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Abstract

The purpose of this thesis is to investigate both the qualitative and quantitative
effects of including higher order amplitude terms in the post-Newtonian expansion for
gravitational waves on parameter estimation of inspiraling binary systems. First, we
review the mechanism behind gravitational wave production and the formalism behind
our estimation of parameters given a specific waveform. Then, we use a Monte Carlo
simulation of 1000 separate binary systems with random position, and orientation
parameters and fixed mass ratios between binary objects to generate gravitational
waveforms measurements from a detector model which mimics data received from the
proposed LISA mission. After that we numerically estimate how well those parameters
are determined. The data presented compares median values of accuracy defined as
Aý/ý for parameters ( of luminosity distance, chirp mass, and reduced mass, as well
as the major and minor axes of a localization ellipse between waveform models which
include only the leading quadrupole harmonic amplitude contribution, and the .5PN
amplitude harmonic correction to the quadrupole. Our results show that, for all the
Monte Carlo simulations run, there is a substantial global improvement in accuracy
of the estimated parameters when higher order .5PN amplitude terms are included
in the waveform model. The largest improvement shown comes from the range of
masses between 105 and 106 solar masses, which is the ideal reception band for the
LISA detector array. This improvement can eventually be applicable to aid in the
location of binary sources for confirmation of direct gravitational wave observation.
We conclude from these results that it is indeed advantageous to include higher order
terms in the post-Newtonian expansion for gravitational wave models in order to
obtain more accurate parameter estimates.
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Chapter 1

Introduction

One of the key features of general relativity is its prediction of gravitational waves.

The Einstein field equation, which represents a set of differential equations over the

metric, have wave solutions both in the presence and absence of mass. Gravita-

tional waves are created by dynamical, non-symmetric, massive systems in which

the curvature of spacetime around the system fluctuates with time. This fluctuation

creates a waveform that propagates through spacetime, much as any electromagnetic

wave propagates through space. Unlike electromagnetic radiation, gravitational waves

do not scatter when propagating through matter. By observing these gravitational

waves, we stand to gain a better understanding of the dynamics of systems both far

away and dark with respect to the electromagnetic spectrum.

Gravitational waves are described as a time dependent perturbation to a slowly

varying background metric, gB,. One can study the dynamics of these spacetimes by

requiring that our perturbative expansion be a solution to the Einstein field equation.

We treat the metric perturbation as small and truncate the expansion to a first order

term, h,,. With small h,,, we typically then can expand the field equation solutions

perturbatively. Though not necessary, it is common for pedagogical reasons to treat

the background as the Minkowski metric, y, = diag(-1, 1, 1, 1) which describes the

geometry of flat spacetime in special relativity [5].

Though there is a strong body of evidence supporting the existence of gravita-

tional waves, direct observation is quite difficult. As they propagate through space,



gravitational waves act as tidal forces on massive bodies, alternately stretching and

squeezing along axes perpendicular to the direction of propagation. Because gravity

is the weakest of the four fundamental forces, the magnitude of these tidal forces is

typically extremely small. Direct observation of gravitational waves requires us to

engineer highly precise experiments such as LIGO and LISA.

In this thesis we will specifically focus our attention on the LISA mission, though

the later analysis is easily adaptable to the LIGO experiment. LISA is a spaced-based

gravitational detector array which will consist of three massive detector components

following geodesics in solar orbit. When the mission is launched, the three detector

components will be positioned such that their geodesic paths around the Sun will

form an equilateral triangle and maintain relative distances between one another.

Since the relative distances are maintained, we can then use them as the base points

for a three-armed interferometric detector array, where each arm is positioned at 60o

relative to the adjacent arms. We hope that this mission will bring about direct

observation of gravitational waves from binary systems.

Binary systems are well understood sources which tend to give some of the high-

est amplitude gravitational waves. In these systems, two massive bodies orbiting

one another are the source of asymmetric fluctuations in spacetime curvature.These

fluctuations are gravitational waves; this radiation can perform work on other mas-

sive bodies, carrying with it energy from the binary system. The radiative energy

loss from the production of gravitational waves decreases the mean orbital distance

between the two objects in the binary, lowering the time it takes for the two bodies

to revolve around one another, and thereby causing normal circular orbits to become

slow inspirals. The orbital frequency slowly "chirps" upward as the bodies come to-

gether, until finally terminating when the members of the binary eventually coalesce

into a single body.

Binary systems which are strong gravitational wave sources must be compact, and

so typically contain neutron stars or black holes. Massive binary black hole systems

(in which the member black holes are each roughly 106 M®) in particular appear to

form quite commonly as a consequence of the way in galaxies form and grow [11].



Radiative solutions to the Einstien field equations can be fully described by two

polarizations. As with Electromagnetism, each polarization is in turn described by a

multipolar expansion. Both the monopole and dipole moments, describing the total

mass-energy and momentum of the source respectively, cannot radiate due to conser-

vation of energy and momentum. For gravitational radiation, the leading radiative

multipole is the quadrupole moment of the source's mass-energy distribution. Since

the quadrupole moment is the leading radiative multipole, it typically dominates a

source's radiation spectrum. Other terms in the series are often ignored.

Each polarization of a gravitational waveform depends on parameters of the bi-

nary system. These include but are not limited to the distance from the binary to the

observer, the mass of each of the objects in the binary, the vectors which describe the

binary's orientation and position relative to the observer, and the orbital frequency

of the binary at the beginning of observation. Using numerical methods it is possible

to invert any specific gravitational wave form as a function of these describing param-

eters. Thus, given both wave polarizations we determine a set of parameters which

could have produced the input waveform. In the presence of noise, this determination

is not precise, and so we really determine a manifold of parameters all of which could

have have produced that waveform (and noise). Ideally, we would like the uncertainty

in parameter measurements to be small enough that we can accurately describe the

source which generated the waves that we have measured. This translates to one

wanting the volume in parameter space which describes waveforms consistent with a

measurement to be as small as possible.

