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1 Introduction

1.1 Motivation for Error Correcting Codes

The goal of quantum computing is to develop methods of computation that use binary
quantum states to store information. A quantum computer could execute important
algorithms exponentially faster than a classical computer. In order to take advantage
of this increased efficiency, we must develop robust quantum computers that will not
fail due to errors. One approach is to use reliable error correction codes.

In classical computers, one bit consists of a capacitor with two states: charged
and uncharged. Millions of electrons flow through these capacitors, so errors in a few
electrons do not impact the performance of the computer. Alternatively, one bit in
quantum computing can be any coherent state in SU(2) (a system with two orthogonal
eigenstates). Here we use spin-1/2 particles as the quantum bits, or qubits. The two
eigenstates of spin-1/2 particles are spin up and spin down, which we label as |0) and
|1). Because a qubit is composed of a single particle, an error in the particle is more
significant than in the classical case. One possible error in a system made up of such
qubits is the spin flip error, where the spin of the particle flips to the opposite spin
due to decoherence caused by interactions with the environment.

By correcting the error we can recover the information lost during stochastic

processes.

1.2 Background: First Order Error Correction

The code for correcting single bit flip errors (first order error correction) has already
been analyzed experimentally (Cory, 1998). This code requires three qubits — one data
qubit and two ancillae. The ancillae are spins prepared in a state that is correlated
with the data spin (but they do not contain the data themselves). For first order
error corrections, we allow either zero or one spin flips to occur, either in the data
spin or in an ancilla spin. It has been demonstrated that under these errors the initial
states remain orthogonal, and thus the original information may be recovered (Cory,
1998)(Sharf, 2000).

The circuit for first order error correction was tested in a liquid state nuclear
magnetic resonance (NMR) experiment (Cory, 1998). The code for correcting bit-
flip errors consists of the following steps: encoding, which correlates the ancillae
spins with the data spin; decoherence (perhaps induced by magnetic field gradients);



decoding; and error correction.

Initially the data spin is in a superposition of |0) and |1) states, so the state is
|¥) = a|0) + 3|1). The ancillae are both prepared in state |0). Thus the state of the
whole system is

[¥) = (|0} + B[1)) |00)

The encoding circuit is a series of Controlled NOT (¢-NOT) gates, and it correlates
the information from the data spin with the ancillae. The ¢c-NOT gate flips the spin
of an ancilla conditional on the state of the data spin (see Fig. 1). If the data spin
is in state |1), the c-NOT gate flips the ancilla, otherwise it does nothing. After the
encoding, the total state of the system is ¥ = a |000)+ 3 |111). (Here |111) represents
the tensor product of the three spins, |1) ;... ® 1) 4rcitta1 @ 11) ancitiaz-)

After time decoherence allows for up to one error to occur there are four possible

states:
[000) + 111

)
o [100) + 3]011)
o |010) + 8101)
|001) + G 110)

The decoding process uses another series of ¢-NOT gates to transform the system
into a state in which the ancillae are separable from the data spin. The four states
become:

@ |000) + 8 100) = (a|0) + 411)) |00)
a|111) + §1011) = (a[1) + 810)) [11)
[010) + B 110) = ([0) + A1) |10)
|001) + 3]101) = (a|0) + S]1)) [01)

We can determine whether or not an error occured in the data spin based on the
state of the ancillae. For this case there has been an error in the data spin if the
ancillae are in the state |11).

The final step in the 3 qubit circuit is to flip the spin of the data qubit in the
state with the error by implementing a Toffoli gate. The Toffoli gate flips the data
spin if the ancillae are in the state |11) so that the initial state, |+), of the data spin
is recovered (Cory, 1998; Sharf, 2000).
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Figure 1: The circuit used for first order error correction. There is one data spin,
|¥), and two ancillae correlated with the data spin. This figure is taken from (Cory,
1998).

If two spin flips occur, three qubits do not provide a large enough space to encode
all possible errors in orthogonal states. For second order error correction in which
we allow up to two spin flips, we need a five qubit system - one data spin and four
ancillae correlated to the data spin.

2 The 5 Qubit Case

This thesis expands upon the work done in the three qubit case to investigate the
possiblity of correcting second order errors in NMR. We need four ancilla spins to
correct up to two errors among the data and ancilla spins. The code becomes more
complicated with more spins, but the circuit must be as simple as possible to reduce
the experimental difficulities associated with controlling a larger spin system.

