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Abstract

This thesis presents a technique for adaptively mapping features in the ocean using
an autonomous underwater vehicle (AUV). An adaptive behavior was developed in
response to the challenge of locating and mapping an unknown number of target fea-
tures without the aid of a priori maps. The design is an extension of the concept of
state configured layered control, a modified form of behavior-based intelligent control
of AUVs. The new adaptive feature mapping behavior incorporates planning and
mapping capabilities which allow the vehicle to alter its trajectory on-line in response
to sensor data. New waypoints are selected by evaluating the expected utility of vis-
iting a given location (is it close to previously mapped portions of a feature while not
having been visited before?) balanced against the expected cost (weighted distance
and heading change) of visiting a particular cell.

The technique has been developed based on the assumptions of a point sensor
attached to a non-holonomic, dynamically controlled survey-class AUV such as the
Odyssey II. Testing has been conducted in a simulation of the Charles River basin
constructed from actual bathymetric data and using trenches as target features. Per-
formance metrics are developed and an analysis of the efficiency and robustness of
the technique over a variety of system parameters and environmental conditions is
examined. Extensions into the realms of remote sensing systems (e.g. scanning beam
sonars) and concurrent mapping and localization are also discussed. The technique
provides a foundation to investigate challenging new missions for AUVs, such as
tracking dynamic features (e.g. mixing fronts), ground-truthing of satellite data, and
autonomous navigation in natural terrain.

Thesis Supervisor: John J. Leonard
Title: Assistant Professor of Ocean Engineering
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Chapter 1

Introduction and Background

The goal motivating this thesis is to provide tools to enable one or more autonomous

underwater vehicles (AUVs) to navigate over missions of long duration and large

extent, and to obtain detailed information about specific features of interest in the

ocean environment. The three key questions for this investigation are the following:

* Can an AUV efficiently locate and sample a collection of features in an unknown

environment?

* Can an AUV interpret the data on-line and determine its trajectory to efficiently

obtain data from a specific feature of interest?

* Can an AUV navigate over long distances using natural terrain features as

navigation references?

Two of the basic tools of field research are population surveys and statistical

sampling. These methods are used to determine the distribution and characteristics

of some feature in a region and/or to track the change in a population within that

region over time. The accepted approach of data collection involves detailed blanket

surveys of the area and post-processing of the data to determine what interesting

features were found and what their distribution was at the time of the survey. The

problem with this approach is that there is generally as much data recorded about

uninteresting areas as there is about the actual items of interest. A better approach



is a vehicle which could locate and sample such a population in detail, spending more

of its time focused on interesting areas (i.e. areas containing pertinent data) and less

on those areas deemed to be uninteresting.

While blanket surveys are somewhat useful for sampling static or slowly evolving

phenomena, they are especially poor when applied to rapid dynamic phenomenona.

Thermal and salinity mixing zones, plankton blooms, and post-storm runoff are all

examples of rapidly evolving features. Current techniques used to study these types

of phenomena involve a mixture of field stations, remote sensing, and complex mod-

eling in an attempt to predict the evolution of such features over time. Manned and

unmanned vehicles are then dispatched to the area in an attempt to gather more

information before the phenomenon dissipates. In some cases the feature may be so

short-lived that the window of opportunity to gather data closes soon after measure-

ments have begun. In others, the phenomenon is of such complex three-dimensional

structure that there is no good way to predict where to gather data without a detailed

predictive model. Currently, the only way of knowing if useful data was successfully

gathered is if the information obtained results in an improved predictive model, which

in turn helps direct future attempts. It would be extremely useful if a vehicle were

capable of making on-the-spot trajectory changes to maximize the number of sam-

ples taken in and around the feature and/or to stay with the feature as it moves and

evolves with time.

In natural terrain where artificial navigation aids are unavailable, identifiable envi-

ronmental features can be used as position references. Replacing artificial navigation

beacons with natural features reduces the labor and equipment associated with the

deployment and retrieval of navigation markers in field operations and can greatly

extend the ease with which missions can be performed. Furthermore, even when

an external artificial navigation system is available, locating, identifying, and track-

ing these natural features may still be necessary to guide the AUV mission and to

maximize the time spent gathering valuable data.

All of these situations require the competence of feature relative navigation

(FRN). This thesis develops techniques by which an AUV can adaptively map natural



terrain features by reacting to the presence and/or absence of such features.

1.1 Motivators for feature relative navigation

Three scenarios are presented here as motivators for the contributions made by this

thesis. The first application, adaptive mapping of a region, is based on a present day

real world industrial need. The second application, adaptive mapping of a dynamic

feature, is illustrated by a well-studied scientific application but is intended to repre-

sent a broad class of similar scientific and military applications. The third scenario

is applying the concept of concurrent mapping and localization in the field.

1.1.1 Adaptive mapping of a region

Recently oil companies have expressed interest in drilling for oil in the Sea of Okhotsk

off of the eastern coast of Russia [95]. Although the sea is prone to thick seasonal

ice cover, the technology now exists to install bottom-mounted well heads, which

means that expensive ice-proof off-shore production platforms are no longer necessary.

However, the Sea of Okhotsk is not only prone to winter ice but also portions of it

are relatively shallow (see Fig. 1-1). Consequently, ice keels carve trenches into the

seabed each winter as the pack ice moves about [99]. These ice keels could easily

cut oil pipelines laid on the seabed, resulting in both a huge financial loss and an

ecological disaster.

Since the ocean circulation patterns of the Sea of Okhotsk are not known in detail

(among other factors) [57], the distribution of ice keel trenches cannot be predicted.

Conventional mapping technology such as towed vehicles, ship-mounted sensors, and

ROVs cannot be employed due to the ice cover and the extent of the area to be

surveyed. One solution to this problem is an underwater vehicle which is capable of

extended operation under the ice.

An AUV equipped with a feature relative navigation capability is ideally suited

for such a mission. The vehicle should be capable of locating and mapping the extent,

depth, and distribution of ice keel trenches so that researchers can develop an under-



Figure 1-1: Bathymetric map of the Sea of Okhotsk (from TOPEX[57]). In this figure,
Japan is to the south, China and Russia to the west and the Kamchatka Penninsula
to the east. The sea is prone to unusually large amounts of pack-ice, extending south
to the Japanese island of Hokkaido, where it persists for up to three months out of
every year.
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standing of how the ice keels move and affect the seabed over time - thereby allowing

proper placement of oil pipelines. This requires repeated under-ice missions to locate

and identify all trenches in a region. Because of the nature of the problem, there is

no a priori map for the vehicle to work with and only the most basic environmental

information (e.g. average depth, overall slope, etc.).

1.1.2 Adaptive mapping of a dynamic feature

In the summer of 1996, the Haro Strait PRIMER experiment was conducted [43]

between Seattle and Vancouver just south of Stuart Island. The purpose of this

experiment was to construct a three-dimensional "snapshot" of the ocean at the site

of a mixing zone between salt and fresh water. To this end, a variety of buoys and

vehicles were deployed, including a surface ship and multiple AUVs (Figure 1-2).

The AUVs were deployed in the approximate area where the mixing was taking

place. At each deployment the vehicle was given a set of waypoints which were ex-

pected to bisect the mixing activity. This was augmented during the mission by a

simple supervisory control scheme utilizing one channel of the acoustic navigation sys-

tem; thus allowing the user to alter the vehicle's trajectory in response to the current

observed conditions. The mixing zone was extremely dynamic (currents exceeding

2 m/s were routinely measured) and could easily be seen at the surface. While ob-

servation of the underlying structure was the focus of the experiment, the front was

recorded in an aerial photograph taken by an ER-2 aircraft at 60,000 ft (Figure 1-3).

This scenario is an example of the potential benefits of adaptive feature mapping.

The front was characterized by a change in salinity and temperature as well as by

current shear. Both conductivity and temperature sensors are readily available for

use on AUVs, and a current shear sensor is currently employed on an unmanned

underwater vehicle (UUV) used by the Naval Undersea Warfare Center (NUWC) [68].

Both the Haro Strait experiment and experiments conducted by NUWC have shown

that given such sensors an AUV is capable of sensing the front as the vehicle passes

through it. The next step is then to have the vehicle autonomously adapt its path in

response to the presence of the front, thereby focusing its time and available energy
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Figure 1-3: Aerial Infrared image of the Haro Strait mixing zone taken from 60,000 ft.
From Schmidt [43]. Note the churning in the center of the image, where the currents
meet just south of Stuart Island.
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Figure 1-4: Multi-sensor, multi-target CM&L. The vehicle tracks one or more known
features while searching for new ones.

on the phenomenon of interest.

1.1.3 Concurrent mapping and localization

The ultimate goal of intelligent navigation is concurrent mapping and localization

(CM&L). Stated briefly, CM&L is the process of building a map of an environment

and simultaneously using that map to estimate the vehicle's location.

CM&L is a natural method of navigation for humans and animals. We use CM&L

whenever we go for a walk or drive a car - we look around and remember features

(natural or artificial) such as hills, valleys, trees, buildings, etc. and use them as

navigational aids to monitor our progress and to determine if or when we pass by

again.

Imagine an AUV which senses naturally occurring features in its environment

and remembers them, much the same way that a human would. As the vehicle

ventures further into an unknown environment, it continuously checks its on-board

navigation system (inertial navigation system, dead reckoning, etc.) while at the

same time monitoring the location and descriptions of environmental features. With

a sufficient number and type of sensors (e.g. an electronically steered sonar), the

vehicle can update its map continuously by tracking the location of multiple features

and their relative locations (see Figure 1-4). Alternatively, with one sensor the vehicle

can venture ahead until it is no longer confident of its position and then return to



a) b)

A

C)

Figure 1-5: Single-sensor CM&L. a) Vehicle locates a feature as a navigational ref-
erence. b) AUV moves away until its positional error exceeds threshold. c) Vehicle
returns to vicinity of known feature and attempts to relocate it. d) Vehicle reduces
position error by relocating itself relative to a known feature.

a previously mapped feature to correct for navigational error (Figure 1-5). This

relocation ability allows the AUV to place a bound on the traditionally unbounded

error growth associated with dead reckoning and INS systems.

1.2 Key issues for AUV research

In recent years, autonomous underwater vehicles have progressed from the status of

experimental equipment to that of useful oceanographic instruments. However, the

full realization of the capabilities of AUVs will require advances in a number of critical

areas:

* Power - AUV missions are extremely power-limited. Improved power storage

would greatly increase vehicle capabilities and duration.

* Communications - long range AUV/operator communications would allow the

human to assist in object recognition and in solving unanticipated problems.

* Sensors - lower power and more accurate sensors would allow the vehicle to

carry a larger and more detailed sensor suite. This would increase the total



amount of data returned per mission.

* Information Processing - the limits of on-board processors and information pro-

cessing algorithms determine the level of detail of on-board maps, internal mod-

els, and the amount of data assimilation that can be accomplished by the vehicle.

Improvements in both hardware and software would allow for more thorough

and detailed information processing, which in turn would lead to more detailed

maps and models and therefore a more capable vehicle.

* Intelligent Control - improved sensor management would help the vehicle to

gather increasingly valuable information using the power available. Improved

intelligent control would also increase the vehicle's ability to handle unforeseen

circumstances, as well as increase survivability.

* Navigation - better navigation capabilities would improve the quality of data

returned, and would allow the vehicle to extend mapping/sensing missions into

unknown or poorly known regions.

This thesis addresses the last two topics: intelligent control and navigation. The

questions we wish to answer are: Given an AUV with certain maneuvering capabilities

and a fixed energy supply, how do we insure that it will return with the data it was

sent to gather? How do we know where it got the data? What can be done to insure

that the AUV gathers the data as efficiently as possible? How can we insure that the

vehicle spent as much time as possible gathering useful data? These questions are

among those at the heart of autonomous vehicle research.

Current navigation systems depend on the deployment of external navigation ar-

rays. These beacons are costly and difficult to position in deep water. Ideally, an

AUV should be able to navigate without such an array, relying instead on recogni-

tion of environmental features. Also, once deployed the vehicle should be able to

exploit the advantages of such an intelligent controller to quickly locate and identify

whatever it was sent to examine, spending as much time as possible gathering useful

data. In addition to reducing the cost and difficulty of conventional deployment, the



vehicle could be used for missions not ordinarily within the purview of AUVs such

as rapid response to a transient event, tracking thermal plumes and eddies in open

water, locating and tracking plankton blooms, and sampling post-storm runoff.

1.3 Intelligent control

The desire to track static or dynamic features introduces the issues of intelligent

control into the feature relative navigation problem. This can be viewed as one

aspect of the problems of sensor management: Given a vehicle of limited duration

and particular capabilities, how can we insure the best use of that vehicle? What can

it do to maximize the time and effort spent on the phenomenon that we wish to learn

about? If the feature we wish to sense is dynamic in nature, how can we insure that

the vehicle stays with the feature as it evolves?

The underwater environment is dangerous and unpredictable. An AUV operating

in such an environment is obligated to detect and respond to a variety of conditions,

both foreseen and not. A fast and adaptable intelligent control system is crucial

to the successful operation of an AUV in this situation, and it will also determine

limits of the overall ability of the AUV to function when unsupervised. There are

two basic approaches to intelligent control in use today: planning based systems and

behavior based systems [18]. Planning systems sense the current state of the envi-

ronment, examine the goals of the system and then devise a set of actions, or a plan,

to achieve that goal. The plan is reexamined, and modified accordingly, as new data

becomes available. Behavior based systems consist of several small special-purpose

controllers, each of which are designed to respond to different conditions. Which

behavior controls the vehicle depends on its relative importance and the current sit-

uation. Planning systems are more flexible and thorough, whereas behavior-based

systems are computationally simpler and faster.



1.4 AUV navigation

Current AUVs rely on five primary forms of navigation: the long baseline (LBL)

array, the ultra-short baseline array (USBL), dead reckoning, the inertial navigation

system (INS), and terrain-based navigation. Each form of navigation has relative

advantages and disadvantages:

* LBL arrays, while accurate, are cumbersome to set up - particularly in deep

ocean environments; their range is limited to a few kilometers [117].

* USBL consists of a target beacon placed in the water column and multiple

receivers mounted on the vehicle. Measuring the phase difference between the

receivers gives the vehicle a bearing to the beacon [109]. This makes it ideal for

homing functions.

* Dead reckoning relies on accurate estimates of the vehicle's velocity and initial

position. Effects such as side slip and external currents, if they exist, must be

detected and modeled in order to be accounted for. Because this is usually not

the case, it often leads to a steadily growing error in estimated position [46].

* Inertial navigation systems are more sophisticated than dead reckoning systems.

They rely on accelerometers and gyros to monitor changes in the speed and atti-

tude of the vehicle [60]. While the technology is mature, they are expensive and

prone to drift over time and must get periodic updates from external sources.

Currently, the size, power requirements and cost of accurate INS systems restrict

their applicability in small AUVs.

* Terrain based navigation uses a priori maps of the operational region, which

it then compares to the sensed environment. A match between the sensed

environment and the stored map locates the vehicle in space. An example of this

is the TERCOM navigation system used until recently by cruise missiles [51],

and geophysical map navigation as presented in Tuohy [111]. The primary

drawback to such systems is the expense and difficulty in generating the a

priori maps.



The method of navigation put forth in this thesis is feature relative navigation

(FRN). The purpose of FRN is not necessarily to determine the position of the vehicle

in a global coordinate frame (sometimes referred to as the localization problem), but

rather to locate the vehicle relative to some feature of interest - with the intent of

maximizing the amount of vehicle time and energy collecting information about that

feature.

For our purposes, features can be classified into two main groups: contour-based

features and area-based features. The type of feature will dictate the type of maneu-

vers that will be used to survey and map that feature. In this thesis we will examine

both types of features, with particular emphasis on contour-based features.

1.5 Assumptions

This thesis examines the case of a single sonar altimeter mounted on a dynamically

controlled AUV tracking an isobath in detail. This particular case was chosen for the

reasons of versatility, economy, opportunity, and repeatability. Versatility because the

techniques developed for the sonar altimeter case are applicable to other point-sensor

situations such as magnetic, thermal, or turbidity sensors. Economy and opportunity

because all vehicles operating near the seafloor, regardless of type, have at least one

sonar altimeter mounted upon them. The approach presented here may therefore

be easily employed on any vehicle, not necessarily one which has been purpose-built

or modified for the task. The chosen scenario is repeatable because topographic

features are stationary in time and, therefore, any changes in vehicle behavior over

multiple tests would be the result of changes introduced into the system and not in

the environment.

We also assume a non-holonomic vehicle. This work employs a dynamic simulation

based on the Odyssey-class of dynamically controlled survey AUVs (Figure 2-3). The

AUV Odyssey is an untethered, dynamically-controlled vehicle with a non-zero turn-

ing radius. Dynamically controlled vehicles have a minimum velocity below which

fin authority is lost. This minimum requirement restricts the operational range of



vehicle speeds. In contrast, a holonomic vehicle such as the ROV JASON can stop,

hover, and turn in place. Such capabilities are outside those of survey class AUVs,

and so are not considered here.

Finally, the methodology used is based on a simulated ocean environment which in

turn is based on real data wherever possible. The simulator employed has been used

by the MIT Autonomous Underwater Vehicles Laboratory, and has been validated

by several years of field tests [12]. Sensor models are based on the dynamics of the

Tritech Model ST500 conical beam sonar transducer with simulated noise modeled

after that found in data obtained in tests with the AUV Odyssey IIb in the Charles

River, located between Cambridge and Boston, Massachusetts. The bathymetry of

the test area is derived from sonar altimeter data collected in the Charles River basin

during the summer of 1993.

1.6 Contributions

This thesis makes the following contributions:

* A technique for adaptive feature mapping employing behaviors which possess

the capabilities of mapping and path planning. Unlike conventional reactive

behaviors, adaptive behaviors alter their internal state as new information about

the environment is received. This in turn allows the behavior to alter its output

in response to the present situation.

* An analysis of the performance and robustness of the adaptive feature mapper,

examining time-on-target, total path length needed to map a feature, amount

of feature mapped per unit time, amount of feature mapped per meter trav-

eled, and performance of the adaptive behavior in comparison to a conventional

lawnmower-type survey.

* Extensions of adaptive behaviors into the realms of adaptive mapping of dy-

namic features, multiple map-mode representations, incorporation of error esti-

mation, alternative waypoint determination techniques employing pre-compiled



lookup tables, cost functions & decision-theoretic techniques, and navigation ap-

plications, including relocation and concurrent mapping & localization (CM&L).

1.7 Structure of this thesis

In this thesis we present the problem of feature relative navigation, focusing specifi-

cally on the problems associated with efficiently locating and mapping an unknown

number of features located in a given area with no a priori map of that area.

In Chapter 2 we review prior research in the three fields of navigation, mapping,

and intelligent control.

Chapter 3 examines the specific challenge of locating and mapping bathymetric

features (in this case trenches) in the Charles River basin and the extension of the

behavior based intelligent control paradigm to include the development of adaptive

behaviors, which have mapping and planning capabilities within the overall layered

control environment.

Chapter 4 develops metrics of robustness and efficiency. Navigational error, en-

vironmental disturbances, and parameter sensitivity are systematically examined.

Alternative search strategies, including omnidirectional waypoint lookup tables, di-

rectional lookup tables, and cost functions are examined under various conditions and

compared.

Chapter 5 discusses applications and extensions to FRN, including tracking and

mapping dynamic features, multiple-vehicle applications, navigational resets (re-identification

of previously mapped features), and the concept of concurrent mapping & localization

(CM&L).

Chapter 6 concludes this thesis by summarizing the contributions and making

suggestions for future research.

Details of the software implementation are provided in the Appendix.



Chapter 2

Literature Review and Problem

Formulation

Feature relative navigation (FRN) lies at the intersection of three different research

topics: AUV navigation, map building, and intelligent control (Fig. 2-1). This chap-

ter surveys the literature in each of these three areas and defines feature relative

navigation in relation to these research topics. First, we give some background on

the use of AUVs as instruments for oceanographic exploraton. Next we examine

autonomous vehicle navigation techniques. Both traditional and non-traditional ap-

proaches to AUV navigation are discussed, with an emphasis on the assumptions

made and sources of error for various navigation methods. Consideration of tech-

niques for map building introduces the important considerations of choice of rep-

resentation and management of computational complexity. Intelligent control is an

extremely broad field; our treatment here describes the basic distinctions between

planning and behavior-based approaches, laying the foundation for development of a

hybrid system incorporating aspects of both approaches.

2.1 Exploration with AUVs

The noted marine explorer Robert Ballard once said that an unexplored region of

the ocean is an area approximately the size of the United States which has had, at



Figure 2-1: Feature relative navigation is the union of navigation, mapping and in-
telligent control.

most, one sounding taken [2]. An explored area is a region the size of a small state

in which a single sounding has been taken. Now imagine trying to describe a whole

state based on one altimeter reading taken from an aircraft flying high overhead on a

moonless night. Add to that the fact that the resolution will only tell you the altitude

to within coarse limits and it quickly becomes apparent that this is not the best way

to survey the country in any detail. This is analogous to the task that faces ocean

exploration today. Compounding this further is the fact that the ocean is vast and

the number of vehicles suitable for deep water exploration is limited.

One solution is to employ remotely operated vehicles (ROVs), which have been

used with great success for many years. The cables connecting them to the surface

provide a two-way conduit - for sensory information to go up to the researchers and for

power to go down to the vehicle, allowing it to stay on station indefinitely. However,

the same umbilicus which provides power and communications also limits movement

and economy: ROVs are not capable of large horizontal excursions, are slow to deploy

and recover, and cannot be operated in rough seas. Each deep water ROV requires a

support ship costing upwards of $10,000 per day and several kilometers of expensive

cabling.

Another common economical solution is the towed vehicle, or "sled." Towed



vehicles are inexpensive and can explore large swaths of the ocean at a time. Their

drawbacks are, as with ROVs, the cost of cabling, deployment/retrieval times, and

sensitivity to rough seas. In addition, the drag on the tow body and cable restrict the

towing ship to only a few knots. Furthermore, the potential for cable twisting and

kinking requires that the tow ship execute large (1-2 NMi or more) turns to prevent

this. These restrictions make towed vehicles ill-suited to rapid-response situations

and for operation in areas requiring multiple tight passes.

In response to these shortcomings, autonomous underwater vehicles (AUVs) have

been developed. An AUV is an unmanned, untethered submersible vehicle capable of

operating without human supervision or intervention. Because they are untethered,

they are capable of operating at depth and of tight maneuvers regardless of surface

conditions.

