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1 Introduction

1.1 Motivation for Error Correcting Codes

The goal of quantum computing is to develop methods of computation that use binary

quantum states to store information. A quantum computer could execute important

algorithms exponentially faster than a classical computer. In order to take advantage

of this increased efficiency, we must develop robust quantum computers that will not

fail due to errors. One approach is to use reliable error correction codes.
In classical computers, one bit consists of a capacitor with two states: charged

and uncharged. Millions of electrons flow through these capacitors, so errors in a few

electrons do not impact the performance of the computer. Alternatively, one bit in

quantum computing can be any coherent state in SU(2) (a system with two orthogonal

eigenstates). Here we use spin-1/2 particles as the quantum bits, or qubits. The two

eigenstates of spin-1/2 particles are spin up and spin down, which we label as 10) and

1i). Because a qubit is composed of a single particle, an error in the particle is more
significant than in the classical case. One possible error in a system made up of such

qubits is the spin flip error, where the spin of the particle flips to the opposite spin

due to decoherence caused by interactions with the environment.
By correcting the error we can recover the information lost during stochastic

processes.

1.2 Background: First Order Error Correction

The code for correcting single bit flip errors (first order error correction) has already

been analyzed experimentally (Cory, 1998). This code requires three qubits - one data
qubit and two ancillae. The ancillae are spins prepared in a state that is correlated

with the data spin (but they do not contain the data themselves). For first order
error corrections, we allow either zero or one spin flips to occur, either in the data
spin or in an ancilla spin. It has been demonstrated that under these errors the initial
states remain orthogonal, and thus the original information may be recovered (Cory,
1998) (Sharf, 2000).

The circuit for first order error correction was tested in a liquid state nuclear
magnetic resonance (NMR) experiment (Cory, 1998). The code for correcting bit-
flip errors consists of the following steps: encoding, which correlates the ancillae
spins with the data spin; decoherence (perhaps induced by magnetic field gradients);



decoding; and error correction.

Initially the data spin is in a superposition of 10) and Ii) states, so the state is

= a 10) + 1 |1). The ancillae are both prepared in state 10). Thus the state of the

whole system is

IT) = (a 10) + 3 I1)) j00)

The encoding circuit is a series of Controlled NOT (c-NOT) gates, and it correlates

the information from the data spin with the ancillae. The c-NOT gate flips the spin

of an ancilla conditional on the state of the data spin (see Fig. 1). If the data spin
is in state 11), the c-NOT gate flips the ancilla, otherwise it does nothing. After the

encoding, the total state of the system is T = a 1000)+,3 1111). (Here 1111) represents
the tensor product of the three spins, I1)data I)ancilla l 0 I)ancilla2.)

After time decoherence allows for up to one error to occur there are four possible

states:

oa 1000) + I1111)
a 1100) + 0 1011)

a 1010) + / 101)
oa 1001) + P 1110)

The decoding process uses another series of c-NOT gates to transform the system

into a state in which the ancillae are separable from the data spin. The four states

become:

a I000) +) I100) = (a I0) + 0 1)) 100)

a 111) +/3 l011) = (a I1) +/3 10)) 11)

a 010) + 110) = (a I0) + 31)) 110)

a 1001) +/3 1101) = (a 10) + ÷ |1)) 01)

We can determine whether or not an error occured in the data spin based on the
state of the ancillae. For this case there has been an error in the data spin if the

ancillae are in the state I11).

The final step in the 3 qubit circuit is to flip the spin of the data qubit in the
state with the error by implementing a Toffoli gate. The Toffoli gate flips the data
spin if the ancillae are in the state Ill) so that the initial state, [0), of the data spin
is recovered (Cory, 1998; Sharf, 2000).



Figure 1: The circuit used for first order error correction. There is one data spin,
I|), and two ancillae correlated with the data spin. This figure is taken from (Cory,
1998).

If two spin flips occur, three qubits do not provide a large enough space to encode

all possible errors in orthogonal states. For second order error correction in which

we allow up to two spin flips, we need a five qubit system - one data spin and four

ancillae correlated to the data spin.

2 The 5 Qubit Case

This thesis expands upon the work done in the three qubit case to investigate the

possiblity of correcting second order errors in NMR. We need four ancilla spins to

correct up to two errors among the data and ancilla spins. The code becomes more
complicated with more spins, but the circuit must be as simple as possible to reduce
the experimental difficulities associated with controlling a larger spin system.

Here we will establish the five qubit circuit and discuss the theoretical framework
for second order error correction. This work could be tested using a liquid-state NMR

experiment similar to the test of the three qubit case.

