
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-004 February 4, 2009

HAMPI: A Solver for String Constraints
Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter
Hooimeijer, and Michael D. Ernst

HAMPI: A Solver for String Constraints

Adam Kieżun
MIT

akiezun@csail.mit.edu

Vijay Ganesh
MIT

vganesh@csail.mit.edu

Philip J. Guo
Stanford University

pg@cs.stanford.edu
Pieter Hooimeijer
University of Virginia

pieter@cs.virginia.edu

Michael D. Ernst
University of Washington

mernst@cs.washington.edu

ABSTRACT
Many automatic testing, analysis, and verification techniques for
programs can be effectively reduced to a constraint-generation
phase followed by a constraint-solving phase. This separation
of concerns often leads to more effective and maintainable tools.
The increasing efficiency of off-the-shelf constraint solvers makes
this approach even more compelling. However, there are few,
if any, effective and sufficiently expressive off-the-shelf solvers
for string constraints generated by analysis techniques for string-
manipulating programs.

We designed and implemented H, a solver for string con-
straints over bounded string variables. H constraints express
membership in regular languages and bounded context-free lan-
guages. H constraints may contain context-free-language defi-
nitions, regular-language definitions and operations, and the mem-
bership predicate. Given a set of constraints, H outputs a string
that satisfies all the constraints, or reports that the constraints are
unsatisfiable.

H is expressive and efficient, and can be successfully ap-
plied to testing and analysis of real programs. Our experiments use
H in: static and dynamic analyses for finding SQL injection
vulnerabilities in Web applications; automated bug finding in C
programs using systematic testing; and compare H with an-
other string solver. H’s source code, documentation, and the
experimental data are available at http://people.csail.mit.
edu/akiezun/hampi.

1. INTRODUCTION
Many automatic testing [7, 20, 36, 42], analysis [22], and verifi-

cation [9, 10] techniques for programs can be effectively reduced
to a constraint-generation phase followed by a constraint-solving
phase. This separation of concerns often leads to more effective
and maintainable tools. Such an approach to analyzing programs is
becoming more effective as the efficiency of off-the-shelf constraint
solvers for Boolean SAT [12, 30] and other theories [11, 18] con-
tinues to increase. Most of these solvers are aimed at propositional
logic, linear arithmetic, or the theory of bit-vectors. However, many
programs, such as Web applications, take string values as input,
manipulate them, and then use them in sensitive operations such
as database queries. Analyses of string-manipulating programs in
techniques for automatic testing [5,13,19], verifying correctness of
program output [37], and finding security faults [17, 41] produce
string constraints, which are then solved by custom string solvers
written by the authors of these analyses. Writing a custom solver
for every application is time-consuming and error-prone, and the
lack of separation of concerns may lead to systems that are diffi-
cult to maintain. Thus, there is a clear need for an effective and
sufficiently expressive off-the-shelf string solver that can be easily

integrated into a variety of applications.
We designed and implemented H, a solver for constraints

over bounded string variables. H constraints express member-
ship in regular and bounded context-free languages1. H con-
straints may contain a bounded string variable, context-free lan-
guage definitions, regular-language definitions and operations, and
language-membership predicates. Given a set of constraints over
a string variable, H outputs a string that satisfies all the con-
straints, or reports that the constraints are unsatisfiable. H
is designed to be used as a component in testing, analysis, and
verification applications. H can also be used to solve the in-
tersection, containment, and equivalence problems for regular and
bounded context-free languages.

The bounding on regular and context-free languages in H’s
input is a key feature, different from custom string solvers used in
many testing and analysis tools [13]. As we demonstrate in this pa-
per, for many practical applications, bounding the input languages
is not a handicap. In fact, it allows for a more expressive input lan-
guage that allows operations on context-free languages that would
be undecidable without bounding. Furthermore, bounding makes
the satisfiability problem solved by H more tractable. This dif-
ference is similar to the one between model-checking and bounded
model-checking [4].

H’s input language can encode queries such as: “Find a
string v of size 12 characters, such that the SQL query SELECT msg
FROM messages WHERE topicid=v is a syntactically valid SQL
statement, and that the query contains the substring OR 1=1” (OR
1=1 is a common tautology that can lead to SQL injection attacks).
H finds a string value that satisfies the constraints, or answers
that no satisfying value exists (for the above example, string 1 OR
1=1 is a solution).

At a high level, H works as follows: First, H normalizes
the input constraints, and generates what we refer to as the core
string constraints. The core string constraints are expressions of
the form v ∈ R or v < R, where v is a bounded string variable, and R
is a regular expression. Second, H translates these core string
constraints into a quantifier-free logic of bit-vectors. A bit-vector is
a fixed-size, ordered, list of bits. The fragment of bit-vector logic
that H uses contains standard Boolean operations, extracting
sub-vectors, and comparing bit-vectors. Third, H hands over
the bit-vector constraints to STP [18], a constraint solver for bit-
vectors and arrays. Finally, if STP reports that the constraints are
unsatisfiable, then H reports the same. Otherwise, STP reports

1All bounded languages are finite, and every finite language is
regular. Hence, it would suffice to say that H supports only
bounded regular languages. However, it is important to emphasize
the ease-of-use that H provides by allowing users to specify
context-free languages.

1

that the input constraints are satisfiable, and generates a satisfying
assignment in its bit-vector language. H decodes this to output
a string solution.

Experimental Evaluation

We experimentally evaluated H’s expressiveness and efficiency
over constraints obtained from the following testing and analy-
sis applications: (i) A tool for identifying SQL injection vulner-
abilities in PHP Web applications using static analysis [39], (ii)
Ardilla [25], a tool for creating SQL injection attacks using dy-
namic analysis of PHP Web applications, (iii) Klee [6], a systematic
testing tool. Additionally (iv), we compared H’s performance
to CFGAnalyzer [1], a solver for analyzing context-free grammars.
The experimental results indicate that H is efficient, and its in-
put language can express string constraints that arise from a variety
of real-world analysis and testing tools.

Summary of Results

• SQL Injection Vulnerability Detection: We applied the
static analysis tool [39] to 6 PHP Web applications (total
lines of code: 339,750). H solved all constraints gen-
erated by the analysis, and solved 99.7% of those constraints
in less than 1 second per constraint. All solutions found by
H for these constraints were less than 5 characters long.
These experiments on real applications bolster our claim that
bounding the string constraints is not a handicap.

• SQL Injection Attack Generation: We applied Ardilla [25]
to 5 PHP Web applications (total lines of code: 14,941). H
successfully replaced a custom-made attack generator and
constructed all 23 known attacks on those applications.

• Input Generation for Systematic Testing: We used Klee [6]
on 3 C programs with structured input formats (total exe-
cutable lines of code: 4,100). We used H to gener-
ate constraints that specify legal inputs to these programs.
H’s constraints eliminated all illegal inputs, improved
the line-coverage by up to 2× (up to 5× in parser code), and
discovered 3 new bug-revealing inputs.

• Comparison with CFGAnalyzer: H is, on average, 6.8
times faster than CFGAnalyzer [1] on 100 grammar intersec-
tion problems. Furthermore, H’s speedup increased with
the problem size.

Contributions

• A decision procedure for constraints over bounded string vari-
ables, supporting regular language membership, context-free
language membership, and typical string operations like con-
catenation.

• H, an open-source implementation of the decision proce-
dure. H’s source code and documentation are available
at: http://people.csail.mit.edu/akiezun/hampi.

• Experimental evaluation of H for a variety of testing and
analysis applications.

