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ABSTRACT

Boron Neutron Capture Therapy (BNCT) is a promising therapy modality for cancer.
Clinical trials using BNCT are underway in the US. BNCT works by a selective loading
of tumor cells with 1oB and subsequent irradiation of the tumor with thermal neutrons.
The reaction 'lB(n,ac) is induced and releases approximately 2.3 MeV of energy, most of
which is deposited locally. In Accelerator-Based BNCT (AB-BNCT), neutrons for this
therapy are produced using ion induced reactions. Three reactions, 7Li(p,n) Ep=2.5 MeV,
9Be(p,n) Ep=3.0-4.0 MeV, and 9Be(d,n) Ed=2.6 MeV are investigated here. Complete
data for the 9Be(p,n) reaction were not previously available. Therefore, 28 thick target
neutron spectra were measured, on an absolute basis, using time-of-flight techniques.
Proton energies 3.0, 3.4. 3.7. and 4.0 MeV, and laboratory angles 0-145 degrees were
used. The absolute accuracy of the data (better than 25% for most neutron energies) was
confirmed by measuring a different reaction with a known spectrum. Using the three
reactions, Monte Carlo techniques were used to design therapy beams for AB-BNCT.
The reaction 7Li(p,n) yielded the highest dose rates. However, given lithium's poor
thermal properties, lithium targets will be difficult to develop. Dose rates using 9Be(p,n)
were also high. Beryllium is known to be an excellent target material. Using 7Li(p,n) and
9Be(p,n), therapy times of 12-25. and 27-60 minutes, respectively, were predicted (tumor
depth 2-6 cm, 15 RBE-Gy total tumor dose, 10 kW accelerator power, 30 ppm boron
tumor concentration). Using 9Be(p,n) and a 1 mA beam current, nearly equivalent
therapy beam parameters were predicted with 4.0 and 3.7 MeV protons. For equivalent
accelerator power, 3.7 MeV protons would produce higher dose rates. Using 9Be(d,n)
resulted in lower dose rates because the reaction's high energy neutrons must be
extensively moderated. AB-BNCT therapies would result in an intense neutron and
photon radiation field requiring significant facility shielding. Most of the occupational
dose comes from (n,y) reactions in the facility walls. Effective facility shielding has been
designed. Effective shielding for the patient can be made from lithium carbonate and
polyethylene.

Thesis Supervisor: Jacquelyn C. Yanch
Title: Associate Professor of Nuclear Engineering
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CHAPTER ONE

Introduction

This chapter provides an introduction to BNCT, a promising modality for the

treatment of cancer. The first section outlines the basic medical theory of BNCT and its

proposed uses. A history of the therapy is provided, along with a presentation of recent

progress. One approach to producing neutrons for BNCT is called Accelerator-Based

BNCT (AB-BNCT). The unique features of AB-BNCT are described. The BNCT

research program and accelerator at the Laboratory for Accelerator Beam Applications

(LABA) at MIT are discussed. In the concluding section of this chapter, the new

contributions to the field of AB-BNCT which are presented in this thesis will be outlined.

These contributions are in the areas of neutron source reaction measurement, therapy

beam design and radiation shielding.

I.A BNCT

I.A. 1 Medical Theory

Boron Neutron Capture Therapy (BNCT) is a binary radiation therapy for cancer

based on the nuclear reaction 'lB(n, c)7 Li [1]. Although this modality is currently being

used clinically in Japan and is undergoing clinical trials in the US, several aspects of the

therapy are still in the developmental stage. The therapy is binary in the sense that it



relies on two components combining at the tumor site to achieve the desired effect. The

first component is a non-toxic, boron-containing pharmaceutical which is delivered to the

tumor cells, and to the greatest extent possible, kept out of normal tissue. The second

component is a low-energy neutron flux at the location of the tumor. When these two

components combine, the fission reaction 'OB(n,ot) is induced. The thermal neutron cross

section of this reaction is 3840 barns. The reaction cross section follows a 1/v behavior

up to approximately 500 keV. The reaction proceeds to either the ground state or first

excited state of 7Li releasing 2.79 MeV or 2.31 MeV, respectively, in the form of kinetic

energy of the 7Li and 4He nuclei. The first excited state emits a single 0.48 MeV gamma

photon as it decays to the ground state [2]. Since the alpha and 7Li are heavy charged

particles, they are densely ionizing and have high linear energy transfer (LET) values (200

- 300 keV/micrometer) and very short ranges in tissue (7 ýtm for alpha, and 4 ýpm for 7Li)

[3]. Thus, their total combined energy is deposited in a volume approximately the size of

a single cell. If high concentrations of 10B can be sufficiently localized in tumor cells, it

is theoretically possible to destroy or inhibit these malignant cells without similar

negative effects to nearby healthy cells. These concepts are depicted in Figure I-A-1.

BNCT, so illustrated, is deceptively simple. In this section, the medical theory of

BNCT will be examined more closely and the various factors influencing its efficacy will

be explained. It is important to note that BNCT is, by necessity, an interdisciplinary

endeavor. The goal of selectively loading tumor cells with 1oB has been addressed

primarily by pharmacologists and chemists. The design of neutron therapy beams



O

H

Li o

cD
0 0 0
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Figure I-A-1: Boron delivered selectively to tumor cells (T), with less absorption by healthy cells (H).

Tissue volume is irradiated by low energy neutrons which induce the reaction 10B(n,alpha) The fission

products deposit most of their energy in the host cell.



suitable for BNCT has been accomplished mainly by nuclear engineers and physicists.

The radiobiologist has added expertise in many areas including microdosimetry and the

study of the biological effects of the various radiation dose components. Among other

tasks, the physician diagnoses the malignancy, refers the patient to a BNCT facility and

designs the treatment plan. Each of these groups must work together to ensure the safe

and effective treatment of the patient.

The approach used in radiation oncology for tumor control is to simultaneously

maximize radiation absorbed dose to the tumor and minimize the dose to normal tissue.

Complete eradication of malignant cells (tumor cure) is desired as even one cell could

seed the regrowth of the tumor. However, controlling the growth and spread of the tumor

(local control) without complete tumor cell kill could also lead to palliation of pain,

elimination of debilitating symptoms, and possibly increased survival times. Controlling

or eliminating the tumor requires high radiation doses to tumor cells. In practice, the dose

to the tumor is limited by the maximum allowable dose to healthy tissue, or tolerance

dose. This holds true for the BNCT modality.

The viability of BNCT, or for any other radiation therapy, depends greatly on the

selectivity of the treatment. In BNCT, this selectivity is achieved by preferentially

loading the tumor cells with '0B. This differentiation is accomplished by exploiting

differences (physiological, chemical or metabolic) between healthy and tumor cells. One

approach exploits the blood-brain barrier (BBB), which in normal brain tissue carefully



controls the flow of chemicals in and out of the brain. In regions of rapid tumor growth,

this barrier has been shown to be less effective [4]. If a boron-containing chemical can be

found which would not penetrate the normal BBB, this same chemical might pass through

the "leaky" BBB found in tumor regions and be absorbed into the tumor cells. A second

approach uses antibodies which have been tagged with boron [1]. These antibodies seek

out antigens on the surface of tumor cells. Other approaches exploit the heightened

metabolic rate of tumor cells. These tumor cells might absorb and process more of

certain chemicals which can be loaded with boron. A similar approach seeks to tag boron

to nucleosides which then would be incorporated into the nuclei of tumor cells. This

approach has the advantage of placing the boron where the 'lB(n, ct) reaction can have its

greatest effect [1].

Two compounds in current clinical use for the delivery of loB to tumor cells are

sodium borocaptate and p-boronophenylalanine. Sodium borocaptate (Na12B12HilSH) is

commonly called BSH. BSH has been used clinically for the BNCT treatment of brain

tumors in Japan [5]. P-boronophenylalanine is commonly called BPA. BPA is an amino

acid analog and is postulated to be taken up by various tumor cells, including melanomas,

due to their more active metabolism [6]. BPA has been used in clinical treatment of

melanoma patients in Japan and is being used in two clinical trials currently underway in

the US.



Unfortunately, it is not likely that boron will ever be delivered solely to tumor

cells. There will always be some residual boron in healthy tissue. A more realistic goal

is to maximize the concentration of boron in tumor cells relative to healthy cells. This

goal is quantified by such values as the uptake ratio, which is the ratio of the

concentration of boron in tumor cells (ppm) to the concentration in healthy cells. Some

examples of these ratios taken from clinical use and research will be presented later in

this chapter.

I.A.2 BNCT dose components

The radiation dose received during a BNCT procedure results from the following

reactions:

(1) 'lB(n.a)

(2) neutron capture reactions primarily from the reactions 14N(n,p) and 'H(n,y)

(3) neutron scattering resulting in energetic recoil nuclei

(4) incident photon irradiation which contaminates the therapeutic neutron beam

Of the reactions listed, only (1) delivers radiation dose selectively to the tissue

volume containing o1 B. The boron concentration in tumor must be sufficiently large to

offset the contaminating dose components which accompany the 'lB(n,a) dose and which

are not tumor specific (2,3, and 4). A 0.48 MeV photon, which contributes a non-specific

dose component, accompanies 94% of the 'OB(n,ca) reactions. Previous research indicates

that this component accounts for less than 0.2% of the total 10B dose when using a



spherical tissue-equivalent model of the head with a uniform distribution of 10B [7]. This

0.48 MeV photon dose component will not be considered further. One advantage of

BNCT is that the 'lB(n,a) reaction produces high LET radiation, and the resultant dose

component is weighted by a large relative biological effectiveness (RBE) factor. The

RBE weighting factor is used to account for the fact that, for equivalent absorbed doses,

different types of radiation (gamma, alpha, heavy charged particles, etc.) result in

differing degrees of tissue damage. The RBE is referenced to the damage caused by a

standard radiation type (usually 250 kVp x-rays). The RBE is always defined for a

specific biological endpoint, such as cell death. The exact value of all weighting factors

for BNCT is the topic of continuing research. One set of typical values is: 1.0 for

photons, 4.0 for neutrons, and 4.1 for the 10B(n,a) reaction [8]. For this reason, physical

dose (i.e. no RBE factors) will be used primarily in this thesis. When appropriate, RBE

weighted doses will be presented and the RBE values used will be stated.

Neutron capture reactions can occur in many nuclides commonly found in human

tissue. These nuclides, and the microscopic cross section for thermal neutron capture are

listed in Table I-A-1. For comparison, the reaction 'OB(n,ac) is also listed.



Nuclide Cross Section (barns)
Boron- 10 3840
Oxygen-16 0.0002
Carbon-12 0.0037
Hydrogen-1 0.332
Calcium-40 0.44
Sodium-22 0.536
Nitrogen-14 1.75
Potassium-40 2.07

Table I-A-1. Important thermal neutron radiative capture reactions in human tissue [1].

Although the microscopic cross section for the reaction '0B(n,a) is much higher

than those listed in Table I-A-1, the value of the 10B(n,ca) macroscopic cross section is a

direct function of the concentration of '0B in the tissue. It is the macroscopic cross

section (microscopic cross section multiplied by number density) which determines the

relative probabilities of the various reactions in tissue. Since the number densities in

tissue of some isotopes, particularly 'H and 14N, are very large, the respective

macroscopic cross sections can also be significant. The 'H(n,y) reaction produces 2.2

MeV gamma rays which transfer energy to tissue primarily through Compton scattering.

The 14N(n,p) reaction releases a total kinetic energy of 0.62 MeV which is shared by the

proton (0.58 MeV) and 14C nucleus (0.04 MeV). The range of these heavy charged

particles is small, and the total kinetic energy is deposited within 1 mm of original '4N

nucleus [9].

As neutrons scatter from nuclei in tissue, energy is transferred to these nuclei,

which in turn directly ionize atoms in the cell. The amount of energy transfer is

dependent on the incident energy of the neutron and on the mass of the target nucleus. In



the case of 'H, the neutron transfers an average of 50% of its energy in an elastic

collision. This dose mechanism is tumor non-specific and must be minimized for

effective BNCT therapy. The common approach to this problem is to design neutron

therapy beams which contain few energetic (fast) neutrons.

Finally, the neutron therapy beam is always contaminated by some photons which

are produced concurrently with the neutrons, or later when neutrons interact with material

surrounding the therapy port. This photon dose can also be limited during therapy beam

design and optimization.

I.A.3 Clinical use of BNCT

BNCT is currently being proposed for treating several forms of malignant tumors,

including cervical [10], breast, head and neck [11], and metastatic cancer to the liver [12].

Current clinical research, however, is directed at two forms of cancer: brain (primarily

glioblastoma multiforme) and metastatic melanoma (a form of skin cancer). This thesis

primarily addresses the use of BNCT to treat tumors located in the brain. These include

glioblastoma multiforme and melanoma which has metastasized to the brain. In this

section, some clinical information on glioblastoma multiforme and melanoma is

provided.



I.A.3.a Glioblastoma Multiforme

The brain contains interstitial cells call glia which perform supportive functions.

There are three types of glia cells: (1) astroglia (astrocytes) (2) oligodendroglia and (3)

microglia. In the US. gliomas (tumor cells which arise from glia cells) account for

approximately 31-49% of all intracranial tumors, and of these, 72-89% are astrocytomas

[7]. Astrocytomas are further subdivided into four grades based on malignancy and

prognosis, with grade IV the most malignant. The malignancy of brain tumors is judged

based on the aggressiveness of the tumor cells and the location of the tumor relative to

sensitive structures in the brain. Forty to sixty percent of all gliomas are grade III and IV

astrocytomas. Grade IV astrocytomas are known as glioblastoma multiforme (GBM)

[13].

GBM is often characterized by a central tumor which is not well vascularized, and

the presence of extensions or "fingers" which branch off the main tumor and which are

the most active and malignant parts of the tumor. In contrast to the central tumor, the

extensions are well vascularized. Metastasis to other locations is rare [7] . The prognosis

of all astrocytomas is poor and any cells that escape treatment almost always lead to the

regrowth of tumor. After diagnosis, median survival for the most favorable patient

populations (based on several prognostic factors) is around 12 months, even with surgery

and photon therapy. For elderly patients (age > 60), the median survival drops to 6

months [14]. Despite advances in treatment techniques, the prognosis of these patients is



not improving [15], and as a result, treatment is generally palliative and not curative [13]

[1].

I.A.3.b Malignant melanoma

The skin consists of three layers, the epidermis (outermost layer), the dermis

(middle layer), and the hypodermis or subcutaneous tissue (deepest layer). Melanin is a

pigment which is synthesized from tyrosine in melanocytes. This pigment is found

primarily in the epidermis of the skin. Melanin provides the pigmentation of the skin and

hair and also serves as a light absorbing material for the skin. Inability to produce

melanin leads to an increased susceptibility to sunburn and skin cancer [16] [13] [1].

Malignant melanoma is a cancer of the melanin-producing cell. The incidence of

melanoma is rising sharply in the US, with approximately 30,000 new cases each year,

resulting in over 6.000 deaths annually. Typically, melanoma is indicated by an enlarging

black-brown nodule on the skin, surrounded by erythema. This form of cancer is usually

easy to diagnose, but its progression is difficult to predict. Melanoma can take one of

several forms. The most dangerous form progresses by growing vertically into the deeper

layers of the skin. Tumors which extend into the deeper skin layers are also more likely

to metastasize, usually to the regional lymph nodes. Discovery of lymph node metastasis

severely degrades the prognosis. The median survival for patients with distant metastases

is approximately five months [16] [13] [1]. When the metastasis site is the brain, the



prognosis is very bad, and the tumor is considered untreatable [17]. These tumors are

currently being targeted by BNCT.

I.A.4 History of BNCT

I.A.4.a Early results

Most historical accounts of BNCT [18] [1] [19] begin in 1936 with a proposal for

such a therapy by Locher [20]. Some initial radiobiological studies, including some with

mice. were conducted before World War II [18]. In August 1950 the Brookhaven

Graphite Research Reactor (BGRR) was completed, and the use of this reactor for slow

neutron therapy was already being considered by the medical department at Brookhaven

National Laboratory (BNL). Clinical experiments of boron uptake in brain tumor patients

were conducted at the Massachusetts General Hospital (MGH), and in 1951, patients

were referred to BNL for BNCT treatments. The first series of patient studies was

conducted at BNL and MIT. The following is a summary of the conditions and results

[18]:

The first patient at BNL was irradiated on 15 February 1951, as part of a ten patient

study. 1oB was delivered intravenously in the form of an aqueous solution of borax.

The irradiations lasted 17-40 minutes at 40 MW reactor power. The thermal neutron

flux was 0.44-1.93 x 1012 neutrons/cm 2-sec. This group had a median survival of 97

days post BNCT.



* A second group of nine patients was treated at BNL using sodium pentaborate with

D-glucose. The incident neutron flux was 2.34-3.84 x 1012 neutrons/cm2-sec. This

second group suffered from radiation induced dermatitis of the scalp and scalp

ulceration. The median survival of this group was 147 days post irradiation.

* A third group of nine patients was irradiated with a neutron flux of 0.39-1.5 x 1012

neutrons/cm 2-sec. The boron compound was delivered directly to the internal carotid

artery of the affected hemisphere, and no severe dermatitis was experienced. The

median survival was 96 days.

* In 1959, the Brookhaven Medical Research Reactor (BMRR) became operational, and

between 1959 and 1961, an additional 17 patients were treated using BNCT. The

median survival was 87 days, and was considered disappointing.

* Between 1959 and 1961, 18 patients were treated for brain tumors at the MIT reactor.

For 16 patients, the 10B carrier used was the p-carboxy derivative of phenylboronic

acid. The average survival was six months post BNCT. At MIT the scalp and skull

were reflected to prevent the dermatitis seen in the second BNL group [19].

A total of 45 patients were irradiated at BNL, with an additional 18 at MIT. None

of these early trials was considered successful. The failure of the early clinical trials has

been blamed on two main factors. First, the boron delivery agents were not successful in



sustaining a high concentration of '0B in the tumor cells. This resulted in low values of

the tumor-to-healthy-tissue loB ratios during the therapy. Upon autopsy, it was

discovered that radiation damage had occurred in the capillaries of the brain due to the

high concentrations of ' 0B in the patients' blood [7]. Second, the thermal neutrons did

not penetrate deep enough to treat deep-seated parts of the tumor [1] . After these

disappointing results, clinical trials were halted in the US.

In the 1960s, solutions were sought for both of these deficiencies. Fairchild, at

BNL, promoted the use of epithermal neutron beams as a way of treating the deeper

portions of the brain [21]. Epithermal neutrons provide greater penetration than thermal

neutrons into the organ containing the tumor. The epithermal neutrons are moderated in

the tissue volume and arrive at the tumor site with a thermal distribution. There is no

exact energy range which defines an ideal epithermal beam for BNCT; however, the

lower limit is approximately 0.5-1.0 eV [22] [19] and the upper limit is approximately 20

- 100 keV [22] [19] [23]. The use of epithermal beams for BNCT has been generally

accepted in the BNCT community. During the early 1960s, researchers in the US sought

a new drug that would enter GBM tumor cells easily, yet not cross the blood brain barrier

[4] into healthy tissue. One such compound, BSH, was investigated at MGH and later

selected for use in Japan [18] .



I.A.4.b Treatment of GBM in Japan

The most extensive use of BNCT clinically was by Dr. Hiroshi Hatanaka in Japan.

Between 1968 and 1992, 119 patients were treated for intracranial tumors. All of these

patients were injected with BSH and subsequently irradiated with thermal neutrons from

a reactor. To increase neutron penetration, the scalp and skull were resected. Dr.

Hatanaka's results are encouraging and have significantly helped spark interest in the

BNCT field. For grade III and IV gliomas, with BNCT treatment only, the five and ten

year survival rates are reported as 19.3% and 9.6% [5]. The respective numbers for

conventional surgery followed by radiotherapy or chemotherapy are 4.6% and 0% [24].

For shallow tumors, the five and ten year survival rates were 58.3% and 29.2%,

respectively. The median survival of untreated GBM patients in the US is eight months

[16] . The most effective conventional treatment to date, which combines surgery and

photon irradiation, results in a 13% survival after three years [7]. Dr. Hatanaka reported

tumor-to-blood ratios of boron as high as 8.95, with an average around 1.4, and average

boron concentrations in tumor around 15 ppm [5].

I.A.4.c Treatment of melanoma

In the early 1970s Dr. Yutaka Mishima developed a program to treat melanoma

by BNCT using a thermal neutron beam [25]. In 1976, he developed a boron containing

analog of dopa, BPA. Melanin is formed from dopa, and actively absorbed by tumor cells

due to their increased metabolic rate [26]. The first patient treated under this program

had been diagnosed with a metastasis to the left occipital region. The location of the



metastasis made surgery impossible. Administration of BPA was via perilesional

injection, and the patient was treated with 1013 thermal neutrons/cm 2. After 9 months the

tumor had regressed with no regrowth [27].

A second patient was treated for a primary melanoma of the foot. This case

resulted in regression of the tumor, with no regrowth after 18 months. To date, 16

patients have been treated successfully with thermal BNCT [25]. Specific statistical data

on these patients are difficult to obtain.

I.A.5 Recent Progress

By September 1994, two epithermal beams were in operation and ready for

clinical trials in the US. The first was at the MIT Research Reactor (MIT-R), and the

second was at the Brookhaven Medical Research Reactor (BMRR). On September 6th,

1994 the first BNCT treatment with an epithermal beam was conducted at MIT-R using

the boron delivery agent BPA as part of a phase-I clinical study for metastatic melanoma

of the extremities [28]. In one year, four subjects, each with subcutaneous metastatic

melanoma nodules in the lower extremities, were irradiated. The subjects were first

given 400 mg/(kg-body weight) of BPA orally for the purpose of evaluating the

pharmacokinetic absorption and excretion of the BPA. After this evaluation, the subjects

were given repeat administrations of BPA, prior to each of four neutron irradiation

fractions. The maximum total normal tissue dose received by the subjects was between

1000 RBE-cGy and 1250 RBE-cGy. The dose to the tumor was 25-35% higher due to the



preferential absorption of BPA. No negative effects were observed, with the exception of

an adverse skin reaction with one of the subjects, which was resolved in two weeks. Two

of the four subjects manifested clear tumor regression, which has not reversed. Each of

the subjects is still alive [29].

Also in September 1994 (just a few days after the first MIT-R irradiation), a single

patient was treated for GBM using BPA as the delivery agent at the BMRR [30]. BNL

began a multi-patient trial in February 1995. This trial was designed to evaluate: (1) the

performance of BPA as a delivery agent to GBM cells, (2) the safety of BNCT using BPA

for GBM treatment, and (3) the efficacy of this treatment for GBM patients[31]. In the

period up to February 1996, ten patients were treated with this protocol. As in the MIT-R

study, a biodistribution evaluation was conducted. The boron concentrations in tumor

were found to be 24.7+12.6 ýpg 1 0B/g-tissue (mean + standard deviation) for a 250

mg/(kg-body weight) administration of BPA. The tumor-to-blood ratio was

approximately 2.0, and the non-necrotic tumor-to-blood ratio was greater than 3.5. The

patients were treated to a normal brain endothelium dose of 10.5 Gy-equivalent (peak

dose volume of 1 cm 3). No serious complications were experienced [31]. Of these initial

ten patients, at least eight experienced recurrence of the tumor. Following BNCT, the

median survival time was 13.5 months. Two of the patients are still alive [31]. In the

second of two protocols now underway, the tumor dose has been increased over that

given in the first protocol.



A recent update indicates that 23 patients have been treated at BNL to date. The

life extension was similar to that using conventional radiotherapy, and so the results are

encouraging [32]. Conventional radiotherapy is very time consuming for the patient who

may not have a long life expectancy. Typical radiotherapy treatment protocols may last

six weeks. BNCT procedures may require as little as a few days of the patient's time.

Initial analysis of the results indicates that tumor control will require a dose to tumor of

approximately 30-50 RBE-Gy [32].

I.A.6 Non-reactor neutron sources

If BNCT proves to be a viable cancer therapy modality, additional sources of

neutrons (i.e. other than reactors) would be needed. The death rate from GBM in the US

alone is approximately 3200/year [7]. In addition, there are approximately 6,000 deaths

from melanoma each year. The total death rate from these two cancers alone is over

25/day. New reactor construction, particularly at a hospital, seems unlikely due primarily

to the prohibitive cost of construction and operation. At lease three other reactors in the

US have been identified for possible conversion to BNCT facilities [33] although no

construction progress has been made to date.

In recent years, alternative sources of neutrons have been investigated. These

neutron sources include: 252Cf [23], spallation sources [34], photoneutron sources [35]

and accelerator-based (p,n) or (d,n) sources [8][36] [37] [38].



The possibility of a 252Cf source has been investigated, and deemed unlikely

primarily because the quantity of radioactive material needed exceeds the total production

capacity of the Western world [23]. The other alternative neutron sources listed above

are accelerator-based neutron sources. An evaluation of one spallation source, using 72

MeV protons on a tungsten target, found that the predicted dose distributions in a head

phantom were comparable to those achievable with existing reactor facilities [34]. The

proton currents required are approximately 100 pA. A moderator made of iron and

graphite is proposed [39]. A photoneutron source has been proposed which uses 6 MeV

electrons striking a material such as tungsten. The resulting Bremsstrahlung photons then

create neutrons through interaction with D20 which also serves as the moderator [40]. Of

the accelerator-based neutron sources, spallation and photoneutron sources have received

less attention than the charged particle reactions, particularly 7Li(p,n) and 9Be(p,n).

For the purpose of this thesis, the term Accelerator-Based BNCT (AB-BNCT)

will be used to describe the production of neutrons through charged particle induced

reactions such as (d,n) or (p,n), as opposed to spallation or photoneutron sources. Section

I.B introduces the concepts and terminology used in AB-BNCT. Section I.C will describe

the operation of an accelerator built specifically for use in AB-BNCT research. The

original research contained in this thesis will be introduced in Section I.D.



I.B Introduction to Accelerator-Based BNCT (AB-BNCT)

The new contributions to BNCT which are contained in this thesis are in the field

of AB-BNCT. These contributions are contained in Chapters II, III, and IV. In this

section. an introduction to AB-BNCT is provided which will form the foundation for the

work presented in the later chapters.

AB-BNCT differs from reactor-based BNCT in the method of generating neutrons

and modifying the energy spectrum of these neutrons to create a useful epithermal therapy

beam. A typical configuration consists of a neutron producing target, such as beryllium

or lithium, which is bombarded by energetic protons or deuterons. This target is

surrounded by an object known as a Moderator-Shielding-Reflector-Assembly (MSR).

The patient would be placed in front of the MSR and exposed to neutron radiation which

is emitted from the therapy port. A diagram representing such a configuration is shown in

Figure I-B-1.

Three basic components must work together to create a viable AB-BNCT therapy

beam: accelerator, neutron producing target, and MSR. The accelerator produces a

charged ion beam containing protons or deuterons at a current, I, and energy E. The ions

strike the target inducing a (p,n) or (d,n) reaction. Therefore, the target must be designed

to withstand a heat load equal to W=IE. For example, a 1 mA beam of 4 MeV protons

delivers 4 kW of power to the target. Neutrons are produced at the target with an energy

spectrum written as Y(On,En), expressed in units such as (neutrons/mC-keV-steradian).



Figure I-B-1: Model of an AB-BNCT system. The reflector is shown in gold.
The moderator is shown in blue. The neutron producing target is shown in red.
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This spectrum depends on the target material, ion species and ion energy. The total

neutron yield of a reaction, YTOT(Eion), is the neutron energy spectrum integrated over all

angles, On, and all neutron energies, En. The ideal reaction for AB-BNCT would produce

a copious and focused amount of purely epithermal neutrons, with no penetrating

contaminant radiation. The neutrons from this reaction could then be used, with very

little moderation, as a therapy beam. The kinematics of reactions capable of producing

epithermal beams at the target dictate that the ion energy must be kept only slightly above

the threshold energy of the reaction, ETH. Unfortunately, this approach generates

relatively small neutron yields, since the production cross section is low at ETH. The

alternative approach is to use an ion energy significantly above ETH, and generate

neutrons with an average energy well above the epithermal range. This neutron beam

cannot be used directly on a patient. The primary purpose of the MSR is to decrease the

average energy of the neutrons before they reach the patient position. This alternative

approach is the one used at LABA, depicted in Figure I-B-1. and described in Chapters II-

IV of this thesis.

In the most general sense, the design of an "optimized" AB-BNCT therapy beam

is the process of choosing all of the parameters of the combined system (accelerator,

target, and MSR) which will provide the most useful therapy beam, in a reasonable

amount of time, and with the least amount of other resources (money, space, shielding,

etc.). Each design parameter of the basic components depends on the others in a complex

way. For example, the optimal MSR components and dimensions depend on the target



reaction and ion energy. Increasing the ion energy increases the neutron production rate

at the target, but may result in a less optimal neutron spectrum at the patient position.

Also, if the ion energy is increased, the heat load on the target increases if the same beam

current is used.

I.B.1 Target system

Charged particle reactions can be divided into two classes: exothermic and

endothermic. Exothermic reactions, such as 9Be(d,n) release energy so that the resultant

neutrons have a maximum energy in excess of the bombarding charged particle energy.

Endothermic reactions, such as 7Li(p,n) absorb energy so that the maximum neutron

energy is less than the charged particle energy. Both types are potentially useful for AB-

BNCT. The ideal neutron producing reaction for BNCT would have several

characteristics. First, the yield of the reaction would be high at low charged particle

energies and currents so the accelerator system requirements would be simplified and the

BNCT treatment could take place in a reasonable amount of time. Second, the neutron

energy spectrum would be as close to epithermal as possible to reduce the need for

extensive moderation/filtration. Third, the reaction would not produce penetrating

contaminant radiation (gamma-rays). Finally, the target material would be inexpensive,

safe to handle, capable of withstanding operating conditions such as high temperature and

vacuum, and easily made into a practical target. In all cases, a thick target would be used

to produce the maximum neutron yield.



Unfortunately, no target reaction meets these four requirements simultaneously.

Previous studies [41] [42] [22] [8] have concluded that three source reactions are

currently plausible for AB-BNCT. These reactions are 7Li(p,n), 9Be(p,n) and 9Be(d,n).

Chapter II of this thesis examines each of these reactions and describes the neutron

energy spectra for each. In Chapter III, the design of MSRs for each reaction is discussed.

I.B.2 Accelerator

An accelerator designed for use in AB-BNCT would be characterized by three

main performance parameters: ion current, ion energy and total available power. As a

minimum, such an accelerator must be capable of producing ion energies above the

threshold for the neutron producing reactions of interest. The highest threshold of the

reactions considered here is 2.059 MeV ( 9Be(p,n) ). Beyond this requirement, the method

by which the performance parameters are chosen can be illustrated by an example. If the

7Li(p,n) reaction is to be used, the energy spectrum might be calculated or measured at

several proton bombarding energies. The resulting spectra could then be used, one at a

time, to design MSRs to be used with each proton energy. The combination of target

reaction, ion energy, and MSR which resulted in the most optimal beam would then be

implemented. These MSR designs would be based, in part, on assumptions concerning

issues such as: depth of tumor, total dose to tumor prescribed by a physician, tolerance

dose of healthy tissue, and the maximum time allowed for a therapy procedure. At the

end of the MSR design process, the therapy beam performance (based, for example on

Monte Carlo simulations to predict radiation dose rates in tissue) would be evaluated.



One result of this evaluation would be the determination of the proton current required,

for each proton energy, which then sets the performance requirement for the accelerator.

As this example shows, the performance requirements for an accelerator are

dependent on the assumptions used in the therapy beam design. Although there is not yet

a consensus on these assumptions, the current clinical trials should help resolve some of

these issues. It is, however, possible to give an order-of-magnitude approximation to

some of the accelerator design specifications. Another example is helpful. As will be

shown in Chapter III, it is possible to design an AB-BNCT therapy beam with a tumor

dose rate, at a depth in tissue of six cm, of 2.5 cGy/(min-mA of accelerator beam current),

using a 4.0 MeV proton beam. Depending on the assumed RBE weighting factors, the

RBE-weighted dose rate could range from 6-10 RBE-cGy/min-mA. If one were to

assume that a physician prescribed a dose of 15 RBE-Gy, to be delivered in no more than

60 minutes, then a beam current of approximately 2.5 mA would be required, resulting in

an accelerator power of 10 kW. These results will, of course, change with changing

assumptions. Therapy beams are currently being designed within the AB-BNCT

community using ion bombarding energies and ion currents of approximately 2.5-4 MeV

and 4-30 mA respectively [43] [44] [45] [46] [47]. The accelerator power requirements,

then, are on the order of 10-100 kW.



In addition to adequate energy and current production, a viable accelerator for

BNCT would have the following characteristics. First, the production of charged

particles must be safe and reliable. Second, the accelerator (including auxiliary systems)

must be practical in terms of system cost, ease of use, size and weight. Several types of

accelerators have been examined to produce proton beams for AB-BNCT (Ep= 2-4 MeV,

I, = 4-30 mA). These include: radio frequency quadrupole (RFQ), electrostatic

quadrupole (ESQ) and electrostatic accelerators. Electrostatic and ESQ accelerators have

several properties which make them useful for the AB-BNCT application. First, beam

current and energy are continuously tunable over a wide range. Second, continuous

current is delivered to the target resulting in lower peak thermal load. Third, higher

accelerating gradients are possible resulting in a more compact system. Finally,

electrostatic accelerators have high electrical power efficiency which reduces cooling

requirements and system operating cost [48]. The accelerator which has been built at

LABA for AB-BNCT research is an electrostatic accelerator.

I.C The LABA Accelerator

I.C. Description of the accelerator

A detailed description of the LABA accelerator is given in Appendix A. A brief

description is given here. When examples are needed to highlight an aspect of the

accelerator operation, a proton beam will be assumed. The accelerator at LABA is a

tandem electrostatic linear accelerator capable of accelerating protons and deuterons. The

accelerator is designed for a maximum terminal voltage of 2.05 MV (a maximum proton



energy of 4.1 MeV) and a maximum power of 10 kW. The accelerator was designed by

Newton Scientific Incorporated. Cambridge, MA. A picture of the accelerator is shown

in Figure I-C-1. The complete system weighs approximately 1000 kg and measures 3.9

meters from the ion source to the high energy end of the pressure vessel. The largest

diameter is 0.94 m. The entire outside surface of the accelerator is at ground potential.

A cut-away drawing of the accelerator, with the major components labeled, is

shown in Figure I-C-2. Negative ions, such as H-, are produced in the ion source and

injected into the low energy stage of the accelerating structure. The ions experience a

constant acceleration provided by the electrodes of the low energy stage, and gain energy

as they travel in vacuum towards the positively charged high voltage (HV) terminal.

Inside the HV terminal, each ion passes through a stripping foil, where two electrons are

stripped, leaving a positive ion, such as H+. These positive ions then experience a

repulsive force from the terminal as they enter the high energy stage. The ions exit the

accelerating structure, and enter the beam line extension, which is electrically grounded.

In its present configuration, the beam line extension passes through a steering magnet,

and quadrupole focusing magnet and terminates at the target housing. The steering

magnet, quadrupole magnet and target are not shown in Figure I-C-2.

I.C.2 Accelerator performance to date

The accelerator has been operated, for limited duration, at a maximum continuous

proton beam current of 0.8 mA at an energy of 2 MeV. The accelerator has been run
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Figure I-C-1: The accelerator at LABA.
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routinely with deuteron beam currents up to 50 [LA at a beam energy of 2.6 MeV. The ion

source current has been as high as 5 mA. The current research program aims to increase

both the terminal voltage and the current in a systematic way, and to evaluate the

performance of all accelerator systems.

I.D Overview of New Research

For AB-BNCT to become a viable and accepted cancer treatment modality several

issues must be resolved. The purpose of this thesis is to address some of these issues, and

report on the progress towards a solution for each. During the past few years, significant

advances have been made in the field of AB-BNCT, both at LABA, and other facilities.

The work presented in the remainder of this thesis will add to these advances. This

section introduces the research presented as original contributions to the AB-BNCT field.

The thick target yield and spectra of the reaction 9Be(p,n) have been accurately

measured using time-of-flight techniques, using proton bombarding energies which are

currently considered useful for AB-BNCT. This research will be presented in Chapter II.

An important characteristic of these measurements is that they were accomplished on an

absolute basis, without any normalization. The experimental procedures were confirmed

indirectly by measuring a second reaction, 9Be(d,n). These measurements are important

not only to the BNCT community, but also to the scientific community at large, since this

reaction can be used as a neutron source for a variety of applications.



A comparative study of possible therapy beams has been accomplished using

three likely neutron source reactions for AB-BNCT (9Be(p,n), 9Be(d,n), 7Li(p,n) ), and is

presented in Chapter III. Seventy different MSR configurations were studied using

Monte Carlo methods. In addition to examining the neutron production at the target, the

gamma contamination resulting from (p,y) reactions was addressed. The designs were

compared on the basis of equivalent accelerator current and power. Recommendations

are made concerning future beam design. Beam designs based on the reaction 9Be(p,n)

were studied for four different proton bombarding energies.

The BNCT dose components were measured experimentally using dual ionization

chambers and activation foil analysis. These measurements were accomplished on an

absolute basis and were compared with the values predicted by Monte Carlo simulation.

Recommendations for further measurements are presented.

The radiation dose rates resulting from operation of the LABA accelerator at a

shielded facility were investigated for several neutron producing reactions and MSR

configurations. This work is presented in Chapter IV. A system of electron suppression

magnets inside the accelerating column of the LABA accelerator appears to have

effectively reduced the bremsstrahlung radiation levels which were thought to be

problematic. Methods to shield the patient against non-therapeutic radiation dose rates

are also examined.
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CHAPTER TWO

Neutron Producing Reactions

As mentioned in Chapter I, the ideal neutron producing reaction for AB-BNCT

would be prolific, have an average energy in the epithermal range, and produce no

penetrating contaminant radiation. No reaction has yet been found which meets all of

these criteria simultaneously. Therefore, a common approach is to induce a neutron

producing reaction at an energy well above threshold, and moderate the resulting neutrons

to epithermal energies. This approach leads to significant heat loading of the target, so an

additional requirement is that the target material be practical, especially concerning heat

removal. A common feature of these reactions is that the total thick target yield and

maximum neutron energy both increase with increasing ion bombarding energy. Thus, a

trade-off exists in trying to create a neutron source which is both low energy and prolific.

In this chapter, three possible neutron producing reactions are examined: 7Li(p,n), E,=2.5

MeV; 9Be(p,n) EP < 4.0 MeV; and 9Be(d,n), Ed=2.6 MeV. The advantages and problems

associated with each reaction in regards to its use for AB-BNCT will be discussed. This

will provide the framework for Chapter III. where clinically useful epithermal beam

designs based on each of these reactions will be investigated.