Here we will establish the five qubit circuit and discuss the theoretical framework
for second order error correction. This work could be tested using a liquid-state NMR
experiment similar to the test of the three qubit case.

2.1 Encoding

In order to correct second order errors in quantum computing, we need one data spin
and four ancillae. Again, we consider only spin flip errors. We begin with all ancillae
in the |0) state and encode the data qubit by correlating the ancillae with the data
spin. If the data spin is in a superposition of up and down states, then the initial
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Figure 2: Encoding the data spin: we flip the spins of the ancillae conditional on the
data spin |U).

state of the system is:
|¥) = |11111) + 5 |00000)

To encode the primary qubit we flip each ancilla spin if the data spin is in the
state |1). In practice we can acheive this result by flipping each ancilla conditional
on the previous spin. The encoding circuit is shown in Fig. (2). We can see from
this diagram that the encoding circuit is a series of c-NOT gates which flip the spin
of each qubit if the state of the previous qubit is in state |1). If the data spin is in a
superposition of up and down states, then the initial state of the system is:

|T) = a|11111) + 3]00000)

2.2 Decoherence

If we allow up to two spin flips, then there are 16 possible states of the system after
decoherence. In a physical system decoherence is due to time delays, which can be
simiulated by magnetic field gradients in an NMR experiment.

After a time delay, either zero, one, or two errors have occurred. Of the sixteen
possible states after decoherence, there are five states with an error in the data spin:

a|01111) + 3]10000)
00111) + 311000)
01011) + 310100)
|01101) + 310010)
[01110) + 4 |10001)



2.3 Decoding

We can flip the ancillae again conditional on the data spin being in state |1). The
data spin is then separable from the ancillae. For example, the states with a bit flip

in the data spin become:

e

(e0) +811)) 1111)
(a|0) + 8[1)) 0111)
(a|0) + 8[1)) [1011)
(@0) + 8[1)) [1101)
(a[0) + B8]1)) [1110)

This decoding circuit is shown in Fig. (3).

~

Figure 3: Basic decoding circuit: flip all ancillae condtional on the state of the data

spin |¥).

popx
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Figure 4: Alternative decoding method: instead of flipping all ancillae conditional
on the data spin, we use this circuit to create an alternative set of states with the

ancillae separable from the data spin.

The sixteen possible states of the system following decoding can be represented
by the denisity matrix:



Oz

\ o /

Each element is a 2x2 matrix that is the product the initial state of the primary
qubit, [1) (1|, with either the identity or, for states with errors in the primary qubit,
the Pauli matrix, o,. .

The decoding circuit in Fig.(3), however, is difficult to implement experimentally.
An alternative decoding circuit is shown in Fig. (4).

Using this second circuit, the states with errors in the data spin following decoding

are:

(@ [0) + 311)) [1011)
(@[0) + £]1)) |0100)
([0) + B[1)) |1100)
(er|0) + 3 ]1)) [1001)
(|0} + 3]1)) |1010)

The resulting density matrix in this case is:



(1 \

Oy

Oz

\ 1)
2.4 Error Correction

If we use this second method of decoding, then we can apply these three operators
to correct the error: o E2E3, olE4{E?, and o,E2E3EAES. Here, we have E; =
I+ 0,).

Again, this circuit is difficult to implement experimentally. We can slightly im-
prove on this error correction circuit by using the following set of operations instead:
oSEAES, olE2E3, and olE2E3ELE’. Note that these operations must be applied
in the order that they are listed.

\< AV

Figure 5: Circuit for correcting the spin flip error following the decoding circuit from
Figure 3.



Figure 6: Alternative circuit for correcting the spin flip error following the decoding
circuit from Figure 4.

Figures (5) and (6) depict these error correction circuits. In the second case, after
the o3E4 E3 operation the density matrix is:

[ o )

1

Oz

Oz

1
k 1)
We can see from this matrix that after the 6E4ES, we need only to flip the E4 E?
block and the E2 E3 E4E? element to obtain the identity. These two operations are
indeed performed by o, E{E} and o, E;E{E{ES;.
The complete circuit using the second method of error correction is shown in Fig.