• Downloadable (from H website) experimental data that
can be used as benchmarks for developing and evaluating fu-
ture string solvers.

We introduce H using an example (§2), then present H’s
input format and solving algorithm (§3), discuss speed optimiza-
tions (§4), and present the experimental evaluation (§5). We finish
with related work (§6) and conclusion (§7).

1 $my_topicid = $_GET[’topicid’];
2

3 $sqlstmt = "SELECT msg FROM messages WHERE topicid=’$my_topicid’";
4 $result = mysql_query($sqlstmt);
5

6 //display messages
7 while($row = mysql_fetch_assoc($result)){
8 echo "Message " . $row[’msg’];
9 }

Figure 1: Fragment of a PHP program that displays messages
stored in a MySQL database. This program is vulnerable to an
SQL injection attack. Section 2 discusses the vulnerability.

1 //string variable representing ’$my_topicid’ from Figure 1
2 var v:12; // size is 12 characters
3

4 //simple SQL context-free grammar
5 cfg SqlSmall := "SELECT " [a-z]+ " FROM " [a-z]+ " WHERE " Cond;
6 cfg Cond := Val "=" Val | Cond " OR " Cond";
7 cfg Val := "’" [a-z0-9]* "’" | [0-9]+;
8

9 //SQL grammar bounded to 53 characters
10 reg SqlSmallBounded := bound(SqlSmall, 53);
11

12 //the SQL query ’$sqlstmt’ from line 3 of Figure 1
13 val q := concat("SELECT msg FROM messages WHERE topicid=’", v, "’");
14

15 //constraint conjuncts
16 assert q in SqlSmallBounded;
17 assert q contains "OR ’1’=’1’";

Figure 2: The H input that finds an attack vector that ex-
ploits the SQL injection vulnerability from Figure 1.

2. EXAMPLE: SQL INJECTION
SQL injections are a prevalent class of Web-application vulner-

abilities. This section illustrates how an automated tool [25, 41]
could use H to detect SQL injection vulnerabilities and to pro-
duce attack inputs.

Figure 1 shows a fragment of a PHP program that implements
a simple Web application: a message board that allows users to
read and post messages stored in a MySQL database. Users of the
message board fill in an HTML form (not shown here) that commu-
nicates the inputs to the server via a specially formatted URL, e.g.,
http://www.mysite.com/?topicid=1. Input parameters passed inside
the URL are available in the $_GET associative array. In the above
example URL, the input has one key-value pair: topicid=1. The
program fragment in Figure 1 retrieves and displays messages for
the given topic.

This program is vulnerable to an SQL injection attack. An at-
tacker can read all messages from the database (including ones in-
tended to be private) by crafting a malicious URL such as

http://www.mysite.com/?topicid=1’ OR ’1’=’1

Upon being invoked with that URL, the program reads

1’ OR ’1’=’1

as the value of the $my_topicid variable, and submits the follow-
ing query to the database in line 4:

SELECT msg FROM messages WHERE topicid=’1’ OR ’1’=’1’

The WHERE condition is always true because it contains the tau-
tology ’1’=’1’. Thus, the query retrieves all messages, possibly
leaking private information.

A programmer or a bug-finding tool might ask, “Can an attacker
exploit the topicid parameter and introduce a tautology into the
query at line 4 in the code of Figure 1?” The H solver answers
such questions, and creates strings that can be used as exploits.

2

STP Solver

Encoder

Normalizer

Decoder

Solution
Bit−vector

Core String Constraints

Bit−vector Constraints

String Solution

HAMPI

No Solution Exists

String Constraints

Figure 3: Schematic view of the H string solver. Section 3
describes the H solver.

Figure 2 presents a H constraint that formalizes the above
question. Automated vulnerability-scanning tools [25, 41] can cre-
ate such constraints via either static or dynamic program analysis
(we demonstrate both static and dynamic techniques in our evalu-
ation in Sections 5.1 and 5.2). Specifically, a tool could create the
H input of Figure 2 from analyzing the code of Figure 1.

We now discuss various features of the H input language
that Figure 2 illustrates. (Section 3.1 describes the input language
in more detail.)

• Keyword var (line 2) introduces a string variable v. The
variable has a fixed size of 12 characters. The goal of the
H solver is to find a string that, when assigned to the
string variable, satisfies all the constraints. H can look
for solutions of any fixed size; we chose 12 for this example.

• Keyword cfg (lines 5–7) introduces a context-free grammar,
for a fragment of the SQL grammar of SELECT statements.

• Keyword reg (line 10) introduces a regular expression Sql-
SmallBounded, defined by bounding the context-free gram-
mar (of strings derivable from SqlSmall) to a fixed size
of 53 characters. The size is chosen to be consistent with the
size of q, which is the sum of the size of v (12) and the sizes
of the constant strings (40+1) in the expression that defines
q (line 13).

• Keyword val (line 13) introduces a temporary variable q,
declared as a concatenation of constant strings and the string
variable v. This variable represents an SQL query corre-
sponding to the PHP $sqlstmt variable from line 3 in Fig-
ure 1.

• Keyword assert defines a regular-language constraint. The
top-level H constraint is a conjunction of assert state-
ments. Line 16 specifies that the query string q must be a
member of the regular language SqlSmallBounded. Line 17

Input F Var Stmt∗ H input
Stmt F Cfg | Reg | Val | Assert statement
Var F var Id : Int string variable
Cfg F cfg Id := CfgProdRHS context-free lang.
Reg F reg Id := RegElem regular-lang.
RegElemF StrConst constant

| Id var. reference
| bound(Id , Int) CFG bounding
| or(RegElem ∗) union
| concat(RegElem ∗) concatenation
| star(RegElem) Kleene star

Val F val Id :=ValElem temp. variable
ValElemF Id | StrConst | concat(ValElem ∗)
Assert F assert Id [not]? in Id membership

| assert Id [not]? contains StrConst substring

Figure 4: Summary of H’s input language. Terminals are
bold-faced, nonterminals are italicized. A H input (Input)
is a variable declaration, followed by a list of statements:
context-free-grammar declarations, regular-language declara-
tions, temporary variables, and assertions. Some nonterminals
are omitted for readability; the H website contains the for-
mal grammar and documentation of the input format.

specifies that the variable v must contain a specific substring
(e.g., a tautology that can lead to an SQL injection attack).

H can solve the constraints specified in Figure 2 and find a
value for v, such as 1’ OR ’1’=’1, which is a value for topicid
that can lead to an SQL injection attack. This value has exactly 12
characters, since v was defined with that fixed size. By re-running
Hwith different sizes for v, it’s possible to create other (usually
related) attack inputs, such as 999’ OR ’1’=’1.

3. THE HAMPI STRING SOLVER
The H solver finds a string that satisfies constraints specified

in the input, or finds that no satisfying string exists. Figure 3 shows
H’s architecture. H works in four steps:

1. Normalize the input constraints to a core form (Section 3.2).

2. Encode the constraints in bit-vector logic (Section 3.3).

3. Invoke the STP bit-vector solver [18].

4. Decode the results obtained from STP (Section 3.3).

3.1 Input Language for String Constraints
We discuss the salient features of H’s input language (Fig-

ure 4) and illustrate on examples. H’s input language enables
encoding of string constraints generated from typical testing and se-
curity applications. The language supports declaration of bounded
string variables and constants, regular-language operations, mem-
bership predicate, and declaration of context-free and regular lan-
guages, temporaries and constraints.