II.A 7Li(p,n)

This reaction is a natural choice for AB-BNCT for two reasons. First, the thick

target yield is significant even at energies less than 1 MeV above threshold. This means

that large amounts of neutrons will be produced at relatively low energies. Second, the

threshold of the reaction is low (1.88 MeV) so that accelerator performance requirements

and target heating are minimized. Unfortunately, lithium is a poor choice for a high

current target material, when its physical and mechanical properties are considered. The

thermal conductivity of lithium is 44.0 W/m-°C, and the melting point is 180.7 'C [1].

Further complicating the poor thermal properties of lithium is the fact that pure lithium is

a soft metal with the consistency of soft clay. Thus, lithium cannot be formed into a

target which will hold vacuum or water pressures without a backing. Since the backing,

and not the lithium, would be directly cooled, heat must be conducted first through the

lithium target, then across the lithium-backing interface, through the backing, and finally

into the coolant. One possible solution to this problem is the use of a lithium compound

(such as LiF). However, this results in lower neutron yield per unit current. In this

section, the neutron production from a pure lithium target will be presented. Although

lithium does not have good physical and mechanical properties, it is quite possible that

these limitations can eventually be overcome. AB-BNCT groups are currently working

on lithium target designs [2] [3].



II.A.1 Neutron yield and spectra

The thick target neutron yield and angular and energy distributions have been

calculated using published cross-section [4] and stopping power [5] data for proton

energies from 1.88 to 2.5 MeV [6]. The total thick target neutron yield for Ep=2.5 MeV

is 8.96 x 10" neutrons/mC. and the maximum neutron energy is approximately 800 keV.

The unit mC (milliCoulomb) refers to the total charge (integrated current) of the proton

beam striking the target. The neutron yield is forward peaked as shown in Figure II-A-1.

Examples of the angular distributions are shown in Figure II-A-2.

II.A.2 Gamma production

In addition to the production of neutrons, the proton bombardment of lithium also

produces gamma rays. At energies below 2.5 MeV, gamma production results from the

reaction 7Li(p,p'y)7 Li. This photon has an energy of 478 keV. The thick target absolute

gamma yield has been previously reported for proton energies up to 4.2 MeV [7]. Some

of the results are presented in Table II-A-1.

Yield of 'Li(p,p'y)7 Li [photons/mC-steradian]
E= 1.7 MeV EP= 2.4 MeV I E= 3.1 MeV

8.6 x 106 2.6 x 107  5.6 x 107

Table II-A-I: Thick target gamma-ray yield resulting from the proton bombardment of
lithium[7].
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II.B 9Be(d,n)

The second reaction to be considered in this chapter is 9Be(d,n). Unlike lithium,

beryllium has excellent thermal properties. Beryllium is better suited as a high current

target, when compared with lithium, due to its higher melting point (1290 'C) and

superior thermal conductivity (190 W/m 'C) [1]. The mechanical and physical properties

of beryllium make it an ideal high current target. It can easily be made into a practical

target which can withstand both water and vacuum pressures. The 9Be(d,n) reaction is

exothermic, in contrast to the two (p,n) reactions discussed in this chapter, and produces

energetic neutrons which must be extensively moderated for AB-BNCT. The maximum

Q-value of the reaction 9Be(d,n)10B is +4.36 MeV. The reaction may also proceed to

many excited states in 10B. There are several endothermic reactions which can also occur,

such as (d,2n), (d,pn) and (d,p2n) [8]. The total thick target neutron yield has been

measured for deuteron bombarding energies Ed = 2.6-7.0 MeV at 0 degrees[8]. During

the measurement of the reaction 9Be(p,n) discussed in Section II-C, some of these

measurements were repeated and confirmed. Both sets of measurements were absolute,

independent, and were made only at 0 degrees. The angular distribution of the neutron

production is not available in the literature. When this reaction is used in Chapter III, it is

assumed that the neutron production at 0 degrees is representative of the neutron

production at all angles.

The yield of this reaction is a steadily increasing function of deuteron bombarding

energy. This relation is shown in Figure II-B-1. Although this reaction is prolific, the
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average neutron energy may be problematic for AB-BNCT, because the extensive

moderation of the neutrons severely reduces the neutron intensity [9]. Figure II-B-2

depicts the increase in average neutron energy as a function of the incident deuteron

energy [8]. Even with the lowest deuteron energy shown (2.6 MeV) the average energy

exceeds the maximum neutron energy for the reaction 7Li(p,n), Ep=2.5 MeV (which is

approximately 800 keV), and is near the maximum for 9Be(p,n), E,=4.0 MeV (which is

approximately 2.2 MeV). Results which will be presented in Chapter III of this thesis,

indicate that the high neutron energy resulting from 2.6 MeV deuteron bombardment is,

indeed, a problem for AB-BNCT. These early disappointing results precluded the

consideration of higher energy deuteron bombardment. The neutron spectrum of the

reaction, using 2.6 MeV deuterons, is shown in Figure II-B-3 [8].

In addition to the production of neutrons, the deuteron bombardment of beryllium

also leads to the production of gamma rays. There is only limited data in the literature

concerning this reaction. The cross section for photon production reaches a maximum

value of 10.1 + 3.5 5tb at Ed=0.96 MeV [10].

II.C 9Be(p,n)

II.C. 1 Introduction

The 9Be(p,n) reaction is the least prolific of the reactions considered in this

chapter, at proton or deuteron bombarding energies below 4.0 MeV. However the

reaction is still a strong candidate for an AB-BNCT neutron source for two reasons. First,
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Figure II-B-3: Neutron spectrum of the reaction
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as previously stated, beryllium is an excellent material for a high current target primarily

due to the superior thermal and mechanical properties of beryllium compared with

lithium discussed in section II.B. Second, since the reaction is endothermic, the average

neutron energy is not excessively high even when using Ep=4.0 MeV. At this proton

energy, the average neutron energy is below 1 MeV. At lower proton bombarding

energies, the average neutron energy is even more favorable. Prior to this work, accurate

thick target neutron spectra were not available for proton bombarding energies below 4.0

MeV. This lack of data has prevented the accurate evaluation of the suitability of this

reaction for AB-BNCT. The purpose of this section is to provide information about the

reaction (at energies Ep< 4.0 MeV) and to present the measurements which have resulted

in such thick target neutron spectra.

One study of this reaction using E,=4.0 MeV for AB-BNCT was conducted by

Wang and Moore in 1994 [11]. This study was based on calculated neutron yields and

spectra, and no experimental measurements were made. The calculations were based on

the limited data which were available in 1994, and which are discussed in Section

II.C. 1.b. The study concluded that this reaction would be slightly better for AB-BNCT

than the reaction 7Li(p,n). The research by Wang and Moore provided much of the

motivation for the measurements presented here.



II.C. l.a Neutron production channels

The reaction 9Be(p,n), as it is generally discussed, is actually several distinct

reactions. Throughout this thesis, the notation 9Be(p,n) will symbolize, collectively, all

reactions in which neutrons are produced from the proton bombardment of beryllium. A

list of all known reactions which take place below Ep=4.0 MeV, is presented in Table II-

C-1. The first of these reactions is more accurately symbolized as 9Be(p,n)9B. This

reaction proceeds through the formation of a compound nucleus, 10B. When the reaction

proceeds directly to the ground state of 9B, the neutrons generated are referred to as the

."ground state group", and given the notation no. The threshold of this reaction is 2.059

MeV. The threshold for the reaction to proceed to the first excited state of 9B, generating

the nl neutron group, is approximately 4.64 MeV [12], and therefore this reaction channel

is not considered in this section.

Reaction Q Value
9Be(p,n) 9B -1.9
9Be(p,p'n)8 Be -1.7
9Be(p,p') 9 Be* n + a + ao -1.6
9Be(p,p') 9Be* -t a + 5He -+ n + ao -2.5

Table II-C-1: Neutron producing reactions for 9Be(p,n), Ep<4.0 MeV [13].

One unique aspect of the isotope 9Be is that it has the lowest neutron binding

energy (1.67 MeV) of any stable isotope. As a result, the three-body breakup of 9Be can

occur for incident proton energies as low as 1.85 MeV [12]. This process is labeled as

9Be(p,p'n)8Be. The last two reactions are often collectively referred to as (p,p')(n)

reactions, which proceed through the excited state 9Be* [12].



II.C. .b Previous measurements

Some of the first quantitative measurements of the 9Be(p,n) reaction were made in

the early 1950s using photographic film [14]. These studies used a thin beryllium target,

and proton energies near 3.8 MeV. The results clearly showed the existence of a large no

group. and a significant lower energy neutron continuum. Since that time, many other

measurements have been made at proton energies from threshold to 4.0 MeV. Table II-C-

2 contains a list of these studies, as compiled by Byrd [15]. It is important to note that

many of these measurements were undertaken to investigate the properties of a particular

nuclear energy level. These experiments often consisted of relative measurements of

neutron production at various laboratory angles, and in each case, thin targets were used.

In most experiments, the neutron group of interest was the no group, and the researchers

would deliberately detect only neutrons in this group.

In the late 1950s two important experiments were conducted to generate the

neutron excitation function [16] [17]. The excitation function is the total thin-target

neutron production cross section, integrated over all angles and neutron energies, as a

function of the proton bombarding energy. The excitation function is shown in Figure II-

C-1. The cross section rises rapidly from threshold to a value of 160 mb, at a resonance

of E,=2.56 MeV. A second resonance was identified at 4.6 MeV [12]. Between these

two resonances, the neutron production is attributed to a third broad resonance centered at

3.5 MeV [17] [12]. This broad resonance is believed to be responsible for the neutron

production below the 2.56 MeV peak as well [17].



Reference Year En Proton energies Angles Absolute Error

(note a) (note b) used [MeV] measured [%]
[laboratory] (note d)
(note c)

Marion (16) 1956 none 2.1-5.1 (5) 0-150 (7-10)
none 2.1-2.8 47r

Marion & 1959 no 2.3-5.6 0,90 (10)
Levin (12)

none 2.3-5.8 90

Gibbons & 1959 none 2.1-5.4 47r see note d
Macklin (17)

Albert (28) 1961 none 2.0-4.3 (10) 0-120 (25)

Kelsey (29) 1963 no 2.5-4.1 (9) 0-150 (10)

Walker (30) 1963 no 3.5-10.9 (9) 0-150 (20)

Bair (31) 1964 none 4-14.3 4xr (6)

Table II-C-2: Measurements of 9Be(p,n) for Ep< 4.0 MeV[15].

Notes: (a) The number in parenthesis corresponds to the reference number at the
end of this chapter.
(b) "none" indicates that the neutron energies were not evaluated. "no" indicates
that only the no group was measured.
(c) The number in parenthesis is the number of angles measured.
(d) Numbers in parenthesis have been assigned by the author of the review
article. In the case of the research by Gibbons and Macklin, Byrd claims that this
number is stated in the original work, as 3%. This does not seem to be supported
by a careful reading of the original work. No clear statement of absolute error is
reported in the original paper.

Because the threshold of the reaction 9Be(p, p'n)8Be is less than that of the

9Be(p,n) 9gB reaction, it is possible to evaluate the cross section of the former reaction

below E,=2.059 MeV. This value has been determined to be less than 1 jtb [17]. At

proton bombarding energies up to approximately 2.5 MeV, neutron production is

dominated by the no group. Above approximately 3.0 MeV, the neutrons generated from

(p, p'n) and (p,p')(n) reactions are more significant, and form a continuum of neutrons

which is noticeable in the energy spectrum [12]. An exact evaluation of the percentage of

neutrons in this continuum is difficult since the continuum extends through the no (and at

higher energies, nl) group [12]. One report states that the continuum neutron cross
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section at 900., E,=4.6 MeV. is 25 mb/steradian, compared with 11 mb/steradian for the no

group. The corresponding figures at E,=2.7 MeV are reported as 6 mb/steradian and 5

mb/steradian, respectively [12]. Another estimation is that the no contribution drops from

65% at E,=2.5 MeV, to 30% at 5 MeV, and 5% at 18 MeV [15]. At much higher

energies (above 15 MeV), the low energy continuum dominates the spectrum [18] [19].

As shown in Table II-C-2, there have been few studies which examine the neutron

energy spectra in the energy range Ep< 4.0 MeV. One such experiment, using a thin

target and E,=4.5 MeV, found clear evidence for a low energy continuum, and anisotropy

in the neutron production [12].

II.C.l.c Gamma production

In addition to the production of neutrons, the proton bombardment of beryllium

results in a significant production of gamma rays. At energies below 5 MeV, gamma

production comes from only two sources: proton capture (which is relatively

insignificant), and the 9Be(p,u)6Li*(y)6Li reaction [16]. The latter reaction produces a

3.562 MeV gamma photon. The thick target absolute gamma yield has been previously

reported at energies up to 4.2 MeV [7]. A sample of these results is presented in Table II-

C-3.

Yield of 9Be(p,cly,)6Li [photons/mC-steradian]
E,= 1.7 MeV Ep= 2.4 MeV Ep= 3.1 MeV Ep= 3.8 MeV E = 4.2 MeV

0.1 x 106  2.5 x 107  2.5 x 109  5.1 x 109  6.2 x10 9

Table II-C-3: Thick target gamma-ray yield resulting from the proton bombardment of
beryllium[7].



II.C. 1 .d Introduction to recent measurements

Because the thick target neutron production spectra data did not exist in the

literature for the reaction 9Be(p,n), using proton energies below 4.0 MeV, it was

necessary to use neutron time-of-flight (TOF) to attain these data experimentally. It

would theoretically be possible to calculate the thick target spectra knowing the double

differential cross section, d 2 /dQndEn as a continuous function of Ep, En, and Qn.

However, this type of information is incomplete in the literature, and as previously

mentioned, many of the experiments were performed to specifically limit, or discriminate

against, the low energy neutron continuum. For these reasons the direct approach of

measuring the thick target spectra was chosen.

These measurements were carried out primarily for use in AB-BNCT research.

However. because the neutron production threshold of this reaction is low and the thermal

properties of beryllium are favorable for heat removal, the reaction is an important high

intensity source of neutrons for many applications. One possible use of detailed spectral

information is the use of this reaction as a calibration standard for neutron detectors.

Other possible uses are neutron radiography, neutron interrogation of materials, and the

calibration of dosimeters [ 18].



The goal of this project was to accurately measure the neutron spectra, and to

provide a data set which would be useful to the scientific community. An important

aspect of this goal is that absolute measurement of the reaction was desired. In many

cases, relative measurements are adequate for the needs of the scientific community. For

AB-BNCT applications, absolute measurements are needed since the radiation dose rates

are proportional to the absolute yield of the reaction. As will be shown below, the total

neutron yields at various proton bombarding energies estimated by these measurements

differed from the predicted values. Therefore. a relative measurement scaled to the

absolute predicted yield would have been in error. As will be discussed below, the

measured and predicted values of total yield differ by approximately 20% for Ep=3.7

MeV and by approximately 25% for E,=4.0 MeV. The data presented in this section are

absolute - no normalization has been used.

The TOF measurements were made at the Ohio University Accelerator Laboratory

(OUAL) during two series of experiments in November 1995 and August 1996, using 4.0,

3.7, 3.4, and 3.0 MeV protons. In this section, the November 1995 measurements will be

collectively referred to as Group A, and those taken in August 1996 as Group B. The

complete data set is located in Appendix B. Appendix B includes a graph of each neutron

spectrum measured. This appendix also contains the data in tabular form. These tables

provide the neutron yield and total statistical uncertainty for each energy bin, and each

spectrum. The remainder of Section II.C will describe these measurements in detail



including the method of calibrating the neutron detectors, and a presentation of some of

the results. The section will conclude with some suggestions for further measurements.

II.C.2 Experimental methods and equipment

II.C.2.a Introduction to time-of-flight

Standard TOF techniques were used in the determination of the neutron energy

spectra from the reaction 9Be(p,n). Neutron TOF is a method of determining the kinetic

energy of a neutron by measuring its velocity, since EKIN=mV2/2. (The neutron energies

measured in this experiment were less than 2.5 MeV; therefore, a non-relativistic

treatment is appropriate.) The velocity is determined by the simple equation

velocity=length/time. or more completely: V=(X 2-X 1)/(T 2-T1). The quantity (X2-XI) is

the "path length" or 'L". The quantity (T2-TI) is the time-of-flight (TOF), or T.

Typically, L is held constant by fixing the location of the neutron source (in this case, a

beryllium target) and the neutron detectors. To measure TOF, one must accurately

determine both T2 and TI. In the case of charged particle induced reactions, such as

9Be(p,n), a pulsed proton beam is used and a circuit called a "beam pick-off' (BPO)

generates an electronic signal just before the proton pulse strikes the target. The BPO

starts the timing sequence at T 1. If a neutron is produced at the target, in the direction of

a neutron-sensitive detector located at X=X 2, then a neutron event will cause a second

electronic signal to be generated at T2. Normally, a time-to-amplitude converter (TAC)

charges a capacitor for a period of time equal to T2-TI creating a voltage proportional to



the TOF. This voltage amplitude is then digitized using the TOF analog-to-digital

converter (TOF-ADC).

Rearranging E=mv 2/2 yields, v=(2E/m) 1/ 2 . Dividing both sides of this equation by

c yields: (v/c) = (2E/mc 2)1/ 2 . Since mc2 for a neutron is 939.55 MeV,

(v/c)=(2E/939.55) 1/2, where E is measured in units of MeV. As an example, the velocity

of a 1 MeV neutron is: v=(3xl0s m/s)(2*1/939.55) 1/2 = 1.38x107 rn/sec. Using a path

length of 10 m results in a TOF of 723 nanoseconds. Repeating this same calculation for

a 950 keV neutron, yields TOF=741 nanoseconds. So, to resolve the difference between

a 950 keV neutron, and a 1 MeV neutron, the detector and associated electronics must

respond faster than 18 nanoseconds. Because energy is a function of the square of the

velocity, the fast timing requirements are more stringent for higher energies. For a 10 m

flight path, the TOF difference between a 2 MeV and a 1.95 MeV neutron is 6.5 nsec.

These examples illustrate the need for fast timing circuits for neutron TOF measurements.

Since the energy information is encompassed in the values of L and T, the

uncertainty of the energy has two components: AL/L and AT/T. The AL uncertainty is

primarily due to the thickness of the detector (the neutron producing target is thin, and the

distance from the target to the midpoint of the detectors can be accurately measured).

When a neutron event is detected, one only knows that the event was generated

somewhere in the active volume of the detector. For example, a 1 cm thick neutron

detector used at L=10 m, would have AL/L = 0.001. The uncertainty in the timing



resolution is more complex, and depends on the choice of detector and circuit

components. Typical timing circuits and detector arrangements have AT on the order of 1

nsec. For the measurements presented here, this is also approximately the width of one

TOF-ADC channel.

Low-energy neutron TOF measurements are hindered by an effect called "wrap-

around". If two successive proton pulses, N and N+1, arrive at the target and produce

neutrons with various energies, it is possible that the fastest neutrons created in the

second pulse will arrive at the detector before the slowest neutrons of the first pulse.

Since the neutron detector cannot distinguish which pulse the neutrons came from, these

signals must be discarded. This is called "wrap-around". The wrap-around problem

effectively sets a limit on the lowest energy neutrons which can be resolved. The

problem is more severe for faster pulse rate frequencies, and longer flight paths.

Unfortunately, long flight paths are preferred in TOF measurements, as they allow for

small values of the relative uncertainties of L and T, i.e., AL/L and AT/T are lower since

L and T are larger. Lowering the pulse rate frequency lengthens the time required for the

measurements. Therefore, there is a trade-off between experimental quality and speed of

measurements on the one hand, and the lower energy limit of neutron measurement on the

other.



II.C.2.b The Ohio University TOF facility

OUAL utilizes a tandem Van de Graaff accelerator, with a maximum terminal

voltage of 4.5 MV, to produce proton pulses for neutron TOF measurements. A picture

of the accelerator is shown in Figure II-C-2. H- ions are produced in a ion source when

positive cesium ions are made to strike the cathode target made of titanium hydride.

Hydrogen atoms are sputtered from the cathode and gain electrons though charge

exchange with cesium, which has deposited on the cathode surface. These sputtered

atoms, now negatively charged, are repelled from the cathode and accelerated to ground

potential. Electron suppression is accomplished through the use of permanent magnets

mounted to the source housing. A negative voltage applied to the ion source causes the

H ions to be injected into the low-energy extension of the accelerator. In this extension,

the DC beam is chopped by allowing the beam to pass through the aperture of the

klystron buncher at a frequency, f=5/2 n MHz (n=0-6). Experiments at OUAL are usually

conducted at f=5/8 MHz or f=5/16 MHz. For these measurements, f=5/16 MHz was

used, allowing neutron energies down to 70 keV to be measured. The width of the

chopped beam (FWHM) is approximately 50 nsec. The klystron buncher produces a

pulsed beam with a width of approximately 750 psec [20].

The bunched beam is then accelerated in the low energy stage of the tandem Van

de Graaff towards the high voltage terminal. Inside the terminal, a thin carbon foil

stripper (2-3 ptg/cm') removes 2 electrons and the resultant proton is accelerated away

from the terminal to the end of the accelerating column. The axis of the accelerator is



Figure II-C-2: The accelerator at OUAL



perpendicular to the axis of the flight tunnel, so the beam must be redirected by using the

beam swinger [21]. The main components of the beam swinger are two magnets which

alter the direction of the beam -45' and +1350 respectively so that the proton beam

direction changes by a net +90'. The entire swinger gantry is counterbalanced to allow

rotation about the axis of the accelerator. Thus, the detectors can be set to record data for

laboratory angles from -4' to +1600 simply by rotating the swinger. Before striking the

target, the beam passes through a capacitor circuit beam pick off used to generate the

TOF record for a detected event. The target chamber is mounted at the end of the beam

swinger gantry. The chamber contains a target wheel capable of holding eight targets

which can be selected remotely. A picture of the target housing is shown in Figure II-C-

3. The evacuated beam tube terminates at an extension called the "snout", which

protrudes into the target chamber. An electron suppression screen is connected to this

snout by an insulated bushing. Below the target wheel is a Faraday cup. During

measurements, a 300 Volt battery is connected to an electron suppression screen to repel

any secondary electrons back onto the target or chamber walls. The current on the snout,

chamber walls, target wheel and Faraday cup, are combined to form the integrated current

reading [21].

After the first series of measurements (Group A) a calculation of the total

measured yield was made. The result was lower than expected (based on calculations

using the excitation function [17] and stopping powers of protons in beryllium [22]), and

several possible reasons for this disagreement were considered. The first is that a



Figure II-C-3: Target chamber at OUAL.



significant portion of the yield was contained at angles greater than 110 degrees (not

measured in Group A). One other possibility was that the charge collection circuit was

not functioning correctly, and was introducing a systematic error. For this reason, the

charge integrating circuit was tested extensively before the Group B measurements. A

testing circuit was devised to ensure that the charge on each possible surface was being

added to the current reading. The variation of current on the target wheel with changing

electron suppression screen voltage was measured. It was determined that above 50 volts,

the variation diminished rapidly and then remained steady over the remainder of the

measurements, indicating that this voltage is enough to suppress the most energetic

secondary electrons. With the beam running, the target wheel was rotated between

various targets and blanks (open slots which allow the current to be collected on the

Faraday cup). No variation on integrated current with target wheel position was seen.

Additionally, a free floating current source (dry cell battery) and a resistor circuit, were

used to check the absolute accuracy of the charge collection. This series of tests

confirmed that the accuracy of the charge collection is better than 2 %. The charge

collection circuit was identical for the Group A and Group B measurements, but was not

tested before the Group A measurements.

The targets used for these measurements were 2.5 cm square, and 0.25 or 0.5 mm

thick, and 99% pure in their beryllium content. These targets were thick enough to stop 4

MeV protons. Neutrons produced at the target must pass through a 30 cm collimator in a

1.2 m thick concrete wall before reaching the flight tunnel. The flight tunnel is



constructed with eight sections of concrete water conduit, which is buried beneath

approximately 3 m of earth. The inner diameter of the conduit is 2.13 m and each section

is 3.35 m long. A detector array capable of holding seven detectors is located at any

distance from 4 to 30 m. For these measurements, a 10 m flight path was used. A picture

of the flight tunnel, looking towards the target chamber, and showing the back of the

detector array, is provided in Figure II-C-4. A diagram of the OUAL TOF facility is

shown in Figure II-C-5.

II.C.2.c Neutron detectors

The evaluation of neutron spectra at energies below approximately 500 keV, and

up to 2.5 MeV, requires the use of detectors which can generate discernible signals from

the interaction of low and high energy neutrons. To yield accurate energy information,

the detectors must also have the ability of generating fast timing information. Four

lithium-loaded glass scintillators were used based on their fast response time and

sensitivity to low, as well as high, energy neutrons [23]. The lithium glass detectors

contained 6.6% weight fraction of lithium, which was enriched to 95% 6Li. The detectors

were 1.27 cm thick and 12.7 cm in diameter.

Lithium glass detectors work by creating a luminescence at a cerium activator site

(Ce 3+) in a glass matrix. The energy to activate this site comes from the reaction

6Li(n,ct)3H. For thermal neutrons, the triton carries away 2.72 MeV of energy, and the

alpha particle 2.04 MeV. These charged particles then induce ionization along their paths



Figure II-C-4: TOF tunnel and detectors at OUAL.



A TANDEM VAN DE GRAAF ACCELERATOR

B BEAM SWINGER MAGNET
C COLUMATOR
0 DETECTOR ARRAY
F FORMER TIME-OF-FLIGHT AREA
K KLYSTRON BUNCHER
M MONITOR

S SCATTERING SAMPLE
T TIME-OF-FLIGHT TUNNEL

Figure II-C-5: OUAL Facility

ii

K



through the glass. The secondary electrons created in turn activate the cerium centers,

which give off light. This light is then collected by a photomultiplier tube [24].

The efficiency of the lithium-glass detectors were determined in a two step

process. First, the neutron spectrum at 120' from the reaction Al(d,n), using 7.44 MeV

deuterons, was measured using fission detectors. A stopping aluminum target was used,

and the neutrons were detected using TOF techniques, with a fission chamber furnished

by Argonne National Laboratory. The fission chamber used ultra-pure methane as a

counting gas, and was composed of four )5U foils: U-235-J, U-235P, U-235S, and U-

235T, which have been previously described [25]. The Al(d,n) spectrum used for the

calibration is shown in Figure II-C-6. The lithium-loaded glass scintillators were then

used to measure the Al(d,n) spectra. Comparisons between the known and measured

spectra of Al(d,n) yielded the intrinsic efficiency data for the detectors.

This calibration process works well at higher energies, but is problematic at low

energies because the yield of the calibration reaction, Al(d,n), drops off rapidly below 300

keV. This occurs precisely near the rapid change in lithium glass efficiency caused by the

250 keV peak in the 6Li(n,a) cross section. For these measurements, the shape of the

lithium glass efficiency curve below 250 keV was taken from the literature [23]. The

absolute magnitude of the curve below 250 keV was then scaled to match the

experimentally determined efficiency at 250 keV. The efficiency of the detectors was

analyzed separately for data Groups A and B. For Group A, the scaling factor used to
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match the data in the literature was near 1.0. For Group B, the detector efficiencies

measured at OUAL were lower than the data in the literature. Below 250 keV, the data in

the literature were multiplied by 0.756. The difference in the scaling factors (1.0 and

0.756) results from differences in the photomultiplier bias voltages. These efficiency

curves were then fitted by polynomial equations to yield efficiency functions that are

continuous in energy. This process resulted in a lithium glass efficiency curve shape very

similar to those of Neill et al., over the region of interest for these measurements (En < 3

MeV) [23]. The average lithium glass efficiency used in the analysis of the Group A

measurements is shown in Figure II-C-7.

II.C.2.d Data processing

The TOF, energy, pulse shape discrimination (PSD), and routing information

(detector number) for each detector event are generated by the electronic components and

circuits depicted in Figure II-C-8. The result of this process is the generation and storage

of a series of data files containing the channel signals for several analog-to-digital

converters (ADC). Each of these ADC data files corresponds to a different physical

quantity such as the integrated light yield of the detected event, or the time-of-flight.

During the experiments, these ADC data files were stored temporarily on the data

acquisition computer, and then transferred to a UNIX workstation to be analyzed. The

analysis of the ADC data to produce the neutron spectrum is accomplished with a single

FORTRAN program which executes a number of processing steps. The first step is the
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assignment of flight times, and corresponding neutron energies, for the various TOF-

ADC channels. The methodology used for this assignment has been previously described

[26]. The linearity of the time-to-amplitude converter is determined and used to subtract

the background signal on a channel-by-channel basis. Next, each of these net signals is

converted to neutron yield by dividing by the intrinsic detector efficiency, which is

expressed as a continuous function of energy. The methodology used to generate this

function will be discussed later. The individual detector yields are then grouped in energy

bins, and finally, the various detectors are added together to form the total neutron yield

for each energy bin. The propagation of the total statistical error is accomplished with the

same FORTRAN program.

II.C.2.e Statistical and systematic error

The total statistical counting error is calculated during the execution of the

FORTRAN processing program. The statistical error decreases with increasing total

charge impinging on the target. As in the case of pulse rate frequency, there is a trade off

between experimental quality, and length of the measurements. Calculations were made

prior to the experiments to determine the number of counts in each channel of the TOF-

ADC which would result in a statistical counting uncertainty of approximately 5%, using

25 keV energy bin widths, near En=l MeV. During the measurements, the data were

monitored and evaluated against this calculation. To achieve this degree of statistical

quality, each configuration of angle and energy required an average of 3 hours for



acquisition. The total acquisition time of the data set was approximately 100 hours for

the Groups A and B combined.

In addition to the statistical error, there are several factors which add to the

systematic error of the results. The solid angle subtended by the detectors is measured by

determining the diameter of the detector surface and the neutron path length. These are

determined to within 2 mm. The detectors are aligned with the target by using an

alignment telescope, and the flight path is measured by a metal ruler embedded in the

flight tunnel. A calculation using the maximum expected deviations results in a solid

angle uncertainty of 2%. The total integrated charge has been discussed above, and an

absolute error of 2% is assigned to this value. The solid angle factor and integrated

charge are multiplying factors for the data, and would affect the absolute value of the

data, but not the shape of the individual spectra.

The uncertainty in the shape of the spectra is affected primarily by two quantities

in addition to the counts in the TOF ADC channels. These are: the energy uncertainty

and the detector efficiency uncertainty. Since the energy measurement is essentially a

velocity measurement, it depends on accurate assignment of path length and TOF. The

accuracy of the path length has two contributions: distance from target to detector face,

and thickness of the detector. For a 10 m flight path (measured to within 2 mm), and a

1.27 cm thick detector, the AL/L uncertainty is approximately 0.1%. The timing

uncertainty is dependent on a few factors. The width of the proton pulse, as discussed



above, is approximately 750 psec. The accuracy of the timing is optimized by taking the

neutron event timing from one of the first dynodes in the photomultiplier tube amplifying

chain. The neutron channels are assigned energies based on the position of the gamma

peak, which results from gamma rays produced at the target. The width of this gamma

peak is approximately 1-1.5 TOF-ADC channels, or approximately 1.5 nsec. The

remainder of the timing uncertainty comes from the electronics, and accounts for an

additional 1-1.5 nsec [21]. The total uncertainty in the timing is approximately 4 nsec.

Since energy is proportional to TOF2 , the uncertainty affects the higher energy portion of

the neutron spectra more than the lower portion. As mentioned in section II.C.2.a, the

TOF difference between 2 MeV and 1.95 MeV neutrons is 6.5 nsec. Since the neutron

spectra are binned in 20-50 keV bins, neutrons in the lower energy portions of the spectra

are more accurately assigned to a bin, since the width of an energy bin (expressed in

TOF) is large compared with the timing uncertainty. If a neutron with an energy near 2

MeV is assigned to the incorrect TOF ADC channel, it could more easily result in that

neutron being counted in the wrong energy bin as well, since fewer TOF ADC channels

make up that energy.

Finally, the accuracy of the shape and magnitude of the spectra are both affected

by the accuracy of the detector efficiency calibration. The interaction cross section of the

fission foils is known to better than 3%; however, the weight, and hence, thickness of the

foils has an uncertainty of + 5% [25]. The efficiency calibration is also dependent on the

statistical quality of the Al(d,n) measurements, which is approximately 5% , combined



with a systematic error of approximately 5% [27]. At energies below 250 keV, the

efficiency determination is dependent on the accuracy of the initial calibration data in the

literature [23]. The error introduced by transcribing this data from the literature is

difficult to judge. Considering all of these effects, the detector calibration efficiency is

assigned an error of 15% above 250 keV, and 20% below 250 keV.

The total error in the absolute magnitude of the neutron spectra data, then, is

estimated to be less than 20 % above 250 keV, and 25% below 250 keV. At the higher

energy portion of the various spectra, there is some additional inaccuracy in the shape of

the curves due to the previously mentioned effects of timing uncertainty. This shape

uncertainty is most easily seen by examining the highest energy portion of each spectrum.

Here, the yield should drop rapidly to zero at an energy dictated by kinematics. How

slowly the yield drops gives an indication of the timing, and hence energy, uncertainty.

This drop would be even sharper for even faster detectors such as plastic scintillators.

II.C.2.f Confirmation of spectra using 9Be(d,n) reaction

To confirm the accuracy of the detector calibration procedure, and all other

aspects of the measurement process (time calibration, charge collection accuracy,

programming, etc.), the measurement of the Group B 9Be(p,n) spectra was immediately

preceded by thick target measurements of the reaction 9Be(d,n). This reaction was

measured (on an absolute basis) at 0', for Ed=2.6-7.0 MeV, at 400 keV intervals. These

results were then compared to data in the literature [8]. One such comparison, using 4.6



MeV deuterons, is shown in Figure II-C-9. The error bars reflect only the total statistical

error. The 9Be(d,n) data are discussed in section II-B.

The agreement between the two data sets is very good above 500 keV. Between

600 keV and 3 MeV, the maximum dissagreement is about 10%. In the region above 1

MeV, Meadows presents a third set of data which agrees with his earlier data to within

10% [8]. The neutron energy spectrum above 1 MeV shown in Figure II-C-9 is consistent

with both sets of measurements. Between 250 keV and 500 keV, the neutron spectra

measured at OUAL consistently fall below those of Meadows by approximately 25%.

The maximum disagreement is near 290 keV. At this energy, the stated statistical

uncertainty of the Meadows data is 4.1%, in addition to a total systematic error of 4%.

The discrepancy between 250 keV and 500 keV is difficult to explain because the

cross section of the 6Li(n,a) reaction and the efficiency of the lithium glass detectors are

well known in this energy region. As shown in Figure II-C-7, the lithium glass efficiency

determined during these measurements agrees well with the results of Neill. One

possibility is that Meadows used different cross sections to determine the fission foil

detector efficiencies. Also, because Meadows used fission foil detectors for his

measurements, he avoided the difficulty of calibrating lithium glass detectors, and his

calibration procedures had one less step than those used by MIT/OUAL in August 1996.

By reducing the number of calibration steps, Meadows' data would potentially have fewer

sources of error.



Figure 11-C-9: Comparison of OUAL/MIT and Meadows
measurement of 9Be(d.n) E =4.6 MeV neutron spectrum
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II.C.3 Results and discussion

The neutron spectra were measured at the various combinations of energy and

angle shown in Table II-C-4. Graphs of the complete data set are included in Appendix

B. This appendix also includes the numerical values for each of the following quantities:

midpoint of energy bin, absolute yield and total statistical uncertainty. Since the

statistical error is included in a complete form in the appendix. some of the graphs in this

section will not include error bars. This allows the clear presentation of several data sets

on one graph, for reasons of comparison. Samples of the neutron energy spectra for the

various combinations of angle and energy are shown in Figure II-C-10 and Figure II-C-

11. Figure II-C-10 shows neutron energy spectra at 3 angles using 4.0 MeV protons. For

clarity, the total statistical error is shown only at 0.25, 0.5, 1.0, and 1.5 MeV. Figure II-

C-11 depicts the 0 degree spectrum at the various proton bombarding energies. with

representative errors shown.

Proton bombarding energy (MeV) Laboratory Angle
4.0 0,20,40,60,80,110,115,120,125,130,135,145
3.7 0,20.40,60,80,110.115,120,125,130,135,145
3.4 0.40
3.0 0,40
Table II-C-4: Combinations of energies and angles for which the neutron spectra of
Be(p,n) were measured.

Since the complete data set was acquired at two different times (Groups A and B),

it was important to ensure that the results were repeatable. Group A contains laboratory

angles from 0 to 110 degrees. The Group B measurements were made primarily to

examine the angles greater than 110 degrees. However, to ensure consistency, the

laboratory angles 0, 20, 60 and 110 were repeated in August 1996 (Group B) for Ep=4.0



Figure IIl-C-10: 9Be(p,n) neutron spectra at 3 angles
for E = 4.0 MeV.
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9Be(p,n) neutron spectrum at 0 degrees
for 4 energies. Group B data are presented.
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and 3.7 MeV. For Ep=3.4, 3.0 MeV, the 0 degree measurements were also repeated. One

such comparison of these data is shown in Figure II-C-12. The error bars reflect only the

total statistical error.

The agreement between Groups A and B varies as a function of neutron energy.

Over the neutron energy range 250 keV - 1.875 MeV, the maximum disagreement is

approximately 20%. The agreement between 250 keV and 2 MeV is within the total

statistical and systematic error. Over this interval, neither spectrum is consistently higher

than the other. One important distinction between the two is that the Group B appears to

have better timing accuracy. The drop in the neutron spectrum near 2.1 MeV should be

rapid for timing configurations with small values of AT/T. This is the case with the

Group B results, but the Group A drop much less rapidly to zero. One possible

explanation for the discrepancies concerns the charge collection circuit. The target

charge collection circuit was tested extensively before the Group B measurements, but

not before the Group A measurements. It is possible that some part of the circuit was

different, or not functioning the same during the Group A measurements.

Below 250 keV, the results from Group A are consistently higher than Group B.

The disagreement between the two groups is as high as a factor of 2.0. There are two

possible explanations for this discrepancy. First, the lower energy portion has many more

TOF-TAC channels than the upper energy portion, for an equivalent sized energy bin.

The lower portion is, therefore, much more susceptible to errors in background
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subtraction and the linearity of the TAC channels. A small error in the background

subtraction. which is done channel-by-channel. would multiply to a larger error for the

lower energy bins. Second, during the calibration of the lithium glass detectors, the

27Al(d.n) spectrum is fit to a smooth curve. As the yield of this reaction begins to drop at

lower neutron energies (below 500 keV) it is difficult to determine what features of the

neutron spectrum are real, and which ones are statistical anomalies. A great improvement

to these measurement techniques would be a calibration standard which was more

prolific, and better defined, at energies below 500 keV.

