hand, the probability of error, Pe, is a fixed,

preset number, and the constraint length is a variable quantity. The sender uses

information received through the feedback channel to insure that the number of trans-

mitted symbols influenced by each information digit is no greater than that necessary

to achieve the specified value of Pe. The average constraint length, N, required to

do this is asympotically related to Pe by an expression for the form

8



p - 2 E2 (R, C)Ne

in which the symbol - has the same interpretation as before, except that N is replaced

by N.

Let us examine the simplest conceivable situation, for which E 1 and E 2 are well

known (14). Suppose that a binary symmetric channel with crossover probability po is

used to communicate the result of an event having two possible outcomes each of which

is equally likely a priori. Label the two outcomes A and B, and let the channel inputs

be 0 and 1.

If we are restricted to using the channel N times, it is clear that the smallest

possible average probability of error is achieved by the following scheme: Send N O's

for outcome A, let us say, and N l's for outcome B. The receiver chooses A or B

according to whether a majority of the received symbols are O's or l's. Assuming for

the sake of definiteness that N is odd, Pe is then given by the probability that more

than half the transmissions have been received incorrectly.

N

Pe N i (N)pk N-kN+ 1k= 2

Using approximations that will be justified later, we find that

N+1 N+1 (+ 1lo p + 1 log q - log 4 ) N
2 q+og p0( l ogqo ) log o N-2

Therefore,

1 1
E1 = log4Pq

If, on the other hand, we are allowed to send as many symbols as are required to

achieve a probability of error of, at most, Pe with each decision, the optimum strategy

is again to send all O's or all l's, depending on whether A or B has occurred. In

calculating E 2 , we need only consider the case in which A has occurred because of the

obvious symmetry of the situation. Zeros are continually transmitted until the proba-

bility of B has been reduced from its a priori value of 1/2 to Pe. At this point the

receiver will have been provided with log 2Pe bits of information about outcome B. If

we let IB represent the limiting value, as the probability of B approaches zero, of the

average information provided per transmission about B, it can be shown (14) that

lim N
1

e log 2Pe/IB

(The use of IB as a measure of the average information provided about B per trans-

mission is justified heuristically by the fact that the asymptotic behavior, as Pe - 0,

9



dominates the entire process.) It follows that

IBN
P 2e

Consequently, E 2 = -IB We must now calculate IB'

For this purpose we consider the situation in Fig. 3, in which the probability of

outcome B has been reduced to c, let us say. The input symbols 0 and 1 therefore

0

I

(I- ) 0

(e) I

Fig. 3. Asymptotic behavior of sequential 1-bit transmission.

have as a priori probabilities, 1-e and E, respectively.

average information received about the symbol 1 when a

If we define IB(E) to be the

0 is sent,

Po
IB(E) = qo log + P log

(l-e) q+ePo0
(l- ) po+Eqo

B- lim (
B E0 IB()

Then

qo= -I = (q 0 -p.) log -
2 B ~~~PO

Curves of E1 and E 2 are plotted in Fig. 4 as a function of the channel parameter po.

The exponential superiority of the sequential procedure is quite clear; that is, the

asymptotic values of N and N required to achieve specified values of Pe and Pe'

respectively, satisfy the relation, N < N, if Pe = Pe. E 1 and E 2 will be referred to as

the fixed-length and sequential 1-bit error exponents, respectively.

10
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Po

Fig. 4. Error exponents for fixed-length and sequential 1-bit transmission.

2.4 SUMMARY OF RESULTS

Information-feedback, block-transmission systems are discussed first, in section 3.1.

An upper bound on the largest attainable error exponent for such a system is derived,

based solely on the model of Fig. 2. The limiting values of this bound, as R approaches

C and zero, respectively, are equal to the fixed-length and the sequential 1-bit exponents.

It is shown in Section IV, where a specific information-feedback system (both continuous

and block-type) is analyzed, that this bound cannot be achieved by a block-transmission

system (section 4. 5), although it can be realized by a continuous system (section 4.4).

The largest block-transmission error exponent is a linear function of R, varying

between zero at R = C to the sequential 1-bit exponent at R = 0. This asymptotic superi-

ority of continuous (over block) transmission systems has neither been demonstrated

nor disproved for one-way systems.

In section 3. 2, where decision-feedback systems are discussed, it is conjectured

that the asymptotic error behavior of a sequential sphere-packed code (one that assumes

the existence of a sphere-packed array of code points for every value of the constraint

length) is at least equal to that of any decision-feedback system. Although the error

exponent for such a hypothetical code has the same limiting values, as R approaches

C and zero, as the optimum information-feedback block-transmission system, it is

smaller at all intermediate rates. However, it is greater, at all rates less than

capacity, than the optimum error exponent for fixed-constraint-length block codes.

Except for section 4. 5, Section IV is devoted to an evaluation of a continuous

version of the information-feedback system referred to above. Bounds governing the

over-all process are derived in section 4. 2 for R = C. The operation of the entire

transmission system, again for R = C, was simulated on an IBM 709 computer. The

results are presented in section 4. 3. Of particular significance is the fact that the

11



-15average constraint length required to achieve an error probability of 10 , at a rate

essentially equal to channel capacity, was only about one-seventh of the constraint

length required by the optimum fixed-constraint-length block code, when the latter is

designed for a rate of only half capacity. The extension of this scheme to other

discrete memoryless channels is considered briefly in section 4.6.
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III. BOUNDS ON SEQUENTIAL BLOCK-TRANSMISSION ERROR EXPONENTS

We consider a two-way communication system, in which we identify one direction

as the forward direction and the other as the reverse direction, and ask the following

question: To what extent can communication from a sender to a receiver over the

forward channel be facilitated by means of information sent over the reverse channel?

Specifically, we wish to find an asymptotic lower bound (as P -0) on the average

number of transmissions required to achieve a probability of error Pe, at an average

rate of transmission R, when the forward channel is a binary symmetric channel with

crossover probability p. It is evident from the discussion of section 2.3 that the

quantity we seek is a bound on the sequential error exponent. We shall treat both

information-feedback and decision-feedback systems.

3.1 AN UPPER BOUND ON INFORMATION-FEEDBACK BLOCK-TRANSMISSION

ERROR EXPONENTS

We wish to find a bound that will be valid for all possible feedback channels and

valid regardless of the information fed back to the sender. We therefore assume that

there is a noiseless binary channel in the reverse direction which the receiver uses to

notify the sender of each received symbol. This information is available to the sender

before the transmission of the next symbol.

We can summarize the behavior of any information-feedback block-transmission

system by a set of tables like that in Fig. 2. Each of these tables can then be con-

verted to a table of identical dimensions that indicates those combinations of message

and noise that would result in a correct decision, an incorrect decision, or no decision

at all. The letters A, C, and B, respectively, will be used to indicate the three possi-

bilities. To convert from the first set of tables to the second, we replace each received

sequence that is decoded on the Nt h transmission by an A in its leftmost position and by

a C everywhere else. A received sequence that is not decoded is replaced by a B

wherever it appears. Note that there are (2
M -

1 ) C's for each A.

Let us imagine that Pe represents an average allowed error probability at each

value of N (the average being taken over all received sequences for which a decision

is made), rather than a probability of error that must be met by each sequence that is

decoded. We may then decode additional received sequences, for which the probability

of error is greater than Pe, and still keep the average probability of error less than

Pe. Since this can only decrease the average number of transmissions required to

reach a decision, we may interpret Pe in this way for the purpose of calculating the

desired bound.

Let PA represent the total probability of the noise sequences associated with the

A's, counting each sequence as many times as there are A's in that column; PB and

PC are similarly defined. An arrangement of A's, B's, and C's is allowed only if

13



PcP C
e PA + PC

If we let NA, N B , and NC stand for the number of A 's, B's, and C's, respectively,

we have the additional constraint

NC = ( 2 M- 1 ) NA (1)

We first find the arrangement of A's, B's, and C's, consistent with P that maxi-
th e

mizes the probability of decoding on the Nt h transmission. (Note that a set of tables,

so arranged for all N -< N o , let us say, does not necessarily imply that the probability

of having reached a decision by the No th transmission has been maximized.) Consider

the arrangement in Fig. 5, where Eq. 1 is satisfied and

Pc
P C (2)

e PA + PC

We shall show that any other arrangement yielding the same average error probability

must result in a smaller probability of decoding on the Nt h transmission.

nl n2N

ALL

A's

ALL ALL

B's C's

Fig. 5. Table maximizing probability of decoding.

Consider any other arrangement. We interchange the A's with the B's and/or C's

until no B or C is farther to the left than any A. Each interchange must reduce the

average probability of error and, in the case of the B's, it also increases the proba-

bility of decoding. We then associate with each letter of the altered table the proba-

bility of its occurrence, which is 2 M times the probability of the corresponding noise

sequence, and interchange subregions of B's and C's having (approximately) the same

total probability until no B is farther to the right than any C. This does not affect

the probability of error or the probability of decoding. However, each interchange

increases the number of C's because each shifted block of C's has been moved to a

region in which individual letters have smaller probabilities. In order to maintain the

relation, NC = (2M-1) NA , we must change some of the remaining B's to A's. This

decreases the average probability of error still further. Finally, we can restore this

probability to the value P by adding A's and C's in the correct relative numbers.

This further increases the probability of decoding.

14
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We shall find an asymptotic lower bound to the average number of transmissions

required to achieve an average error probability of Pe by using an arrangement of A's,

B's, and C's like that in Fig. 5 to bound the probability of decoding at each value of

N -- 1. The boundaries of the B region in Fig. 5 can be found by using constraints,

Eqs. 1 and 2. Instead of using Eq. 2, we shall measure the average probability of

error by the joint probability of decoding and making an error; that is, we shall replace

Eq. 2 by

Pe Pc (3)

Since PC < PC/(PA+Pc ) , this allows more A's and C's to be included in the table of

Fig. 5 and thereby increases the probability of decoding on the Nt h transmission. It is

therefore a permissible substitution.

We shall need the following relation, which makes use of Stirling's approximation.

Here 0 <a< 1 and p = 1 - a.

N! . NN

(aN)! (PN)! (aN) aN (PN)PN

2N log N - aN log (aN) - N log (N)

= 2 N[alogN+ logN- alog (aN) - P log (N)]

= 2N[-a log a - P log P]

= 2 NH(a)

where H(a) = -a log a - (l-a) log (l-a).

In addition, we need the relations:

is - p o u 0 < L < l

Their validity follows from the fact that is an increasing function of j if < and

PkqNk is a decreasing function of k if N > Po- Consequently, we have

L N-L k N-k < LN--i
LPo qo k )Poq (NL1) Po qo

k= L
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The relation, N C = (2M-1) NA, is equivalent to

N jl
Z \k) = (2 M 1) j

k=k 2 j =

where jl and k2 are the number of crossovers in the noise sequences bounding the B

region. (In general an exact equality is not possible using integral values for jl and

k2; however, the form of the succeeding approximations permits us to treat jl and
Nk2 as continuous parameters.) Since it will be seen that k 2 > 2

(kN)- 2MEN)

k2 jl
If we define q2 = 1 - 2 =N and P1 = 1 - ql = N

NH(q2 ) M+NH(p 1)
2 -2

H(q 2 ) : N + H(P1 ) (4)

Eq. 3 becomes

N i N
P -P = P e c k=k2 o

2

N' k 2 N-k 2
(k 2 ) Po q

N[ H(q 2 ) + q 2 log P + P2 log q o]
2

=2
2 N[H(q 2 ) - H(po) - po log po- q log q +q 2 logPo+P2 logq 0]

=N[ (q 2-Po) log qo/Po+ H(Po) H(q 2) ]

Equations 4 and 5 yield the boundaries of the B region for any value of N.