(7).
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Figure 7: Complete error correction circuit.
3 Geometric Algebra Analysis

3.1 Operator Representation

We can write out the state of the five qubit system at each step in the code. Each gate
has an operator representation consisting of combinations of projection operators, s
and Pauli matrices acting on each of the five qubits.

We begin by writing out the operator form of the c-NOT gate. The c-NOT gate,
Sii, flips the spin of qubit % if qubit 7 is in state |1). We can, therefore, write the
c-NOT gate as follows:

S¥ = exp(irE’ (1 — 211)/2) (1)
=1-E’ (1-2I) (2)
Here It = 2 ot, where of is the Pauli matrix acting on qubit i.

Similarly, the ¢c2-NOT gate (or Toffoli gate) flips quibit i if the state of qubits j
and k is |11). We write the c2-NOT gate:

Tk = exp(ir(1 — 2IL)E! EF ) (3)
=1-(1-2I))E’ Ef (4)

The final gate in the error correction code is the c*-NOT gate, which flips quibit
1 if the state of all the ancillae is [1111). The c*-NOT gate is:

V12345 = exp(in(1 — 2IL)E2 E* B4 ES) (5)
=1-(1-2I)E E3E‘E® (6)

11



In all of these operations, it is not necessary for the condition for flipping a qubit
to be another qubit is in the state |1). In cases where we want to flip a qubit if
another is in state |0), then we substitute EZ,’s for the E? terms.

3.2 Encoding
The density matrix of the initial state of the data qubit (prior to encoding) is
Pa = (0) + B11)@ (0] + B (1)) (7)
= (o + 26L)E} (G + 26T,) ()
The 32x32 density matrix of the five qubits is given by
pa = (o + 26IL)EL (& + 2B1L) ® (|0000) (0000]) 9)

In order to encode py with the ancillae in state E3 E3E4ES, we act on p4 with
the encoding operator Sg, where Sg = S%14543531252I! represents the series of c-NOT
gates in the encoding circuit shown in Fig. (2). The encoded state is then

pB = SEpASE (10)
— SS]4s4I3s3|2s2|1pAs2|1 53|234I385l4 (11)
= Sg(a + f21L)ELE2E3 EL ES (& + 2011)S) (12)
= (a+ R2LLELELLE)E, E2ESELES (@ + B32L 2 IAL) (13)

We can expand Sg in terms of I/ and E.:

Se = (2LE! + E})(2I;E® + E3)(2I3E2 + E2)(2I2E! + El) (14)
= 16CELEE  EZE E| + 8L, LEE’E E + SEIICELE2E3E!  (15)

+4LLE\FAE E} + SELE E2E E! + 42 E! E2E3 EX

+4LCLEE’E’E! + 20E FiE}E! + SZLI;EL E2EE!

TTT

+4CLEIE?EE! + 4L E,E*E3E! + 2I;E\E2E* E*

+4LCE E}E*E}| + 2IZELE2E3E} + 2BE E?E3E!

rTx -

1102 13 pnd

+E'E2EIEL
Because the Sii do commute, the order in which they are applied is important.

This reflects the fact that the c-NOT gates must be applied in the correct order. The

II2I3I2T] term indicates the entanglement of the five spins.

12



3.3 Decoherence

We now allow for decoherence. Assume there are external perturbations due to ran-
dom magnetic fields along the x-axis. The Hamiltonian for such a system is

He =v'BLOL + VB2 + VB3I + v*Ba(t)I: + ¥*B3(H)I2  (16)

The propagator for this Hamiltonian has the form exp(—i(x I +x2I2 + x3I2 + x*I% +
x°I8)), where x = ¢ j: Bi(t)dr.
Applying a random rotation about the x-axis to pp results in the state
Pp = (17)
(@ + B32LLELT e ALl i) (B2 B3 B ES)
x ei(xlli+x213+x312+x4li+x5li)(5 + 53212121112 )

To simplify the math, we can assume that & = 0 and 8 = 0. So we have:

pp =(e” X LB et X ) (e W EEL ) (R ES ¢tXE) (18)
% (e"'x“‘iEi e+ix413)( e—ixsliEi XIS )
1 . . .
=5 (1 + 2e7 P XTI (1 + 2e” ¥ TE2L) (1 + 267221 (19)
x (14 2e~2x"2914)(1 4 2e~ 2% 915)