The possibility that one of the detectors was not functioning properly was

examined to determine if this could have caused the discrepancy between Groups A and

B. The detectors were found to give equivalent neutron spectra when their signals were

treated individually or as a group (with a single detector, the statistical error is noticeably

higher).

If the 9Be(d,n) data by Meadows, presented above, are taken to be accurate, then

below 250 keV, the shape of the 9Be(d,n) spectra should be monotonically decreasing.

There is agreement in this aspect between the Meadows measurement and that of

OUAL/MIT. This would indicate that the efficiencies of the detectors used in the Group

B calculations had the correct shape, if not the correct magnitude.



If one compares the magnitude of the spectra (Group A to Group B, and Meadows

to OUAL/MIT), the spectra measured in August 1995 seem to be low near 250 keV. The

discrepancy in the total angular yield (E,=4.0 MeV, 0 degrees) between the Group A and

Group B measurements is approximately 3%.

The explanation of the shape of the various neutron spectra is the topic of ongoing

research at OUAL. Several contributing reactions have been previously reported as

discussed earlier in this chapter. The neutrons produced with energies above 1 MeV are

believed to be due primarily to the reaction 9Be(p,no)9B which proceeds through the

compound nucleus 10B. It is important to note that the best information on the reaction

would come from thin target measurements, and not thick target measurements.

However, a simple calculation might help to explain the neutron energy spectrum for 0',

and E,=4.0 MeV. The spectra at other energies could have similar explanations. The

calculation would differ, of course, because the differential cross sections vary with

angle. The calculation is based on an excitation curve for neutrons in the no group, 0'

laboratory angle, measured by Marion [12]. Data for this calculation were extracted from

Figure 5 of Marion's paper, to which he assigns an absolute uncertainty of 30%. The

excitation function at 0' is generally flat in the region 2.8 MeV< Ep<3.6 MeV. This

differs from the excitation function. for all angles (also presented in the same paper),

which has a large broad resonance centered at 3.5 MeV. As mentioned previously, the

contribution to the neutron production from the continuum neutrons is expected to



increase from approximately 35% at Ep=2.5 MeV to 70% at 5 MeV. A linear fit to these

two data points was used in the following calculation.

For this calculation, one must consider the thick beryllium target as being made of

several thin targets stacked together. The calculations below used a 10 keV thickness.

First, since the yield is of the order 1x1012 neutrons/mC, only 16 in 100,000 protons

actually produce a neutron. It is safe, then, to consider a beam of uniform intensity

passing through the target, slowing down, and eventually stopping. As the proton beam

passes through the first thin layer of beryllium. with energy 4 MeV, it produces neutrons

in the no group corresponding to an energy ENo (near 2.2 MeV). The protons lose some

energy traversing this thin layer, and in the following layer, produce fewer neutrons due

to the lower cross section. and these neutrons have a slightly lower energy. This process

continues until the protons reach the resonance at 2.56 MeV. Here, although the no group

has less energy, the production actually increases. When the total neutron production is

combined, it would be composed of several groups of no neutrons, decreasing in intensity

and energy, from the maximum energy down to threshold. The one exception from this

pattern would be the no neutrons produced from the 2.56 MeV resonance. As a final step

the expected yield based on the data by Marion was multiplied by a correction factor for

the continuum neutrons, using the two data points at Ep=2.5 and 5 MeV, discussed above,

and the spectrum was normalized. This result can be compared with the actual

normalized measured result from the Group B data. This comparison is shown in Figure

II-C-13. It should be emphasized that this comparison is qualitative, and not quantitative
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in nature due to the large uncertainty of Marion's data, and the assumption concerning the

continuum contribution. However, the general agreement in the shape of the two spectra,

especially the peak near 600 keV suggests that the production of the no neutrons can

account for the basic shape of the 0' spectrum.

The neutron production near 500 keV may also have some contribution from the

decay of the second (2.443 MeV) excited state of 9Be. The 9Be nucleus is excited via the

reaction 9Be(p,p'n). A peak near this energy has been seen before in experiments using a

stilbene crystal for neutron detection [13]. Finally, a group of neutrons with energies

centered around 500 keV was previously reported using a proton bombarding energy of

4.5 MeV. This peak existed only at the forward angles [12].

The neutron production at 0 degrees can be further examined by comparing the

results using various proton bombarding energies. Figure II-C-14 shows three

"subtracted" spectra. To generate the first subtraction spectrum, the spectrum using 3.7

MeV protons was subtracted from that using 4.0 MeV protons. This was repeated using

3.4 and 3.7 MeV, and finally for 3.0 and 3.4 MeV. The large peaks on the right hand side

of the graph are probably accounted for by those neutrons in the no group which are

produced from protons with energies between the respective values (such as 4.0 and 3.7

MeV). The neutrons in the subtracted spectra near 500 keV could be from the 9 Be(p,p'n)

reaction mentioned above. The remaining neutrons could be explained by the various
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other continuum reactions. Again, the qualitative nature of this comparison should be

emphasized. A more precise explanation could be gained by measuring thin target

spectra.

II.C.4 Total yield calculations

The total neutron yield of the reaction can be estimated by integrating the various

neutron spectra over the measured energy range and solid angle. During the November

1995 experiments, only the forward angles (1-110 degrees) were measured, and the

estimated total yield for E,=4.0 MeV was significantly less than the value predicted ( 1.36

x 1012 neutrons/mC ) on the basis of published cross sections obtained using a 4-g detector

[17], and stopping powers of beryllium [22]. The experiments in August 1996 were,

therefore, carried out to measure the backward angles. Using a proton bombarding

energy of 4.0 MeV, the absolute total yield is now estimated to be 1.05 x 1012

neutrons/mC, based on the more complete data set (0 - 145 degrees). The neutron yield

estimated from the complete set of neutron spectra now agrees within 23% with the

predicted data. Unfortunately, the magnitude of the experimental error in the published

cross sections is not clearly stated in the literature [17]. However, it is reasonable to

assume an error of at least 10 - 15% based on other experiments of this type.

Considering the 15-20% total error presented here, the agreement between the two values

is good. The same comparison can be made for a proton bombarding energy of 3.7 MeV.
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The agreement here is better between the measured and predicted total thick target yield

(7.77 x 10" and 9.63 x 10" neutrons/mC, respectively), with the measured value 80.7%

of the predicted value.

II.C.5 Conclusions and suggestions for future measurements

A complete data set now exists for the absolute thick target yield of 9Be(p,n) for

E,=4.0, 3.7 MeV. There is general agreement between the shapes and magnitudes of the

Groups A and B results with the exception of the unresolved differences near 250 keV.

Additionally, the data have been confirmed indirectly through the measurement of the

9Be(d,n) spectra at several energies. The greatest addition to this data set would be the

acquisition of neutron energy spectra at increasingly lower neutron energies. Another

useful addition to the data set would be to continue the measurements at proton

bombarding energies below 3.7 MeV to near threshold. The shape of the total reaction

spectrum seems to be based on the shape of the expected 9Be(p,no) spectrum, to which the

low energy continuum is added. To further refine an understanding of the shape of the

spectra, thin target measurements would probably be required.

The 9Be(p,n) reaction is a potentially valuable calibration source for neutron

detectors. The spectrum at 0 degrees is generally flat for E,=4.0 MeV, and the neutron

yield is appreciable at least down to 200 keV. These qualities make the reaction an ideal

choice for calibrating neutron detectors (provided the low energy neutrons can be



accurately measured). The possibility of more accurately determining a single energy

spectrum of this reaction for calibration purposes is being investigated at OUAL.

One valuable future research project would be a more careful measurement of the

lower energy portion of the neutron spectrum. The best configuration for this experiment

would be a shorter flight path, and lower proton pulse rate frequency. The acquisition

time increases for the lower frequency, but can be offset by the shorter flight path (which

increases the solid angle of the detector). Both changes would further reduce the wrap-

around problem allowing for lower energy neutron measurement. The negative

consequence is that the AL/L uncertainty increases with the shorter path length. Another

possibility is to measure the reaction 9Be(p,n) directly with the fission foil detectors. The

disadvantage is that the efficiency of these detectors is quite low (on the order or 10-5) due

to the requirement for very thin foils. However, since the foils are thin, the AL/L

uncertainty is quite low, and the detectors can be used at short flight paths. The result

would be a second useful calibration source (in addition to the 27Al(d,n) reaction) for

neutron detectors.
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CHAPTER THREE

Therapy Beam Design and Verification

This chapter describes the methodology of designing a useful therapy beam with a

neutron producing reaction as the starting point. The reactions considered are: 7Li(p,n),

E,=2.5 MeV, 9Be(p,n), Ep=4.0 , 3.7 ,3.4 and 3.0 MeV, and 9Be(d,n), Ed=2.6 MeV. This

is the first detailed evaluation of the reaction 9Be(p,n) based on the measured data

presented in Section II.C. It is convenient to clarify two terms at the outset of this

process. The "target spectrum" is defined as the neutron production at the surface of the

target as a function of energy and angle. The "therapy beam" is the neutron beam to

which a patient would be directly exposed. This therapy beam also contains non-

therapeutic or "contaminant" radiation in the form of photons and fast and thermal

neutrons. The photons are created at the target (as discussed in Chapter II) and in (n,y)

reactions in the MSR. In each of the reactions listed above, the neutron target spectrum

is dominated by energies much greater than what are optimal for an AB-BNCT therapy

beam. To produce a useful therapy beam, a structure is placed between the neutron

producing target and the patient. This structure, which is called a Moderating-Shielding-

Reflector assembly, or MSR, serves three functions: tailor the energy spectrum to a more

optimal distribution, conserve neutron fluence, and reduce non-therapeutic dose to the

110



patient. The tailoring of the energy spectrum sometimes involves the use of materials

known as "filters" or "resonant scatterers". Fast neutron filters are made of specific

isotopes which have neutron scattering or absorption cross sections which are larger at

high energies than at epithermal energies. These filters work by preferentially scattering

or absorbing the fast neutrons, thereby lowering the average neutron energy. Some

common fast neutron filter materials for BNCT are aluminum, titanium, fluorine, and

sulfur [1]. Thermal neutron filters contain materials such as 6Li or 1oB which have a high

thermal neutron cross section. Thermal neutron filters are used to absorb thermal

neutrons before they can interact with materials in the MSR which could create (n,y)

radiation. Thermal neutron filters are also used at the therapy port to reduce the thermal

neutron components (14N(n,p) and loB(n,cx)) to the first few centimeters of the brain.

This chapter begins with a discussion of the specific objectives of this research.

The model used in the evaluation of the various beam designs is then discussed and the

MSR materials used in this study are presented. The therapy beam design process is

outlined followed by a presentation of the results. The last sections in the chapter

describe an experimental procedure which can be used to confirm the results of these

simulations. Results from measurements using the MSR currently installed at LABA are

presented.



III.A Objectives and design criteria

III.A. 1 Objectives

The objectives of the research presented here are to evaluate three reactions as

potential AB-BNCT neutron sources, design MSRs for use with these reactions, and to

predict the various dose rate components that would result from using these reactions and

MSRs. As will be discussed below, this evaluation procedure is somewhat hindered by

the fact that specific design goals are ill-defined. However, by using a consistent set of

criteria. the beam designs can be evaluated and compared.

Despite much effort devoted to the design of therapy beams for BNCT, there is

not yet a general agreement concerning the optimal therapy beam parameters, or therapy

dose rates, for BNCT. The current clinical trials (Section I.A.5) should result in more

definitive guidance on these issues. Moreover, there is not a uniform method used to

design therapy beams. Some research groups use therapy beam figures-of-merit as an

intermediate step in finding a suitable MSR configuration [1] [2]. Eventually, a therapy

beam is evaluated based on the prediction of the various dose components that would

result in a patient. Ideally, these predictions should be confirmed experimentally.

The method of predicting these dose components is more widely uniform.

Typically, a transport simulation program, such as the Monte Carlo N-Particle Transport

Code System (MCNP) [3], is used to estimate the neutron and photon fluences that would

occur within the patient, and these fluences are converted to absorbed dose rates using
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fluence-to-kerma conversion factors for the various dose components. To equate kerma

to absorbed dose, the condition of charged particle equilibrium must exist [4]. This

condition is met by choosing tallying volumes for the MCNP model which are large

relative to the ranges of charged particles created in the simulation. The ranges of the

reaction products of 1oB(n,ct) in tissue are each less than 10Itm. The maximum energy of

recoil protons resulting from fast neutron elastic scattering is equal to the maximum

neutron energy in the organ volume. For example, the most energetic neutrons in the

target spectra of the 9Be(p,n) reaction for Ep < 4.0 MeV. have energies around 2.2 MeV.

At the therapy port, the therapy spectrum is dominated by neutrons well below 1 MeV.

The maximum recoil proton energy in the organ volume is thus approximately a few MeV

or less. The range of 3 MeV protons in tissue is less than 0.1 mm and is about 1 mm for

10 MeV protons [4]. The maximum energy of secondary electrons would be on the order

of 1 MeV. The range of a 1 MeV electron in water is approximately 0.44 cm [4]. For

these simulations, the cell volumes in the MCNP model were approximately 1 cm'.

Since 1 cm is large compared to the ranges of all reaction products, the kerma

approximation to dose is valid. Once the physical dose rates have been predicted, RBE

weighting factors can be used to determine more accurately the therapeutic efficacy of the

design.

Because there are limited data and consensus on the acceptable dose rates (both

therapeutic and contaminant) for BNCT, specific therapy beam design goals are ill-

defined. For the simulations presented here, which are based on the treatment of brain



tumors, a consistent trade-off exists. The fast neutron dose rate is usually the most

problematic of the non-therapeutic or "contaminant" dose rate components. This dose

rate is inversely proportional to the amount of moderating material between the target and

the therapy port. For very small moderator volumes, the AD is zero, since the fast

neutron dose rate exceeds the therapeutic dose rate component, which is primarily the '1B

dose. Increasing the moderator volume decreases the fast neutron dose rate, because the

average neutron energy is lowered. However, this also decreases the therapeutic dose rate

for two reasons. First the therapy port now subtends a smaller solid angle seen by the

target. Second, since the moderator surface area has increased, the neutron leakage rate

increases. The process of finding the MSR configuration which maximizes the

therapeutic dose to tumor, while limiting the fast neutron dose at shallow depths in the

tissue, is often governed by this trade off.

III.A.2 Design parameters

The specific design parameter used here is that the fast neutron dose rate should

be no more than 15% of the total tumor dose rate at a depth of 0.5 cm (with no RBE

weighting factors used). With this limitation, the possible therapy beams are examined

on the basis of the dose rate to tumor at 2 cm (which is generally near the location of

maximum tumor dose rate) and at 6 cm. The design is accomplished without the use of

RBE values. Based on these criteria, the most favorable combinations of target material,

ion energy, and MSR are then presented with different sets of RBE weighting factors. In

all the simulations, a 10B concentration in tumor of 30 ppm was assumed.
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III.B The MCNP model

The Monte Carlo Code MCNP [3] was used to optimize the design of an MSR for

each of the target reactions and incident charged particle energies. MCNP was used to

model the geometry of the accelerator beam tube leading to the target, moderator,

reflector, shielding, neutron filters, and a cylindrical head phantom [5]. The target

housing was modeled as being similar to the prototype beryllium target discussed in

Appendix A. The model included a volume of light water coolant behind the target. A

three dimensional model of this configuration is shown in Figure III-B-1. The moderator

volume is shown in blue and the reflector is gray. The water which cools the target is

shown in yellow. The thermal neutron filters are very thin, and would not normally be

easily seen at this scale, so they have been increased in thickness and shown in red. The

cylindrical head phantom is shown in green and magenta.

The various dimensions of the MSR components are indicated in Figure III-B-2.

Throughout this chapter, this figure will be used as a reference when discussing these

dimensions. This drawing is not to scale.

The head phantom was modeled as a cylindrical volume 16 cm long and 16 cm in

diameter based on a 50%/50% by weight average of gray and white matter [5]. This

volume was divided into a series of 13 disks and 8 shells, for a total of 104 MCNP

defined cells, as shown in Figure III-B-3. The cylindrical shells are shown in alternate

colors of green and magenta. The axial centerline, which is referred to often in this
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Figure III-B-1: Therapy beam design Model. Components shown as: reflector (grey)
moderator (blue) thermal neutron filters (red) target coolant (yellow).
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Figure III-B-2: Two dimensional drawing of the MCNP model showing the location of various components and critical dimensions

I E



Figure III-B-3: Model of head for therapy beam design.
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chapter is at the center of the phantom. The axial centerline is segmented into disks as

shown in alternating colors of blue and yellow. The outer cylinders are also segmented in

this way. To calculate the various dose components, tallies were used to determine the

neutron and photon fluences in each of the 104 head phantom cells. These fluences were

then converted to kerma using published fluence to kerma conversion factors for neutrons

[6] photons [7] and the 1°B reaction [7]. As mentioned previously, kerma was assumed

to be equal to absorbed dose for the purposes of these optimizations. Dose rates were

calculated by multiplying the tally results by neutron yield (neutrons/min-mA). Dose

rates are expressed in the units "cGy/min-mA of accelerator current". The result of each

simulation was a list of the various BNCT dose rate components, in units of cGy/min-

mA, for all of the 104 cells of the head phantom. All the simulations presented in this

thesis were performed with a tissue model. No "in-air" studies were undertaken.

The target spectra were input into the model using the MCNP source definition

specifications. These target spectra, and the methods used to measure or calculate them

were discussed in Chapter II. For the reaction 9Be(p,n) using E,=3.4 and 3.0 MeV

protons, a complete set of angular distributions still does not exist. The neutron spectrum

of these reactions was estimated by using the neutron spectrum of E,=3.7 MeV and

truncating an appropriate amount of the high energy portion of the angular distributions.

The total neutron production rate was then normalized using 75% of the rate predicted

from published cross sections [8] and stopping powers [9] as discusses in Section II-C.

119



For the data presented in that section, the total measured neutron production rates for

E,=4.0 and 3.7 MeV were approximately 75% of the predicted values.

In the case of the reactions 7Li(p,n) and 9Be(p,n), separate MCNP simulations

were conducted to evaluate the effect of the (p,y) reactions at the target. These

simulations will be discussed with the results in Section III.E.

III.C MSR materials

The materials chosen for a MSR must not only perform their primary function

well. but must also be practical from a combined engineering, safety, and economic

perspective. Ideally, all MSR materials should not be expensive, exotic, heavy, corrosive,

explosive, toxic, unstable, or flammable. For the materials examined in this study, the

majority of these constraints were easily met. The work presented here draws on the

therapy design experience of many groups, including work previously done at LABA.

The selection of materials for the MSR was based on the experience gained from working

with similar neutron spectra, particularly from the 7Li(p,n) reaction [10]. The experience

at LABA has also shown that the choice of many of the materials will impact the results

in a predictable way. For example, when choosing between lead and graphite as a

reflector material, a slightly larger moderator volume must be used with a lead reflector

than with a graphite reflector to achieve the same relative dose rates between the BNCT

therapy components. Graphite, being a lower Z material, provides more moderation than
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lead. By using a graphite reflector, the moderator volume is reduced, and the total therapy

dose rate, for equivalent fast neutron contamination, tends to increase.

III.C.1 Moderator materials

A good moderator would reduce the average energy of the target spectrum

neutrons using the smallest volume of material. Since the reflector is not ideal, the

neutron leakage from the therapy beam is proportional to the surface area of the

moderator. For this reason, a small moderator is desirable. There are two processes by

which a neutron can lose energy as it traverses the moderator. If the incident neutron has

enough energy to excite the target nucleus, an inelastic collision can occur. Below these

energies only elastic scattering can occur, which is effective for lowering the neutron

energies down to the 0.1 eV range. Below this energy, the thermal motion of the target

nuclei is important, and the neutrons reach a state of thermal equilibrium with the

moderator medium. In elastic scattering, a neutron of initial energy Eo is scattered at a

center-of-mass angle E with a new energy E. The difference in neutron energy, Eo - E. is

transferred to the kinetic energy of the recoiling nucleus of mass number A. An

elementary application of kinematics yields the following equation, and inequality:

Equation III-C-1[11]: E= Fo (A2 + +2Acos0)
(A +1)2

EA-1 F
Equation III-C-2[11]: E - 1< E < Eo(,A + 1)



The inequality clearly shows that low weight nuclei are favored for neutron

moderation. In addition to its ability to moderate neutrons, a good moderator should

produce little contaminant penetrating radiation through reactions such as radiative

capture. Some materials, commonly called filters, allow the selective scattering and

moderation of higher energy neutrons. The ideal filter would have a high fast neutron

scattering cross section, a low epithermal scattering cross section, and a low (n,y) cross

section. An example of such a filter material is 27Al. The relevant cross section data for

27Al is shown in Figure III-C-1. A list of materials which could be used as filters was

compiled by Kiger, and is reproduced in Table III-C-1 [1].

Material Average Absorption Scattering Total Epithermal Fast total
number of cross section cross section cross section total cross cross

elastic En=0.025 eV En=0.025 eV E,=0.025 eV section section
collisions [barns] [barns] [barns] [barns] [barns]

from 2 MeV
to 10 keV

Al 73.3 0.241 1.4 1.64 1.55 3.04
0 44.2 0.0004 4.2 4.2 3.74 2.52
F 52.1 0.001 3.9 3.9 3.63 3.25

AIF3 0.244 13.1 13.3 12.4 12.8
A10 3  0.483 15.4 15.9 14.3 13.6

Ti 128.6 5.8 4 9.8 13.3 3.55
D,Ti 5.8 18 23.8 20.0 8.43
TiF 4  5.8 19.6 25.4 27.8 16.6

S 86.5 0.52 1.1 1.62 1.09 2.8
A12S3  2.04 6.1 8.14 6.38 14.5

Table III-C-1: Possible therapy beam filter materials for BNCT.

For this work, two possible moderator/filter materials were examined: D20 and a

mixture of 30%Al-70%AlF 3. These materials have been examined during previous

studies by researchers at LABA [10] and other groups [1] and found to function well as

moderator materials. The second will be referred to simply as Al-AlF 3 in this chapter.
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III.C.2 Reflector materials

The purpose of the reflector is to redirect the neutrons escaping

volume back into the moderator. A good reflector material would

macroscopic cross section for scattering so that neutrons penetrate only a

into the reflector before scattering. The scattering should be isotropic in

frame so that neutrons have an equally likely chance of being directed

moderator as opposed to being scattered deeper into the reflector [1].

should also not produce large amounts of high energy photons.

the moderator

have a high

short distance

the laboratory

back into the

The reflector

Two reflector materials, lead and graphite, were chosen based on prior experience

at LABA and results from other research groups [1] [10] [12]. Additionally, two other

reflector materials, bismuth and nickel, were initially tested with the reaction 9Be(p,n),

E,=4.0 MeV. Neither material proved to be better than lead or graphite, and were not

examined further. The use of nickel as a reflector material has been shown to produce an

unacceptably high photon dose rate [1] which was confirmed by work at LABA,

including these initial simulations.

III.C.3 Thermal neutron filter

The thermal neutron filter performs two functions. When placed between the

moderator and the reflector, it decreases the number of (n,y) reactions in the reflector.

When placed between the moderator and the patient, it decreases the thermal neutron

( 14N(n,p) 14C) and boron ( oB(n,cc)) doses to the first few centimeters of the patient tissue,



and suppresses the (n,y) reactions induced in this tissue. An ideal thermal neutron filter

would capture thermal neutrons selectively, without emitting a photon. Previous

experience has shown that a 6Li containing compound such as 6LiCO 3 works well as a

filter material [10]. One advantage of 6Li-based filter materials is that the reaction

6Li(n,a) produces no gamma radiation. For these simulations, a thin layer of 6Li was used

in the model.

III.D The optimization methodology

To optimize the therapy beam, the critical dimensions of the MSR, and the

materials which comprise its component parts, were varied in a systematic way. The

initial configurations were chosen based on previous experience and results using the

7Li(p,n), E,=2.5 MeV, reaction [10]. A compilation of the configurations used in this

thesis is provided in a series of Tables at the beginning of Appendix C. These tables list

the neutron source reaction and ion energy, and the MSR components and dimensions.

Since this optimization procedure is multi-variable in nature, it is not trivial to

find the set of parameters and materials which will produce the best therapy beam.

Computer time eventually limits the number of configurations which can be simulated,

and it is not practical to vary every parameter independently of the others. Therefore, the

chronological order of this systematic variation is important. The most critical elements

of the optimization (for a given reaction and ion energy) are the moderator material and

dimensions.



As the moderator was being designed, the reflector was initially made much larger

than the expected optimal size. The reason for this approach is that a reflector of

exaggerated size should result in the best performance, all other factors being equal. As

neutrons escape the sides and back of the moderator, they enter the reflector. If the

reflector is thin, some neutrons may pass through the reflector and escape into air, at

which point they are very unlikely to contribute to the patient dose. As the reflector

thickness is increased, some of the neutrons which otherwise would have escaped, are

reflected back into the moderator. At some unknown thickness, adding more reflector has

no effect on the dose to the patient, since all neutrons entering the reflector have either

been captured or reflected back into the moderator. An exaggerated thickness will be

used initially, and near the end of the optimization procedure, a determination will be

made as to how much this reflector volume can be reduced without affecting the results.

Other than system weight and cost, there should not be any adverse effect of an oversized

reflector. The validity of this approach, based on the simulation results, will be discussed

in Section III.E.

To begin the process of designing an optimized therapy beam, a reaction

(9Be(p,n), E,=4.0 MeV), moderator material (D20), and reflector material (graphite) were

chosen. The moderator length and diameter were varied using an oversized reflector and

the simulation results were evaluated. The moderator dimensions resulting in the highest

dose rates at 2 cm and 6 cm, subject to the limit of 15% fast neutron contamination at a

depth of 0.5 cm discussed above, were recorded. Next, the various reflector materials
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were used with this same reaction and the moderator dimensions were varied slightly to

find the highest dose rate at 2 cm and 6 cm while keeping the fast neutron contamination

below 15%. As mentioned above, two of the reflector materials (nickel and bismuth)

showed no significant improved performance over lead and graphite, and were no longer

considered. In particular, use of a nickel reflector resulted in a high photon

contamination. In the third step, the moderator material was changed, and the design

process was repeated with the same reaction using graphite and lead reflectors.

The result of this initial set of simulations was a configuration which was close to

being optimized (i.e. close to the final design chosen) for the reaction 9Be(p,n), E,=4.0

MeV. For the other reactions. the moderator size was adjusted either to a larger volume

for more energetic reactions (9Be(p,n), Ed=2.6 MeV), or to a smaller one for less energetic

reactions (9Be(p,n), E,=3.7, 3.4. 3.0 MeV and the 7Li(p,n) reaction). The moderator

volume must also be adjusted for the reflector material (increase volume for lead reflector

compared with graphite), and the moderator material (increase volume for Al-AlF 3

compared with D20).

Three effects were examined using the best MSR resulting from the initial set of

simulations using 9Be(p,n), E,=4.0 MeV. First, the effect of moving the target position

relative to the rest of the MSR was examined. The target surface location was changed

relative to the back of the moderator (critical dimension A in Figure III-B-2). Second,

dimensions A and G were varied together so that the total length of moderator between

the target and therapy port remained constant. Third, the reflector thickness was varied to
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determine the smallest thickness which could be used without noticeably changing the

therapy dose components.

Each of these simulations was executed using three million neutron histories.

Neutron importance weighting in the brain phantom cells was used as a variance

reduction technique. Variance reduction is used within MCNP to increase the precision

of the results by reducing the statistical uncertainty of the MCNP output [3]. The value of

these weighting factors is shown in Figure III-D-1. The MSR in this diagram is located to

the left. As shown, the neutron importance factor of the first disk is 1.0 increasing to 1.2

in the second disk. The neutron importance factor does not vary radially from the axial

centerline. No photon weighting factors were used.

Using three million histories, the typical statistical uncertainties (l ) at a depth of

2 cm for the various dose components were approximately: 10% for fast neutrons, 7%

for photons, and 3% for thermal neutrons. Once the MSR materials and critical

dimensions were selected in this manner, a second simulation was executed, for some of

the more promising configurations, using 9-10 million histories to generate results with

smaller statistical uncertainty. The typical errors using 10 million histories were

approximately: 6% for fast neutrons, 3-4% for photons, and 1-2% for thermal neutrons.

For each of the configurations in the optimization, the dose components along the axial

centerline of the brain phantom were graphed and evaluated. An example of such a
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Figure III-D-1: Neutron importance weighting for
therapy beam design.
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graph, using the results of a simulation with 3 million histories, is shown in Figure III-D-

2. The error bars on the various dose components indicate the statistical error (lc)

generated by MCNP. Each dose component is calculated by MCNP when the program

convolves the neutron and photon fluences in each of the 104 phantom cells with the

appropriate fluence-to-kerma conversion factors. The entire set of these graphs (which do

not show the statistical errors) is included in Appendix C.

III.E Therapy beam design results and discussion

A total of 70 simulations were completed and evaluated for the reactions outlined

above. As was noted previously, the initial results using the reaction 9Be(d,n) were

sufficiently disappointing that further consideration of this reaction for beam optimization

was suspended in favor of devoting more resources to the other simulations. The results

using the reaction 9Be(d,n) will be presented last, and the remainder of the discussion will

focus on the results using the reactions 9Be(p,n) and 7Li(p,n).

It is important to note that these simulations were compared, initially, on the basis

of expected dose rates in phantom for equivalent accelerator beam currents. This

comparison can be deceptive. For example, from the standpoint of target heat removal or

required accelerator power, a 1 mA beam of protons for E,=2.5 MeV is not equivalent to

a 1 mA beam for E,=4.0 MeV. One method of addressing this issue is to compare the

results based on equal power to the target, that is, the product of beam energy and current.

In the case of the reaction 9 Be(p,n), where multiple proton energies were used, the results



Figure Ill-D-2: An example of the dose components
using a typical MSR configuration
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of the various energies were compared on the basis of equivalent proton current and on

the basis of equivalent accelerator power. A comparison of the 7Li(p,n) and 9Be(p,n)

reactions was made on the basis of equivalent total accelerator power.

A comment concerning the notation used in the figures of this section is needed.

The MSR configuration is annotated with a series of numbers and letters which designate

the size and composition of the moderator, and the composition of the reflector. When

the reaction and ion energy is obvious, it is not included in the nomenclature. For

example the designation, 27x10g-d. signifies a moderator 27 cm long, with a 10 cm

radius. This moderator is surrounded by a graphite reflector (g), and the moderator is

filled with D20 (d). When the reaction 7Li(p,n) is used, the designation is prefaced by a

"li" as in li27x10g-d. When the 9Be(p,n) reaction is used, the designation is prefaced by a

2 digit number representing the proton energy in units of MeV. Thus, 3.4-27x10g-d

indicates that a proton bombarding energy of 3.4 MeV was used. The various

designations are shown in Table III-E-1.

Moderator Material Designation
D20 d

AI-AlF 3  a

Reflector Material Designation
Graphite _

Lead pb

Bismuth bi

Nickel ni

Neutron source reactions Designation prefaced by
7Li(p,n), E,=2.5 MeV lii
9Be(p,n), E,=4.0 MeV 4.0
9Be(p,n), E,=3.7 MeV 3.7
9Be(p,n), E,=3.4 MeV 3.4
9Be(p,n), Ep=3.0 MeV 3.0

Table III-E-1: MSR designations for Section III.E.
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Although the total tumor dose rates at 2 cm and 6 cm were both examined, these

two rates are related. Figure III-E-1 shows the total tumor dose rate at 6 cm as a function

of the total tumor dose rate at 2 cm for 24 representative simulations, which include both

(p,n) reactions and all proton energies. Since the two values are linearly related, the

simulations will only be compared based on the total tumor dose rate at 2 cm and the Fast

Neutron Fraction. The Fast Neutron Fraction (FNF) is defined here as the ratio: (fast

neutron dose rate at 0.5 cm) / (total dose rate to tumor at a depth of 0.5 cm). One of the

stated design goals is that the FNF should be less that 0.15. Because the statistical

uncertainty of the results is on the order of a few percent, configurations with FNFs close

to, but higher than, 0.15 should not be disregarded.

III.E.1 Results using the 9Be(p,n) reaction

III.E. 1.a Initial results using 4.0 MeV protons

The 9Be(p,n) reaction was first evaluated using a proton bombarding energy of 4.0

MeV. Figure III-E-2 indicates the total tumor dose rate (without RBE weighting factors)

at a depth of 2 cm, and the FNF. On a graph of this type, the best possible design would

be located at the upper left hand corner, indicating both low fast neutron contamination,

and high total tumor dose rate. There are several features of this plot which are

important.



Figure Ill-E-1: Total tumor dose rate at 6 cm as a funtion of the
total tumor dose rate at 2 cm for representative simulations

using both (p,n) reactions and all proton energies.
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First, on the basis of this comparison, the worst combination of moderator and

reflector is Lead-A1/AlF 3. This combination leads to both a low total tumor dose rate,

and a high FNF. This is due to the reduced moderating capabilities of both materials

when compared with D20 and graphite. Smaller moderator volumes, such as 4.0-35x101-

a and 4.0-30x 101-a resulted in higher FNF. and are not shown on this graph.

Second. the best combination is Graphite-D 20. With a FNF less than 0.15, total

tumor dose rates in excess of 5 cGy/(min-mA) were predicted. This combination would

have the best moderating capability, which is reflected in these results. A graph showing

the dose components for the configuration 4.0-27x10g-d is shown in Figure III-E-3. This

configuration results in predicted total tumor dose rates at 2 cm and 6 cm of 4.2 and 2.1

cGy/(mA-min), respectively.

Another trend, which is to be expected, is indicated on this graph. With any given

combination of reflector/moderator, the data points move from the upper right to the

lower left as the length of the moderator is increased. This is due to the trade-off between

dose rate and FNF which was mentioned previously.

Finally, if only the Graphite-D20 combinations are considered, a moderator size

close to 27x10 best meets the design criteria specified. This is the configuration that was

selected after the first series of simulations, and was used in the evaluation of the effects

of target location and reflector size discussed later in this chapter. It should be noted that
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Results of a therapy beam simulation using
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4 configurations: 4.0-26x10g-d, 4.0-27x12g-d, 4.0-27x8g-d. and 4.0-27x10g-d, have FNF

= 0.14 + 0.02, and total tumor dose rates of 5.2 + 0.4 cGy/(mA-min). As stated above,

for 3 million histories, the statistical uncertainties are 3-10 % for each of the components.

Therefore, these various configurations can be said to be equivalent.

III.E. 1.b Results using 3.7 MeV protons

The results of the simulations using the reaction 9Be(p,n), E,=3.7 MeV are shown

in Figure III-E-4. Based on the experiences gained using 4.0 MeV protons for this

reaction. three combinations of reflector/moderator were selected: Graphite-D20,

Graphite-Al/AlF 3 , and Lead-D 20. Solid lines on the graph segregate these combinations.

Due to the fewer number of simulations, the trends mentioned in Section III.E. l.a are

more clearly visible. The best configuration found was 3.7-25x10g-d. The results using

this configuration are shown in Figure III-E-5. The predicted total tumor dose rates at 2

and 6 cm are 5.2 and 2.7 cGy/(mA-min), respectively, and the FNF is 0.15.

III.E. .c Results using 3.4 and 3.0 MeV protons

The results of simulations using 3.4 and 3.0 MeV protons are shown in Figure III-

E-6 and Figure III-E-7. The best configurations are 3.4-23x10g-d and 3.0-21x10g-d

respectively. The 3.4-23x10g-d design resulted in total tumor dose rates at 2 and 6 cm of

4.2 and 2.2 cGy/(mA-min) respectively, and the FNF is 0.16. The 3.0-21xl0g-d

configuration resulted in dose rates at 2 and 6 cm of 2.8 and 1.5 cGy/(mA-min)

respectively, and the FNF is 0.15.
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Figure Ill-E-4: Comparison of therapy beam simulation results

for 9 Be(p,n), E = 3.7 MeV
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Results of a therapy beam simulation using

25x10cm oderator,Graphite Reflector, 9Be(p,n) 3.7 MeV
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Figure lll-E-6: Comparison of therapy beam simulation results

for 9Be(p,n), E =3.4 MeV
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Figure Ill-E-7: Comparison of therapy beam simulation results

for 9 Be(p,n), E = 3.0 MeV
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III.E.l.d Combined results for proton energies 4.0, 3.7, 3.4, and 3.0 MeV

As mentioned in the introduction to this chapter, the comparison of results from

the same reaction, using variable ion energies, can be made based on equivalent current,

or equivalent accelerator power. The first of these comparisons is shown in Figure III-E-

8, and the second comparison is shown in Figure III-E-9. When comparing different

proton energies on the basis of equal accelerator current, one interesting result is that the

combinations 3.7gr-d-25x10. 4gr-d-27x8, and 4gr-d-27x10 are nearly equivalent. This

indicates that the reduction in yield between the 4.0 and 3.7 MeV proton beams would be

sufficiently compensated by the smaller moderator volume needed when using the 3.7

MeV beam.

When compared on the basis of accelerator power, the performance of the 3.7

MeV beam relative to the 4.0 MeV beam is superior. Additionally, the combinations 3.4-

23.xl0g-d and 4.0-27x8g-d have nearly equivalent results. This is an important result for

AB-BNCT. This indicates that for a given dose rate and FNF, there is a choice of how

those endpoints can be achieved. For some accelerator designs, it may be much easier to

deliver 10 kW to the target using 3.4 MeV protons than using 4.0 MeV protons. Using a

lower proton energy would require a lower terminal voltage for the accelerator. This may

reduce system cost, size and complexity. The LABA accelerator has not yet been run at

multi-milliAmpere beam currents. Therefore, it is difficult to predict which combination

of beam energy and current can be most easily produced.



Comparison of therapy beam results

for 9Be(p,n). FNF less than 18%, and total tumor dose rate
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Figure lll-E-9: Comparison of therapy beam simulation results
for 9Be(p,n) using equivalent accelerator power
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Finally, this raises the question of how far this trend can be followed. That is. if

3.7 MeV and 3.4 MeV proton energies can produce therapy beams similar to those

produced using E,=4.0 MeV. can a MSR designed using 3.0 MeV protons also produce a

therapy beam with equivalent performance based on total accelerator power? What is the

lower limit? The best result for each proton energy is summarized in Table III-E-2

below. In this table, dose rates are compared based on equivalent power.

Proton Size of Moderator Reflector FNF Total tumor Total tumor
beam moderator material material dose rate at dose rate at
energy (length x radius) 2 cm 6 cm

[MeV] [cm] [cGy/(kW-min)] [cGv/(kW-min)]
4.0 26 x 10 D20 Graphite .13 1.37 0.71
3.7 25 x 10 D20 Graphite .15 1.42 0.74
3.4 23 x 10 D20 Graphite .16 1.29 0.66
3.0 21 x 10 D2O Graphite .15 .925 0.48

Table III-E-2: Summary of 'Be(p,n) beam design results compared on the basis of
equivalent accelerator power.