For fixed values of Pe and M, specification of any one of the quantities jl, k 2, and

N fixes the other two. For each N, jl pair we have already defined P1 by the relation

jl = p1 N. Let N1 , ill be the N, jl pair for which P1 = Po, and let q2 1 be the corre-
sponding value of q 2 . By making the appropriate substitutions in Eqs. 4 and 5, we find

that N1 is given by

-Nl[(q2 1 -Po) log qo/p - M/N 1] (6)
Pwhere is2 (6)

where q21 is determined (as a function of N1) by the relation,

16



H(q 2 1) = + H(p (7)

For fixed values of Pe and M, and any 6 > 0, let N2 (6), j 1 2 be the N, jl pair for

which jl = (Po-6) N. Equation 5 shows that as N increases, q2 decreases, and Eq. 4

indicates that this must be accompanied by an increase in P1 . It follows that N 2 (6) <N 1 .

In Appendix A-1 it is shown that

lim Pr[N' < N() (8)~~0PrL1 2(6)] = 
e

for all 6 > 0, where N' is the number of transmissions required by the transmission

scheme that actually minimizes the average number of transmissions. (M1 is held fixed

lir Mas p limO is taken. This implies, according to Eqs. 6 and 7, that M -1 must be held
e N log P

constant during this limiting process. Equation 8 implies that e

lim N'
> -1 (9)

e N 2 (6)

However, it is also proved in Appendix A-1 that

lim lim N2 (6)
6-0 P - 0 N1e 1

Combining Eqs. 9 and 10, we obtain

lim lim N' lim N'
6-0 P -0 N1 P - N1

With the aid of Eqs. 6, 7, and 11, we can summarize the results of this section by

Theorem 1.

Theorem 1

We have given a binary symmetric channel with crossover probability po and a

noiseless binary feedback channel which the receiver uses to inform the transmitter of

each received symbol. An asymptotic lower bound on the average number of trans-

missions, N, required to transmit a finite amount of information at rate R (by choosing

1 of 2M equally probable messages) with an error probability of at most P is

determined by

-N[ (q* -p) logqo/p - R]
P =2 (12)

where q* is determined by

H(q*) = R + H(po) (13)

and the rate R for the process is defined by R = M/N.
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Once the lower bound on N has been determined from Eq. 12, a lower bound on the

value of M required to achieve a rate R is given by M > RN. That M is an increasing

function of R can be seen from the following argument. Consider an increased rate

R' = R + dR, and indicate by primes all quantities corresponding to R'. Equation 13

shows that q*' < q*. Define N" by the relation, R'N" = RN. Since R' > R, then N" < N.

It follows that

N" q*'-po) logp -R < N q*- log - R (14)

It is clear from Eqs. 12 and 14 that in order to achieve the same probability of error,

it must be true that N' > N". Hence M' = R'N' > RN" = RN = M.

Now let us examine the exponent, E(R), characterizing the asymptotic relation

between P and N.
e

qo
E(R) = (q*-p ) log - R

0 p0

To find lim E(R), we first note from Eq. 13 that lim q* = q0 . Therefore
R- 0 R-10

lim E(R) = (qo-po) log qo (15)
R-~0 Po

Similarly, lim q* = and
R-C

lim E(R) =(- P log po log 2po - q log 2q = log (16)
R--C 2 O p 0 0 0 l2 4pq(

dE(R)
The shape of the curve of E(R), 0 R < C, is revealed by an examination of dR

dE(R) / qo\ dq* log (qo/po)
dR og- -- 1 -

dO/ d dR/dq*

From Eq. 13 we find that dR/dq* = log (p*/q*), where p* = 1 - q*, and hence

dE(R) log (qo/po)

dR - 1 (17)
log (q*/p*)

dE(R)
It follows that lim dR = -2 (18)

R-0 dR

dE(R)
lim dR =- (19)

Furthermore, Eqs. 13 and 17 imply that dE(R)/dR is a strictly decreasing function of

R. This fact, together with Eqs. 15, 16, 18, and 19, is sufficient to characterize E(R),

which is plotted in Fig. 6 for po = 0.1.
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Fig. 6. E(R) versus R for po = 0. 1.

3.2 AN UPPER BOUND ON THE SEQUENTIAL SPHERE-PACKING ERROR

EXPONENT

We turn now to the consideration of decision-feedback systems. Once again M bits

are transmitted by the choice of 1 of 2M equally likely messages, and the entire dis-

cussion in relation to Fig. 2 is applicable here. However, it now makes sense to associ-

ate with each of the messages a variable-length binary (O's and l's) code word. As much

of the code word is transmitted as is needed for the receiver to decode it with the

required degree of reliability.

The key to bounding the largest achievable error exponent lies in finding a set of

decoding tables having an arrangement of A's, B's, and C's (such as that in Fig. 5 for

the case of information feedback) that bounds the probability that decoding has occurred

after a given number of transmissions. For this purpose we assume the existence of a

code in which, for each received-sequence length N, the 2M code words, considered as

points in an N-dimensional space, form a sphere-packed array. In other words, if we

define the distance between any two points in this space as the number of places in which

the corresponding sequences differ, and if we consider a sphere about each code point

which includes all those points whose distance from the code point is, let us say,

r1 = plN or less, each of the 2N sequences of length N will lie in one, and only one,

of these spheres. (The word "sphere" will be used only in reference to one of these

sets of points.) A received sequence is decoded only if its distance from the nearest

code point is, let us say, r 2 = p 2 N or less, where P2
< p1 and r 2 is a function of

po, Pe, N, and M (or, alternatively, p, Pe, N, and p1 ). The decoding table for such a

system is shown in Fig. 7. A set of like tables, one for each value of N, will be said

to define a sequential sphere-packed code and its decoding scheme.
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m2M
2 m2M

2

Fig. 7. Decoding table for Fig. 8. Decoding table for
sequential sphere- sphere-packed code
packed code. as R -C.

Such codes do not exist, in general; however, it is reasonable to expect that for

the situation depicted in Fig. 7, in which PC Pe, + P bounds the probability that
C Ce a 

decoding has taken place after N transmissions, for any decision-feedback system. (As

in the information-feedback case, it is permissible to treat P as an average allowed

error probability. )

In support of this conjecture we observe that, as Pe approaches 0, the minimum

value of N at which decoding can take place grows without limit. Consequently, the

fractional number of crossovers that has occurred when decoding takes place can be

set equal to p. It follows that, as R approaches C, the value of P1 at which decoding

takes place approaches p. The corresponding decoding table, shown in Fig. 8, is

also the maximum-likelihood decoding table for a (fixed-constraint-length) sphere-packed

block code. For the class of block codes of length N, it yields the smallest value of P

If we assume, therefore, that decoding for the sequential sphere-packed code takes

place at the value of N for which r 2 /N = po, the arrangement of A's and C's in Fig. 8

requires the fewest transmissions for a given value of P

We shall proceed under the assumption that a set of tables like that in Fig. 7 does,

in fact, yield a probability of decoding which is at least as great as that of any real-

izable decision-feedback scheme. Subject to the truth of this conjecture, the bounding

relations we obtain for a sequential sphere-packed code will apply equally well to any

decision-feedback system.

The sequential sphere-packing results are interesting in their own right. In the

case of fixed-length block codes it has been shown (4) that, at rates greater than the

critical rate referred to earlier, codes exist for which maximum-likelihood detection

yields an error exponent equal to the exponent that would result from a sphere-packed

code. This gives us reason to expect that variable-length codes whose asymptotic

error behavior is the same as that of a sequential sphere-packed code do exist.

In order to underbound the average constraint length (or overbound the error

exponent) of a sequential sphere-packed code, we must first find the boundary of the

decoding region for each value of N. We shall do this by expressing P as a functione
of PoP P1 . N, and r2 . Because of the symmetry of a sphere-packed code, the proba-

bility of error is independent of the code point transmitted. We may therefore assume

20

ALL ALL

A s B s B s and C's

ALL ALL

A' s C's

n2Nn,



that the origin of coordinates (which represents a code word composed entirely of O's) is

the code point that is transmitted. A decoding error is made if the received sequence

falls within a part of the decoding region surrounding one of the other code points before

it is first included in the part of the decoding region centered on the origin (where it

must eventually appear, with probability one).

We shall include in our calculation of Pe only the contributions of those points

closest to the origin whose reception results in a decoding error. These points have the

smallest number of l's of all the points in the decoding region other than those in the

sphere surrounding the origin. Underbounding P in this way increases the radius of

each decoding sphere for a given value of N. The resulting asymptotic bound on N is

therefore less than the value that would result from a sequential sphere-packed code.

This question is discussed at greater length in Appendix B, where it is shown that, if

Pe is actually to be treated as an average quantity, the difference between the true value

of the error exponent and the value we get by using this approximation is extremely

small. In any event, the value we obtain is an upper bound on the error exponent that

would result from a sequential sphere-packed code.

The indicated lower bound on P can be expressed as the product of three factors:e
the number of code points nearest the origin, the number of points closest to the origin

in the part of the decoding region surrounding one of these code points, and the proba-

bility with which one of these points is received.

We note first that the number of points at a distance r + 1 from the origin is

rl+). Each of these points is a distance rl from one (and only one) of the code points

nearest the origin. This follows directly from the definition of a sphere-packed code.

The number of these points in the sphere of the same code point is r ) which is

the number of ways r l's, of the (2rl+l) l's in each code point, can be changed to 0's.

The number of code points nearest the origin, n, is therefore given by

1J

n1 ) (20)

rl 

Each of the points closest to the origin whose reception results in a decoding error

has (2rl+1-r2 ) l's. The number of these points belonging to the part of the decoding

region about a given code point having (2rl+l) l's is clearly ( r ). Furthermore,

r 1 +l-r z N-Zr l-l+r
each of these points is received with probability p qo . If we com-

bine these two facts with Eq. 20, we find that

21



1+1 2r +1 2r +1-r N-2r -1+r
_ _ _ _1 2 1 2e r Po q

N r 1 + 2 2

r1 '

(N-r 1 -1)! r 2 ! (2r 1 +1-r 2 )!

NN r1 Nlogqo+ (r2-2r1 ) log (qo/pO)

- r~1 2N~rl (21)N-r 1 r2 2r -r2
(N-r 1 ) r 2 (2rl-r 2 )

Therefore,

log Pl

lira N ql log ql + P2 log P2 + (2 P1 -P 2 ) log (2p -p 2 )
N-wO

-P 1 log P1 - log qo + (2p 1 -P 2 ) log (qo/Po) (22)

We are particularly interested in this relation when N is such that P2
= Po' If we label

this block length N1 and add the subscript one to indicate the corresponding values of

those parameters that vary with N, Eq. 22 becomes

log p l
lim0 N1 q1 1 log 11 - og Pl + ( 2 P-P) log (2Pll-o)
e

- (l+po-2p1l) log qo - 2(Pll-Po) log Po (23)

We define N 2 (6) as the block length for which P2 = Po - 6. It can be shown, just as

it is for the case of information feedback in Appendix A-1, that for any 6 > 0,

lim Pr[N<N 2 (6)] = 0 (24)
P -0e

Also, it is clear from Eqs. 22 and 23 that

N2 (6)
lim lim = 1 (25)
6-0 P -0 1

e

Combining Eqs. 24 and 25, we have

N N 2 (6)
lim N >lim lim N > 1 (26)

P °-JN 1 6- 0 P -0 N (6) 1e e 2

Substitution of Eq. 26 in Eq. 23 yields Theorem 2.
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Theorem 2

We have given a binary symmetric channel with crossover probability p and a

noiseless feedback channel. An asymptotic lower bound on the average number of trans-

missions, N, needed to transmit a finite amount of information at rate R (by the choice

of 1 of 2M equally probable messages) by means of a sequential sphere-packed code,

with an error probability of at most Pe, is given by

1 logql -p 1 logp, + (2pl- po) log (2pl- p) log -1 (27)
>N alog P (27)

- (l+Po- 2 pl ) logqo - 2 (pl-po) log P e

where H(pl) = 1 - R(pl) and a lower bound on the value of M required is given by M RN.