We can expand this product into the sum of all terms of the form

Ris,5,65808s (5 X0, X 30 (1 = 61) + 6:2L) (1 — 62) + 62212) (20)
X ((1 = 83) + 63213)((1 — 8)4) + 6,2I2) ((1 — 5) + 65213)

102 o3 ud U5\ — o 2i(01x I +82x 212 +03 33 T3 4643 T4 4653515
where Rs,5,5,6405 (X1, X% X35 X, x°) = e7 200 LA 0ax e t8ax T +oax T +dsx° L)

fOI‘ (51,62,(53,54,55 € {0, 1}
We find the average state after decoherence by applying averages of the

Ri53656085 (X1, X2, X3, X4, x®). We then define the covariance matrix, Ct, by
Ct [*1] = X* )X (2)] (21)
and find the probability density function of x!,x%,x%,x* andx?,

PO XX x x) = ((27)° det (Ct))~V2enX O (22)

13



Now rotate the Rs,s,56.5 (0}, X3 X3, X% X°) back to the z-axis with the rotation:

B = oS WABARALAL) B~ (L4 4T4415) (23)
— 2D+ L AT+ TE) (24)
Ry = Ry} + BL)(EY + E2)(B} + E?)(BY + BY)(BY +E%)  (25)

Each term has the form Rj(x)ELEZELELES; = e"“‘lxl+‘2X2+€3X3+€4X4+€5X5)E:1 EZE%LELES
where €* € {-1,0,1}.
The average of each term is

oo -
e—i(élxl+€2X2+€3X3+64X4+€5X5) — / P()-(.)e_ig.gd = e_%g‘Tce (26)

—00

The ensemble average of each Rj(x) is a sum of terms
e 3¢ CY(ELELELELED + B E2 ,E? JE! (E® ) (27)

If all ¢ = 0 for all j, then Eq. (27) gives 1. When one €/ = 1 while €' = 0 for all
i # j, the terms in Eq. (27) become

o201l _ ko (Bl +E )= e—teii/2 (28)

If there are two nonzero €/, €, Eq. 27 becomes

e——;-(cii+ckk+251'ekcj’°)( EiEux + E~iE.-x) (29)
and 1
(EefEek + Ee—fEe_k) = —2—(]_ + 4€j€kIZI§ = Ezlkek (30)
We can expand this result to find:
e ORI = 4O (g o ) (31)

= 3+ (cosh(tc*) — sinh(tc*) 4T TF)
— o b +FF 48R IR

We do the same for the remaining cases in which there are three, four, or five
nonzero €’ terms and find the following average propagators for random rotations.
For three non-zero terms:

e~ 200 EAxFIE+x L) — o= 5 (T +cFR el 48T TE 48T I, +8cHIATL) (32)

14



3.4 Decoding

After the time delay or magnetic field-induced decoherence, we apply the decoding
circuit from Fig. (4). In the following analysis, we will use the second method of
decoding and error correction presented in Section 2 (as opposed to the circuits in
Figs. (3) and (5) as it is the most practical method to implement experimentally.
Applying the decoding operator Sp to p. gives the density matrix after decoding

pp = SppcSp (39)
Like the encoding operator Sg, the decoding operator is a product of c-NOT gates,
Sp = §31,5513, 5413 5312 521
and, alternatively,
S, = g2 g3izgus oI galt
The order of the S gates is important as these c-NOT gates also do not commute.

Therefore, we must take care to use Sp and S, appropriately.
We can expand Sp into a sum of products of I/ and E:

Sp =(2LEL + E})LE. + E})(2LE? + EL)(2LE? + EL)(2LEL + E})  (40)
=SLL,DELELE] + 6CLLLE E2E? + 2DEIEZE? +40LE E2E] (41)

+8EIIEEE’ES +4I;LE\E2E? + 2 ELE’E® + E.E2E}

[ e

We can also write ST, as

Sp =SELE2E3I’I'I} + 2EL E2E2I? + 16E: E? E* 23113 + 4E! E?E3 213 (42)
+8ELE2E3 LI

SI;IE +2ELE’E I +4ELE2EX I, + ELE2E?