The results presented in Table III-E-2 should be interpreted carefully. On the

basis of this comparison, there does not seem to be a clear advantage to using the 4.0

MeV proton beam. It is unlikely that an accelerator would be able to produce more

power using 4.0 MeV protons than using 3.7, 3.4 or 3.0 MeV protons. The opposite is

not true. Although the total tumor dose rates using E,=3.0 MeV are significantly lower

than those using E,=3.7 MeV, it is possible that the power capacity of an accelerator

would be greater at the lower proton energy. A final judgment on the best MSR

configuration and proton energy can occur only when the relation between maximum

power and beam energy is considered.
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III.E.2 Results using the 7Li(p,n) reaction

A comparison of the results using the 7Li(p,n) reaction is shown in Figure III-E-

10. Based on the trends discussed above, the data points for li20x10g-d and li22x10g-d

indicate that a configuration such as li21xl0g-d might be optimal for this reaction. It

appears that there would be three configurations which might provide similar beam

performance: li21xl0g-d, li22xl0pb-d and li22x10bi-d. The results using the

configuration li22x10g-d are presented in Figure III-E-11. Since this configuration

results in a FNF more than 2 percentage points less than the other two, with only slightly

lower dose rates, it can be considered the best design.

III.E.3 Comparing the 7Li(p,n) and 9Be(p.n) reactions

A comparison between the 7Li(p,n) and 9Be(p,n) reactions, on the basis of

equivalent accelerator power is shown in Figure III-E-12. When the two (p,n) reactions

are compared on this basis, the advantages of the 7Li(p,n) reaction are clearly visible.

Since this reaction has both a low average neutron energy and high total yield, the total

tumor dose rates at 2 cm are more than a factor of 2 greater than designs based on the

9 Be(p,n) reaction, for equivalent FNFs. For equivalent performance, the 7Li target would

need to withstand only half the heat load of the beryllium target. If target designs based

on lithium are found to be capable of handling the required heat loads, the 7Li(p,n)

reaction would be the better reaction.
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Comparison of therapy beam simulation results
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Figure Ill-E-12: Comparison of therapy simulation results

for 7Li(p,n) and 9Be(p.n) using equivalent accelerator power
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An important point which has been made above should be repeated. The 7Li(p.n)

reaction was examined using E,=2.5 MeV, which is the lowest energy of the (p,n)

reactions considered here. An accelerator may be able to produce significantly more

power at this lower proton energy than it would at E,=4.0 MeV. The final comparisons

can be made only when two things are known: (1) the relationship between maximum

available accelerator power and proton energy, and (2) the capability of lithium targets to

withstand heat loads.

III.E.4 Gamma production at the target

As mentioned in Chapter II, the two (p,n) reactions are known to produce some

contaminant photon radiation at the target. The evaluation of the dose rates in phantom

resulting from this photon radiation required a separate MCNP simulation since MCNP

will allow only one radiation source definition (neutron or photon).

In the case of the 9Be(p,n) reaction, the photon production was evaluated using

two MSR configurations: 4.0-27x10g-d and 4.0-34x10g-a. These two combinations

result in similar performance measures without the target photon production considered.

The AIF3/AI moderator was expected to provide more shielding against the gamma

production at the target than the D20 moderator based on the higher average Z value of

A1F 3/AI. The photon dose rates as a function of depth in the phantom were added to the

previous results for these configurations, and the results are presented in Figure III-E-13

and Figure III-E-14.



Figure III-E-13: Results of a therapy beam simulation using
27x10cm D20 Moderator,Graphite Reflector, 9Be(p,n) 4 MeV
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Figure Ill-E-14: Results of a therapy beam simulation using
34x10cm- 70% AIF3 - 30% Al - Moderator, Graphite Reflector, 9Be(p,n) 4 MeV

Including the gamma production at the target
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The additional dose rate at 0.5 cm using the 4.0-27x10g-d combination was 1.7

cGy/(mA-min) and was approximately equivalent in magnitude to the (n,y) dose rate.

When using the MSR configuration 4.0-34x10g-a, the photon dose rate resulting from

gamma production at the target was approximately 30% of the (n,y) dose rate. Due to the

low value of RBE for photons, the resultant additional dose to the patient may eventually

be considered insignificant.

In the case of the /Li(p,n) reaction, the photon dose rate resulting from gamma

production at the target was evaluated using the configuration li22x10g-d. This dose

component was then added to the others. The results are shown in Figure III-E-15. The

target gamma photon dose rate is approximately 3 orders of magnitude lower than the

(n,y) dose rate. The target gamma energy was low enough (478 keV) that the moderator

and reflector provided adequate shielding.

III.E.5 Effect of changing target location

The effect of varying the location of the neutron source relative to the moderator

and therapy port was investigated using two series of simulations. In both series, the

configuration 4.0-27x10g-d, with the target initially located 2 cm into the moderator, was

used. In the first series, the distance from the back of the moderator to the target

(dimension A on Figure III-B-2) was varied from the initial value (A=3) while keeping

the distance between the target and the therapy port (dimension G on Figure III-B-2)

constant. The results of this series are shown in Figure III-E-16. The target location was



Results of a therapy beam simulation using
22x10cm D20 Moderator,Graphite Reflector, 7Li(p,n) 2.5 MeV

2 4 6 8 10 12 14

Depth in Phantom [cm]

10

1

0.1

E
-E

0E.)9

O

0.01

1E-3
16

Figure IllI-E-15:

I I I· ~I I ·· i · I



6 - Figure lll-E-16: Comparison of results varying target location (A)
while keeping target to therapy port distance (G) constant
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varied over a total distance of 8 cm. Negative values of "A" indicate that the target was

located behind the interface of the back of the moderator and the reflector. The notation

"A=pos2"' indicates that A = 2 cm. The results indicate that the total tumor dose rate is

not significantly affected by the amount of moderating material between the back of the

moderator and the target. However, the FNF decreases as A is increased from negative to

positive values. The total tumor dose rate at 2 cm varied less than 5 % during this series.

For the second series, the moderator dimensions (G and C) were not changed, but

the target location (A) was varied from -3 to +5. Results of this series are shown in

Figure III-E-17. The configuration with A = +5 resulted in the best performance. One

interpretation of the results shown in Figure III-E-17 might be that the additional dose

rate at 2 cm is simply the result of the additional fast neutron dose rate because the FNF

using this configuration is higher than the others on the graph. An examination of the

results. shown in Figure III-E-18, shows that this is not the case.

III.E.6 Results using 9Be(d.n) reaction

As stated in the beginning of the chapter, the results using the reaction 9Be(d,n),

Ed = 2.6 MeV were disappointing. The results using this reaction with a 40x10 cm D20

moderator and graphite reflector are shown in Figure III-E-19. The fast neutron

component at 0.5 cm is higher than the therapeutic '0B dose. Based on the experience

gained during these simulations, the moderator length would need to be increased by at

least 5-10 cm to lower the FNF to a value near 0.15. Since the 'lB dose rate is already



Figure III-E-17: Comparison of results varying target location (A)
while keeping moderator length (B) constant
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Results of a therapy beam simulation using
9Be(p,n) 4 MeV
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Results of a therapy beam simulation using
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low in comparison with other results, and will be reduced by the larger moderator

volume. the investigation of this reaction as an AB-BNCT source was suspended.

III.E.7 Effect of reflector diameter

All the simulations conducted in this chapter used a 34 cm radius reflector

(dimension E in Figure III-B-2). At the conclusion of the simulations, the configuration

(4.0-27x10g-d) was used with reflector radii between 45 and 15 cm. All reflector radii

greater than 25 cm showed nearly identical behavior for all dose components and at all

depths up to 6 cm. Although the dose components are very similar at depths greater than

6 cm, the statistical uncertainty becomes significant at greater depths and the comparison

is less accurate. Four reflector radii (22, 20, 17 and 15 cm ) were evaluated below 25 cm.

The reflector with a radius of 22 cm shows an induced photon dose component which is

approximately 5% lower than the reflector with a 25 cm radius at depths in phantom less

than 6 cm. The thermal neutron dose also drops approximately 5-10% when the reflector

radius is decreased from 25 to 22 cm. As the reflector radius is reduced to 17 and 15 cm,

these differences are more apparent. For the 15 cm radius reflector, the 'lB dose rate has

dropped to 2.3 cGy/(min-mA) at a depth of 2 cm compared with a dose rate of 3.2

cGy/(min-mA) for the 34 cm radium reflector. These simulations are included in

Appendix C.

These results indicate that, for this particular configuration (4.0-27x10g-d), the

optimal reflector size is near 25 cm. If the reflector is made larger than 25 cm, the



neutrons which enter the additional volume of the reflector will not contribute

significantly to the therapy dose of the patient. Any neutrons which escape the reflector

sides or back should be immediately shielded against since they will interact with the

therapy room walls or the body of the patient. These results indicated that the reflector

radius should be approximately 25 cm, and that the reflector should be surrounded by a

moderating material and thermal neutron absorber.

III.E.8 Conclusions regarding therapy beam design

In every variation presented in this chapter, the combination of a graphite reflector

and D20 performed better than other combinations. Two promising results of this study

were the MSR configurations 3.7-25x10g-d and li22x10g-d. A third promising result was

the configuration 4.0-27x10g-d with the target at A = +5. This configuration will be

referred to as 4.0-27x10g-d(A=+5). These three designs are presented with two sets of

RBE values. These RBE values are the same as those used for a previous AB-BNCT

beam design study [10], and are given in Table III-E-3.

Dose component RBE value set A RBE value set B
'B (30 ppm) 2.3 4.1
Fast neutrons 2.2 4.0

Thermal neutrons 2.2 4.0
Photons 1.0 1.0

Table III-E-3: RBE values for sets A and B.

Results of these three configurations, with both sets of RBE values are shown in

Figures III-E-20 through III-E-25. The configuration and RBE values are given in the

figure caption. A summary of some of the results is given in Table III-E-4.
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Results of a therapy beam simulation using
22x10cm D O Moderator.GraDhite Reflector. 7Li(p,n) E = 2.5 MeV

P
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Results of a therapy beam simulation using

25x10cm D 20 Moderator,Graphite Reflector, 9Be(p,n) E = 3.7 MeV2 p

With RBE set A: 10 B, all neutrons = 2.3 ; Photons = 1.0

2 4 6 8 10 12 14 16

Depth in Phantom [cm]

10

1

r

E

E

(CO

a)

(I

a)

-+-
U)

ir.wr

x----- Fast
-- *-- Thermal
- - Gamma
- 1 ---- Boron-10

i---- Total

0.1

Figure III-E-21



Results of a therapy beam simulation using
27x10cm D 20 Moderator,Graphite Reflector, 9Be(p,n) E = 4.0 MeV2 p

Target located 5 cm into moderator

With RBE set A: 10B. all neutrons = 2.3 ; Pho tons = 1.0
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Results of a therapy beam simulation using
22x10cm D 20 Moderator,Graphite Reflector, 7Li(p,n) E = 2.5 MeV
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Results of a therapy beam simulation using

25x10cm D O Moderator,Graphite Reflector, 9Be(p,n) E = 3.7 MeV
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Results of a therapy beam simulation using

27x10cm D 20 Moderator,Graphite Reflector, 9Be(p,n) E = 4.0 MeV2 P

Taraet located 5 cm into moderator

set B: 1oB= 4.1, all neutrons = 4.0 ; Photons = 1.0
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RBE Set A RBE Set B

Configuration RBE weighted RBE weighted RBE weighted RBE weighted
dose rate at 2 cm dose rate at 4 cm dose rate at 2 cm dose rate at 4 cm

RBE-cGy/ RBE-cGy/ RBE-cGy/ RBE-cGy/
(mA-min) (mA-min) (mA-min) (mA-min)

li22x 10-d 18 15 32 25
3.7-25xl0g-d 10.1 8 17 13
4.0-27x10g-d 13 10 22 15

(A=+5)
Table III-E-4: Summary of promising results using two sets of RBE weighting factors

When compared only on the basis of therapy beam performance, the reaction

7Li(p,n) is a superior neutron source for AB-BNCT. Using the examples in Table III-E-4,

the RBE-weighted dose rate at 4 cm is more than 60% higher than the next best

configuration using the 9Be(p,n) reaction. However, as previously stated, the poor

thermal and mechanical properties of lithium present a significant obstacle to creating an

AB-BNCT therapy beam based on the 7Li(p,n) reaction.

One surprising result is the variation of dose rates with target position when the

moderator length is fixed. This variation was only examined for the reaction 9Be(p,n)

E,=4.0 MeV. and should be researched more carefully in the future. When using the

configuration 4.0-27x10g-d, the dose rate at 2 cm increased from 4.3 cGy/(min-mA) with

the target 2 cm into the moderator to a rate of 6.5 cGy/(min-mA) with the target 5 cm into

the moderator. The FNF increased when the target was placed 5 cm into the moderator;

however, the FNF in both cases was below 0.15.



The time required for a BNCT therapy procedure depends on many variables

including tumor location and prescribed dose. During MIT-R's recent Phase I trial,

patients with melanoma of the extremities were administered radiation doses of

approximately 15-20 RBE-Gy. Two of the five patients showed partial tumor response.

One of the five patients has demonstrated complete tumor response (no evidence of

tumor) after 19 months [13]. For the purpose of the calculations presented below, a

tumor dose of 15 RBE-Gy, assuming tumor depths of 2, 4 and 6 cm, will be considered.

These results can be easily scaled to higher total tumor doses.

The results presented in Table III-E-4 show that RBE-weighted dose rates at 4 cm

depth in excess of 8 and 13 RBE-cGy/(mA-min) are predicted for RBE sets A and B.

respectively, using any of the configurations listed. Using the RBE Set B values and an

accelerator power of 10 kW, the time required to deliver a total tumor dose of 15 RBE-Gy

to depths of 2, 4 and 6 cm are listed in Table III-E-5. The times listed in Table III-E-5 are

certainly possible, and reasonable.

Configuration Time required to deliver a Time required to deliver a Time required to deliver a
tumor dose of tumor dose of tumor dose of

15 RBE-Gy 15 RBE-Gy 15 RBE-Gy
to a depth of 2 cm to a depth of 4 cm to a depth of 6 cm

[min] [min] [min]
li22x10g-d 12 15 25

3.7-25x10g-d 31 39 70
4.0-27x10g-d 27 35 60

(A=+5)
Table III-E-5: Times required to deliver 15 RBE-Gy to tumor depths of 2, 4, and 6 cm
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Based on the cumulative results presented in this chapter, two approaches to AB-

BNCT therapy design appear to be promising. First is the development of AB-BNCT

therapy beams based on the reaction 7Li(p,n). To be able to use this reaction, a viable

target assembly must be designed and tested to withstand accelerator powers of at least 10

kW. If this is possible, then it might be possible to deliver a total tumor dose of 15 RBE-

Gy, at a depth of 6 cm, in less than 30 minutes.

The second promising approach is to investigate the use of the reaction 9Be(p,n)

using proton bombarding energies below 3.7 MeV. When compared with other

configurations using the 9Be(p,n) reaction on the basis of equivalent accelerator power,

the configuration 3.7-25x10g-d showed the best performance. The total tumor dose rate

at 2 cm from the configuration 3.4-23x10g-d was only 10% below that of 3.7-25x10g-d.

The target position was only varied when using the reaction 9Be(p,n) Ep=4.0 MeV, and it

is possible that the total tumor dose rates could be increased by 10-20% by optimizing the

target location for the other reactions and energies. The decrease in proton energy may

reduce the accelerator performance requirements and allow for greater current production.

Finally, these simulations clearly show that there is a trade-off between FNF and

total tumor dose rate. For example, in Figure III-E-4 the FNF and dose rate at 2 cm both

increase steadily as the moderator length decreases using a graphite reflector and D20

moderator. The dose rate increases by almost a factor of 2 when the moderator length

decreases from 27 cm to 21 cm. For these moderator lengths, the FNF increases from



0.15 to 0.24. It may be possible to tolerate a FNF higher than 0.15. If a FNF as high as

0.25 can be tolerated, then the therapy times listed in Table III-E-5 could be decreased by

as much as a factor of two. Since the fast neutron dose decreases rapidly with depth in

tissue, it should be possible to decrease the effect of the fast neutron dose by irradiating

the patient from various directions. This would spread the fast neutron dose over a larger

area, and potentially allow for a higher FNF. If a higher FNF could be tolerated, this

could also decrease the accelerator power required to deliver a specific dose to the tumor.

For example, Figure III-E-10 indicates that it might be possible to achieve an increase in

dose rate of approximately 50% by decreasing the length of the D20 moderator from 22

cm to 19 cm when using the Li(p,n) reaction. This should result in a FNF of

approximately 0.20. This increase in dose rate could be used to reduce the therapy times

listed in Table III-E-5. This increased dose rate could instead be used to reduce the

amount of current needed for the therapy. By reducing the amount of current, the heat

load on the lithium target would decrease. For example, if a configuration of li 9x 10 Og-d

were used with a FNF of 0.19 which resulted in a 50% increase in dose rate at depth, the

total tumor dose rate at 4 cm would be 37.5 RBE-cGy/(min-mA) (RBE set B values).

This increased dose rate could be used to decrease the power requirements of the

accelerator and the heat load on the target by 50% while maintaining the therapy times

listed in Table III-E-5.



III.F Experimental verification

To confirm the predictions of the Monte Carlo simulations, experiments were

conducted to measure the BNCT radiation dose components with the reaction 9Be(d,n)

Ed=2.6 MeV as the neutron source. This reaction was used because a beryllium target

was available at LABA, and the accelerator could be operated reliably at a deuteron

energy of 2.6 MeV. Two dosimetry techniques were used to measure these components.

To resolve the fast neutron and gamma dose rates, the dual ionization chamber (IC)

technique was used. The thermal fluence was determined from activation foil analysis,

and the thermal neutron and 1oB dose rates were then calculated using fluence-to-kerma

conversion. These measurements relied heavily on techniques developed by the MIT

Reactor BNCT group (referred to here as MIT-R) [14] [15]. When appropriate, this

chapter will use the same notation as that used by the MIT-R group, which will allow

easy comparison between the results of the MIT-R and LABA groups. The following

sections outline the theory of the two dosimetry techniques, the methodology of

implementing them, and the experimental results. The dual ionization chamber technique

is explained first (Section III.F.1), followed by the activation foil methods (Section

III.F.2). The experimental results are presented and discussed in the remainder of the

chapter.

III.F. 1 The dual ionization chamber technique

The dual ionization chamber technique is a method of separating two dose

components of a mixed radiation field (fast neutrons and photons) which simultaneously



deliver dose to a target volume of material. When a radiation detector is placed in such a

mixed field, part of the detector signal is attributed to one dose component (fast neutrons)

and part to the other (photons). Since the detector generally yields only one signal, the

detector system is analogous to a single mathematical equation with two unknowns. To

resolve the two unknowns, a second detector (equation) is needed. The two known

values are the detector signals (charge collected from the ICs) and the two unknowns are

the dose components.

The technique relies on the differential responses of the ICs to fast neutron and

photon radiation. If the response of the detectors is expressed as the amount of charge

collected on the anode per unit absorbed dose that would occur in brain tissue at the

location of the IC, then the charges collected at the anodes of the two detectors are:

Equation III-F-1: AID, + BIDn = Q1

Equation III-F-2: A2D, + B2Dn = Q2

Where:

A , A2 = Response of detectors 1 and 2 to photon radiation in brain tissue {C/cGy}

B1, B2 = Response of detectors 1 and 2 to fast neutron radiation in brain tissue {C/cGy}

Q1, Q2 = Charge collected on the anode.

The solutions to these equations are:

B, QI - Q2 B1Equation III-F-3: D, B -
A] B, - A, B1



A, Q2 - Q, AEquation III-F-4: D, = - QA
AB, -A2B,

The dual IC technique was applied to the measurement of photon and fast neutron

doses by using two small chambers, inserted one at a time, in a water-filled phantom.

This phantom was located in front of the MSR currently used at LABA. To relate the

charge collected by an electrode of an IC to the dose deposited in the walls of the IC,

cavity theory must be used. To relate the dose deposited in the walls of the IC to the dose

that would be deposited in brain tissue, other relationships must be used. These

conversion factors are included in the A and B values in the equations above, which is

why these constants are expressed as dose in brain per unit charge collected in an

ionization chamber. The determination of the A and B values is a complex process which

has many steps. In the following paragraphs, the dual ionization chamber method will be

developed more completely. First, the equipment used in these measurements will be

described. Then, the method of determining the constants (A1, A2, B1, B2) experimentally

or theoretically will be presented.

III.F. 1.a Equipment used

III.F. 1 .a.(i) Ionization chambers, flushing gas, and high voltage supply

The two detectors were manufactured by the Far West Company and are referred

to as the tissue equivalent chamber (TE) and the carbon-graphite chamber (CG). The TE

chamber has an outer diameter of 9.59 mm and a wall thickness of 2.51 mm. The
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corresponding values for the CG chamber are 7.87 mm and 1.65 mm, respectively [15].

The TE wall results in transient charged particle equilibrium for photons up to 0.7 MeV

and charged particle equilibrium for neutrons up to 15 MeV. The corresponding values

for the CG chamber are 0.8 MeV and 17 MeV [15]. A picture of the detectors is shown in

Figure III-F-1.

The chambers are flushed with gas using the connections near the chamber base.

The TE chamber is flushed with TE gas (64.4 % CH 4, 32.4 % CO 2, and 3.2 % N2 by

partial pressure). The CG chamber is flushed with CO 2 (99% purity). The gas flow

through the chambers is monitored by using a remote video camera which focuses on a

sensitive flow meter. The high voltage (HV) terminal of the chambers is connected to a

HV supply which is set to +250 V. A standard coaxial cable with HV termination is

used. The HV is applied to the outside of the IC. so that positive ions created in the

ionization process are repelled to the center electrode for collection. The electron current

path is through the HV supply to ground. This circuit can be run as easily in reverse with

-250 V applied to the HV terminal. In this case, electrons are collected at the

electrometer.

III.F. 1.a.(ii) Water-filled brain phantom, and automated dosimetry system

A realistic head phantom designed and constructed by the MIT-R group was used

in these measurements [16]. The head phantom is made mostly of acrylic, and filled with

water. Tube guides on the bottom of the phantom allow the insertion of watertight
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Figure III-F-1: Picture of Far West ionization chamber



butyrate tubes. These tubes house the ICs and gold activation foils used during the

dosimetrv measurements. A small hole has been drilled in the top of the phantom to

allow excess water to escape as the ICs are pushed deeper into the phantom.

When the phantom was previously used by the MIT-R group or the LABA group,

the IC had to be manually repositioned after each data point (depth in phantom). For the

MIT-R group, the time required to insert all shielding materials, including a water shutter,

and then remove them was approximately 20 minutes. The interval for the LABA group

was approximately 10 minutes. To improve the efficiency of this process, a new phantom

stand and stepper motor system was built to allow the remote repositioning of the IC. A

picture of the head phantom and new phantom stand is shown in Fig. III-F-2. The IC base

is locked into position in an aluminum holder called the "carriage". The carriage is

moved up and down by a stepper motor controlled by a personal computer. Slots or

"keys" in the carriage body ride along L-shaped "rails" to keep the carriage from twisting

or tilting. The system is monitored remotely by a video camera to ensure that the IC is

moving the correct distance. Marks on the butyrate tubes can be seen on the video

display. The stepper motor and rails are mounted on a plate that moves freely so that the

IC can be inserted into any of the tube guides. Once the stepper motor has been

positioned, the plate is fixed to the phantom stand to make a rigid system. During a

recent measurement by the MIT-R group, this automated system reduced the time for the

experiment from 15 to 5 hours [17].
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Figure III-F-2: Picture of dosimetry phantom and stand.



III.F. I.a.(iii) Charge collection and electrometer

The center electrode of the IC collects the positive ions created in an ionization

event. This charge collected in the ionization chambers passes to a low noise triaxial

cable which terminates at a sensitive electrometer (Keithly model 617) located at the

accelerator control station. The current collection cable is very sensitive, so all

instruments are turned on at least one hour before the measurements and movement of the

cable is strictly avoided during the experiments.

III.F. 1.b Calibration of the ionization chambers

The purpose of the IC calibration is to determine the four constants ATE, ACG, BTE,

and BCG, which indicate the response of the chambers to photon and neutron irradiation,

respectively. The values of ATE and ACG are found directly by exposing the chambers to a

known photon exposure from a 60Co source. The values for BTE, and BCG, are found by

first determining the ratio B/A for each detector, and then multiplying by the respective A

value. (B/A)TE is calculated using the Bragg-Gray relation, and (B/A)cG is taken from

previously published results [14]. The remainder of Section III.F.l.b will discuss each

step of this process in detail.

The calibration of the ICs requires many calculations. Some of these calculations

require knowledge of the neutron and photon energy spectra at the location of the dose

measurement. To attain this information for the LABA group, MCNP was used to

estimate the neutron and photon spectra along the axial centerline of the MIT-R brain



phantom when exposed to the measurement conditions (9Be(d,n) reaction, Ed=2.6 MeV,

current LABA MSR). The brain phantom in the MCNP model was filled with water. The

photon and neutron fluences were estimated at 1 cm and 7 cm. In a second simulation,

most of the phantom was filled with water but a center channel in the phantom was filled

with air to model the butyrate tube inserted into the phantom. The purpose of the second

simulation was to estimate the effect of the air on the dosimetry measurements. Some of

the results of these simulations are shown in Figure III-F-3.

The photon fluence was nearly constant as a function of depth in the phantom, and

did not vary in a statistically significant way when the center channel was modeled with

air. The neutron spectra, as shown in Figure III-F-3, do vary significantly with depth in

the phantom. For most of the neutron energies, the intensity drops by an order of

magnitude when the point of interest is moved from 1 cm to 7 cm. Because the neutron

and photon spectra do not change significantly when air is added to the model, these

results indicate that the air in the butyrate tubes should not significantly affect the results

of these measurements.

III.F. l.b.(i) Determining the A values

The A values of the detectors are determined in two steps. First, the detectors are

exposed to a 60Co source at an accredited laboratory (AAPM Calibration Laboratory,

University of Wisconsin). Because the IC walls do not provide charged particle

equilibrium for the 60Co source, buildup caps were machined by the MIT-R BNCT group
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and used in the calibration [15]. This initial step provides the exposure calibration

constant in units of R/C. During the exposure calibration, the ICs are open to air. During

the measurements, the detectors are purged continuously with gas, so air-to-gas correction

factors must be determined. The MIT-R group has determined these factors

experimentally by exposing the chambers to a 137Cs beam under the exposure calibration

conditions and while purging them with gas. The air-to-gas correction factor is 1.57 for

the TE chamber, and 1.19 for the CG chamber [15]. The chambers are periodically

checked against the 137Cs source as a consistency check [15].

The first step has provided a calibration factor in units of R/C, and the second step

must provide a calibration factor in units of cGy/C. This procedure is discussed in detail

in the literature [4]. To accomplish this, an equation relating absorbed dose in tissue to

exposure is needed. This equation is [4] :

Equation III-F-6: Dtissue = 0.876 PItissue Ac X (.len/P)air tissue

The factor 0.876 is a conversion factor arising from the radiation units. Beta is

the charged particle equilibrium constant, and expresses the fact that the kerma is lower

than the absorbed dose. When indirectly ionizing radiation enters a slab of material, the

kerma is a monotonically decreasing function of depth in the slab. The absorbed dose,

however, first rises to a maximum as more charged particles are created and then

decreases steadily. At a depth where transient charged particle equilibrium (TCPE)



exists, the absorbed dose and kerma as a function of depth will be linearly related, but the

absorbed dose will be higher [4]. The value of P3 varies slightly with photon energy and

has a value around 1.003-1.005 [4]. The MIT-R group uses a value of 1.004 [15]. The

displacement correction factor. Ac, occurs because the dosimeter displaces some tissue

material. During calibration, the chamber is mostly void. If tissue were to replace the

chamber the dose at the center of the volume of tissue would go down. Ac accounts for

the decrease in the dose due to the attenuation of the photons in the tissue now replacing

the chamber. The value is less than 1.0 because the tissue provides some self-shielding

[4]. The effect should be small and the value should be close to, but less than. 1.0. The

value of Ac is dependent on the outer diameter of the IC and has a value for the ICs used

here of approximately 0.988-0.99 [4] [15]. The quantity (ten/p)air t' ssue is the relative mass

energy absorption coefficient of tissue to air, (len/)air tissue (p)ti /(ten/P)air. Values

of these coefficients as a function of photon energy are given in the literature [4]. These

coefficients were weighted based on the information provided by the MCNP simulation

discussed above. The value (Lten/p)airtissue was 1.047 at a depth of 1 cm and 1.054 at a

depth of 7 cm. These values differ by less than 0.7%, which is much less than the

statistical uncertainty in the fluence simulations on which they are based. An average

value of 1.0505 is used in these calculations at all depths. This yields: ATE= 4.9 x 10"11

C/(cGy dose in brain), and ACG= 8.8 x 1011 C/(cGy dose in brain). The MIT-R group

uses a value of 1.1 for (len/p)airt issue which results in the values: ATE= 4.67 x 10"11 C/(cGy

dose in brain) and ACG= 7.62 x 10-" C/(cGy dose in brain)[15].



III.F. l.b.(ii) Determining the (B/A)Th value

Attix has derived a relationship, based on the Bragg-Gray relation, for the

neutron-to-gamma sensitivity ratio [4]. This relationship is:

Jj e p j JY i ,
Equation III.F.7: (BA = brain, muscle

ii: KP g 9

Where:

(F ) = neutron kerma factor ratio of TE plastic to tissue

- - mass energy absorption coefficient ratio of A-150 TE plastic to tissue

ei:W'(teJ = the average energy needed to produce an ion pair for neutrons

(photons) in TE gas

= mass collision stopping power ratio of TE plastic to TE gas forAO

neutron (electron) secondaries.
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Since the elemental composition of TE plastic, and the TE flushing gas are very

similar, the two mass collision stopping power ratios are close to unity [4]. The ratio

(ten/p)iTE is near unity and varies only by several percent over the photon energy range

0.2-8 MeV [15]. Thus, Equation III-F-7 is reduced to:

(Fj, TEFW e

Equation III-F-8: i = brain, muscle

The factor (Fn)brain' E accounts for the fact that there is a mismatch between the

kerma factors for A-150 plastic and brain. A-150 plastic has about twice the amount of

nitrogen as brain, so the TE chamber over responds at low neutron energies. The

agreement is actually very good for A-150 plastic and ICRU muscle, and is also very

good for brain tissue above about 20 keV. Below 20 keV, the discrepancies are

approximately 50% [15]. Without correcting for this effect, the response of the TE

chamber would be approximately 50% too high. Using tabulated values of neutron

kerma factors, and convolving these with the expected neutron energy distribution, the

value of (Fn)brain TE can be calculated [15]. This calculation has been repeated for the

neutron energy distribution in phantom predicted by MCNP for the reaction 9Be(d,n),

Ed=2.6 MeV, using the current MSR existing at LABA. The calculated values of

(Fn)brain TE are 1.44 and 1.53 at depths of I and 7 cm respectively.
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The ratio Wn/We has been calculated by Goodman as a function of neutron energy

in the range 0.1-20 MeV [18]. This function is complex, but the magnitude of the

changes are small. Over this energy range, the value of Wn/We changes from a maximum

value of approximately 1.12 to a minimum value around 1.055. For neutron energies

expected at the brain phantom location of the MCNP model used here, the most

appropriate value is around 1.10.

The value of (B/A)TE can now be calculated as 1.31 for 1 cm and 1.39 for 7 cm.

The MIT-R group uses a value of 0.92 for brain and 0.95 for muscle and does not account

for the change of these values with depth [15]. The MIT-R group first calculates the

(B/A)TE values as a function of energy, and then averages these values over the energy

range 0.1 - 10 MeV. In this energy range, the value of (Fn)brainTE is close to 1.0. The

value used here (1.31 or 1.39) is significantly different from the value used by the MIT-R

group because the (B/A)TE value has been determined by convolving the (Fn)brain TE values

with the expected neutron energy distribution in the phantom. This neutron energy

distribution is greatest at energies where the value of (Fn)brainTE is approximately 1.5 - 2.0.

During the analysis of this data, the value of (B/A)TE was varied between the values 0.9

and 1.4. The effect of this variation is discussed in Section III.F.3.

III.F. 1.b.(iii) Determining the (B/A)cG value

Like (B/A)TE , (B/A)CG depends on the neutron energy spectrum to which the

detector is exposed. The ratio (B/A)cG has been calculated and measured by several
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researchers. Their results, as compiled by the ICRU, are shown in Table III-F-I [19].

The relative neutron sensitivity for graphite ICs filled with a variety of gases (including

CO 2) at atmospheric pressure has also been studied using a 2 cm. spherical cavity [19].

The latter study shows that the neutron sensitivity ratio is monotonically decreasing

below 2.5 MeV, and that the calculated value at 2.5 MeV is near 0.07 for a CO 2 filled

chamber. This value (0.07) from the second study would be an approximation for the

upper limit on the ratio (B/A)CG for these measurements. Using the results in Table III-F-

1, the value of (B/A)CG is 0.07 (computed) and 0.08 (measured) for a 2 MeV neutron

beam. Both studies show that (B/A)CG is decreasing with decreasing neutron energy in

the range En < 2 MeV. Table III-F-I also indicates that 0.07 would be an approximation

for the upper limit of (B/A)CG. The lower limit is not available from these data.

Neutron Energy (MeV) Calculated value of relative Observed value of relative
neutron sensitivity neutron sensitivity

0.7 0.05 0.07+0.006

2 0.07 0.08+0.01

5 0.07 0.11+0.01

Table III-F-1: Summary of previous (B/A)cG values as compiled by the ICRU [19].

Ashtari performed similar calculations using the MITR-I therapy beam, and

arrived at a value of 0.0437 [14]. The MITR-I therapy beam was designed as a thermal

neutron beam. Ashtari did not include the thermal neutron component of the spectrum in

her calculations in an attempt to approximate a value of (B/A)CG for an epithermal beam.

This value is now used by the MIT-R group [15].
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A calculation of the type made by Ashtari was not made for the LABA neutron

beam. The best information available at this time indicates that the value of (B/A)CG

should be less than 0.07. The value 0.04 was chosen as an initial value for the

calculations, and the variation of the results using values in the range 0.01-0.07 was

analyzed. Changing the value from 0.01-0.07 changed the fast neutron and photon doses

by less than 5%. Because this variation was small, the value 0.04 was used for the rest of

the calculations. The effect of this variation is discussed in Section III.F.3. The value

0.04 indicates that the CG chamber response is due almost entirely to the photon dose,

and that the neutron dose contributes only approximately 4% to the detector signal.

At this point, it is possible to state the values to be used for the A and B factors.

ATE = 4.9 x 10-" C/(cGy-in brain)

ACG = 8.8 x 10-" C/(cGy-in brain)

BTE = 6.42 x 1011 C/(cGy-in brain) at a depth of 1 cm

BTE = 6.81 x 101 1 C/(cGy-in brain) at a depth of 7 cm

BcG = 0.35 x 10-" C/(cGy-in brain)

III.F. 1 .c Corrections to the ionization chamber signals

Some correction factors must be applied to the ionization currents because the

measurements did not take place under the same conditions as the calibration. The

chambers were calibrated with a gas flow rate of 5 cc/min. It is difficult to regulate the
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gas flow at this low rate, so a rate near 20 cc/min was used instead and a correction factor

was applied. This correction factor was taken from a graph produced by the MIT-R

group [15].

The gas temperature was measured with a thermometer to make a correction to the

calibration constant. This correction factor is a result of applying the ideal gas law.

Because the pressure of the gas in the chamber (assumed to be ideal) varies with the

temperature of the gas, it is the gas temperature and not the room temperature which

should be measured. The thermometer was held to the end of the gas flow tube before it

was connected to the IC. The temperature correction factor is fT=(measured temperature

in °K)/(293 "K). The correction for barometric pressure differences was not made.

Previous results have shown that the magnitude of this correction is about 1% [15]. For

the combined effects of flow rate and temperature, the correction factors are 0.996 for the

CG chamber and 0.983 for the TE chamber.

III.F. 1.d Thermal neutron response of the ionization chambers

To ensure that the IC signals are attributed only to photon and fast neutron doses,

the response of the chambers to thermal neutrons must be subtracted from the signals. As

stated previously, there is a large nitrogen kerma mismatch between A-150 plastic and

brain, because the former has about twice the amount of nitrogen as the latter. The

thermal response of both detectors has been studied by the MIT-R group [14] [15]. The

study used a subtraction method in which the detectors were irradiated with and without a



layer of 6Li2CO 3 surrounding the sensitive volume. The result was a determination of the

correction factors: f,= 4.77 x 10-20 C/(min-n/cm 2) for the TE chamber and f-= 1.50 x 10-20

C/(min-n/cm 2) for the CG chamber [15].

The ionization current attributed to the thermal neutron flux is:

Equation III-F-9: I1 = fý 42200

The method used to determine 4)2200 is described in section III.F.2

III.F. 1.e Dual ionization chamber measurement techniques

The ionization current is calculated by dividing the charge collected at the

electrometer by the time on a stopwatch. The first step is to measure the "dark current"

which is the current flowing through the IC circuit with voltage applied to the IC, but

with no radiation field. The value of this dark current at 1 cm was 0.126 x 10-40 C/min-

mA for the TE chamber and 0.074 x 10-10 C/min-mA for the CG chamber. Next, the

accelerator beam is directed onto the neutron producing target, and charge begins to

collect at the electrometer. After the accelerator beam reaches a steady-state condition,

the stopwatch is started, and readings from the electrometer and target current meter are

recorded every minute for 15 minutes. The values of the IC currents were (without black

current subtraction): 3.38 x 10-10 C/min-mA for the TE chamber and 3.2 x 10-10 C/min-

mA for the CG chamber. The IC is then pushed farther into the phantom (more shallow



depth), for the next measurement. The IC is then manually removed and the entire

process is repeated with the second IC.

III.F.2 The activation foil - cadmium difference method

Activation foil analysis using the cadmium difference method is used to determine

the thermal neutron flux. This flux is used to calculated the thermal neutron and '0B dose

components. and to make the thermal neutron IC current correction described above.

Bare gold foils exposed to a neutron flux with epithermal and thermal components will be

activated by both components. The reaction in the gold foil is 19 7Au(n,y)198Au which has

a thermal cross section of 98.8 barns [20]. The energy of the gamma photon is 411 keV

and it is emitted in 95% of the reactions [21] . A gold foil covered by cadmium will

respond only to the epithermal flux because the thermal neutrons are captured in the

cadmium before reaching the foil. The cadmium cutoff energy is approximately 0.5 eV

[15].