Historically, AUVs have been large and expensive [91] (see Figure 2-2); an histor-

ical review of AUVs can be found in Bellingham [6]. Recently Bellingham has pio-

neered the application of low cost survey-class vehicles for science applications with

emphasis on inexpensive, off-the-shelf components and low-power sensors [12, 13] (Fig-

ure 2-3). These vehicles are optimized for long-range mapping and survey operations

designed to cover large sections of the ocean floor economically. The Odyssey-class

vehicles have since been proven in the Arctic [16], deep ocean environments [13], and

as part of a real-time tomographic network [100]. Recently, the advent of the Au-

tonomous Oceanographic Sampling Network (AOSN) has increased the deployment

possibilities [7, 37].

2.2 AUV navigation

Navigation can be thought of as answering three basic questions: Where am I? Where

am I going? How do I get there? Geodetic maps and navigation techniques help to

answer the first question while the second and third questions can be thought of as

the problems of path planning [4, 63] and obstacle avoidance [20, 21, 108] respectively.

Similar to Leonard [66], this thesis is concerned with the first question from a local



Figure 2-2: The Naval Undersea Warfare Center's unmanned underwater vehicles

[67].

Figure 2-3: MIT Sea Grant's AUV Odyssey II.
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perspective and with the other two from an information-gathering perspective.

All mobile robots must navigate in order to function successfully. However, the

term "navigation" can mean many different things according to the context in which

it is used. Three common forms of robot navigation are local navigation relative to an

array of known beacons or features, global navigation relative to a geodetic reference

frame, and path planning (either to avoid obstacles and/or to reach a goal). We will

begin our discussion with the first two: navigation in either a local or a global sense.

The essence of navigation is knowing where you are, either relative to something

else or relative to the earth as a whole. Knowing one's position is essential for an AUV

to function successfully. This may be for the purposes of map generation [66, 107],

navigation in harsh or difficult environments such as thermal vent fields [73] or under

ice [8], or in dynamic regions such as frontal mixing zones [100]. To be of value to

the researcher, the location of any data gathered must be known either relative to a

geodetic (latitude, longitude), to a known feature (the launch point in the ice), or to

other aspects of the phenomenon being studied, such as the relative distribution of

thermal vents in a vent field.

Geyer at al [46] provides us with an overview of AUV navigation options. Six

primary navigation methods are: acoustic positioning, dead reckoning, inertial navi-

gation, radio navigation, satellite navigation, and geophysical map matching. Because

the ocean is essentially impenetrable to electromagnetic energy (except at very low

frequencies), radio-based and satellite navigation systems are only useful for occa-

sional position fixes, and then only if the vehicle is capable of surfacing. For deep

water applications, such as automated bathymetric mapping, seafloor photography,

or military operations which require stealth, this is not an option [11].

Table 2.2 presents the primary forms of navigation available to AUVs and some

associated references. The following sections discuss the state of the art in each of

the major areas of navigation, and present some of the primary technologies and

important sources of error. The need for external arrays and a priori information is

discussed where applicable.



Navigation Technique

Dead Reckoning
Magnetic compass
Gyrocompass
Water log

Doppler sonar

Inertial Navigation
Gimballed platform

Strap down RLG (ring laser gyro)

Acoustic Navigation
Long baseline
Short baseline

a priori Map Matching
Gravity
Magnetic
Topographic

References

[76]

[45], [60]

[69]

[82]
[39], [55], [117]
[109]

[46], [112]
[80]
[114]
[49], [51], [53], [54]

Spatial AvailabilityOutput(s)

Magnetic heading
Geodetic heading
Water speed
wrt/vehicle
Water speed
wrt/ground or water

Lat., long., depth, ver-
tical velocity, pitch, roll
heading
Lat., long., depth, ver-
tical velocity, pitch, roll
heading

Position relative to net
Position relative to
beacon

Latitude, longitude
Latitude, longitude
Latitude, longitude

C
C

External Reliance

Autonomous
Autonomous
Autonomous

Autonomous

Autonomous

Autonomous

Active acoustic
Active acoustic

Autonomous
Autonomous
Autonomous

Worldwide
Worldwide
Worldwide

Within 100m of bottom

Worldwide

Worldwide

Near transponder net
Near beacon

Surveyed area(s)
Surveyed area(s)
Surveyed area(s)



2.2.1 Dead-reckoning

Dead reckoning is the simplest form of vehicle navigation, ideally requiring very little

information from the environment. In dead reckoning, a vehicle simply integrates its

sensed or assumed velocity (V,) along the sensed direction of travel (H,) to determine

how far it has traveled. More practically, the vehicle starts with an assumed (N, E)

position, resolves its current velocity into VN, VE using the relations

VN = V, * cos(H,) (2.1)

VE = V, * sin(H,), (2.2)

integrates these velocities over the time since the last update

POSN = VNdt + POSNinit (2.3)

POSE = j VEdt + POSEinit, (2.4)

and then adds the result to the previously determined position. The accuracy of dead

reckoning navigation depends upon the accuracy of water speed and heading sensors

as well as the magnitude of currents. Any error in these sensors integrates into a

position error which will grow in time.

Sources of error

Errors in dead reckoned position are introduced as discrepancies between the sensed

heading or velocity and the actual values. The rate of error growth depends on the

particular situation and can grow without bound. There are many sources of error

which are specific to each sensor, but they all manifest in a few basic forms.

The chief sources of error for heading sensors (e.g. a compass) are mounting error,

measurement quantization error, sensor noise errors, and magnetic anomaly errors.

Mounting errors are a static bias in the sensed heading brought about by inaccurately

attaching the compass to the vehicle frame. These errors can be of any magnitude

but can easily be compensated for by pre-mission calibration. Measurement quan-



tization and sensor noise errors (if random noise) tend to average out over the life

of a mission and hence do not pose a significant source of vehicle navigation error.

Magnetic anomaly errors can come in many forms and magnitudes. The effects of

such anomalies depend upon the size and duration of the anomaly. Common exam-

ples are nearby concentrations of iron or magnetic materials and on-board/nearby

electrical equipment. Disturbances due to on-board magnetic interference or metals

can be minimized with adequate shielding and/or careful calibration & modeling of

the vehicle before deployment. Gyrocompass errors are typically due to spin axis

drift, and can be compensated for with accurate magnetic compass measurements

and auto-leveling servos or gimballing.

Water speed sensor errors fall into two categories: those associated with the sensor

design itself and those which are inherent to any body-mounted water-relative speed

sensor. For mechanical systems, the primary source of error is the friction in the sensor

wheel or paddle hub, resulting in a dead-band at low speeds and a slower-than-true

measurement of water speed when operating. This results in poor measurements at

speeds of less than 0.5 kts. At high speeds the rotational inertia of the wheel can

account for errors on the order of 1%-3%, but this is outside of the operating regime of

survey-class AUVs. All body-mounted water speed sensors suffer from both current

and sideslip insensitivity. Because the sensor is generally mounted parallel to the

longitudinal axis of the body, any currents affecting the vehicle as a whole will go

unnoticed. Likewise, any sideslip of the vehicle (across body water flow) will also go

unnoticed, especially during turning maneuvers.

Acoustic doppler sonars measure vehicle speed by detecting the difference in ve-

locities between the vehicle and some target. While this method works well when a

suitable reference is in the operational range of the sonar (generally a few hundred

meters at 100-300khz), it can fail in open water situations. If the vehicle is in a

body of water subject to a uniform current, and that body of water is larger then the

range of the sonar, then the motion of the vehicle relative to the outside world will go

unnoticed by the sensor because no outside reference is detected. Also, like all sonar

systems which track a target, doppler sonar water speed sensors suffer from dropped



returns. Additional errors can be introduced by misalignment of the sonar relative

to the heading sensor, resulting in a miscalculation of along-track and cross-track

velocity.

In general, a dead reckoning navigation system can be used to provide relatively

accurate navigation in situations with few changes in heading, such as parallel-track

(a.k.a. "lawnmower") survey missions and round-trip (out-and-back) missions. In

these situations, the cross-track navigational error due to heading error on an out-

bound leg is offset by the error on the return leg. On the other hand, along-track

errors due to water speed measurement biases are generally cumulative over the life

of a mission. Note also that errors due to environmental factors such as a current will

not be resolved in this fashion and will cause continually increasing errors throughout

the mission or until the area with currents has been vacated. This type of error can

be avoided by operating near the bottom and with the use of an appropriate acoustic

doppler sonar unit.

2.2.2 Inertial navigation

Inertial navigation systems (INSs) provide continuous latitude, longitude, depth, ve-

locity, and orientation information. Their chief advantage is the ability to operate

for long periods of time without external navigation or sensor input. They are par-

ticularly well suited to applications where external navigational updates are rare or

nonexistant. This is a common scenario for an AUV, in particular one which is

operating at great depth or in a clandestine operation.

An INS must be aligned before each use. This is done to calibrate the inertial

orientation of the INS with respect to the current location and orientation of the

vehicle. This must be performed in either a stationary situation or where the velocity

is well known since the INS accelerometers will not detect an initial steady velocity.

There are a variety of reliable ways to perform this calibration.

INS systems come in two basic forms: gimballed and strap down. In a gimballed

system the INS is isolated from the vehicle via a gimballed platform and can be

oriented independently from the vehicle. The system is torqued to account for earth



rotation and vehicle motion over the earth in order to keep the INS level with respect

to the horizon. Because they maintain a constant horizon, gimballed INSs have a

lower computational burden. This made them predominant in early systems with

less powerful processors. However, the gimballing system requires a larger mass, has

greater power consumption, and a shorter mean time between failures (MTBF) than

the more modern strap down INSs [46].

Today the strap down INS is more prevalent, owing to both the power of modern

microprocessors as well as the reduced mass and volume of INS systems employing

ring laser gyros in place of the older mechanical gyros [69]. A strap down INS is rigidly

attached to the vehicle frame. Factors such as earth rate and vehicle rate are modeled

into the INS calculations. Current RLG-based INSs installed in AUV systems can

achieve accuracies of 0.25 NMi/hr in position and + 2 ft/s RMS in velocity [88].

Sources of error

INS error is a function of many things: the type of sensor suite used, the mathematical

models employed to account for earth rate, vehicle rate and local gravity field, initial

INS alignment, and the trajectory followed by the vehicle. Key sources of error

are accelerometer bias, which integrates into both velocity and position error, and

gyroscope drift (much more significant in the days before ring laser gyros). Both

sources of error can be mitigated with the use of external navigation sensors such

as radar altimeters, doppler sonar units or even occasional GPS (Global Positioning

System) navigation fixes.

Because errors are so dependent on the design of the individual unit, the preferred

method of determining error rates is to consult the manufacturer's specifications. For

example, the Litton LN-200 IMU lists heading bias variations of 0.35 degrees per hour

(1 a) with a 100 second correlation time and an accelerometer bias variaton of 50 pg

(1 a) with a 60 second correlation time.



2.2.3 Acoustic navigation

Acoustic navigation systems such as long baseline (LBL) and ultra-short baseline

(USBL) [109] navigation systems both employ external transducers or transducer

arrays as aids to navigation. In LBL navigation systems, an array of transponders is

deployed and surveyed into position. The vehicle sends out an acoustic signal which is

then returned by each beacon as it is received. Position is determined by measuring

the travel time between the vehicle and each beacon, measuring or assuming the

local sound speed profile, and knowing the geometry of the beacon array. With this

information the relative distances between the vehicle and each array node can be

calculated. It is then a simple task to calculate the position of the vehicle by locating

the intersection point of spheres of appropriate radii from the beacons in the array. A

variant of this system is hyperbolic navigation, in which the vehicle does not actively

ping but instead listens to an array of beacons whose geometry is known. Each

beacon pings in a specific sequence relative to the others at its specified frequency.

By knowing which beacon pings when and the geometry of the array, the vehicle can

reconstruct where it must be in space in order to hear the ping sequence as recorded.

This system has the advantage of saving the vehicle the power expenditure of active

pinging, but is by necessity forced to work at the update rate dictated by the array.

In a two beacon array, the vehicle can determine its location to two possible

positions; the solution is obtained by estimating the distance traveled between fixes

and eliminating the position which would be impossible to reach in the given time

between fixes (when used with a kalman filter, this technique is referred to as "error

gating"). Note however that in the event of a two-beacon array, the position error

is infinite when the vehicle and beacons are colinearly aligned. To avoid this, arrays

typically consist of three or more transponders. For reasons of both geometry and

signal strength, the best results are achieved when the vehicle operates within the

area bounded by the array.

USBL navigation consists of a single transponder mounted on the seabed (or a

ship) and a 2-dimensional receiver array mounted on the vehicle. By measuring the



difference in arrival times of a single sonar ping (i.e. the phase angle) between two

hydrophones, the bearing from the vehicle to the beacon can be determined. If the

beacon responds to vehicle interrogation, then the time delay (and hence distance, as

with an LBL array) can be calculated. Knowing distance and direction to the beacon

allows for local navigation [109]. Knowing the latitude/longitude of the beacon allows

for geodetic navigation.

Sources of error

Errors in both LBL and USBL arrays come from many sources. The key sources of

error can be broken down into two primary categories: timing-based errors and errors

in the assumed array geometry. The former errors typically manifest as sound speed

assumption (or measurement) errors, measurement noise, and beacon response delay

(which is interpreted by the system as being a ping from a more distant beacon).

Array geometry errors are due to beacon positioning errors, beacon motion during a

mission, and signals from extraneous beacons (see Vaganay et al. [117]). The mag-

nitude of position errors resulting from these types of errors vary from meters to

hundreds of meters.

Positioning error comes from inadequately or improperly surveying the relative

and/or geodetic positions of the array beacons. In the event that only local naviga-

tion is desired, then only relative beacon positions are relevant. If the navigation is

to be geodetic-referenced, then the beacons must be located globally as well. Self-

calibrating beacons simplify the task by reducing the surveying task to only one

beacon with the others determining their own positions relative to the first. However,

this raises the possibility of relative position errors due to errors in the measurement

or estimation of the local sound speed.

Acoustic errors can manifest in several ways. An inaccurate sound speed profile

will appear as a distance bias in the calculations. Reflection or multipath errors will

appear as additional beacons or greater-than-actual distances. Over longer distances

and shallow refraction angles, there is also the risk of shadow zones or "dropped"

beacons. If the topography is sufficiently severe, beacons may be occluded by rocks



or other seabed formations.

Measurement noise that is white noise in nature can easily be filtered out. Mul-

tipath errors are difficult to detect and filter. Beacon response delay manifests as

additional travel time and can cause bias in the estimated distance to the transpon-

der; it too is difficult to filter.

2.2.4 Map-based navigation

The concept behind map-based navigation is to determine the position of the vehicle

with respect to an a priori map of a spatially varying property using vehicle mounted

sensors. Map-based navigation is centuries old and has been successfully applied to

land, air, and ocean vehicles. While adaptive contour following does not rely upon

a priori maps, it is important to understand how such maps are utilized for the

purposes of constructing and reading one as the mission proceeds, and so we will use

recent developments in map-based navigation as a starting point.

Map-based navigation can be divided into two basic forms: local map navigation,

for use in obstacle avoidance or trajectory planning, and geodetic navigation - or the

use of globally-referenced maps to locate the vehicle's position in terms of latitude,

longitude, and depth. If a local map can be tied back into global coordinates, then it

can be thought of as another form of geodetic navigation. We will focus on geodetic

navigation here and address the issues of obstacle avoidance and local map navigation

in the next section.

All forms of map-based navigation are motivated by the desire to operate at an

arbitrary location without the additional expense or problems associated with the in-

stallation of artificial beacons. In principle, the process is simple: gather information

about the surrounding terrain and match that information to an on-board map or

database of terrain information. When the vehicle has a match to the database, then

it knows its location on the map. This is analogous to the method which humans use

to navigate; we find our way to our destination by locating and identifying landmarks

which are familiar to us - either from past experience or via a map which has been

constructed for our benefit.



In practice this form of navigation is not so simple. The vehicle is attempting

to navigate by matching a set of sensed data ({X} with an a priori map or dataset

of stored data {(X. Two key problems are the cost and difficulty of generating the

a priori maps and the computational complexity of searching for a peak in the n-

dimensional correlation surface, where n is the number of dimensions in the map or

sensor data set. Typically, map making expense is governed by both the type of

data being collected and the desired resolution of that data. Determining the map

resolution has a direct effect on the size and level of detail of the search needed to

locate the vehicle in space. Since the vehicle could be in any of a large number of

possible orientations relative to the original dataset, the search must be performed

over all possible locations and orientations. This is a potentially large search space,

necessitating some simplifications and/or simplifying assumptions in order to make

the search more tractable. Typical simplifications are: restricting the types of map

data stored (what sensor values, how many different sensors), lowering map resolution,

"patchy" maps (maps of key areas only), restricting vehicle orientations (to reduce

the correlation problem), and using inertial navigation or dead reckoning systems to

limit the valid search area.

Geodetic maps

For the purposes of this thesis, geodetic maps are defined as maps of physical prop-

erties of the earth. Geodetic properties which have been used in navigation are: the

earth's magnetic field, the gravitational field, and topography or bathymetry. Each

is discussed in the following sections.

Magnetic maps

Evidence exists that geomagnetic navigation is employed by birds, fish, and other

animals for migration and general navigation [119]. The magnetic flux density of the

earth varies according to latitude, the presence of man-made and natural anomalies,

and even one's depth in the ocean, increasing from 6 to 30 nanoTeslas per 1 km

of depth, depending on location [86]. Additionally, there are small but predictable
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Figure 2-4: Recorded output of two magnetometers with 30 meter along-track sep-
aration. In this figure, the horizontal axis is time (which translates to along-track
distance) and the vertical axis is magnetic field intensity. Note how the same set of
features are visible in both sensor plots. From Tyren [115].

variations in the earth's magnetic flux from day to night, and large arbitrary changes

during magnetic storms (which are approaching the height of their 11 year cycle at

this time); magnetic maps can be rendered useless for the duration of such storms.

Useful magnetic maps, generated by satellites or surface ships, can be employed by
underwater vehicles by accounting for the daily field variations and by calculating the

effective magnetic field at depth using a Laplace field equation, setting the boundary

conditions at the ocean surface [111].

The primary research in magnetic navigation has been in reference to local nav-

igation issues such as using local magnetic flux variations as a ground reference.

Tyren [115] experimented with autocorrelation along a ground track by towing two

magnetometers with a 30 meter along-track separation (see Figure 2-4). The time
displacement between the two curves gives a direct measure of ground speed.

Other researchers have investigated the use of magnetometers for locating mag-
netic anomalies such as wrecks or mines. These anomalies could potentially be used

as "beacons" for magnetic navigation systems [93]. Full magnetic navigation sys-

tems similar to the topographic navigation system TERCOM [51] (Terrain Contour

Matching) are also currently under development.
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Gravometric maps

Research into the nature of the earth's gravitational field has demonstrated that it is

far from uniform and indeed possesses a varied topography [38, 120]. These variations

are due to a variety of factors, especially the effects of local topography [44] and

density inhomogeneities [113]. Variations in the earth's magnetic field on the ocean's

surface relative to a regular ellipsoidal model have been measured to be on the order

of 30-50 mgal [56]1 . Gravity maps were originally gathered on behalf of the US Navy

for the purposes of inertial navigation system calibration [98]. To an INS, the effects

of a change in the local gravitational field are indistinguishable from accelerations

of the vehicle itself. Gerber [45] proposed the use of a gravity gradiometer as an

aid to inertial navigation systems. Jircitano et al. extended this idea to the AUV

community, performing navigation simulations using a model of the Bell Aerospace

Textron Gravity Gradiometer System (GGS) [56] with good preliminary results.

The drawbacks to such a system are the size, expense, and complexity of a gra-

diometer (see Geyer [46]). Of more practical and immediate concern is the require-

ment that the gradiometer be mounted on an inertially stabilized and vibrationally

isolated platform, making its use on small survey-type AUVs such as the Odyssey IIb

difficult.

Topographic maps

Topographic maps are one of the most recognizable map forms. They consist of

lines of equal altitude (or depth, for bathymetric maps) which divide the terrain into

layers, much like a cake. Tightly clustered lines indicate steeper slopes, while looser

groupings are flatter regions (see Figure 2-5).

For humans, using topographic maps is one of the most familiar forms of map-

based navigation (it has even become a sport: orienteering). When porting to the

world of autonomous robots, however, the problem of representation becomes key to

successful mapmaking and utilization. The issue of representation is critical to any

1 lmilligal = 1mgal = 1O-5m/sec2
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form of geodetic mapping, but since digitized topological maps predate gravimetric

and magnetic maps by decades, we will address the issue here as it pertains to AUV

navigation.

Topographic representations

When the computer revolution came to cartography, the chosen solution to map

representation was the vector format [96]. In vector format, a feature is stored as

a series of {X,Y} locations. Each location has an information tag associated with

it such as population, altitude, type of feature, etc. These {X,Y} coordinate pairs

were then stored as a list, which in itself generated numerous tiling and indexing

schemes (adaptive and fixed tiling, quadtrees, R-trees, Morton codes, Peano codes,

etc.). Accessing and manipulating these indexing schemes has since become an entire

branch of cartography. Later, when computer displays became predominantly raster-

oriented, maps were stored in either raster or vector format with storage choices

made according to projected use. Raster format is generally preferred for simpler,

low resolution functions where accessing the database quickly is of key importance,

while vector format predominates in applications where speed is not as crucial as

precision and representation over a variety of scales.

This dichotomy has since carried over to the world of mobile robots. With robot

systems there is also the added problem of restricted data storage. Most detailed

cartographic databases consume large amounts of storage space, and robots generally

do not possess such reserves. Indeed, they may contain very little space for a priori

datasets, reserving storage instead for the data they were sent to collect. If the

mission is one of map-making, then the vehicle is generally expected to add to its

on-board maps in a timely and reliable fashion. They are also required to access and

utilize their maps quickly and efficiently if they are to navigate successfully. Survey-

class AUVs such as the Odyssey IIb have an additional handicap in that they cannot

stop and think while determining position owing to the basic nature of a dynamically

controlled underwater vehicle.

A topographic map is basically a two-dimensional projection of a three-dimensional



function of position. While the real world can be non single-valued (such as in the

case of caves and overhangs), topographic maps - especially ones designed for robot

use - generally assume the world is single-valued in the z-direction:

z = f(x, y). (2.5)

If we view the world as f(x, y), then the topography of the bottom can be rep-

resented by the slopes and extrema of f(x, y). This is the approach used by many

when formulating a model of the world. How we choose to represent the slopes and

extrema varies according to application.