Recently, it has been discovered that parameter errors can be reduced by including

corrections to the theoretical description of the waveform that correspond to preces-

sion effects induced by the spin of a binary's members [3][10]. This increases the

accuracy of prediction that we can make as to the possible values for describing pa-

rameters of the system. This of course motivates us to ask whether or not we might

observe a similar increase in the precision of our parameter predictions by includ-

ing higher order correction terms to the multipole expansion of a gravitational wave

model.



This thesis is concerned with what increase in precision, if any, we achieve by

including higher order harmonics in the multipole expansions of the gravitational

wave polarizations. Assuming each individual harmonic describes its own manifold in

parameter space upon numerical inversion, we can take the superposition of several

terms in the expansion to be the intersection of several manifolds. The possibility

exists that such an intersection of the set of those manifolds, derived from the higher

order terms in the multipole expansion, may have smaller volume in parameter space

than the manifold defined by including only the quadrupole harmonic. This decrease

in volume would allow us to more accurately estimating the intrinsic parameters of a

radiating source. Ultimately our goal here is to compare parameter estimations over

a large number of binary systems for a given input waveform computed by using two

separate waveform models. One which includes and the other which excludes higher

order multipole harmonics.



Chapter 2

Theory

2.1 Gravitational Radiation

We begin this thesis by reviewing the basic properties of gravitational waves in general

relativity as discussed in Ref. [5]. First, we shall show how they arise as wave solutions

to the Einstein field equation. Next we shall show that their tidal influence, as

described by the Riemann curvature tensor, is gauge invariant. Finally, we will choose

a convenient gauge for our calculations and solve the Einstein field equation in that

gauge to show that there are indeed wave solutions.

2.1.1 The Linearized Einstein Equations

In linearized theory, gravitational waves can be described as a plane wave evolutions

of the metric perturbation given in the weak-field approximation. Let us start by

first performing a perturbative approximation to the metric by introducing a metric

perturbation. Here we shall do this expansion around a flat spacetime background

described by the Minkowski metric, but in fact this process is more general and

we could just as easily have expanded around a general background metric. The

decomposition is as follows:

9 i, = U? + hy, (2.1)



where T7I, =diag(-1,1,1,1) is the standard Minkowski metric and h,, is the metric

perturbation and we take Ihy.l < 1.

The equations governing the perturbation h,, are found by computing the Einstein

field equations in the perturbative limit. The full field equations are given by

G, = 8irTA, , (2.2)

where G,, is the "Einstein curvature tensor" (or just Einstein tensor), constructed

from the metric, and T,, is the stress-energy tensor. The stress-energy tensor de-

scribes how matter and matter flows are distributed in spacetime.

We now show how to calculate the Einstein tensor with our metric. The first step

is to compute the "connection coefficients," which are the Christoffel symbols

Sg, P (am,9,, + a9g, - ag,,,) (2.3)

Substituting our metric and discarding nonlinear terms in h,,, we find

r,= l (O, h,, + A,,h,, - O) h 1V (2.4)

From the connection, we construct the Riemann curvature tensor, which describes

the tidal influence of a gravity in general relativity. Given our metric, this tensor is

given to linear order by

RpILCv ??7p~aoaF - lpA pF.UT

-= 1( ,h, + , h, , -a Oph,, - hp), (2.5)

Contracting over the p and u indices yields the Ricci curvature tensor; a further final

contraction yields the Ricci scalar:

R = 81 ,h' + 8,8h", - atvh - Oh,•, (2.6)

R = ,,,h"" - Oh (2.7)



where h = hV.P,'

With these components, we can now write down the Einstein field equation

1
G, = R,, - 27,,R = 8irTp, (2.8)

where we have neglected the cosmological constant term, and by plugging in Eqs. (2.6)

and (2.7) into the field equation, we can write down the linearized field equation:

G, = 81rT,,

=- (,aOhc + ,,h' - h -Oh. - m- ,pOah•A - 1Ah . (2.9)

2.1.2 Gauge Invariance of the Riemann Tensor

In order to make Eq. (2.9) simpler, we note that a gauge transformation is necessary.

However, it's not immediately evident that our linearized Riemann tensor is gauge

invariant. Thus we must prove that the difference in g,, brought about by the gauge

transformation leaves the Riemann tensor unchanged. When this is the case, the

Einstein equations will have solutions which are independent of choice of gauge. Let us

first define a gauge transformation under linear theory. The transformation follows the

standard procedure for a gauge transformation, with one caveat. We must remember

to symmetrize over the two indices. Thus

h: = h, + e2 (A, + OAv) (2.10)

then

g:y = (g, + A) (2.11

6g,, = (a, V a A) (2.11)



and thus the difference in the Riemann tensor is

M-88w I 8OX,,+ a,,,8,avAp + v,,8pA,l + ,vdp,,iA,

-aoapatv - a9vaa~o, - avaopAjt - attapvA,)

= 0 (2.12)

Thus the Riemann curvature tensor is gauge invariant, and so in order to simplify

our calculation we shall make a gauge transformation which will put restrictions on

h1 .[5]

2.1.3 The Transverse Traceless Gauge

In order to make our calculation similar we shall make a gauge transformation in the

transverse traceless gauge, which is defined by the gauge conditions

= 0

= 0

= 0

(2.13)

(2.14)

(2.15)

Using these conditions, as well as assuming no

Eq. (2.9) simplifies to

oh'"TT = 0

gravitational sources (i.e. T "" = 0),

(2.16)

which one immediately recognizes as a freely-propagating wave equation. All that's

left to do now is to solve this wave equations for metric solutions.

2.1.4 Solving the Wave Equation Without Sources

From Eq. (2.16) we know that the solutions to the metric should satisfy a four dimen-

sional wave equation. Thus, in analogy to problems of a similar type we find plane



wave solutions of the perturbation such that

hV, = AveikpxP (2.17)

Now, we must check that the above set of trial functions for hM, are indeed solutions

to Eq. (2.16). To do this, we simply plug Eq. (2.17) into Eq. (2.16) to obtain

EOh TT  = -k•ah TT
AV, AOoV

= 0 (2.18)

Thus we have nontrivial plane wave solutions for the linearized Einstein equations

given that k'k, = 0; or in other words, the wave vector is null.1

The transverse gauge conditions give

a,hf"T = ikA,APVeikox'

= 0

kAAv = 0.