The thermal neutron flux is proportional to the saturated activity of the bare gold

foil. The saturated activity of the cadmium covered foil serves as a correction factor

which accounts for the amount of activity induced in a bare foil by epithermal neutrons.

For a pure thermal neutron field, the thermal flux can be measured directly as [22]:



Equation III-F-lO: q - W ( )are

Where:

MW = molecular weight of gold

Av = Avogadro's number

Asat = saturation activity. The saturation activity is the activity that will be reached as the

irradiation time approaches infinity, and can easily be calculated [22].

c - microscopic neutron absorption cross section

m = mass of gold foil

The thermal neutron flux in a mixed field must be calculated by applying a correction

factor as [15]:

Equation III-F-11: p A, r- admm ,admum

Where:

Fcd = A correction factor to account for the absorption of neutrons above the cadmium cut

off, by the cadmium covers. For 0.020" thick Cd covers, a value of 1.02 is used [15].

As noted by Rogus, the flux calculated in this way is more appropriately called the

2200 m/sec flux, or 42200 because the cadmium foils capture many of the neutrons in the

higher energy regions of a thermal Maxwellian distribution [15].



III.F.2.a Calculation of the 1'B and 14N dose rates

Once the ý2200 is known, the loB and 14N dose rates are calculated using the

fluence-to-kerma conversion factor method. For the 14N dose, the MIT-R group has

calculated the value in brain tissue of 1.401x 10 "11 cGy cm2/n. The kerma factor for a 1

ppm concentration of l0B is 8.66 xl0 -12 cGy cm 2/n [15]. For 30 ppm, the kerma factor is

multiplied by 30.

III.F.2.b Experimental techniques - activation foils

The use of activation foils in conjunction with the dual IC method requires at least

two more experiments. The two ICs must first be used one at a time as described above.

Then, the activation foils (bare and Cd covered) are used one at a time at the same radial

and depth locations in the phantom.

Gold foils cut approximately square to weigh near 7 mg were used in the

measurements. The bare foils are taped to a thin acrylic rod which is then inserted into

one of the butyrate tubes. The MIT-R group tapes the gold foils at I cm intervals. The

MIT-R group uses Cd-covered foils only at 2 cm intervals because placing them at closer

intervals could lead to flux suppression. In the measurements presented here, the bare

and cadmium-covered foils were located at 1 and 7 cm only. The tube is filled with water,

and tapped repeatedly to remove all the air bubbles which cling to the tape. The tube is

then capped and inserted into the phantom. At the start of irradiation, a complete

recording of all relevant times is kept to be used in the calculation of the saturation



activity. For these measurements, a beam current of approximately 10 tA was used for

45 minutes.

During the measurements presented here, the accelerator power supply failed

while irradiating the Cd-covered gold foils, and it was not possible to use the Cd-covered

foils in the analysis. In the calculations, it was assumed that the ratio of

(Asat/m)bare/(Asat/m)Cd was the same as that determined by the MIT-R group, 2.45 [15].

The bare foils were then counted on a germanium detector at MIT, which was calibrated

on the same day of the readings. The calibration is made with a National Institute of

Standards mixed radionuclide source. This mixed source contains many isotopes which

emit gamma photons with a variety of energies. One of these isotopes, 12 5Sb emits a

photon with an energy 427.9 keV which is near that of the gold photon. The efficiency of

the detector is calculated at this point and used in the calculations[23]. From this

measurement, the saturation activity was determined. Using this method, the values of

ý2200 were 2.4 x 108 neutrons/(cm2-sec-mA) and 7.7 x 107 neutrons/(cm 2-sec-mA) at

depths of 1 and 7 cm respectively.

III.F.3 Results and discussion

Measurements of the BNCT dose components were made, using the techniques

described above, at two locations in the phantom (1 and 7 cm) along the axial centerline.

No normalization was used. Table III-F-2 contains a list of the various dose components

calculated by these methods. The table also includes the predicted values from MCNP.
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Dose component Predicted at 1 cm Measured at 1 cm Predicted at 7 cm Measured at 7 cm

[cGy/(mA-min)] [cGy/(mA-min)] [cGy/(mA-min)] [cGy/(mA-min)]

Fast neutron 1.8 2.17 0.54 0.81

Thermal neutron 0.3 0.25 0.12 0.065

Photon 2.3 3.40 1.5 1.54

30 ppm 'B 5.8 4.55 2.4 1.2

Table III-F-2: Measured and simulated dose components in an elliptical phantom using
the reaction 9Be(d,n) Ed=2. 6 MeV.

To compare the predicted and measured values, the following formula was used:

discrepancy = Imeasured-predictedI /predicted

When compared in this way. the discrepancies at 1 cm are 20%, 16%, 48%, 21% for the

fast neutron, thermal neutron, photon and 'lB dose rates, respectively. The discrepancies

at 7 cm are more severe except in the case of the photon dose, where the discrepancy is

2%. There are several possible sources of error in the experimental and predicted results

presented here which may explain these discrepancies.

The MIT-R group, which has used this method extensively, estimates that the total

experimental error in the photon and fast neutron dose components are 17% and 9%

respectively. The error in the thermal neutron and 10B dose components is estimated to

be 7.4% [15]. The MIT-R group has found that their experimental results, using the

phantom, agree with MCNP predictions of the dose components to within 15% [24].

The measured values at 1 and 7 cm are higher than the predicted values for the

fast neutron and photon components (measured with the dual ionization chambers) and

lower than the predicted values for the thermal neutron and 10B components (measured by

activation foil analysis). Since these components are measured in two different ways,



these discrepancies are not necessarily inconsistent. In both cases, one of the largest

sources of error is the uncertainty of the total integrated ion beam current striking the

target. The current striking the neutron producing target was recorded at 1 min intervals.

The total charge on the target was then computed by integrating these currents over the 1

minute intervals assuming that the current was constant during the intervals. Typical

measured ion beam currents were 10-12 ýtA. The ion beam current meter showed

fluctuations of + 5% during the one minute intervals and the current over the entire

measurement period fluctuated by 20%. The accuracy of the ion beam current reading

depends on the accuracy of the meter and the design of the charge collection circuit. To

create the circuit, a conductive wire was attached to the beryllium target holder. A

second wire was connected to the beam tube to collect secondary electrons and any beam

current which did not reach the target. These two wires were joined and connected to the

ion beam current meter. Before steering the ion beam onto the target, the beam was

intentionally steered onto the beam tube and the beam current was measured. The beam

was then steered onto the target, and no other adjustments were made to the accelerator

operating parameters. The ion beam was directed onto the neutron producing target by

adjusting the steering and focusing magnets so that the neutron production at the target

was maximized. This neutron production rate was measured by a large volume neutron

detector placed approximately 60 cm from the MSR therapy port. The currents measured

when the beam was directed on target, and when the beam was intentionally off the

target, agreed to within 10 - 15%. More precise charge collection systems, like the one

described at OUAL in Chapter II, are accurate to within a few percent. Based on the



fluctuations observed during the data collection process and the inaccuracy of the charge

collection circuit, the total integrated charge on the target is a potentially large source of

systematic error. The experimental error assigned to the total integrated charge is at least

5% and possibly as high as 20%.

The signal to noise ratios of the ion chambers (net currents/dark currents) at 1 cm

were 25:1 for the TE chamber and 42:1 for the CG chamber and approximately 10:1 for

both chambers at 7 cm. The values of the dark currents were very small, and would not

affect the accuracy of the results more than a few percent.

The gas flow meters could be read to an accuracy of approximately 5% (20 + 1

cc/min) due to the size of the floating ball in the flow meters. The fluctuations of these

readings were approximately 10% (20 + 2 cc/min). These fluctuations should affect the

IC signals by approximately 1% based on the data provided by the MIT-R group [15].

The accuracy of the IC electrometer is known to be approximately 0.5% based on

calibration results [15].

Another source of systematic error is the calculation of the photon and neutron

sensitivities of the detectors. The A values are determined by direct calibration with an

associated error of + 2% [15]. The B values are derived from the calculated or assumed

(B/A) values. Since the B values are the products of the respective (B/A) and A values.

the uncertainties in the A values affect the accuracy in the B values. The values of



(B/A)TE and (B/A)CG used in these calculations were 1.31 and 0.04, respectively. To

assess the effect that these values have on the final measured dose rates, these values

were varied independently between 0.9 - 1.4 and 0.01 - 0.07, respectively. When the

value of (B/A)TE was varied between 0.9 and 1.4, the photon dose rate varied between

3.36 and 3.41 cGy/(min-mA) or approximately 2%. The fast neutron dose rate, however,

varied between 3.20 and 2.03 cGy/(min-mA). This indicates that the fast neutron dose is

very sensitive to the value of (B/A)TE, while the photon dose is not. When the value of

(B/A)CG was varied between 0.01 and 0.07, the photon dose rate varied between 3.46 and

3.33 cGy/(min-mA) or approximately 3%. The fast neutron dose rate varied between

2.11 and 2.22 cGy/(min-mA) or about 5%. Therefore, neither dose component is very

sensitive to value of (B/A)CG. Since the choice of B/A values does not appear to greatly

affect the photon dose calculation, another explanation must exist.

A more significant source of the discrepancies is the source definition used in the

simulations. The source definition was a pure neutron spectrum without any photon

production. There is little information in the literature concerning the gamma production

at the target from the deuteron bombardment of beryllium. The gamma production is

relatively weak, with a maximum cross section of 10.1 + 3.5 pb [25]. This gamma

production was not modeled, and might account for some of the discrepancy. Another

source of photon dose is the various (n,y) reactions in the MSR. This photon component

depends on the original neutron spectrum which was taken from the literature and

available only at 0 degrees. Since the neutron production was not known at other angles,
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the production was assumed to be isotropic. This might account for a significant error

which is difficult to assess without knowing the correct spectrum.

One other possible source of photons which was not accounted for in the

simulation was the (n,y) reactions in the walls of the vault. This source of radiation will

be examined in Chapter IV. The results of Chapter IV indicate that, using the neutron

-7

producing reaction 'Li(p,n). the (n,y) reactions in the walls could account for

approximately 0.02 cGy/(min-mA) at a location near the brain phantom for a well-

shielded MSR. Results in Chapter IV also clearly indicate that use of an unshielded MSR

results in much more contaminant radiation (neutron and photon) because thermal

neutrons are not captured near the MSR. From these results of Chapter IV, we can

estimate the photon dose rate that would have existed during these measurements at a

location near the phantom, resulting from (n,y) reactions in the walls of the vault. Since

the MSR used in these measurements is unshielded, this photon dose rate component

might have been on the order of 0.02 - 0.2 cGy/(min-mA). This additional photon dose

component might account for a significant part of the discrepancy between the measured

and simulated results. This photon dose component, however, should be approximately

uniform over the volume of the phantom.

Because the disagreement between measured and predicted photon dose rate is so

large at 1 cm and so small at 7 cm, one might expect some type of geometric explanation

for the differences. Since the detector is very close to the phantom surface and the
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therapy port during the 1 cm measurement, one possible explanation of the discrepancies,

based on geometry, is that a low energy photon field exists outside the phantom. The low

energy photon field might penetrate 1 cm into the phantom easily, but not significantly

penetrate to depths of 7 cm. This would cause the photon dose rate at 1 cm to be higher

than expected, but not affect the 7 cm photon dose measurement.

The accuracy of the gold foil activation method is dependent on several factors.

The gold foils are weighed to an accuracy of + 1%. The statistical uncertainty resulting

from the counting process was approximately 1.5% for the gold foil at 1 cm and 2.5 % for

the foil at 7 cm. The total systematic error resulting from uncertainties in the position of

the gold foils, the cross sections of Cd and Au, timing, and self absorption of the 411 keV

photon in the gold foil have been analyzed extensively by the MIT-R group. These

various factors result in uncertainties of less than 4%[15]. As discussed above, the

uncertainty in the total integrated charge is potentially much greater than these other

factors, and could be as high as 20%.

Considering all possible sources of error, the most likely reasons for the

disagreement between simulated and measured results are: (1) the inaccuracy of the

neutron source definition, (2) the fact that two photon dose components ( (n,y) reactions

in the vault walls, and photon production at the target) were not included in the model, (3)

the large uncertainty in the total charge on the target. Numbers (1) and (3) would affect
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both the neutron and photon dose components while (2) would only affect the photon

dose components.

III.G Conclusions regarding dosimetry techniques

In Section III-F, the dual ionization chamber method, as it has been implemented

at LABA. has been described. At a depth in phantom of 1 cm, the discrepancies between

measured and simulated neutron dose components were between 16% and 21%. This

disagreement can be attributed both to experimental error and inaccuracies in the MCNP

model as discussed above. The disagreement between the measured and simulated

photon dose rates was much larger (48%). This disagreement can also be attributed to

errors in both measurements and simulations. Possible sources of this disagreement have

been discussed above.

These are the first results using this dosimetry method at LABA. The

measurements were made on an absolute basis (no normalization used) and in all cases

the simulated and measured dose components agreed to within a factor of 2. The level of

accuracy is encouraging for initial results, but will not be sufficient to definitively

confirm the results of Monte Carlo beam design. The confirmation of Monte Carlo-based

designs will be very important in the development of AB-BNCT. Four changes to the

experimental methods might help to resolve these discrepancies, and improve these initial

results.
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First, a neutron source should be used for which the neutron and photon

production at the target is more accurately known. If possible, two neutron sources, such

as 7Li(p,n) E,=2.5 MeV and 9Be(p,n) E,=3.7 MeV, should be used. In the case of the

7Li(p,n) reaction, the photon production at the source is known to be very small and well

shielded by the moderator. By using this neutron source, one could eliminate photon

production at the target as a possible source of error.

Second, the MSR should be shielded and the (n,y) reactions in the vault walls

more accurately modeled. One possible experiment could be conducted in which the

MSR is alternately shielded and left unshielded. Comparing the results would give a

direct indication of the effect of contaminant photon radiation inside the vault, and

specifically around the therapy port. This type of experiment could also be used to

confirm some of the results which will be presented in Chapter IV.

Third, a second method of experimentally determining dose within the phantom

should be developed. This method should be independent in as many respects as possible

from the dual ionization chamber and activation foil methods. One possibility is the use

of thermoluminescent detectors (TLDs). TLDs are used at the Brookhaven National

Laboratory (BNL) BNCT group for therapy beam dosimetry [26]. By using LiF TLDs

which have been sufficiently depleted of their 6Li content, BNL can directly measure the

photon dose component. Usually, these TLDs are problematic in mixed neutron and

photon fields because any 6Li(n,ux) reactions in the TLDs will result in the deposition of a
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large amount of energy which can hide the photon dose component. That is, unless the

LiF TLDs have a very small amount of 6Li, the neutron sensitivity can be much larger

than the photon sensitivity and will not allow the accurate measurement of the photon

dose component [27]. Recently, researchers at BNL have reported that they have

improved these methods by using LiF TLDs which are surrounded by 6Li shields. The

shields are designed to absorb thermal neutrons so that the TLD measures only the photon

dose component [26].

Fourth, the experimental procedures must be improved to reduce the systematic

errors. The most important of these changes would be an improved charge collection and

ion beam profiling system for the accelerator. This system should be designed to measure

the current or charge impinging the target with an accuracy of 5 % or less.
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CHAPTER FOUR

Facility and Patient Shielding Evaluations

This chapter describes the Monte Carlo methods used to estimate the neutron and

photon dose rates in a variety of locations in the vicinity of the LABA accelerator. Using

an iterative approach of design and Monte Carlo evaluation, the existing radiation

shielding was evaluated and improvements were designed and built. The purpose of this

shielding is to protect those working in and around the LABA facility. Improvements to

the facility shielding will be presented. The initial design process was carried out under

the assumption that the reaction 7Li(p,n), with Ep=2.5 MeV, would be used to produce

neutrons for the research at LABA [1]. The Monte Carlo simulations used to predict dose

rates near the facility have been repeated for the 7Li(p,n) reaction and for the reactions

9Be(p,n), E,=4.0 and 3.7 MeV. These reactions were examined because therapy beam

designs based on them were shown to be promising.

Although the reaction 9Be(d,n) Ed=2.6 MeV was shown in Chapter III to be less

useful for producing therapy beams, it is a convenient source of neutrons for the LABA

facility because the reaction is prolific and a beryllium target is already available for use.

Because the LABA group will be using this reaction as a neutron source, it was necessary
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to evaluate the dose rates near the vault that would result from its use. This reaction will

be used with deuteron currents in the microampere range. Therefore, when this reaction

is being considered, the evaluation of dose rates is based on an assumption of a 50 ýtA

deuteron current.

Simulations were also conducted to evaluate a preliminary shielding design which

would reduce the non-therapeutic dose to the patient during an AB-BNCT procedure to

treat brain cancer. This evaluation was conducted using the 7Li(p,n) reaction as a source

of neutrons. The results of this study will be presented in Section IV.B.

IV.A Facility shielding evaluation and dose assessment

IV.A.1 Purpose

The purpose of these simulations was two-fold: (1) to design additional shielding

at the LABA facility to ensure that the AB-BNCT research could be conducted safely and

(2) to predict the radiation dose rates at locations in and near the facility. If AB-BNCT

proves to be a clinically useful therapy, the most likely location of a new facility would be

a hospital. A critical aspect of AB-BNCT is the demonstration that the therapy can be

conducted in an environment which is safe for the hospital staff. This work and other

similar studies [2] will help answer those concerns and eventually lead to realistic

hospital-based facility designs. This section begins with a description of the MCNP

model of the LABA facility.
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IV.A.2 Description of the building before renovation

The LABA facility is located in MIT building NW13. A large scale drawing of the

area is shown in Figure IV-A-1. Building NW13 faces almost due north, with the main

entrance on Albany Street. The vault and LABA facility are located in the back of the

building in the basement. There is a railroad line which runs parallel to Albany Street

behind building NW13. Prior to the construction of the laboratory, most of the basement

was used to store equipment and was unsuitable for immediate use. Within the proposed

laboratory space was an existing vault which had been used for research using radiation

sources. Although the laboratory is located entirely in the basement, this vault has a high

ceiling which extends into the ground floor of NW13. A drawing of the facility's

basement level, based on original blueprints of the building, is shown in Figure IV-A-2.

A drawing of the first floor, which shows the vault's extension into that level, is shown in

Figure IV-A-3. This ground floor has not been renovated. Cinder block construction is

used for many of the walls in the basement. The ceiling between the basement and first

floors is approximately 10-12 inches thick. This thickness was measured through several

vents and passageways which exist in the ceiling. The walls of the vault are

approximately 3 feet thick. The ceiling and vault walls are made of solid concrete.

Above the vault is a small crawl space which contains plumbing and heating

equipment for the building. Access to this area is possible, but very difficult. After

climbing a small ladder, one must crawl through a maze of pipes to arrive at any location

where one could sit or stand. Because access to this area is so difficult, it is considered to
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be only rarely occupied for the purposes of radiation safety evaluations. A primary

concern in designing the radiation shielding is the student laboratory located north of the

vault on this ground floor. The area on the south side of the vault is not excavated below

street level. The east side of the vault below street level borders a boiler room in NW12.

The area in the basement to the west of the vault is the control room, which was not

significantly changed during the renovations. The area north of the vault in the basement

was a storage room prior to the renovations and is now used to house the LABA

accelerator and a radio-frequency quadrupole accelerator of another laboratory.

IV.A.3 Geometrical model for MCNP

The Monte Carlo N-Particle Transport Code System (MCNP) [3] was used to

model the accelerator, existing radiation vault and two floors of MIT buildings NW12

and NW13. Wall, floor and door thicknesses and material composition were input as

accurately as possible in the model. Schematic illustrations of the basement and first

floor levels of the model are shown in Figure IV-A-4 and Figure IV-A-5. These have

been produced by MCNP's internal two dimensional plotting routine and represent bird's-

eve views of both levels. The circles indicating the locations of dose estimation, and the

shaded walls added as part of the shielding design are discussed below. The accelerator

was modeled as a hollow, 1.25 cm thick, aluminum cylindrical shell of radius 83 cm. A

small hollow cylindrical proton beam tube was located at one end and extended through

the wall and into the radiation vault. The MSR was modeled in the vault.
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Three sets of simulations were evaluated. The purpose of the first set of

simulations was to determine the dose rates surrounding the facility when the MSR is

made only of a moderator and reflector. For the 9Be(p,n) E,=4.0 MeV reaction a 27 cm

long, 10 cm radius D20 moderator surrounded by a graphite reflector was chosen. For

the same reaction using 3.7 MeV protons, the length of the moderator was reduced to 24

cm. For the 7Li(p,n) reaction, a 24 cm diameter, 19 cm length D20 moderator was

chosen. The moderator and reflector dimensions used for the 7Li(p,n) and 9Be(p,n)

reactions were based on realistic therapy beam designs which were presented in Chapter

III.

A second set of simulations were also conducted for the 9Be(p,n) E,=4.0 MeV and

7Li(p,n) reactions using a MSR which was designed for the latter reaction [4]. A drawing

showing the cross section of this MSR is shown in Figure IV-A-6. This MSR is more

complex than the MSR used in the first set of simulations. It contains a 19 cm long, 24

cm diameter D20 moderator surrounded by a lead reflector. The lead reflector is

surrounded on all sides by a large volume of D20 (with a passage left for a therapy port).

At the boundaries of all materials, a thermal neutron filter made of 6Li was used. The

purpose of the second set of simulations was to determine the dose rates surrounding the

facility when the more complex MSR is used. The simulation using the 7Li(p,n) reaction

was repeated to generate better statistical results than were published earlier [1].
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Figure IV-A-6: MSR designed for the reaction 7Li(p,n)



Finally, a simulation was evaluated to determine the dose rates which would be

expected, at locations surrounding the LABA facility, from use of the 9Be(d,n), Ed=2.6

MeV reaction and the MSR currently in use at LABA. The MSR which is currently in

use was modeled since it will be used during the initial experiments at LABA. This MSR

contains a 27 cm long, 24 cm diameter D20 moderator surrounded by a lead reflector.

This MSR has no additional shielding and uses no thermal neutron filters.

IV.A.4 Radiation sources

There are three distinct sources of radiation from the LABA accelerator that must

be considered. The first source is a pure gamma field which is created by proton or

deuteron bombardment of the target via the reactions (p,y) or (d,y). The strength of these

sources and the energy of the photons released in these reactions was presented in

Chapter II. The photon production from the 7Li(p,y) reaction was shown in Chapter III to

be adequately shielded by the MSR. The gamma production from 9 Be(d,n) is relatively

weak (maximum cross section of approximately 10.1 + 3.5 pbarn [5] ) and was not

considered. The dose rates at locations surrounding the facility resulting from the

9Be(p,y) reaction were not thought to be significant. This assessment was based on the

dose rates at the therapy port from this reaction as determined in Chapter III. This

assessment was confirmed by a single simulation which will be presented.

The second source of radiation is a pure photon field which is created in the

acceleration process. Stray electrons can be produced in the evacuated accelerating tube
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as protons or deuterons strike the aluminum electrodes. These electrons experience an

accelerating force directed towards the positively charged HV terminal. Bremsstrahlung

radiation is created when these electrons strike the aluminum electrodes of the

accelerating structure or some other part of the evacuated beam tube. The LABA

accelerator has been designed with strong samarium-cobalt (SmCo) magnets which

deflect these electrons. The strength of this magnetic field is approximately 100 Gauss on

the axis of the accelerating tube [6]. Since these secondary electrons could be produced

anywhere along the accelerator, the most appropriate model for the Bremsstrahlung

radiation would be a line source extending the length of the accelerator. The accelerator

beam tube and aluminum pressure vessel provide a considerable amount of shielding for

these x-rays. The beam tube is made primarily of aluminum electrodes and glass

insulators. The pressure vessel is made of aluminum which has a thickness of

approximately 1.25 cm.

Prior to construction of the LABA facility, the expected intensity of the

Bremstrahlung radiation during operating conditions was not known. An estimation of

the intensity was based on simulations from a coupled electron - photon Monte Carlo

code called TIGER [7] and measurements from an existing accelerator similar to the

LABA accelerator located at Washington University in St. Louis, MO (referred to in this

section as the St. Louis accelerator). The St. Louis accelerator does not use SmCo

magnets for electron suppression. Separate TIGER simulations were conducted using

300, 440 and 500 keV electrons striking a 0.254 cm thick aluminum target [8]. These
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TIGER simulations produced three Bremsstrahlung spectra, each of which was used as

the source definition in a MCNP model of the accelerator at St. Louis. These MCNP

simulations produced three different estimates of the dose rates inside and outside of the

shielding structure at the St. Louis accelerator. Results of the simulations of the St. Louis

accelerator were compared with actual measurements taken at that location using an

ionization chamber [9]. The spectrum resulting from the 440 keV electrons best fit the

available measured data. This spectrum was then used as an approximation to the

Bremstrahlung production for the LABA accelerator during the evaluation of the

shielding requirements and dose assessments previously reported [1]. Recent

measurements during operation of the accelerator indicate that the Bremsstrahlung

radiation field intensity is much lower than estimated above [6] and might not contribute

in a measurable way to the dose rates at the LABA facility.

The third and most important source of radiation is the neutron beam that is

created when the accelerated ion beam strikes the lithium or beryllium target. This source

of radiation was presented in Chapter II. Of the three sources, the neutron source is

unique in its ability to create a second penetrating radiation field at distances far from the

original source of radiation. As the neutrons interact with materials in the vault,

especially the hydrogen contained in concrete, gamma rays are created through (n,y)

reactions. Neutrons which have traveled a distance of many meters from the MSR could

be captured in the walls of the vault releasing high energy photons close to the location of

those working in the laboratory. Photons which are created at the target and MSR also
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can create a secondary photon field far from the MSR. These secondary photons are

reduced in energy from the primary photons created near the MSR and are not as

penetrating.

The same geometrical model of the accelerator and building structure can be used

in the determination of dose rates resulting from the three sources of radiation. Three

separate MCNP simulations were required because the MCNP program allows only one

radiation source definition for a simulation.

IV.A.5 Dose rate prediction

Radiation dose rates were estimated by tallying particle fluence (either neutron or

photon) in cylindrical volumes of tissue equivalent material [10] built into the model.

Particle fluence was converted to dose using fluence to kerma conversion factors for

neutrons [11] and photons [12]. The cylindrical volumes were modeled at 11 locations as

depicted as circles in Figure IV-A-4 and Figure IV-A-5. The number beside each circle is

the reference number for the tables and discussion in this chapter. One of the cylinders

(510) was modeled outside the building near existing railroad tracks, which is the closest

location accessible to the public.

IV.A.6 Shielding evaluation and improvement

The shielding surrounding the neutron producing target must be adequate to keep

radiation dose rates at locations surrounding the facility acceptably low. For these
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simulations, the acceptable dose rates were taken from the Code of Massachusetts

Regulations [Massachusetts, 1988 #114]. There should be no accessible location where

any individual could be exposed to a dose equivalent rate of greater than 2 mrem/hr. The

dose rates at locations accessible to the general public should be less than 0.2 mrem/hr.

The first step in the design process was to evaluate the existing radiation shielding

which was provided by the radiation vault. Early results from these simulations indicated

that additional shielding on the north side of the vault was needed. A concrete wall was

proposed which would be a permanent structure on the inside north wall of the vault. To

design the proper thickness and location of this concrete wall, and the thicknesses of the

concrete walls which would form the accelerator room, dose rates were estimated and

wall thicknesses changed in an iterative manner. Seven such iterations were needed to

arrive at the final design.

Based on practical building constraints and an iterative examination of shielding

design and dose assessment, an effective shielding improvement for the laboratory was

developed. This design is shown in Figure IV-A-7. The location and orientation of the

accelerator has been chosen to take advantage of the existing shielding available. Cinder

block walls have been added to form the laboratory rooms and also to provide shielding.

Additionally, a wall made of 30.5 cm thick concrete blocks was added to the inside north

wall of the vault; this wall was needed to reduce the predicted dose rate to the students in

the laboratory directly above the accelerator.
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IV.A.7 Dose estimations

Estimates of dose rates produced by the accelerator and target reactions in areas

adjacent to the proposed laboratory were calculated using MCNP as described above.

The additional shielding presented in Figure IV-A-7 was included in all simulations

discussed in the remainder of the chapter. Table IV-A-1 shows the predicted dose rates at

three locations which results from the Bremsstrahlung radiation produced in the

accelerator [1]. These are the locations closest to the accelerator.

Reference Number Gamma dose equivalent rate Relative Error
[mrem/hr-mA] 1 standard deviation )

504 0.02 0.01

513 0.03 0.01

543 0.001 0.05

Table IV-A-1: Predicted photon dose rates from Bremsstrahlung radiation. A 1 mA

beam of 2.5 MeV protons was assumed.

Tables IV-A-2 and IV-A-3 show the predicted dose rates which result from the

(p,n) reactions. The first table shows the results when the MSR shown in Figure IV-A-6

is used. The second table shows the results when the MSRs made of only a moderator

and reflector are used.
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Results using the MSR shown in Figure IV-A-6

Cell Neutron Dose rate Statistical error Neutron Dose rate Statistical error

reference using the (1 standard using the (1 standard

number 'Li(p,n) deviation) 9Be(p,n) deviation)
E,=2.5 MeV E, = 4.0 MeV

reaction reaction

[mrem/(hr-mA)] [ mrem/(hr-mA) ]

502 0.09 0.11 0.3 0.09

504 0.003 0.3 0.01 0.3

510 0.005 0.25 0.02 0.3

511 0.004 0.25 0.009 0.2

513 0.007 0.24 0.02 0.17

530 0.07 0.09 0.9 0.06

531 0.07 0.08 0.2 0.06

Cell Photon Dose rate Statistical error Photon Dose rate Statistical error

reference using the (1 standard using the (1 standard

number 7Li(p,n) deviation) 9Be(p,n) deviation)
E,=2.5 MeV E, = 4.0 MeV

reaction reaction

[ mrem/(hr-mA)] [ mrem/(hr-mA) ]
502 1.7 0.09 4.8 0.07

504 0.3 0.23 0.4 0.3

510 0.5 0.22 0.7 0.3

511 0.2 0.24 0.6 0.2

513 0.2 0.27 0.3 0.3

530 2.2 0.08 6.0 0.06

531 2.6 0.07 7.3 0.05

Table IV-A-2: Dose rates resulting from the use of the MSR in Figure IV-A-6.
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Results using the MSRs containing
only a moderator and a reflector

Cell Neutron Dose Statistical Neutron Dose Statistical Neutron Dose Statistical

# rate using the error rate using the error rate using the error
7Li(p,n) 9Be(p,n) 9Be(p,n)

E,=2.5 MeV 1 E, = 4.0 MeV 1 E = 3.7 MeV 1

reaction standard reaction standard reaction standard

mrem/(hr-mA) deviation mrem/(hr-mA) deviation mrem/(hr-mA) deviation

502 0.9 0.02 1.5 0.06 1.0 0.05

504 0.03 0.08 0.04 0.07 0.03 0.08

5 10 0.04 0.07 0.05 0.07 0.04 0.06

511 0.06 0.06 0.05 0.06 0.04 0.06

513 0.05 0.06 0.05 0.07 0.04 0.07

520 0.0003 0.67 0.00008 0.6 0.0001 0.66

521 0.002 0.36 0.002 0.2 0.002 0.24

530 0.6 0.02 0.69 0.02 0.5 0.02

531 0.8 0.02 0.9 0.02 0.7 0.02

Cell Photon Dose Statistical Photon Dose Statistical Photon Dose Statistical

# rate using the error rate using the error rate using the error
7 Li(p,n) 9Be(p,n) 9Be(p,n)

E,=2.5 MeV I E, = 4.0 MeV 1 EP = 3.7 MeV 1

reaction standard reaction standard reaction standard

mrem/(hr-mA) deviation mrem/(hr-mA) deviation mrem/(hr-mA) deviation

502 11.5 0.02 16.5 0.02 14 0.02

504 1.55 0.05 2.34 0.06 1.8 0.06

510 2.75 0.04 4.2 0.04 3.5 0.04

511 1.75 0.05 2.5 0.06 2.1 0.06

513 0.75 0.08 1.3 0.07 1.0 0.08
520 0.047 0.34 0.04 0.44 0.44 0.31
521 0.36 0.12 0.5 0.13 0.44 0.12
530 14.5 0.02 22.8 0.02 17.6 0.02
531 20 0.02 30 0.02 24.4 0.02

Table IV-A-3: Results using a simple moderator and reflector.

A single simulation was executed to evaluate the effect of gamma production at

the target for the reaction 9Be(p,n) Ep= 4.0 MeV using only a moderator and reflector.

The highest dose rate was at cell 531, with a value of 2.4 x 10- mrem/hr-mA and a

statistical error of 0.2. This result confirms the earlier assessment that photon production

at the target does not produce a high dose rate outside the shielded vault.
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The results of the simulation using the reaction 9Be(d,n) and the MSR currently in

existence at LABA are shown in Table IV-A-4. Since this reaction will be used at

currents of approximately 10 -50 pIA, for limited periods of time, the results are presented

assuming a beam current of 50 jtA. The highest photon dose-equivalent rate at 50 ptA is

2.5 mrem/(hr-mA). At location 510 the photon dose-equivalent rate at 50 [pA is 0.3

mrem/(hr-mA). To reduce these dose rates further, additional shielding should be added

around the MSR.

Results using MSR existing at
LABA

Cell reference number Neutron dose rate using Statistical error
9Be(d,n) Ed=2.6 MeV (1 standard deviation)

reaction, 50 pA.
[mrem/hr ]

502 .1 0.06

504 .004 0.02
510 0.01 0.2
511 .01 0.3
513 .01 0.3

530 0.15 0.07
531 0.1 0.06

Cell reference number Photon dose rate using Statistical error
9Be(d,n) Ed= 2 .6 MeV (1 standard deviation)

reaction, 50 lA.
[ mrem/hr ]

502 1.5 0.01
504 0.2 0.03
510 0.3 0.05
511 0.2 0.03
513 0.1 0.04
530 1.5 0.01
531 2.5 0.01

Table IV-A-4: Dose rates resulting from the use of the MSR currently being used at
LABA and the reaction 9Be(d,n), assuming a beam current of 50 pIA.
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IV.A.8 Discussion

One clear conclusion which can be made from examining Tables IV-A-2 and IV-

A-3 is that the shielding surrounding the moderator and reflector is very important to the

reduction of dose rates outside the vault. The more complex MSR was designed for the

7Li(p,n) reaction, and the comparisons presented here will be based on that reaction

unless stated otherwise. For all the simulations, the highest photon dose rate occurred

directly above the vault at location 531. The highest neutron dose rates occurred at

locations 502, 530, and 531. At location 531, the photon dose rate was reduced from 20

mrem/(hr-mA) to 2.6 mrem/(hr-mA) when the additional shielding surrounding the

moderator and reflector was added. At the same location, the neutron dose rate was

reduced from 0.8 mrem/(hr-mA) to 0.07 mrem/(hr-mA).

The neutron dose rate accounts for a small fraction of the total absorbed dose rate

at any of the tally locations. For example, using the more complex MSR, the neutron and

photon dose rates at location 531 are 0.07 mrem/(hr-mA) and 2.6 mrem/(hr-mA),

respectively. The total dose equivalent rate is thus not very sensitive to the number which

is used for the quality factor to convert absorbed dose rate to dose equivalent rate. For

these results a quality factor of 10 was used.

Some of the dose rates predicted using the more complex MSR are still higher

than the allowed values discussed above. In particular, at location 510 (accessible to the

general public) the photon dose rate is 0.5 mrem/(hr-mA). At location 531, the photon
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dose rate is 2.6 mrem/(hr-mA). A final simulation was evaluated which used the more

complex MSR and the reaction 'Li(p,n) as a source of neutrons. For this final simulation,

an additional shielding layer of water and boric acid was added around the sides of the

MSR, but not the back or front. This volume was modeled as a cylindrical shell 10 cm

thick which contained water which was saturated in its boric acid content. The boric acid

was enriched to 90% 10B. This additional shielding reduced the photon dose rate at

location 531 from 2.6 mrem/(hr-mA) to 0.9 mrem/(hr-mA). A similar reduction was seen

at the other locations. This additional boric acid shielding would be very inexpensive.

To reduce the photon dose rates even further, similar boric acid shields could be added

along the inside of the vault walls.

IV.A.9 Initial measurements of the Bremsstrahlung radiation

Some initial measurements have been made of the Bremsstrahlung radiation field

produced by the accelerator. The accelerator beam was made to terminate on a beam stop

in the vault which was not neutron producing. This ensured that the photon dose rates

had no (n,y) components. Two radiation survey meters (Ludlum model 19 and Victoreen

model 450P) were placed one at a time 24 inches from the axial centerline of the

accelerator, and monitored remotely by a video camera. The readings were taken using a

1.8 MeV proton beam at currents of 10-140 pA. The background readings for the two

detectors were approximately 10 [trem/hr and 30 [prem/hr respectively. The dose rate was

measurable when a beam current of 10 ýtA was used, and the dose rate did not vary

significantly with increasing beam current. At a beam current of 140 pA, the dose rates
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measured by the two detectors were approximately 30 ýtrem/hr and 55 [trem/hr.

respectively. After subtracting background readings, the dose rates were 20 ýtrem/hr and

25 ýprem/hr, respectively.

IV.A. 10 Concluding remarks regarding facility shielding

For the first year of research, while the accelerator is being tested and a high

current target is being developed, the accelerator will most often be run at currents in the

range 10-500 jtA. During this time, the dose rates should be measured experimentally to

confirm the results of these simulations.

The dose rates resulting from the Bremsstrahlung radiation of the accelerator may

be much lower than predicted. A systematic study of these dose rates should be

conducted at various beam energies and currents. If the dose rates are very low, the

shielding requirements could be significantly reduced.

The simulation results also indicate that shielding near the MSR is very important.

Neutrons which are not part of the useful therapy beam should be moderated to thermal

energies and captured as close to the MSR as possible. These simulations indicate that an

inexpensive and effective solution would be the addition of shielding layers containing

boric acid and water. Without this additional shielding, the dose rates at multi-

milliampere currents would probably exceed 2 mrem/hr at several locations.
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IV.B Patient shielding evaluation

During an AB-BNCT therapy procedure, the patient would be exposed to a mixed

neutron and photon radiation field. As a result, in addition to the therapeutic and

contaminant doses to the target organ which were discussed in Chapter II, the patient

would receive a non-therapeutic radiation dose to the rest of the body. For an AB-BNCT

treatment of a brain tumor, the upper torso would receive the largest part of this dose.

This section describes the Monte Carlo methods used to estimate the radiation dose rates

to which the patient will be exposed and to investigate a way in which this dose might be

reduced. One shielding configuration is presented and various materials which might be

used for this shielding are evaluated.

A diagram of a possible AB-BNCT scenario was shown in Chapter I (Figure I-B-1).