The upper bound on the error exponent, which is the term in brackets in Eq. 27, is

plotted (curve B) in Fig. 9. It can be verified that the slope of the curve is infinite at

R = 0, and that it is equal to -1 at R = C. The adjacent dashed curve is the lower

bound on the sequential sphere-packing error exponent derived in Appendix B.

Fig. 9. Sequential and fixed-length error
exponents for po = . 1.

R (bits/symbol)

Also shown in Fig. 9 are the bounds on the information-feedback error exponent

previously derived (curve A) and the optimum fixed-length block-code error exponent

(solid part of curve C) for rates greater than the critical rate. Above the critical rate

the latter curve coincides with the exponent that would result from a sphere-packed

code. The dashed portion of this curve indicates that the value of the exponent is not

known below the critical rate except at R = 0, where it is equal to half the fixed-length

1-bit exponent. This exponent would be a point on curve C if the sphere-packing

exponent were applicable at all values of R < C.
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IV. AN INFORMATION-FEEDBACK SYSTEM

The discussion thus far has been concerned with upper bounds on the error-

correcting capabilities of sequential transmission systems. In an effort to determine

what actually can be achieved by a sequential system, we turn now to the consideration

of a particular type of information-feedback, continuous transmission system in which

the feedback channel is assumed to be noiseless.

Following a description of the system when it operates essentially at channel capacity,

bounds on the average constraint length are given. In particular, it is shown that the
1 1

limiting error exponent as the rate approaches capacity is equal to 2 log 4pq the

exponent for fixed-length, 1-bit transmission. Furthermore, as a function of the rate

of transmission, the error exponent coincides with the bound for information-feedback,

block-transmission derived in section 3.1. Experimental results for transmission at

capacity are also presented. Next, a block version of this system is evaluated. Its

error exponent, which is greater than the sequential sphere-packing exponent for all

rates less than capacity, is the best achievable with an information-feedback, block-

transmission system. However, it is smaller than the bound previously derived for a

system of this type. Finally, the application of this information-feedback, continuous

transmission scheme to more general discrete channels is discussed briefly.

4.1 DESCRIPTION OF THE SYSTEM

It is assumed that the message to be transmitted is in the form of a sequence of

independent binary digits in which O's and l's occur with equal probability. (It will

become apparent that this is a suitable form for the data regardless of the number of

channel symbols.) A binary symmetric channel with crossover probability po < 1/2 is

assumed for the forward direction. The receiver uses the error-free feedback channel

to indicate to the transmitter the symbol just received. This information is available

at the transmitter when the next channel symbol is selected.

If we imagine that a binary point is placed to the left of the message sequence,

which is written from left to right, we can regard the sequence as a binary fraction.

Consider the interval (0, 1) on the line of real numbers. A sequence of infinite length

is represented by a point in this interval; a sequence of length N, by the subinterval

of length 2 N whose left end point is represented by the sequence that is being con-

sidered. The receiver has no a priori knowledge of the message sequence. Since the

density of infinite binary sequences on the interval (0, 1) is uniform, the receiver's

initial probability distribution for the location of the point representing the message

sequence (which we shall call the transmitted point) is also uniform. This distribution

will be referred to as the receiver's distribution.

The interval (0, 1) is divided in half, as shown in Fig. 10a. If the transmitted point

lies in the lower half, A is the first transmitted symbol; otherwise B is sent. Let

us assume that P is the transmitted point, so that A is sent. With probability
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A{I : 4 Fig, 10. Transmission process.

2p 0 zq 0 p(x)

(a) (b) (c)

qo = 1 - po A is received, and Fig. 10b represents the receiver's new distribution, in

accordance with the application of Bayes' rule to the binary symmetric channel. We

choose to use, instead, the representation of Fig. 10c. The interval (0,. 5) has been

stretched uniformly by a factor of 2q 0 , and the interval (. 5, 1) has been compressed

uniformly by a factor of 2 po. (The end points of an interval are labeled according to

their positions on the original interval of Fig. 10a.) As a result, the probability that

any subinterval contains the transmitted point is now equal to its length. If B is

received, Figs. 10b and 10c are inverted in an obvious way.

Since the sender is informed of the received symbol, he is aware of the receiver's

new distribution. He again divides the interval (0, 1) at its mid-point (M in Fig. 10c)

and sends A or B according to the new position of the transmitted point. In the case

depicted it would be B. After the second symbol is received, one of the halves of the

interval (0, 1), which in this case are (0, .5/2q 0 ) and (.5/2qo, 1), is stretched by a

factor of 2qo and the other is compressed by a factor of 2po. The receiver's distri-

bution then consists of 3 subintervals that have been uniformly expanded or contracted,

adjacent subintervals by different factors. The possible factors are (2qo)2, (2q0 )(2po),

and (2 po) . As the transmission process is continually repeated, the number of such

subintervals is always one more that the total number of received symbols.

By the process just described, any subinterval containing the transmitted point is

gradually expanded so that its length approaches unity. Such an interval, however, is

not necessarily expanded by each correctly received transmission. This is true only

when the interval does not contain the mid-point of the interval (0, 1), or if the trans-

mitted point lies in the larger of the two parts into which the interval is divided by the

mid-point. Any subinterval that does not contain the transmitted point gradually vanishes.

The receiver becomes more nearly certain about successive bits as additional

symbols are received. A decision about the first bit is made as soon as the size of

either of the intervals (0, .5) or (. 5, 1) exceeds l-P , where P is the specified proba-

bility of error. If the interval (0, . 5) reaches this size first, its probability is immedi-

ately increased to 1, and the interval (. 5, 1) is discarded, in accordance with the fact

that the receiver's determination of the first bit at this time is final. The second bit

is then determined the first time that either of the intervals (0,. 25) or (. 25,. 5)

exceeds l-P, and so on.e
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If the receiver should happen to decode a bit incorrectly, the sender immediately

changes the bit in question to agree with the receiver's decision and transmits the point

in the receiver's distribution corresponding to the altered message sequence. In this

way the occurrence of a decoding error is prevented from disrupting the transmission

process.

The proper interpretation of Pe is now seen to be the following. The probability

that all of the first m bits will be decoded correctly is no smaller than (1-P ) . We

are not entitled to state, however, that in a decoded block of m bits the average

number that will be in error is P m. The reason is that we are guaranteed that thee
probability of error in decoding a bit is no worse than P only when all precedinge
decoding decisions have been correct. However, when an error has occurred, P wille
once again be an accurate measure of the probability of error after an additional

number of transmissions of the order of magnitude of the average constraint length.

Several other features of this transmission scheme are immediately apparent. Since

the two symbols, A and B, are always equally likely in the eyes of the receiver, each

transmitted symbol carries one bit of information about the message sequence. The

average information received is just the capacity of the binary symmetric channel,

Po log 2p0 + q log 2qo bits per symbol. Thus we have another example in which

reliable communication at channel capacity is realized and yet there is no mention of

coding in the usual sense.

We now take into account the fact that the number of undecoded bits available to the

sender is necessarily finite. Thus, with each transmission the sender has in mind an

interval (which we shall call the transmitter's interval) rather than a point. In order

to achieve channel capacity, it is necessary that each transmitted symbol carry one

additional bit of information about the message bits defining the transmitter's interval.

This implies that the transmitter's interval should not include the mid-point of the

interval (0, 1)'. (When it does, the transmitted symbol is chosen to correspond to the

larger of the two parts into which the mid-point divides the transmitter's interval.)

While there is no upper limit to the number of bits that it might be necessary to know

to prevent this from occurring on a particular transmission, communication at an

average rate arbitrarily close to capacity is possible if the transmitter's interval is

kept sufficiently small. (The symbol do , do << 1, will be used to denote its maximum

allowed size.) We shall assume that additional bits are always available when needed

for this purpose. We have introduced the notation (0, 1)' to indicate the entire interval

under consideration. The end points of this interval are actually 0 and 1 only until

the first bit is decoded.)

The constraint length is measured by the number of transmissions, N, occurring

from the time a bit is first introduced at the transmitter until it is decoded - that is,

the number of transmissions required to expand an interval containing the transmitted

point from roughly do to 1-P . (In calculating N, we shall refer to this interval as TI

(for transmitted interval) to avoid confusing it with the transmitter's interval, which
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will always lie within TI.) The average amount of computation required to recalculate

the receiver's distribution each time a symbol is received is a linearly increasing

function of N. When a symbol is received, the position of every point that has ever

been the mid-point of the interval (0, 1)' and has not yet been in an interval discarded

by a decoding decision is recomputed. The number, W, of such points is equal to the

number of times, since the inception of transmission, that the interval which has grown

to be (0, 1)' has included the mid-point of the interval (0, 1)'. It is clear from the defi-

nition of N that W increases linearly with N. In fact, we might expect W to be given

by N - K, where K represents the average number of transmissions on which the

interval which has grown to be (0, 1)' has not included the mid-point of the interval (0, 1)'.

K is a constant essentially independent of the value of P , if P << 1.
e e

Both the sender and the receiver need to know po in order to calculate the receiver's

distribution. If the channel is slowly varying, the receiver can obtain a good estimate

of po by using the fact that, over time intervals during which the channel is fairly

constant, the channel capacity can be obtained by an iterative process in which it is

approximated, during each iteration, by the average rate at which bits were decoded

during the previous iteration. (In channels other than the binary symmetric channel,

however, knowledge of the capacity is usually insufficient to specify the channel.) The

sender can compute po more directly by comparing the symbols he receives through

the feedback channel with those he has transmitted. However, he should compute po

exactly as the receiver does so that he can construct an exact replica of the receiver's

distribution.

It should be mentioned that if Pe has been set so low that there is no concern over

the possible occurrence of an error, the sender need only recompute the location of the

transmitter's interval in order to determine the next transmitted symbol.

4.2 A BOUND ON THE AVERAGE CONSTRAINT LENGTH

It has been pointed out that N is a measure of both the decoding delay and the

computational severity of the decoding procedure. In calculating an upper bound on N,

we shall assume that no decoding errors are made during the time interval defined by

N - that is, from the time the bit in question is introduced until it is decoded.

We consider a slightly modified transmission procedure, in which the interval

(0, 1)' is randomly divided into two equal parts prior to the selection of each trans-

mitted symbol (see Fig. 11). The parameter a of the division process is distributed

uniformly over the range, 0 -< a -< 1/2. We shall refer to P and Q as the cut positions.