String variable declaration — var

A H input must declare a single string variable and specify the
variable’s size in number of characters. If the input constraints are
satisfiable, then H finds a value for the variable that satisfies
all constraints. Line 2 in Figure 2 declares a variable v of size 12
characters.

Sometimes, an application of a string solver requires examining
strings up to a given length. Users of H can deal with this

3

issue in two ways: (i) repeatedly run H for different fixed sizes
of the variable (can be fast due to the optimizations of Section 4),
or (ii) adjust the constraint to allow “padding” of the variable (e.g.,
using Kleene star to denote trailing spaces). We are considering
extending H to permit specifying a size range, using syntax
such as var v:1..12.

Declarations of Context-free Languages — cfg

H input can declare context-free languages using grammars in
the standard notation, Extended Backus-Naur Form (EBNF). Ter-
minals are enclosed in double quotes (e.g., "SELECT"), and pro-
ductions are separated by the vertical bar symbol (|). Grammars
may contain special symbols for repetition (+ and *) and character
ranges (e.g., [a-z]).

For example, lines 5–7 in Figure 2 show the declaration of a
context-free grammar for a subset of SQL.

H’s format of context-free grammars is as expressive as that
of widely-used tools such as Yacc/Lex; in fact, we have written a
simple syntax-driven script that transforms a Yacc specification to
H format (available on the H website).

Declarations of Regular Languages — reg

H input can declare regular languages. The following regu-
lar expressions define regular languages: (i) a singleton set with
a string constant, (ii) a concatenation/union of regular languages,
(iii) a repetition (Kleene star) of a regular language, (iv) a fixed-size
“bounding” of a context-free language. Every regular language can
be expressed using those operations [38].

For example, (b*ab*ab*)* is a regular expression that describes
the language of strings over the alphabet {a,b}, with an even num-
ber of a’s. In H syntax this is:

reg Bstar := star("b"); // ’helper’ expression
reg EvenA := star(concat(Bstar, "a", Bstar, "a", Bstar));

H allows construction of regular languages by bounding con-
text free languages. The set of all strings of a given size from a
context-free language is regular (because every finite language is
regular). In H, only regular languages can be used in con-
straints. Therefore, every context-free grammar must be bounded
before being used in a constraint.

For example, in line 10 of Figure 2, the regular language de-
scribed by SqlSmallBounded consists of all syntactically correct
SQL strings of length 53 (according to the SqlSmall grammar).
Using the bound operator is much more convenient than writing
the regular expression explicitly.

Temporary Declarations — val

Temporary variables are shortcuts for expressing constraints on ex-
pressions that are concatenations of the string variable and con-
stants.

Line 13 in Figure 2 declares a temporary variable val q that
denotes the SQL query, which is a concatenation of two string con-
stants (prefix and suffix) and the string variable v. Using q is a
convenient shortcut to put constraints on that SQL query (lines 16
and 17).

Constraints — assert

H constraints (declared by the assert keyword) specify mem-
bership of variables in regular languages. For example, line 16 in
Figure 2 declares that the string value of the temporary variable q
is in the regular language defined by SqlSmallBounded.

S F Constraint
| S ∧ Constraint conjunction

Constraint F StrExp ∈ RegExp membership
| StrExp < RegExp non-membership

StrExp F Var variable
| Const constant
| StrExp StrExp concatenation

RegExp F Const constant
| RegExp + RegExp union
| RegExp RegExp concatenation
| RegExp? star

Figure 5: The grammar of core string constraints. Nontermi-
nals Const and Var have the usual definitions.

3.2 Core Form of String Constraints
After parsing and checking the input, H normalizes the string

constraints to a core form (Figure 5). The core string constraints
are an internal intermediate representation that is easier to encode
in bit-vector logic than raw H input is.

A core string constraint specifies membership (or its negation) in
a regular language. A core string constraint is in the form StrExp ∈
RegExp or StrExp < RegExp, where StrExp is an expression com-
posed of concatenations of string constants and occurrences of the
string variable, and RegExp is a regular expression.

H normalizes each component in the input as follows:

1. Expand all temporary variables, i.e., replace each reference
to a temporary variable with the variable’s definition.

2. Expand all context-free grammar bounding expressions, i.e.,
convert bound terms to regular expressions (see below for
the algorithm).

3. Expand all regular-language declarations, i.e., replace each
reference to a regular-language variable with the variable’s
definition.

Bounding of Context-free Grammars
H uses the following algorithm to create regular expressions
that specify the set of strings of a fixed length that are derivable
from a context-free grammar:

1. Expand all special symbols in the grammar (e.g., repetition,
option, character range).

2. Remove ε productions [38].

3. Construct the regular expression that encodes all fixed-sized
strings of the grammar as follows: First, pre-process the gram-
mar and find the length of the shortest and longest (if exists)
string that can be generated from each nonterminal. Second,
given a size n and a nonterminal N, examine all productions
for N. For each production N F S 1 . . . S k, where each S i

may be a terminal or a nonterminal, enumerate all possible
partitions of n characters to k grammar symbols, create the
sub-expressions recursively and combine the subexpression
in with a concatenation operator. Memoization of intermedi-
ate results (Section 4.1) makes this (worst-case exponential
in k) process scalable.

Example of Grammar Bounding. Consider the following gram-
mar of well-balanced parentheses and the problem of finding the
regular language that consists of all strings of length 6 that can be
generated from the nonterminal E.

4

Formula F BitVector = BitVector equality
| BitVector < BitVector inequality
| Formula ∨ Formula disjunction
| Formula ∧ Formula conjunction
| ¬Formula negation

BitVector F Const bit-vector constant
| Var bit-vector variable
| Var[Int] byte extraction

Figure 6: Grammar of bit-vector logic. Variables denote bit-
vectors of fixed length. H encodes string constraints as for-
mulas in this logic and solves using STP.

cfg E := "()" | E E | "(" E ")" ;

The grammar does not contain special symbols or ε productions,
so first two steps of the algorithm do nothing. Then, H deter-
mines that the shortest string E can generate is of length 2. There
are three productions for the nonterminal E, so the final regular ex-
pression is a union of three parts. The first production, E := "()",
generates no strings of size 6 (and only one string of size 2). The
second production, E := E E, generates strings of size 6 in two
ways: either the first occurrence of E generates 2 characters and the
second occurrence generates 4 characters, or the first occurrence
generates 4 characters and the second occurrence generates 2 char-
acters. From the pre-processing step, H knows that the only
other possible partition of 6 characters is 3–3, which H tries
and fails (because E cannot generate 3-character strings). The third
production, E := "(" E ")", generates strings of size 6 in only
one way: the nonterminal E must generate 4 characters. In each
case, H creates the sub-expressions recursively. The resulting
regular expression for this example is (plus signs denote union and
square brackets group sub-expressions):

()[()() + (())] + [()() + (())]() + ([()() + (())])

3.3 Bit-vector Encoding and Solving
H encodes the core string constraints as formulas in a logic

of fixed-size bit-vectors. A bit-vectors is a fixed-size, ordered list
of bits. The fragment of bit-vector logic that H uses contains
standard Boolean operations, extracting sub-vectors, and compar-
ing bit-vectors (Figure 6). H asks STP for a satisfying assign-
ment to the resulting bit-vector formula. If STP finds an assign-
ment, H decodes it, and produces a string solution for the input
constraints. If STP cannot find a solution, H terminates and
declares the input constraints unsatisfiable.