In this configuration, the patient's head is placed as near as possible to the therapy port of

the MSR. There is very little space available to shield the patient's torso. Other possible

configurations for AB-BNCT exist, such as irradiation of the brain from one side of the

head, or the irradiation of an extremity. The positioning of the patient shown in Figure I-

B-1, however, presents a difficult configuration in regards to shielding the rest of the

patient's body. This scenario will be used as a model to examine ways in which the dose

to the patient's torso can be reduced. All other configurations should be as easy or easier

to shield.
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IV.B. 1 Methodology

The Monte Carlo simulation code, MCNP, was used for all analysis and shielding

design. The neutron spectrum from the reaction 7Li(p,n), Ep=2.5 MeV was used as the

initial radiation source. The results of this shielding study should not depend strongly on

the neutron source reaction as long as a MSR which has been designed for the reaction is

used. As shown in Chapter III, the therapy beam spectra resulting from either (p,n)

reaction can be made to have very similar characteristics. The 7Li(p,n) reaction has been

shown to provide a therapy beam with a greater intensity, but the shapes of the various

dose components are similar when compared with the 9Be(p,n) reaction (Ep = 4.0. 3.7,

3.4, 3.0 MeV) if optimized beams are considered. The 9Be(p,n) source reaction would

also have a (p,y) component which was not examined here.

The laboratory, MSR and patient phantom were included in the MCNP model.

Neutron and photon fluences were estimated at several locations within the patient model

and these fluences were then converted to neutron and photon dose rates using fluence to

kerma conversion factors for neutrons [11] and photons [12]. For all calculations, a

quality factor of 10 was used for neutrons, and 1 for photons. In addition, the

contributions to patient dose rate from neutron radiative capture reactions in the patient

and the walls of the therapy room were assessed separately. In all calculations, a proton

current of 4 mA was assumed.
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Because the therapy is assumed to be targeted at the brain, the location of the highest

dose to the patient from extra-cranial radiation would be in the upper torso and neck.

Figure IV-B-1 shows a three dimensional representation of the phantom used in the

MCNP model. The MSR consists of a D20 moderator (blue) surrounded by a lead

reflector (gray) and a D20 shielding volume (green). Layers of 6Li (magenta) absorb

thermal neutrons. The patient is modeled as three connected cylinders for the head (red),

neck (gray) and torso (blue). Tissue equivalent material fills the phantom [10]. A larger

scale drawing of Figure IV-B-1 is shown in Figure IV-B-2. The MCNP defined cells

shown in green are the cells in which neutron and photon fluences were estimated and

converted to absorbed dose.

To protect the body of the patient, a volume of shielding material, similar to a neck

brace, was modeled around the neck of the patient phantom. This shielding is shown in

yellow in Figure IV-B-1 and Figure IV-B-2. This volume was initially filled with air and

data from this simulation were used as a baseline for comparison. The volume was then

filled with other materials and the simulation results were compared for efficacy in

reducing patient dose rates. The shielding design is difficult because there is limited space

for shielding materials. It is important to place the patient as close as possible to the

beam therapy port to maximize the therapeutic dose rate. The design is also difficult

because neutron capture reactions in various materials create a mixed field of photons and

neutrons.
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Figure IV-B-1: MCNP model for patient shielding evaluation.
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Figure IV-B-2: Patient model in MCNP shielding simulations.



The ideal material for mixed neutron and gamma shielding has the following

properties: high fraction of low-Z materials for efficient neutron thermalization, large

cross section for a neutron capture reaction with limited gamma production, inexpensive

and safe to handle, and the ability to attenuate photons created in gamma capture

reactions. Three materials were chosen for comparison: D20, lithium carbonate

(Li 2CO3), and a 50-50 mixture by molecular fraction of polyethylene and lithium

carbonate. Lithium based compounds were chosen because the 6Li(n,u) reaction has a

high thermal cross section (940 barns) and no associated gamma photons. Although the

reaction loB(n,a) has a higher cross section (3840 barns), 94% of the residual 7Li is left in

an excited state which emits a 0.48 MeV gamma photon. For the initial comparison of

shielding materials. natural lithium, which is 7.5% 6Li and 92.5% 7Li was used.

IV.B.2 Results

The absorbed dose rates or dose equivalent rates as a function of depth in the phantom

torso, measured from the neck down, were evaluated and graphed. To evaluate the

relative efficacies of the different shielding materials, the dose rates at a depth of 3 cm in

the cylinder and at a radial distance halfway between the extent of the neck cylinder and

the extent of the cylinder modeling the torso were compared. A comparison of the

various shielding materials, based on their ability to shield against photon radiation, is

shown in Figure IV-B-3.
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Photon dose rate in phantom torso during simulated AB-BNCT procedure
using the reaction 7Li(p,n) E = 2.5 MeV, 4mA, and three different shields
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The ability of the shielding materials to shield against neutron radiation is shown in

Figure IV-B-4. Based on the simulations. the best patient shielding material considered

in this study is the 50-50 mixture of polyethylene and lithium carbonate. When natural

lithium is used in the mixture. the total dose equivalent rate at a depth of 3 cm has been

reduced to approximately 30% of the total unshielded rate. This unshielded rate includes

photon production in the therapy room walls and the head phantom in the model.

IV.B.2.a Effect of increasing 6Li enrichment

Natural lithium is 7.5% 6Li and 92.5% 7Li. To study the effects of enriching the

lithium in its 6Li content, the ratio of 6Li to 'Li was increased in increments, up to a 90%

enrichment of 6Li. This enriched lithium was used in place of the natural lithium in the

50-50 mixture of lithium carbonate and polyethylene. A comparison was carried out for

the following enrichments: natural. 30%. 50%, 70%, and 90%. The numerical results are

summarized in Table IV-B-1.

Shielding material used Percentage reduction in neutron Percentage reduction in photon
dose rate from unshielded dose rate from unshielded

phantom phantom
Heavy Water 63% 35%

Lithium Carbonate 75% 55%

50-50 mixture of lithium 81% 57%
carbonate and polyethylene

50-50 mixture with 50% 85% 60%
enrichment of 6Li

50-50 mixture with 90% 87% 63%
enrichment of 6Li

Table IV-B-1: Summary of numerical results for using enriched lithium in shielding
volume.

This table indicates that 6Li enrichment can provide an additional 5-6 % reduction in

the neutron and photon dose rates to the patient's torso.
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Figure IV-B-4: Neutron dose rate in phantom torso during simulated AB-BNCT procedure
using the reaction 7Li(p,n) E = 2.5 MeV, 4mA, and three different shields
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IV.B.2.b Gamma Capture Reactions

In addition to the gamma capture reactions that occur in the structures surrounding the

target and those that occur in the torso, there are two other sources of gamma radiation to

consider. MCNP allows the user to assess the contribution from each of the sources

separately. The contribution to patient dose from gamma capture reactions in the therapy

walls (which were modeled as solid concrete) accounts for less than 4% of the total

unshielded dose equivalent rate. There are methods to reduce this contribution to the

patient dose. such as covering the walls with 10B or 6Li loaded paint [13]. Since this

contribution was small, these methods were not investigated further at this time. A more

important source of dose to the torso is the gamma capture reactions in the brain, which

accounts for approximately 13% of the total unshielded dose equivalent rate. This

contribution establishes a lower limit on dose reduction to the patient. The various

contributions to the photon dose rate are depicted in Figure IV-B-5.

IV.B.3 Concluding remarks regarding patient shielding

Dose rates to the patient's torso can be significant, reaching levels as high as 50

cSv/(hr-mA) (unshielded). These dose rates have been shown to be easily reduced by a

simple shielding design consisting of a 50-50 mixture of lithium carbonate and

polyethylene contained in a volume around the patient's neck. The reduction of the total

dose equivalent rate at 3 cm by this shielding material was approximately 70% using

naturally occurring lithium. The use of lithium enriched in its 6Li content can further

reduce these dose rates. Thirty percent of the photon dose rate to the torso at 3 cm
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Figure IV-B-5: Photon dose rate in phantom torso during simulated AB-BNCTprocedure
showing the various contributions to the unshielded dose rates

using the reaction 7Li(p,n) E = 2.5 MeV, 4mA.
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originates in (n,7) reactions in the brain, and presents a level below which the photon dose

component might not be reduced. More advanced shielding designs should be developed

if AB-BNCT is be used clinically.
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CHAPTER FIVE

Summary and Conclusions

During the past five years, there has been considerable progress towards making

BNCT a viable therapy modality for cancer. The progress has been made in many

different disciplines which affect the success of BNCT and AB-BNCT. This chapter

contains a summary of the important results contained in this thesis and concluding

remarks based on these results. The research presented in this thesis will be useful to the

BNCT community, especially to those working in the field of AB-BNCT. This research

will be even more meaningful and useful after the results of the current clinical trials have

been clearly understood and analyzed.

V.A Summary of Research

Prior to the research presented here, data needed to assess the thick target spectra

of the reaction 9Be(p,n) Ep < 4.0 MeV were not available in the literature. Therefore,

these spectra were measured using time-of-flight techniques. A total of 28 neutron

spectra were measured using four proton energies: 4.0, 3.7, 3.4 and 3.0 MeV. These data

are useful, not only for the BNCT community, but also for the larger scientific

community. The accuracy of the data has been confirmed, indirectly, through the

measurement of a second neutron producing reaction.

244



Eight of these spectra were measured twice (November 1995 and August 1996).

These repeated measurements show agreement of 20% or better over most of the neutron

energy range. There is a significant disagreement between the repeated measurements at

neutron energies below 250 keV. The disagreement accounts for less than 3% of the total

neutron yield. Possible sources of this discrepancy were discussed, but not resolved.

Previous results indicate that low energy neutrons (less than 100 keV) produced at the

target do not significantly affect the efficacy of AB-BNCT since they are absorbed in the

MSR before reaching the therapy port [1]. Therefore, these discrepancies would not

significantly affect the results of this thesis.

The estimated total thick target yields of the reaction 9Be(p,n), using proton

bombarding energies of 4.0 and 3.7 MeV, were found to be approximately 20-25% lower

than the yields based on the thin target excitation function [2] and stopping powers of

protons in beryllium [3].

In Chapter III, Monte Carlo techniques were used to design therapy beams for

each of the three reactions examined in Chapter II: 7Li(p,n) Ep=2.5 MeV, 9Be(d,n) Ed=2.6

MeV and 9Be(p,n) Ep=4.0, 3.7, 3.4, and 3.0 MeV. Of these reactions, 7Li(p,n) Ep=2.5

MeV is clearly the best neutron source when the reactions are compared on the basis of

the neutron energy spectrum at the target. Although a lithium target capable of

withstanding heat loads of 10 kW has not yet been designed, this obstacle may some day

be removed. Designs based on the 9Be(p,n) reaction produced less intense therapy beams
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compared with 7Li(p,n)-based designs. However, high current targets made of beryllium

will be much easier to design and fabricate. A comparison of the dose rates from three

therapy beam designs is given in Table V-1 below. Results using the reaction 9Be(d,n)

were disappointing. The average neutron energy of this reaction is sufficiently high to

require extensive moderation. The added volume of moderator reduces the epithermal

neutron flux available at the therapy port, and results in a low total tumor dose rate.

Contaminant photon radiation would be produced at the neutron producing target

for each of these reactions. There are few data in the literature concerning the photon

production which results from the deuteron bombardment of beryllium. The cross section

for photon production reaches a maximum value of 10.1 + 3.5 [Lb at Ed=0.96 MeV [4].

For the reaction 7Li(p,n), the photon production is prolific but the photon energy is low

(478 keV), and can be easily shielded. For the reaction 9Be(p,n) the photon production is

prolific, and the photon is energetic (3.562 MeV). The photons from proton

bombardment of beryllium must be carefully considered during therapy beam design.

When using a D20 moderator, the photon dose which results from photons produced at

the beryllium target can be approximately equal to the photon dose which results from all

neutron capture reactions.

An important result for AB-BNCT was the demonstration in Chapter III that the

reaction 9Be(p,n) could be used as a neutron source with proton energies at or below 4.0

MeV. When compared on the basis of equal accelerator current, the total tumor dose
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rates were approximately equal for the best results using 3.7 or 4.0 MeV protons. When

compared on the basis of equal accelerator current, the design based on 3.7 MeV protons

was superior. This research indicates that even lower proton bombarding energies might

yield sufficiently high dose rates. If lower proton energies are used, this might

significantly reduce the performance requirements of the accelerator and target systems.

The location of the target relative to the moderator and therapy port also is a

significant factor for therapy beam design. The variation of total tumor dose with target

position was studied using one MSR configuration. For this configuration, the total

tumor dose at a depth of 2 cm varied by a factor of three when the target position was

moved incrementally over an 8 cm distance.

The time required to produce total tumor doses of 15 RBE-Gy at depths of 2, 4,

and 6 cm was presented in Chapter III. These results are repeated in Table V-1 below.

The therapy times are based on a 10B concentration in tumor of 30 ppm and an accelerator

power of 10 kW. The RBE values used were: 4.1 (10B(n,ac) reaction), 4.0 (fast and

thermal neutrons) and 1.0 photons. The current clinical trials should provide a better

understanding of the doses needed for therapeutic efficacy. These results can easily be

scaled to higher or lower tumor doses.
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Therapy beam Time required to deliver a Time required to deliver a Time required to deliver a

configuration tumor dose of tumor dose of tumor dose of
15 RBE-Gy 15 RBE-Gy 15 RBE-Gy

to a depth of 2 cm to a depth of 4 cm to a depth of 6 cm

[min] [min] [min]

li-22x10g-d 12 15 25

3.7-25xl0g-d 31 39 70

4.0-27x10g-d 27 35 60

(A=+5)
Table V- : Time required to deliver 15 RBE-Gy to tumor depths of 2, 4, and 6 cm.

Verification of the Monte Carlo simulation results was conducted using dual

ionization chamber and activation foil techniques. The agreement between simulation

and experimental results varied from 2% to 48% depending on the dose component and

measurement location. In all cases, the measured values (which were not normalized)

agreed within a factor of two with the simulation results. This agreement is encouraging

since this is the first use of these dosimetry techniques by the LABA group, but will not

be sufficient for future work. Some suggestions to improve these dosimetry techniques

were presented.

In Chapter IV, the shielding of the patient and research staff was investigated

using Monte Carlo techniques. The LABA facility was used as a model. The use of an

unshielded MSR (moderator and reflector only) resulted in dose rates at locations

surrounding the laboratory which exceeded the occupational limits. Most of this dose

rate is attributed to (n,y) reactions in the facility walls. When a shielded MSR was used,

the highest photon dose rate at a location outside the LABA vault dropped significantly

(from 20 mrem/hr-mA using the unshielded MSR to 2.6 mrem/hr-mA using the shielded
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MSR). When the shielded MSR was surrounded by an additional shielding layer made of

water and boric acid, this dose rate dropped further to 0.9 mrem/hr-mA.

A simple patient shielding design was investigated. Using a shield similar to a

neck brace, dose rates in the upper torso were examined. A shield made of a 50/50

mixture of lithium carbonate and polyethylene yielded the best results. This shielding

material reduced the photon dose rate by 63% and the neutron dose rate by as much as

87%.

V.B Conclusions

There are three conditions under which AB-BNCT will be a viable cancer therapy.

* First, the efficacy of BNCT as a cancer therapy modality must be clearly

demonstrated in clinical trials. Initial results of the current US clinical trials are

encouraging in this respect. These trials should result in a better understanding of the

doses required for tumor control or eradication.

* Second, a high current target must be developed and tested to ensure that it can

reliably withstand heat loads of approximately 10 kW. The design of high current

lithium targets will be especially challenging. Since target failure might cause

extensive damage to the accelerator system, a comfortable margin of error should be

considered when investigating the heat removal capacity of the target assembly. The
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design of high current targets for BNCT was addressed in Chapter I, and research in

this area is underway at LABA.

Third, the production of reliable and sustainable high-current ion beams must be

demonstrated at ion energies which are useful for AB-BNCT. The reliable production

of high current ion beams is, perhaps, the greatest challenge facing AB-BNCT. One

research objective at LABA is to steadily increase the ion beam energy and current

produced by the accelerator located at the laboratory.

If these conditions are met, this research indicates that a total tumor dose of 15

RBE-Gy can be delivered to depths up to 6 cm in less than an hour using therapy beam

designs based on the 7Li(p,n) or 9Be(p,n) reactions, and an accelerator power of 10 kW.

This research also demonstrates that radiation shielding designs for the patient and

facility, which are effective, inexpensive and practical, can be achieved.
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APPENDIX A

Operation of the LABA Accelerator

The accelerator at LABA is a tandem electrostatic linear accelerator capable of

accelerating protons and deuterons. The accelerator is designed for a maximum terminal

voltage of 2.05 MV and a maximum power of 10 kW. The accelerator was designed by

Newton Scientific Incorporated. Cambridge, MA. A picture of the accelerator is shown

in Figure A-1. The complete system weighs approximately 1000 kg and measures 3.9

meters from the ion source to the high energy end of the pressure vessel. The largest

diameter is 0.94 m. The entire outside surface of the accelerator is at ground potential. A

cut-away drawing of the accelerator, with the major components labeled, is shown in

Figure A-2.

A thorough description of the accelerator can be accomplished by dividing the

system into components, and treating each separately. The systems to be described are:

ion source and extraction system, injector, high voltage generation, accelerating column,

and stripping foils. Also included is a description of a prototype high current beryllium

target which is currently being tested at LABA, and an update on the accelerator

performance to date. For the following discussion, a proton beam is assumed.
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A.1 Ion source

The purpose of the ion source is to produce a high current beam of H- ions, with

low electron contamination. Two main types of H- ion sources exist: surface-production

sources and volume-production sources. The ion source used on the LABA accelerator is

a volume production multicusp type in which H- ions are produced through the process of

dissociative attachment. A simplified drawing of the ion source is shown in Figure A-3.

Volume-production sources have lower emittance and do not require cesium, but have the

disadvantages of higher source gas pressure and electron contamination [1]. During the

1980s, multi-cusp ion sources based on volume-production techniques were developed

[2-4]. Control of electron currents is accomplished through the use of electron

suppression magnets and traps [3].

Electrons are introduced to the ion source volume when they are boiled off the

cathode. The anode (inner surface of the ion source) is held at a potential of 100 volts

relative to the cathode. Hydrogen enters the ion source in the form of H2 gas. Excited

rotational and vibrational states are formed when fast electrons collide with the H2

molecules, or when these molecules strike the walls of the ion source. The H- ions are

created in a process known as dissociative attachment (DA). This process can be written

as[5]:e + H2(v", J) > H2- > H- + H.

The notation H2(v", J) means that the hydrogen gas molecule is in the vibrational

state v". and the rotational state J. It is assumed that the molecule is in the electronic
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ground state. Calculations have shown that the cross section for DA as a function of

electron energy has the following characteristics: (a) for a given value of (v'. J). the

cross section peaks at threshold. and then decreases monotonically as electron energy

increases (b) for a given electron energy, the cross section is enhanced if the molecule is

initially in an excited state (i.e. v". J, not both 0) (c) for a given internal energy

determined by (v", J), the vibrational excitation, v", is more important in enhancing the

cross section than rotational excitation [5].

The ion chamber is divided by a magnetic filter into two volumes, the "source

chamber", and the "extraction chamber" [2]. This separation of the two volumes is

needed to allow two processes (the induction of excited vibrational states of hydrogen

gas, and the dissociative attachment of electrons) to occur in the same system [3]. In this

way, collisions between H- ions and fast electrons are suppressed. Such collisions would

easily strip the extra electron which is bound by z 0.75 eV. H- ions are extracted by an

extraction electrode. The extraction of electron currents is reduced through the use of

electron suppression magnets (100 G).

Ten rows of permanent magnets surround the inner surface of the ion source.

Adjacent rows of magnets have opposite orientations. This creates a multi-cusp magnetic

field. The cusps form "magnetic mirrors" which reflect many of the electrons and the

plasma back into the ion source volume and prevent them from striking the anode. In this

way the ion and electron densities remain generally uniform over the cross section of the
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ion source. The confining magnetic field decreases the thermal load on the cathode and

ion source. allowing for greater density and higher current production.

A.2 Injector

The purpose of the injector is two-fold: (1) to prepare the ion beam so that the

beam envelope will slowly converge once it has entered the accelerating tube. (2) to

minimize the distance between the ion source and the accelerating column so that

expansion of the beam envelope due to space charge effects is minimized [6]. H- ions are

extracted from the ion source at approximately 1-3 keV. Electrons are swept from the

extracted beam by electron suppression magnets. Other ion species are filtered from the

beam by two orthogonal (x-y) Wein filters, which are also used for steering. The Wein

filters produce perpendicular electric and magnetic fields which can be adjusted to exactly

cancel for the desired ion species. Before entering the accelerator, the beam energy is

increased to 20 keV. The injector Einzel lens is designed to create an apparent source of

ions at a distance d from the entrance to the accelerating tube. As ions enter the electric

fields of the accelerator tube, they experience a strong focusing effect due to equipotential

surfaces which extend from the first accelerating electrodes. This strong focusing occurs

with a focal length off To create a slow convergence of the beam envelope in the first

stage of the accelerator, the source length, d, is made slightly larger thanf [7].
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A.3 High voltage generation

The purpose of the HV generation circuit is to deliver high current to the HV

terminal at the center of the accelerator. A schematic diagram of the components is shown

in Figure A-4. The HV generator is a cascade multiplier type, which is based on the

original work of Cockcroft and Walton [8]. The design is unique in that it is the first

accelerator to use a switching power supply which incorporates an integral series-fed

cascade multiplier. The circuit consists of two basic components: (1) the switching

converter, and (2) the cascade multiplying circuit (CMC). This design has a 'wall plug'

power efficiency of greater than 90% [7].

The purpose of the converter is to produce, at high efficiency, a variable pulse-

width power supply of 300 volts (peak) at a frequency of approximately 30 kHz, which

will drive the cascade multiplier. The converter, which is rated at 12 kW, must function

at high efficiency for reasons of economy and heat dissipation. At 95% efficiency, the

driver would still need to dissipate 240 W of heat. To control the temperature of the unit,

active water cooling is used. The converter is based on the use of emitter-follower

transistor circuits [6].

As shown in Figure A-4, the converter is coupled to the CMC by a 1:100

transformer, which increases the voltage from the driver by a factor of 200. The CMC is

mounted directly on the accelerating column, thereby reducing system size. The purpose

of the CMC is to rectify the AC voltage from the converter to a DC voltage at the
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terminal. The operation of the CMC can best be explained by examining the charging

circuit in detail. Figure A-5 shows a schematic drawing of the first few stages of the

CMC.

The top 1/2 of the first stage is drawn in Figure A-6. Initially C11 and Col are

uncharged. As the converter voltage at Point 1 turns positive, Point 1 is biased positive

with respect to ground. Thus, D1 acts as an open switch, and Dol as a closed switch.

The equivalent circuit under these conditions is also shown in Figure A-6. These

conditions cause C 11 and Col to charge.

As the driver voltage at Point 1 turns negative, D11 is now a closed switch, and

Do0 is an open switch. This condition, and the equivalent circuit is shown in Figure A-7.

At this point, the current flow is from ground, through D 11, past Point A, to C11. Since

Co0 is electrically isolated. it cannot discharge, so Point B maintains its voltage.

The result is an oscillating voltage at Point A, but an approximate DC voltage at

Point B. As current is drawn by the load (in this case the HV terminal), capacitor Col will

discharge, and the voltage at Point B will drop until it is charged again during the positive

voltage swing at Point 1. Adding the mirror bottom half of the CMC simply doubles the

charging rate of the system (the capacitors labeled Cox in Figure A-5 are charged twice as

often). The result is that after a single stage, VB=2Vo DC, with a small ripple caused by

the load. After 2 stages, VE= 4 Vo DC. In this way, after a sufficient number of stages, the
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HV is connected to the center of the CMC, and is charged. The high capacitance of the

CMC and the high capacitance of the HV terminal guarantee that the voltage ripple on the

terminal is very small (less than 0.5%) [6].

A.4 Accelerating column

The accelerating column consists of two stages, the low energy stage (from the

injector to the HV terminal) and the high energy stage (from the HV terminal to the end

of the accelerator). Both stages are made of a series of aluminum dished electrodes which

are insulated from each other by glass rings. The accelerating tubes were manufactured

by Vivirad High Voltage Corporation, Billerica, MA. The electrodes are dished to

prevent secondary electrons from striking the glass insulators.

In many electrostatic accelerators, the electrodes are alternately tilted forward and

backward to suppress the transport of secondary electrons. The suppression of secondary

electrons is needed to prevent the creation of intense bremsstrahlung radiation. This

radiation creates a radiation safety hazard, and can damage components of the accelerator.

By tilting the electrodes, electrons are deflected out of the beam. The heavier ions, such

as protons, are not sufficiency deflected, and as they pass through the next electrode

(tilted opposite to the previous one) the net effect on their trajectory is negligible. In the

LABA accelerator, the electrodes are not tilted. Electron suppression is accomplished

instead by a series of samarium-cobalt magnets mounted in channels on each of the
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electrodes. The electrons, due to a high q/m, are swept from the field, and the heavy ion

species experience a negligible deflection.

The voltage existing on the HV terminal is distributed linearly along the

accelerating column using 200 MQ resistors. The low energy stage has 47 electrodes, and

the high energy stage has 52. The low energy stage is on the left of Figure A-8. with the

electrodes shown as a series of silver-colored plates along the axial center of the beam

tube. The HV terminal is shown as a polished silver cylindrical shell in the middle of the

photograph. The resultant electric field gradient is uniform in each stage. For a terminal

voltage of 2.05 MV, the gradient in the low energy stage is 17.17 kV/cm and the gradient

in the high energy stage is 15.52 kV/cm [9]. These field gradients are greater than can be

supported by the dielectric strength of atmospheric pressure air, so the accelerating

column is surrounded by approximately 100 psi of sulfer-hexaflouride (SF6). This gas

pressure is safely maintained by surrounding the accelerating column by an aluminum

pressure vessel.

A.5 Stripping foils

Carbon stripping foils are mounted in a small bracket and attached to a carousel in

the HV terminal. In this way, 80 stripping foils can be available for use. The 1.6 cm

diameter stripping foils are very thin (5-10 pg/cm 2) and nearly 100% efficient at stripping

the two electrons from the ion species. The stripping foils have limited lifetimes which
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Figure A-8: Accelerating column removed from the pressure vessel.



are estimated to be approximately 100 mA-hours. As a new foil is needed, the carousel

rotates a new foil into the active position [9].

A.6 Prototype high current beryllium target

As mentioned in Section I.B. targets used in the production of neutrons for AB-

BNCT will need to withstand heat loads produced by the ion beam. Since the maximum

power rating of the LABA accelerator is 10 kW, a prototype beryllium target was

designed to test the possibility of removing heat loads of this magnitude. A picture of the

prototype design is shown in Figure A-9. The target consists of a cube-shaped stainless

steel housing which is 6.25 cm long on each side. The center of this cube has been

removed, and a flange has been welded onto one side for connection to the evacuated

beam line. A 0.254 cm thick. 4.445 cm diameter, 99% pure beryllium target is brazed

into the housing. Two thermocouples have been attached to the back side of the target so

that target temperature can be monitored at the center and edge of the target. The back of

the target housing is removable, and made to accommodate a large diameter water supply.

Development and testing of the cooling system is currently underway at LABA.

The target will be cooled by a submerged jet supplying chilled water at a rate of 10 1/min.

Theoretical calculations and initial tests indicate that power greater than 10 kW can be

removed by the system. The initial tests were conducted with a second prototype which

is similar to the first in all aspects except that an aluminum target was used in place of the

beryllium[ 10]. The thermal properties of aluminum are similar to beryllium.
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Figure A-9: Prototype high current beryllium target.



A.7 Accelerator performance to date

The accelerator has been operated. for limited duration, at a maximum continuous

proton beam current of 0.8 mA at an energy of 2 MeV. The accelerator has been run

routinely with deuteron beam currents up to 50 iA at a beam energy of 2.6 MeV. The ion

source current has been as high as 5 mA. The current research program aims to increase

both the terminal voltage and the current in a systematic way, and to evaluate the

performance of all accelerator systems.
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APPENDIX B

Neutron Spectra from the 9Be(p,n) Reaction

This appendix contains the measured neutron spectra of the reaction 9Be(p,n).

These measurements were described in Section II.C of this thesis. Tables B-1 through B-

8 contain the numerical data in tabular form. There are two sets of data (referred to as

Group A and Group B in Section II.C). The first set was acquired in November 1995 and

the second set was acquired in August 1996. There is a separate table for each acquisition

date and proton bombarding energy. For example, Table B-1 contains the data from the

November 1995 measurements using 4.0 MeV protons. The acquisition dates and proton

energies are listed in the heading of the tables. The data for each neutron spectrum is

given as a series of yields with associated total statistical errors. The data points

represent the yield of a particular energy bin. The energy at the center of this bin is

provided. The bin widths are 20 keV up to a neutron energy of 700 keV and are 50 keV

for neutron energies above 700 keV. For example, the energy bin centered at 690 keV

represents all neutrons with energies from 680 - 700 keV. The energy bin centered at 725

keV represents all neutrons with energies from 700 - 750 keV. The units of the neutron
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spectra are neutrons/(MeV-steradian-microCoulomb). Graphs of each of the spectra

follow the tables. Each of the graphs is labeled with the acquisition date, proton

bombarding energy, and laboratory angle.
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Table B-1: Neutron energy spectra from the reaction 9Be(p,n) E(p)=4.0 MeV
Measured November 1995

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

Energy at
Center of Bin

[keV]
70
90

110
130
150
170
190
210
230
250
270
290
310
330
350
370
390
410
430
450
470
490
510
530
550
570
590
610
630
650
670
690
725
775
825
875
925
975
1025
1075

0 degree
spectrum
3.22E+07
6.72E+07
8.69E+07
8.50E+07
7.56E+07
7.67E+07
6.42E+07
6.23E+07
6.45E+07
6.30E+07
6.03E+07
6.26E+07
7.09E+07
7.30E+07
7.22E+07
8.07E+07
7.71E+07
7.97E+07
7.46E+07
7.47E+07
7.75E+07
7.45E+07
9.03E+07
9.40E+07
1.01 E+08
1.04E+08
9.98E+07
1.08E+08
8.52E+07
8.43E+07
8.38E+07
7.51E+07
7.59E+07
7.27E+07
7.16E+07
7.04E+07
6.72E+07
6.22E+07
5.09E+07
5.36E+07

0 degree
% statistical

error
8.31%
5.47%
4.30%
3.98%
3.79%
3.13%
2.86%
2.60%
2.45%
2.44%
2.49%
2.55%
2.57%
2.62%
2.68%
2.68%
2.77%
2.78%
2.90%
2.99%
3.06%
3.24%
3.13%
3.23%
3.27%
3.35%
3.54%
3.54%
4.03%
4.15%
4.25%
4.53%
3.26%
3.35%
3.40%
3.42%
3.43%
3.52%
3.85%
3.77%

20 degree
spectrum
2.54E+07
5.63E+07
7.62E+07
7.65E+07
7.84E+07
7.70E+07
6.44E+07
6.33E+07
6.74E+07
6.48E+07
6.23E+07
6.51E+07
7.04E+07
7.33E+07
7.11E+07
7.79E+07
7.54E+07
7.59E+07
7.52E+07
7.03E+07
7.48E+07
7.13E+07
8.08E+07
9.12E+07
9.71E+07
9.73E+07
1.02E+08
9.59E+07
8.31E+07
8.60E+07
8.49E+07
7.31E+07
7.52E+07
7.17E+07
7.37E+07
6.96E+07
6.40E+07
6.09E+07
5.30E+07
5.34E+07

20 degree
% statistical

error
11.40%
6.94%_
5.11%
4.59%
3.93%
3.27%
2.96%
2.64%
2.46%
2.45%
2.51%
2.56%
2.61%
2.67%
2.75%
2.76%
2.85%
2.88%
2.95%
3.13%
3.19%
3.39%
3.37%
3.36%
3.42%
3.56%
3.61%
3.88%
4.24%
4.26%
4.39%
4.80%
3.39%
3.48%
3.47%
3.55%
3.63%
3.68%
3.90%
3.92%

CONTINUED ON NEXT PAGE
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40 degree
spectrum
2.90E+07
6.28E+07
8.16E+07
8.43E+07
8.01E+07
7.93E+07
6.69E+07
6.52E+07
6.76E+07
6.57E+07
6.17E+07
6.45E+07
6.76E+07
7.04E+07
6.91E+07
7.39E+07
7.35E+07
7.27E+07
6.92E+07
6.69E+07
6.97E+07
7.11 E+07
7.92E+07
8.34E+07
8.94E+07
8.17E+07
7.91E+07
8.06E+07
7.13E+07
8.28E+07
7.79E+07
7.80E+07
7.43E+07
7.02E+07
6.83E+07
6.92E+07
6.94E+07
5.97E+07
5.58E+07
5.67E+07

40 degree
% statistical

error
7.72%
4.96%
3.92%
3.52%

3.25%
2.80%
2.60%
2.41%
2.31%
2.30%
2.35%
2.39%
2.44%

2.Wý
2.55%
2.60%
2.64%
2.72%
2.83%
2.89%
2.97%
2.98%
3.04%
3.09%
3.33%
3.50%
3.60%
3.87%
3.67%
3.86%
3.87%
2.96%
3.05%
3.11%
3.08%
3.03%
3.20%
3.26%
3.26%



Table B-1: Neutron energy spectra from the reaction 9Be(p,n) E(p)=4.0 MeV
Measured November 1995

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

Energy at
Center of Bin

[keV]
1125
1175
1225
1275
1325
1375
1425
1475
1525
1575
1625
1675
1725
1775
1825
1875
1925
1975
2025
2075
2125
2175
2225

0 degree
spectrum
4.81E+07
5.14E+07
5.28E+07
4.43E+07
4.36E+07
4.77E+07
4.47E+07
5.06E+07
4.62E+07
5.39E+07
4.86E+07
5.24E+07
6.42E+07
6.17E+07
6.26E+07
6.36E+07
5.52E+07
4.64E+07
1.47E+07
8.04E+06
4.32E+06
1.92E+06
6.61 E+05

0 degree
% statistical

error
3.94%
3.84%
3.79%
4.12%
4.13%
3.97%
4.06%
3.84%
3.97%
3.69%
3.81%
3.67%
3.36%
3.37%
3.33%
3.29%
3.42%
3.69%
6.77%
9.83%
16.90%
31.60%
92.60%

20 degree
spectrum
5.20E+07
4.82E+07
4.90E+07
4.59E+07
4.16E+07
4.53E+07
4.42E+07
4.62E+07
4.61 E+07
4.86E+07
4.80E+07
5.13E+07
5.68E+07
5.10E+07
4.90E+07
4.85E+07
3.63E+07
1.45E+07
3.82E+06
4.46E+06
1.58E+06
1.23E+06

20 degree
% statistical

error
3.91%
4.12%
4.07%
4.19%
4.39%
4.22%
4.23%
4.15%
4.09%
3.98%/
3.94%
3.80%
3.61%
3.72%
3.76%
3.76%
4.22%
7.58%

21.30%
17.00%
46.50%
53.20%

40 degree
spectrum
5.18E+07
5.25E+07
5.51E+07
4.78E+07
4.49E+07
4.60E+07
4.52E+07
4.41E+07
4.10E+07
4.03E+07
3.50E+07
3.61E+07
3.73E+07
3.03E+07
1.91E+07
5.32E+06
2.45E+06
1.95E+06

40 degree
% statistical

error
3.36%
3.36%
3.29%
3.49%
3.57%
3.56%
3.55%
3.61%
3.69%
3.72%
3.92%
3.85%
3.77%
4.09%
5.26%
13.60%
25.10%
32.40%
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Table B-1: Neutron energy spectra from the reaction 9Be(p,n) E(p)=4.0 MeV
Measured November 1995

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

Energy at
Center of Bin

[keV]
70
90

110
130
150
170
190
210
230
250
270
290
310
330
350
370
390
410
430
450
470
490
510
530
550
570
590
610
630
650
670
690
725
775
825
875
925
975
1025
1075

60 degree
spectrum
3.09E+07
6.89E+07
8.21E+07
8.42E+07
8.18E+07
7.91 E+07
6.95E+07
6.52E+07
6.64E+07
6.38E+07
5.63E+07
6.02E+07
6.36E+07
6.36E+07
6.07E+07
6.85E+07
7.04E+07
6.81E+07
6.67E+07
6.46E+07
6.22E+07
6.02E+07
6.18E+07
6.17E+07
6.44E+07
6.45E+07
6.51 E+07
6.77E+07
6.21E+07
7.17E+07
7.29E+07
7.30E+07
7.51 E+07
7.62E+07
7.55E+07
7.77E+07
7.39E+07
6.62E+07
6.15E+07
6.27E+07
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60 degree
% statistical 80 degree

error spectrum
6.86% 1.52E+07
4.38% 4.04E+07
3.73% 5.75E+07
3.39% 5.74E+07
3.11% 5.46E+07
2.74% 5.63E+07
2.53% 4.72E+07
2.38% 4.48E+07
2.29% 4.75E+07
2.29% 4.75E+07
2.36% 3.82E+07
2.39% 4.06E+07
2.44% 4.48E+07
2.50% 4.85E+07
2.57% 4.65E+07
2.57% 5.14E+07
2.59% 5.01E+07
2.65% 4.53E+07
2.71% 4.11E+07
2.81% 3.86E+07
2.95% 3.74E+07
3.10% 3.74E+07
3.21% 4.11E+07
3.38% 4.15E+07
3.47% 4.61E+07
3.62% 4.86E+07
3:74% 5.14E+07
3.83% 5.93E+07
4.05% 5.71E+07
3.84% 5.90E+07
3.88% 6.38E+07
3.89% 5.99E+07
2.89% 6.07E+07
2.89% 6.31 E+07
2.93% 6.60E+07
2.89% 6.89E+07
2.91% 6.65E+07
3.00% 6.06E+07
3.07% 5.64E+07
3.07% 5.61E+07

80 degree
% statistical 110 degree

error spectrum
12.40% 2.73E+07
6.38% 6.13E+07
4.57% 7.49E+07
4.15% 7.09E+07
3.77% 6.93E+07
3.08% 6.21E+07
2.82% 5.31E+07
2.57% 5.11E+07
2.42% 5.37E+07
2.39% 5.15E+07
2.55% 5.01 E+07
2.59% 5.34E+07
2.63% 5.29E+07
2.65% 5.03E+07
2.74% 4.92E+07
2.75% 5.22E+07
2.83% 5.25E+07
2.98% 5.22E+07
3.16% 4.96E+07
3.38% 4.88E+07
3.60% 5.08E+07
3.78% 5.04E+07
3.81% 5.56E+07
4.01% 6.01E+07
4.00% 6.33E+07
4.08% 6.94E+07
4.12% 7.66E+07
3.99% 8.07E+07
4.11% 7.27E+07
4.14% 8.11E+07
4.05% 8.57E+07
4.20% 8.55E+07
3.08% 8.68E+07
3.05% 8.58E+07
3.02% 9.01 E+07
2.96% 9.04E+07
2.96% 9.1 0E+07
3.05% 8.36E+07
3.11% 7.74E+07
3.14% 7.88E+07