Such a random division can be simulated in practice by using a pseudo-random binary

sequence to determine each pair of cut positions. The resulting transmission process

differs significantly from that previously described only in that the number of cut

positions that must be relocated following each transmission has been doubled. (It is

interesting to note that when random cut positions are used, it is virtually impossible

for decoding to take place when an A is received, for this causes both ends of the
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Fig. 11. Modified trans-
mission process.

interval (0, 1)' to be expanded. On the other hand, if a

single fixed cut position at the mid-point of the interval

(0, 1)' is used (see Fig. 10a), only O's can be decoded

when an A is received, and only l's when a B is

received.)

We assume that the transmitter's interval never

includes either of the cut positions. The probability

that it does on any transmission is at most 2do; this

can be made negligibly small.

We have defined N as the average number of trans-

missions needed to expand TI from d to 1-P . We0 e
place ourselves in the position of an observer who knows the initial location of TI

(when its size is do) but who has no knowledge of the point within TI that is governing

its expansion. The initial probability distribution for the location of the transmitted

point must be uniform over TI because a 0 and a 1 are equally likely in each place of

the message sequence. This initial distribution guarantees that the distribution

remains uniform throughout the transmission process. This becomes evident when we

recall that the construction in Fig. 10c maintains a uniform probability measure over

the interval (0, 1)'.

We calculate N by simultaneously averaging over the possible positions of the

transmitted point within TI, over all possible sequences of cut positions, and over all

possible patterns of transmission errors.

In order to bound N we divide the expansion of TI(whose size we shall call d) into

three ranges - from do to a value da 1/2, from da to db > 1/2, and from db to 1 -P -

and then add the separate contributions (NA, NB , and NC , respectively) to get N; that

is, N = NA + NB + NC . The following argument is used to bound NA.

I I v I
do d d d2 dn-_2

X I
d2 d3

I V

dn 2 dn_l=da d n-l

Fig. 12. Expansion of TI.

We let d i , 1 i -< n, be the maximum TI size attainable by a single transmission,

starting from di_ (see Fig. 12). We assume for the moment that dnl = da. For

di_1 < 1/2, di = 2qodi_l . We also define d i, 1 i < n, to be the value of d the first
d.

time d I di. Clearly, di < di+ Furthermore, we define I. = log d 1 1 i < n. Also,

d'. d. d'
I'i = log d' . IIlogd o oI'Jlog~1 = log 1 and = log 1 - i < n, with d' = d Finally, we set

i-1 a i- ib 
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Ni, 1 i < n, equal to the number of transmissions required to expand TI from di_1

to d'.. Then NA , the number of transmissions needed to expand TI from do to (at least)

da, is given by

n-1
NA= N.

A i=

Therefore

n-l

i=l

In order to bound N. we assume at first that dI' takes on an arbitrary, but fixed

value, d 1' in the range di_ - di_ < di. We make use of a theorem of Wald (15)

which states that in a random walk with two absorbing barriers, in which each step

size is chosen from the same distribution, the average number of steps to absorption

is equal to the net average distance walked (including overshoot) divided by the

(algebraic) average step size. Our situation differs from that described by the theorem

in two respects. First, our walk, which results in an informational gain of I'i(dil),

is limited in only one direction by an absorbing barrier; however, it eventually crosses

this barrier with probability 1. Secondly, our walk is a first-order Markov process

since the distribution governing each step size is a function of d. It is easily shown

that the average step size, S(d), measured in units of informational gain, is a

decreasing function of d. It is clear from this fact and the definition of d'. that for each

value of d encountered during the expansion of TI from di_ to d'i , S(d) > S(di). This

last fact enables us to obtain the following, quite plausible result, which involves only

a slight modification of Wald's derivation.

- *

_- , I'i(di_1 )
N.(d._l) --

S(d i )

* *
If we let Pi-1 represent the probability density for di_,

d d.
* - * 1 -* * I'

Ni J Pi-lNi(di-1) d(d) = Pi-) I i(di-l) d(di-l)
i-i S(d) i-1 S(di)

Recalling the definitions of Ii , I'ia, and I'ib, we find that it follows that

n-1 n-1 I'. n- (ia+I.ib n-1 I n-2 I' I
N A X N. = a ib X = ia + b + n

i= 1 i=1 S(di) i=1 S(di) i=l S(d) i=l S(di+l ) S(dn-l )

n- I'. ia (i-l)b I n-1 I I
l ia 1 n 1+ n (28)

i=1 S(di) S(d i ) S(dn_1 ) i=1 S(di) S(dn_ 1)
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Since da < 1/2, Ii - - I = log 2qo for all i -< n. Therefore

n-2 I 2I
NA - I + 21

i=l S(di) S(dn-l)

It is shown in Appendix C-1 that for d < 1/2

= - 2pq qo \
S(d) =C -log e - q log - d=C-k(p )d

qo - Po Po /

where C = q log 2qo + Po log 2po is the channel capacity. Therefore

Cn-2 2I I 2 + 2k(pO) d + 2I
A o- 1 o l +C - k p) dni=

i=l C - k(po) di C - k(Po) dn-l1 C- k(po) dn-1

(29)

k(Po) dn- 2 k(Po) da 1
provided that We should like to choose d 1/2. It can bek C 2q C < 2. We should like to choose d a

k(p )
verified that the required inequality, 2qC • 1, is satisfied for p < .32. This includes

all cases of interest, so we shall set da = 1/2, subject to this restriction. It then

follows from Eq. 29 that

log (1/2do) I l + [k(po)/2C]] k(p) I n-3 1
NNA ,( + -q (30)

A C C 1 - [k(po)/2C] 2qoC2 i=O (2qo)

The first term on the right-hand side of Eq. 30 indicates that information is provided

about TI at an asymptotic rate (as do - 0) equal to C. The sum of the last two terms is

a bound on the number of additional transmissions, Na , that is made necessary by those

occasions when one of the cut positions lies within TI. However, Na also includes the

effect of the overshoot of d' beyond 1/2, since d' may be as large as q . We can

find a bound oni a that is independent of do by letting n approach oo in Eq. 30. Thus

I 1 + [k(Po)/2C]- k(p ) I

a 1 - [k(Po)/2C] C (qo P

This bound is plotted as a function of po in Fig. 13.

Equation 28 can also be used to bound NB, which is the average number of trans-

missions required to expand TI from 1/2 to db. Since Ii is no longer independent of i,

however, a step-by-step calculation is required. Furthermore, the bound obtained will

be many times greater than the actual value of NB because S(d) is a rapidly decreasing

function of d for d > 1/2. (For the sake of completeness, S(d) for d > 1/2 is also

derived in Appendix C-1.) Experimental evidence presented in section 4. 3, in which

da = 1/32 and db = .99, will shed light on this portion of the process. The important
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Fig. 13. An upper bound on N a

thing to note at this time is that NB is a constant that depends only on po and the choice

of db; it is independent of do and Pe. It therefore has no effect on the asymptotic

functional dependence of N on Pe and/or d0o

We now turn to the calculation of a bound on NC , the average number of trans-

missions needed to expand TI from db , which we shall choose later, to 1-P e . For this

purpose it is more convenient to follow the contraction, from 1-db to Pe, of [(0, 1)'-TI],

which we shall refer to as the wrong interval (WI).

We define SW(d) as the average information provided per transmission, about WI,

as a function of the TI size d. It is shown in Appendix C-2 that, for d >a 1/2, SW(d) is

given by

1 1 qOp q
SW(d) = o lo og J-loge + dog l og +p log 2 + Po log logp

d 2(qo-po) Po q P P] 0 oqo ] (32)
An interesting property of SW(d) is that, for po > .039, it is most negative for some

value of d < 1. (For smaller values of p0 , the minimum value occurs at d = 1.) Curves

of I SW(d) versus d are plotted in Fig. 14 for several values of po . The value of d

at which Sw(d) assumes its minimum value, dm , is shown in Fig. 15. This property

of SW(d) will be used to find a bound on NC. Although the derivation is valid only for

PO > 039, the asymptotic behavior arrived at is characteristic of the process for all

values of po

We observe that there is a number d'b, 1/2 < d'b < dm , for which SW(d') = SW(1).

Consequently, SW(d) -< SW(1) for d - d - 1. Since we shall later let db approach 1,

we assume that db > d'b and ask for the average number of symbols, NC1, that must
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Fig. 15. TI size for which SW(d) is a minimum.

be transmitted before WI, starting from size 1-db, is either expanded to l-d' b or con-

tracted to P. Using Wald's formula (15) once again, we finde

NC1 -<
log [(2poPe)/(1-db)]

Sw(1)

If we define P 1 as the probability that WI is expanded to l-d'b before it is contracted to
Pe, a recent result of Shannon (16) tells us thate

-s A s A 1 
P1 < e ° + 1

L(S ) 1-e )
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where

1-d'
A = log ldb

(s ) = log1 [(2qo)+(2po)S]

(s) = O, So >0

k'(Sl) = 0, S1 > 0

A fuller explanation of this result is given in Appendix C-2. For the present it is only

necessary to appreciate that P1 is essentially exponentially decreasing in A. We can

therefore make P1 as small as we wish by choosing db sufficiently close to 1.

We define NC 2 to be the average number of transmissions required to expand TI

from d'b/2qo to db. NC 2 can be bounded by the method used to bound N 1 and N 2. It

follows that

NC < NC1 + P1(NC2 +NC)

NC1+ P1NC2
C 1 - P 1

1 log Pe 1 p log (2 Po/1-db)
-+ 1PN 2 + (33)

(l-P 1) SW(1) (1-P 1) SW(1)

Once we choose db, the second term on the right-hand side of Eq. 33 is a constant,

independent of Pe. Since P1 can be made as small as desired, the asymptotic relation

determining NC is

P 2 SW() NC
e

where SW(1 ) is found by setting d = 1 in Eq. 32.

1

SW(1 ) = 2 log 4Poqo

SW(1 ) could have been found directly by the following heuristic argument. The

probability distribution for the location of the transmitted point is uniform over TI

on each transmission. Therefore, in the limit as d - 1, the probability is exactly

1/2 that the transmitted point and WI will be in the same half of the interval (0, 1)' on

a given transmission, the two halves being determined by the random cut positions.
1 1 1

The probability is then 2 (q) + 2 (po) = that WI will be expanded by a factor of 2qo
as the result of the transmission. The other half of the time it will be reduced by a

factor of 2po. Therefore,
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1 1 1
SW(1) - log 2q + j log 2Po = log 4Poqo

This same sort of reasoning will be used to find the asymptotic behavior of an extension

of this transmission procedure in which we are free to select any transmission rate less

than channel capacity.

4.3 EXPERIMENTAL RESULTS

In order to obtain a better picture of the operation of the transmission scheme

described above, the entire system was simulated on an IBM 709 computer. Three

independent pseudo-random number generators were used to generate the cut positions

(when random cuts were used), the bits comprising the information sequence, and the

sequence of O's and l's describing the channel noise. In the information sequence, O's

and l's occurred with equal probability. In the noise sequence, l's occurred with

probability po'

It was not necessary to follow the receiver's decoding procedure in order to keep

track of the significant points in the receiver's distribution. It will be recalled that

each time a symbol is received, the receiver relocates each point remaining in his

distribution that has ever been a cut position. A linear interpolation between an

adjacent pair of these points allows him to locate any remaining (significant) point

from the original interval (0, 1)'. In the simulation, however, it was possible to com-

pute directly the position of each (significant) point whose subsequent arrival within P

of either end of the interval (0, 1)' signified the decoding of a bit. In the absence of a

decoding error, the significant points are revealed by the information bits. For

example, if the first three information bits are 011, the first four significant points

are . 5, . 25, .375, and .4375. This information, of course, is not normally available

to the receiver.