Mathematically we can view slopes as directional derivatives of the function f at

the point (x, y) in the direction /. For any topographic description z = f(x, y) the

slope in the direction / is

f (x, y) (x, y) sin() + (x, y) * cos(). (2.6)

To represent extrema, we need the second derivative in the / direction

_2f !2f 62 f
f'(x, y) 6 *sin2(p) + 2 * • * sin(o) * cos(o) + 2 * cos 2(/). (2.7)

It follows that the gradient(V f) of a vector whose magnitude,

aIVf = + , (2.8)

at a given (x, y) is by definition the direction of the maximum rate of change of f at

that point, i.e. the steepest slope. The direction of maximum slope at that point is

/3max = tan- 1  . (2.9)

Calling on work going back to Cayley [33] and Maxwell [79], Haralick et al. [50]

break the world into topological primitives. They base their topological descriptions



on the special cases of these derivatives, calling them (1), w(2 ) , A1, and A2, where

w(') is the unit vector in the direction in which the second directional derivative of

f has the greatest magnitude (i.e. the direction of greatest change in slope), w(2) is

orthogonal to w('), A1 is the value of the second derivative of f in the direction of

w(1), and A2 is the value of the second derivative in the direction of w(2). Harlick also

observes that if values of w(1) and w(2) are calculated first, then the values of the first

directional derivatives can be simply calculated as Vf - w(1) and Vf -w(2)

Using these definitions, they then define a set of basic topological features: peak,

pit, ridge, ravine, saddle, flat, and hillside. A peak is a local maxima, where all

adjacent areas are lower. A pit is also an extrema excepting that it is a local minima,

where all adjacent areas are higher. A ridge is a set of points {x, y} forming a line such

that the points on either side of the ridge are lower than the ridge points. A ravine

is of the same construction as a ridge excepting that all points adjacent to the set

{x, y} are higher than the ravine line. (Note that ridge and ravine lines need not be

level. They can curve or slope up or down.) A saddle point is where a local minimum

occurs in one direction while a local maximum occurs in a direction perpendicular to

that. A flat is simply where the surface is level (i.e. zero gradient). Finally, a hillside

is all other points not covered by the previous definitions. It may be a tilted plane, a

convex or concave slope, or contain an inflection point between the two slopes.

This extrema-based classification scheme is popular because it explicitly retains

key topographic features in an easy to manipulate analytic form, and allows the re-

construction of an arbitrary surface with the use of selected primitives. Since Haralick

et al. were using this approach in a desktop-based still-image vision system, storage,

and processing requirements were not a concern.

Other forms of the extrema-based map have been employed. Nackman [87] pro-

posed the critical point configuration graph (CPCG). The CPCG uses a subset of

the full list of primitives: peaks, pits, and passes. Peaks and pits are as before, and

passes fall into the same topological class as saddle points. Any topographic feature

can then be constructed using combinations of these primitives. Orser and Roche

brought the concept to the underwater community by focusing on the identification



and extraction of topographic features of bathymetric maps as a navigation aid. The

central concept was the extremal point topography network (EPTN), which reduced

the topological primitives set to peaks, pits, valleys, ridges, saddle points, and a spe-

cial class of closed contours around the extrema which consist of inflection points.

This final feature is used to aid in the differentiation between "hills" and "dales."

Several methods of extracting the EPTN were tested on a sonar data set from Lake

Winnipesaukee, NH. The issues of navigation were not, however, addressed.

Haralick [50] describes topography as a function of first and second directional

derivatives of the terrain. Using this system, the world can be categorized into the

basic types: peak, pit, ridge, ravine, saddle, flat, and hillside, with hillside having the

subcategories: inflection point, slope, convex hill, concave hill, and saddle hill.

Kweon [61] classifies topography into four basic classes: peaks, pits, ridges, and

ravines. Linking these features is a connectivity tree referred to as the Topographic

Change Tree, which interpolates between topographic classes.

The primary drawback of extrema-based topological representations is the need for

the extrema themselves to exist in the area of operation in order for the representation

to work. Mountainous regions are easy to describe, while areas such as abyssal plains,

which lack any outstanding topological characteristics, are relatively difficult.

Terrain Contour Matching (TERCOM)

Perhaps the most successful topographic navigation system today is the TERCOM

system (see Hatch [51] and Hostetler [54]), used by cruise missiles. TERCOM relies

on inertial navigation to guide the missile between navigational "waypoints". These

waypoints are regions of sharp topographic relief which are well known, and have

been imaged and quantized in advance. To reduce the solution space, each waypoint

is treated as a separate map. Also, the topography is quantized into large pre-defined

regions with an average altitude stored for each region. The TERCOM system senses

the average altitude in the regions adjacent to the missile's actual path, and compares

these values to the quantized regions adjacent to the intended ground track. The

vehicle then makes course adjustments to compensate for discrepancies between the



missile's expected position and its actual location. Because of the enormous storage

requirements for the maps, every possible data and computational load reduction

technique has been applied. The key here is the techniques of mapping only the

specific waypoint regions, relying on inertial navigation between these waypoints,

and the decision to gradually increase map resolution (and reduce the corresponding

mapped area) as the missile approaches its target, thereby progressively reducing the

tolerable navigational error only as necessary (referred to as "accuracy funneling").

Even with these measures, the system is still only accurate to within, at best, 30-100

meters [89]. Final guidance is handled by the Digital Scene Matching Area Correlator

(DSMAC) [32], which employs a vision-based template matching system.

The real technical difficulty with TERCOM lies not with the guidance system

itself, but in the technical infrastructure needed to create the digitized maps. For

any a priori map-based navigation system to be effective, databases must be built up

of every part of the world in which they might potentially be used. The cost of this

exercise to the US for cruise missile systems alone is estimated to approach the total

investment made in TERCOM-equipped cruise missile hardware. It is reported that

following the Iraqi invasion of Kuwait in 1990, the US military had to embark upon a

crash program to prepare data for the TERCOM guidance systems of its Tomahawk

missiles for use in the area. The lack of suitably dramatic topography in southern Iraq,

coupled with the lack of suitable datasets for the missiles resulted in missile paths

which "wandered" far from the straight line path in order to maintain the necessary

navigational fixes. The resulting missile effective radius was correspondingly reduced.

In contrast to TERCOM is SITAN, or Sandia Inertial Terrain Aided Navigation

system [54]. SITAN uses single terrain clearance measurements and incorporates them

into an extended Kalman filter. Unlike TERCOM, SITAN explicitly uses each new

sensor reading. A derivative of SITAN was employed by Jircitano [56] for gravity-

based AUV navigation. However, SITAN relies on a linearization of the terrain model

and is therefore subject to divergence.



Multiple maps

The majority of map-based navigation approaches employ a single map and one type

of sensor. In contrast, Tuohy has developed techniques for geophysical navigation

using multiple a priori maps of different geophysical features [111]. Rather than

attempting to locate a specific feature and comparing it to an a priori map, he instead

uses the concept of contour intersection to determine all places where two different

geophysical parameters (e.g. magnetic field, gravitational field, bathymetry) would

have coincident isocontours. Ambiguity involving multiple points of intersection are

handled by a navigation-directed gating function. Like all map-based systems, this

method of geophysical map-based navigation is limited by the quality and resolution

of its a priori maps and the vehicle's on board sensors.

Local maps

Local maps are used by autonomous vehicles for the purposes of path planning [4, 63]

and obstacle avoidance [20, 21, 108]. They are either a priori maps of the region of

operation or they are constructed by the vehicle [66, 105]. Once created or generated,

these maps are used by the vehicle for the purposes of determining where to go next

to a) gather more information, b) avoid obstacles and/or, c) achieve a goal. If any

portion of the map is tied back to geodetic coordinates, then the map may also be

used for localization purposes. However, this is usually a secondary function after the

more immediate concerns of vehicle maneuvering.

There are two dominant philosophies to vehicle maneuvering in the local environ-

ment: trajectory planning and potential field. Trajectory planning approaches have

been applied from the earliest days of mobile robots. The concept is simple: given

the location of all local obstacles and given the position and trajectory of the vehicle

itself, it is a simple matter to calculate a path through the field of obstacles. The

basic motion planning problem can be defined as follows [63]:

* Let R be a rigid object (the robot) moving in a euclidean space, called the

Workspace, represented as RN with N = 2 or 3.



* Let O1,..., On be fixed rigid objects distributed in R where the O's are Obsta-

cles.

* Assume that both the geometry of 1 and 01,...,n0 and the locations of

O1,..., On in 3 are accurately known. Assume also that no kinematic con-

straints limit the motion of R.

* The problem can then be stated as follows: Given an initial position & orienta-

tion and a goal position & orientation of 1R in R, generate a path T specifying

a continuous sequence of positions and orientations of R which avoid contact

with all Oi's. This path T starts at the initial position & orientation and ends

at the final position & orientation. Report if no such path exists.

This basic problem has since increased in complexity and been extended by vari-

ous means over the years. Udpa [116] introduced the concept of shrinking the robot

to a point in an appropriate configuration space. Lozano-Perez et al. [71] extended

this concept to include polygonal & polyhedral robots and obstacles without rotation.

Chatila [34] extended motion planning to include incomplete knowledge of the envi-

ronment. In 1983 and 1984, Schwartz and Sharir [101, 102, 103, 104] published a series

of papers, called the "Piano Mover's Problem" series, which introduced planning of

free paths for polygonal objects which were allowed to both rotate and translate in

2-D space.

In 1985, Khatib [58] presented the potential field approach as a real-time collision-

avoidance system for mobile robots. He then went on to extend this to motion

planning. At approximately the same time, Brooks [22] showed that planning was

unnecessary in a mobile robot using a potential field approach, insofar as obstacle

avoidance was concerned. Barraquand and Latombe [5] later combined the potential

field approach with random techniques to enable a robot to escape from the local

minima problem. In 1991, Koren [59] showed that the potential field approach has

inherent limitations brought about by the nature of the dynamics of interaction with

groups of potential fields.



Other refinements, such as cell decomposition [70], non-holonomic (i.e. car-like)

vehicles [64], moving obstacles, multiple vehicles [63], and efficient terrain-covering

algorithms [52] have also been examined. All of these approaches assume some knowl-

edge of the environment, either in a detailed a priori map or some map with a measure

of uncertainty in location or sensor accuracy.

2.2.5 Summary

The discussion of mapping and navigation presented above is necessary in order to

understand the requirements, limitations, and structure of the feature relative navi-

gator presented in the next chapter. This thesis presents a feature relative navigation

approach which in turn is capable of utilizing some form of navigation for referencing

back to the world. To this end, we have presented the most common and popular

forms of navigation and their associated limitations. In future chapters we will dis-

cuss the navigation choices made, their impact on the FRN approach, and the effects

the associated sources of error have upon the system.

2.3 Map building

In the mobile robotics community, the process of map building is an essential compo-

nent of navigation and data collection. It is therefore important to understand what

is meant by "a map" and why the type and resolution of the the map that is chosen is

important. The choice of map is influenced by the type of representation, method of

representation, and level of detail for a given vehicle, sensor suite and mission. Rather

than viewing the world at one level, Stewart [107] chooses to view the world as a series

of multi-layered representations running from "low-level" or physical descriptions to

"high-level" or cognitive representations.

Low level representations tend towards physical or sensor-based descriptions (e.g.

rough, smooth), while high level descriptions are more abstract and have some im-

plicit model of the world included (e.g. desk, chair). High-level representations consist

of primitives designed to show the characteristic nature of the feature(s) they rep-



resent. These primitives not only represent the feature but also aid in the vehicle's

ability to extrapolate information, either to direct additional information surveys or

to reduce/eliminate the need for further sensor use. For example, if a vision system

without an effective high-level mapping and modeling system sees an occluded object,

it may have to maneuver the vehicle to gather more information about that object -

its dimensions, location, etc. If, however, the system was capable of classifying the

sensed object, then it does not need additional information to determine the extent of

that object as the remaining information might be inherent in the object description.

To illustrate the difference, imagine the task of mapping an office building. Storing

a detailed volumetric description of a desk would take a substantial amount of storage

space, logging whether a given element of volume, or voxel, was occupied or not. If

there were 50 desks, it would take 50 times the storage space. On the other hand,

an object-level description would have some pre-existing knowledge of a desk (e.g.

width, length, height, location of the center). A description of a desk is now just

"desk centered at location {x, y}" and 50 desks is "desks with centers at the locations

{ , )}" - a small increase of storage space for a large increase in the number of objects.

In contrast, low-level representations are more tightly coupled to the sensors and

the physics of the environment. Such maps are cellular in nature, consisting of either

pixels (2-D) or voxels (3-D). These representations require more storage then a high-

level representation but can retain more detailed information that may be lost in a

more abstract representation. This is particularly true for natural features which do

not lend themselves to simple descriptions - if, for example, we describe a natural

feature such as a seafloor trench as a half of a prolate spheroid, we encapsulate

one essential aspect of the trench (e.g. a sharp depression in the seafloor), but lose

information about the exact details of the shape of the trench (which may be useful

if we wish to differentiate one particular trench from another). On the other hand, if

we describe the same trench voxel-by-voxel, we retain the detailed information of the

trench (assuming a suitably chosen voxel size) and what makes it unique, but at the

cost of increased storage space for the description.

How one chooses to represent the world and what type of map to use depends upon



what uses the map will be put to and, conversely, dictates what uses the map will

be good for. There are several key issues that need to be considered when choosing

a representation:

* Type of map - Do we need a map that is low level (i.e. cellular), high level (i.e.

objects), or something in between?

* Information - What is the map going to represent? How is the information

stored? How does this affect ways in which the map can be used?

* Efficiency - How easy is it to access? Can it be updated? Is the information

easy to manipulate? Can key information be directly accessed, or must it be

reconstructed? If reconstructed, how easily and quickly can it be done?

* Completeness - Does the map represent sufficient information to be usable by

the vehicle to perform the desired misson? Is it thorough enough? Is it accurate

enough?

The role that the map will play in a vehicle will dictate the necessary answers to

these questions. These answers in turn will also prescribe the limits to which these

maps may be employed.

While there are many intermediate representations and techniques, such as quadtrees,

adaptive tiling, fixed tiling, R-trees, etc. (see Robinson, et al. [96]), we will focus on

the two extremes of cell-based and object-based descriptions to better emphasize the

differences between them. Note, however, that it is common practice to employ some

hybrid approach rather than to use one method or the other.

Type of map

As a higher-level example, Leonard [66] constructed rooms out of walls and vertices.

Knowing the location of the vertices allows the reconstruction of the room without

the penalties of storing a map made of tousands of individual cells, each of which

stores the presence or absence of every portion of every wall. Thus, a room can be

mapped using a minimum of storage resources. This philosophy can be scaled up



without limit, mapping any number of rooms with only a modest increase in storage

requirements.

In contrast, Stewart [107] argued that because vehicle and/or sensor target posi-

tion may not be generally well known (e.g. a free-floating vehicle in an underwater

environment), a low-level or cellular representation may be better suited for map-

ping purposes. This representation, coupled with the Dempster-Shafer inference rule,

would be a method whereby the vehicle can construct and maintain a description of

the environment and express its confidence about the representation of that environ-

ment. Pagac et al. [90] used this approach to construct an office environment map

similar to the one used by Leonard [65] and divided it up into 50 mm cells. While

the resulting room description consumes much more storage space, it also contains

more details in the form of both the geometry of the room and a measure of the level

of confidence that the vehicle has in the location of each map element in the room.

This increased level of detail may or may not be desirable, depending on the uses to

which the map is to be employed.

Because the feature relative navigation system presented in this thesis is desiged to

operate in a world of natural features, a high-level representation of areas and contours

was deemed inappropriate for the AUV on-board maps. Instead, a cellular approach

was chosen to represent features in order to better capture the details of those natural

features. However, there are cases where a high-level description may be preferred,

such as when the vehicle is determining whether or not all of a specific feature has

been mapped yet. Fortunately, such high-level descriptions can be derived from low-

level maps at the expense of additional processing, allowing us to take advantage of

the best of both worlds when necessary.

Information

Having chosen a map representation, the next question is what information we wish

to represent in our map. Information is represented in computer mapping systems in

two ways. The simplest level of information a cell can contain is whether the cell is

occupied or not. This serves to indicate the presence or absence of a feature (if the



map represents features) or whether a cell has been visited/sensed or not. If the cell

has been measured, then some value is stored there. If not, then that space is empty.

A more intricate and interesting level of information representation on a cell-based

map is when the cell contains a pointer to a more detailed description elsewhere. Such

a map might indicate the presence of information at a particular location (cell), the

contents of that cell then being a pointer to a more detailed description in another

location. This in effect combines the low-level representation (cells) with a high-level

representation (objects). An example might be the distribution of a plankton bloom.

A given map cell could act as a pointer to all relevant information about the bloom at

that location. Information such as temperature, dissolved oxygen, and turbidity are

then accessed by referencing that cell. This allows us to store complex information

without sacrificing the simplicity of a cell-based map; hence we choose to employ a

map of this type.

Efficiency

In the case of map manipulation, efficiency can be thought of as the ease with which

the vehicle can access and manipulate information stored in the map. In general,

cellular maps consume more space in memory than high-level descriptions, but the

structure makes them well suited to matrix manipulation techniques. A cellular or

voxel map can be mapped directly into a two- or three-dimensional array, making

access and manipulation simple. An object-oriented map sacrifices speed for stor-

age efficiency. Information about a specific location must be reconstructed from the

abstract representation of the region. Another efficiency/size trade off is data com-

pression, the most common example being image compression to reduce storage and

transmission requirements. The reduced size is balanced against the time needed to

"reinflate" the image and the amount of detail loss that is considered acceptable.

We have chosen a cell-based map representation, thus making the standard search

and sort routines for matrices available for our purposes. This representation can still

be used for more object-oriented information representations by increasing the dimen-

sionality of our map and associating pointers to other data locations with individual



cells in the original map. For example, an [m x n x D] array-format representa-

tion may store temperature, conductivity, turbidity, and bottom depth as individual

dimensions of D at any given vehicle location (mi, ni).

Completeness

Whether a map can be considered "complete" or not depends upon its use and method

of construction. An a priori topographic map of an area might be presumed to be

complete insofar as it contains the necessary information for someone to navigate

when using it. If there is no information about a specific region on that map, then

that map (or at least that region) is considered incomplete. The map's accuracy

generally meets some predefined standard for maps of its type.

In our particular case of an autonomous vehicle trying to make its own maps, the

search region is considered unknown until the vehicle itself maps it. It is now up to

the vehicle to determine if a given area is completely mapped or not, and if so, how

accurate that map is. Singh [105] used an information theoretic approach to gauging

whether or not sufficient information has been obtained about any given location.

A high entropy rate generated by each sonar ping indicated new information was

being received and added to the map. When the rate fell off sufficiently, that area

was considered mapped. Aramaki and Ura [1] used an "index of reliability" which

is related to the cumulative probability that the depth measured in a given location

was accurate. When the index exceeds 0.90, the area is considered mapped.

Because we assume a point sensor mounted on a non-holonomic AUV such as

an Odyssey IIb-class vehicle, we must physically visit each map cell to sample it. If

the cells are sufficiently large (e.g. several meters on a side) and the sensing rate is

sufficiently high (the AUV Odyssey MIb sonar altimeter samples its environment at

approximately 5 Hz), we may state that any cell visited by the AUV where the vehicle

passes in or close to the center of that cell has been satisfactorily sensed. Therefore,

cells which have been so visited may also be considered completely mapped for the

purposes of feature-relative navigation. Hence, our measures of completeness become

simply a question of whether or not a given cell has or has not been visited by the



AUV.

2.4 Intelligent control

Intelligent control of autonomous vehicles is a vast and expanding field of research. As

such, only portions can be covered in this thesis. Specific highlights will be presented

which are relevant to the issues facing autonomous underwater vehicle navigation and

control.

Software architectures developed for land robotics do not necessarily transfer di-

rectly into the underwater environment. Additional factors must be considered when

designing for marine systems, such as:

* Sensors - Sea water blocks most forms of electromagnetics and causes signal

distortion, blockage, and attenuation in acoustic systems. This makes it diffi-

cult and energy intensive to reliably sense the vehicle's surroundings as well as

communicate with support ships.

* Dynamics - Land robots are typically confined to two dimensions, while the

ocean environment is inherently 3-D. This increases the number of degrees-of-

freedom which must be modeled from three to six, along with the accompanying

increase in modeling and mapping complexity. Also, the hydrodynamics of ma-

neuvering and control for a free-floating marine vehicle are much more complex

than for a wheeled robot on land.

* Real Time - In the world of land robotics, real time computation and control

capabilities are desirable, but not necessary for safe functioning of the vehicle.

In the marine environment, the presence of currents and the free-floating nature

of AUVs require real time sensing and control just for basic functionality.

Planning-based intelligent control

Current intelligent control methods can be divided into four broad categories: plan-

ning, reactive, hybrid, and blended. Planning architectures (sometimes referred to



as "stop-look-think-act" systems) are the original and best studied method of au-

tonomous vehicle control. In a planning system, data is first collected and processed.

Processed data is then used by a planner to decide what to do next. This method

of control allows time for the optimum path, course of action, or sequence of acts to

be determined, regardless of the level of complexity of the task. There are, however,

penalties to be paid in terms of capabilities and performance in real-world situations.

Planning systems generally assume "perfect" sensors, large or infinite computational

power and all the time that may be required to devise the best plan. The DEVI-

SOR/HOMER [118] system operates in a marine environment with several buoys,

ships, and natural objects in the area. All objects are assumed to be identified at all

times. In other words, the red buoy will never be mistaken for the green buoy by

the vehicle. Also, it is assumed that nothing moves while the vehicle formulates its

plans. Finally, the vehicle's position and the positions of all other objects is precisely

known at all times. In the real world, sensors are imperfect, computational resources

are finite, the time in which to make decisions is short, and nothing stops and waits

while the vehicle makes up its mind about what to do. In practice, most planning

systems can only function in simple, limited, highly structured environments, or with

abundant amounts of time [3, 110, 118].

Behavior-based intelligent control

In the 1980's, Prof. Rodney Brooks of the MIT Artificial Intelligence Laboratory

proposed a purely reactive form of vehicle control [22, 23]. Called subsumption ar-

chitecture, this method of control is based on the premise that living creatures have

the ability to react to certain stimuli without consciously doing so. For example,

when someone accidentally touches a hot object, they automatically react by pulling

away from it. Only afterwards do they consciously realize what happened. The use

of this approach divides vehicle control into multiple behavior modules, or behaviors,

where each behavior reacts automatically to certain stimuli. Modules communicate

with each other by reinforcing or inhibiting each other's output with the resulting net

outputs controlling the vehicle.



This approach has several key advantages: low processing requirements (many

behaviors are simple enough to be embedded in individual motor controllers), fast

reaction times (extremely important for real time robotics), and modular architecture

(easy to add or delete behaviors). In the process of implementation, however, two

serious disadvantages were discovered: the "scaling problem" and "situatedness."

The scaling problem is that as more modules are added to a robot, the the overall

complexity of the system as a whole rapidly increases as the factorial of the number of

behavior modules involved - due to the behavior-behavior connections. The actions

of the vehicle become difficult to predict because of this complexity of interactions

between the behaviors [24, 27, 31, 78]. This unpredictability is considered interesting

or even desirable in some areas of artificial intelligence (AI) [75], but not when one is

trying to create a trustworthy AUV.