(2.19)

(2.20)

Next, note that Eq. (2.13) implies

A0, = 0 (2.21)

Now, we can find explicit solutions for h' by rotating our coordinate system

such that the wave propagates along the direction of a spatial coordinate axis. So for

propagation in the k direction, the only nonzero components of the wave vector are

k3 = w

1This result is good theoretical evidence for the fact that gravitational waves propagate at the
speed of light.



and thus Eq. (2.20) gives

A 3 = 0 (2.22)

We have thus determined A,, up to four degrees of freedom. However, the traceless

and symmetry conditions for h"TT provide an additional two constraints, such that in

the end there are only two degrees of freedom.

Restricting ourselves to the transverse traceless gauge allows us to determine that

there exist radiative plane wave solutions to the Einstein equations which are depen-

dent upon only two parameters which we shall call h+(t) and hx (t). So by solving for

the evolution of the h+ and hx parameters we can fully determine the gravitational

wave solutions under linearized theory. This process works in all gauges, we merely

choose the transverse traceless gauge for convenience in order to simplify our calcu-

lation. However, one may always find transverse traceless pieces of the metric in any

gauge and it can be shown that they always describe the radiative degrees of freedom

[9].
The same process follows similarly for the solutions of the Einstein equations

involving sources. We find that there are two parameters which govern the evolution

of all gravitational waves and note, without derivation, that they are the polarization

components of the wave.

2.1.5 Solving the Wave Equation with a Source

Let us now focus on the generalized solution to the metric perturbation when the

stress-energy tensor, TA" is non-zero.

When this is the case we can simplify the linearized Einstein tensor in Eq. (2.9)

by introducing a trace-reversed metric perturbation

1
hA = h,,- • hrV, (2.23)

This name is apt because it has the effect of reversing the sign of the trace of the

metric perturbation.



From here we are free to choose any gauge we so choose. Thus we shall choose

the Lorenz gauge which has as a gauge condition that

0,h"" = 0 (2.24)

Applying this condition we can the see that in the trace reversed case that the

Einstein tensor becomes
1-

G,, = -Oh,, (2.25)

and thus, via the Einstein equation we must solve the wave equation

EOh,uv = -161rT,, (2.26)

which is solved by inverting the d'Alambertian operator to obtain an integral over a

Green's function, G(XA - y'). So in the end we have that

h,,(x ) = -16r f G(x - y)T,,dy (2.27)

Via the choice of gauge we can determine, as we did for the sourceless case that

only the position components of the metric perturbation are nonzero. Moreover, the

Green's function can be expanded as a series of spherical harmonics to give explicit

solutions for the integral. The integral which comprises the first order in the Green's

function expansion is the quadrupole moment of the expansion. We will not go into

the expansion of the Green's function here, but the process is straightforward and

can be found in Ref. [8]. Instead we will present some of the specific consequences of

adding higher order harmonic terms later in this thesis.

To first order we can then determine the solution for the metric perturbation as

h- = - 12 (2.28)

where the denominator represents the standard norm for the 3 vectors i (the location

of the source) and ' (the location of the field observation), and 3ij is the second time



derivative of the quadrupole moment

p()(xx - ij)d3 . (2.29)

with mass density p(x).

2.1.6 Binary Systems

Compact inspiralling binary sources are among the most likely candidates for ob-

servation of gravitational radiation from space or Earth based detectors such as the

LIGO and LISA experiments. As such, the remainder of this thesis shall be focused

on the theory behind the emission and detection of gravitational radiation from these

sources.

Similar to the above case of freely propagating gravitational radiation through

sourceless spacetime, we will be able to describe the dynamics of the waveform gen-

erated by binary systems via two independent polarizations components, h+ and hx.

However, it is impossible to measure such parameters independently from one an-

other. Thus, from a practical standpoint we must build our theory around our means

of detection.

The measured gravitational waveform is generally a linear combination of the

waves two polarizations. Let us call this measured waveform htot(t). It is the sum of

the polarizations independently weighted by antenna response functions F+ (which

describes the antenna's response to a pure + polarization) Fx (which describes the

response to a pure x polarization). These response functions depend on the relative

position and orientation of the gravitational wave source to the detector arms. The

measured waveform is then

htot (t) = F+(On, On, n, )h+(t) + Fx (On, n, On)hx (t) (2.30)

where in this case On and ¢, are angle parameters specifying in spherical coordinates

the relative position of the binary, in a coordinate frame in which the origin is held at



the detector and the axes are specified relative to vector normal to the detector plane

which we label h. Additionally, ), helps to fix the orientation the angular momentum

vector of the binary L.

In order to simulate such binary systems we need only determine how they evolve

under the Einstein equation in linearized theory. Accordingly we can use the solu-

tion for the metric perturbation given in Eq. (2.28) in order to determine the two

parameters h+ and h×. To first order we find that

h+ 2 ( (5f3 r [)2 - (1 + cOS2))] cos(20(t)) (2.31)

h,= 2 ( )(- f)C-DL 2 cos()1 cos(2(t)) (2.32)

where DL is the luminosity distance to the binary source, c is the speed of light,

T - 5G(ml + m 2 )/c 3 is the total mass of the system in units of time, and q

(mlm 2)/(ml + m2 )2 is the ratio of the reduced mass of the system to the total mass.

Moreover, m, and m 2 specify the mass of each object in the binary, cos(z) -L -~, (t)

is the orbital phase of the binary, and f is the frequency of the gravitational wave.

We now have a a way to model the observed waveform from binary sources based

on physical parameters of the system. However, our end goal is to determine what

effect higher moments beyond the quadrupole moment in the expansions for h+ and

h, have on both the evolution of the wave and our ability to accurately predict the

ranges for physical parameters which determine the evolution of the wave. As such

it is necessary to discuss where these higher order moments come from, and how we

shall use them in order to increase our predictive accuracy in numerical simulation.