The simulation was carried out for three different values of p: . 04, . 1, and . 2.
-6 -15

With po = .1, two values of Pe, 10 and 1015, were used; otherwise, P was always
-15

set equal to 10 . Transmission was initiated in each case by the selection of 24

information bits, which defined the initial transmitter's interval. Transmission con-

tinued (additional bits being generated as needed) until the 24t h bit had been decoded.

At this point the entire process was begun anew. The number of repetitions was 100

for all combinations of po and Pe except for po = .2, in which case the process was

repeated 150 times. At no time was a bit ever decoded incorrectly.

The value of do used throughout the experiments was . 0005; that is, new bits were

generated whenever the size of the transmitter's interval exceeded . 0005. As a result,

the transmitter's interval included one of the cut positions, on the average, not more

than once in 1000 transmissions. Thus, the transmission rate Was not significantly

different from channel capacity.

It should be noted, however, that do could have been increased to . 01, for example,

without decreasing R by more than . 02 C. This follows from the fact that if d = .01,
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the transmitter's interval includes a cut position less than .02 of the time, if the cut

positions are chosen in a random manner. (Random cut positions were used throughout

the experiments except where otherwise stated.) The average value of the mutual infor-

mation between the transmitted and received symbols on these occasions is clearly

positive since the symbol corresponding to the larger portion of the transmitter's

interval is always sent. An increase in d from .0005 to .01 would have reduced the

average constraint length by more than 5 transmissions for po = .04, by more than 8

for po = .1, and by more than 15 for po = .2.

The fact that the system does, in fact, enable the receiver to decode bits at an

average rate equal to the channel capacity was verified. The average number of

symbols that should have been received between the decoding of the 1 t and the 2 4 th

bits is T(C) = 2c. T(C) is listed in Fig. 16 together with T'(C), the average number

that was found experimentally.

PO C (bits/symbol) T(C) T'(C)

.04 .758 30.4 31.4

.10 .531 43.3 46.6

.20 .278 82.8 78.2

Fig. 16. Data pertaining to the decoding rate.

The asymptotic error behavior was checked by observing the added number of trans-

missions needed, on the average, to reduce Pe from 10 - 6 to 101 5 , with po = .1. This

reduction in P corresponds to receiving an additional -9 log 10 bits about WI. We havee
seen that information is provided about WI at an average rate per transmission of

1 log 4poqo = -. 737 bit transmission for po = 1. The expected number of additional

transmissions was therefore 9 log 1037 = 40.6. The number found experimentally was

37.3.

Figure 17 indicates the average constraint length that was found for P = 1015 in

combination with each of the three different values of p0 . N was found by observing

; bits bits 
C symbol N R symbol Nmin

.04 .758 54.4 .379 340

.10 .531 85.2 .266 695

.20 .278 194.2 .139 1705

-15
Fig. 17. Average constraint length for do

= .0005 and P = 10

Fig. 17. Average constraint length for d = .0005 and Pe iols. ~ ~ ~ -
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Fig. 18. Distribution function of the constraint length.
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Fig. 19. Distribution function of the
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Fig. 20. Distribution function of the constraint length.
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the number of transmissions needed to decode the 1 1 th of the 24 bits. The size of the

interval defined by the first 11 bits is 2 = .000488, which is slightly less than .0005,

the chosen value of do . A lower bound on the constraint length, Nmin, of a fixed-
-15

constraint-length block code, which is required to achieve a value of P = 10 , with

Po = 0.1 and R = C/2, is also shown.

The relatively small value of N made possible by the use of feedback is quite

striking. Of almost equal significance is the narrowness of the first-order probability

distribution of N. The distribution function of N is shown in Figs. 18, 19, and 20 for

the three values of p0 . The ratio of the largest to the smallest value of N encountered

is less than 4:1 for po = .04, less than 2.5:1 for po = .1, and just over 3:1 for po = .2.

If we exclude the largest 10%o of the N values, these ratios are replaced by 2:1, 2:1,

and 2. 5:1, respectively.

We assume that the asymptotic behavior governs the process from the time that the

size of TI first exceeds .99. The experimental results then indicate that the asymptotic

part of the process accounts for about 2/3 of the average constraint length when
-15P = 10 15 and d = 0005. The exact fraction depends on po, varying from about . 61

e 0
when po = .04 to about .69 when po = .2.

Information regarding the middle portion of the process was obtained by observing

the expansion of the interval representing the first 5 bits from its initial size of 1/32

until it first exceeded .99. The average number of transmissions, N5 , required for

this expansion was 12. 8 for po = .04, 18. 8 for p = 1, and 37.6 for po = .2. The distri-

bution of N5 for p = .1 is shown in Fig. 21.

1.0

.8

.6

.4

.2

4 8 12 16 20 24 28 32 36 40 44 48

N5

Fig. 21. Distribution function of N 5 .

It is interesting to note that the extreme values of N5 in Fig. 11 are in the ratio

7:1, whereas the extreme values of N are only in the ratio 2.5:1. The explanation lies

in the fact that the randomness of the cut positions plays no part in the asymptotic
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behavior, which dominates the over-all process. This follows from the fact that, in the

limit as d - 1, for any given pair of cut positions, the received symbol results in a con-

traction of WI exactly half the time. In the part of the process described by Fig. 21, on

the other hand, the average information received about TI per transmission varies con-

siderably with the cut position. The dependence on this extra parameter accounts for

the large variance of N 5 .

Figure 22 indicates the average size, after each transmission, of the interval

representing the first 5 bits. 50 different runs, each with po = . 1, contributed to the

average. However, only those intervals that had not previously reached .99 were

included in the average for a given transmission. The number of runs contributing to

each average value is indicated by the stepped curve. One of these runs (see Fig. 23)

has been selected to illustrate a typical step-by-step expansion of the interval repre-

senting the first 5 bits.

0 8 12 16 20 24 28
TRANSMISSION NUMBER

r4

4

0L)Z5

-

L.JzCCUj
;1

Fig. 22. Average size of interval repre-
senting first five bits, po = . 1.

w
N

-J

>4

w
I-2

0 4 8 12 16 20

TRANSMISSION NUMBER

Fig. 23. Size of interval repre-
senting first five bits,
P = .1.

O

In the transmission process as originally described, the interval (0, 1)' is divided

into two equal parts at its mid-point prior to each transmission. The introduction of

random cut positions was for reasons of mathematical tractability; it made the analysis
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independent of the bits comprising the information sequence - that is, independent of the

location of the transmitted point on the original interval (0, 1)'. Experiments were also

conducted with the use of a fixed cut position at the mid-point of the interval (0, 1)'. The

average constraint length that resulted was slightly greater than that found when random

cut positions were used.

This rather surprising result can be explained by noting, from Fig. 11, that when the

interval (0, 1)' is divided in a random manner, both ends of the interval (0, 1) ' are either

expanded or contracted together. Thus, the asymptotic part of the process proceeds at

the same pace for both 0's and l's. We see from Fig. 10a that when a single fixed cut

is used, and more A's than B's are received, O's tend to be decoded more rapidly than

l's; when more B's are received, l's tend to be decoded more rapidly. However, a bit

is never decoded until all previous bits in the sequence have been decoded. Therefore,

when many more A's than B's have recently been received, for example, the decoding

of a bit as a 0 may be delayed to the point where its probability of being incorrect,

conditional on all previously decoded bits being correct, is considerably less than the
-29

assigned value of P . Probabilities of error as low as 10 were observed when P
-6 e e

was 10 . The average probability of error, however, remained within an order of

magnitude of P .

It was not possible to use a single fixed cut with P = 10 because the resultinge
probabilities of error were often too small for the IBM 709 to handle. The idea of using

fixed cuts can be salvaged, however. It is only necessary to alternate between two
1

pairs of fixed cuts, located at distances a and a + 2 from either end of the interval
1

(0, 1)'. The choice of a in the range, 0 < a < 2, is arbitrary, except that the two pairs
1

of cut positions must be distinct; hence a cannot equal I. The reason why two pairs of

cut positions are needed will become evident in section 4.4.

4.4 ERROR EXPONENT AS A FUNCTION OF RATE

With fixed-constraint-length systems, a reduction in the transmission rate reduces

the constraint length required to achieve a desired average error probability. The

feedback scheme considered thus far does not possess this degree of flexibility, for the

transmission rate is fixed essentially at capacity. However, it is possible to operate

at any rate less than capacity by choosing the a priori probabilities of the two input

symbols to the channel appropriately. To see how this idea can be exploited to improve

the asymptotic error behavior, consider the transmission scheme depicted in Fig. 24.

Prior to each transmission, the interval (0, 1)' is divided into two parts of size r
1

and -r, r ,2' by cut positions located at distances a and a + r from one end of

the interval. Thus, a is restricted to the range, 0 < a < l-r. The cut positions are

alternated between the solid and the dashed positions shown in Fig. 24a. Because of

the uniform probability measure maintained on the interval (0, 1) , the probabilities

of input symbols A and B are 1-r and r, respectively.
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The transmission rate for the process is seen from Fig. 24b to be

qo
+ log

rqo + (l-r) Po

+ (r) q log
qo

rpo + (l-r) qo

rp 0 + (l-r) q 0 j

o log
° lg rqo+(1-r)p o

0Olo ~lrpP o

= q log q + Po log p0 - [Po+(qo -P )r ] log [po+(qo-P o )r]

- [qo-(qo -P )r] log [qo-(qo-po)r] (34)

The asymptotic error behavior is derived by considering the limiting situation as

d - 1. Consider Fig. 24c, for example, which indicates a possible mapping of the origi-

nal interval (0, 1)' just prior to the decoding of the first bit. (The ends of the interval

have been greatly magnified.) The most likely information sequence at this point clearly

TRANSMITTED
SYMBOL

A

- I

- a+r
I-a

a
.- (a+r)

-0

(r)

(I-r)

(a)

-I

-. 5
- .4375
- I-a

-a
- .375
-. 25

U

(c)(b)

Fig. 24. Transmission at rate determined by r.

begins with the bits 0110. If we happen to be interested in the constraint length for the

third bit (we assume that the first three bits are, in fact, 011), TI is (. 375, . 5), and

WI is the union of (0, .375) and (. 5, 1). Thus the two portions of WI lie at either end

of the interval (0, 1)'. Consequently, they are contracted by the reception of a B and

expanded by the reception of an A. This is true, in general, if transmission has pro-

gressed to the point (relative to the bit under consideration) where the asymptotic

behavior obtains.

We are now in a position to calculate R'(r) = lim S(d,r), which is seen, in the
d-l

light of the above discussion, to be equivalent to the average information provided

about symbol A per transmission.
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R'(r) = r log + P log
rqo + (l-r) Po rpo + (l-r) qo

+ (l-r) qo log + p0 log
rpo + (l-r) q rq 0 + (l-r) Po

Po
=[Po+(qo -P)r] log

Po + (qo-po) r

q 0
+ qo-(q -Po )r] log (35)

q0 - (q0o-Po )r

If we definep' =1 - q'= 0o- (qo-Po) r, it follows from Eqs. 34 and 35 that

R' = R - (q'-po) logp (36)
0

In addition, Eq. 34 becomes

H(q') = R + H(Po) (37)

By comparing Eq. 37 with Eq. 13, we can identify q' with q . It is now evident from

Eq. 36 that R' is identical to the previously derived bound (curve A in Fig. 9) on the

error exponent of an information-feedback, block type of system. Thus, the continuous

system under consideration has the same asymptotic error-correcting capability as

would a block-transmission system (if one existed) whose decoding table looks like that

in Fig. 5 for every value of N.