110 degree
% statistical

error
7.56%
4.72%
3.92%
3.72%
3.36%
3.00%
2.73%
2.50%
2.37%
2.37%
2.41%
2.44%
2.53%
2.65%
2.72%
2.76%
2.81%
2.86%
2.97%
3.09%
3.17%
3.31%
3.33%
3.38%
3.46%
3.46%
3.42%
3.46%
3.68%
3.57%
3.54%
3.55%
2.73%
2.76%
2.73%
2.73%
2.69%
2.75%
2.81%
2.80%



Table B-1: Neutron energy spectra from the reaction 9Be(p,n) E(p)=4.0 MeV
Measured November 1995

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)
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Energy at 60 degree 80 degree 110 degree
Center of Bin 60 degree % statistical 80 degree % statistical 110 degree % statistical

[keV] spectrum error spectrum error spectrum error
1125 6.03E+07 3.09% 5.41E+07 3.16% 7.37E+07 2.85%
1175 6.31E+07 3.06% 5.54E+07 3.15% 7.72E+07 2.82%
1225 6.19E+07 3.08% 5.32E+07 3.20% 7.16E+07 2.89%
1275 5.50E+07 3.22% 4.94E+07 3.29% 5.13E+07 3.27%
1325 5.05E+07 3.32% 4.43E+07 3.43% 1.14E+07 8.11%
1375 5.19E+07 3.30% 4.19E+07 3.54% 3.99E+06 20.20%
1425 4.55E+07 3.46% 3.88E+07 3.64% 2.35E+06 32.00%
1475 4.47E+07 3.50% 3.43E+07 3.87% 1.44E+06 51.60%
1525 3.94E+07 3.67% 1.41E+07 6.51%
1575 3.86E+07 3.70% 2.74E+06 25.60%
1625 3.09E+07 4.06%
1675 1.88E+07 5.38%
1725 4.28E+06 16.80%
1775 2.03E+06 31.20%
1825 1.63E+06 37.90%
1875 1.54E+06 39.30%



Table B-2: Neutron energy spectra from the reaction 9Be(p,n) E(p)=3.7 MeV
Measured November 1995

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

atEnergy
Center of

[keV]
70
90

110
130
150
170
190
210
230
250
270
290
310
330
350
370
390
410
430
450
470
490
510
530
550
570
590
610
630
650
670
690
725
775
825
875
925
975
1025
1075

Bin 0 degree
spectrum
1.37E+07
4.22E+07
4.57E+07
5.01E+07
4.13E+07
4.21E+07
3.46E+07
3.41 E+07
3.51E+07
3.52E+07
3.39E+07
3.58E+07
3.92E+07
4.18E+07
4.01 E+07
4.53E+07
4.84E+07
5.01E+07
4.86E+07
4.91E+07
5.14E+07
4.62E+07
5.61 E+07
6.01 E+07
6.54E+07
7.23E+07
7.23E+07
6.86E+07
5.75E+07
5.82E+07
6.14E+07
5.63E+07
5.38E+07
4.63E+07
4.92E+07
4.68E+07
4.67E+07
4.13E+07
3.99E+07
3.88E+07 3.81% 4.62E+07

20 degree 40 degree
statistical 40 degree % statistical

0 degree
% statistic-

error
15.10%
6.74%
5.94%
4.91%
4.88%
3.79%
3.37%
2.90%
2.66%
2.61%
2.68%
2.74%
2.79%
2.83%
2.94%
2.93%
2.92%
2.92%
3.02%
3.11%
3.18%
3.50%
3.35%
3.42%
3.45%
3.43%
3.55%
3.80%
4.23%
4.32%
4.28%
4.51%
3.33%
3.61%
3.53%
3.60%
3.53%
3.71%
3.73%

spectrum error
al 20 degree o0/

spectrum
2.20E+07
5.13E+07
6.55E+07
5.75E+07
5.29E+07
5.03E+07
4.17E+07
4.00E+07
4.32E+07
4.15E+07
3.90E+07
4.15E+07
4.46E+07
4.84E+07
4.87E+07
5.14E+07
5.24E+07
5.40E+07
5.23E+07
5.21 E+07
5.42E+07
5.72E+07
6.31 E+07
6.71E+07
7.38E+07
8.02E+07
7.96E+07
7.83E+07
6.51E+07
6.64E+07
6.81 E+07
6.05E+07
6.35E+07
5.57E+07
5.89E+07
5.74E+07
5.67E+07
4.97E+07
4.64E+07 3.44% 4.85E+07

3.47% 5.09E+07
3.37%
3.31%
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error
9.47%
5.58%
4.39%
4.36%
4.02%0/
3.37%
3.04%
2.71%
2.50%
2.49%
2.56%
2.61%
2.67%
2.69%
2.74%
2.79%
2.83%
2.84%
2.93%
3.03%
3.10%
3.16%
3.17%
3.24%
3.25%
3.26%
3.38%
3.54%
3.93%
3.98%
4.01%
4.29%
3.08%
3.28%
3.22%
3.25%
3.21%
3.37%

dl

1.57E+07 12.70%
4.35E+07 6.34%
5.21E+07 5.18%
5.10E+07 4.72%
5.39E+07 3.95%
5.19E+07 3.30%
4.37E+07 2.97%
4.10E+07 2.68%
4.48E+07 2.47%
4.12E+07 2.49%
3.78E+07 2.58%
4.12E+07 2.61%
4.38E+07 2.68%
4.57E+07 2.74%
4.56E+07 2.79%
4.98E+07 2.81%
4.89E+07 2.89%
5.03E+07 2.90%
5.11E+07 2.95%
4.96E+07 3.08%
5.26E+07 3.13%
5.71E+07 3.15%
6.47E+07 3.13%
7.11E+07 3.15%
6.80E+07 3.36%
6.97E+07 3.47%
6.33E+07 3.77%
6.38E+07 3.92%
5.65E+07 4.24%
6.22E+07 4.11%
6.69E+07 4.04%
6.41E+07 4.14%
6.25E+07 3.09%
6.20E+07 3.12%
6.39E+07 3.11%
6.13E+07 3.15%
5.96E+07 3.13%
5.42E+07 3.23%



Table B-2: Neutron energy spectra from the reaction 9Be(p,n) E(p)=3.7 MeV
Measured November 1995

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

Energy at
Center of Bin

[keV]
1125

1175
1225

1275

1325
1375

1425
1475
1525
1575
1625
1675
1725
1775
1825
1875
1925
1975
2025

0 degree
spectrum
3.65E+07
3.68E+07
3.86E+07
3.12E+07
3.14E+07
3.29E+07
2.98E+07
3.43E+07
3.17E+07
3.19E+07
3.16E+07
2.91E+07
1.23E+07
6.86E+06
6.01E+06
4.44E+06
2.73E+06
2.96E+06
1.13E+06

0 degree
% statistical

error
3.87%
3.89%
3.78%
4.23%
4.17%
4.09%
4.26%
3.97%
4.07%
4.07%
4.00%
4.17%
7.22%
10.90%
12.00%
15.40%
22.00%
21.40%
48.40%

20 degree
spectrum
4.22E+07
4.09E+07
4.00E+07
3.78E+07
3.68E+07
3.84E+07
3.70E+07
3.93E+07
3.68E+07
3.60E+07
2.87E+07
1.72E+07
8.48E+06
5.40E+06
5.02E+06
3.68E+06
2.30E+06
1.83E+06

20 degree
% statistical

error
3.58%
3.67%
3.70%
3.79%
3.82%
3.75%
3.79%
3.69%
3.76%
3.81%
4.20%
5.69%
9.51%
13.10%
13.80%
17.90%
25.20%
32.70%

40 degree
spectrum
4.69E+07
4.88E+07
4.87E+07
4.03E+07
3.99E+07
3.90E+07
3.71E+07
3.65E+07
2.61E+07
1.16E+07
8.47E+05
8.88E+05

40 degree
% statistical

error
3.40%
3.37%
3.36%
3.66%
3.66%
3.72%
3.77%
3.82%
4.51%
7.82%

78.90%
74.90%

278



Table B-2: Neutron energy spectra from the reaction 9Be(p,n) E(p)=3.7 MeV
Measured November 1995

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

Energy at
Center of Bin

[keV]
70
90
110
130
150
170
190
210
230
250
270
290
310
330
350
370
390
410
430
450
470
490
510
530
550
570
590
610
630
650
670
690
725
775
825
875
925
975
1025
1075
1125
1175
1225
1275
1325
1375
1425

60 degree
spectrum
1.70E+07
4.36E+07
5.89E+07
5.36E+07
5.34E+07
5.06E+07
4.34E+07
4.21E+07
4.37E+07
4.03E+07
3.72E+07
4.00E+07
4.22E+07
4.35E+07
4.24E+07
5.00E+07
5.11E+07
5.47E+07
5.30E+07
5.49E+07
5.65E+07
4.85E+07
5.26E+07
5.28E+07
5.29E+07
5.39E+07
5.33E+07
6.36E+07
5.22E+07
6.25E+07
6.48E+07
6.85E+07
6.70E+07
6.90E+07
7.12E+07
6.91 E+07
6.94E+07
6.20E+07
5.77E+07
6.09E+07
5.49E+07
5.81E+07
5.12E+07
4.73E+07
3.89E+07
3.22E+07
1.74E+07

60 degree
% statistical

error
10.60%
5.74%
4.34%
4.21%
3.72%
3.18%
2.87%
2.60%
2.45%
2.46%
2.55%
2.59%
2.65%
2.72%
2.80%
2.75%
2.79%
2.76%
2.84%
2.89%
2.97%
3.28%
3.33%
3.49%
3.67%
3.80%
3.97%
3.78%
4.24%
3.95%
3.95%
3.85%
2.93%
2.91%
2.91%
2.93%
2.89%
2.99%
3.05%
3.01%
3.11%
3.07%
3.21%
3.31%
3.60%
3.96%
5.60%

80 degree
spectrum
7.34E+06
3.34E+07
4.24E+07
3.70E+07
3.87E+07
3.83E+07
3.18E+07
3.09E+07
3.57E+07
3.32E+07
2.86E+07
3.05E+07
3.58E+07
3.99E+07
4.01 E+07
4.74E+07
4.31E+07
4.06E+07
3.66E+07
3.46E+07
3.61E+07
3.29E+07
3.67E+07
4.08E+07
4.38E+07
4.81E+07
4.91 E+07
5.36E+07
5.82E+07
5.84E+07
6.22E+07
6.17E+07
6.08E+07
6.25E+07
6.90E+07
6.96E+07
6.77E+07
6.12E+07
5.49E+07
5.50E+07
4.82E+07
5.25E+07
4.49E+07
2.05E+07
1.16E+06 60.90%

80 degree
% statistica

error
24.50%
7.43%
5.73%
5.70%
4.71%
3.77%
3.34%
2.91%
2.58%
2.59%
2.76%
2.82%
2.80%
2.80%
2.86%
2.80%
2.96%
3.08%
3.29%
3.52%
3.63%
4.01%
4.00%
4.00%
4.07%
4.06%
4.18%
4.16%
4.02%
4.11%
4.06%
4.08%
3.05%
3.03%
2.94%
2.93%
2.92%
3.01%
3.11%•
3.13%
3.28%
3.19%
3.40%
5.19%
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l 110 degree
spectrum
2.13E+07
4.27E+07
5.65E+07
5.39E+07
4.89E+07
4.45E+07
3.95E+07
3.75E+07
3.97E+07
4.02E+07
4.03E+07
4.48E+07
4.34E+07
4.32E+07
4.21E+07
4.56E+07
4.42E+07
4.56E+07
4.43E+07
4.40E+07
4.51E+07
4.47E+07
5.21E+07
5.56E+07
5.97E+07
6.74E+07
6.75E+07
7.64E+07
7.18E+07
7.80E+07
8.12E+07
8.00E+07
8.15E+07
7.83E+07
8.11E+07
8.40E+07
7.89E+07
6.95E+07
5.87E+07
3.98E+07
8.16E+06
3.99E+06
2.50E+06
6.72E+05

110 degree
% statistical

error
9.09%
6.12%
4.65%
4.35%
4.06%
3.49%
3.04%
2.73%
2.53%
2.48%
2.52%
2.53%
2.66%
2.75%
2.84%
2.86%
2.97%
2.97%
3.07%
3.19%
3.30%
3.46%
3.39%
3.46%
3.51%
3.46%
3.58%
3.51%
3.66%
3.59%
3.59%
3.62%
2.77%
2.82%
2.81%
2.77%
2.80%0
2.90%
3.07%
3.66%
10.70%
20.60%
31.40%
110.00%



Table B-3: Neutron energy spectra from the reaction 9Be(p,n) E(p)=3.4 MeV
Measured November 1995

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

Energy at 0 degree 40 degree
Center of Bin 0 degree % statistical 40 degree % statistical

[keV] spectrum error spectrum error
70 8.72E+06 19.20% 1.16E+07 10.52%
90 2.14E+07 10.30% 2.53E+07 6.48%
110 2.45E+07 8.53% 3.22E+07 5.00%
130 3.05E+07 6.20% 3.12E+07 4.58%
150 2.56E+07 6.05% 2.93E+07 4.13%
170 2.69E+07 4.46% 2.72E+07 3.49%
190 2.30E+07 3.79% 2.42E+07 3.01%
210 2.19E+07 3.23% 2.19E+07 2.74%
230 2.15E+07 2.97% 2.32E+07 2.52%
250 2.17E+07 2.87% 2.31E+07 2.48%
270 2.16E+07 2.94% 2.18E+07 2.55%
290 2.27E+07 3.02% 2.26E+07 2.62%
310 2.53E+07 3.06% 2.56E+07 2.63%
330 2.87E+07 3.03% 2.73E+07 2.66%
350 2.76E+07 3.16% 2.72E+07 2.72%
370 3.18E+07 3.11% 3.05E+07 2.71%
390 3.22E+07 3.17% 3.17E+07 2.73%
410 3.19E+07 3.23% 3.24E+07 2.74%
430 3.41E+07 3.23% 3.46E+07 2.73%
450 3.53E+07 3.29% 3.48E+07 2.80%
470 3.80E+07 3.32% 4.07E+07 2.75%
490 3.98E+07 3.39% 4.23E+07_- 2.81%
510 4.34E+07 3.43% 4.80E+07 2.79%
530 5.13E+07 3.33% 5.59E+07 2.75%
550 5.43E+07 3.41% 5.73E+07 2.83%
570 5.78E+07 3.46% 5.59E+07 2.95%
590 5.83E+07 3.57% 5.40E+07 3.07%
610 5.85E+07 3.71% 5.45E+07 3.17%
630 _ 5.00E+07 4.08% 4.94E+07 - 3.34%
650 4.91 E+07 4.22% 5.13E+07 3.35%
670 4.72E+07 4.43% 5.20E+07 3.38%
690 4.53E+07 4.53% 4.97E+07 3.46%
725 4.28E+07 3.36% 5.22E+07 2.66%
775 3.89E+07 3.55% 4.88E+07 2.73%
825 4.18E+07 3.44% 4.95E+07 2.73%
875 4.05E+07 3.48% 5.01E+07 2.71%
925 4.21 E+07 3.35% 4.95E+07 2.69%
975_ 3.66E+07 3.55% 4.47E+07 2.75%
1025 3.24E+07 3.73% 3.85E+07 2.88%
1075 3.18E+07 3.81% 4.35E+07 2.78%
1125 2.74E+07 4.05% 3.64E+07 2.94%
1175 3.17E+07 3.79% 3.76E+07 2.93%
1225 2.81E+07 4.02% 3.60E+07 2.97%
1275 2.57E+07 4.20% 2.61E+07 3.38%
1325 2.51E+07 4.22% 1.08E+07 5.62%
1375 2.29E+07 4.45% 6.51E+06 8.36%
1425 1.23E+07 6.65% 2.48E+06 18.87%
1475 3.87E+06 17.60% 1.10E+06 41.27%
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Table B-4: Neutron energy spectra from the reaction 9Be(p,n) E(p)=3.0 MeV
Measured November 1995

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

Energy at
Center of Bin

[keV]
70
90

110
130
150
170
190
210
230
250
270
290
310
330
350
370
390
410
430
450
470
490
510
530
550
570
590
610
630
650
670
690
725
775
825
875
925
975
1025
1075
1125

0 degree
spectrum
3.50E+06
1.08E+07
1.69E+07
1.68E+07
1.60E+07
1.58E+07
1.33E+07
1.28E+07
1.37E+07
1.40E+07
1.37E+07
1.48E+07
1.73E+07
1.92E+07
1.92E+07
2.19E+07
2.34E+07
2.42E+07
2.62E+07
2.68E+07
2.90E+07
3.12E+07
3.74E+07
4.20E+07
4.58E+07
4.96E+07
5.07E+07
5.04E+07
4.21E+07
4.05E+07
3.77E+07
3.36E+07
3.37E+07
3.23E+07
3.40E+07
3.31E+07
3.07E+07
2.64E+07
1.66E+07
5.28E+06
1.11E+06

281

0 degree
'o statistical

error
24.25%
10.32%
6.42%
5.68%
4.99%
3.90%
3.38%
2.91%
2.62%
2.55%
2.60%
2.63%
2.62%
2.62%
2.66%
2.64%
2.63%
2.64%
2.61%
2.66%
2.68%
2.70%
2.64%
2.63%
2.65%
2.66%
2.70%
2.78%
2.99%
3.10%
3.25%
3.43%
2.68%
2.72%
2.69%
2.71%
2.74%
2.87%
3.49%
7.83%

31.47%



Table B-5: Neutron energy spectra from the reaction 9Be(p,n) E(p)=4.0 MeV
Measured August 1996

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

Energy at
Center of Bin

[keV]
70
90

110
130
150
170
190
210
230
250
270
290
310
330
350
370
390
410
430
450
470
490
510
530
550
570
590
610
630
650
670
690
725
775
825
875
925
975
1025
1075

0 degree
spectrum
1.15E+07
3.05E+07
3.56E+07
4.62E+07
4.55E+07
4.90E+07
4.91 E+07
4.98E+07
5.65E+07
5.90E+07
5.99E+07
6.04E+07
6.62E+07
6.85E+07
7.33E+07
7.45E+07
8.08E+07
8.00E+07
8.68E+07
9.04E+07
9.14E+07
9.47E+07
9.97E+07
1.00E+08
1.13E+08
1.13E+08
1.12E+08
1.02E+08
1.00E+08
9.15E+07
8.71E+07
7.64E+07
6.97E+07
6.46E+07
6.29E+07
5.77E+07
6.50E+07
5.77E+07
6.10E+07
5.69E+07

0 degree
% statistical 20 degree

error spectrum
13.90% 1.11E+07
7.16% 2.85E+07
5.75% 3.96E+07
4.25% 4.51E+07
3.81% 4.83E+07
2.99% 5.07E+07
2.57% 4.76E+07
2.37% 4.94E+07
2.25% 5.79E+07
2.21% 5.86E+07
2.22% 5.99E+07
2.25% 6.22E+07
2.27% 6.68E+07
2.31% 6.70E+07
2.34% 7.43E+07
2.36% 7.09E+07
2.36% 7.51E+07
2.39% 7.69E+07
2.42% 8.23E+07
2.47% 8.63E+07
2.53% 8.39E+07
2.58% 9.02E+07
2.61% 9.67E+07
2.66% 9.41 E+07
2.63% 1.05E+08
2.69% 1.06E+08
2.73% 1.06E+08
2.85% 9.90E+07
2.89% 8.69E+07
3.02% 8.44E+07
3.11% 8.44E+07
3.29% 7.70E+07
2.66% 6.68E+07
2.73% 6.29E+07
2.75% 6.47E+07
2.82% 5.78E+07
2.74% 6.38E+07
2.86% 5.83E+07
2.86% 5.80E+07
2.93% 5.78E+07
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20 degre
% statistic

error
16.40%
8.60%
5.93%
4.83%
4.05%
3.18%
2.75%
2.49%
2.31%
2.28%
2.28%
2.31%
2.35%
2.42%
2.43%
2.49%
2.50%
2.52%
2.57%
2.63%
2.74%
2.78%
2.80%
2.90%
2.88%
2.94%
2.98%
3.11%
3.31%
3.40%
3.44%
3.59%
2.88%
2.95%
2.92%
3.03%
2.96%
3.07%
3.14%
3.15%

al 60 degree
spectrum
8.54E+06
2.41E+07
3.21E+07
4.17E+07
4.59E+07
4.84E+07
5.06E+07
5.11E+07
5.81E+07
5.99E+07
5.75E+07
5.63E+07
6.12E+07
6.37E+07
6.33E+07
6.26E+07
6.64E+07
6.81E+07
7.66E+07
7.85E+07
7.61E+07
8.08E+07
7.69E+07
7.20E+07
7.15E+07
6.72E+07
6.27E+07
6.15E+07
5.88E+07
6.27E+07
6.41 E+07
6.16E+07
6.27E+07
6.49E+07
6.41E+07
6.18E+07
7.11E+07
6.52E+07
7.13E+07
6.70E+07

e 60 degree
% statistical

error
24.10%
11.40%
8.05%
5.79%
4.70%
3.59%
2.91%
2.62%
2.42%
2.37%
2.41%
2.48%
2.53%
2.60%
2.69%
2.76%
2.77%
2.80%
2.83%
2.93%
3.09%
3.16%
3.35%
3.57%
3.73%
3.98%
4.23%
4.36%
4.52%
4.44%
4.46%
4.56%
3.24%
3.20%
3.22%
3.25%
3.12%
3.23%
3.19%
3.28%



Table B-5: Neutron energy spectra from the reaction 9Be(p,n) E(p)=4.0 MeV
Measured August 1996

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)
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Energy at 0 degree 20 degree 60 degree
Center of Bin 0 degree % statistical 20 degree /% statistical 60 degree % statistical

[keV] spectrum error spectrum error spectrum error
1125 5.60E+07 2.95% 5.56E+07 3.21% 6.57E+07 3.32%

1175 5.97E+07 2.92% 5.68E+07 3.22% 7.17E+07 3.24%

1225 5.09E+07 3.08% 5.17E+07 3.33% 7.18E+07 3.23%

1275 5.58E+07 3.00% 5.20E+07 3.35% 6.97E+07 3.30%

1325 4.91E+07 3.14% 5.09E+07 3.37% 6.40E+07 3.41%

1375 5.31E+07 3.06% 5.36E+07 3.32% 6.50E+07 3.41%
1425 5.07E+07 3.10% 5.08E+07 3.37% 5.91E+07 3.53%
1475 5.28E+07 3.03% 4.75E+07 3.44% 5.26E+07 3.68%
1525 5.58E+07 2.97% 5.06E+07 3.35% 5.08E+07 3.74%
1575 5.98E+07 2.90% 5.65E+07 3.20% 5.02E+07 3.75%
1625 5.82E+07 2.89% 5.26E+07 3.25% 4.25E+07 3.99%
1675 6.13E+07 2.84% 5.68E+07 3.14% 3.89E+07 4.15%
1725 5.68E+07 2.87% 5.02E+07 3.25% 2.69E+07 4.94%
1775 6.62E+07 2.74% 5.55E+07 3.11% 7.26E+06 12.20%
1825 7.23E+07 2.66% 6.19E+07 2.98%
1875 6.47E+07 2.72% 5.19E+07 3.13%
1925 7.70E+07 2.60% 5.88E+07 3.01%
1975 6.75E+07 2.67% 4.61E+07 3.23%
2025 6.39E+07 2.69% 3.14E+07 3.78%
2075 2.85E+07 3.56% 1.84E+06 30.90%
2125 1.28E+06 34.80%



Table B-5: Neutron energy spectra from the reaction 9Be(p,n) E(p)=4.0 MeV
Measured August 1996

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

Energy at
Center of Bin

[keV]
70
90

110
130
150
170
190
210
230
250
270
290
310
330
350
370
390
410
430
450
470
490
510
530
550
570
590
610
630
650
670
690
725
775
825
875
925
975
1025
1075
1125
1175
1225
1275
1325
1375

110 degree
spectrum
5.56E+06
2.13E+07
3.88E+07
4.11E+07
4.12E+07
4.08E+07
4.09E+07
3.89E+07
4.77E+07
4.90E+07
4.98E+07
5.33E+07
5.58E+07
5.12E+07
5.13E+07
4.87E+07
5.08E+07
5.22E+07
5.44E+07
5.62E+07
5.37E+07
5.80E+07
6.21 E+07
6.12E+07
6.85E+07
7.29E+07
7.46E+07
7.79E+07
7.60E+07
7.59E+07
8.71E+07
8.38E+07
7.97E+07
8.19E+07
8.18E+07
8.00E+07
9.15E+07
8.53E+07
9.15E+07
8.59E+07
8.74E+07
9.39E+07
8.59E+07
8.27E+07
5.79E+07
5.08E+06

110 degree
% statistical

error
33.30%
11.70%
6.25%
5.38%
4.69%
3.71%
3.01%
2.73%
2.45%
2.40%
2.40%
2.43%
2.49%
2.64%
2.74%
2.86%
2.89%
2.91%
3.02%
3.14%
3.37%
3.42%
3.46%
3.60%
3.56%
3.56%
3.60%
3.59%
3.67%
3.73%
3.54%
3.61%
2.80%
2.78%
2.79%
2.80%
2.72%
2.79%
2.77%
2.84%
2.83%
2.80%
2.87%
2.93%
3.33%
18.20%

115 degree
spectrum
7.49E+06
2.46E+07
3.13E+07
3.45E+07
4.13E+07
3.89E+07
4.04E+07
4.01E+07
4.69E+07
5.01E+07
5.22E+07
5.38E+07
5.15E+07
4.92E+07
5.07E+07
4.99E+07
5.14E+07
5.14E+07
5.56E+07
5.81E+07
5.68E+07
6.10E+07
6.24E+07
6.17E+07
7.38E+07
7.52E+07
7.44E+07
7.34E+07
7.41 E+07
7.71E+07
7.83E+07
7.78E+07
8.17E+07
8.12E+07
8.21E+07
8.28E+07
9.19E+07
8.47E+07
9.44E+07
9.04E+07
8.95E+07
9.55E+07
8.76E+07
7.45E+07
1.71E+07
2.51E+06

115 degree
% statistica

error
24.40%
10.10%
7.47%
6.18%
4.70%
3.85%
3.07%
2.75%
2.50%
2.42%
2.42%
2.46%
2.59%
2.73%
2.81%
2.90%
2.94%
3.00%
3.07%
3.18%
3.37%
3.43%
3.55%
3.69%
3.54%
3.61%
3.71%
3.80%
3.83%
3.82%
3.84%
3.86%
2.84%
2.86%
2.85%
2.84%
2.78%
2.87%
2.82%
2.87%
2.89%
2.86%
2.94%
3.13%
6.80%
34.80%

1425 2.37E+06 35.70% 2.41E+06 34.90%

I 120 degree
spectrum
8.25E+06
2.09E+07
3.16E+07
3.46E+07
3.77E+07
3.91 E+07
4.13E+07
3.85E+07
4.59E+07
4.99E+07
5.18E+07
4.86E+07
4.83E+07
4.54E+07
4.82E+07
5.02E+07
5.16E+07
5.33E+07
5.46E+07
5.81E+07
5.87E+07
6.03E+07
6.12E+07
6.47E+07
7.35E+07
7.26E+07
7.40E+07
8.01E+07
7.23E+07
7.93E+07
7.61E+07
7.73E+07
7.86E+07
7.90E+07
8.26E+07
7.75E+07
9.02E+07
8.43E+07
9.38E+07
9.04E+07
8.70E+07
9.34E+07
8.01 E+07
4.76E+07
2.68E+06
1.10E+06
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120 degree
% statistical

error
22.70%
12.00%
7.51%
6.23%
5.06%
3.84%
3.04%
2.78%
2.50%
2.41%
2.41%
2.50%
2.62%
2.78%
2.84%
2.88%
2.92%
2.94%
3.08%
3.16%
3.30%
3.43%
3.56%
3.58%
3.52%
3.65%
3.69%
3.62%
3.84%
3.73%
3.86%
3.84%
2.86%
2.87%
2.83%
2.88%
2.78%
2.85%
2.80%
2.84%
2.89%
2.85%
3.00%
3.72%
32.70%
77.70%



Table B-5: Neutron energy spectra from the reaction 9Be(p,n) E(p)=4.0 MeV
Measured August 1996

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

Energy at
Center of Bin

[keV]
70
90

110
130
150
170
190
210
230
250
270
290
310
330
350
370
390
410
430
450
470
490
510
530
550
570
590
610
630
650
670
690
725
775
825
875
925
975
1025
1075
1125
1175
1225
1275
1325
1375

125 degree
spectrum
9.56E+06
2.16E+07
3.26E+07
3.92E+07
4.11E+07
3.90E+07
3.85E+07
4.02E+07
4.76E+07
5.20E+07
5.35E+07
4.39E+07
4.79E+07
4.85E+07
4.98E+07
5.19E+07
5.17E+07
5.36E+07
5.75E+07
5.59E+07
5.91E+07
5.87E+07
6.44E+07
6.58E+07
7.50E+07
7.35E+07
7.35E+07
7.16E+07
7.07E+07
7.34E+07
8.08E+07
7.78E+07
7.55E+07
7.78E+07
7.94E+07
8.03E+07
9.29E+07
8.53E+07
9.36E+07
9.07E+07
8.72E+07
9.31 E+07
6.60E+07
1.03E+07
1.92E+06
1.23E+06

125 degree
% statistical 130 degree

error spectrum
19.40% 9.35E+06
11.50% 1.97E+07
7.23% 3.04E+07
5.58% 3.45E+07
4.71% 3.94E+07
3.83% 3.76E+07
3.12% 3.79E+07
2.73% 3.74E+07
2.47% 4.70E+07
2.39% 5.22E+07
2.39% 4.78E+07
2.56% 4.34E+07
2.62% 4.68E+07
2.72% 4.58E+07
2.80% 4.90E+07
2.83% 4.75E+07
2.91% 5.05E+07
2.93% 4.98E+07
3.01% 5.57E+07
3.20% 5.50E+07
3.28% 5.46E+07
3.45% 6.16E+07
3.46% 6.48E+07
3.54% 6.24E+07
3.47% 6.36E+07
3.61% 7.25E+07
3.68% 6.95E+07
3.80% 7.09E+07
3.87% 6.84E+07
3.86% 7.47E+07
3.73% 7.53E+07
3.81% 8.13E+07
2.89% 7.55E+07
2.87% 7.58E+07
2.85% 7.91 E+07
2.84% 7.88E+07
2.75% 9.24E+07
2.83% 8.73E+07
2.80% 9.41E+07
2.83% 8.72E+07
2.88% 8.59E+07
2.85% 8.98E+07
3.20% 3.25E+07
10.00% 3.34E+06
44.30% 3.79E+05
69.10%

130 degree
% statistical

error
20.20%
12.70%
7.82%
6.30%
4.94%
3.98%
3.18%
2.83%
2.50%
2.40%
2.47%
2.59%
2.66%
2.80%
2.85%
2.96%
2.97%
3.05%
3.09%
3.27%
3.45%
3.43%
3.51%
3.69%
3.82%
3.70%
3.85%
3.89%
4.00%
3.90%
3.94%
3.80%
2.93%
2.93%
2.89%
2.89%
2.78%
2.85%
2.83%
2.91%
2.94%
2.92%
4.55%

27.60%
221.00%

285

135 degree
spectrum
6.28E+06
2.05E+07
2.74E+07
3.43E+07
3.57E+07
3.93E+07
3.65E+07
3.92E+07
4.81E+07
5.24E+07
4.52E+07
4.26E+07
4.47E+07
4.44E+07
4.68E+07
4.58E+07
5.12E+07
5.07E+07
5.43E+07
5.61 E+07
5.43E+07
5.82E+07
6.21E+07
6.14E+07
6.77E+07
6.81E+07
6.62E+07
7.15E+07
6.88E+07
7.02E+07
7.41 E+07
7.62E+07
7.24E+07
7.71E+07
7.89E+07
7.67E+07
8.97E+07
9.07E+07
9.71 E+07
9.23E+07
8.46E+07
7.75E+07
7.09E+06
2.85E+06
1.46E+06

135 degree
% statistical

error
27.90%
11.50%
8.10%
6.00%
5.05%
3.71%
3.13%
2.71%
2.44%
2.37%
2.45%
2.55%
2.63%
2.76%
2.82%
2.91%
2.87%
2.94%
3.02%
3.14%
3.34%
3.40%
3.45%
3.59%
3.57%
3.67%
3.80%
3.73%
3.84%
3.86%
3.81%
3.77%
2.89%
2.84%
2.82%
2.84%
2.74%
2.74%
2.73%
2.78%
2.87%
2.98%
13.00%
30.00%
55.30%



Table B-5: Neutron energy spectra from the reaction 9Be(p,n) E(p)=4.0 MeV
Measured August 1996

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

Energy at
Center of Bin

[keV]
70
90

110
130
150
170
190
210
230
250
270
290
310
330
350
370
390
410
430
450
470
490
510
530
550
570
590
610
630
650
670
690
725
775
825
875
925
975
1025
1075
1125
1175
1225

145 degree
spectrum
7.21E+06
2.05E+07
2.97E+07
3.23E+07
3.50E+07
3.70E+07
3.54E+07
4.01 E+07
4.88E+07
4.44E+07
4.21 E+07
4.13E+07
4.24E+07
4.16E+07
4.42E+07
4.42E+07
4.68E+07
4.59E+07
5.05E+07
5.22E+07
5.08E+07
5.18E+07
5.91E+07
5.26E+07
6.26E+07
6.23E+07
6.31E+07
6.41E+07
6.10E+07
6.53E+07
7.63E+07
7.43E+07
7.21 E+07
7.50E+07
7.87E+07
7.92E+07
9.54E+07
9.14E+07
1.00E+08
9.36E+07
7.68E+07
1.43E+07
2.01E+06

145 degree
% statistical

error
24.30%
11.40%
7.47%
6.22%
5.07%
3.80%
3.14%
2.66%
2.41%
2.42%
2.47%
2.55%
2.64%
2.78%
2.83%
2.91%
2.92%
3.01%
3.06%
3.18%
3.38%
3.53%
3.47%
3.80%
3.64%
3.76%
3.82%
3.86%
4.00%
3.93%
3.69%
3.74%
2.86%
2.83%
2.78%
2.78%
2.66%
2.70%
2.67%
2.73%
2.91%
7.44%

40.70%

286



Table B-6: Neutron energy spectra from the reaction 9Be(p,n) E(p)=3.7 MeV
Measured August 1996

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

nergy at
iter of Bin 0 degree

0 degree
% statistical 20 degree %i

E
Cer

[keV] spectrum error spectrum
70 8.21E+06 17.10% 6.69E+06
90 1.70E+07 11.00% 1.53E+07

110 2.45E+07 7.30% 2.81E+07
130 2.82E+07 5.83% 3.00E+07
150 3.20E+07 4.65% 2.90E+07
170 3.05E+07 3.79% 2.84E+07
190 3.05E+07 3.08% 2.93E+07
210 3.21E+07 2.71% 3.08E+07
230 3.76E+07 2.47% 3.55E+07
250 3.87E+07 2.42% 3.66E+07
270 4.01E+07 2.42% 3.76E+07
290 3.83E+07 2.50% 3.77E+07
310 4.38E+07 2.52% 4.15E+07
330 4.52E+07 2.60% 4.23E+07
350 4.94E+07 2.62% 4.59E+07
370 4.86E+07 2.69% 4.44E+07
390 5.27E+07 2.69% 5.01E+07
410 5.62E+07 2.68% 5.12E+07
430 6.16E+07 2.73% 5.23E+07
450 6.51E+07 2.79% 5.95E+07
470 6.57E+07 2.89% 6.17E+07
490 6.77E+07 2.97% 6.27E+07
510 7.29E+07 3.00% 6.83E+07
530 7.58E+07 3.04% 7.13E+07
550 8.61E+07 3.00% 8.47E+07
570 8.64E+07 3.07% 8.06E+07
590 8.77E+07 3.11% 8.57E+07
610 8.50E+07 3.19% 8.70E+07
630 7.95E+07 3.31% 7.28E+07
650 7.46E+07 3.44% 6.71 E+07
670 6.38E+07 3.74% 6.50E+07
690 5.98E+07 3.86% 5.64E+07
725 5.28E+07 3.02% 5.57E+07
775 5.38E+07 3.01% 5.28E+07
825 5.16E+07 3.06% 5.17E+07
875 4.70E+07 3.16% 4.65E+07
925 5.42E+07 3.04% 5.27E+07
975 4.96E+07 3.15% 4.85E+07
1025 _ .5.25E+07 3.15% 5.00E+07
1075 5.18E+07 3.18% 4.71E+07
1125 4.43E+07 3.40% 4.64E+07
1175 4.75E+07 3.34% 4.91E+07
1225 4.37E+07 3.45% 4.11E+07

0 degree 60 degree
statistical 60 degree % statistical •
error spectrum error

31.70% 6.13E+06 22.90%
18.30% 1.99E+07 9.60%
9.38% 2.26E+07 7.87%
7.88% 2.98E+07 5.61%
6.94% 2.93E+07 4.97%
5.23% 3.04E+07 3.80%
3.87% 3.11E+07 3.06%
3.19% 3.06E+07 2.75%
2.78% 3.57E+07 2.50%
2.68% 3.65E+07 2.45%
2.68% 3.58E+07 2.47%
2.77% 3.59E+07 2.54%
2.83% 3.89E+07 2.60%
2.96% 4.04E+07 2.68%
3.00% 4.24E+07 2.73%
3.14% 4.20E+07 2.81%
3.07% 4.64E+07 2.79%
3.11% 4.77E+07 2.81%
3.27% 5.58E+07 2.80%
3.27% 6.09E+07 2.85%
3.39% 6.36E+07 2.92%
3.54% 6.84E+07 2.96%
3.55% 6.48E+07 3.13%
3.60% 5.67E+07 3.40%
3.46% 6.09E+07 3.42%
3.65% 5.80E+07 3.61%
3.62% 5.93E+07 3.64%
3.66% 5.54E+07 3.83%
4.04% 4.97E+07 4.09%
4.30% 5.73E+07 3.88%
4.45% 6.04E+07 3.83%
4.83% 5.99E+07 3.85%
3.43% 5.64E+07 2.95%
3.53% 5.67E+07 2.95%
3.56% 6.05E+07 2.89%
3.72% 6.00E+07 2.89%
3.56% 6.74E+07 2.82%
3.70% 6.09E+07 2.93%
3.75% 6.60E+07 2.90%
3.86% 6.31E+07 2.96%
3.91% 5.80E+07 3.06%
3.85% 6.52E+07 2.97%
4.19% 6.21E+07 3.02%
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Table B-6: Neutron energy spectra from the reaction 9Be(p,n) E(p)=3.7 MeV
Measured August 1996