2.2 Higher Order Moments

Recall that in our analysis for the solution of the metric perturbation in the presence

of a massive source, we had to invert the d'Alambertian operator, E, which gave

us a Green's function integral. In the previous analysis, in order to obtain explicit

solutions we expanded the Green's function in terms of spherical harmonics, throwing



higher order terms away. However, if we choose not to ignore the higher order spher-

ical harmonics this gives us a series expansion of the metric perturbation. One can

therefore determine each integral in the series and thus create a series expansion in

h+ and hx in order to reflect higher order contributions to the wave evolution. This

process is arduous, but has been done previously by Luc Blanchef in Ref. [6] and thus

we will simply state his results here. In general we can decompose h+,x (t) into terms

of separate order in (v/c), such as

+,X h/) (2.33)h+, (t) - h7~( + ,(t) + h ,?×(t) + h7>f (t) +... (2.33)

We find that all terms involving the "plus" polarization component are dependent

upon the cosine of a a phase argument, and all terms involving the "cross" polarization

component are dependent upon the sine of a phase argument. As such we may

represent both the plus and cross polarizations of a wave by using the following

series:

h+,x(t) = h+,x (t) = [Cj(t) cos(b 0(t)) + Sbsin(b ¢(t))] (2.34)
j q b

where here we shall represent different polarization components of different orders by

listing all nonzero components in the sum for that contribute to those components for

each specific order. This process will thus be a list for each term of the the expansion

in both h+ and hx of time/frequency dependent coefficients CQ and S( corresponding

to the cosine and sine terms respectively for different orders j, up to (3/2) order in

(v/c).

Let the amplitude for each wave component be represented as A . Then:



(O) 7) 5/3 (7rf)2/3CTIA() 2 -5 / DL
A(1/2) = 2rT27rfc

25DL
(1 T 77/3 (rf) 4/ 3 Cr

A (')  2 '-5 DL
(3/2) 8/3 ( lrf)5 /3 CT

A = 2-5 DL

The nonzero Cg and Sf corresponding to each order for the separate polarization

components depend on the Aj as follows:

h(o)(t)

C20) = A()[-(1 + cos2(z))],

S2()  = A(0) [-2cos(z)],

C(1/2) = A(1/2) -96 sin(z)(1 + cos2(z))]

(1/2) - A( -3 cos( z) sin(z) (

S31/2) = A(1/2) -96 cos(z) sin(z)]

I- 4



- A(1) [(1)

C41)

(19 + 9 cos 2(z) - 2 cos4(z) - (19 - 11 cos 2() - 6 cos4(z)))]

- A') [4 sin 2 (z)(1 + cos2(z))(1 - 3,q)13

(t)

= A' [(cos() (17- 4cos 2(Z) - q(13 - 12 cos3Z)))]

(1 - 377) cos(z) sin2 ( Z),

hI4+(l )

S4(1 =A(') (8



= A(3/2)[( i192 ) (57 + 60 cos 2 () - cos4(Z)

-2(49 - 12cos2(2) -cos4(z)

= A(3/2) [2(1 + cos2 (Z))]

= A(3/2) 276sin() )73+ 40 cos 2(2) - 9 cos 4(1)

-2?-(25 -8 cos 2(Z) - 9 cos4()))],

SA(3/2) [(625 sin() sin2 )1 COS2 (Z))

384 )( s 2( ) 1 + cs()1

SA(32)[(6 sin(z> cos(s) 63 - 5 cos2() -96 )•3•os()
SA(3/2 ) - 4r cos(z) ,

SA(3/2) [(276 sin() cos(•) (67128

277(23 - 5 cos2 )))],

- 15 cos 2 () - 277(19 - 15 cos2(z)))],

A(3/12[ 6256 )cos(z) sin2(z)(1 - 2n))].128

We have introduced 6 = (ml - m 2)/M. Given such moments we can now set up our

formalism for parameter estimation.

C13/2)

C23/2)

5(3/2)5

S(3/2)

S 3/2)

h(/2) (t)

(h3/2)





Chapter 3

Parameter Estimation

A well-established formalism describes how one may go about estimating the param-

eters which describe a measured signal. We shall now give a brief summary of the

components needed for such estimation in the context of our measured signals follow-

ing Refs. [2], [4], and [7]. We begin by introducing the vector whose components Ca

denote the various parameters that describe our signal - masses, spins, distance to

the system, angles on the sky, etc. Our goal is to assess how well these components

can be determined by a given measurement. For our analysis, we will focus on massive

binary black hole signals as measured by the space-based LISA detector. Our result

will be a statement of the error AC~ (or in some cases, fractional error Al, a) that a

measurement obtains. To begin, given two signal waveforms hi(t) and h2(t), we can

define an inner product:

(hh 2) 2 S(f 2 df (3.1)

where hi and h2 are the Fourier transforms of the signals,

h(f) = dt e2 rf t h(t) (3.2)

with h1 and h1 complex conjugates. The function S,(f) is the spectral density of

noise in the detector. It describes the expected distribution of noise as a function of



frequency that the LISA detector is being designed to achieve. More concretely, if

one makes a measurement over a frequency band from fi to f2, then

a 2 =- Sn(f)df (3.3)

is the mean squared noise obtained in the measurement. Then, for the set of param-

eters ý, the probability that a signal we measure in detectors I and II (mi and mia)

contains a signal with parameters ( is can be given by

p( mi, mn) = p() () exp (- ((Hi - I, HI -anm ) + (H11 - mI Hii - mI ) . (3.4)

Here, p(O) (() is the probability distribution of ( and HI,II are the gravitational wave

measurements in detectors I and II neglecting noise. We can then find the most

likely parameters which describe the source of the measured gravitational radiation

by finding the parameter set ( which maximizes Eq. (3.4). Next, we can estimate

the error of estimation by expanding Eq. (3.4) around the estimated parameters (.