Although the error exponent is improved when a smaller value of R is used, it is not

necessarily true that the over-all constraint length will be reduced, for a given value of

Pe. The reason is that the initial portion of the transmission process, which is con-e
cerned with the expansion of TI from do to 1/2 (say), will proceed at a slower average

rate if R is reduced. However, as Pe is made smaller,

the asymptotic improvement must eventually result in

a decreased value of N.

a + r In order to understand the reason for alternating the

cut positions, as in Fig. 24a, let us assume that only
F X one pair, at distances a and a+r from the lower end of

the interval (0, 1)', is used. There then exists a point (F

a in Fig. 25), other than the end points of the interval

0 (0, 1)', whose position remains unchanged regardless of

Fig. 25. Illustrating the fact the received symbol. If we let x represent the distance
that at least two
that at least two of F from the lower end of the interval (0, 1)', it is clearpairs of cut posi-
tions must be used. from Fig. 25 that x is determined by the condition:
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a x-a

1 - (a+r) (a+r) - x

Because F is fixed, points that start out below F remain below F, and those that

are originally above F remain above F. Thus, for example, if x > . 5 and the first

information bit is a 0, it will never be decoded correctly. By alternating the cut

positions, we also alternate the fixed points on successive transmissions, thereby pro-

viding any point with access to the entire interval (0, 1)'. Since the two pairs of cut
1 -r

positions must be distinct, we must not choose a 2 A good choice would be
1-r

a = 4

4.5 A BLOCK-TRANSMISSION VERSION

The idea underlying the continuous information-feedback system considered thus far

can be used as the basis for a block-transmission system. If M bits are to be trans-

mitted by the choice of 1 of 2 M equally likely messages, the interval (0, 1)' is initially

divided into 2 M subintervals of size 2
M . One subinterval is assigned to each of the

messages. The subinterval corresponding to the message chosen for transmission

becomes the transmitter's interval. Since there are no further bits available to sub-

divide this interval as it is expanded, it remains the transmitter's interval until a

decoding decision is made.

Initially the transmission scheme is similar to the one already described for con-

tinuous transmission. Label the messages mi, m 2, ... , m M, and let their probabilities

after n transmissions be Pi' P2' 2M '
after n transmissionsbep, p, . pn Before the n+ 1 transmission the messages
are divided into two disjoint sets, M 1 = {ml .. , mj} and M 2

= {mj+l . .. m M} where

~i=1k i= 

If the message being transmitted is mk, the symbol A is transmitted if k < j; other-

nn 1
wise, B is sent. The process continues in this fashion until Pk ° > 2 for some no , k

pair.

At this point the sender changes his rule for determining the next transmitted

symbol. He sends an A if the intended interval is the one whose size is greater than

1 nl 1 
2; otherwise he sends a B. If it should happen that for some n > no, Pi < for all
i, the sender reverts to his original rule for determining the transmitted symbols.

The constraint length, N, which is the number of transmissions required to reach

a decoding decision, is bounded by the number of transmissions, Nc , needed to expand

the transmitter's interval from 2 -M to 1- P . This is immediately evident from thee
fact that, on those occasions when a decoding error is made, the incorrect decision is

reached before the size of the correct interval ever reaches 1- P . However, it ise
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N
readily appreciated that lim N 1. In determining Nc we divide the expansion of

P -0 N
e c

2-M to <1 tOdb>1TI into three ranges: from 2 and from db to d1 -P

where da and db are independent of P . The principle difference between this situation

and the continuous case already studied is that now two (rather than one) of the three

ranges contribute to the asymptotic behavior. The reason is that M must increase as

Pe is decreased in such a way that R = M/N remains constant.

If we again call the combination of all intervals other than the correct one WI, we

note that the contraction of WI from 1 - db to Pe is characterized by the sequential

qo -M
1-bit error exponent, (qo-Po) log P. Since the expansion of TI from 2 M to da proceeds

at an asymptotic rate equal to C, in the limit as P - 0,
e

- M log P RN log Pe
e c+ e

c C q0 C q
(qo -P) log p- (qo-P) log 000 PO 00 P0

R q - -1
(1--C) (qo-Po) log N = log P

(This part of the process will be examined in greater detail later.)

Thus, the error exponent, E, for the process is

R qo
E = (l--) (qo-Po) log p-

We note, first of all, that E is a linear function of R, approaching zero as R - C,

and the sequential 1-bit error exponent as R - 0. Thus, for all nonzero rates less than

capacity, E is greater than the sequential sphere-packing error exponent. The expo-

nential superiority of information-feedback, block transmission is thereby demonstrated.

E is the largest exponent that can be achieved by a system of this type. This

becomes evident if we consider the two portions of the process that affect its asymp-

totic behavior. In one case information is provided about TI at the largest conceivable

(positive) rate-channel capacity. In the other, information is provided about WI at the

largest conceivable (negative) rate, in accordance with the sequential -bit error

exponent. However, E is smaller than the bound derived in section 3. 1 for information-

feedback, block-type systems. We have already seen that the latter exponent can be

achieved by a continuous information-feedback system. We conclude, therefore, that

within the realm of information feedback, larger error exponents are attainable with

continuous systems than with block-type systems.

Two minor points in connection with the expansion of TI from 2 M to da require

further explanation. First, the probabilities of the two sets, M 1 and M 2 , into which

the 2 M messages are divided are not, in general, exactly equal. Consequently, the
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two channel symbols are not equiprobable on each transmission, and the average infor-

mation received about the intended message is somewhat less than channel capacity.

We note, however, that as long as all the message probabilities are less than d (say),

the a priori probabilities of the channel symbols will differ by less than d. It is easily
1

shown that the average received information for any value of d < will be less than

1 (q-P)d
C(po) by at most C(p') = q' log 2q' + p' log 2p', where p' = 2 and q' = 1-p'.

(q -p )2 d2

For small values of d, C(p') 32 It follows that the slightly unequal symbol

probabilities cannot have any effect on the asymptotic rate (as P - 0) at which infor-

mation is provided about TI.

Secondly, the expansion of TI proceeds at a rate determined by C provided the size

of each of the 2M - 1 incorrect intervals is less than 1/2. If we designate by t (t > )

the size of the largest interval when this is not the case, the corresponding input proba-

bilities to the channel are t and -t. The symbol of probability 1 -t is always trans-

mitted, and the information received about it, I(t), is also the information received

about the interval representing the message. The average value of this information is

easily seen to be

qo PO
I(t) = q log + p log

0 tp + (l-t) q tq + (l-t) po

qo log qo + P log P - qo log a - p log (l-a)

where a = q - (qo-po) t. Since C = 1 +q log q + p log p, I(t) > C for all t > 2for,

as we shall show, -qolog a - po log(l-a) > 1. The latter inequality follows from Fig. 26.

I .o

.8

.6

.4

.2

Fig. 26. Pertaining to the expansion of TI.
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1 1
Since t > 2 implies that a < the line tangent to the entropy curve at the point whose

abscissa is a is given by

1-a
T(qo) = H(a) + (qo-a) log a = -qo log a - po log (l-a)

1
Since qo > 2' it is clear from Fig. 26 that T > 1.

4.6 THE GENERAL DISCRETE MEMORYLESS CHANNEL

We consider now the extension of the continuous information-feedback system

already discussed to the general discrete memoryless channel. The channel is defined

by a set of transition probabilities, p(yj/xi) (abbreviated Pij), which represents the

probability of receiving symbol yj when symbol x i has been transmitted. If u i repre-

sents the probability with which x i is transmitted, vj, the probability with which yj is

received, is given by

v. = Z uiPijJ i j

The information is again assumed to be in the form of a binary sequence, with each

digit carrying 1 bit of information. Prior to each transmission the interval (0, 1)' is

divided into several subintervals, one for each channel input symbol. The size of each

subinterval is made equal to the probability with which the corresponding channel

symbol is to be used. The transmission process is as before. The location of the

point representing the information sequence determines the symbol transmitted. The

remapping of the interval (0, 1)' after each new symbol is received is done in accordance

with the input probabilities to the channel and the channel transition probabilities.

We shall assume that the input symbol probabilities have been so chosen that the

channel capacity is realized. If we represent by {u} any possible set of input probabilities

(u i > 0 for all i and u = 1), it follows from the definition of channel capacity that
i

pij

C = max pi .ui log (38)
{u} i, j J m PmjUm

m

We label the maximizing {u} set {w}.

The asymptotic error behavior is again determined by the average compression of

the ends of the interval (0, 1)'. If we assume that the subinterval representing xk (say)

is split into two parts, one at either end of the interval (0, 1)', the error exponent, Ek,

is equal to the magnitude of the average amount of information provided about symbol

xk per transmission. When symbol yj is received, the information received about xk is

Pkj

Ikj = log v.
31
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Therefore,

Pkj
E k = - VjIkj - log Z WiPij (39)

j j ZWmPm j i
m

In order to evaluate Ek we must know {w}. An explicit solution of Eq. 38 is not possible,

in general. However, once {w} is known, the asymptotic error behavior is optimized by

letting the subinterval representing the symbol that maximizes Ek occupy the ends of the

interval (0, 1)'. Precaution must be taken, as before, to avoid the creation of any fixed

points in the interior of the interval (0, 1)'.

Although a trial-and-error method of solution is generally required by Eq. 38, we

can solve explicitly for the error exponent, E, in cases where the symmetry of the

channel enables us to determine the set {w} by inspection. As a case in point, consider

a channel having M input symbols and M output symbols, such that Pii = qo and
1-q

i = = for i j. Clearly, channel capacity will be realized if each of the M

1symbols is used with probability M . In this case we see from Eq. 39 thatE =M log Mpkj (for any k)

M [ logqo + (M-l) log p] - log M (40)

Equation 40 is plotted against q in Fig. 27 for several values of M. (It is assumed

that qo > M ) It is interesting to observe that although C increases without limit as

M is increased, E is bounded by the curve for M = o.

E

U .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Fig. 27. Error exponent of M-ary symmetric channel.
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V. CONCLUDING REMARKS

In our attempt to evaluate the advantages resulting from the inclusion of a feedback

channel in a system designed to provide reliable communication between two points, we

have glossed over several points that merit further attention. The most serious of

these omissions concerns the fact that the specific transmission schemes presented

assume the existence of a noiseless feedback channel.

In particular, the information-feedback scheme considered relies on precise

knowledge of each received symbol. A wrong assumption about even a single received

symbol is sufficient to disrupt the procedure. It is not known, therefore, whether the

error exponent associated with this scheme can be obtained as the limiting (noiseless-

feedback) value of the error exponent of a sequential transmission system in which

there is a nonzero probability of a transmission error in the feedback channel. It is to

be hoped that this possibility will spur the search for procedures that can be used with

noisy feedback channels. Even if the ideal behavior associated with a noiseless feed-

back channel cannot be approached, substantial improvement over existing one-way

systems may be expected.