Situatedness is a problem inherent in any behavior-based vehicle. A given vehicle

using a certain set of behaviors is suited for a specific environment and lacks the ability

to alter its behavior if confronted by unforeseen conditions. A typical vehicle mission

may have many different phases, or situations, each of which requires its own set of

behaviors. For example, a bottom-photography mission has at least three distinct

phases: 1) deployment from the ship and transit to the search area, 2) photographing

the bottom, and 3) return and retrieval. Each of these phases requires different sets of

behaviors, some of which actually conflict with each other (e.g. Obstacle Avoidance

vs. Rendezvous and Docking).

In a subsumptive system, the only recourse is to pre-plan for all possible contin-

gencies, incorporating the necessary behavior modules and their interrelationships in

advance. However, doing so returns us to the scaling problem as well as the problem

of how to insure that only the proper behaviors control the vehicle at the appropriate

times.

Hybrid and blended intelligent control

Several people have proposed adapted forms of subsumption architecture in response

to these difficulties. These new forms of intelligent control can be divided into two



basic forms: hybrid and blended systems. Hybrid intelligent control systems use

elements of "traditional" AI to control behavior modules (e.g. Connell's Symbolic-

Subsumption-Servo architecture [36]), while blended control uses the behavior-based

structure of subsumption architecture incorporating individual modules designed along

the lines of more traditional AI systems. Both types of intelligent control seek to ex-

ploit the fast reaction abilities of a behavior-based vehicle while also exploiting the

learning and planning abilities of the traditional planning architecture.

Two key examples of hybrid control are learning augmented subsumption archi-

tecture [36] and state configured layered control (SCLC) [9]. In learning augmented

subsumption architecture, the vehicle designer uses various learning techniques such

as Q-learning [3] and reinforcement learning [3] to teach the robot how to perform

the task. This method has some serious drawbacks in that it takes several time-

consuming and potentially disastrous training runs to teach the robot. Attempts at

using simulator data to augment the learning process have proven inadequate due to

the "sanitized" nature of simulated data - the simulation-based training systems lack

the uncertainty and noise found in real-world robots [3].

State configured layered control

In state configured layered control (see Figure 2-6), the behavior modules are all ma-

nipulated by a central state table that controls which behaviors are running at any

moment and what their operational parameters are. In its simplest form, the state

table is preconfigured for all foreseeable contingencies. During a mission, the state

table automatically switches specific behaviors on or off, and changes operational

parameters of running behaviors according to current conditions. This method over-

comes the limitations of situatedness, but is limited by the programmer's ability to

foresee all possible situations that the vehicle will encounter.

Blended control incorporates the abilities of a planner with the structure of a

behavior-based system. The result is a set of smart behaviors which can forecast and

act in much the same fashion as a planning system, but without the same levels of

sophistication and detail. Each behavior is aware of both the environment and the



Figure 2-6: State configured layered control. From Bennett [18].

status of other behaviors. This awareness allows behaviors to rethink their plans or

even negotiate with other behaviors for control of the vehicle. In a conflict situation,

the behaviors can yield to each other according to each one's relative importance

and other conditional factors. Thus, for example, if an obstacle avoidance (O/A)

module insisted on steering the vehicle in one direction while a survey module insisted

on going in the other, the survey module would "know" that the O/A behavior is

dominant and therefore would alter its survey path to accommodate the demands of

the O/A module. Although this scheme solves the situatedness problem inherent in

behavior-based systems and introduces the ability to plan for contingencies on the fly,

it introduces the additional problems of determining which behaviors dominate which

and when (thereby further complicating the scaling problem) as well as increase the

risks that a) the smart behaviors may not always run in real time and b) the net

computational load of the combined behaviors will overload the vehicle processor.

Two forms of layered control were proposed as solutions to these problems: ar-

bitrated layered control and supervised state configured layered control. Arbitrated

layered control was described in 1990 by Bellingham et al. [10], while supervised

state configured layered control was proposed and implemented in simulation in 1993

by Bennett [18].



Arbitrated layered control

In arbitrated layered control, the behavior modules are all competing for control of

the vehicle, but they are no longer allowed direct access to the dynamic controller.

Instead, they all submit control commands to a central arbitrator which in turn passes

the "winning" command set to the dynamic controller (see Figure 2-7). In its simplest

form, the arbitrator's task is to determine which behavior has priority over all others

and passes those commands along to the controller. More commonly, the arbitrator

will attempt to choose a command which will satisfy as many behaviors as possible.

It does so by determining which commands are mutually compatible and/or do not

directly interfere with each other. It then takes the resulting fused command and

passes it along to the controller. For this method to work, the modules must have

three new capabilities: some method of handling partial states of completion, some

way of interaction with the arbitrator for the purposes of negotiation, and the ability

to modify output to accommodate the goals and requests of other behaviors.

The keys to successful implementation of arbitrated layered control are the re-

striction of communication paths and the ability to communicate only via a central

data structure. In the traditional form of subsumption architecture, any behavior can

communicate with or influence any other behavior. This was what led to the scaling

problem. In arbitrated layered control, communication between behaviors is restricted

to posting to and reading from a central data structure (sometimes referred to as a

"blackboard"). This restriction has two immediate benefits: 1) specific behaviors can

be inserted or removed at will without disrupting interconnections between behaviors

and 2) behaviors cannot arbitrarily influence the inputs our outputs of other behav-

iors. Each behavior is responsible for reading and processing information posted to

the data structure and then acting upon it if necessary. The resulting commands

from each of the behaviors are then fed into the arbitrator which attempts to satisfy

as many behaviors as possible. For example, if a bottom following behavior requested

a certain depth and speed but no heading, and a survey command requested a certain

heading and speed but no depth, then the arbitrator can issue a fused command to



Figure 2-7: Arbitrated layered control. From Bennett [18].

the dynamic controller with a depth set to satisfy the bottom follower and a heading

set to satisfy the surveyor, with a speed set to accommodate both or whichever of the

two was considered "dominant."

An extension of this approach if the concept of aspirations [18]. If, for example,

an O/A behavior wants to steer away from a detected target, it would normally issue

a heading change to do so. It does not matter to the O/A system which way the

vehicle turns, only that it does. It therefore issues the desired heading change. If

there were another behavior also controlling heading, such as a survey behavior, then

that behavior might also be requesting a heading change. Both requested headings

would satisfy the need to avoid collision, but the arbitrator would accept the O/A

command over the survey command because survival behaviors must always win to

preserve the vehicle. Now replace the rigid command of the O/A system with the

aspiration of turning away from the obstacle. It now only wants a heading change that

steers the vehicle safely away from the danger but does not care what that heading is.

Instead of a fixed heading change, it hands the arbitrator a range of valid headings

which will satisfy the O/A requirement. This same type of output is also issued

by all other behaviors, including the survey behavior. Instead of making a simple

dominance-based decision, the arbitrator now determines a heading (depth, speed,



Figure 2-8: Supervised state configured layered control. From Bennett [18].

etc.) which satisfies as many behaviors as possible, starting with the most important

(the O/A behavior). Thus it is possible to satisfy multiple behaviors without extensive

interconnections.

Supervised state configured layered control

State configured layered control, with or without arbitration, offers a simple and

effective method of linking a high-level planning module to a collection of low-level

behavior modules in much the same fashion as a craftsman with a box of tools. If

the state table is considered an intermediate layer (see Figure 2-8) it can be used

as part of a flexible plan and compile architecture [83]. In this form the state table

contains all of the operational parameters needed for a given phase of the mission

or the current state of the vehicle as well as information relating to any contingency

plans and other possible states. However, instead of following a pre-determined set

of vehicle states, the state table acts in the role of a transition table, receiving and

relaying information from the behaviors to a master planner. The planner in turn

can alter any or all of the behavior sets and their transition rules in the state table as

new information becomes available during the mission. Using this structure allows a

planner to work out a long time horizon and potentially time consuming calculations



without sacrificing the fast reaction abilities of a behavior-based system. This form

of layered control offers the potential to take advantage of the strengths of a planner-

based system (flexibility and adaptability) while at the same time retaining the speed

and efficiency of subsumption architecture.

Adaptive sampling

Adaptive sampling is the technique of modifying the trajectory of a vehicle in response

to sensed data in order to obtain the optimal sampling pattern which will most

efficiently characterize a given phenomenon. As such, it can be viewed as a form of

intelligent planner if situated within an intelligent control structure. There are two

primary forms of adaptive sampling: field based and feature based.

A field based approach attempts to determine the best sampling interval or loca-

tions to adequately characterize a distributed phenomenon. The sampling interval,

speed, and locations depend upon the spatial & temporal capabilities (i.e. maneu-

vering, speed) and the resolution & dynamic characteristics of the sensors employed.

Bellingham et al. [17, 121] examined the problem of adaptive sampling of a dis-

tributed oceanic phenomenon using the survey-class AUV Odyssey II. The best path

was determined based upon the presumed spatial frequency of the phenomenon, its

rate of evolution and the speed & endurance of the AUV. The resulting path was

designed to be the optimum sampling strategy needed to obtain the best possible

distribution of statistical information about a region, given the duration and speed

restrictions imposed by the vehicle. Cooperative strategies were also examined; i.e.

the spatial and temporal information obtained using coordinated fleets of AUVs.

Singh [106] and Burien [29, 30] examined the issue of field based adaptive sampling

from the perspective of gradient following in an effort to locate the local maxima or

minima in a given search area. The approach proved effective in two different sce-

narios using a sonar in Herring Pond, near Falmouth, Massachusetts (Singh), and in

simulation using bathymetric and thermal data (Burien). Their technique is designed

to locate the local maxima or minima and not map a distributed feature.

A feature based approach is designed to locate one or more features in the world



and map their number and/or extent. In this case, the vehicle responds to the presence

or absence of a feature. It is designed to maximize the vehicle's "time on target" or

ratio of the time spent examining features vs. total mission time.

Information theoretic approaches such as in Stewart [107], Singh [105] and Ara-

maki [1] used a sonar as the sensor and treated the entire world as one feature.

Portions of this "feature" were then imaged until either the change in the rate of new

information dropped below a given threshold (Singh), or confidence in the value of a

given voxel (Stewart) or pixel (Aramaki) exceeded a given threshold.

2.5 Summary

This chapter presents a review of the state of the art in autonomous underwater

vehicle use, navigation, and intelligent control. First some background is presented

on the use of AUVs as oceanographic exploration equipment. Having done so, we

then discussed the three fields of AUV navigation, map building & maintenance, and

intelligent control and how each of these areas of research influence the subject of

feature relative navigation.

Both traditional and non-traditional methods of navigation are discussed and pre-

sented, along with their associated weaknesses and sources of error. Map building

techniques are then presented in the context of use by autonomous vehicles for the

purposes of navigation. Issues of representation, storage, management, and computa-

tional complexity are discussed and presented. Finally, the broad subject of intelligent

control is presented and discussed in the context of planning vs. behavior-based ap-

proaches, with emphasis on the creation of hybrid systems incorporating aspects of

both approaches.

The following chapter presents the challenge put forward by the thesis committee,

the method chosen to respond to that challenge and the results of that approach.



Chapter 3

Adaptive Feature Mapping

The goal of feature relative navigation (FRN) is to locate and map features of the

ocean environment without the use of an a priori map. The previous chapter has

described how this problem lies at the intersection of previous research in navigation,

mapping, and intelligent control. This chapter focuses on the intelligent control aspect

of FRN, describing a technique for adaptive region mapping based on a new extension

of layered control called adaptive layered control. This technique is inspired by state

configured layered control (SCLC) as proposed by Bellingham [9].

To develop this technique, the following question was used as a case study: "How

can an AUV find and map a trench in the Charles river (as shown in Figure 3-2)?"

One of the central criticisms of layered control is that the missions performed to date

have been relatively simple [28]. The task of adaptively mapping the Charles River

trench provides enough complexity that the current approaches to layered control

break down; thus motivating the development of adaptive layered control, which

incorporates map representation and planning within the layered control paradigm.

These extensions provide the capability to meet the challenge of finding the trench in

the Charles River.



Figure 3-1: 1922 Aerial Photograph of the Charles River basin. The basin is framed
by MIT at the top, Massachusetts Avenue to the left, the Longfellow Bridge to the
right, and Storrow Drive at the bottom. Note that the esplanade was not constructed
until 1930. (Photo courtesy of Massachusetts Historical Society).

3.1 The challenge

To investigate techniques for feature relative navigation, we consider the following

challenge: how can an AUV locate and map an unknown number of features in an

arbitrary location in the ocean with no a priori maps? To simplify this challenge, we

make the following assumptions:

* Trenches are chosen as the feature of interest because of the static nature of

bathymetric features (thereby facilitating repeatable tests). The trenches in the

Charles River Basin are chosen due to the availability of appropriate bathymet-

ric data and easy access for future field tests.

* A survey class vehicle, the AUV Odyssey II, is available as the sensing platform.

The choice of vehicle class has a direct impact on the problem approach due

to the nature of dynamic control of survey-class AUVs (i.e. no capacity for

hovering and a finite turning radius).
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* The AUV Odyssey II software environment is used [15] in anticipation of field

testing at some future date.

* A sonar altimeter (rather than a swath-type sensor) is chosen as the primary

sensor because it is both commonly available and because it can be viewed as

a point sensor, thereby avoiding a solution which is unique to the peculiarities

of the sonar sensing modality.

* Accurate navigation using an acoustic long baseline array and dead reckoning

is available. This last assumption will be relaxed in Chapter 4.

The desirable aspects for adaptively mapping a feature in a pre-designated area

such as the Charles River are good sampling of the feature, efficiently finding the

feature, and quickly determining if the vehicle has located all features in the assigned

region.

3.2 A behavior based approach

The form of intelligent control chosen was based on a behavior based intelligent control

system, a form of subsumption architecture.

3.2.1 Subsumption architecture

As described in Chapter 2, the subsumption architecture is a form of intelligent

control first proposed by Prof. Rodney Brooks of the MIT Artificial Intelligence

Laboratory [22]. Like Brooks, we wish certain aspects of vehicle behavior to occur

automatically, regardless of the actual situation the vehicle is in or what its current

activities are. However, unlike Brooks, we also wish to be able to predict the vehicle's

behavior as much as possible in order to prevent unanticipated and/or undesirable

vehicle activity while performing its assigned mission.

Traditionally, a task is broken into functional units, each executed in turn after the

other (Figure 3-3a). This form of decomposition assumes that each task is composed
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Figure 3-3: Traditional functional decomposition of intelligent control for a mobile
robot system vs. behavior based decomposition of a mobile robot [22].

of sub-tasks which in turn may or may not be further decomposed. The execution of

these tasks is sequential, i.e. the next function using as its input the output of the

previous function.

In the subsumption architecture, vehicle functionality is viewed as a series of

concurrent task-achieving behaviors (see Figure 3-3b). These behaviors are each

achieved separately and then tied together to form the robot control system. The

advantages of this system are: (1) concurrent execution of multiple behaviors, (2)

multiple goals (e.g. trying to achieve a point in space while avoiding obstacles), (3)

expandability - new behaviors can be added onto existing layers, and (4) robustness

- older, underlying layers maintain core competency beneath overlaying behaviors.

The process states that we first create a complete root control system, referred to

as the zeroth layer, or level 0 competence. This is thoroughly debugged and tested.

Once proven, we add another layer of competence onto this, called the first level

competence. Level 1 can monitor the same input data as level 0 and can also monitor

its output (see Figure 3-4). These layers are each finite state machines and execute

continuously, issuing their own instructions to the actuators while at the same time

inhibiting the output of those layers below them if necessary. The complexity of the

overall behavior of the robot emerges from the interaction of these layers.



Figure 3-4: Subsumption is a series of competence layers, each of which can suppress
the layer below it.

3.2.2 Criticisms of subsumption

In practice, this form of control quickly revealed fundamental problems associated

with scaling and situatedness. The problem of scaling is a result of the number of

interconnections, which in the worst case can increase as the factorial of the number

of behaviors implemented on the vehicle. The resulting complexity of interactions

was cited as a virtue of behavior based systems, since the goal was emergent intelli-

gence and complexity. However, this same complexity was considered a shortcoming

by the autonomous vehicle community for essentially the same reason: if all of the

interactions could not be adequately modeled and predicted, the vehicle's behavior in

a given situation also could not be modeled and predicted. This meant that a vehicle

programmed with a purely subsumptive architecture could not be completely trusted

to perform as predicted when confronted with a complex task.

The second shortcoming is commonly referred to as situatedness [18]. This is also

a natural side effect of a subsumptive system. Since each behavior is a finite state

machine, running concurrently with all the others, the current behavior suite is the

only state the vehicle as a whole will function in. Such systems are also referred

to as non-taskable systems. That is, the vehicle cannot be assigned a new task

without reprogramming the whole system. In spite of these limitations, behavior-

based control remains attractive because of the potential benefits of fast reaction

Sensors Actuators



times and computational simplicity [10, 18, 77].

3.3 Layered control

In 1990 Bellingham and Consi proposed the concept of layered control as an adapta-

tion of the subsumption architecture suitable for high level control of AUVs. Three

primary contributions were made: (1) a methodology for keeping layered control sim-

ple [10], (2) an extension to accommodate mission planning [9], and (3) a validation

of the approach via implementation on numerous AUV platforms [12].

Bellingham's layered control approach for AUVs grew out of an effort to address

the problem of scaling. The principal difference between layered control and sub-

sumptive architecture is the restriction of the interaction between layers. In a layered

control system, each layer is assigned a relative priority number and executes with-

out interacting with any other. Conflicting outputs are then resolved using a fixed

prioritization scheme, with higher priority layers overriding lower ones. In general,

mission safety functions (e.g. obstacle avoidance) have the highest priority. These

non-interconnected layers are referred to as behaviors; the primary difference is that

layers can interconnect, while behaviors cannot (see Figure 2-7).

In subsumption architecture, each layer can look into and influence those beneath

it. Thus, if a newly added layer needs processed sensor information it can obtain

that information from a lower layer via the interconnection of layers. Because a

layered control system expressly prohibits interaction between behaviors, there is now

the potential for redundant processing among behaviors when each behavior needs

to process the same sensor information in the same way. To prevent this, sensor

processing is pushed "outside" of the layered control system and pre-processed for all

of the behaviors. Sensor data is then made available to all behaviors via a central

data structure. Although this violates the premise of parallel execution and speed,

sensor data processing is a critical prerequisite to all behaviors, and therefore is not

truly an additional burden. Furthermore, performing the processing function as a

separate task makes it possible to implement a distributed architecture. This allows



Figure 3-5: Implementation of simple layered control. In this implementation, there
were two vehicle behaviors: Follow, which held a steady course over a feature, and
Turn, which reversed vehicle heading, alternating left and right, in an attempt to
reacquire the feature.

us to move the task of data processing and filtering onto separate processor(s) when

available, thus reducing the burden on the main computer.

This approach has been field tested and proven robust [8, 16]. It has the primary

advantages of a behavior-based intelligent controller (i.e. computational simplicity,

speed, and quick reaction time) without the problems of interconnections and scaling

found with a purely subsumptive system.

3.4 Implementation 1: a simple reactive system

Returning to the challenge of mapping the Charles River trench, we now describe

our first method of implementation of the adaptive feature mapper, utilizing layered

control. Computational efficiency and speed of execution were considered primary

design criteria and drove the design towards simplicity. Assuming accurate navigation

was available, the approach used two behaviors, follow and turn (see Figure 3-5. The

follow behavior held a steady vehicle heading as long as a feature was being detected,

while the turn behavior reversed course, alternating to the left and to the right,

whenever a feature was passed.

* Deploy - Go to the survey site, consisting of the following behaviors:

waypoint - controls vehicle transit to survey location.



power-monitor - monitors vehicle power consumption and aborts mission

if power levels too low.

* Search - Search for bathymetric features, with the following active behaviors:

trench_finder - identify trench-like features and reverse course if feature

is passed.

power.monitor - monitor vehicle power consumption and aborts mission

if power levels too low.

* Recovery - Prepare for recovery.

recover - shuts off thruster and pitches vehicle up for a coast to surface.

The key new behavior created for this configuration was the trench-finder,

which was designed to monitor the sonar altimeter and depth sensor data, recon-

struct the water column at the current location, and identify trench-like features in

the bathymetry stream. Two methods of identification were chosen: depth triggered

and slope triggered. For the purposes of this test, the 7 meter contour of the Charles

River was chosen as the depth triggered target feature, while slopes in excess of 10

degrees were chosen for the slope trigger (see Figure 3-2).

Figure 3-6 was a simple reactive approach triggered by the 7 meter depth contour.

The behavior of the system was quite promising, showing that a simple reactive

feature finder was sufficient under the correct conditions. However, if the vehicle

did not choose the correct direction at the outset, there would never have been an

initial contact and therefore no reaction and subsequent sampling in the first place.

Figure 3-7, a slope-triggered mission, demonstrates a major pitfall for any reactive

behavior-based system. In this mission, the vehicle encountered the feature at N, E =

(600,800) and reacted by turning back into the feature. Soon after it detected the

feature again and turned once more. On the second turn, however, it missed the

feature entirely and continued along until it reached the edge of the search region.
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3.5 State configured layered control

While layered control solved the problems of scaling it did not address situatedness.

To make a behavior-based intelligent controller taskable, it needs the capability of

handling multi-phase missions. In 1991 Bellingham and Consi introduced State Con-

figured Layered Control (SCLC) to address this issue.

The difficult aspect of implementing the architecture defined above [lay-

ered control] comes not from the individual behavior definitions, that are

relatively simple, but rather from the coordination of the goal oriented

behaviors... It is up to the user to ensure that the behaviors take control

at the appropriate phase of the mission, and relinquish control when their

function has been served [9].

These observations motivated Bellingham to propose the concept of state-configured

layered control (SCLC).

SCLC allows an autonomous vehicle to perform multi-phase missions without

human intervention. The key concepts to SCLC are the state table and the ability

to turn behaviors on or off as required. During the course of a mission, a state

table dictates the rules for transition from one state to another (see Figure 3-8). At

each state, necessary behaviors are executing while unnecessary ones are idle, thereby

both reducing the computational burden and allowing for multiple vehicle activities

which would otherwise conflict (e.g. obstacle avoidance and rendezvous & docking).

Missions are programmed into the vehicle via a mission script which contains all

possible states and transition rules between those states.