Every core string constraint is encoded separately, as a conjunct
in a bit-vector logic formula. H encodes the core string con-
straint StrExp ∈ RegExp recursively, by case analysis of the regular
expression RegExp, as follows:

• Encoding constants — the encoded formula enforces con-
stant values in the relevant elements of the bit-vector variable
(H encodes characters using 8-bit ASCII codes).

• H encodes the union operator (+) as a disjunction in the
bit-vector logic.

• H encodes the concatenation operator by enumerating all
possible distributions of the characters to the sub-expressions,
encoding the sub-expressions recursively, and combining the
sub-formulas in a conjunction.

• H encodes the ? similarly to concatenation — a star is
a concatenation with variable number of occurrences. To en-
code the star, H finds the upper bound on the number of
occurrences (the number of characters in the string is always
a sound upper bound).

After STP finds a solution to the bit-vector formula (if one ex-
ists), H decodes the solution by reading 8-bit sub-vectors as
consecutive ASCII characters.

3.4 Complexity
The satisfiability problem for H’s logic (core string con-

straints) is NP-complete. To show NP-hardness, we reduce the 3-
CNF (conjunctive normal form) Boolean satisfiability problem to
the satisfiability problem of the core string constraints in H’s
logic. Consider an arbitrary 3-CNF formula with n Boolean vari-
ables and m clauses. A clause in 3-CNF is a disjunction (∨) of three
literals. A literal is a Boolean variable (vi) or its negation (¬vi). For
every 3-CNF clause, a H constraint can be generated. Let Σ de-
note the alphabet {T, F}. For the clause (v0∨v1∨¬v2), the equivalent
H constraint is:

V ∈ (TΣΣ · · ·Σ + ΣTΣ · · ·Σ + ΣΣF · · ·Σ)

where the H variable V is an n character string representing the
possible assignments to all n Boolean variables satisfying the input
3-CNF formula. Each of the H regular expression disjuncts in
the core string constraint shown above, such as TΣΣ · · ·Σ, is also
of size n and has a T in the ith slot for vi (and F for ¬vi). The total
number of such H constraints is m, the number of clauses in the
input 3-CNF formula (here m = 1). This reduction from a 3-CNF
Boolean formula into H is clearly polynomial-time.

To establish that the satisfiability problem for H’s logic is in
NP, we only need to show that for any set of core string constraints,
there exists a polynomial-time verifier that can check any short wit-
ness. The size of a set of core string constraints is the size k of the
string variable plus the sum r of the sizes of regular expressions.
A witness has to be of size k, and it is easy to check if the witness
belongs to each regular language in time polynomial in k + r.

3.5 Example of Solving
This section illustrates how, given the following input, H

finds a satisfying assignment for variable v.

var v:2;
cfg E := "()" | E E | "(" E ")";
reg Ebounded := bound(E, 6);
val q := concat("((" , v , "))");
assert q in Ebounded; // turns into constraint c1
assert q contains "())"; // turns into constraint c2

H follows the solving algorithm outlined in Section 3 (The al-
phabet of the regular expression or context-free grammar in a H
input is implicitly restricted to the terminals specified):

1. Normalize constraints to core form, using the algorithm in Sec-
tion 3.2:

c1: ((v)) ∈ ()[()() + (())] +

[()() + (())]() +

([()() + (())])
c2: ((v)) ∈ [(+)]? ()) [(+)]?

2. Encode the core-form constraints in bit-vector logic. We show
how H encodes constraint c1; the process for c2 is similar.

5

H creates a bit-vector variable bv of length 6*8=48 bits, to rep-
resent the left-hand side of c1 (since Ebounded is 6 bytes). Char-
acters are encoded using ASCII codes: (is 40 in ASCII, and) is
41. H encodes the left-hand-side expression of c1, ((v)), as
formula L1, by specifying the constant values:

L1 : bv[0] = 40 ∧ bv[1] = 40 ∧ bv[4] = 41 ∧ bv[5] = 41

Bytes bv[2] and bv[3] are reserved for v, a 2-byte variable.
The top-level regular expression in the right-hand side of c1 is

a 3-way union, so the result is a 3-way disjunction. For the first
disjunct ()[()() + (())], H creates the following formula:
D1a: bv[0] = 40 ∧ bv[1] = 41 ∧ ((bv[2] = 40 ∧ bv[3] = 41 ∧ bv[4] =

40 ∧ bv[5] = 41) ∨ (bv[2] = 40 ∧ bv[3] = 40 ∧ bv[4] = 41 ∧ bv[5] = 41)).
Formulas D1b and D1c for the remaining conjuncts are similar.

The bit-vector formula that encodes c1 is C1 = L1∧(D1a∨D1b∨D1c).
Similarly, a formula C2 (not shown here) encodes c2. The formula
that H sends to the STP solver is (C1 ∧C2).

3. STP finds a solution that satisfies the formula: bv[0] = 40, bv[1] =

40, bv[2] = 41, bv[3] = 40, bv[4] = 41, bv[5] = 41. In decoded ASCII,
the solution is “(()())” (quote marks not part of solution string).

4. H reads the assignment for variable v off of the STP solution,
by decoding the elements of bv that correspond to v, i.e., elements 2
and 3. It reports the solution for v as “)(”. (String “()” is another
legal solution for v, but STP only finds one solution.)

4. OPTIMIZATIONS
We implemented several optimizations in H, aimed at reduc-

ing computation time.

4.1 Memoization
H stores and reuses partial results during the computation

of bounding of context-free grammars (Section 3.2) and during the
encoding of core constraints in bit-vector logic (Section 3.3).

Example. Consider the example from Section 3.5, i.e., bounding
the context-free grammar of well-balanced parentheses to size 6.
cfg E := "()" | E E | "(" E ")" ;

Consider the second production E := E E. There are two ways
to construct a string of 6 characters: either construct 2 characters
from the first occurrence of E and construct 4 characters from the
second occurrence, or vice-versa. After creating the regular expres-
sion that corresponds to the first of these ways, H creates the
second expression from the memoized sub-results. H’s imple-
mentation shares the memory representations of common subex-
pressions. For example, H uses only one object to represent
all three occurrences of ()() + (()) in constraint c1 of the exam-
ple in Section 3.5.

4.2 Constraint Templates
During the bit-vector encoding step (Section 3.3), Hmay en-

code the same regular expression multiple times as bit-vector for-
mulas, as long as the underlying offsets in the bit-vector are dif-
ferent. For example, the (constant) regular expression)(may be
encoded as bv[0] = 41 ∧ bv[1] = 40 or as bv[3] = 41 ∧ bv[4] = 40,
depending on the offset in the bit-vector (0 and 3, respectively).

As an optimization, H creates a single “template”, parame-
terized by the offset, for the encoded expression, and instantiates
the template every time, with appropriate offsets. For the example
above, the template T (p) is bv[p] = 41 ∧ bv[p + 1] = 40, where p
is the offset parameter. H then instantiates the template to T (0)
and T (3).

As another example, consider c1 in Section 3.5: The subexpres-
sion ()()+(()) occurs 3 times in c1, each time with a different
offset (2 for the first occurrence, 0 for the second, and 1 for the
third). The constraint template optimization enables H to do
the encoding once and reuse the results, with appropriate offsets.

4.3 Server Mode
Because H is a Java program, the startup time of the Java

virtual machine may be a significant overhead when solving small
constraints. Therefore, we added a server mode to H, in which
the (constantly running) solver accepts inputs passed over a net-
work socket, and returns the results over the same socket. This
enables H to be efficient over repeated calls, for tasks such as
solving the same constraints on string variables of different sizes.