The assumption of a noiseless feedback channel is somewhat less serious in the

case of decision feedback. Since the sole role of the feedback channel is to indicate

the occurrence of each decoding decision, a high degree of reliability can be injected

into this operation without usurping a significant fraction of the reverse capacity, and

without causing an appreciable delay in the forward direction.

A second omission has been the failure to take into account the capacity required

of the feedback channel, especially in the case of information feedback. In the scheme

presented, for example, the feedback channel, which is noiseless, must have a capacity

of one bit for each symbol transmitted in the forward direction.

Obviously, the relative "cost" of the reverse capacity in a given communication

system depends on the various functions that the system is required to perform. If the

feedback channel would otherwise be idle and if power is cheap, we may be entitled to

ignore the cost of operating the feedback channel. On the other hand, if information of

equal volume and importance is to be transmitted in each direction, and if the two

channels are identical, the operating cost of the entire system may reasonably be taken

as twice that of either individual channel.

In connection with the latter type of situation, it may prove more feasible to set

aside a fraction of the capacity in each direction as a feedback channel, to aid in the

transmission of information in the opposite direction, than to operate the two channels

independently. This has been done to a limited extent by Wozencraft (13), in order to

increase the efficiency of his sequential decoding procedure. Although the convolutional

code employed has a fixed constraint length, the philosophy involved is similar to that

of decision feedback. At intervals equal to the constraint length, a symbol is inserted

into the transmitted sequence in order to indicate whether the decoding is proceeding
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at a satisfactory rate. If not, the transmission is repeated from a point which guaran-

tees the retransmission of the troublesome portion of the received sequence.

The primary purpose of the feedback is to eliminate the overwhelming decoding

effort that follows an interval during which an unusually large number of crossovers

has occurred. At the same time, the probability of error is greatly reduced, for most

decoding errors follow the reception of a sequence that is not a good approximation to

any of the possible transmitted sequences. The resulting decoding effort, which would

be very great in the absence of feedback, is truncated before decoding takes place. The

improvement in the error exponent resulting from the use of feedback is not known,

how ever.

Although the assumption of a noiseless feedback channel is unrealistic for most

applications, a model in which the channel capacities in the two directions are widely

different may be entirely justified. In fact, in the case of communication between a

facility on land and an orbiting satellite, for example, the relatively small power

available at the satellite may cause the opposite channel to appear almost error-free

by comparison.

A final point concerns the need for additional work on continuous transmission

systems. Existing models for block-transmission systems have made it possible to

determine quite thoroughly the capabilities of this type of system. However, lack of

a suitable model has prevented a corresponding evaluation of continuous systems.

Thus, it is not yet known, for one-way systems, whether asymptotically better error

correction is possible with continuous systems. Although this question can be answered

in the affirmative for feedback systems, an upper bound on the error exponent at non-

zero rates remains to be determined. Since less complex decoding procedures appear

to be possible with continuous systems, these questions are of more than passing

interest.
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APPENDIX A- DETAILS OF THE PROOF OF THEOREM 1

A.1 Toprove: lim Pr[N' < N2(6)] = 0
P -0

e

Let N be the smallest value of N' at which a decoding decision can possibly be

made. N' is given by
m

N'm

P ' 2M(P°) (A-l)

N'
This is the probability of error when only 1 of the 2 m possible received sequences

is decoded.

Let CN, be the number of crossovers occurring in the first N' transmissions. We

represent by j'l and p'1 the values of jl and P1 for which j, = PN'. The probability
,th .of decoding and making a correct decision on the N' transmission, N' < N 2 (6), is

bounded, according to Fig. 5, by Pr-~ N- p'1 . Since N' < N 2 (6), P'l P - 6.

Consequently,

(Po- 6)N (P 6)N (1-p 0 +6)N'

j N I=0Po -o 6j=0 (Po- 6) N

N'[ H(p -6)+ (Po- 6) logpo+ (1-po+6) logq N'T(P -6)

dT(pl) d T(pl ) 1
Since =0 and - at P = P,

dp 1 d P1 po(1 -P)

for small values of 6, we have

62 2
c2pqIN' NI

Pr L x ' 2 2oqo 2 m for N N' <N 2 (6).

A decoding decision may also result in an error. However, this probability is

bounded by P for every value of N'. Therefore, the probability, PN of decoding
t e"th

on the N' transmission, N - N' < N 2 (6), is bounded bym 2(

-6 

P. N 2 + Pe
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It follows that

62 N'

Pr[N'<N 2(6) N2 (6) 22P0qo0 m
2pqO N

+ Pe < N1 

From Eq. A-1 and the remark preceding Eq. 9 we see that the behavior of N' as P
m e

is varied can be described by

-1
log P + Me -1

N' ' e = K1 log P
m q0 1 e

log
0,

(A-3)

where K1 is a constant independent of P. Equations 6 and 7 tell us that as Pe is varied

with M/N 1 held constant, the behavior of N1 is given by

N1 =
log P e

qo
(21-Po) log Po- R

(A-4)

Equation A-2, together with Eqs. A-3 and A-4, yields the desired result, namely

lim Pr[N'<N 2(6)] = 0
P e0

e

N2 (6)
lim lim = 1
6-0 P-O N1e

From Eq. 5 and the fact

is sufficient to show that

q22
lim lim = 1
6-'0 P -0 q21

e

where q 2 2 is the value of q2

J12' respectively, by

that H(q 2) is a continuous function of q2, if follows that it

(A-5)

corresponding to j 1 2 , q2 1 and q2 2 are related to jll and

H~-ll + M = H(q 21 )

H~42 + N-2 H(q 2 2 )

Subtracting Eq. A-7 from Eq. A-6, we have

H(q 2 1 ) - H(q 2 2 ) = N 1 - HN 2 + N1 N2
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(A-6)

(A-7)

(A-8)
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Here, jll and j 1 2 are determined by

Jl 1 -= PoN

jl2 = (o - 6) N2

Therefore,
ill
N1

= p0 for all 6 and
J12

Pe, while lir - = p0 for all P .

Consequently,

lim lim ll
6-0 P -0 HN)

e

Furthermore, as Pe - 0, N1 and N2 grow without limit for any 6 > 0. Therefore,

lim lim
6-0 P -0e

M
N1

(A-9)

(A-1 O)

Using Eqs. A-9 and A-10 in conjunction with Eq. A-8,

lim lim [H(q2 1 )- H(q2 2 )] = 0
6-T 0 P -e

This implies that lim lim (q 2 1 -q 2 2 ) = 0. Thus Eq. A-5 is proved.
6-0 P -0e
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APPENDIX B - A LOWER BOUND

ON THE SEQUENTIAL SPHERE-PACKING ERROR EXPONENT

An upper bound on the error exponent of a sequential sphere-packed code was

derived in section 3. 2 by considering only some of the points whose reception results

in a decoding error. If we now assume that the decoding criterion is such that P
e

does represent an average allowed error probability, we can obtain a lower bound on

the error exponent by considering the points that were previously neglected. (The

previously calculated upper bound is still applicable.) Our result will be a bound rather

than the actual value of the error exponent because our method of adding the contri-

butions to P of the various points in the decoding region involves some double counting

for values of R close to C.

We need only consider the situation in which points on the boundaries of the decoding

region are a distance r = poN from the nearest code point, for it is a trivial matter

to show, by using the results of Appendix A. 1, that the value of P2 at which decoding

takes place satisfies the following condition:

lim Pr[lpz-p1o>6] = for any 6 > 0.
P -0

e

Assuming, once again, that the origin is the transmitted code point, we can classify

each point in the decoding region according to the number of l's in the point, its

distance from the nearest code point, and the number of l's in that code point. The

number of points of each type in a sphere centered on a code point which is at a distance

of 2rl + a from the origin is listed in Fig. B-1. (ro is assumed to be even.) Points

listed in the same row have the same number of l's. This number increases by one

with each successive row. The distance of a point from the nearest code point is

(ro-k+2b). Points at the same distance from the nearest code point are therefore listed

along a diagonal line that reverses its direction at k = r.

In Fig. B-la, which lists those points that are at least as close to the origin as is

the nearest code point, a typical term has the form (rl k+ . This is

the number of points which can be obtained by replacing (r 1- k+b) l's in the nearest

code point by 0's, and b of the 0's by l's. The number of l's in each such point is

(2rl+a-ro+k).

In Fig. B-lb, which lists those points that are farther than the nearest code point

from the origin, a typical term has the form rl - +b (i This is the number

of ways (ro-k+b) O's in the nearest code point can be replaced by l's, and b l's by O's.

The number of l's in each resulting point is (2rl+a+ro-k). It is assumed in Fig. B-lb

i-Po
that r - N- 2r 1 -1. This is equivalent to the condition, Pl 2 which is

certainly true in all cases of interest.
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It should be clear that the approximation to P in section 3.2 was obtained bye
neglecting all terms except the one in Fig. B-la for which a = 1 and k = b = 0.

We shall show that only the spheres surrounding the code points nearest the origin

(those for which a = 1) need be considered. We first examine the relative contributions

to Pe' for different values of a, of the points for which k = b = 0. Define na as the

number of code points having (2rl+a) l's. Since only some of the (r +a points with

(rl+a) l's are included in spheres of these code points, and since the sphere about each

of the na code points contains r points having (rl+a) l's.

na _ rl+a// r1 _ (N-r -1)! (2rl+l)!

nl r l+ 1 (N-r -a)! (2r +a)!

(N-rl-1) . . . (N-rl-a+l) (N-rl\a- 1

(2rl+a) . . . (2r 1+2)

For a given value of a, define n as the number of
a

k = b =0. Then

~(q a-1

(B-l)

points in each sphere for which

no r ) (2 rl+a)! (2rl-r+l)!
a ra o 1

n1 2r 1 +1 (2rl+a-ro)! (2rl+1)!

r )
2rl+2 a-1

2rl-r0+2

(B-2)

The number of l's in each such point is (2rl+a-ro). If we define Co as the contribution
to oh ==pa

to Pe of the k = b 0 points, combination of this last fact with Eqs. B-1 and B-2 yields

-< ql ( 2r + 2 P a-O 

r +2 qL- , - 1 0

(q /Pla- 1

qo/Po)

If R < C, then P > po , and the successive contributions (for increasing values of a) to

Pe of the points for which k = b = 0 are bounded by the terms of a geometric series.

We note further (from Fig. B-l) that, within each sphere, the contribution from a

given k, b pair relative to that of the term for which k = b = 0, can be written in the

form (Fig. B-la)

2r1+ a N-2r -a
r -k+b Kb

ro!(N-2rl-a). . . (N-2rl-a-b+l)

b!(ro-k+b)! (2rl+a-ro+k-b) ... (2rl+a-ro+l)

(B-4a)
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2rl + a

ro 2

-

(2r+a) . . (2r1+2)

(2r 1-r+a) . . (2r 1-r+2)
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or in the form (Fig. B-lb)

2r 1+a a N-2r -a

b (r0 -k+b _ ro!(N-2rl-a) . . . (N-2rl-a-r+k+b)
a~(= -k~b)! +1)(B4b)

2r+a) a!(ro-k+b)! (2rl+a-b) . (2rl+a-ro + )

r

Ratios B-4a and B-4b are both decreasing functions of a. This fact, together with

Eq. B-3, tells us that Pe is exponentially equivalent to the contribution from those

spheres for which a = 1.