Now we have the density matrix pp after decoding:

pp = SppcSp
= Sp(a + B32AL2IAI5)S), (43)
1
x SpFe [3—2(1 + FL210)(1 + F22I2)(1 + F32L3)(1 + F*218)(1 + F521~';)] SH
x Sp (@ + AR LELE)Spop

= (a+ B2I})

1 ~
x Fp [S—ZSD(]. + FAI(1+ FAA) (1 + FAE)(1 + FAIH (1 + FSIE)SB] (@ + G21)

16



Four non-zero terms:

e— 200 AT X I) — (33)

1Al + kb el pemm 8K IX 4 8 LI 48T ™IS I +8ck IR TL +8ckm IR I +8cIm IL I)

Five non-zero terms:

5 5
e~ 2OEAXF XL+ P +x12) = exp <_% (Z ¢’ + Z 80”‘I§I’;)) (34)

i=1 j#k=1

i

We rotate these averages back to R 42 63 54 55 (X", X%, x3, x*, x°) by replacing all I

with I}
We can define the following time-independent, nonunitary operators
Fi=Fi(t)=et/? (35)
and A ‘
ng — Fik(t) = g tMEIE (36)
The resulting density matrix after decoherence is
pe = (a+ BRLLEIE) (37)

32
x (& + BRAL P

x Fc i(1 + FL210)(1 + F221%)(1 + F2213)(1 + F214)(1 + F521§)]

where F¢ is defined as

fc [1] =1
Fe [2L] =28
Fo [4LIE] = FiF 41Tk

= ¢t BT (38)
Fc [SEIALL] = FI*FI FRSITATL

— (TR T T AT T, +HATELL ) ori Tyl
=e 1% 1% i E i

Fe [16ELLIY] = FI*FIFIm R Frm Fm16E AL I

ZTZTZTR Z2TZTZTZ

— —t(TFAL el AT T 4 oI ATL T TR TL cRmATR I 4 AT I 3 nrjphyl Tm
=e Ty zlx zly Tz iz 1:1612111

= ZTZTR

Fo [RLLELLE] = FRFPFMFS R FA RS FS321

ZTZTZTZTZ

5

= exp ( > 41;‘1’;) AR
J#k=1

112131415

Z2TZTZTZ

15



where Fp [SpXSp] = SpFc[X]|Sp. For example:

.FD[].] = .FD[SDSB] = Sch[].]S;) = SDS’ =
]-'D[zli] = }'D[SD2I;S§)] = SD]-'C[Zli]S’ = SD21}, ’D = 2121,
Fpl4L1?] = Fp[Sp2I2Sp] = SpFc[212|Sp = Sp2I2S), = 41112

The complete list of values for the Fp function is given in Appendix A.
We can also define FI¥:

F;Jk =Sp e—tofkug;l';srn - e—tca'ksnuf;l';s;,

with the following relations:

SpdIlI2Sp, =4Il Sp4I2IiSy = SI2I318
Sp4L I3S = SLI2I2 Sp4I2I3S,, = SI2I3I:
Sp4ILIiSy = SIAI2ID Sp4LIiS,, = 4113
Sp4IlI3Sy = SLLI2I: Sp4I*I’Sy = 431!
Sp4I’ I3 Sy, = 2I2 SpdIiI’Sy = 4112

(44)
(45)
(46)

(47)

Applying the Sp and Sp, operators to the terms inside Fp| | in Eq. 43 produces

the state:

pp = (a + B21;)

x Fp l(1 + FEoLL) (1 + FRALL2)(1 + FE8LIZI3) (1 + FASLEEIA)(1 + FESIAETE

ZTRTZ

32
x (& + B21I1)

3.5 Error Correction

(49)

z

The last step is to apply the error correction operator, Sc, to pp. We can expand

Sct

_ v/1/2345m1|23m3(45
Sc=V TH“°T

= (1- (1 - 2L)E2ESELES)(1 - (1 - 2L)E2EY)(1 - (1 - 2)EAES)

(50)

(51)

=1-(1-2B)ELE} — (1-2I)E’E3 (1 - E4E}) - I3(1 - 2I))E3 B4 ES

17
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Note that in the first line T3 represents the ¢>-NOT gate which flips data qubit
conditional on the state of the second and third qubits being |0513). This corresponds
to applying (1 — (1 — 2I})E2E2) to the state.