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

20 degree
% statistical

[error
4.01%
4.10%
4.08%
4.35%
4.07%
4.09%
3.98%
4.10%
4.18%
4.95%
32.40%

0 degree
% statistical

error
3.43%
3.53%
3.47%
3.43%
3.47%
3.40%
3.32%
3.30%
3.33%
3.49%
4.39%

41.60%

Energy at
Center of Bin

[keV]
1275
1325
1375
1425
1475
1525
1575
1625
1675
1725
1775
1825

0 degree
spectrum
4.52E+07
4.20E+07
4.44E+07
4.52E+07
4.33E+07
4.55E+07
4.83E+07
4.76E+07
4.61 E+07
3.98E+07
2.36E+07
1.22E+06

20 degree
spectrum
4.54E+07
4.33E+07
4.43E+07
3.85E+07
4.26E+07
4.22E+07
4.43E+07
4.05E+07
3.85E+07
2.69E+07
2.47E+06

60 degree
spectrum
6.39E+07
5.51E+07
5.30E+07
4.84E+07
3.34E+07
5.70E+06
8.65E+05
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60 degree
% statistical

-error

3.01%
3.17%
3.23%
3.33%
3.88%
12.40%
68.60%



Table B-6: Neutron energy spectra from the reaction 9Be(p,n) E(p)=3.7 MeV
Measured August 1996

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

Energy at
Center of Bin

[keV]
70
90

110
130
150
170
190
210
230
250
270
290
310
330
350
370
390
410
430
450
470
490
510
530
550
570
590
610
630
650
670
690
725
775
825
875
925
975
1025
1075
1125
1175
1225

110 degree
spectrum
3.97E+06
1.54E+07
2.06E+07
2.59E+07
2.63E+07
2.81 E+07
2.69E+07
2.84E+07
3.36E+07
3.54E+07
3.90E+07
4.30E+07
4.57E+07
4.28E+07
4.55E+07
4.47E+07
4.65E+07
4.56E+07
4.85E+07
5.29E+07
5.26E+07
5.23E+07
6.10E+07
6.12E+07
6.73E+07
6.41E+07
7.36E+07
7.12E+07
7.31E+07
7.30E+07
7.94E+07
7.80E+07
7.64E+07
7.64E+07
7.88E+07
7.44E+07
8.40E+07
7.44E+07
7.66E+07
6.64E+07
3.45E+07
2.55E+06
1.98E+06

289

110 degree
% statistica

error
33.30%
11.60%
8.15%
6.03%
5.18%
3.86%
3.20%
2.77%
2.50%
2.43%
2.41%
2.41%
2.47%
2.60%
2.64%
2.71%
2.74%
2.81%
2.88%
2.93%
3.06%
3.20%
3.13%
3.23%
3.22%
3.37%
3.25%
3.35%
3.34%
3.39%
3.32%
3.35%
2.64%
2.65%
2.63%
2.68%
2.62%
2.71%
2.73%
2.86%
3.70%

26.30%
32.20%

S115 degree
spectrum
7.29E+06
1.44E+07
2.43E+07
2.54E+07
2.73E+07
2.86E+07
2.74E+07
2.83E+07
3.44E+07
3.82E+07
4.09E+07
4.32E+07
4.36E+07
4.18E+07
4.40E+07
4.48E+07
4.48E+07
4.79E+07
4.98E+07
5.23E+07
5.36E+07
5.70E+07
5.97E+07
5.94E+07
6.68E+07
6.67E+07
7.25E+07
6.86E+07
7.00E+07
7.22E+07
7.75E+07
7.85E+07
7.48E+07
7.84E+07
7.91E+07
7.39E+07
8.46E+07
7.47E+07
7.59E+07
6.01E+07
7.59E+06
2.73E+06
8.49E+05

115 degree .. 120 degree
% statistical 120 degree % statistical

error spectrum error
18.10% 2.86E+06 46.00%
12.20% 9.83E+06 17.80%
6.97% 1.69E+07 9.76%
6.05% 2.43E+07 6.34%
4.98% - 2.38E+07 5.59%
3.79%• 2.66E+07 3.99%
3.15% 2.57E+07 3.26%
2.76% 2.80E+07 2.78%
2.48% 3.41E+07 2.49%
2.39% 3.98E+07 2.38%
2.38% 4.29E+07 2.36%
2.41% 4.10E+07 2.43%
2.49% 4.02E+07 2.54%
2.60% 4.12E+07 2.62%
2.66% 4.28E+07 2.68%
2.70% 4.44E+07 2.71%
2.76% 4.54E+07 2.76%
2.76% 4.68E+07 2.78%
2.85% 5.05E+07 2.84%
2.93% 5.32E+07 2.92%
3.03% 5.16E+07 3.08%
3.09% 5.41E+07 3.16%
3.15% 5.88E+07 3.18%
3.25% 5.86E+07 3.28%
3.21% 6.57E+07 3.24%
3.30% 6.62E+07 3.32%
3.25% 6.84E+07 3.34%
3.38% 6.87E+07 3.39%
3.39% 6.75E+07 3.45%
3.39% 6.89E+07 3.47%
3.34% 7.89E+07 3.32%
3.33% 7.73E+07 3.35%
2.65% 7.02E+07 2.70%
2.62% 7.43E+07 2.66%
2.62% 7.85E+07 2.63%
2.67% 7.35E+07 2.68%
2.60% 8.01 E+07 2.64%
2.70% 7.18E+07 2.73%
2.73% 6.92E+07 2.81%
2.94% 2.70E+07 4.14%
9.77% 3.12E+06 21.40%
24.30% 2.19E+06 30.30%
71.10%



Table B-6: Neutron energy spectra from the reaction 9Be(p,n) E(p)=3.7 MeV
Measured August 1996

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

Energy at
Center of Bin

[keV]
70
90
110
130
150
170
190
210
230
250
270
290
310
330
350
370
390
410
430
450
470
490
510
530
550
570
590
610
630
650
670
690
725
775
825
875
925
975
1025
1075
1125
1175

290

125 degree
spectrum
4.34E+06
1.59E+07
2.24E+07
2.61 E+07
2.88E+07
2.71E+07
2.76E+07
2.87E+07
3.65E+07
4.14E+07
4.33E+07
3.94E+07
4.08E+07
4.11E+07
4.24E+07
4.21E+07
4.50E+07
4.77E+07
4.92E+07
5.26E+07
5.27E+07
5.56E+07
5.54E+07
5.83E+07
6.64E+07
7.05E+07
6.98E+07
6.95E+07
7.04E+07
6.61E+07
7.60E+07
7.46E+07
7.23E+07
7.37E+07
7.58E+07
7.05E+07
8.10E+07
7.24E+07
5.99E+07
4.78E+06
3.14E+06
2.86E+06

125 degree
% statistica

error
30.40%
11.30%
7.58%
5.99%
4.84%
3.95%
3.15%
2.76%
2.46%
2.36%
2.36%
2.45%
2.53%
2.62%
2.69%
2.76%
2.77%
2.76%
2.87%
2.93%
3.06%
3.12%
3.25%
3.28%
3.23%
3.24%
3.31%
3.37%
3.39%
3.53%
3.37%
3.40%
2.68%
2.67%
2.66%
2.71%
2.64%
2.73%
2.94%
14.60%
21.20%
23.70%

130 degree 135 degree
1 130 degree % statistical _135 degree % statistical

spectrum error spectrum error
6.50E+06 21.50% 2.92E+06 46.10%
1.43E+07 13.00% 1.10E+07 16.30%
2.01E+07 8.69% 2.12E+07 8.13%
2.65E+07 6.13% 2.10E+07 7.32%
2.49E+07 5.58% 2.44E+07 5.57%
2.69E+07 4.07% 2.62E+07 4.08%
2.69E+07 3.26% 2.72E+07 3.20%
3.01 E+07 2.75% 2.91 E+07 2.76%
3.75E+07 2.46% 3.89E+07 2.43%
4.38E+07 2.35% 4.38E+07 2.34%
4.09E+07 2.39% 3.80E+07 2.42%
3.81 E+07 2.49% 3.63E+07 2.50%
3.93E+07 2.57% 3.83E+07 2.57%
4.12E+07 2.64% 3.83E+07 2.68%
4._19E+07 2.73%- 4.08E+07 2.73%
4.16E+07 2.80% 4.07E+07 2.80%
4.42E+07 2.81% 4.51E+07 2.77%
4.58E+07 2.83% 4.50E+07 2.82%
4.87E+07 2.91% 4.72E+07 2.92%
4.97E+07 3.02% 5.03E+07 2.99%
5.32E+07 3.08% 4.98E+07 3.13%
5.28E+07 3.23% 5.13E+07 3.24%
5.64E+07 3.27% 5.60E+07 3.25%
5.58E+07 3.39% 5.18E+07 3.47%
6.56E+07 3.29% 6.51E+07 3.27%
6.21E+07 3.46% 6.33E+07 3.40%
6.73E+07 3.41% 6.47E+07 3.43%
6.77E+07 3.46% 6.47E+07 3.49%
6.28E+07 3.62% 6.06E+07 3.64%
7.15E+07 3.46% 6.32E+07 3.62%
7.49E+07 3.44% 7.36E+07 3.43%
7.23E+07 3.50% 6.69E+07 3.58%
7.30E+07 2.70% 6.92E+07 2.72%
7.46E+07 2.69% 7.12E+07 2.70%
7.55E+07 2.68% 7.33E+07 2.69%
7.23E+07 2.71% 7.20E+07 2.70%
8.00E+07 2.67% 7.87E+07 2.66%
6.53E+07 2.84% 5.72E+07 2.94%
2.95E+07 4.03% 6.47E+06 11.60%
3.99E+06 17.80% 2.65E+06 25.40%
3.97E+06 17.80% 9.79E+05 65.40%
2.47E+06 28.30%



Table B-6: Neutron energy spectra from the reaction 9Be(p,n) E(p)=3.7 MeV
Measured August 1996

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

Energy at
Center of Bin 145 degree

[keV] spectrum
70 4.92E+06
90 1.46E+07
110 2.35E+07
130 2.49E+07
150 2.57E+07
170 2.56E+07
190 2.82E+07
210 3.14E+07
230 4.04E+07
250 3.76E+07
270 3.71 E+07
290 3.49E+07
310 3.57E+07
330 3.69E+07
350 3.85E+07
370 3.97E+07
390 4.20E+07
410 4.32E+07
430 4.44E+07
450 4.70E+07
470 4.66E+07
490 4.87E+07
510 5.20E+07
530 4.87E+07
550 5.85E+07
570 5.52E+07
590 6.17E+07
610 5.98E+07
630 6.04E+07
650 6.41 E+07
670 6.94E+07
690 6.54E+07
725 6.46E+07
775 6.96E+07
825 7.17E+07
875 6.83E+07
925 7.05E+07
975 1.48E+07
1025 2.39E+06
1075 1.40E+06

145 degree
% statistical

error
28.90%
13.10%
7.71%
6.56%
5.54%
4.26%
3.20%
2.72%
2.42%
2.42%
2.45%
2.55%
2.65%
2.74%
2.81%
2.85%
2.86%
2.89%
3.01%
3.10%
3.26%
3.35%
3.40%
3.62%
3.47%
3.67%
3.56%
3.68%
3.70%
3.65%
3.57%
3.67%
2.80%
2.75%
2.73%
2.76%
2.76%
6.01%
29.90%
48.50%

291



Table B-7: Neutron energy spectra from the reaction 9Be(p,n) E(p)=3.4 MeV
Measured August 1996

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

Energy at 0 degree
Center of Bin 0 degree % statistical

[keV] spectrum error
70 3.52E+06 31.25%
90 1.16E+07 12.67%
110 1.68E+07 8.27%
130 1.88E+07 6.70%
150 1.83E+07 5.90%
170 1.94E+07 4.30%
190 1.83E+07 3.49%
210 1.94E+07 2.94%
230 2.17E+07 2.65%
250 2.29E+07 2.55%
270 2.38E+07 2.54%
290 2.46E+07 2.60%
310 2.70E+07 2.65%
330 2.86E+07 2.72%
350 3.18E+07 2.73%
370 3.19E+07 2.80%
390 3.52E+07 2.77%
410 3.71 E+07 2.78%
430 4.13E+07 2.81%
450 4.49E+07 2.85%
470 4.73E+07 2.92%
490 5.19E+07 2.93%
510 5.64E+07 2.96%
530 5.88E+07 2.99%
550 6.97E+07 2.91%
570 7.00E+07 2.97%
590 7.19E+07 2.99%
610 7.12E+07 3.05%
630 6.88E+07 3.11%
650 5.74E+07 3.40%
670 5.39E+07 3.53%
690 4.90E+07 3.69%
725 4.53E+07 2.87%
775 4.43E+07 2.91%
825 4.30E+07 2.93%
875 4.23E+07 2.96%
925 4.52E+07 2.92%
975 4.14E+07 3.02%
1025 4.29E+07 3.03%
1075 4.03E+07 3.13%
1125 3.79E+07 3.22%
1175 4.35E+07 3.08%
1225 3.78E+07 3.23%
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Table B-8: Neutron energy spectra from the reaction 9Be(p,n) E(p)=3.0 MeV
Measured August 1996

Units of spectra are: neutrons/(MeV-steradian-microcoulomb)

Energy at
Center of Bi

[keV]
70
90

110
130
150
170
190
210
230
250
270
290
310
330
350
370
390
410
430
450
470
490
510
530
550
570
590
610
630
650
670
690
725
775
825
875
925
975
1025
1075
1125
1175
1225

n 0 degree
spectrum
1.83E+06
4.78E+06
9.05E+06
8.18E+06
9.67E+06
8.65E+06
1.08E+07
1.06E+07
1.25E+07
1.32E+07
1.43E+07
1.47E+07
1.74E+07
1.87E+07
2.01E+07
2.23E+07
2.41 E+07
2.58E+07
3.05E+07
3.43E+07
3.53E+07
4.13E+07
4.75E+07
4.73E+07
5.75E+07
6.10E+07
6.1 0E+07
5.69E+07
5.62E+07
4.78E+07
4.24E+07
3.88E+07
3.60E+07
3.46E+07
3.54E+07
3.35E+07
3.67E+07
3.13E+07
3.08E+07
1.09E+07

293

L-

0 degree
% statistical

error
50.45%
25.35%
12.43%
12.05%
8.72%
6.94%
4.28%
3.57%
3.00%
2.84%
2.78%
2.85%
2.85%
2.92%
2.97%
2.93%
2.93%
2.91%
2.89%
2.90%
2.99%
2.94%
2.90%
2.98%
2.87%
2.88%
2.93%
3.04%
3.08%
3.33%
3.56%
3.72%
2.89%
2.93%
2.91%
2.96%
2.90%
3.08%
3.17%
5.55%
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Thick target neutron spectrum from the reaction 9Be(p,n) E = 4.0 MeV

Laboratory angle = 20 degrees, Measured August 1996
Error bars represent total statistical error at 1 sigma level
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1000 1250
Neutron energy [keV]

Thick target neutron spectrum from the reaction 9Be(p,n) E = 4.0 MeV

Laboratory angle = 60 degrees, Measured August 1996
Error bars represent total statistical error at 1 sigma level
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1000 1250
Neutron energy [keV]

Thick target neutron spectrum from the reaction 9Be(p,n) E = 4.0 MeV

Laboratory angle = 110 degrees, Measured August 1996
Error bars represent total statistical error at 1 sigma level
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1000 1250
Neutron energy [keV]

Thick target neutron spectrum from the reaction 9Be(p,n) E = 4.0 MeV
p

Laboratory angle = 120 degrees, Measured August 1996
Error bars represent total statistical error at 1 sigma level
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1000 1250
Neutron energy [keV]

Thick target neutron spectrum from the reaction 9Be(p,n) E = 4.0 MeV

Laboratory angle = 125 degrees, Measured August 1996
Error bars represent total statistical error at 1 sigma level
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1000 1250
Neutron energy [keV]

Thick target neutron spectrum from the reaction 9Be(p,n) E = 4.0 MeV

Laboratory angle = 135 degrees, Measured August 1996
Error bars represent total statistical error at 1 sigma level
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1000 1250
Neutron energy [keV]

Thick target neutron spectrum from the reaction 9Be(p,n) E = 4.0 MeV

Laboratory angle = 145 degrees, Measured August 1996
Error bars represent total statistical error at 1 sigma level
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Thick target neutron spectrum from the reaction 9Be(p,n) E = 3.7 MeVp
Laboratory angle = 115 degrees, Measured August 1996
Error bars represent total statistical error at 1 sigma level
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Thick target neutron spectrum from the reaction 9Be(p,n) E = 3.7 MeV
P

Laboratory angle = 120 degrees, Measured August 1996

Error bars represent total statistical error at 1
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1000 1250
Neutron energy [keV]

Thick target neutron spectrum from the reaction 9Be(p,n) E = 3.7 MeV

Laboratory angle = 125 degrees, Measured August 1996
Error bars represent total statistical error at 1 sigma level
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Error bars represent total statistical error at 1 sigma level
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1000 1250
Neutron energy [keV]

Thick target neutron spectrum from the reaction 9Be(p,n) E = 3.7 MeV
P

Laboratory angle = 135 degrees, Measured August 1996
Error bars represent total statistical error at 1 sigma level
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1000 1250
Neutron energy [keV]

Thick target neutron spectrum from the reaction 9Be(p,n) E = 3.7 MeV
P

Laboratory angle = 145 degrees, Measured August 1996

Error bars represent total statistical error at 1 sigma level

E
0
3
O
0
I..O

E
CIC

a)

C,

_

108

107

106

250 500 750 1500 1750 2000
I I

2250
--

' '

I Ii -

- D- II



Iorp-c

1000

-x-

IDI

1250 1500
Neutron energy [keV]

Thick target neutron spectrum from the reaction 9Be(p,n) E = 3.4 MeV
P

Laboratory angle = 0 degrees, Measured August 1996
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Thick target neutron spectrum from the reaction 9 Be(p,n) E = 3.0 MeV
p

Laboratory angle = 0 degrees, Measured August 1996
Error bars represent total statistical error at
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APPENDIX C

Simulations Used in Therapy Beam Design

This appendix contains graphs depicting the results of the therapy beam design

simulations discussed in Chapter III. The graphs are divided into seven groups. Each

group is preceded by a table which lists the configurations in the group, and the values of

the MSR dimensions which were varied in that group. The dimensions are referenced to

Figure III-B-2, found in Chapter III.

The first group consists of the results using the reaction 7Li(p,n). The remaining

groups consist of the results from the reaction 9Be(p,n). The reaction, proton energy,

moderator and reflector materials, and moderator dimensions are annotated on each graph

and are listed in the tables.
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Table C-1: Therapy beam design configurations
for the reaction

7Li(p,n) E(p)=2.5 MeV

The following dimesions were not varied:
A=3 cm, C=10 cm, D=34 cm, E=34 cm, F=0.03 cm, H=0.03 cm, 1=0.03 cm

Target
Location

Reflector [cm]
material (dimension A)

Graphite
Graphite

Lead
Lead
Lead

Bismuth
Bismuth
Bismuth

Moderator
Length

[cm]
(dimension B)

20
22
18
20
22
18
20
22

Target to port
Distance

[cm]
(dimension G)

17
19
15
17
19
15
17
19

Simulation
Designation
li-gr-d20x10
li-gr-d22x10
li-pb-dl8x10
li-pb-d20xl 0
li-pb-d22x10
li-bi-dl 8x10
li-bi-d20xl1 0
li-bi-d22x1 0

Moderator
material

D20
D20
D20
D20
D20
D20
D20
D20
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li20x10g.o: 20x10cm D O Moderator
2

Graphite Reflector, 7Li(p,n) 2.5 MeV
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li22x10g.o: 22x10cm D O Moderator
2

Graphite Reflector, 7Li(p,n) 2.5 MeV
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lil8x101.o: 18x10 cm D 0 Moderator
2

Lead Reflector, 7Li(p,n) 2.5 MeV
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li20x101.o: 20x10cm D 0 Moderator
2

Lead Reflector, 7Li(p,n) 2.5 MeV
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li22x101.o: 22x10cm D 0 Moderator
2

Lead Reflector, 7Li(p,n) 2.5 MeV
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lil8x10b.o: 18xlOcm D O Moderator
2

Bismuth Reflector, 7Li(p,n) 2.5 MeV
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li20x10b.o: 20x10cm D O Moderator
2

Bismuth Reflector, 7Li(p,n) 2.5 MeV
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li22x10b.o: 22x10cm D O Moderator
2

Bismuth Reflector, 7Li(p,n) 2.5 MeV
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Table C-2: Therapy beam design configurations
for the reaction

9Be(p,n) E(p)=3.0 MeV

The following dimesions were not varied:
A=3 cm, C=10 cm, D=34 cm, E=34 cm, F=0.03 cm, H=0.03 cm, 1=0.03 cm

Target Moderator Target to port
Location Length Distance

Reflector [cm] [cm] [cm]
material (dimension A) (dimension B) (dimension G)

Graphite
Graphite
Graphite
Lead
Lead
Lead
Lead

Simulation
Designation

30-gr-d2o-21x10
30-gr-d2o-23x10
30-gr-d2o-25x10
30-pb-d2o-21 x1 0
30-pb-d2o-23x101
30-pb-d2o-25x10
30-pb-d2o-27x10!

Moderator
material

D20
D20
D20
D20
D20
D20
D20

21'
23
25
21
23
25
27
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2lxl0cm D O Moderator
2

Graphite Reflector, 9Be(p,n) 3.0 MeV (estimated spectrum)
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23x10cm D O Moderator
2

Graphite Reflector, 9Be(p,n) 3.0 MeV (estimated spectrum)
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25x10cm D O Moderator
2

Graphite Reflector, 9Be(p,n) 3.0 MeV (estimated spectrum)
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21xl10cm D O Moderator
2

Lead Reflector, 9Be(p,n) 3.0 MeV (estimated spectrum)
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23x1 O0cm D O Moderator
2

Lead Reflector, 9Be(p,n) 3.0 MeV (estimated spectrum)
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25x10cm D O Moderator
2

Lead Reflector, 9Be(p,n) 3.0 MeV (estimated spectrum)
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27x10 Ocm D O Moderator
2

Lead Reflector, 9Be(p,n) 3.0 MeV (estimated spectrum)
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Table C-3: Therapy beam design configurations
for the reaction

9Be(p,n) E(p)=3.4 MeV

349

The following dimesions were not varied:
A=3 cm, C=10 cm, D=34 cm, E=34 cm, F=0.03 cm, H=0.03 cm, 1=0.03 cm

Target Moderator Target to port
Location Length Distance

Simulation Moderator Reflector [cm] [cm] [cm]
Designation material material (dimension A) (dimension B) (dimension G)

34-gr-d2o-21x10 D20 Graphite 3 21_ 18
34-gr-d2o-23x10 D20 Graphite 3 23 __ 20
34-pb-d2o25x10 D20 Lead 3 25 22
34-pb-d2o27x10 D20 Lead 3 27 24



21x1 Ocm D O Moderator
2

Graphite Reflector, 9Be(p,n) 3.4 MeV (estimated spectrum)
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23x10cm D O Moderator
2

Graphite Reflector, 9Be(p,n) 3.4 MeV (estimated spectrum)
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25x10cm D O Moderator
2

Lead Reflector, 9Be(p,n) 3.4 MeV (estimated spectrum)
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27x10cm D O Moderator
2

Lead Reflector, 9Be(p,n) 3.4 MeV (estimated spectrum)
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Table C-4: Therapy beam design configurations
for the reaction

9Be(p,n) E(p)=3.7 MeV

The following dimesions were not varied:
A=3 cm, C=10 cm, D=34 cm, E=34 cm, F=0.03 cm, H=0.03 cm, 1=0.03 cm

Simulation
Designation

37-gr-d2o-21x10
37-gr-d2o-24x10
37-gr-d2o-25x10
37-gr-d2o-27x10
37-pb-d2o-21x1 0
37-pb-d2o-24x10
37-pb-d2o-27x10
37-gr-alf-24x10
37-qr-alf-27x10

Moderator
material

D20
D20
D20
D20
D20
D20
D20
AI-AIF3
AI-AIF4

Target
Location

Reflector [cm]
material (dimension A)

Moderator
Length

[cm]
(dimension B)

Graphite
Graphite
Graphite
Graphite
Lead
Lead
Lead
Graphite
Graphite

Target to port
Distance

[cm]
(dimension G)

21 18
24 21
25 22
27 24
21 18
24 21
27 24
24 21
27 24

354



21x1 Ocm D O Moderator
2

Graphite Reflector, 9Be(p,n) 3.7 MeV

2 4 6 8 10 12

Depth in Phantom [cm]

10

E
< 1

E

Cl)a,
S0.1

0.01
14 16



24x10cm D O Moderator
2

Graphite Reflector, 9Be(p,n) 3.7 MeV

Depth in Phantom [cm]

10

-1
E

0) 0.1

0.01
0 2 4 6 8 10 12 14 16



25x10cm D O Moderator
2

Graphite Reflector, 9Be(p,n) 3.7 MeV

Depth in Phantom [cm]

10

E

E

0.1

0.01
0 2 4 6 8 10 12 14 16



27x10cm D O Moderator
2

Graphite Reflector, 9Be(p,n) 3.7 MeV

Depth in Phantom [cm]

10

E
< 1
E

(9
O

C,)

0.00..1

0 2 4 6 8 10 12 14 16



21x10cm D O Moderator
2

Lead Reflector, 9Be(p,n) 3.7 MeV

- - - - - - - -

- I

10

Depth in Phantom [cm]
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24x10cm Moderator- D O
2

Lead Reflector, 9Be(p,n) 3.7 MeV

4.

+;

10

Depth in Phantom [cm]
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27xl 0cm Moderator- DO
2

Lead Reflector, 9Be(p,n) 3.7 MeV
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24x10cm Moderator- 70-% AIF 3 - 30% Al

Graphite Reflector, 9Be(p,n) 3.7 MeV

I-.

-13 -D -

I I

0~=~~~~~

10

Depth in Phantom [cm]

1.--------
-.--I _-~-r -

-x- Fast

-- *- Thermal
--- Gamma

- I - 10-Boron

-o- Total Tumor

10

E

C0
0
0 0.1

A l
f.V

0

N
12 14 16

n ------------------------ ------------

-

~

0

I-

-----------
-----------
-----------
-----------

----------------------
-- --- --- ---

--- --- -- ---
-- ---- -- ---

- .-

·I B 1 ·

i-.m

;~c~-~

---------
i i i i i i i i

I t I i I It----------



27x10cm Moderator- 70-% AIF
3

- 30% Al

Graphite Reflector, 9Be(p,n) 3.7 MeV
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Table C-5: Therapy beam design configurations
for the reaction

9Be(p,n) E(p)=4.0 MeV

The following dimesions were not varied:
A=3 cm, D=34 cm, E=34 cm, F=0.03 cm, H=0.03 cm, 1=0.03 cm __ ....

Target
Location

Simulation Moderator Reflector [cm]
Designation material material (dimension A)

40-gr-d2o-24x10
40-gr-d2o-27x8
40-gr-d2o-27x10-
40-gr-d2o-27x12
40-gr-d2o-30x1 0
40-gr-d2o-26x10-
40-pb-d2o-24x10
40-pb-d2o-27x10
40-pb-d2o-30x10
40-bi-d2o-24x10
40-bi-d2o-27x10
40-bi-d2o-30x1 0
40-ni-d20-24x1 0
40-gr-alf-25x10
40-gr-alf-30x10
40-gr-alf-30x1 2
40-gr-alf-34x10
40-gr-alf-35x10
40-gr-alf-40x10
40-pb-alf-25x10
40-pb-alf-30x10
40-pb-alf-30x1 2
40-pb-alf-35x10
40-pb-alf-40x1 0

D20
D20
D20
D20
D20
D20
D20
D20
D20
D20
D20
D20
D20

AI-AIF3
AI-AIF4
AI-AIF5
AI-AIF6
AI-AIF7
AI-AIF8
AI-AIF9

AI-AIF10
AI-AIF11
AI-AIF12
AI-AIF13

Graphite
Graphite
Graphite
Graphite
Graphite
Graphite

Lead
Lead
Lead

Bismuth
.Bismuth
Bismuth
Nickel

Graphite
Graphite
Graphite
Graphite
Graphite
Graphite

Lead
Lead
Lead
Lead
Lead

Moderator
Length

[cm]
(dimension B)

24

Moderator
Radius

[cm]
(dimension C)

10

27 12
30 10
26 10
24 10
27 10
30 10
24 10
27 10
30 10
30 10
25 10
30 10
30 12

10
10

Target to port
Distance

[cm]
(dimension G)

21
24
24
24
27
23
21
24
27
21
24
27
27
22
27
27
31
32
37

364



24x10g.o: 24x10cm D 20 Moderator

Graphite Reflector, 9Be(p,n) 4 MeV

Depth in Phantom [cm]
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' 1
E

o 0.1

0.01
0 2 4 6 8 10 12 14 16



27x8g.o: 27x8cm D 0 Moderator
2

Graphite Reflector, 9Be(p,n) 4 MeV

E
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27x10g.o: 27x10cm D 20 Moderator

Graphite Reflector, 9Be(p,n) 4 MeV
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E
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E
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Cn
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0.01
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27x12g.o: 27x12cm D O Moderator
2

Graphite Reflector, 9Be(p,n) 4 MeV

2 4 6 8 10 12

Depth in Phantom [cm]

10

E

0

n,On)

1

0.1

0.01
14 16



30x10g.o: 30x10cm D20 Moderator

Graphite Reflector, 9Be(p,n) 4 MeV

Depth in Phantom [cm]
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0.01
0 2 4 6 8 10 12 14 16



26x10cm Moderator- D O
2

Graphite Reflector, 9 Be(p,n) 4.0 MeV
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24x101.o: 24x10cm D 20 Moderator

Lead Reflector, 9Be(p,n) 4 MeV
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E< 1
E
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O 0.1

0.01
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Depth in Phantom [cm]

12 14 16



27x101.o: 2xlOcm D O Moderator
2

Lead Reflector, 9 Be(p,n)4 MeV
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30x101.o: 30x10cm D 0 Moderator
2

Lead Reflector, 9Be(p,n) 4 MeV

10

E <1

E(.9

Cl)
0 0.1

0.01
2 4 6 8 10

Depth in Phantom [cm]
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24x10b.o: 24x10cm D 20 Moderator2

10
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E
< 1

E

C 0.1

0.01
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Depth in Phantom [cm]
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27x10b.o: 27x10cm D 20 Moderator

Bismuth Reflector, 9Be(p,n) 4 MeV
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30x10b.o: 30x10cm D 20 Moderator
2

Bismuth Reflector, 9Be(p,n) 4 MeV
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24x10n.o: 24x10cm D O Moderator
2

Nickel Reflector, 9Be(p,n)4 MeV

Depth in Phantom [cm]
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25x10cm Moderator- 70% AIF33 - 30% Al

Graphite Reflector, 9Be(p,n) 4.0 MeV
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30x10cm 
Moderator- 

70% AIF

Graphite Reflector, 9Be(p,n) 4.0 MeV

Depth in Phantom [cm]
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30x12cm Moderator- 70% AIF - 30% Al
3

Graphite Reflector, 9Be(p,n) 4.0 MeV
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3Lh~l Oem MnnrI~rntnr- 710%0 AIF - 30% Al

Graphite Reflector, 9Be(p,n) 4.0 MeV
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35x10cm Moderator- 70% AIF - 30% Al
3

Graphite Reflector, 9Be(p,n) 4.0 MeV
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40x1 0cm Mode~rator- 70% AIF -3%A

Graphite Reflector, 9Be(p,n) 4.0 MeV
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1x52 0cm Moderator 
70% AlF

- 30% Al

Lead Reflector, 9 Be(p,n) 4.0 MeV
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---- Thermal
-A- Gamma

.v 10-Boron
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30x10cm Moderator 70% AIF

Lead Reflector, 9Be(p,n) 4.0 MeV

Depth in Phantom [cm]
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O
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30x12cm Moderator, 70% AIF3 - 30% Al

Lead Reflector, 9Be(p,n) 4.0 MeV
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35x1 0cm Moderator. 70% AIF - 30% Al

Lead Reflector, 9 Be(p,n) 4.0 MeV
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40x10cm Moderator, 70% AIF3 - 30% Al

Lead Reflector, 9Be(p,n) 4.0 MeV
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Table C-6: Therapy beam design configurations
for the reaction

9Be(p,n) E(p)=4.0 MeV
These simulations examine

the effect of moving the target location

The following dimesions were not varied:
C=10 cm, D=34 cm, E=34 cm, F=0.03 cm, H=0.03 cm, 1=0.03 cm

Simulation
Designation

40-gr-d2o-27x10
40-gr-d2o-27x10
40-gr-d2o-27x10
40-gr-d2o-27x10
40-gr-d2o-27x10
40-gr-d2o-27x10

40-gr-d2o-27x10
40-gr-d2o-27x10
40-gr-d2o-27x10
40-gr-d2o-27x10
40-gr-d2o-27x10
40-gr-d2o-27x10
40-gr-d2o-27x10
40-gr-d2o-27x10

Target
Location

Moderator Reflector [cm]
material material (dimension A)

D20
D20
D20
D20
D20
D20

D20
D20
D20
D20
D20
D20
D20
D20

Graphite
Graphite
Graphite
Graphite
Graphite
Graphite

Moderator
Length

[cm]
(dimension B)

27
27
27
27
27
27

Moderator
Radius

[cm]
(dimension C)

10
10
10
10
10
10

Target to port
Distance

[cm]
(dimension G)

22
25
26
27
28
30

Graphite
Graphite
Graphite
Graphite
Graphite
Graphite
Graphite
Graphite

389
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27x10cm D 0 Moderator -
2

Target 5 cm into moderator

Graphite Reflector, 9Be(p,n) 4.0 MeV

Depth in Phantom [cm]

10

1

0.1

E

(9

O
O

0.01
2 4 6 8 10 12 14 16



27x10cm D 0 Moderator -
2

Target 2 cm into moderator

Graphite Reflector, 9Be(p,n) 4.0 MeV

10

Depth in Phantom [cm]

10
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--- Thermal

Gamma
- 10-Boron
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27x10cm D 0 Moderator - Target
2

1 cm into moderator

Graphite Reflector, 9Be(p,n) 4.0 MeV
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Depth in Phantom [cm]
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27x10cm D 0 Moderator - Target even with moderator
2

Graphite Reflector, 9Be(p,n) 4.0 MeV
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27x10cm D O0 Moderator -
2

Target 1 cm back from moderator

Graphite Reflector, 9Be(p,n) 4.0 MeV

1t

10 12

Depth in Phantom [cm]
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27x10cm D 20 Moderator - Target 3 cm back from moderator

Graphite Reflector, 9Be(p,n) 4.0 MeV

Depth in Phantom [cm]

10
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S0.1

0.01
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29x10cm D 0 Moderator -
2

Target 5 cm into moderator

Graphite Reflector, 9Be(p,n) 4.0 MeV
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28x10cm D 0 Moderator - Target 4 cm into moderator
2

Graphite Reflector, 9 Be(p,n) 4.0 MeV
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26x10cm D 0 Moderator -
2

Target 2cm into Moderator

Graphite Reflector, 9Be(p,n) 4.0 MeV

Depth in Phantom [cm]
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25x10cm D O0 Moderator -
2

Target 1cm into Moderator

Graphite Reflector, 9Be(p,n) 4.0 MeV
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24x10cm D 0 Moderator - Target 0 cm into Moderator
2

Graphite Reflector, 9Be(p,n) 4.0 MeV
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Depth in Phantom [cm]

10

E

E

C9
0

(i)
c)
O£0

1

0.1

0.01
16



23x10cm D 0 Moderator - Target 1 cm back from moderator
2

Graphite Reflector, 9Be(p,n) 4.0 MeV
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22x10cm D 0 Moderator - Target 2 cm back from moderator
2

Graphite Reflector, 9 Be(p,n) 4.0 MeV
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21x10cm D 20 Moderator - Target 3 cm back from moderator

Graphite Reflector, 9Be(p,n) 4.0 MeV

--
-U

- 4

K

10 12 14

Depth in Phantom [cm]

-- Thermal
S 10-Boron
Fast

i Gamma

1 Total.Tumor

1

0.1

E

c-)E

Cl)

0o

0.01 I I

16
i- I r

10-

i
I --- |- _-

--- I -ý-

IIII



Table C-7: Therapy beam design configurations
for the reaction

9Be(p,n) E(p)=4.0 MeV
These simulations investigated

the effect of changing the reflector radius

The following dimesions were not varied:
A=3 cm, B=27 cm, C=10 cm, D=34 cm, F=0.03 cm, H=0.03 cm, 1=0.03 cm

Reflector
Radius

Simulation Moderator Reflector [cm]
Designation

40-gr-d2o-27x10
40-gr-d2o-27x10
40-gr-d2o-27x1 0
40-gr-d2o-27x10
40-gr-d2o-27x10
40-gr-d2o-27x10
40-gr-d2o-27x10
40-gr-d2o-27x10

material material
D20 Graphite
D20 Graphite
D20 Graphite
D20 Graphite
D20 Graphite
D20 Graphite
D20 Graphite
D20 Graphite

(dimension E)

40
34
30
25
22
20
17
15

404



27x10cm D O Moderator2
40cm Radius Graphite Reflector, 9Be(p,n) 4.0 MeV

Depth in Phantom [cm]
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27x10cm D O Moderator
2

34 cm Radius Graphite Reflector, 9Be(p,n) 4.0 MeV
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27x10cm D O Moderator
2

30cm Radius Graphite Reflector, 9Be(p,n) 4.0 MeV

Depth in Phantom [cm]

10
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27x10cm D O Moderator
2

25cm Radius Graphite Reflector, 9Be(p,n) 4.0 MeV

Depth in Phantom [cm]

10

E

O0.1

0.01
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27x10cm D O Moderator
2

22 cm Radius Graphite Reflector, 9Be(p,n) 4.0 MeV

Depth in Phantom [cm]

10
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E
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27x10cm D O Moderator
2

20 cm Radius Graphite Reflector, 9Be(p,n) 4.0 MeV

Depth in Phantom [cm]
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27x10cm D O Moderator
2

17 cm Radius Graphite Reflector, 9Be(p,n)= 4.0 MeV
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Depth in Phantom [cm]
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27x10cm D O Moderator
2

15 cm Radius Graphite Reflector, 9Be(p,n) 4.0 MeV
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