2.1 Encoding

In order to correct second order errors in quantum computing, we need one data spin
and four ancillae. Again, we consider only spin flip errors. We begin with all ancillae
in the 10) state and encode the data qubit by correlating the ancillae with the data
spin. If the data spin is in a superposition of up and down states, then the initial
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Figure 2: Encoding the data spin: we flip the spins of the ancillae conditional on the

data spin IT).

state of the system is:
I| ) = a 111111) + /3 100000)

To encode the primary qubit we flip each ancilla spin if the data spin is in the
state 11). In practice we can acheive this result by flipping each ancilla conditional

on the previous spin. The encoding circuit is shown in Fig. (2). We can see from

this diagram that the encoding circuit is a series of c-NOT gates which flip the spin

of each qubit if the state of the previous qubit is in state |1). If the data spin is in a

superposition of up and down states, then the initial state of the system is:

I| ) = a 111111) + 3 100000)

2.2 Decoherence

If we allow up to two spin flips, then there are 16 possible states of the system after

decoherence. In a physical system decoherence is due to time delays, which can be
simiulated by magnetic field gradients in an NMR experiment.

After a time delay, either zero, one, or two errors have occurred. Of the sixteen
possible states after decoherence, there are five states with an error in the data spin:

a 101111) + /3 110000)

a 100111) + / 11000)

a 101011) + /3 110100)

a 01101) + /3 110010)

a 101110) +/3 0 10001)



2.3 Decoding

We can flip the ancillae again conditional on

data spin is then separable from the ancillae.

in the data spin become:

the data spin being in state j1). The

For example, the states with a bit flip

(a 10) + 0 1)) 1111)

(oa 10) + 0 1)) 10111)

(a j0) + 0 11)) 11011)

(a 10) + 0 1)) 1101)

(a |0) + 0 11)) 1110)

This decoding circuit is shown in Fig. (3).

Figure 3: Basic decoding circuit: flip all ancillae condtional on the state of the data

spin I Ii) .

Figure 4: Alternative decoding method: instead of flipping all ancillae conditional

on the data spin, we use this circuit to create an alternative set of states with the

ancillae separable from the data spin.

The sixteen possible states of the system following decoding can be represented

by the denisity matrix:

II



/1

Urx /
Each element is a 2 x 2 matrix that is the product the initial state of the primary
qubit, 10) (1, with either the identity or, for states with errors in the primary qubit,
the Pauli matrix, oax.

The decoding circuit in Fig.(3), however, is difficult to implement experimentally.
An alternative decoding circuit is shown in Fig. (4).

Using this second circuit, the states with errors in the data spin following decoding
are:

(a 0) + i0 1)) 1011)
(a 0) + 0 1)) 0100)

(a 0) + /3 1)) 1100)

(a 0) + 0 11)) 1001)

(a 0) + 0 1)) 1010)
The resulting density matrix in this case is:

r |

1

1

1

1

1

1

ax
1

1

1

07x

1

07x

ax



1
I /

2.4 Error Correction

If we use this second method of decoding, then we can apply these three operators

to correct the error: u1E2 E3 , E 5, and E2 3 4 E5. Here, we have E± =

Again, this circuit is difficult to implement experimentally. We can slightly im-

prove on this error correction circuit by using the following set of operations instead:

+rE, 2+ E , and uE 2 EE E4E . Note that these operations must be applied

in the order that they are listed.

Figure 5: Circuit for correcting the spin
Figure 3.

flip error following the decoding circuit from

\ I

I



Figure 6: Alternative circuit for correcting the spin flip error following the decoding

circuit from Figure 4.

Figures (5) and (6) depict these error correction circuits. In the second case, after

the uEE'+ operation the density matrix is:

1
I

We can see from this matrix that after the xEE , we need only to flip the E+E

block and the E'E+ E4•.E element to obtain the identity. These two operations are

indeed performed by EE4 5 and 2 E 3 E 4 5
X xr+ r-+  oc+m+ -+ m+ •

The complete circuit using the second method of error correction is shown in Fig.

(7).
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Decoherence Correction

Figure 7: Complete error correction circuit.

3 Geometric Algebra Analysis

3.1 Operator Representation

We can write out the state of the five qubit system at each step in the code. Each gate
has an operator representation consisting of combinations of projection operators, E.,
and Pauli matrices acting on each of the five qubits.

We begin by writing out the operator form of the c-NOT gate. The c-NOT gate,
Silj , flips the spin of qubit i if qubit j is in state 1). We can, therefore, write the

c-NOT gate as follows:

Silj - exp(iirEJ_(1 - 21')/2) (1)

= 1 - E (1 - 2I') (2)

Here I = ou ,where ox is the Pauli matrix acting on qubit i.

Similarly, the c2-NOT gate (or Toffoli gate) flips quibit i if the state of qubits j
and k is Ill). We write the c2-NOT gate:

Tilj k = exp(iir(1 - 2I)EjLEk) (3)
= 1 (1 - 2I)EjEk (4)

The final gate in the error correction code is the c4 -NOT gate, which flips quibit
1 if the state of all the ancillae is 1111). The c4 -NOT gate is:

V 112 3 4 5 -exp(iir(1 - 2I)E2E3E4E 5 ) (5)

= 1 - 1 - 2I1)E 2 E E 4E 5 (6)



In all of these operations, it is not necessary for the condition for flipping a qubit

to be another qubit is in the state 11). In cases where we want to flip a qubit if

another is in state 10), then we substitute E+'s for the E _ terms.