Figures 3-10 and 3-9 show a five-phase bottom following mission from 1993 using

the in the Odyssey I NetSim simulation environment, employing SCLC. In this mis-

sion, a hypothetical photographic mapping operation has been designed with a launch

phase, a pick up phase and three mission phases (two mapping and one transit). In

this particular case the recovery operation is presumed to be on a beach. The state

table has been preprogrammed with four states and associated behavior groups:

* Deploy - Go to the survey site, consisting of the following behaviors:



low power
or

system fault

Figure 3-8: Sample states and transitions for SCLC.

waypoint - controls vehicle transit to a survey location.

obstacleavoidance - prevents collision.

powermonitor - monitors vehicle power consumption and aborts mission

if power levels too low.

* Mapping Transit #1 - Move to first waypoint while mapping/photographing on

the way.

waypoint - controls vehicle transit to a new location. May be repeated for

multiple legs of a multi-phase survey.

bottom-follow - maintain constant altitude over seabed.

obstacle-avoidance - prevents collision.

power-monitor - monitors vehicle power consumption and aborts mission

if power levels too low.

* Transit #2 - Move to next mapping area.

waypoint - controls vehicle transit to a new location using new assigned

depth.



Figure 3-9: Multi-phase bottom following mission states diagram. Here the
main mission phases are displayed. The first mapping phase consists of the be-
haviors bottom.following, waypoint and depth-envelope. The second map-
ping phase uses waypoint and depthenvelope and the final mapping phase
reactivates bottom-following with a new altitude, homing, and continues to
use depthenvelope. In all phases the safety behaviors of power-monitor and
obstacleavoidance are functional.
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Figure 3-10: Multi-phase bottom following mission vehicle track. In phase 1 the
vehicle is launched. In phase 2 it descends to a constant altitude while traversing to
a prespecified waypoint. Upon arrival, phase 3 directs the vehicle to a new waypoint
while maintaining a constant depth. Phase 4 again specifies a (different) constant
altitude while the vehicle is commanded to head towards a homing beacon set in
shallow water. Phase 5 is the recovery.
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obstacleavoidance - prevents collision.

powermonitor - monitors vehicle power consumption and aborts mission

if power levels too low.

* Mapping Transit/Return - Transit to pick-up location while mapping bottom.

waypoint - controls vehicle transit to a pickup location.

bottom-follow - maintain constant altitude over seabed.

obstacleavoidance - prevents collision.

power-monitor - monitors vehicle power consumption and stops vehicle if

power levels too low.

* Recovery - Prepare for recovery by operators.

rendezvous_&_docking - maneuver vehicle into capture frame.

powermonitor - monitors vehicle power consumption and stops vehicle if

power levels too low.

The key elements to note are that in each phase of the mission, some behaviors

are switched on, some switched off, and others (waypoint and bottomfollow) have

new parameters assigned to them appropriate to the next mission phase. Note also

that the safety behavior obstacle-avoidance must be disabled during rendezvous

& docking operations or else the vehicle will never enter the docking frame. Finally,

the safety behavior power.monitor changes from prematurely aborting the mission to

simply shutting the vehicle off when the vehicle is nearing its assigned pickup point.

3.6 Implementation 2: adding search

As shown in Figure 3-7, if the vehicle using a simple reactive approach loses contact

with the feature of interest, it is liable to head off in any direction. Therefore, an

improved method of locating and tracking features is called for - in particular the

ability to search for initial features and to reacquire a feature if that feature is lost.
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Figure 3-11: Functional states of the improved trench._finder.

The shortcomings of the slope-based and depth-based reactive approaches were

addressed by combining these two approaches into one recognizer. This recognizer-

based behavior functions in a similar fashion to the simple reactive system except

that now, if the feature is not immediately reacquired, the vehicle begins a search in

an attempt to locate more of the feature of interest. The operating states of this new

recognizer-based implementation are shown in Figure 3-11.

To improve the initial search strategy and to generate an efficient search pattern,

the initial straight-line search behavior was replaced with a spiral search pattern using

the Archimedean spiral trajectory

r = ao (3.1)

which, unlike a logarithmic spiral, is a spiral with a constant interval of 2wa between

each lap (see Figure 3-12). There are two principal reasons for choosing such a spiral

over the more conventional "lawnmower" approach (see Figure 3-13). The first is

because of the linear nature of the lawnmower survey and that of some trenches (es-

pecially man-made trenches such as those created in dredging); it is conceivable that



dead-reckoned vehicle trajectory simmay15_01

500 600 700 800 900
east (meters)

Figure 3-12: Archimedean spiral search pattern.

under the right conditions and given a sufficiently large search interval a lawnmower-

type search may straddle a feature without detecting it (see Figure 3-13). In contrast,

a spiral approaches the search area at a continually changing path angle, thereby de-

creasing the likelihood that a distributed feature could go unnoticed.

Second and more importantly, for a given search interval a a spiral trajectory

covers a search area using a shorter path, thereby saving energy with a more efficient

search. Given that we wish to map an area A, the lawnmower search will cover the

area

A = XY (3.2)

with a path length of

S = X + Y (3.3)
27a

while the Archimedean spiral covers the same area

A = 7rr 2 2= ra22 (3.4)



Figure 3-13: A typical "lawnmower" survey pattern. Note that it is possible to miss a
linear feature under the right conditions. This can be corrected by either re-surveying
at a right angle to the initial survey or by decreasing the interval between survey legs.

with a path length of

S = a L(1 + 2)do = • V(1 + 1) + sinh-o1q 1 , (3.5)

(for large values of ¢,

S a.2).(3.6)

Comparing the area covered per unit distance traveled yields, for the lawnmower

survey
A XY 2 _ra (3.7)
S x(1 + 2j) 2roa + Y '

and for the spiral
A 7ra2 2A - - 2-a. (3.8)
S 202

Given the fact that Y is a search area axis and a is our search interval, we can

see that for any combination of a and Y such that a and Y are both nonzero (true

for any real world search situation),

2a > 2xa a . (3.9)

-- 0m-
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Figure 3-14: Improved trench..finder with spiral search directed feature reacquisi-
tion.

Hence a spiral search pattern is always more efficient than a lawnmower pattern for

a given area. Note that in the limiting case where Y >> a the two search patterns

approach the same relative efficiency.

The results of this improved trench.finder are shown in Figure 3-14. In this

mission, the vehicle succeeds in maintaining contact with the feature throughout the

life of the mission.

These improvements resulted in a robust, reactively-driven trench finder with the

ability to locate, track, and stay "within" a feature. However, as shown in Figure 3-

14, the reactive nature of the system resulted in oversampling of the feature in some

areas while undersampling in others. This is because as a purely reactive system

the trench finder has no way of differentiating newly discovered portions from those

already visited.
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3.7 Extending SCLC

In a pure state configured layered control system, the states are pre-defined before

the mission. This can lead to two key problems: 1) contingency planning and 2)

adaptability. Mataric observes that the solution to the former is to develop a system

whereby "reactive, constant-time run-time strategies can be derived from a planner,

by computing all possible plans off-line beforehand [77]." If the planner is sufficiently

thorough, then all possible states can be anticipated, and therefore the necessary state

will be available when required. This, however, leaves the problem of adaptability.

The vehicle mission shown in Figure 3-14 has sufficient states to address the basic

problem at hand, i.e. mapping the trench, but it is dependent on the random changes

in direction brought about by the behavior's reactive nature to move the vehicle

into unmapped parts of the feature. This is inefficient and prone to possible failure if

conditions are such that portions of the feature are never reached. A superior method

would be for the behavior of the vehicle to adapt to the feature to insure that all of

it is adequately mapped.

A sufficiently complex state table may be capable of performing this mission, but

it would have to be tailored to each feature and, given the assumption that there

is no a priori information available, would not be feasible under the constraints we

have placed upon the survey. What is required is a behavior which does not merely

change its output according to some pre-determined mapping function, but instead

changes itself in response to current and past sensory information, i.e. a behavior

which learns and adapts to the environment. This learning may take place within

the behavior or as a separate function. The output is then the result of planning on

the part of the behavior, based upon the current information and any predictions the

planner may make.

To accomplish this in the framework of the existing AUV layered control system,

the adaptive behavior was developed. Adaptive behaviors are behaviors which are

capable of adapting their output to the current environment based on information

obtained during the course of a mission. Unlike a more traditional behavior, an



Figure 3-15: Schematic of an adaptive behavior incorporated into a layered control
system.

adaptive behavior has (or has access to) memory, a capacity for planning and can

contain multiple states internally (see Figure 3-15). This capacity allows the behavior

to alter its output in response to the current situation while taking mission history

into account.

Adaptive behaviors are also, by design, encapsulated. This means that their

internal states and interactions are known in advance of their use, making them pre-

dictable in the field. By doing this, a user can employ sophisticated "canned" vehicle

competencies - with the knowledge of how they will function - without the need to

model multiple behavior interactions in the field. In keeping with the layered control

paradigm, the adaptive behavior is assigned a priority lower (less important) than

any safety behaviors that may be employed during the mission (e.g. power-monitor,

obstacle-avoidance, etc.). The output is restricted to vehicle heading, depth and

speed, while inputs are restricted to a few mission-specific global parameters.

As mentioned above, the memory of the adaptive behavior may or may not be

internal to the behavior itself (depending on whether we wish to share the information

with other behaviors). In either case, for the purposes of adaptive feature mapping

we will employ mission-specific memory in the form of a map of the exploration area

which is constructed and maintained during the course of the mission.



3.7.1 Mapping

To properly sample a feature, we need to insure that we explore as much of the

feature as possible in the time allotted. As shown in the previous section, while a

purely reactive system can be made robust, it lacks the ability to deliberately search

out unknown regions. To do this requires some form of memory ("I have been here

before").

To this end a mapper was designed and implemented. The function of the mapper

is to construct and maintain a data structure, or map, which represents the history of

vehicle activities related to the feature-relative search aspects of the mission. To be

useful to an autonomous vehicle, the map (data structure) must meet certain criteria:

* The map should accommodate different types of features extracted from a broad

range of sensor types. The map must be extensible so that new sensors can be

easily integrated into the mapping framework.

* The implemented data structure should be easy to search efficiently. This allows

for easy modification and updating and allows for the eventual use of prediction

based on current data.

* The data structure should be amenable to the use of multiple representations

of features. This allows for the possibility of map-based navigation using multi-

sensor modality (see Tuohy [111]) as well as the simultaneous use of both area-

based representations and feature-based representations.

* The map should include the ability to partition information. In particular we

wish to be able to differentiate between feature vs. non-feature and between

known vs. unknown regions.

These requirements can be satisfied with a form of grid-based representation. A

grid-based map has the advantages of simplicity and flexibility. A grid-based map

is easy to search and manipulate because matrix-based representations are natural

choices for implementation on computer systems; optimized search and sort routines

for n-dimensional matrices are commonplace. A grid is flexible because the nature



of the individual cells of a matrix-based representation is not fixed and can therefore

represent anything required, even including pointers to more extensive datasets.

The particular form of grid-based map we have employed is constructed in the

form of a multi-dimensional matrix. Thus, an [m x n x D] matrix can represent D

different [m x n] maps of a given region. Our matrix has at least D = 2 x s dimensions,

where s is the number of sensor modalities employed. For each sensor, one layer of

D represents the feature map while the second represents the visitaton map.

The feature map is the representation of the feature of interest as perceived by

the associated sensor type. It partitions the world into two categories: feature or no

feature. It makes no assumptions about whether the vehicle (or sensor) has visited

a given area or not other than maintaining an estimate of the sensor readings in a

cell determined to be feature. In the case of a bathymetric feature, the feature map

maintains the average depth in each feature cell.

The visitation map tracks all locations in the search area in which the associated

sensor has been employed. In the case of a point sensor such as temperature, this

corresponds to the vehicle location at the time of sensing. When the sensor can be

remotely employed (e.g. a scanning sonar), this will correspond to all areas where the

sensor has been active, which may or may not include the vehicle's actual track. Thus,

a horizontally employed conical sonar beam would (in the case of a two dimensional

visitation map) project into a fan-shaped structure overlaid onto the visitation map.

The visitation map partitions the world into visited regions and unvisited regions.

Just as with the feature map, unvisited cells are empty while visited cells contain

relevant information about that region. Note that the set of feature cells is a wholly

contained subset of the set of all visited cells.

If the feature is distributed in a three dimensional region (a thermal plume, for

example) then each map becomes an array of voxels rather than pixels. Extending

the map is a question of increasing the dimensionality D of the array, adding an extra

layer to account for each layer of voxels. Extensions of the same multi-dimensional

array search and update methods can still be employed, although they become much

more complex and time-consuming [122].



Figure 3-16: Trapping occurs in a simple trajectory generator when the target cell is
smaller than the AUV's turning radius. The solution is a more intelligent trajectory
generation and/or monitoring of vehicle progress.

The values of m and n are dictated by the dimensions of the search area and the

chosen cell size. The cell size is dictated by both the dimensions of the features being

sought and the spatial resolution of the sensor modality. In the case of a point sensor

mounted on a dynamically-controlled vehicle such as the AUV Odyssey, the turning

radius of the vehicle will influence effective sensor "spatial resolution." It is desirable

that the size of the feature be much larger than the vehicle's turning radius. In most

cases, the lower bound of cell size will be dictated by the dynamic capabilities of the

sensor platform.

In the case of our bathymetric feature mapper, the matrix is m x n x 2 where

the two maps are the bathymetric feature map and the bathymetric visitation map.

Because we are employing a sonar altimeter in search of trench-like features, our

visitation map is updated by vehicle location via the navigator. The feature map

logs all locations which the vehicle has visited and which meet the feature detector's

criteria for candidate trench-like features. The cell counts m and n are dictated by

the chosen survey area which have a characteristic cell size of 10 x 10 meters. This

size is generally set to be in excess twice the turning radius of the AUV to prevent

the problem of "trapping," which can occur in a simple trajectory generator if the

vehicle attempts to sample a small cell via the shortest path (see Figure 3-16). The

solution to this potential pitfall is the implementation of a more intelligent trajectory

generation scheme and/or monitoring of vehicle progress to catch such situations.



3.7.2 Waypoint generation

With a map available, the AUV now has a sense of history. If it knows where it

has been, then it can also plan where to go next. Using the map as it is created

allows the trenchfinder to make decisions about where more of a feature is likely

to be found, thereby improving the overall efficiency of the mapping operation. If all

of a feature has been found, trench.finder can then seek out more features in the

assigned area. These two functions are referred to as "locating more feature" and

"seeking new features."

The trenchfinder is designed to give preference to locating more of a known

feature based on those elements of a feature that have already been located. It does

so by creating a set of candidate cells {C}, which are those cells which are adjacent to

feature cells {F} and not members of the visitation cell set (V}. This is performed

via map superposition (see Figure 3-18). This set of candidate cells {C} are then

ranked according to distance and orientation relative to the AUV, with preference

given to those cells in the immediate path. In its present form, trenchfinder ranks

these according to a previously generated lookup table (see Figure 3-17). Each time

the adjacency map is updated the list of candidate cells is also updated and re-ranked

according to the current vehicle location and orientation.

If no more of a known feature is available, then trenchfinder will seek out new

features. This occurs when the list of candidate cells is empty ([C] = 0). Seeking new

features is performed by first setting the waypoint sub-behavior to proceed to the

center of the largest unmapped region. Upon arrival, the planner disables waypoint

and instructs the search behavior to execute a spiral search pattern until either a)

a new feature is found, or b) the spiral covers the area. If the vehicle completes its

spiral search without locating any new features, then it will proceed to the largest

remaining unmapped area in the search zone and repeat the process.



Figure 3-17: Sample pre-generated waypoint lookup table. In this particular table,
no special preference is given to any particular direction. Other lookup tables may
be biased towards one particular direction, resulting in the vehicle working its way
from waypoint to waypoint along that direction.

3.8 Implementation 3: trenchfinder

Our third implementation of adaptive region mapping, called the trenchfinder

behavior, adds mapping and planning to SCLC as discussed above. The adaptive be-

havior trench-_finder is incorporated into the AUV Odyssey layered control structure

as shown in Figure 3-15. There are two on-board maps, the visitation map and the

feature map. The visitation map is updated by the current vehicle data structure

while the feature map is validated by the trench_finder behavior.

The internal construction of the adaptive behavior trenchfinder can be thought

of as consisting of a supervisory planning state and eight internal states, many of

which alter their internal settings in response to the mission data and to the overall

mission goals (see Figure 3-20). Only one internal state is active at any time, with

the transition between states triggered according to the current vehicle location and

status of the on-board map. The states are:

initialize - Execution of trench_finder begins by reading in the global mis-

sion parameters from the mission script. These parameters include:

15 23 10 18 14

19 7 2 6 22

12 4 X 3 11

24 8 1 5 17

16 20 9 21 13



Visitation Map

Figure 3-18: Waypoint candidate generation process. The feature map on the upper
left tracks all known candidate features. The visitation map on the upper right
tracks all places where the vehicle has been. Candidate waypoints are determined by
examining the intersection of the two maps. bBsed on the assumption that natural
features are continuous, candidate waypoints are defined as those areas which are
adjacent to or near a known feature or features, but which have not yet been visited
by the vehicle. This list of candidate waypoints is then ranked, as shown in Figure
3-19.

Figure 3-19: Waypoints are visited by the vehicle in a sequence determined by a
relative ranking of the candidate waypoints. This ranking can be based on a lookup
table (see Figure 3-17) or based on a function of distance and location relative to the
current vehicle location and orientation.
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Figure 3-20: Internal states of the trenchfinder behavior.



north_lim, south_lim, east_lim, west_lim - Boundaries of the search area,

defined by the user in meters. The vehicle origin is set by the navigation

system (e.g. long baseline, dead reckoning).

searchmode - The type of search mode to be used by the vehicle when

attempting to locate features in the search zone. Modes available are spiral,

lawnmower, wagon wheel (i.e. radiating out from a point such as a hole in

the ice), rectangular, or a simple reactive search (i.e. set out at a random

heading until one edge of the search zone is reached).

searchcenternorth, searchcentereast - If the user wishes, a starting point

of the search may be explicitly defined.

searchinterval - The interval between legs of the search. Rectangular

searches use this interval directly while a spiral search uses 2w7 times this

interval.

detect_thresh - If the user has any a priori information about the feature

such as a threshold value, it is entered here.

detect-type - trench_finder can trigger off of slope, depth, or a combina-

tion of the two. Depth can be defined as a specific threshold or a range of

values.

delay - The behavior waits for sensor filters and settings to initialize and sta-

bilize before attempting to read and process the data structure.

transit - Transit causes trench_f inder to behave like a simple waypoint rou-

tine. Its function is to steer the vehicle into the survey area from the launch

point. If search_center coordinates have been specified, transit will take the

vehicle to that location, breaking off prematurely if a potential feature is dis-

covered and the vehicle is within the search zone. If no search coordinates have

been specified, then transit will take the vehicle to a point which is equidistant

from the narrower of the boundaries and that same distance from the western

or southern end (see Figure 3-21).



(a) East-West search zone (b) North-South search
zone

Figure 3-21: Initial search starting point determination. The starting point is set to
maximize the initial search efficiency in the even that features are few or non-existent.

survey - If desired, a coarse survey of the search zone may be conducted using

either the spiral or lawnmower survey patterns. This initial survey is intended

to seed the waypoint state with candidate initial search sites. The course survey

can be set by the user to be at a search interval of 10 to 100 times the standard

search interval.

search - The search state is the default trench_finder state whenever there are

no current waypoints available. A search is performed at the start of the mission

and at any point in the mission when no more candidate feature locations are

currently available from the waypoint state. The search type may be in the

form of a traditional lawnmower search, a simple rectangular box pattern, an

Archimedean spiral search (the default search state), or a wagon wheel search

which consists of multiple legs radiating out from a central starting point (e.g.

a hole in ice cover, a recharging station, or a communications buoy).

follow - When a previously unmapped feature element has been detected

trench.finder switches to the follow state. This state instructs the vehicle

to hold course until the feature is passed. Once the feature has been passed,
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the follow state switches to the waypoint state to acquire more of the new

feature.

waypoint - Waypoint is the primary active trench_finder state. This state

examines a list of candidate feature locations and chooses where to direct the

vehicle to go to next. Waypoint transitions to the follow state when a feature

has been detected. If no further candidate waypoints are currently available,

execution is passed back to the search state.

boundary - Boundary is a trench_finder-specific safety state. If the vehicle

passes outside of the search zone in the course of tracking a sensed feature or

searching for a new feature, waypoint will direct the vehicle back into the search

zone by setting a waypoint location centered in the search field. Transition from

this state occurs immediately upon the vehicle's re-entry into the search area.

All state transitions are governed by the planner supervisory state which monitors

the current vehicle state, location, and orientation. This information is combined

with the on-board maps to determine which state is appropriate at the moment. The

general sequence of state priorities is boundary (if the vehicle is outside the search

area), waypoint (if waypoint generation results in a nonzero waypoint list), search (if

no waypoints are currently available), and follow (if a feature is detected).

3.9 Results

Samples of the performance of the improved trench-finder are shown in Figures 3-

22 through 3-31. Figures 3-22 through 3-26 are of a mission conducted on November

20, 1996. Figures 3-27 through 3-31 are from a May 22, 1997 simulation of a different

part of the Charles River trench.

Figure 3-22 shows the vehicle track from the perspective of the entire basin. The

vehicle launch point was moved near the trench to simplify the examination of the

trench finding phase of the mission. In this mission the vehicle can be seen to locate

and map the entire main trench. In Figure 3-23 the vehicle path can be seen to make
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occasional excursions to what appear to be outlying locations. This is due to the

vehicle running out of "nearby" candidate locations and so it returns to less likely

candidate waypoints.

Figure 3-24 shows the vehicle's feature map. The "*" symbols denote the cells

which contain candidate features. Figure 3-25 is the visitation map of all cells which

the vehicle has sensed - in this case (with a downward looking altimeter) the vehicle

has also physically visited these cells. Finally, Figure 3-26 shows the union of the

two maps. The mission was halted before all candidate cells had been exhausted and

a new spiral search was begun. Note the unsearched cells (candidate waypoints) at

650 North by 840 East and all along the feature cells at 1140 East. We can see from

Figure 3-23 that there is more of the feature of interest (the 7 m contour) just to the

east, which we would expect to be found had the mission continued.

In Figures 3-27 through 3-31 the vehicle was launched south of the northeastern

trench. In this case the vehicle started the mission with a preliminary spiral survey

until it located a portion of the target feature. At that point, the vehicle began to

map the trench as before. In Figure 3-28 the vehicle path can be seen in more detail.

Note that the northeast trench is composed of two pits with a small saddle in between.

In this mission the vehicle has migrated from the first trench to the second during

the survey. Given sufficient time, we expect that it would have completed its survey

of the second part of the trench and returned to the first. Figures 3-29, 3-30, and

3-31 are the feature map, visitation map, and the combination of the two (as used by

the waypoint planner), respectively.