5. EVALUATION
We performed experiments to test H’s applicability to prac-

tical problems involving string constraints, and to compare its per-
formance and scalability to another string solver.

Experiments:

1. We used H in a static-analysis tool [39] that identifies
possible SQL injection vulnerabilities (Section 5.1).

2. We uses H in Ardilla [25], a dynamic-analysis tool that
creates SQL injection attacks (Section 5.2).

3. We used H in Klee, a systematic testing tool for C pro-
grams (Section 5.3).

4. We compared H’s performance and scalability to CFG-
Analyzer [1], a solver for bounded versions of context-free-
language problems, e.g., intersection (Section 5.4).

Unless otherwise noted, we ran all experiments on a 2.2GHz Pen-
tium 4 PC with 1 GB of RAM running Debian Linux, executing
H on Sun Java Client VM 1.6.0-b105 with 700MB of heap
space. We ran H with all optimizations on, but flushed the
whole internal state after solving each input to ensure fairness in
timing measurements, i.e., preventing artificially low runtimes when
solving a series of structurally-similar inputs.

The results of our experiments indicate that H is expressive
in encoding real constraint problems that arise in security analy-
sis and automated testing, that it can be integrated into existing
testing tools, and that it can efficiently solve large constraints ob-
tained from real programs. H’s source code and documen-
tation, experimental data, and additional results are available at
http://people.csail.mit.edu/akiezun/hampi.

5.1 Identifying SQL Injection Vulnerabilities
Using Static Analysis

We evaluated H’s applicability to finding SQL injection vul-
nerabilities in the context of a static analysis. We used the tool
from Wassermann and Su [39] that, given source code of a PHP
Web application, identifies potential SQL injection vulnerabilities.
The tool computes a context-free grammar G that conservatively
approximates all string values that can flow into each program vari-
able. Then, for each variable that represents a database query, the
tool checks whether L(G) ∩ L(R) is empty, where L(R) is a reg-
ular language that describes undesirable strings or attack vectors
(strings that can exploit a security vulnerability). If the intersection
is empty, then Wassermann and Su’s tool reports the program to be
safe. Otherwise, the program may be vulnerable to SQL injection

6

attacks. An example L(R) that Wassermann and Su use — the lan-
guage of strings that contain an odd number of unescaped single
quotes — is given by the regular expression (we used this R in our
experiments):

R = (([ˆ’]|\’)*[ˆ\])?’
((([ˆ’]|\’)*[ˆ\])?’
(([ˆ’]|\’)*[ˆ\])?’([ˆ’]|\’)*

Using H in such an analysis would offer two important ad-
vantages. First, it would eliminate a time-consuming and error-
prone reimplementation of a critical component: the string con-
straint solver. To compute the language intersection, Wassermann
and Su implemented a custom solver based on the algorithm by
Minamide [29]. Second, H creates concrete example strings
from the language intersection, which is important for generating
attack vectors; Wassermann and Su’s custom solver only checks for
emptiness of the intersection, and does not create example strings.

However, an advantage of using an unbounded string solver is
that if the solver terminates and says that the input constraints have
no solution, then there is indeed no solution. In the case of H,
on the other hand, we can only conclude that there is no solution
up to the given bound.

We performed the experiment as follows: We applied Wasser-
mann and Su’s tool to 6 PHP applications. Of these, 5 were ap-
plications used by Wassermann and Su to evaluate their tool [39].
We added 1 large application (claroline 1.5.3, a builder for
online education courses, with 169 KLOC) from another paper by
the same authors [40]. Each of the applications has known SQL
injection vulnerabilities.

The total size of the applications was 339,750 lines of code.
Wassermann and Su’s tool found 1,367 opportunities to compute
language intersection, each time with a different grammar G (built
from the static analysis) but with the same regular expression R de-
scribing undesirable strings. For each input (i.e., pair of G and R),
we used both H and Wassermann and Su’s custom solver to
compute whether the intersection L(G) ∩ L(R) was empty.

In 306 of the 1,367 inputs, the intersection was not empty (both
solvers produced identical results). Wassermann and Su’s tool can-
not produce an example string for those inputs, but H can. To
do so, we varied the size N of the string variable between 1 and 15,
and for each N, we measured the total H solving time, and
whether the result was UNSAT or a satisfying assignment.

We found empirically that when a solution exists, it can be very
short. Out of the 306 inputs with non-empty intersections, we mea-
sured the percentage for which H found a solution (for increas-
ing values of N): 2% for N = 1, 70% for N = 2, 88% for N = 3,
and 100% for N ≥ 4. That is, in this large dataset, all non-empty
intersections contain strings with no longer than 4 characters. Due
to false positives inherent in Wassermann and Su’s static analysis,
the strings generated from the intersection do not necessarily con-
stitute real attack vectors. However, this is a limitation of the static
analysis, not of H.

We measured how H’s solving time depends on the size
of the grammar. We measured the size of the grammar as the
sum of lengths of all productions (we counted ε-productions as of
length 1). Among the 1,367 grammars in the dataset, the mean
size was 5490.5, standard deviation 4313.3, minimum 44, maxi-
mum 37955. We ran H for N = 4, i.e., the length at which
all satisfying assignments were found. Figure 7 shows the solving
time as a function of the grammar size, for all 1,367 inputs.

H can solve most queries quickly. Figure 8 shows the per-
centage of inputs that H can solve in the given time, for 1 ≤
N ≤ 4, i.e., until all satisfying assignments are found. For N = 4,

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

s
o
lv

in
g
 t

im
e

 (
s
e

c
.)

grammar size

SAT
UNSAT

Figure 7: H solving time as function of grammar size (num-
ber of all elements in all productions), on 1,367 inputs from the
Wasserman and Su dataset [39]. The size of the string variable
was 4, the smallest at which H finds all satisfying assign-
ments for the dataset. Each point represents an input; shapes
indicate SAT/UNSAT. Section 5.1 describes the experiment.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01 0.1 1

%
 o

f s
ol

ve
d

qu
er

ie
s

time (sec.)

string size 1
string size 2
string size 3
string size 4

Figure 8: Percentage of queries solvable by H, in a given
amount of time, on data from Wasserman and Su [39]. Each
line represents a distribution for a different size of the string
variable. All lines reach 99.7% at 1 second and 100% be-
fore 160 seconds. Section 5.1 describes the experiment.

H can solve 99.7% of inputs within 1 second.

Summary of results: We applied H to 1,367 constraints cre-
ated from analysis of 339,750 lines of code from 6 PHP applica-
tions. H found that all 306 satisfiable constraints have short so-
lutions (N ≤ 4). H found all known solutions, and solved 99.7%
of the generated constraints in less than 1 second per constraint.
These result, obtained on a large dataset from a powerful static
analysis and real Web applications, indicates that H’s bounded
solving algorithm is applicable to real problems.

5.2 Creating SQL Injection Attacks from Dy-
namic Analysis

We evaluated H’s ability to automatically find SQL injection
attack strings using constraints produced by running a dynamic-

7

analysis tool on PHP Web applications. For this experiment, we
used Ardilla [25], a tool that constructs SQL injection and Cross-
site Scripting (XSS) attacks by combining automated input genera-
tion, dynamic tainting, and generation and evaluation of candidate
attack strings.

One component of Ardilla, the attack generator, creates candi-
date attack strings from a pre-defined list of attack patterns. Though
its pattern list is extensible, Ardilla’s attack generator is neither tar-
geted nor exhaustive: The generator does not attempt to create valid
SQL statements but rather simply assigns pre-defined values from
the attack patterns list one-by-one to variables identified as vulner-
able by the dynamic tainting component; it does so until an attack
is found or until there are no more patterns to try.