Among the spheres for which a = 1, we need only consider the points in the k, b

category that makes the greatest contribution to Pe. This is obvious from the fact

2 2 2N2
r r° poN

there are approximately -2 terms in Fig. B-l, and a factor of 2= cannot

1 7po 
influence the error exponent. It is easily shown that, if P1 - 2- 12 (a condition hardly

more restrictive than the previous one), the largest term in each row in Fig. B-1 is

the one on the extreme right. The largest contribution to P must therefore come

from a term on the diagonal for which k = 2b. The general form of such a term is
2r I+ 1 N- -1

( o -b b )

Since the probability of reception of a point is reduced by a factor of po/qO with each

succession row in Fig. B-1, bM, the value of b which yields the maximum contribution

to P, is determined by the following condition:

: 2rl + 1 N- 2rl - 1 

r° - bM - 1 ~ bM +1 2

- 1 (B-5)

(r +1 - 2 1) 

If we define PM = bM/N, a lengthy, but straightforward, calculation shows that

1 Po a 1 2 2 2 2 2
PM -- (2 pl-po) 2 + 2/2P-Ppo) + 4p Pl + 2pa + P2al (B-6)

Po
where a 1 -2

N

In each of the spheres nearest the origin, we must therefore consider
(2r + 1

\rI 
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/2r1+l 1 - 2r -1

r -b ) b M points, each of which has (2 rl+l-r+ 2 bM) l's. As a result
ro M/ \M

r+ (2r 1 ( N-2rl -1 (2r +-r+ZbM) (N-Zrl -l+r-ZbM)

e 2rl+1 Nr-b M
rl (B-7)

Making use of Sterling's approximation, we find that a lower bound on the error

exponent is given by

log P 1

lim N > (l-Pl) log (l-P) + (po-PM) log (Po-PM)
P 0 N

e
+ (2Pl-Po+PM) log (2Pl-Po+PM) + PM log PM

+ (1-2pl-P M) log (1-2Pl-PM) - Pl log P1

qo
- (1-2p1 ) log (1-2p 1 ) - log qo + (2Pl-Po+2PM) log (B-8)

This bound is plotted in Fig. 9 (curve D) for Po = .1. At rates very close to capacity,

the decoding region occupies nearly all of the surrounding spheres. Because a sphere-

packing array cannot be achieved, in general, some decoding regions near the origin

must overlap. As the result of our having counted the points in these overlapping

regions twice in calculating Pe, the lower bound of Eq. B-8 is negative for R close to C.

The closeness of the upper and lower bounds results from the fact that bM, which

distinguishes the bounds of Eqs. 21 and B-7 when r 2 is set equal to r in the former, is

only a small fraction of r. This can be seen by an examination of Table B-1, which

gives the values of PM corresponding to several values of P1 , all for Po = .1.

Table B-l. Values of PM and P1 for p = . 1.
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APPENDIX C

C. 1 Derivation of an expression for S(d). (Natural units of information (nats) will be

used for analytical convenience.)

Case A: d -- 
2

We define Pc to be the probability that TI includes one of the cut positions; P = 1 - P
c

the probability that it does not. The corresponding average values of the information

provided about TI per transmission will be represented by Sc(d) and SU(d). Then

S(d) = PSu(d) + PcSc(d) (C-l)

It is easily seen that

P = 2d (C-2)c

Su(d) = qo In 2qo + P In 2po (C-3)

It remains to calculate S(d).

On those occasions when TI includes one of the cut positions, we let a represent

the smaller of the two fractional parts into which TI is divided by the cut. The proba-

bility distribution for the location of the transmitted point is uniform over TI. If the

transmitted point lies in the larger part of TI and the transmitted symbol is received

correctly, or if it lies in the smaller part of TI and a crossover occurs, the TI size

after reception is 2p (ad) + 2qo(l-a) d. Thus, with probability apo + (l-a)qo - (qo-p)a,

the information received about TI is In 2[qo-(qo-po)a] . If either of the two remaining

compound events occurs, the TI size after reception is 2qo(ad) + 2p (1-a) d. Thus, with

probability aqo + (1-a)po = PO + (qo-pO)a, the received information is In 2[po+(q- P o )a].

For a given value of a, the average information received per transmission about TI is

Sc (d) = [q -(q -p) a] In 2[qo-(qo-Po)a] + [p +(qo-Po)a] In 2[ p+(q -p) a] (C-4)
a

Since a is uniformly distributed over the range, 0 a 2'

1/2

Sc(d) = 2 sc (d) da (C-5)

By substituting Eqs. C-2 - C-5 in Eq. C-l, we find, after considerable manipulation,

S(d) = 4d Sc( ql d (-2 o ( n2q 0 +p01n2po) =C - 1 - In d

fer C 0 0 0 (C-6)where C = qo In 2q + Po in 2po is the channel capacity. (C-6)

1
Case B: d >

2

In this case TI includes either one or both of the cut positions. We define P1C and
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P2c' respectively, to be the probabilities of these two events. We further define Slc(d)

and S2c(d) to be the corresponding average values of the information provided about TI

per transmission. Then

S(d) = PlcSlc(d) + P2cS2 c(d) (C-7)

It is evident that

P2c = 2(d- 2) (C-8)

Plc = 2(1-d) (C-9)

By reasoning analogous to that for case A, it is clear that when TI includes both

cut positions, the possible TI sizes after transmission are 2qo(-) + 2po(d- 1 ) and

2po(1) + 2qo (d- ). The probabilities with which they occur are qo(2)+ Po (1 2d)

and p( 2d)+ q (1- 2d), respectively. It follows that

S. (d) = ( 2- ) ln (2po + qd p (qq0 2d) ln qo Po

If TI includes only one of the cut positions and the smaller fractional part of TI is again

a, Sc (d) is still given by Eq. C4. However, the range of a is now restricted to

1 1
1 - < -. Therefore,2d 2

1/Z

Sc(d) = 2 d f I S (d) da (C-10)

2d

By substituting Eqs. C-4 and C-8 - C-10 in Eq. C-7, we finally get, after much additional

manipulation,

2Pod) q0 - P ( 2pd - PO
S(d) = q+ ln 2po + - p n 2q d + d-

(C-1 1)

C. 2 Derivation of an expression for SW(d)

1
We assume that d - . Then WI includes one or neither of the two cut positions.

We represent the probabilities of these two events by Pc and Pu, respectively. The

corresponding average values of the information received about WI per transmission

are SWc(d) and SWu(d). Then

SW(d) = PcSwc(d) + PuSWu(d) (C-12)

P = 2(1-d) (C-13)

P = 2d- 1 (C-14)
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-Q WI

_' IFig. C-1. Pertaining to the asymptotic portion of
-. -5 the transmission process. (P and Q

ID are cut positions.)

- Cp TI

_nl

In the event that WI is not cut, the two possible values of received information are

In 2 po and In 2qo. The former results if the transmitted point lies in the opposite half

of the interval (0, 1)' from WI and the channel symbol is received correctly, or if it lies

in the same half and a crossover occurs. The sum of the probabilities of these two

joint events is q(2-d + po(1-2d). The two other possible joint events have a com-

bined probability of po(2d )+ q(1- 2d). Consequently,

Swu(d) = Po + 2d ) in 2po + qo0 2d n 2q 0 (C-15)

We let a represent the smaller fractional part of WI when it is cut. (See Fig. C-l,

in which WI has been placed entirely at one end of the interval (0, 1)' for ease of

visualization.) It is clear from the diagram that, with probability [- a(1-d)]
d L2

+-- -[(1-a) (1-d)], the WI size after transmission is 2qoa(1-d) + 2 p0 (l-a) (1-d). The

other possible size, 2p a(l- d) + 2qo(1-a) (1- d), occurs with probability

1 d [ -(10a) (1- d)

As a result, the average information received about WI per transmission is

SWc (d) { 2d-(d-1) [po+(qo-Po)a]} In 2[Po+(q o -po)a]
a

+ {-(-(1) [qo- q(qo- po)a]} n 2[qo-(qO - po)a (C-16)

Since a is distributed uniformly over the range, 0 < a < 2,

1/2
SWc(d) = 2 f SWc (d) da (C-17)

Wc0 c

The result of substituting Eqs. C-13 - C-17 in Eq. C-12 is

SW(d) = d q n -1 + d q o n + In 2 + p In q + q In Po (C-18)d 2(q0- P) Po qol P O
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APPENDIX D - AN UPPER BOUND ON P 1

The argument used to obtain the bound on P 1 will be outlined here. For further

details, see Shannon (16).

P1 is defined as the probability that WI will be expanded from 1-db to l-dL before
it is reduced to P e. If we let x. stand for the information provided about WI by the ith

e 1 n
transmission (starting from size 1- db), and if we define In = xi, we have

o00

P 1
" Pr[any In > A] - X Pr[In >- (D-1)

n=l

1 - d'
where A = ln -

1 - db

Since the probability distribution for x. involves I. as a parameter, In is the sum
1 is the n

of n dependent random variables. It can be shown that

n n

Kn Z i(s) -s i(s)
Pr In ,i(s ei=l s > 0 (D-2)

where the p.i(s) are (uniform) bounds on the semi-invariant generating functions

(s. i. g. f. ) Li(s/xl .. . xil) associated with the variables xi(i = 1, 2, ... n). Equation D-2

is identical in form to the Chernoff bound for sums of independent random variables.

We shall apply Eq. D-2 to our situation by finding a function >p(s) that is such that

we can set pi(s) = (s) for all i n. The distribution of x i is taken from an ensemble

of distributions having d as a parameter, d < d < 1. Let xd stand for a random

variable chosen from the member of this ensemble with parameter d. If we designate

by ud(S) any corresponding bounding s.i.g.f., (s) must satisfy the relation,

,u(s) ,ud(s), d < d<1.

Note that regardless of the value of d, n 2po -< Xd -< ln 2q . We choose for ,ud(S )

the s. i. g. f. of the probability distribution in Fig. D-1. c(d) is chosen so that

c(d) In 2qo + [1-c(d)] n 2 po = xd = SW(d). We can think of constructing this distribution

from the distribution for xd by subdividing the open interval, in 2po < xd < In 2q , into

infinitesimal intervals, and then shifting the probability assigned to each infinitesimal

DX)

Fig. D-1. Probability distribution yielding

d(S).
X
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interval to the extreme values of n 2 po and n 2qo in such a way that the average value

of the distribution is unchanged after each transfer of probability. Since the s. i. g. f. of

a probability distribution p(x) is given by In J eSXp(x) dx, the convex downward shape
-oO

of es x (as a function of x) tells us that the s. i. g. f. can only be increased by this process.

Hence our choice for td(S) is permissible.

We recall that d'b is determined by the relation, SW(d) = SW( 1
), and that SW(d) < SW(1 )

1
for d < d < 1. Therefore, c(d) < c(l) = for d < d < 1. It follows, since s 0, that

d(S) In (2q ) c(d)+(2p ) [1-c(d)]} - In [(2q) °+(2p)]

We therefore choose

4(s) = In [(2qo)s+(2po)s] (D-3)

Equation D-2 now becomes

Pr[In 'A] < en[ ~(s)-ss' ( s )] s O0 (D -4)

where s is chosen so that np'(s) = A. At this point, a rather detailed argument (16) is

needed to show that Eq. D-l, together with Eq. D-4, implies that

-s A s A
P1

< eoA oA + 1 (D-5)

w e(s) (S 1)
1-e

where ~L(s o ) = '(s ) = 0 s > O. and s > 1.
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