3.10 Related research

Two of the most important questions that have been asked in the field of behavior-

based AI (BBAI) are: 1) how to design behaviors? and 2) how can a behavior-based

approach be extended beyond simple reactive tasks (such as obstacle avoidance) to

more complex problems?

Bellingham and Consi [9] espouse the concept of state configured layered control
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Charles River sim mission vehicle path, simnov20_03
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(SCLC) to handle multi-phase missions and point out that the behaviors employed are

the same as those employed in the layered control scheme [14]. Their state configured

layered control approach is based on the use of multiple sets of simple behaviors

chosen from a central behavior library. Different sets are executed at each phase as

the mission unfolds. The advantage of this approach is the reduction in the number

of active behaviors at any time. This reduces, but does not eliminate, the interaction

issues found in any behavior-based intelligent control system.

Mataric provides a recent summary of the current state of the debate in BBAI [77].

She divides the intelligent control community into three main arenas:

Planner-based or deliberative strategies that typically rely on a central world

model to verify sensor information and generate actions [35, 47, 62, 84]. The

information in the central model is then used by a planner to determine a

course of action necessary to satisfy the vehicle's goals. Planners can be quite

powerful if sufficient time and information is available. Their chief drawback is

the inability to handle rapidly changing environments in a timely fashion [25,

26].

Purely reactive or bottom-up approaches embed the robot's control strategy

in a set of preprogrammed condition-reaction pairs, or "reflexes." Reactive

systems are characterized by no internal models, minimal state, and simple

programming. They are characteristically present-time only. They are favored

for their speed and have proven effective when the number of behaviors is low

and the problem can be completely specified at design-time. They are limited

during execution by their inability to store information dynamically.

Hybrid systems attempt to find a compromise between these two extremes. The

most promising approach has been to employ a reactive low-level system with a

planner-based high-level decision maker. This has resulted in a large an diverse

body of work, ranging from internalized plans [92] to contingency plans [36] and

many more. A common division of labor is to utilize low-level competencies to

handle immediate vehicle safety while the high-level planner determines the
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optimal action sequence to satisfy the mission goals [18].

A specific subsection of hybrid systems is the behavior-based approach. This

approach is closely tied to reactive systems but extends the function of an individual

component by endowing it with more than a simple lookup table or reflexive ability.

In contrast to a reactive component, behaviors can have some degree of "state" and

can therefore utilize various forms of state representation.

A criticism of behavior-based systems is that because the specific meaning of

what a behavior is has not been precisely pinned down, behavior-based systems lack

a rigorous set of definitions and an associated systems analysis. Further, this lack of

rigorous definitions makes it difficult to perform direct comparisons of the performance

of different systems. However, it is this same lack of rigid definitions that has allowed

so many ideas in so many forms and implementations to be attempted.

In spite of the criticism, there are elements that all behavior-based systems have

in common: 1) There is no centralized representation operated on by one control-

ling reasoner; representations are instead distributed among many different behaviors

or competencies and are maintained and updated in a distributed fashion. 2) All

behavior-based systems contain multiple separate behaviors, each of which functions

independently of the others. 3) The resulting vehicle actions are determined externally

to the behaviors, either through a prioritization scheme [10], a voting scheme [92], or

spreading of activation [74].

As Mataric points out

...the general constraints on behavior-based systems roughly mandate that

behaviors be relatively simple, incrementally added to the system, that

their execution not be serialized, that they be more time-extended than

simple atomic actions of the particular agent, and that they interact with

other behaviors through the world rather than internally through the sys-

tem [77].

This thesis draws on the current research in the field to propose a new form

of hybrid intelligent controller. In our case, the additional intelligence is not at
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some "higher level" but is instead embedded in the low-level behaviors in a restricted

fashion. Specifically, the issue of dynamic storing of information is directly addressed.

The intent is to endow a reactive system with the minimum level of intelligence

required to perform tasks which require dynamic learning of the environment. The

learning is embodied in the form of a continuously changing map of the environment

which is updated as required by the behavior itself. The result is a large increase in

vehicle capability and functionality through an incremental increase in the complexity

of the intelligent control system.

3.11 Summary

This chapter has described an intelligent control technique to perform adaptive region

mapping. The task of finding a trench in the Charles River was used as a case

study. Initial attempts to find the trench with a purely reactive system failed because

the AUV would easily lose track of the feature. A new implementation using state

configured layered control prevented the vehicle from losing the feature, but the AUV

could easily become "trapped," inefficiently revisiting the same terrain over and over

again, and failing to fully map the feature. To overcome these effects, a new approach

called adaptive layered control was developed and implemented. In adaptive layered

control, a behavior alters its own internal state in response to the sensed environment,

taking into account the mission history. It builds up a map of feature locations, uses

this map to generate candidate locations for other parts of the feature, and uses these

candidate locations as navigation waypoints.

The new approach meets the challenge posed at the outset of the chapter, demon-

strating the ability to track the Charles River trench. Given this capability, the next

chapter examines the robustness and efficiency of the technique in the presence of

navigation error and environmental disturbances.

115



Chapter 4

Robustness and Efficiency

In the previous chapter we developed a technique for adaptive feature mapping which

incorporates adaptive behaviors into the layered control paradigm. This chapter

examines the issues of robustness and efficiency. The key questions addressed are:

What is the effect of navigation error? How sensitive is the performance of the system

to the choice of internal parameters of the behavior? What metrics can be used to

analyze the effectiveness of the approach? And, can the efficiency of the search be

improved?

Robustness is addressed from both the feature-relative and global contexts. We

examine how well the system tracks a feature, as well as whether it can stay with a

feature in the presence of navigational uncertainty and environmental disturbances.

We also examine how these disturbances and internal parameters affect the overall

sampling strategy, and how this is reflected in the vehicle path.

Efficiency metrics are defined in terms of the amount of feature mapped per unit

time, total path length traveled, the amount mapped in comparison to a conven-

tional "lawnmower" survey of the same area, and how a given survey compares to

surveys with different parameters. The feature is reconstructed from mission data

and compared to contour maps generated off-line from the original data set.

Tradeoffs are demonstrated between overall robustness and efficiency, particularly

under poor navigation conditions and the influence of external forces. All tests are

performed in the Charles River basin simulation environment, using the 6 m and 7
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m contours as targets. These features are demonstrated in Figures 4-1 and 4-2. For

clarity, we present the contours in isolation when viewing vehicle results.

4.1 Performance metrics

The trenchfinder adaptive behavior is necessarily of complex construction. In the

field of intelligent control, the accepted method of determining the overall performance

of a system, the effects of parameter changes, and the sensitivity to system and

environmental disturbances is to extensively test the system over a range of parameter

settings and environment conditions. This need for extensive testing is due in part

to the wide range of intelligent controller designs in existence as well as the inherent

complexity found in an individual design. In the case of an encapsulated competency

such as trench-finder, which attempts to contain the task of sensing and reacting to

unknown features in an unknown environment within one element of a behavior-based

intelligent control system, this becomes a particularly complex and involved task. In

all cases, the goal is to determine the range and optimum levels of the behavior in

question, based on the environment, the mission goals, and the system parameters.

As Russell and Norvig [97] observe:

There is no accepted theory of architecture design that can be used to

prove that one design is better than another. Many theoreticians deride

the entire problem as "just a bunch of boxes and arrows."

We argue here that this lack of rigid metrics can also be viewed as an indication of

the relative infancy of the field, and of the breadth of opportunities and approaches

that this so-called "bunch of boxes and arrows" encourages.

In this section we will develop performance metrics and show how trench.finder

performs in comparison to a standard lawnmower-type survey. We then proceed to

examine the performance of the system in the presence of environmental disturbances.

Finally, we systematically alter system parameters and examine the effects of these

changes.
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Figure 4-3: Path of a lawnmower-type survey of the Charles River basin 7 m contour.
Mission time is 8 hours with an interval between laps of 10 m.

4.1.1 Comparison to a conventional survey

The most common method of surveying an unknown region is the "lawnmower" type

survey. This has many advantages when mapping unknown terrain: low maneuvering

demands (which is important for towed array systems), covers large swaths of terrain

quickly, and it is relatively easy to reassemble the swaths into a complete picture. If,

however, the goal is not to map a whole region, but to map a specific portion whose

extent is unknown beforehand then this may be relatively inefficient when compared

to a feature-relative approach. Figures 4-3 through 4-5 are a mapping survey of the

7 m contour, which we will compare to the mission of Figure 3-23.

The lawnmower survey of Figures 4-3 through 4-5 was an eight hour mission

designed to map the feature at the same density (every 10 m) as the trench.finder

mission. In the process, the survey covered a total path length of approximately 27.5

km. The mission successfully mapped approximately two-thirds of the trench before

the time ran out. In contrast, the trench-finder mission lasted 5 hours and mapped

the whole of the feature with a path length of approximately 14.3 km.

Using these surveys as a baseline, the metrics which we can employ are:
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Figure 4-4: Feature map generated by the lawnmower type survey shown in Figure
4-3.
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Figure 4-5: Amount of feature mapped (called "feature hits" during lawnmower sur-
vey of 7m contour as shown in Figure 4-3 (heavy line), vs. the vehicle mission shown
in Figure 3-23 (light line).
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* Survey path length relative to a lawnmower-type survey of the same duration

* Survey path length relative to the size/length of the feature

* Amount of feature found per unit time

* Amount of feature found per unit distance

These metrics and particularly direct examination of the vehicle path are used in the

following sections to gauge the relative and overall performance of the trenchf inder

under varying conditions and using different operational parameters.

4.2 Effects of navigation error and external forces

The form and effect of navigation error depends upon the type of navigation system

employed. For AUVs such as the Odyssey II, navigation is either an externally refer-

enced system, such as LBL or the WHOI SHARPS/SNAP system, or wholly internal

navigation system such as dead reckoning and/or INS. Externally referenced systems

such as LBL are susceptible to error due to missed beacon pings, multipath signals,

and even extraneous beacon signals from other arrays (see Vaganay, et al [117]). In-

ternally referenced systems are susceptible to unmodeled and/or unsensed external

forces on the vehicle and to unmodeled biases brought about by sensor miscalibration

or failure. Common sources of such undetected/unmodeled influences are sideslip

during turing maneuvers, vehicle fouling (e.g. kelp, rope, old nets, etc.), and external

currents. Common sensor errors are compass bias (mismounted compass, unmodeled

magnetic influences) and speed sensor bias (friction, limited dynamic range). We

examine each source of error separately in the following sections.

4.2.1 Navigation error

LBL navigation

Figures 4-6 and 4-7 show a mission with a 3 msec LBL beacon timing error. This

type of timing error is common in LBL systems in actual field operations, and poses
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actual vehicle trajectory simjunl4_02

400 500 600 700 800 900 1000 1100 1200
east (meters)

Figure 4-6: Path of the trench.f inder behavior with a simulated 3 msec LBL timing
noise. The path is not significantly affected. This noise level is typical of normal
expected field operations.

no difficulty here.

Dead-reckoning navigation

Figures 4-9 through 4-15 show the effects of heading and water speed sensor errors on

the trench-finder system. Figures 4-9 and 4-11 show the effect of a heading bias of

-1.88 degrees. This form of bias can be the result of an unmodeled influence on the

heading sensor or due to a mounting error during installation. Figures 4-13 and 4-15

show the effect of a water speed sensor bias of +17 cm/s. This is a very large offset

and would likely be the result of fouling of the sensor or due to excessive internal

friction (in the case of a mechanical water speed sensor).

Note that in both cases, the system continued to track and map the feature

successfully. Since the feature maps generated are based on the internal navigator,

the accuracy of the feature maps, especially Figure 4-14, have suffered in proportion

to the magnitude of the navigational error. However, if the error can be determined

a posteriori, this can be corrected in post processing. Alternatively, if the vehicle

is being tracked during operations, corrections can be made with the aid of this
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Figure 4-7: Feature map constructed by trenchf inder based on the on-board LBL
navigation system in the presence of timing noise of approximately 3 msec.

additional navigational data.
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Figure 4-8: Dead-reckoned path
of -1.88 degrees.

trench.f inder behavior with a heading bias

Ie trajectory simjunl2_01

east (meters)

finder behavior with a heading bias of -1.88
degrees.

125

DO

DO



Trench edgels simjunl2.01
900

oo800--

700 -.

0

500 ---

400 -

, l i i i i I i I I
400 500 600 700 800 900 1000 1100 1200

east (meters)

Figure 4-10: Feature map constructed with the navigational data from the mission of
Figure 4-9. Note the effect of the heading bias (particularly on the southern portion
of the feature) of the resulting estimated feature location.

4.2.2 External forces

Steady external forces which act upon the whole of the vehicle (such as currents) are

particularly hard to model and predict in a dead reckoning or INS navigation system.

This is due to the fact that the vehicle drifts along within the current itself. The

INS system cannot measure such a steady-state drift due to the lack of acceleration,

and a dead-reckoner which relies on a speed sensor that measures waterspeed relative

to the vehicle will similarly be mislead by the lack of relative motion between the

vehicle and the current as it drifts along. Navigation errors build up quickly when

the trench-f inder behavior relies solely upon such a dead-reckoning system. Figures

4-16 through 4-19 show the results of two area mapping missions in the presence of

an external current. Figures 4-16 and 4-17 show the effect of an unmodeled 15 cm/s

southerly current while Figures 4-18 and 4-19 show the effects of an easterly current.

In both occasions, the vehicle maintained contact with the feature despite the current.

In the case of Figures 4-16 and 4-17, the vehicle encountered what the dead-
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Distance between true and dr simjunl2_01

E

time (s)

Figure 4-11: The distance shown indicates the difference between
reckoner estimated position for mission of Figure 4-9.

dead-reckoned vehicle trajectory simjunl2_02
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Figure 4-12: Dead reckoned path of the trench..finder behavior with a water speed
sensor bias of approximately +17 cm/s.
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Distance between true and dr simjunl2_02

E

_m
"9

time (s) x 104

Figure 4-15: This distance measures the difference between actual and dead-reckoner
estimated position for mission of Figure 4-13. Note the significant impact the speed
sensor has on total error, as compared to Figure 4-11.

reckoner believed to be the northern edge of the search area. At that point the

vehicle stopped its northward progress, allowing the current to push it off of the map.

Figures 4-18 and 4-19 show the vehicle attempting to map an area while drifting in

a 15 cm/s easterly current. The vehicle maintains contact with the feature, but is

gradually pushed across the feature to the east each time it travels in a cross-current

or along-current direction.

In Figures 4-20 and 4-21 the vehicle is again subjected to an easterly current of 15

cm/s. This time, however, the vehicle is attempting to map the 7m contour only and

not the entire feature. The resulting true vehicle path shows the vehicle "dwelling" on

one particular contour while the dead reckoned path shows that the vehicle believed

itself to be gradually working its way westward. It maintained position until the

dead-reckoning (DR) system determined that it had reached the western edge of the

search area (200 m E). At this point trenchf inder began to search adjacent areas,

which allowed the current to gradually push the vehicle off of the map to the east.
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Figure 4-16: Actual path of vehicle attempting to map region contained by the 7 m
contour using dead reckoning in an unmodeled 15 cm/s southerly current. Vehicle
was moving with a speed of 1.0 m/s.

Figure 4-22 shows the effect of an external easterly current on trench-finder

when it employs an LBL navigation system. The external navigation array allows the

vehicle to track its position relative to the beacons, thereby countering the effect of

the current.
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dead-reckoned vehicle trajectory simjunO3_07
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Figure 4-17: Dead reckoned path of vehicle attempting to map a region contained
by the 7m contour in an unmodeled 15 cm/s southerly current. Vehicle was moving
with a speed of 1.0 m/s. Note that because of the current, the dead reckoning system
had calculated that the vehicle had reached the northern limit of the search area
(1600m north). This resulted in the vehicle drifting to the south with the current as
it mapped what it believed to be valid adjacencies to the east and west of the feature.
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actual vehicle trajectory sinjuno3o8B
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1200

Figure 4-18: Actual path of vehicle attempting to map region contained by the 7m
contour using dead-reckoning navigation in an unmodeled 15 cm/s easterly current.
Vehicle was moving at a speed of 1.0 in/s.

dead-rackoned vehicde trajectory aimjunO3OB

800
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1200

Figure 4-19: Dead reckoned path of vehicle attempting to map region contained
by 7 m contour with an unmodeled 15 cm/s easterly current. Note that the vehicle
believed it was working its way westward while in f&ct it was being displaced gradually
eastward by the current.
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actual vehicle trajectory simjunl 1_02
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Figure 4-22: Path of the trench-f inder behavior with a simulated 3 msec LBL timing
noise and an easterly current of 10 cm/s. Note that the path is not significantly
affected by these disturbances. This noise level is typical of normal expected field
operations, while the currents are slightly faster then those found in the Charles
River basin.

deed-reckoned vehicle trajectory simjunl 1_02

east (meters)

Figure 4-23: Dead reckoned vehicle path of the mission of Figure 4-22.
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Distance between true and dr simjan29_24
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Figure 4-24: Error growth in dead reckoning navigation system for mission shown in
Figure 4-25. Note that while the dead reckoner believed the vehicle was approximately
350 meters away from the true position, the vehicle itself had actually lapped the
feature and was working its way around the feature for a second time.

4.2.3 Combined navigation and external current error

Figures 4-25 and 4-26 show the combined effects of a -1.1 degree heading bias, a 5 cm/s

speed sensor bias, and an external current of 0.4 cm/s N, 11 cm/s E. Mission duration

was 8 hours 20 minutes, starting at [800 E, 700 N] and finishing at approximately

[450 E, 400 N], traveling a total path length of 24.5 km. While the dead reckoning

navigation system showed steadily increasing error, the actual vehicle path overlapped

the original path for the last portion of the mission, showing trench._finder's ability

to maintain contact with a feature despite disturbances.

4.3 Parameter sensitivity

As discussed previously, there are several operational parameters which can be ad-

justed to alter the performance characteristics of the trenchfinder behavior. In this
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Figure 4-25: Actual vehicle path from mission combining a heading bias of -1.1 de-
grees, a speed bias of -5 cm/s, and an external current of 0.4 cm/s N, 11 cm/s E. The
vehicle started its mission at [800 E, 700 N] and ended at approximately [450 E, 400
N].
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Figure 4-26: Dead reckoned vehicle path from mission shown in Figure 4-25. Note that
while the dead reckoner navigation error continued to increase, the trench-finder
behavior continued to successfully map the feature.
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section we proceed to examine the sensitivity to and effects of varying the parameters

of the trench_finder behavior under various simulated conditions. Throughout all

cases, the default settings are the same (as shown in Table A.1) unless specifically set

otherwise.

4.3.1 Map cell size

Varying the on-board map cell size has the effect of trading resolution for area covered

in a given time. This is not surprising given the fact that a larger map cell size

increases the pixelating effect that any cell-based map will have. When choosing map

size the user must balance the conflicting concerns of the vehicle dynamics, desired

feature resolution, time or energy available for the mission, and the desired area of

coverage.

Figures 4-27 through 4-32 illustrate the effect of cell size on vehicle path. Each

vehicle mission has the same operational parameters, boundaries, initial conditions,

and environmental factors, but uses a different internal map cell size. Figure 4-27

shows the resulting mission when the map cell size is 20 x 20 meters. The vehicle

path covers a large area quickly and relatively coarsely. The corresponding feature

map generated is therefore also coarse, but gives some indication of the extent of the

feature. Such a cell size (or larger) would be desirable if the desire is to locate several

features over a large area within a limited time.

Figures 4-29 and 4-30 shows the standard 10 x 10 meter cell survey. This "stan-

dard" cell size was chosen as a compromise between the level of resolution and the

rate of coverage. Figure 4-29 shows the vehicle path, while figure 4-30 shows the

resulting feature map.

Finally, Figures 4-31 and 4-32 show a mission using a cell size of 5 x 5 meters.

This results in a slow but detailed map of the feature, as seen in Figure 4-32. For

a non-holonomic vehicle such as the Odyssey II, smaller cell sizes create a need for

a more thoughtful approach to the problem of path planning. This is particularly

important when the desired cell size is less than the turning radius of the AUV being

employed.
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Figure 4-27: Vehicle path resulting from a map cell size set at 20 x 20 meters. In
this mission the vehicle is mapping the 7 m contour line in the Charles River Basin.
Mission time was 2 hours and 40 minutes.
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Figure 4-28: Feature map resulting from a map cell size set at 20 x 20 meters.
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actual vehicle trajectory simmay29_01
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Figure 4-29: Vehicle path resulting from a map cell size of 10 x 10 meters. As with
Figure 4-27, the mission was 2 hours and 40 minutes long. The resulting vehicle path
covers less of the feature, but at a higher level of detail.
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Figure 4-30: Feature map resulting from a map cell size set at 10 x 10 meters.
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actual vehicle Irajectory simmay29_03
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Figure 4-31: Vehicle path resulting from a map cell size of 5 x 5 meters. As with
the previous two examples, the mission duration was 2 hours and 40 minutes long.
However, in this mission the cell size was set to 5 meters. The resulting vehicle path
is a more detailed sampling of a smaller portion of this particular feature.
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Figure 4-32: Feature map resulting from a map cell size set at 5 x 5 meters.
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Charles River Simn Mission Vehicle Path, sinleb24_06

C

east [m]

Figure 4-33: Close up of vehicle path from a contour-based search mission.

4.3.2 Region vs. contour search

The trench-finder behavior can be set to search for and map either contour-based or

region-based features. Region-based mapping is desirable when detailed information

about a body, such as the interior structure of a trench or a high-salinity region, is

desired. Conversely, trench-.finder can also be instructed to avoid specific regions,

such as areas of high temperature gradient (particularly useful for a polymer-hulled

vehicle near thermal vent fields). Figure 4-33 shows a contour-based mission, while

Figure 4-35 shows a region-based mission. The corresponding feature-maps are shown

in Figure 4-34 for the contour mission and Figure 4-36 for the region-based mission.

4.3.3 Search zone

Figure 4-37 shows what happens if a feature is bisected by the limits of the search

zone. In this example the white line indicates the limit of the valid search area. The

vehicle is launched at [700 N, 500 E] and is instructed to start searching to the east.

It quickly locates the feature and begins mapping until it reaches the search zone

limit. It then turns back into the search zone and proceeds to locate and map that
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4-34: Feature map generated by trench..finder on the contour-based mission
in Figure 4-33.

Charles River Simr Mission Vehicle Path, siman30O01
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Figure 4-35: Close up of vehicle path from a region-based mission.
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Figure 4-36: Feature map generated by the region-based mission shown in Figure
4-35.

portion of the feature which is accessible without leaving the assigned search area.