As in the previous operator cases, S¢ # Si. Instead,

S/C — T3'45T1|23V1|2345 (53)
=1-(1-2B)E{ES — (1-2I)E2E3 (1 - E{E}) — 2I3(1 - 2L, )E3E{ ES
(54)

Following the error correction step, we want to trace over the ancillae in order to
reproduce the initial state of the data qubit, ¥ = «|0) + 8|1). Taking the partial
trace over the ancillae is equivalent to applying the projection operators and taking

the sum:

2345
16 (E[X])** =16 <Z ELELELELESXELELESELED > (55)
=4
Although S¢ does not commute with E3, an expansion of Sc€[X]S produces the
result:
E[ScXS¢] = Scé[X]Se (56)
Therefore, we can take £[pp] prior to applying the error correction operation, which

will simplify much of the algebra. We can also apply the trace directly to the Fgc
from (47). For example, take the partial trace of F12:

EFP]= Y ELELELES (ftcuﬂili) E%LE%ELES,

etetl

= ) EZEXELES (cosh(tc'?) — 4ILE sinh(tc'?)) ELES ELES, (57)
etet1

= ) (cosh(tc?)(EZE4ELES)? — 41LL sinh(tc'?)(ELE® JELED)(ELELELEY))
ete+l

= cosh(tc'?) Z EZELELE? = cosh(tc'?) = F1?

eetl
Generally, we have
F¥ =€[FI¥] = cosh(t*)
P —elFFEEY)
= cosh(tc?) cosh(tc™*) cosh(tc?*) — sinh(tc?) sinh(tc™) sinh(£¢7*) (58)

18



We can also expand Fi/¥ = E[FSFAFLFFFIFY] and
F138 = E[FEFBFUHFEFEFAFSFYFEFS]. Because they are large sums of prod-
ucts of hyperbolic trigonometric functions, and are therfore not listed here.

Finally, we apply the error correction operator, Sc, to the projection of each term
in (47). Before listing all possible terms of Sp&[X]Sp, let us consider the result of
taking the partial trace over the ancillae. This will eliminate all terms containing
combinations of I2,I3 T4, and I3; or any term without a factor of Il. Therefore, we
can neglect such terms, and determine Sp&[X]SE only for X containing a factor of
I.. Listed below are the results of the error correction operation on Fp[1],Fp[It], and
Fp[ALLE]. The full list of terms remaining after taking the partial trace is given in

Appendix B.
Sc€(Fp(1]]S¢ =1 (59)
1
Sc&[Fp[2Ll]]S; =§[6I; + 12012 — 4113 — 4L T — 4115 4 2411 1%18 — SIM1%1
— SLI2T] + 24111312 + 2411315 — SIIT4TS — 16112131
— 16L12I%1% — 16LI2I510 + 4813141 — 32 2131410

Sc&[Fp[2I?]|Sg =F*221?
ScélFpl2L]|Se =F23%[212 — 401; — 41T; — 8ELI]
ScE|Fp[214]|Se =F 421!
ScElFpl2LL]|Sg =F'*°213
Sc&[Fp[ALLTY]SE =%[61§ + 121012 + 121113 — 4112 — 41'1° — SIAI2I3 — SIMI2I
— 8L’ — SI'T — SIMIPTS — SIMTAI® + 481 121°14

ZTZ72 ZTZTZ ZTZTZ 27272z Z2TRTZTR
+ 48ILI2IT5 — 16LLI2IATS — 16LETATE + 961X T2I3TATS]

1
Sc&[Fp[ALI2)ISe =F123§[—2I; + 12L12 4+ 12103 + 121012 + 121215 + 24111213 — 1121

ZTRTZ

— 8ILIZIC — SIIPTY — SIII3TS + 24111415 — 16121314 — 161121

ZTZTZ ZTRTZR 272

— 16121418 — 161L 131418 — 32112131418

ZTRZTRTZ Z2TZTZTZ Z2TZTZTRTZ

315
zIz
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Sc&[Fpl4Ll14)]Se =%F234[—21§ —4LT2 + 121013 + 121112 — 4115 — SIMIZE3 + 2411%1%

(60)
— SIIPI® — SILI3TY + 24ILT3TS — SILTAIS + 48ILI21T — 161121315

— 16LI2IT + 48ILTAT3 — 321l 12314T)
1
ScE[Fp[ALIY]|SE —_-§F235[—2I§ — 4112 + 121013 — 41M0% + 12115 — SILI2I2 — SIl1%r?
+ 241121 + 24112 — LTS — SILIATS — 161 21T — SO 21313