Letting AjI,II() = (HI,II - mI,IHjI,II - mI,II), we can expand to get

AI,,,(O= A•I,II() + IOaobAI,I I•)6ab + (((6i)3). (3.5)

In the limit of large signal to noise ratio OaabAI,II(ý) = (aHI,I obHrml,II). This allows

us to write the probability distribution in Eq. (3.4) as

p((lmi, mn) = p(O)( ) exp - Fab ja6ýb) (3.6)

where we have defined S6a - -_a and the Fisher information matrix Fab for our

set of parameters (a as

(OH I &H- HI "H

]Fab all aH, + (ah, 491 (3.7)a(a V)b a jq~b



The inverse of Fab defines the covariance matrix Ea b. From this analysis it follows

that

Eab =< a Ab > (3.8)

where angle brackets denote an average over an ensemble of noise distributions [7]. It

follows that diagonal entries mean error in a measured parameter < (Aa)2 >= Eaa,

and off-diagonals define the correlation between parameters.

Using this we can determine the fractional error ratio, ala/ga. Consequently,

in order to determine the effect higher moments have on parameter estimation we

must first Fourier transform the gravitational waveform with higher order harmon-

ics included. We then find the derivatives with respect to the signal parameters of

the Fourier transformed wave functions, calculate and invert the Fisher information

matrix. Finally, we compare the ga~ga values for waveforms with the quadrupole

moment only, and those with higher harmonics included.

3.1 The Stationary Phase Approximation

All harmonics of the total waveform have the form Da(t) = Aa(t) cos(a5(t)) up to

phase. If dA < d,(t) and 4(t) < (O(t)) 2 then we can use the stationary phasedt dt

approximation to approximate the Fourier transform of each harmonics individually

as:

Da(f) A dt2  exp[i(27rft(f) - a¢(f) - 7r/4)] (3.9)

Given df/dt and Aa we then have all the information we need to construct the fourier

transform of all wave harmonics. Defining a phase factor for each harmonic as

'a(f) = 27rft(f) - a 0(f) - 4 (3.10)
4



then we can construct the total waveform as a sum of each harmonic terms indexed

by a which corresponds to the coefficient multiplying the phase as

h(f) = -d-•
a=l

Aa (f)e i" a(f)

though practically we are only concerned with a of order unity.

3.2 Constructing the Waveform Explicitly

It is useful now to reparametrize our waveform in terms of two mass coefficients, the

chirp mass, and the reduced mass, where

M = r3/5M, (3.12)

are the chirp mass, and reduced mass respectively; and

M = m I + m 2 ,

mlm 2

SM'

(3.13)

(3.14)

Under this parametrization up to 2PN post-Newtonian order in (v/c) we have

S 9 6 (M7rf) 11/3 [1

+(34103+ 181144
13661
2016

743
S336

59 2
18+ 72
18

4 2/3 (47 - 0)( Mf)

+ a) (7rMf)4/3

where 1 is a spin-orbit parameter, and a is a spin-spin parameter. We then integrate

(3.11)

(3.15)

IL



to obtain

() = 0 -_ ( SrMf)- 5/ 3 I 1 ( 3 q (rMf) 2/ 3 - (4 - )(rM
2 ( 16 [ 4 3 336 4 )2

(3058673 5429 617 2 (316)
1016064 1008 144

t(f) = te - M(rMf)-8/3 1+ 4 + (M )2/3 (47 - P)(7rMf)256 1 3 336 4  5

+2(1016064 1008 144

where tc and qc are constants of integration corresponding to the coalescence, defined

formally as the moment when f --+ oo.[4]

Our ~a(f) then becomes

+ 3 (4a-, 5)
Ia(f) = 2ft-c + Mf) (4a - 5)2 4 128 3

20(a - 1) (743 1 (rM f)2/3 - (10a - 8) (47r - )(rMf)
+ 9 336 4 )7 3

10(2a - 1) 3058673 5429 617 2 +

3 1016064 +  008 1 44
(3.18)

We now have all components necessary to assemble our waveform up to arbitrary

order, assuming that we compute the angle dependent amplitude contributions. So

from here, to obtain the Fisher information matrix entries we must therefore take

derivatives with respect to the parameters (.

3.3 Derivatives

Here we shall take the derivatives of seven total parameters, generalizing the process

in Ref. [4]:

' = (In DL , tc, 1 n, In M, In 77, A, 0) (3.19)



This process is straightforward, but somewhat tedious. The results are:

a,1•h = h,

a2h = 2~ifh,

03h = i-z,
2
5i

948 (hr l 5 f)-5/3(A4 + B4 v2 - C
4v3 + D4 v4 )h,128

5hi (= r3[f)-5/3(Asv2- B 5v 3 + 05V4)h,
96

S= i(10a - 8)
128

27h = 5i(2a- - 1) -4/5(7-1rf)-1/ 3h. (3.20)256

We have v - (rM f) 1/3 , and

4a - 5
A4

3

B34 =4(a - 1)(743 11)

3 336 4
2(10a - 8)C4 = (47r - p)15
(4a - 2) 3058673 5429 617 2

D4 = +2+ -1
3 1016064 1008 144

-, +- +~~( 743 33
A 5  (a- 1) 2- _

( 336 4 '

9(10a - 8)(4 -
20

C5 =6(2a- 1)(3058673 5429 617 2 (3.21)

01016064 4032 96



Chapter 4

Analysis and Results

4.1 Calculation

For practical purposes, though this process is completely general up to arbitrary post-

Newtonian order, we shall only include the (1/2) order terms in our calculation as

a proof of concept that the higher order harmonics do indeed improve parameter

estimation accuracy. We note that a ranges from 1 to 3. For these calculations we

use the LISA experiment as a model for our detector setup, taking there to be two

detector arms which have received a measurement. For this model, the space-based

LISA detector mission will include 3 detector satellites which hold orbits to form an

equilateral triangle. Now, taking there to be two detector arms, our full signal in

each detector arm is scaled by a factor of V3/2 from the 600 angle between detector

arms. Our full signal decomposition is then, in the time domain,

htot(t) v 2 F (On' On On)h (t) + Fi (O•, On, )hx(t)

+FT (On O,)ih+(t) + Fxj (On, 7, OnO)hx(t)) (4.1)



where

F+ (On, , On On) o (I + cOS2 On COs 20, cos 21,
F(t,,,¢,n) = 2(l+cos

2

- cos On sin 20n sin 2~, (4.2)

FJ (, , 4,) = (1 + cos 2 On) cos 2n sin 2,

+ cos On sin 20n cos 2V, (4.3)

F+ (O, On, On) F+ Ow, On - -, n) (4.4)

Fj (On, 1n,, n) = F(ii O,n - , On (4.5)

as given by Ref. [3].