4.3.4 Waypoint selection

Lookup tables

The performance of trench-finder can be altered by changes in the pre-compiled

lookup tables used to rank the sequence of available candidate waypoints. As an

example, a waypoint set which favors a consistent directionality is shown in Figure

4-38. The lookup table set is designed to favor consistent progress around a feature

along the general direction the vehicle is currently heading. The result is that if

the vehicle begins to map a feature in a particular direction (in this case, generally

clockwise), the lookup table set will continue to favor this.

In contrast, a lookup pattern which encourages a more arbitrary selection of way-

points (such as the lookup pattern shown in Figure A-1) results in a more "random"

search. The difference between the two can be seen by comparing Figures 4-38 and
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Figure 4-38: Close up of vehicle path from a mission using a lookup table which
favors a particular directionality. In this mission, progress which leads the vehicle
along its current general heading is favored. This mission mapped the 6 m contour
in the Charles River basin.

4-39. In Figure 4-38, the more directional lookup table resulted in a path which

gradually worked its way around the main feature, but missed the smaller detached

features in the process. In FIgure 4-39, the non-directional lookup table resulted in

more exploration in the immediate area, which resulted in less exploration of the main

feature but more of the nearby smaller features being discovered.

Cost function

We can replace the pre-compiled competence of the lookup table with a cost function

that compares the relative merits of each candidate waypoint. The question then

becomes what to use as a cost metric? The metric chosen should reflect some impor-

tant aspect of the vehicle, its performance or its environment, which we wish to keep

to a minimum. This can be any individual characteristic of the vehicle, the sensed

environment, or some combination of these.

In the case of the AUV Odyssey II exploring an unknown region, our desires are
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actual vehicle trajectoty simjunO5OS

300 400 500 600 700 800
east (meters)

900 1000 1100 1200 1300

Figure 4-39: Close up of vehicle path from the same mission as in Figure 4-38 but
using a lookup table which does not favor any particular direction. The vehicle makes
less progress around the feature, but the non-directional design of the lookup table
causes it to explore the surrounding area more. This results in more of the smaller,
isolated features being discovered early in the mission. This mission mapped the 6 m
contour in the Charles River basin.
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that the vehicle acquire as much information about the feature as possible within the

limitations of the available power supply. Furthermore, in the event we are relying on

a dead-reckoning system, we wish to minimize the error buildup in the DR navigator.

It is the nature of non-holonomic, dynamically controlled underwater vehicles to

slow down and side-slip when turning. This makes such maneuvers undesirable from

the perspective of both dead-reckoning navigation and the desire to cover the maxi-

mum path length over the feature in the time allotted. A cost function which penalizes

turning would therefore be desirable. However, a function which only penalizes turns

would result in a vehicle which always ignores potential features to either side in order

to avoid turning to explore them. Clearly there must also be a cost associated with

traveling too far in a straight line as well. We have therefore chosen the cost function

W = mmin a(X - Xveh) 2  (Yp - Yh )2

+ Oveh - tan-' ( p - Yveh (4.1)

where a and / are weights which alter the relative cost of turning vs. distance to

candidate waypoints. When using the cost function, the vehicle determines where to

go next by compiling a list of candidate waypoints as explained in Section 3.7.2. It

then ranks these candidates by cost value W, low to high, and proceeds to visit each

waypoint in sequence. Every time the on-board map is updated, the list of candidate

waypoints is regenerated. When all candidate waypoints are exhausted, the vehicle

begins to search for new features using a standard spiral pattern. Searching is not

subject to cost-function calculations.

The results of this cost function are shown in Figures 4-40 through 4-43. Figure

4-40 shows the basic waypoint-directed search. Figure 4-41 shows the same search

using a cost function where the ratio of the weights a and / is 1:1. Figures 4-

42 and 4-43 use weighted heading to distance ratios of 50:1 and 1:50, respectively.

As expected, penalizing heading over distance results in a search with fewer overall

heading changes, while penalizing distance over heading changes results in a survey

which stays close to the initial point of contact with the feature.
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actual vehicle trajectory simjun13_05

0

east (meters)

Figure 4-42: In this mission, the ratio of heading to distance is 50:1, making turning
very "costly" when ranking waypoints. The resulting vehicle path shows much longer
stretches between turns as the vehicle attempts to avoid the more expensive act of
turning.
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Figure 4-43: Here the ratio of heading to distance is 1:50. Turning is therefore not
as costly as in Figure 4-42, resulting in shorter "runs" over the feature and more
frequent changes in heading.
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Adjacency search radius

Figure 4-29 shows a mission conducted with a search radius of r = 2 cells. Figure 4-44

shows the effect of decreasing the radius of the adjacency search from two cells to one

in the same mission (all other parameters are kept constant). The effect of reducing

the radius of the adjacency search is to reduce the number of candidate waypoints

relative to each known feature. An increased search radius results in more candidate

waypoints to be investigated around each known feature element and therefore more

mission time being spent on a thorough search around each feature element, resulting

in a less general search of the total assigned region. Reducing the search radius (and

corresponding number of candidate cells surrounding a known feature cell) results in

a less thorough search of any given feature cell's surroundings, and consequently leads

to a more dispersed search overall.

Figure 4-44 shows the vehicle path when searching for the 7 m contour in the

Charles River basin, using a search radius of r = 1. This means that only waypoints

which are immediately adjacent to a known feature cell are considered. Fewer poten-

tial waypoints to visit mean that the vehicle executes more frequent spiral searches.

4.4 Summary

In this chapter we have examined the adaptive feature mapper from the perspective

of overall efficiency and robustness. A set of metrics were developed which allowed us

to compare the effects of environmental, system, and parameter changes. The effects

of these changes were presented to demonstrate the overall and relative efficiency of

the adaptive behavior trenchf inder.

In the next chapter we explore the possible extensions to the current approach,

how these extensions can be implemented, and what their potential applications may

be. In particular we explore the effects of moving and/or time-evolving features,

multiple vehicle tactics, using previously explored features as navigation aids, and

the extension of this navigation paradigm into the realm of concurrent mapping and

localization (CM&L).
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Figure 4-44: Vehicle path resulting from mission with search radius r = 1. In this
mission, the vehicle has a search radius of r = 1. This results in fewer potential
waypoints and thus the spiral search pattern is invoked several times to acquire more
feature elements. Compare to Figure 4-29, with a search radius of r = 2.
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Chapter 5

Extensions

This chapter takes the system designed and presented in Chapters 3 and 4 and pro-

poses improvements to the feature relative navigator, the simulation environment,

and extensions into the three principal research areas of navigation, mapping and

intelligent control. We also examine extensions into the realms of dynamic features,

feature identification and concurrent mapping and localization.

5.1 Extensions to the feature relative navigator

In Chapter 1, we motivated our interest in feature relative navigation with three

scenarios. The first, mapping multiple bathymetric features in an unknown environ-

ment, was the primary focus of this thesis. We now examine the issues involved with

extending the results of this thesis into the realm of dynamic features (Scenario 2)

and into different sensor modalities (a necessary step towards Scenario 3). We also

discuss the benefits of improved map representations and the effects of uncertainty

as well as the changes that can be made to accommodate these effects.

5.1.1 Dynamic features

This thesis focused on bathymetric features for reasons of repeatability, testability,

and proximity:
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Repeatability - bathymetric features are static and therefore repeatable during

tests. This insures that any changes to vehicle behavior are due to changes in

the intelligent controller and not in the environment.

Testability - the assumed vehicle of opportunity is an Odyssey IIb class AUV.

Besides mission-specific sensors, this type of AUV is equipped with a standard

sensing package of X-, Y-, and Z-axis accelerometers, heading sensor, pitch &

roll sensors, a depth sensor, and a sonar altimeter. The presence of this de-

fault package is sufficient for bathymetric measurement operations, regardless

of any other mission packages the vehicle may be carrying. Since the sensors

are present and operating during all missions, the trench._finder behavior can

be run and tested in the background during any mission of opportunity with-

out being given the priority necessary to control the vehicle. This allows the

behavior to be field tested whenever the opportunity presents itself.

Proximity - we have shown that the Charles River has interesting topography

and it is also close to MIT, making it a convenient and desirable testing facility.

Indeed, Dr. Harold Edgerton regularly used the Charles River basin for acoustic

testing [41, 42].

We now examine the issues involved with locating and tracking dynamic features

in the ocean environment. To clearly list and examine the issues involved, we will

decompose the problem of dynamic features into a series of steps of increasing com-

plexity. These steps are moving rigid features, simple changing dynamic features, and

complex changing dynamic features. Of the three, moving rigid features is the most

interesting. This is because it is both a necessary and important foundation for the

second and third steps, and also because it is of interest and use in itself.

Moving rigid dynamic features has a real-world analogue in the problem of locat-

ing and tracking a man-made object in the ocean. A specific example is locating and

tracking a submarine or surface vessel with a magnetic sensor. In Section 1.1.2 we

discussed a simple dynamic feature tracking scenario and showed the ability of the

trenchfinder adaptive behavior to track a rigid feature while subjected to an ex-
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Figure 5-1: Path of trenchfinder attempting to track a feature as it drifts to the
north at 0.01 m/s.

ternal current, causing the vehicle to drift over the feature (see Figure 4-18). We now

reverse the situation and attempt to track a "drifting" rigid feature in the absence of

a current. Early work with a dynamic feature has shown that the vehicle is capable of

tracking a slowly moving feature using the present software configuration, as shown

in Figure 5-1. However, the resulting map generated by the vehicle (which assumes

a non-moving feature) is meaningless since the vehicle map assumes static features.

What is needed is a method of reliably tracking a moving feature while at the

same time maintaining a relatively accurate map of that feature and its location in

the world. To perform this task, the vehicle must be capable of not only tracking a

feature, but also predicting where that feature will be in the future. This insures that

the vehicle will extend its search in the appropriate direction if or when the feature is

lost and needs to be reacquired. To predict where a given feature will be, the vehicle
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must have more information about the feature. This means that in addition to the

characteristics of the feature, the FRN must also have some internal model of the

feature and its expected behavior.

Model-based adaptive feature mapping

In the moving feature example above, the current FRN was shown to be able to

track simple, slow-moving rigid features. This capability will quickly break down in

situations where the vehicle turns the opposite way from the direction of travel of the

feature or when the moving feature travels into regions already considered mapped

by the vehicle. This is due to the fact that the FRN assumes static features and

therefore treats those portions of the moving feature, whether visited before or not,

as portions of a larger static feature. In addition, the FRN assumes the feature to

be static. Therefore, if the feature moves into areas considered already mapped, the

vehicle will cease to follow the feature because the map would have indicated the area

the feature is entering to be known and hence no longer of interest. To solve this

problem we need to take the concept behind the adaptive feature mapper to the next

logical step: model-based feature relative navigation.

In Chapter 3 we showed the evolution of the adaptive feature mapper from a simple

reactive behavior to a multi-state reactive behavior and finally to a behavior which

incorporates the concepts of mapping (memory) and path planning (prediction). The

prediction capability of trench-finder is optimized for static features. It is designed

to predict where more of a given feature may be found based on the current knowledge

available. From another perspective, we can observe that the adaptive feature mapper

determines where more of a feature may be located by using an internal model of the

feature. In the case of trench_finder this model makes the following assumptions:

1) the feature is static and 2) the feature is continuous. It uses these assumptions to

make predictions about where to look for more of a feature.

In the case of moving features, the type of feature can be extended by the addition

of motion, at first as a rigid body, but eventually we will wish to alter the overall shape

and volume as well. This new feature definition requires a corresponding addition to
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the feature relative navigator in the form of an explicit predictive model. The new

model-based adaptive feature mapper will then use this on-board model of a feature

to predict what will be the best path to follow in order to locate and sample more of

a moving, changing feature. This model may be as simple or as sophisticated as we

wish, incorporating any dynamic information or sensor data prediction capabilities

that may be required. For example, in order to track a thermal plume rising from a

vent field, we load a model of a thermal plume into the vehicle. This model will then

take the sensory information as it becomes available and predict what temperature,

gradient, and motion might be expected - based on the data obtained thus far.

The vehicle then uses these predictions to locate more of the feature, which in turn

improves the accuracy of the predictions.

For a model-based adaptive feature mapper to be successfully employed in the

FRN, we first need to extend the cost function currently installed by making utility

an explicit part of the system. It is currently implicit in the form of the candidate

waypoint cell list. All cells in the list are presumed to have an equal relative utility,

thus making the cost of visiting each cell the deciding factor. Combining cost and

utility directly allows us to make net-utility calculations based on the feature model

and its predictions. The new adaptive feature mapper then chooses where to go next

based on the net utility of each cell.

This would be done by first predicting the most likely locations where the moving

feature might be found and indicating these locations in the on-board map. The like-

liest locations would then have the highest utilities, making them the most attractive

locations to visit. This utility would then be balanced against the cost of visiting each

cell, yielding a net utility which could then be used to determine which cells should be

visited and in what order. As new information about the world is obtained, cell util-

ities and costs would be re-ranked, thereby keeping the vehicle continually updated

about where to go next.
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5.1.2 On-board map improvements

The current on-board map uses a cell-based representation of the world because of its

ease of use and expandability. However, by pixelating the world, we are also sacrific-

ing detail. We can avoid this loss of detail at the expense of increased processing load

by incorporating a feature-based representation (the "high-level" representation dis-

cussed in Section 2.3) of the world in addition to our cell-based map. Feature-based

maps require more processing capacity since they do not store positional information

explicitly, as in a cell-based map, but they are more versatile in that each feature can

be assigned point-specific values, such as positional uncertainty or relative utility.

If we wish to know whether to visit a given cell, we take the utility of each of the

objects in the area and spread their utility over the area defined by their associated

positional uncertainties. We then deduct the cost of visiting that cell and thereby ob-

tain the net utility of visiting any given cell. This results in a net utility for each cell

which we then treat in the normal fashion. This positional representation also relates

back to the concept of model-based feature representation. As our on-board model

makes new predictions about the location of target features, those new positions (and

any associated changes in uncertainty) can be fed back into the utility calculations

by updating the information about those specific features. This new information is

reflected in the next round of relative utility calculations.

This concept of spreading the net utility over a set of cells ties back into the

concept using a metric of merit (such as a confidence value) which is distributed over

the map. This is analogous to the idea of using relative uncertainty, as found in

Stewart [107]. The important difference being that since the utility and positional

uncertainty is tied to each specific feature, it is not cumulative over the life of a cell

and therefore each feature and its associated positional uncertainty can be separately

tracked and calculated. The advantage to this is that new information about a specific

feature (such as reducing positional uncertainty) will result in a more accurate map

every time it is regenerated. The drawback is that by keeping each feature separate,

we are forced to recalculate the net certainty and/or utility for each map as required,
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which increases the computational load on the vehicle.

5.1.3 Other sensor modalities

The FRN system presented in this thesis was developed with the assumption of a point

sensor mounted on a non-holonomic autonomous underwater vehicle. This assump-

tion was made to facilitate the development of an FRN which would be applicable

to the broadest class of sensors (such as magnetic, gravometric, thermal, and salinity

sensors) and vehicles of opportunity (survey-class AUVs).

If we relax this assumption and assume the use of sonar as the sensing modality

of choice, then we can exploit the remote sensing capabilities of a steerable sonar

beam to improve the performance of the FRN system. Doing so offers the advantages

of improved vehicle trajectories - the vehicle does not need to be at the sensing

location in order to obtain information about that point in space. This reduces the

maneuvering requirements of the AUV which reduces both power consumption and

error growth rate in dead reckoning brought about by unmodeled motion during

turning maneuvers.

The cost of such sensing systems are a) the increased power requirements of the

more capable sensing systems and b) increased processing requirements brought about

by the larger dataflow from the sensors. If the processing and power capacities are

available, then the approach presented in this thesis can be extended to accommodate

such systems by incorporating the sensed location relative to the vehicle, taking into

account any positional inaccuracies or averaging brought about by the type of sensor

modality employed.

5.1.4 Relocation

There is a large body of existing work using point-type features for the purposes of

relocation. We propose a method of navigation using distributed natural features;

both contour-based and area-based. Key parts are locating and identifying these

features so that they can be used. Assuming the FRN system is directed to map
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static features, it may also be usable as an aid to navigation for systems such as INS

and dead-reckoning. In Section 1.1.3 we presented the idea of relocation, using the

reacquisition of a previously mapped feature to limit the growth of navigational error

in a vehicle relying on an inertial navigation or dead-reckoning navigation system.

The method of relocation depends upon the type of feature being detected. As

mentioned in more detail in Section A.1, we can divide our approach to features into

two classes: region-based and contour-based features. The type of feature directs not

only how it is initially mapped, but also how it can be reacquired at a later time and

how to efficiently direct the vehicle once the feature has been located.

In all cases, the initial mapping is conducted as presented in Chapters 3 and 4.

Once the feature has been mapped, however, it can be considered a priori information

from the perspective of reacquisition. This means that a more carefully planned strat-

egy can be employed when reacquiring the feature for the purposes of reidentification

and navigational reset.

An example is the mission shown in Figure 5-2. In this mission, dead-reckoning

navigational errors resulted in the vehicle remapping a previously mapped portion of

the feature. The resulting dead-reckoner-derived contour line is shown in Figure 5-3.

Note that the portion of the contour line which has been remapped contains portions

which are recognizable as the same feature; specifically the westernmost portion of

the feature which is again mapped at the final, southernmost, portion of the mission

(for reference purposes the reader is directed to Figure 4-25 for a view of the actual

vehicle path). A human can quickly identify this portion of the contour as being

the same place. The goal then is for the vehicle to also make such an identification.

Having done so, the navigational error can be correspondingly reduced.

Learning directed relocation

When attempting to reacquire a feature, the vehicle can use prior information to

direct the search to re-map an area. A given pair of feature (or feature/adjacency)

cells will be somewhat unique. A larger set of cells is even more unique (this is the

basic idea behind the TERCOM navigation system mentioned in Section 2.2.4). The
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---------- ----__ ----------------- ---- b

(a) Tracking a high-curvature contour (b) Tracking a low-curvature contour

Figure 5-4: A priori knowledge of the feature allows for prediction of the relative
curvature of the contour, thereby enabling the intelligent controller to generate a
more efficient contour tracking path. In these figures, the solid line represents the
feature and the dashed line represents the vehicle track.

vehicle can then perform a pattern match of the cells to the map and generate a list

of candidate sites where such sets of feature cells exist. Using this list enables the

controller to predict the likeliest candidate cells to visit next to confirm or eliminate

a possible matching region or feature. This progressive template matching continues

until the feature is uniquely identified or determined to be a new feature.

Consider a case of a region-based feature: the vehicle is attempting to relocate a

trench and approaches the area where a previously mapped trench is believed to exist.

Upon sensing the first feature cells, the vehicle confirms that it has indeed reached

one side of some trench, but with no idea where along the trench yet (or even if it is

indeed the correct trench). Using the feature map gathered earlier in the mission, the

intelligent controller can then direct the vehicle to cross the trench from one side to

another and compare this cell-profile set to all possible profile sets for that particular

trench. If a match is found, then the vehicle has been relocated. If not, then the

feature may be new or some mapping error may have occurred. In either case, more

information about the trench is required and so the controller directs the vehicle into

a mapping of the entire feature.

If the feature is a contour, the vehicle can exploit its prior information about the

local curvature of the contour in order to facilitate a more efficient feature sampling

path (see Figure 5-4). Once the contour has been sampled, local extrema of cur-

vature are extracted and compared to equivalent regions on the previously mapped

contour [72, 81].
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5.2 Improvements to the simulation environment

The current simulation environment is designed to model bathymetric features as

observed by a single downward-looking sonar altimeter. The datafile employed can

be either a Delaunay-triangulated file, a regular grid of depth values, or an array of

[X,Y,Z] coordinates. Other sensors modeled include temperature and salinity sensors.

Both of these sensors are based on a simple stratified ocean model (i.e. a "layer

cake" model). Improvements to the FRN system will necessitate improvements to

the simulation environment.

5.2.1 Improved sonar model

Earlier in this chapter we discussed the potential advantages of sonar as a remote

sensing modality which would enable the FRN to map a feature with reduced maneu-

vering requirements. Testing this capability in simulation requires additions to the

simulated environment and sensors.

The environment simulation, as implemented, assumes a single downward looking

sonar altimeter. This is accomplished by simulating the mounting location and ori-

entation of the sonar on the vehicle and taking into account the vehicle orientation in

space, the sonar beam pattern, and the geometry of the bottom where the beam in-

tersects the bottom model. We can implement the tools necessary for a sonar-specific

FRN by first implementing a multiple fixed-sonar model, such as an obstacle avoid-

ance (O/A) sonar arrangement, followed by a model of one or more steerable beam

models.

The O/A sonar model has already been implemented but remains unused. This

model exploits the primitives established by the single sonar altimeter model, but

changes the mounting location and orientation of the sonar. Using this method allows

any number of pencil-beam sonars to be mounted at any position on the vehicle.

Extending this model to a scanning-beam sonar is somewhat more complex.

While the mounting of a scanning beam can simply be modeled as a time-varying

positional mount of a standard fixed-beam sonar, there is potentially a difference
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in the beam pattern and its representation. Adequately modeling the physics of

a mechanically scanned pencil-beam sonar can be done with only small extensions

to the pencil-beam model currently employed. An electronically-scanned sonar is

somewhat more complex in nature and requires a more detailed acoustic model than

the simple model currently installed. Fortunately, such sonars are well understood

and have been adequately characterized for use in simulation environments. There

are therefore no obstacles to the development of a more detailed acoustic model, if

desired.

5.2.2 Dynamic features

A simple dynamic feature in the form of a drifting trench has already been incorpo-

rated into the bathymetric model. This addition is only useful for representing one or

more linear trenches moving in a simple planar field. The next step is to replace this

simple rigid feature with a more dynamic one. This can be accomplished in two steps.

First, the simple trench must be replaced with a feature which can alter its shape

and size over time. As a first approach this can be a simple geometric feature. This

allows us to describe the feature as a set of vertices with trajectories associated with

each vertex. The moving vertices can then be set to move as a group (representing

a rigid object such as a submarine, a ship, or a whale) or each vertex can be set

to move independently (representing a simplified form of a more complex spreading

phenomenon, such as an oil slick). It is believed that this model will be of use in the

development of several FRN improvements, such as model-based feature tracking,

feature re-recognition, and uncertainty representation.

Having done this, the next step is to replace the simple geometric model with

a more realistic, three-dimensional model. Such representations could be derived

from oceanographic models, such as the thermal/saline mixing model used in the

HARO Strait/PRIMER experiment [43] or even spreading models currently used to

predict the growth and distribution of oil slicks. These models are necessarily much

more complex, requiring a more powerful system to calculate and feed the necessary

sensory information to the vehicle in a timely fashion. However, it is believed that

165



such concerns would not be significant in relation to the potential benefits.

5.3 Summary

This chapter examined potential improvements to the FRN system as presented in

this thesis. The two principal areas of potential improvement are the feature relative

navigator itself and the environmental model used for development.