For this experiment, we replaced the attack generator with the
H string solver. This reduces the problem of finding SQL injec-
tion attacks to one of string constraint generation followed by string
constraint solving. This replacement makes attack creation targeted
and exhaustive — H constraints encode the SQL grammar and,
if there is an attack of a given length, H is sure to find it.

To use H with Ardilla, we also replaced Ardilla’s dynamic
tainting component with a concolic execution [20, 36] component.
This required code changes were quite extensive but fairly standard.
Concolic execution creates and maintains symbolic expressions for
each concrete runtime value derived from the input. For example,
if a value is derived as a concatenation of user-provided parame-
ter p and a constant string "abc", then its symbolic expression is
concat(p, "abc"). This component is required to generate the
constraints for input to H.

The H input includes a partial SQL grammar (similar to that
in Figure 2). We manually wrote a grammar that covers a subset
of SQL queries commonly observed in Web-applications, which
includes SELECT, INSERT, UPDATE, and DELETE, all with WHERE
clauses. The grammar has 14 nonterminals, 16 terminals, and 27
productions (its size is 74, according to the metric of Section 5.1).
Each terminal is represented by a single unique character.

We ran our modified Ardilla on 5 PHP applications (the same
set as the original Ardilla study [25], totaling 14,941 lines of PHP
code). The original study identified 23 SQL injection vulnerabili-
ties in these applications. Ardilla generated 216 H inputs, each
of which is a string constraint built from the execution of a particu-
lar path through an application. For each constraint, we used H
to find an attack string of size N ≤ 6 — a solution corresponds to
the value of a vulnerable PHP input parameter. Following previous
work [17, 23], the generated constraint defined an attack as a syn-
tactically valid (according to the grammar) SQL statement with a
tautology in the WHERE clause, e.g., OR 1=1. We used 4 tautology
patterns, distilled from several security lists2.

We separately measured solving time for each tautology and each
choice of N. A security-testing tool like Ardilla might search for
the shortest attack string for any of the specified tautologies.

Summary of results: H fully replaced Ardilla’s custom attack
generator. H successfully created all 23 attacks on the tested
applications. H solved the associated constraints quickly, find-
ing all known solutions for N ≤ 6. H solved 46.0% of those
constraints in less than 1 second per constraint, and solved all the
constraints in less than 10 seconds per constraint.

These results indicate that the H enabled a successful reduc-
tion of the problem of finding SQL injection attacks to string con-
straint generation and solving, and was able to plug into an existing
2http://www.justinshattuck.com/2007/01/18/
mysql-injection-cheat-sheets,
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku,
http://pentestmonkey.net/blog/mysql-sql-injection-cheat-sheet

security testing application and perform comparably.

5.3 Systematic Testing of C Programs
We combined H with a state-of-the-art systematic testing

tool, Klee [6], to improve Klee’s ability to create valid test cases
for C programs that accept highly structured string inputs.

Automatic test-case generation tools that use combined concrete
and symbolic execution, also known as called concolic execution
(e.g., CUTE [36], DART [20], EXE [7], Klee [6], SAGE [21])
have trouble creating test cases that achieve high coverage for pro-
grams that expect structured inputs, such as those that require input
strings from a context-free grammar [19, 27] The parser compo-
nents of programs that accept structured inputs (especially those
auto-generated by tools such as Yacc) often contain complex control-
flow with many error paths; the vast majority of paths that auto-
matic testers explore terminate in parse errors, thus creating inputs
that do not lead the program past the initial parsing stage.

Testing tools based on concolic execution mark the target pro-
gram’s input string as totally unconstrained (i.e., symbolic) and
then build up constraints on the input based on the conditions of
branches taken during execution. If there were a way to constrain
the symbolic input string so that it conforms to a target program’s
specification (e.g., a context-free grammar), then the testing tool
would only explore non-error paths in the program’s parsing stage,
thus resulting in generated inputs that reach the program’s core
functionality. To demonstrate the feasibility of this technique, we
used H to create grammar-based input constraints and then fed
those into Klee [6] to generate test cases for C programs. We com-
pared the coverage achieved and numbers of legal (and rejected)
inputs generated by running Klee with and without the H con-
straints.

Similar experiments have been performed by others [19,27], and
we do not make any claims of novelty for the experimental design.
However, previous studies used custom-made string solvers, while
we are able to apply H as an “off-the-shelf” solver for Klee
without modifying Klee at all.

Klee provides a C API for target programs to mark inputs as
symbolic and to place constraints on them. The code snippet below
uses klee_assert() to impose the constraint that all elements of
buf must be numeric before the target program runs:

char buf[10]; // program input
klee_make_symbolic(buf, 10); // make all 10 bytes symbolic

// constrain buf to contain only numeric digits
for (int i = 0; i < 10; i++)

klee_assert((’0’ <= buf[i]) && (buf[i] <= ’9’));

run_target_program(buf); // run target program with buf as input

Such simple constraints can be written by hand, but it is infea-
sible to manually write more complex constraints for specifying,
for example, that buf must belong to a particular context-free lan-
guage. We use H to automatically compile such constraints
from a grammar down to C code, which can then be fed into Klee.

We chose 3 open-source C programs that specify expected in-
puts using context-free grammars in Yacc format (a subset of those
used by Majumdar and Xu [27]). cueconvert converts music
playlists from .cue format to .toc format. logictree is a solver
for propositional logic formulas. bc is a command-line calculator
and simple programming language. All programs take input from
stdin; Klee allows the user to create a fixed-size symbolic buffer
to simulate stdin, so we did not need to modify these programs.

For each target program, we ran the following experiment on
a 3.2GHz Pentium 4 PC with 1GB of RAM running Fedora Linux:

8

Program ELOC input size symbolic symbolic + grammar combined
cueconvert 939 28 bytes % total line coverage: 32.2% 51.4% 56.2%

% parser file line coverage (48 lines): 20.8% 77.1% 79.2%
legal inputs / # generated inputs (%): 0 / 14 (0%) 146 / 146 (100%) 146 / 160 (91%)

logictree 1,492 7 bytes % total line coverage: 31.2% 63.3% 66.8%
% parser file line coverage (17 lines): 11.8% 64.7% 64.7%
legal inputs / # generated inputs (%): 70 / 110 (64%) 98 / 98 (100%) 188 / 208 (81%)

bc 1,669 6 bytes % total line coverage: 27.1% 43.0% 47.0%
% parser file line coverage (332 lines): 11.8% 39.5% 43.1%
legal inputs / # generated inputs (%): 2 / 27 (5%) 198 / 198 (100%) 200 / 225 (89%)

Table 1: The result of using H grammars to improve coverage of test cases generated by the Klee systematic testing tool. ELOC
lists Executable Lines of Code, as counted by gcov over all .c files in program (whole-project line counts are several times larger, but
much of that code does not directly execute). Each trial was run for 1 hour. To create minimal test suites, Klee only generates a new
input when it covers new lines that previous inputs have not yet covered; the total number of explored paths is usually 2 orders of
magnitude greater than the number of generated inputs. Column symbolic shows results for runs of Klee without a H grammar.
Column symbolic + grammar shows results for runs of Klee with a H grammar. Column combined shows accumulated results
for both kinds of runs. Section 5.3 describes the experiment.

1. Automatically convert its Yacc specification into H’s in-
put format (described in Section 3.1), using a script we wrote.
To simplify lexical analysis, we used either a single letter
or numeric digit to represent certain tokens, depending on
its Lex specification (this should not reduce coverage in the
parser).