We then calculate the total Fisher information matrix as a sum of terms over a

in each detector

ryTo E (Ia + Ia) (4.6)
a=l

We can then invert this to obtain the measurement errors

A= (FTt) (4.7)

With the exception of the analytical derivatives performed above, all other calcula-

tions are done numerically using C++ with many routines taken from Ref. [3]. The

code takes the input parameters, mi, m2, redshift (for our purposes this is always

z = 1, a random number seed, the starting frequency of the Gravitational wave at the

beginning of observation (fo), the period of observation, and the number of binaries

in the Monte Carlo simulation (n = 1000) in all simulations. Using these param-

eters the random seed generates 1000 waveform measurements from binary sources

with random parameters specifying orientation and luminosity distance. The Fisher

matrix is then populated via the derivatives we found in the previous section for

each binary in the simulation, and then numerically inverted to obtain the covariance

matrix, from which we may calculate the error of estimation. Accuracy is then deter-

mined by calculating the ratio of the error obtained from the diagonal elements of the



covariance matrix to the value used for the simulation for a given binary. Then the

median value of the 1000 point population is found. From here we can edit the code

to generate waveforms using specific harmonics which correspond to the coefficient of

phase (what we've called a thus far). Using the same seed across different versions

of the code corresponding to different harmonics, we can then compare the median

values for the accuracy of the parameter estimation between systems with separate

harmonics active. This comparison should give an informative picture as to the effects

of higher order harmonics in the post-Newtonian wave expansion by allowing direct

comparison of results.

4.2 Results

Here we run various Monte Carlo simulations to calculate median accuracy of pa-

rameter estimations for model waveforms. All waveform models used have corrective

post-Newtonian terms to 2PN order in the phase and time components, where as we

choose three separate cases for the amplitude expansions. The first case incorporates

the full .5PN corrections including both a = 1 and a = 3 parts in the summation, in

addition to the standard leading order quadrupole (OPN) term with a = 2. The second

case contains no corrective terms in amplitude corresponding to only the quadrupole

(OPN) moment. Finally, the last case incorporates only the a = 1 amplitude term

from the .5PN correction, in addition to the standard leading order quadrupole term

with a = 2. This will allow direct comparison of estimation data to determine the ac-

curacy improvement given by different terms in the amplitude expansion. To do this

comparison it is most instructive to look at several different mass ratios when running

simulations amongst the three cases because the .5PN correction terms with a = 1, 3

have amplitudes which depend on the parameter J - (ml -m 2)/M. Thus as the mass

ratio increases, so should the relative amplitudes of the .5PN corrective terms, and

thus their effect on the accuracy of parameter estimations. The simulations here were

run using one of three mass ratios: q m /m 2 = 55= 1.22 z 1, q = 3, and q = 10.

We have chosen q ; 1 because were q equal to one, then 6 would be zero and we would



see no effect from the correction via .5PN terms. Amongst these mass ratios we use

as input masses in the q - 1 case on the order of 104 and 105. For the q = 3 case, our

trials involved mass orders of 105, 106, and 107. And finally amongst those cases with

q = 10, we have the highest mass in the system with order 105 and 106. With these

test cases we've chose to examine specifically the median values for AM/M; A/t/p;

ADL/DL; the major axis estimation, 21a; and the minor axis estimation, 21b. The

last two parameters designate the elliptical localization of the source from estimation

of the orientation parameters. Improvement in such parameters would help greatly

in the visual observation of binary sources from detected gravitational waves. The

data from all numerical simulations for the median values of all these parameters is

summarized in Tables 4.1, 4.2, and 4.3.

Table 4.1: Median errors in several quantities for 1000 binary Monte Carlo simulation
with various masses always in the ratio of q _ 1, q = 3, and q = 10; including only
the quadrupole harmonic (or that is to say using only the OPN waveform model).

21a 21b
ml(M®) m 2 (Mo) AzM/M Ap/p ADL/DL (arcmin) (arcmin)
4.5 x 104  5.5 x 104  3.29 x 10-5  0.0109 0.0254 159.05 104.44
4.5 x 105 5.5 x 105  0.000124 0.0266 0.0125 93.410 58.503
3.0 x 105  1.0 x 105  5.86 x 10- 5  0.0112 0.0171 114.15 71.027
3.0 x 106 1.0 x 106 0.00118 0.135 0.0132 98.940 56.259
3.0 x 107  1.0 x 107  0.0258 0.642 0.213 1400.7 740.8
1.0 x 105 1.0 x 104  3.73 x 10- 5  0.00653 0.0311 214.99 132.70
1.0 x 106 1.0 x 105  0.000153 0.0178 0.0156 105.37 64.132

The smaller the number in the ratio Aý/( terms represents a greater accuracy in

parameter estimation. Similarly, as a general guideline we can evaluate the lowering

of the predicted values for 2 1a and 21b to be an increase in localization accuracy of

the sky position of the binary. An intuitive comparison of the localization accuracy

between sets of data can be gained by evaluating what decrease, if any, there is for

the total area of the ellipse. Unfortunately this measure of accuracy does not take

into account practical search implementation for binaries. Specifically, it is possible

for a highly eccentric ellipse to localize the binary into a fairly small area of the sky;

however, the presence of high eccentricity makes for a difficult search procedure since



Table 4.2: Median errors in several quantities for 1000 binary Monte Carlo simulation
with various masses always in the ratio
higher harmonics up to

of q - 1, q = 3, and q = 10; and including all
.5PN order.