— 162101 + 4811413 — 321 2131413

We multiply the remaining terms by the appropriate F*, according to (50) to find
the final state after error correction:

~ 2345
ok = (p5)™* = ((a + A21L)ScppSe(@ + F21)) (61)

1
=(a+ ,321;)(-35305[.7:1) [1+ F'2I} + F?4I12 + F'F2FPF341018
+ FPFFFPULTL + FPRPRFP PP AIE + PR8I

+ F' PRSI, + FRF3FSFSSSILPT + FASILETE + SIS
+ F'F PP FYSILLT + FPF2FA 6L I2ELE + FIF2 P 5161 PRI

+ FPF P PPP16LELT + F PP FPF PP RS 161 ETLL
+ FAF PO P30T RIS ) 2 (& + f21b)
1 1
=(a + ﬂ21;)§(1 + 21;§(3F1 +3F*+3F° + 3F* + 3F° — F'F?F3F'® (62)
_ F1F2F4F124 _ F1F2F5F125 _ F1F3F4F134 i F1F3F5F135
_ F1F4F5F145 _ F2F3F4F234 _ F2F3F5F235 _ F2F4F5F245
— 35 345 + 3F1F2F3F4F5F12345))(62 + 5213:)
1 ~ ~
=51+ 2R(@B)2L; + (23(@B)2L, + (lof” ~ |B1)L;)0(2)]
where
O(t) E%[3F1 +3F% 4 3F3 4 3F* + 3F°5 — FIF?F3F1%8 _ plp2pi i (63)
_ F1F2F5F125 . F1F3F4F134 _ F1F3F5F135 _ F1F4F5F145

_ F2 F3 F4 F234 _ F2 F3 F5 F235 _ F2 F4 F5 F245 _ F3 F4 F5 F345
+ 3F1F2F3F4F5F12345]
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Figure 8: Plot of fidelity versus decoherence time delay for the corrected and uncor-
rected states.

Again, F' = e7*" and F¥ = e7*” with tc* and t¢¥/ the variances and covariances
between the spin phases of the five qubits. p} is the final, error-corrected state of
the primary qubit. ©(t) describes the the decay of the data qubit in the presence of
random fields.

Now we can calculate the fidelity, f. The fidelity is a measure of the overlap of
the initial and final states. It is given by

f — <¢i"iti“’|pfi"“l|¢initial> (64)
We can find f using |¢) = a|0) + 3 1), the intial state of the data qubit, and p},
the corrected final state of the data qubit. We can compare this to the fidelity of pl,,
the decoded state of the data qubit before error correction. feorrected a0d fiecodeq are
displayed in Fig. (8). The time on the x-axis is the length of the time delay during
the decoherence process.
This figure shows that the error corrected state has higher fidelity than the non-
corrected state. The code does produce final states that are closer to the initial state

than if there was no error correction.
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4 Discussion

4.1 Results

We saw in Section 2 that the quantum error correction code displayed in Fig. 5 will
correct 2nd order bit-flip errors. A detailed analysis of the operator algebra for this
code produced the corrected state of the data qubit. In the prescence of decoherence,
the data spin will decay according to ©(t). If we can test the system experimentally,
we can determine ©(t) along with the variances and covariances.

We have seen that it is possible to correct for second order bit-flip errors, and we
have computed the state of the five qubit system at each step in the error correction
process. The code does indeed produce states with out errors in the data with higher
fidelity than if the code were not used.

4.2 Further Work

The next step is to test this circuit experimentally. This would involve determining
the pulse sequences required to execute each gate in the circuit. Errors correspond to
decoherence from time delays, but we can simulate this decoherence with magnetic
field gradients in an NMR experiment. We can apply the unitary operations to the
system through RF pulses and periods of free revolution.

Such an experiment would use labeled spin-1/2 atoms. Each nucleus spin in a
molecule has a different resonant frequency, which would allows us to apply pulses
that flip individual spins after considering couplings between all the spins that will
affect each operation.

An experiment could measure the variances and covariances between spins as well
as the decay of the data spin, described theoretically by ©(¢). We could also measure
the fidelities feorrected a0d fecodeq and compare to the theoretical results.
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