2. Add a bounded-length restriction to limit the input to N bytes.
Klee (similarly to, for example, SAGE [21]) actually requires
a fixed-length input, which matches well with H’s bounded
input language. We empirically picked N as the largest input
size for which Klee does not run out of memory. We aug-
mented the H input to allow for strings with arbitrary
numbers of trailing spaces, so that we can generate program
inputs up to size N.

3. Run H to compile the input grammar file into STP bit-
vector constraints (described in Section 3.3).

4. Automatically convert the STP constraints into C code that
expresses the equivalent constraints using C variables and
calls to klee_assert(), with a script we wrote (the script
performs only simple syntactic transformations since STP
operators map directly to C operators).

5. Run Klee on the target program using an N-byte input buffer,
first marking that buffer as symbolic, then executing the C
code that imposes the input constraints, and finally executing
the program itself.

6. After a 1-hour time-limit expires, collect all generated inputs
and run them through the original program (compiled using
gcov) to measure coverage and legality of each input.

7. As a control, run Klee for 1 hour using an N-byte symbolic
input buffer (with no initial constraints), collect test cases,
and run them through the original program.

Table 1 summarizes our experimental setup and results. We
made 3 sets of measurements: total line coverage, line coverage
in the Yacc parser file that specifies the grammar rules alongside C
code snippets denoting parsing actions, and numbers of inputs (test
cases) generated, as well as how many of those inputs were legal
(i.e., not rejected by the program as a parse error).

The run times for converting each Yacc grammar into H for-
mat, bounding to N bytes, running H on the bounded grammar,

and converting the resulting STP constraints into C code are negli-
gible: They took less than 1 second for each of the 3 programs.

Constraining the inputs using a H grammar resulted in up to
2× improvement in total line coverage and up to 5× improvement
in line coverage within the Yacc parser file. Also, as expected, it
eliminated all illegal inputs.

Using both sets of inputs (combined column) improved upon the
coverage achieved using the grammar by up to 9%. Upon manual
inspection of the extra lines covered, we found that it was due to
the fact that the runs with and without the grammar covered non-
overlapping sets of lines: The inputs generated by runs without the
grammar (symbolic column) covered lines dealing with process-
ing parse errors, whereas the inputs generated with the grammar
(symbolic + grammar column) never had parse errors and covered
core program logic. Thus, combining test suites is useful for testing
both error and regular execution paths.

Using the grammar, Klee generated 3 distinct inputs for logic-
tree that uncovered (previously unknown) bugs where the pro-
gram entered an infinite loop. Without the grammar, Klee was not
able to generate those same inputs within the 1-hour time limit;
given the structured nature of those inputs (e.g., one is “@x $y z”),
it is unlikely that Klee would be able to generate them within any
reasonable time bound without a grammar.

Upon manually inspecting lines of code that were not covered
(even in the combined column), we discovered two main hindrances
to achieving higher coverage: First, our input sizes were still too
small to generate longer productions that exercised more code, es-
pecially problematic for the playlist files for cueconvert; this is a
limitation of Klee running out of memory and not of H. Sec-
ond, while grammars eliminated all parse errors, many generated
inputs still contained semantic errors, such as malformed bc ex-
pressions and function definitions (again, unrelated to H).

Summary of results: Using H to create input constraints led
to up to 2× improvements in line coverage (up to 5× coverage im-
provements in parser code), eliminated all illegal inputs, and en-
abled discovering 3 distinct, previously unknown, inputs that led
to infinitely-looping program execution. These results show that
using H can improve the effectiveness of automated test-case
generation and bug finding tools.

5.4 Comparing Performance to CFGAnalyzer
We evaluated H’s utility in analyzing context-free grammars,

and compared H’s performance to a specialized decision pro-

9

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

ti
m

e
 (

s
e

c
.)

string size (characters)

Hampi

CFGAnalyzer

Figure 9: Solving time as a function of string size, on context-
free-grammar intersection constraints. Results are averaged
over 100 randomly-selected pairs of context-free grammars.
Section 5.4 describes the experiment.

cedure, CFGAnalyzer [1]. CFGAnalyzer is a SAT-based decision
procedure for bounded versions of 6 problems (5 undecidable) that
involve context-free grammars: universality, inclusion, intersec-
tion, equivalence, ambiguity, and emptiness (decidable). We down-
loaded the latest available version3 (released 3 December 2007) and
configured the program according to the manual. To avoid bias,
we compared H to CFGAnalyzer only on the data provided by
CFGAnalyzer developers.

We performed experiments with the grammar intersection prob-
lem. Five of six problems handled by CFGAnalyzer (universality,
inclusion, intersection, equivalence, and emptiness) can be easily
encoded as H inputs — the intersection problem is representa-
tive of the rest. In these experiments, both H and CFGAnalyzer
searched for strings (of fixed length) from the intersection of 2
grammars. We used CFGAnalyzer’s experimental data sets (ob-
tained from the authors). From the set of 2088 grammars in the
data set, we selected a random sample of 100 grammar pairs. We
used both H and CFGAnalyzer to search for strings of lengths
1 ≤ N ≤ 50. We ran CFGAnalyzer in a non-incremental mode (in
the incremental mode, CFGAnalyzer reuses previously computed
sub-solutions), to create a fair comparison with H, which ran
as usual in server mode while flushing its entire internal state after
solving each input. We ran both programs without a timeout.

Figure 9 shows the results averaged over all pairs of grammars.
H is faster than CFGAnalyzer for all sizes larger than 4 char-
acters. More importantly, H’s win over CFGAnalyzer grows
as the size of the problem increases (up to 6.8× at size 50). For
the largest problems (N = 50), H was faster (by up to 3000×)
on 99 of the 100 grammar pairs, and 1.3× slower on the remaining 1
pair of grammars.

The H website contains all experimental data and detailed
results. It also describes an additional experiment we performed:
searching for any string of a given length from a context-free gram-
mar. The results were similar to those for intersection: e.g., H
finds a string of size 50, on average, in 1.5 seconds, while CFG-
Analyzer finds one in 8.7 seconds (5.8× difference).

Summary of results: On average, H solved constraints up to
6.8× faster than CFGAnalyzer, and its lead increased as the prob-

3http://www.tcs.ifi.lmu.de/~mlange/cfganalyzer

lem size grew larger.

6. RELATED WORK
Decision procedures have received widespread attention within

the context of program analysis, testing, and verification. There has
been significant work on decision procedures for theories such as
Boolean satisfiability [12, 30], bit-vectors [18], quantified Boolean
formulas [2, 3], and linear arithmetic [11]. In contrast, there has
been relatively little work on practical and expressive solvers that
reason about strings or sets of strings directly.

Solvers for String Constraints. MONA [26] uses finite-state au-
tomata and tree automata to reason about sets of strings. However,
the user still has to translate their input problem into MONA’s in-
put language (weak monadic second-order theory of one succes-
sor). MONA also provides automata-based tools, similar to other
libraries [14–16].

In concurrent work, Hooimeijer and Weimer [24] describe a de-
cision procedure for regular language constraints, focusing on gen-
erating sets of satisfying assignments rather than individual strings.
Unlike H, the associated implementation does not easily allow
users to express bounded context-free grammars.