21a 21b

ml(M®) m2 (ME) AzM/Mnl Ap/p ADL/DL (arcmin) (arcmin)
4.5 x 10 4 5.5 x 104 1.62 x 10-5 0.00422 0.0237 154.17 99.577
4.5 x 105 5.5 x 105 4.51 x 10- 5  0.00616 0.00844 76.277 49.087
3.0 x 105 1.0 x 105 2.14 x 10- 5  0.00258 0.00781 69.075 45.250
3.0 x 106 1.0 x 106 0.000261 0.0200 0.00562 55.230 39.898
3.0 x 107 1.0 x 107  0.0117 0.610 0.00688 52.595 43.690
1.0 x 105 1.0 x 104  1.46 x 10- 5  0.00162 0.0259 196.01 125.20
1.0 x 106 1.0 x 105 4.76 x 10- 5 0.00341 0.00903 80.143 51.764

Table 4.3: Median errors in several quantities for 1000 binary Monte Carlo simulation
with various masses always in the ratio of q z 1, q = 3, and q = 10; including only
the the terms in the post-Newtonian expansion of the waveform corresponding to the
harmonics with 1 and 2 as coefficients of the phase.

21a 21b
ml(Me) m2 (MO) AM/M Ap/p ADL/DL (arcmin) (arcmin)
4.5 x 104 5.5 x 104 3.07 x 10- 5  0.0102 0.0251 157.52 102.26
4.5 x 105 5.5 x 105 5.72 x 10- 5 0.00987 0.00994 83.505 53.459
3.0 x 105 1.0 x 105 2.74 x 10- 5 0.00401 0.0101 90.259 53.769
3.0 x 106 1.0 x 106 0.000332 0.0261 0.00754 68.927 43.628
3.0 x 107 1.0 x 107  0.0121 0.610 0.0128 93.233 61.704
1.0 x 105 1.0 x 104 2.52 x 10- 5 0.00409 0.0291 204.98 129.86
1.0 x 106 1.0 x 105 5.44 x 10- 5 0.00427 0.0113 91.593 58.084

telescopes search in circular sections. Consequently it may be possible for a larger

area of the sky to be searched in less time given that the localization is non-eccentric.

For a better picture of this, see Figure 4-1. In general this data shows fairly large

improvement over nearly all parameters in all cases. To see the percent change given

from including all .5PN amplitude terms we refer to Table 4.4. In this table we have

defined i 100(A PN)- A 5PN))/APN), where here

A' = (a M P
DLDL 21,,21b).
DL (4.8)



8 circular search areas

Figure 4-1: The ellipse on the left has lower area and is covered by a greater number of
circular areas, thus searching for a binary system within the left ellipse of localization
might possibly take a greater amount of time than the right case. This demonstrates
that, practically, comparing areas of the localization ellipses is not a good measure of
sky position accuracy.

We note that the largest accuracy improvement over all simulations is given over

the simulations with binary objects of mass 106M®. Specifically, for AM/MN, A/'/p,

and ADL/DL the largest improvement falls under the q = 3 case with mass terms

on the order of 106M®. And for the major and minor axis improvement, we have the

largest improvement in the q = 3 case with mass terms on the order of 107M®. As a

general trend it seems that the improvement in accuracy has a peak value for masses

on the order of 106M® for AM/V/M, Ap/p, and ADL/DL. On either side of this mass

band for a given mass ratio, q, the accuracy improvement drops off dramatically. This

trend is most easily seen in Tables 4.5, 4.6, and 4.7. With all other variables which

are non random held fixed, these simulations show a definite spike around 106M0 over

median accuracy improvement from the quadrupole harmonic as the only amplitude

term, to the full .5PN amplitude expansion.

There are also interesting trends in the improvement of parameter estimations

by separate terms in the .5PN amplitude expansion when we look at the relative

improvements of the estimates when only the a = 1 and a = 2 harmonics are included

9 circular search areas

I



Table 4.4: Comparison of the improvement of
calculated as a percent change, Ai .

mi (MO) m 2(MO) 6M J
4.5 x 104 5.5 x 104  103 158
4.5 x 105 5.5 x 105  175 332
3.0 x 105 1.0 x 105  174 334
3.0 x 106 1.0 x 106 352 575
3.0 x 107 1.0 x 107 54.7 5.0
1.0 x 105 1.0 x 104  155 303
1.0 x 106 1.0 x 105 221 422

estimation accuracy, x i = i

6
DL 621a 6

21b

7.2 3.2 4.9
48.1 22.5 19.2
119 65.3 57.0
135 79.1 41.0
96.8 2563.2 1595.6
201 9.7 6.0
72.8 31.5 23.9

Table 4.5: Values for parameter estimation accuracy for AM/M over q = 3 simula-
tions. Quadrupole and PN.5 values compared, along with percent difference 6.

AM/M AM/M 6M

mi(M®) m2 (Me) (OPN) (.5PN) (in %)
3.0 x 105  1.0 x 105  0.0000586 0.0000214 174
3.0 x 106 1.0 x 106 0.00118 0.000216 352
3.0 x 107  1.0 x 107  0.0258 0.0117 54.7

in the waveform model relative to the full .5PN expansion model. Particularly, Table

4.8 gives the percent change 62L for the quadrupole only expansion relative to the

expansion with the a = 1, 2 harmonics and 6123 gives the relative change between

parameter estimates in the quadrupole only expansion and the full .5PN amplitude

expansion. By noting that larger differences in TDL 62 correspond to greater

effect in increasing overall accuracy of the a = 3 term of the harmonic expansion we

can evaluate the importance of its inclusion in the expansion.