Extensions in the FRN include dynamic features, model-based representations,

multiple map modalities (both cellular-based and feature based), other sensor modal-

ities (such as steerable beam sonar), and the exploitation of previously obtained in-

formation via the process of relocation. Improvements to the simulation environment

include an improved acoustic model in the form of multiple and/or steerable sonars

and an improved dynamic environmental model in the form of deformable geometric

or other more complex oceanographic-based models.

The next chapter summarizes the contributions made by this thesis and draws

some conclusions based on the work presented.
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Chapter 6

Conclusions

The goal of this thesis is to endow autonomous underwater vehicles with the capa-

bility to locate and adaptively map an unknown number of features in an unknown

environment without the aid of a priori maps. To meet this challenge, we have de-

veloped an adaptive behavior, trench_finder, as an extension to the layered control

concept. This new type of behavior brings the capabilities of mapping and planning

to the realm of layered control, allowing the vehicle to adapt its trajectory in response

to the presence or absence of a feature. In this chapter, we conclude this thesis with

a summary of the contributions made and reiterate some of our insights on possible

extensions into future work.

6.1 Contributions

Although this thesis utilized a sonar altimeter scanning bathymetric features as our

model, the approach formulated here can be directly applied without modification to

any vehicle employing a point sensor. Extension into remote sensing modalities such

as a scanning sonar can also be accomplished with minor modifications. As presented,

this thesis has three principal contributions:

* A technique for adaptive feature mapping which employs behaviors possessing

the capabilities of mapping and path planning. Unlike conventional reactive
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behaviors, adaptive behaviors alter their internal state as new information about

the environment is received. This in turn allows the behavior to alter its output

in response to the current situation.

* An analysis of the performance and robustness of the adaptive feature mapper

- examining time-on-target, total path length needed to map a feature, amount

of feature mapped per unit time, amount of feature mapped per meter trav-

eled, and performance of the adaptive behavior in comparison to a conventional

lawnmower-type survey.

* We also present extensions of adaptive behaviors into the realms of adap-

tive mapping of dynamic features, multi-vehicle adaptive mapping, alternative

mapping techniques employing pre-compiled lookup tables, cost functions and

decision-theoretic techniques, and navigation applications including relocation

and concurrent mapping localization (CM&L).

6.2 Motivation

This work was motivated by three examples: mapping of ice-keel trenches, adaptive

mapping of dynamic features, and concurrent mapping and localization. The first

two examples are drawn from present-day, real world problems. The third is an area

of study whose development promises to increase the range of AUV capabilities.

The problem of ice-keel trench mapping is representative of a large class of prob-

lems where one or more features are located in an area where a priori maps are

unavailable, either because the area has never been mapped or because it changes

too frequently for the creation of reliable maps. Missions which fall into this category

include mapping thermal vent fields, ocean dumping sites, runoff and outfall areas,

and locating man made objects (barrels, mines, etc.).

The Haro Strait experiment was discussed as an example of adaptive mapping of

dynamic features. The objective of this type of mission is to locate and examine a

feature whose dynamic nature makes its shape, extent, and location impossible to
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predict in detail. Adapting the vehicle path to follow such a feature allows us to both

map a feature whose a priori location is unknown and to follow a feature as it moves

through or with the water column. Examples of this type of mission are mapping of

mixing zones, rapid-response situations, locating fronts (thermal, salinity, turbidity,

etc.) and tracking dynamic features such as upwellings, thermal plumes, or eddies.

The third application, concurrent mapping and localization, is a technique whereby

a vehicle continually maps its surroundings and uses that map to limit navigational

error growth. Such a competency would allow an AUV to navigate in regions where

no a priori maps or navigation arrays exist. This would greatly increase the auton-

omy of AUVs and allow their use in situations where conventional navigation systems

cannot or need not be employed.

To achieve this, several advances in intelligent control of AUVs must take place.

The contributions of this thesis, feature-relative navigation, is a necessary and im-

portant step.

6.3 Implementation

The approach we have chosen is based on state configured layered control, a form

of behavior-based intelligent control which has been created in response to the prob-

lems of scaling and situatedness. This approach showed promise in the early stages,

although it could be easily misled by noisy data and was incapable of multi-phase

missions.

The addition of state configured layered control eliminated the problems encoun-

tered by the first generation system, and proved robust when tested on a variety of

target features. In spite of this, it too proved lacking due to a tendency to oversample

some regions while undersampling others.

The final form of the feature-relative navigator overcame this limitation with the

addition of mapping and planning capabilities. Cell-based feature and visitation maps

are created by the vehicle and updated whenever new information is obtained. Utility

and cost-based decisions are made on where to go next to obtain more information
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about a feature or to locate new features. The addition of memory and prediction

enabled the vehicle to systematically map any assigned feature, as well as to know

when to begin a search for more features. This new adaptive behavior met the

challenge put forth by the committee: generate a map of the trenches in the Charles

River without the aid of a priori maps.

6.4 Performance metrics

Having successfully met the challenge of the committee, the next step was to describe

and quantify the performance of the system. While universal metrics of performance

for intelligent systems do not exist, it is still possible to make qualitative judgments

about the overall performance of the system when operating with different parameters

and under various environmental conditions.

Metrics were developed in the form of total path length traveled, number of fea-

ture elements located overall, number of feature elements located per unit time (or

distance), and overall time-on-target. These metrics were compared to a standard

lawnmower-type survey and also between missions to compare the relative effective-

ness of various parameter settings.

Parameters such as map cell size, adjacency search radius, and cost function

weights were altered and their effects examined. Search zone and area- vs. contour-

based surveys were examined and compared. Different forms of navigational error

and currents of varying strength were also examined and their effects analyzed.

The results of this analysis of robustness and efficiency showed the feature-relative

navigator to be capable of locating and tracking a feature in the presence of relatively

large disturbances and even in the presence of large navigational error.

6.5 Issues for further research

The feature-relative navigation system presented here is a first step in a promising

line of research. This is illustrated by the number of potential improvements and new

170



capabilities which this new competency enables.

6.5.1 Improvements to trench_finder

Improvements to trenchf inder include probabilistic forms of feature representation,

map generation, and map maintenance. The cost analysis function can be expanded

with the inclusion of extended decision analysis tools. Extensions to feature-relative

navigation include feature-based descriptions, relocation capabilities, and dynamic

feature tracking.

Probabilistic forms of representation and information manipulation could include

the addition of feature-based probabilistic data association, cell-based stochastic back

projection, and extension of these techniques to voxel-based representations.

The addition of feature-based descriptions opens the way for feature recognition

and from that comes the potential for relocation. Relocation in turn is a necessary

step towards the goal of concurrent mapping and localization.

Finally, while this approach was developed with a non-holonomic, survey class

vehicle in mind, it would be educational to examine how the system performs on a

holonomic (i.e. zero turning radius, hover-capable) vehicle.

6.5.2 Implementation on board an AUV

The simulation environment used in this thesis was based on real bathymetric data.

However, it is still a simulation and subject to limitations. There are always unfore-

seen problems which must be dealt with when moving from the world of simulation,

no matter how realistic in appearance, to the world of actual robotic vehicles.

The trench_finder adaptive behavior has been designed in the same dynamic

simulation environment used to develop behaviors for the Odyssey II-class AUVs. It

should therefore be relatively easy to port the behavior into the actual vehicle for

field testing in the Charles River basin. The field tests would prove invaluable for

revealing any limitations and/or unforeseen complications which a purely simulated

environment may have hidden.

171



6.5.3 Simulation environment

The simulation environment employed for the development work in this thesis is

based on real-world bathymetric data and employs an acoustic sensor model based

on a standard sonar altimeter. This environment, while adequate for the purpose

for which it was designed, could be extended and improved in several ways. Among

the potentially most rewarding are a more extensive sonar model, the addition of

non-acoustic sensor modalities, an improved bottom model, and the capability for

dynamic, evolving features.

The current sensor model employed is based on a conical-beam sonar altimeter.

The extension to multiple- and/or a steerable-beam sonar model opens the door to

other, more sensor-specific applications. These include the capability to look ahead

and to the sides of the vehicle, and to focus attention upon a specific location using

a steerable beam. The inclusion of non-acoustic sensor modalities such as magnetic,

thermal, salinity, or gravimetric sensors would allow for testing of the trench..finder

using other environmental models - plus the possible use of multiple sensor navigation

techniques (following in the footsteps of Tuohy [111]).

Finally the bathymetry in the simulation environment is a faceted model based

on a Delaunay triangulation of irregularly spaced bathymetric data. If additional

realism in the bathymetry is desired, then a fractally-enhanced bottom model could

be included; such a model draws on the work of Goff & Jordan [48] and Dutton [40].

6.5.4 Feature representation

As mentioned before, the current form of feature representation can be extended

by the addition of both a feature-relative representation and by the extension of the

current on-board maps into three dimensions. The work presented here employs a two-

dimensional representation of the feature of interest. Extension into three dimensions

would enable the mapping and possible identification of more complex features, such

as local magnetic disturbances, as well as complex dynamic features such as thermal

plumes, upwellings, and mixing zones.
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6.6 Summary

In this chapter we reviewed the main points presented in this thesis. We re-examined

the motivating scenarios, the challenge presented by the committee, the approach

taken to meet this challenge, and the results of that approach. We also re-examined

the issues of robustness, efficiency, and metrics of performance. Finally, we reviewed

the potential for extensions and improvements to the work presented here, including

improvements to trenchfinder, extensions based on trench-finder, field testing,

the steps needed for feature-relative navigation, as well as improvements and exten-

sions to the simulation and testing environment.
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Appendix A

Implementation Details

A.1 Functional description of trench.finder

All vehicle missions are controlled via a mission script, as described by Belling-

ham [15]. In this section we will present a full mission script, but focus on that

part of the mission script which pertains to the trenchfinder behavior.

The trench..finder mission script is as follows:

P_state: one

sensor:

sensor:

sensor:

sensor:

sensor:

sensor:

sensor:

sensor:

sensor:

sensor:

sensor:

sensor:

sensor:

sensor:

sensor:

detect_type 0 (depth) 2 (contour)

speed_bias_noise(m/s) 0

compass_bias_noise(deg) 0

real_current_north(m/s) 0

real_currenteast(m/s) 0

current_noise(m/s) 0

real_acc_noise(m/s^2) 0

c_weightidrop(bool) 0

c_weight2_drop(bool) 0

realwdwl(N) 0

real_wdw2(N) 0

real_veh_w(N) 1173

real_veh_b(N) 1173

c_modem_active(bool) 1

uo_depth_mapk 0.5

real_depth_noise(m) 0.0

174



sensor: real_sonarfrac_dropout(0-1) 0.0

sensor: real_z(m) 1.5

sensor: realu(m/s) 1.4

sensor: uo_control_kpp 1

sensor: uo_controlkdp 0.9

sensor: uo_controlkip 0.2

sensor: uo_controlkph 0.5

sensor: uocontrolkdh 1.5

sensor: uo_controlkih 0.0

sensor: u_bottomnoise(m) 0.0

sensor: u_bottomtype(int) 7

sensor: real_x(m) 600.0

sensor: real_y(m) 1000.0

sensor: uveh_initnorth(m) 600.0

sensor: u_veh_initeast(m) 1000.0

sensor: real_psi(rad) 0.0

sensor: u_vehinit_heading(rad) 0.0

sensor: real_1bltiming_noise(mSec) 3

sensor: u_1bl_beaconnumber(#) 4.0

sensor: u_1bl_inorth(m) 500.0

sensor: u_1blleast(m) 500.0

sensor: u_ibl_ldepth(m) 10.0

sensor: u_Ibl_2north(m) 350.0

sensor: u_lbl_2east(m) 600.0

sensor: u_1bl_2depth(m) 10.0

sensor: u_1bl_3north(m) 200.0

sensor: ulbl_3east(m) 500.0

sensor: u_Ibl_3depth(m) 10.0

sensor: u_1bl_4north(m) 350.0

sensor: u_lbl_4east(m) 400.0

sensor: u_ibl_4depth(m) 10.0

behavior: mission_timer 1

b_arg: time(s) 24000.0

behavior: trench_finder 2

b_arg: north_lim(m) 1600.0

barg: south_lim(m) 200.0
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Table A.1:
basin.

b_arg:

b_arg:

b_arg:

b_arg:

b_arg:

b_arg:

b_arg:

barg:

behavior:

b_arg:

b_arg:

barg:

b_arg:

Inputs for trench_finder and nominal values used in the Charles River

eastlim(m) 2000.0

westlim(m) 200.0

searchmode(int) 333

search_centernorth(m) 700.0

searchcentereast(m) 800.0

searchinterval(m) 2.5

detect_thresh(m) 7.0

detecttype(int) 2

setpoint 3

heading(deg)

depth(m)

speed(m/s)

time(s)

0.0

1.5

1.0

24000.0

The trenchfinder behavior inputs are listed following the behavior: trench_finder

2 line in the mission script. Since it is part of a layered control system, functions

such as vehicle depth, speed, and the mission timer are left to the control of other

behaviors, such as setpoint. trench_finder is primarily a heading-control behavior.

The trench_finder behavior inputs are listed in Table A.1.
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Symbol or variable Description Nominal value

Xwest Ysouth 200 200Xwest Ysouth WESN search zone boundaries. 200 200
Xeast Ynorth 2000 1600

r7 Search mode (Spiral, Lawnmower, Wagon Wheel, Reactive) Spiral
a Search Interval 15.75 m
D Detection type (scalar, gradient) Scalar
T Detection threshold 7.0 m
6 Deadband +2 cm

p Waypoint adjacency search radius 2 cells
datafilter Data filtering Moving window

cell_size Map cell size 10 x 10 meters
waypoint _method Waypoint search method(LOOKUP, DIRECTIONAL, COST) LOOKUP
follow.mode Contour vs. region search CONTOUR

[east Onorth Search origin [800, 700]



Search area - The boundaries of the search zone, in meters, from an origin chosen

by the user at launch time. Unless otherwise stated, operations are assumed to take

place in the first quadrant.

Search mode - When the vehicle is searching in an attempt to locate a feature,

it can do so by one of several methods: a spiral pattern, lawnmower search, wagon

wheel search (i.e. multiple legs radiating out from a central launch point - particularly

useful when the vehicle has been launched from an ice hole), and a simple reactive

search (i.e. the vehicle chooses a random heading and maintains it until a feature is

found or a search area boundary is reached, then it turns back into the search area

on a new arbitrary heading).

Search interval - Used for lawnmower and spiral searches; it is defined as the

interval between laps of a lawnmower-type search and - times the interval between

spiral laps, respectively. This should be set according to the characteristic dimensions

of the feature. For most potential targets, it is recommended that the interval be set

at no larger than one half the average expected short axis of the feature (if known).

Detection type - trench-finder is designed to detect gradient or scalar thresh-

old values. In the case of a point sensor, the gradient is constructed from sensory

information obtained along the vehicle's path (the user must therefore be aware that

the gradient constructed by the vehicle is the one which is perceived by the vehicle

along its track and not necessarily the steepest gradient). Note also that construction

of the estimated gradient using a point sensor necessitates a delay due to the need

to construct the gradient from present plus recent sensor data. Either gradient or

threshold values are compared against filtered vehicle sensory data to determine if

the current vehicle location is coincident with a potential feature of interest.

Detection threshold - trench_finder is designed to detect a specific value or

gradient. This initial value is derived from basic a priori information about the

environment. In the case of static bathymetric features, a specific contour value,

bottom gradient, or mean seafloor depth is entered which acts as a threshold for the

detector. In rapid response situations (e.g. satellite directed response), the threshold

may be derived from remote sensing data. Significant deviations from local mean
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values may also be employed.

Data filtering - Raw sensor data is filtered via a moving average filter, as described

in Section A.2. All activities performed by trenchfinder are then based on this

filtered data stream.

Dead band - The purpose of data filtering is to minimize the effects of noise

and false information in the system. The dead band operates on the assumption

that the sensed, filtered data has temporal variability which exceeds the dynamic

characteristics of the vehicle - resulting in unnecessary and undesirable oscillations in

the vehicle trajectory as it attempts to follow the feature. To prevent this undesirable

vehicle maneuvering over the feature, a dead band is installed. The trench.finder

uses a dead band of +2 cm, based on field experiments conducted in the Charles

River.

Cell size - The map cell size is based on the conflicting demands of the desire

to maximize the resolution of the feature description being generated, minimize the

time spent sampling any one feature, and the dynamic limitations of the AUV. If the

intent is to map the distribution of features, then a larger cell size can be employed

(limited by the estimated characteristic size of the feature). Larger cells result in

a low resolution mapping of the region (see Figure 4-27), while smaller cells yield a

more detailed map, but at the cost of more vehicle time necessary to generate the

map (see Figure 4-31).

Waypoint search radius - trenchfinder searches for candidate features by first

examining the region immediately adjacent to known feature elements, as shown in

Figure 3-18. The vehicle then chooses which of these cells to visit by comparing this

list of candidate waypoints to a lookup table of map cells which are immediately

adjacent to the vehicle (see Figure 3-19). This search can be expanded to encompass

all map cells within a radius of two cells, if desired.

Waypoint search method - As discussed in Section 3.7.2, the waypoint search

method determines how the vehicle ranks candidate waypoints. Methods available are

pre-compiled lookup tables (either vehicle heading-dependent or heading-independent)

or a cost/utility function (see Eqn. 4.1). In the case of a a lookup table, the waypoint
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Figure A-1: Sample pre-compiled lookup table for trenchfinder. The available
unvisited waypoints are ranked according to the table. Visited cells are ignored. In
this drawing, a known feature cell is centered at the "X".

search criteria are pre-compiled for the sake of speed and simplicity. A simple lookup

table is shown in Figure A-1. More sophisticated lookup tables (e.g. orientation and

position dependent) are also available for use.

Contour vs. region search - trench..finder can be set to search for a specific

contour or gradient or a range of contours/gradients. It will also search all of an area

on one side or another of a defined contour. If that contour is closed, it will search

the interior or exterior of that contour, as desired.

Starting point - If a specific starting point in the search area is desired, it is given

here. If not, the starting point is defined as shown in Figure 3-21.

A.2 Sonar filter

While most of the vehicle sensors are primarily prone to random noise, the sonar

altimeter is also susceptible to multiple-, false- and dropped returns. In the case of

the AUV Odyssey in the Charles River Basin, both 200 kHz and 500 kHz sonars

were used. The 200 kHz unit suffered from absorption into the bottom - the bottom

simply "vanished" from the vehicle's perception. To counter this, a 500 kHz unit was

installed. While the problem of absorption was overcome, at that frequency the silty

riverbed was highly specular in nature, acting like a mirror to the sonar signal. As

a result, returns which exceeded the unit's cone angle were lost, causing increased

dropouts over severe terrain and at high vehicle pitch and roll angles.

To counter these effects, a moving average filter [94] was employed. We can think
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of a moving average process as some {Xt} such that

Xt = f(B)Et (A.1)

where

O(z) - bo + b1z +... + b1z' (A.2)

with {e} a purely random process. Further, we can assume without loss of generality

that b0 = 1 or that et has unit variance. This is because we can define a new random

process

E* = boEt (A.3)

or

E* = EtOFE (A.4)

(aU 1), but not both, that guarantees our desired parameters.

Note that the moving average, while resembling an autoregressive process, is not

the same. The key difference between an autoregressive and a moving average process

is that in the autoregressive case, some value Xt is the finite linear combination of

the current and all past values of {Et}. By extension, we can observe that a given Et

will influence all future (Xt, Xt+i,...) to some extent. In contrast, a moving average

process expresses Xt as a linear combination of {Et}, but only to a finite extent into

the past, thereby also limiting the influence of a given et to a limited set {n} of future

values of {X}, namely (Xt+i, ... .,Xt+n).

This is an important distinction in the case of our sonar filter. The nature of

the sonar data stream is that of a random signal with random noise superimposed

and the occasional dropped return. Because of the random nature of the seafloor

and the trajectory of the vehicle, there is no reason to expect that the sonar return

Et-n from some arbitrary point in the past should have any influence on the current

return Et. On the other hand, because of the smooth changes found in nature, it is

not unreasonable to expect that adjacent portions of the bottom are quite similar to

the point being sampled at time t. The key is to determine the optimum number of

180



samples to use in the moving average.

For our purposes, a special case of the moving average filter (sometimes referred

to as a moving window filter) has been chosen. In this case the weights bo, bl,..., b,

are all of equal weight such that

be = 1 (A.5)
i=O

or
1

bo = bl = ... = •b = (A.6)
n+l

and the processed signal has the resulting variance and autocorrelation functions

a = e2 (A.7)
n+l

1 IIrl n,
p(r) = n+1 I< (A.8)

0 , rl > n.
(A.9)

Note that this is also a stationary process, i.e. its statistics do not change over

time and therefore it does not bias or influence the input data over time. Note also,

however, that the input sonar data stream is not stationary over long time scales.

Correctly employing such a filter (choosing the coefficients bi requires knowledge of

the scale of the feature of interest, the sampling rate of the vehicle as it tracks or

searches for the feature, and the dynamic capabilities of the vehicle.

Altimeter - the assumed sonar is a Tritech model ST500. The ST500 is a 500 kHz

sonar altimeter with a 20 degree conical beam and a range of 40 m. The bottom of the

Charles River basin is composed of silt over clay, and acts as a specular surface at 500

kHz. The result is a poor target surface and a loss of contact with the bottom if the

specular reflection angle exceeds the cone angle of the sonar. This was demonstrated

in field experiments, as shown in Figure A-2. At approximately t = 500 seconds,

the vehicle passes over the lip of the trench while attempting to maintain a constant
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Figure A-2: AUV Odyssey IIb during bottom-following mission in the Charles River
Basin on 11 April 1995. In this figure, blue is the commanded depth, green is the
vehicle depth and red is the reconstructed water column. Note the poor sonar returns
during the mission and especially after collision at t = 500 sec.

altitude. The steeply sloped trench wall caused a temporary loss of contact with the

sonar altimeter. At the same moment, the vehicle was instructed to return to the

launch point. The resulting vehicle path was a "corkscrew" motion into the trench

wall as the vehicle attempted to dive and turn at the same time. The vehicle remained

pinned against the trench wall until pulled free by the operators at t = 620 seconds.
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Figure A-3: Vehicle pitch angle during the mission of 11 April 1995. Note the large
pitch excursions leading into the bottom collision at t = 500 sec. The vehicle first
pitched up as it came over the embankment and then pitched steeply down, just as the
bottom dropped away into the trench interior. The combined pitch plus steep slope
resulted in a temporary loss of contact. This, combined with the turning maneuver
executed at the same (inopportune) moment, resulted in a collision with the bottom
and corresponding sonar return failure.
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