Several tools allow word equations [5, 33], i.e., checking equal-
ity between two strings that contain string variables. Rajasekar [33]
exhibits a logic programming approach that includes constraints on
individual words. Bjørner et al. [5] describe a constraint solver for
word queries over a variety of operations, and translate string con-
straints to the language of the Z3 solver [11]. If there is a solution,
Z3 returns a finite bound for the set of strings, that is then explored
symbolically. However, unlike H, these tools do not support
context-free grammars directly.

Custom String Solvers. Many analyses use custom solvers to
solve string constraints [8, 13, 17, 19, 29, 39–41]. All of these ap-
proaches include some implementation for language intersection
and language inclusion; most, like H, can perform regular lan-
guage intersection. Each of these implementations is tightly inte-
grated with the associated program analysis, making a direct com-
parison with H impractical.

Christensen et al. [8] have a static analysis tool to check for
SQL injection vulnerabilities that uses automata-based techniques
to represent over-approximation of string values. Fu et al. [17] also
use an automata-based method to solve string constraints. Ruan et
al [34] use a first-order encoding of string functions occurring in C
programs, and solve the constraints using a linear arithmetic solver.

Besides the custom solvers by Wasserman et al. [39], the solver
by Emmi et al. [13] is closest to H in terms of expressive-
ness and usage for testing and analysis applications. Emmi et al.
used their solver for automatic test case generation for database
applications. Unlike H, their solver allows constraints over
unbounded regular languages and linear arithmetic, but does not
support context-free grammars.

Many of the program analyses listed here perform similar tasks
when reasoning about string-valued variables. This is strong ev-
idence that a unified approach, in the form of an external string
constraint solvers like H, is warranted.

Theoretical Work on Satisfiability of String Constraints: There
are a variety of inter-related problems involving strings constraints,
and there is an extensive literature on the theoretical study of these
problems [28, 31, 32, 35]. However, we are focused on efficient
techniques for a practical string solver that is usable as a library and
is sufficiently expressible to support a large variety of applications.

10

7. CONCLUSION
We presented H, a solver for constraints over bounded string

variables. H constraints express membership in regular and
bounded context-free languages. H constraints may contain a
bounded string variable, context-free language definitions, regular-
language definitions and operations, and language-membership pred-
icates. Given a set of constraints over a string variable, H out-
puts a string that satisfies all the constraints, or reports that the con-
straints are unsatisfiable. H works by encoding the constraint
in the bit-vector logic and solving using STP.

H is designed to be used as a component in testing, analy-
sis, and verification applications. H can also be used to solve
the intersection, containment, and equivalence problems for reg-
ular and bounded context-free languages. We evaluated H’s
usability and effectiveness as a component in static and dynamic
analysis tools for PHP Web applications. Our experiments show
that H is expressive enough to easily encode constraint aris-
ing in finding SQL injection attacks, and in systematic testing of
real-world programs. In our experiments, H was able to find
solutions quickly, and scale to practically-relevant problem sizes.

By using a general-purpose freely-available string solver like
H, builders of analysis and testing tools can save significant
development effort, and improve the effectiveness of their tools.

8. REFERENCES
[1] R. Axelsson, K. Heljank, and M. Lange. Analyzing

context-free grammars using an incremental SAT solver. In
ICALP, 2008.

[2] M. Benedetti. sKizzo: a suite to evaluate and certify QBFs.
In CADE, 2005.

[3] A. Biere. Resolve and expand. In SAT, 2005.
[4] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu.

Bounded model checking. Advances in Computers, 58, 2003.
[5] N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility

analysis for string-manipulating programs. Technical Report
MSR-TR-2008-153, Microsoft, 2008.

[6] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex
systems programs. In OSDI, 2008.

[7] C. Cadar, V. Ganesh, P. M. Pawlowski, D. Dill, and D. R.
Engler. EXE: automatically generating inputs of death. In
CCS, 2006.

[8] A. S. Christensen, A. Møller, and M. I. Schwartzbach.
Precise analysis of string expressions. In SAS, 2003.

[9] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking
ANSI-C programs. In TACAS, 2004.

[10] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav.
Predicate abstraction of ANSI-C programs using SAT.
Formal Methods in System Design, 25(2-3), 2004.

[11] L. DE Moura and N. Bjørner. Z3: An efficient SMT solver.
In TACAS, 2008.

[12] N. Eén and N. Sörensson. An extensible SAT solver. In SAT,
2003.

[13] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input
generation for database applications. In ISSTA, 2007.

[14] Brics finite state automata utilities.
http://www.brics.dk/automaton/faq.html.

[15] Finite state automata utilities.
http://www.let.rug.nl/ vannoord/Fsa/fsa.html.

[16] AT&T Finite State Machine Library.
http://www.research.att.com/ fsmtools/fsm.

[17] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao. A
static analysis framework for detecting SQL injection
vulnerabilities. In COMPSAC, 2007.

[18] V. Ganesh and D. L. Dill. A decision procedure for
bit-vectors and arrays. In CAV, 2007.

[19] P. Godefroid, A. Kieżun, and M. Y. Levin. Grammar-based
whitebox fuzzing. In PLDI, 2008.

[20] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In PLDI, 2005.

[21] P. Godefroid, M. Y. Levin, and D. Molnar. Automated
whitebox fuzz testing. In NDSS, 2008.

[22] S. Gulwani, S. Srivastava, and R. Venkatesan. Program
analysis as constraint solving. In PLDI, 2008.

[23] W. Halfond, A. Orso, and P. Manolios. WASP: Protecting
Web applications using positive tainting and syntax-aware
evaluation. IEEE TSE, 34(1):65, 2008.

[24] P. Hooimeijer and W. Weimer. A decision procedure for
subset constraints over regular languages. In PLDI, 2009.

[25] A. Kieżun, P. J. Guo, K. Jayaraman, and M. D. Ernst.
Automatic creation of SQL injection and cross-site scripting
attacks. In ICSE, 2009.

[26] N. Klarlund. Mona & Fido: The logic-automaton connection
in practice. In International Workshop on Computer Science
Logic, 1998.

[27] R. Majumdar and R.-G. Xu. Directed test generation using
symbolic grammars. In ASE, 2007.

[28] G. Makanin. The problem of solvability of equations in a free
semigroup. Sbornik: Mathematics, 32(2):129–198, 1977.

[29] Y. Minamide. Static approximation of dynamically generated
Web pages. In WWW, 2005.

[30] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: engineering an efficient SAT solver. In DAC,
2001.

[31] G. Pesant. A regular language membership constraint for
finite sequences of variables. In CP, 2004.

[32] C. Quimper and T. Walsh. Global grammar constraints. In
CP, 2006.

[33] A. Rajasekar. Applications in constraint logic programming
with strings. In PPCP, 1994.

[34] H. Ruan, J. Zhang, and J. Yan. Test data generation for C
programs with string-handling functions. In TASE, 2008.

[35] M. Sellmann. The theory of grammar constraints. In CP,
2006.

[36] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In FSE, 2005.

[37] D. Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khurshid.
Abstracting symbolic execution with string analysis. In
TAICPART, 2007.

[38] M. Sipser. Introduction to the Theory of Computation.
Course Technology, 1996.

[39] G. Wassermann and Z. Su. Sound and precise analysis of
Web applications for injection vulnerabilities. In PLDI,
2007.

[40] G. Wassermann and Z. Su. Static detection of cross-site
scripting vulnerabilities. In ICSE, 2008.

[41] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura,
and Z. Su. Dynamic test input generation for Web
applications. In ISSTA, 2008.

[42] Y. Xie and A. Aiken. Saturn: A scalable framework for error
detection using Boolean satisfiability. In CAV, 2007.

11