We can see from Table 4.8 that improvements gained by adding in the a = 3

term are often much larger in the luminosity distance than those gained from just

the a = 1, 2 harmonic terms. We then expect that the a = 3 term play a large

role in many of the corrections for the luminosity distance, which can be made sense

of intuitively since it is this term which accumulates greater total phase over the

course of observation than either of the previous two. In contrast we may look at

the decrease in the major and minor axis of localization predictions given by only the



Table 4.6: Values for parameter estimation accuracy for Ap,/p over q = 3 simulations.
Quadrupole and PN.5 values compared, along with percent difference 6.

mi(MO) m2(M®) (OPN) (.5PN) (in %)
3.0 x 105 1.0 x 105  0.0112 0.00258 334
3.0 x 106 1.0 x 106 0.135 0.0200 575
3.0 x 107 1.0 x 107  0.642 0.610 5.0

Table 4.7: Values for parameter estimation accuracy for ADL/DL over q = 3 simula-
tions. Quadrupole and PN.5 values compared, along with percent difference 6.

ADL/DL ADL/DL 6 DL

mi (M®) m 2 (M) (OPN) (.5PN) (in %)
3.0 x 105 1.0 x 105  0.0171 0.00781 119
3.0 x 106 1.0 x 106 0.0132 0.00562 135
3.0 x 107  1.0 x 107  0.213 0.00688 96.8

a = 1, 2 terms, as opposed to the full .5PN amplitude expansion. In this case, we can

see by the data point in which there is greatest improvement (that is for the q = 3

sequence with masses on the order of 107 M®) that the a = 1, 2 terms contribute the

vast majority of improvement and little more is added by including the a = 3 term.



Table 4.8: We show the difference in improvement over the full mass trial spectrum
for DL when only the a = 1, 2 terms are included in the amplitude expansion and
when a = 1, 2, 3 are all included.

m1(MO) m2(MO) Dr, 6D,
4.5 x 104 5.5 x 104  1.2 7.2
4.5 x 105 5.5 x 105 25.8 48.1
3.0 x 105 1.0 x 105 69.3 119
3.0 x 106 1.0 x 106 75.1 135
3.0 x 107 1.0 x 107 15.6 96.8
1.0 x 105 1.0 x 104  6.9 201
1.0 x 106 1.0 x 105 38.1 72.8





Chapter 5

Summary and Conclusion

In summary, in this thesis we have gone though the theory behind gravitational

radiation. We have shown that waves can propagate through a sourceless spacetime,

as well as being produced from asymmetric fluctuations in the gravitational field. We

focus our study on binary sources, and choose a mass regime which is within the

LISA detectors prime observation band. The types of binaries which comprise this

regime have total masses of roughly on the order of 104 - 108M0  and so we assume

that such binaries are comprised of neutron star and black hole interactions (though

this fact plays no role in the analysis).

We then review basic signal processing which allows us to estimate parameter

sets which are most likely to have produced a gravitational wave measurement. This

process requires that we have a model for our gravitational waveform. In past work

which concerns parameter estimation, higher order amplitude harmonic terms in the

post-Newtonian gravitational wave expansion have been neglected. However, here we

focus on the inclusion in our simulations of such higher order terms up to .5PN order

and set up a derivative formalism which is easily generalizable to even higher order

terms in the expansion for future investigations.

Without the presence of noise in the signal it would be theoretically possible

to exactly estimate the system of parameters which maximizes the probability of

seeing those parameters in the waveform measurement. However, because of the

existence of noise in the signal pathway, we can only determine a parameter up to



some error specification. As such we can estimate the accuracy of our determination

by measuring the ratio of that error to the estimated value of that parameter. This

gives us a sense of the accuracy to which we can estimate parameters.

By performing a Monte Carlo simulation across 1000 binary systems with random

sky position, luminosity distance, and orientation parameters we can find the median

accuracy to which our parameters are estimated for projected noise models in the

LISA spaced-based detector mission. We then compare the accuracy of determination

between waveform models which include amplitude corrections up to the full .5PN

order, the amplitude corrections of only the a = 1 harmonic term in addition to the

quadrupole a = 2 term, and the basic quadrupole only model.

We have shown through these simulations that there is an across the board im-

provement over measurement accuracy for both cases involving corrective amplitude

terms in the post-Newtonian expansion. There are also several interesting trends in

the data which deserve some discussion. We note primarily the the largest improve-

ment in luminosity distance, chirp mass, and reduced mass occur as a peak in the

mass range of 106M®. Additionally, as mass ratio increases over the same mass order

spectrum (here we only compar 105M®) chirp mass and reduced mass have reduced

accuracy, whereas the accuracy in luminosity distance increases with the mass ratio.

For the localization ellipse predictions, as a general trend both major and minor axes

have increased accuracy over a given mass ratio spectrum for higher mass simulations.

Lastly, we have also investigated the importance of each individual corrective piece

of the .5PN order amplitude correction. To do so we compare data from simulations

run with only the a = 1 corrective term added to the quadrupole moment amplitude

and with both a = 1 and a = 3 terms in the .5PN expansion added tot he quadrupole

moment term. We find that chirp mass, distance, and reduced mass are all highly

dependent on the effects from the a = 3 piece, where as the major and minor axis

predictions, in general, show little increased improvement from the contributions of

the a = 3 harmonic.

This data shows that the inclusion of .5PN corrective terms to the waveform am-

plitude is largely beneficial to both predictive accuracy of waveform parameters such



as mass and distance, as well as the prediction of orientation and position parameters

which allow us to localize the binary position in the sky based on measured gravi-

tational wave observation data. This increase in accuracy could one day aid in the

confirmation of measurement data by allowing us to accurately locate and observe a

binary system given a gravitational wave measurement.

Finally, since such large improvements can be seen at low and order .5PN correc-

tions, one might gain additional accuracy improvements by including even higher or-

der post-Newtonian corrections. The theory behind the analytical derivatives needed

to incorporate such terms is broadly general via scaling; though we leave it for future

analysis to include such terms, this analysis should serve as a proof of concept that

these corrections are indeed very important in accurately predicting parameters from

waveform measurement data.
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