3.2 Encoding

The density matrix of the initial state of the data qubit (prior to encoding) is

P'A = (a 10) + 0 1)(& (01 + <(11) (7)
= (a + 2fI~)E' (& + 26I1 ) (8)

The 32 x 32 density matrix of the five qubits is given by

PA = (a + 2,I3I)E' (a + 23I) 0 (10000) (0000 1) (9)
]2 ]•3 "4 ]h5

In order to encode pA with the ancillae in state E•E• E+E•E , we act on PA with

the encoding operator SE, where SE = S514S 413S 3 12S 211 represents the series of c-NOT

gates in the encoding circuit shown in Fig. (2). The encoded state is then

PB = SEPAS'E (10)

= S5J4S 413S3|2S2lPA1S211 S322S 4 3S 54  (11)
= SE(a +)321+)E EE E4E( + 2/I)S E  (12)

X (+ + + + + (13)S'(a +/332I1II•IIIII)E1 E 2EEE4E •p(+ +32IIxI I2I ) (13)

We can expand SE in terms of Ix and E3:

SE = (215 E4 + E4 )(214 E3 + E3 )(2I 3 E2 + E2 )(212 El + El) (14)
12j345 2 3 4 124I5 2 3 4 J3415 234

= 16IIIIEEEE+ + 8I IIl E EE + 8II E EE E (15)145 12 3 4 J2135 12 3E4 J215 1 E
+ 4I~~EE E+EE + 8I II ELE El+E 4 + 4IIIEL ElE

X X + X
4315 El1 2 E3 E4 25 El1 2 E3 E4 8213J4 E+ 4IXIEE EX E+ + + 8I~I~IE~E E++1214 234 1 31 2 3 4 14

+4I I 'EE EE + 4I I2 E E+ E+E + 2I EE E EE1

+ E -E -E +E -+42 3 El 2 E3 E4 +212 El E,2 E 3 ]E.4 23 El E2 E 3 E4X 4IX EE E+ E + 2X ++ + X E E+ E +
+E1E•2 E 3 E 4

Because the S ili do commute, the order in which they are applied is important.
This reflects the fact that the c-NOT gates must be applied in the correct order. The
IJIIIxI term indicates the entanglement of the five spins.



3.3 Decoherence

We now allow for decoherence. Assume there are external perturbations due to ran-

dom magnetic fields along the x-axis. The Hamiltonian for such a system is

'B= - B(t)IV + 7Y2 B(t)I2 + Y3BX (t)I + y4 B(t)I4 + 5B(t)I (16)

The propagator for this Hamiltonian has the form exp(-i(X'I + XI + X + X4I +

x0I)), where Xi = -y fo B(T)d-T.
Applying a random rotation about the x-axis to PB results in the state

PB = (17)
1•2T1T23415 +oiXI +2I2 +X3I3 +X414 +X5I5 ) (.2 -3 •4 "5)

(& + +0321'I I )e-.(x,• X ,"+"+(E"EE+E+s
Si(x111 +X22 313 414 5(5 +. 213II5)e(Ix~ Ix IX+X X (& + f32ixi~i~ix)

To simplify the math, we can assume that a = 0 and 3 = 0. So we have:

p'B -- ,(-ixi lE e• +
-i x ll ( - iX 2 1 2 '  2 e+eiX212 3-iX33 3 313

p (e-ixe 4 X e +i x ) x(eX-ix eEe+x +ixI(18)

= (1 + 2e-2ixII2I)(1 + 2e2ix2 2I)(1 + 2e2il 2I) (19)
32
x (1 + 2e2ix4 2I)(1 +• 2e- 2ixI 21 5)

We can expand this product into the sum of all terms of the form

R3162636465(X1, X2 X3, X4 X5)((1 - 61) + 6121l)((1 - 52) + J2212) (20)

x ((1 - 63) + 632I3)((1 - 6)4) + J4214)((1 - 65) + 652I5)
I 2 J2 X3 13 + 4X4 4 5 15

where R61,62636465 (X1  2 3 4 5) e - 2i(6x I+2X 3X +4X 45X

for 61,62,3,64,65 E {0, 1}.

We find the average state after decoherence by applying averages of the
R6,6 2636465(X 1 X 2, X 3, X 4 , X5 ). We then define the covariance matrix, Ct, by

Ct [cikt] = X k(t)X(t)] (21)

and find the probability density function of X1,X2•,X3,X4,andX5 ,

P(x, X,2 X,3 X4, X5) = ((2r)S det (t))1/22 (22)



Now rotate the R 6 152 63 64 65 (X 1 , X 2 X3 , X4 X5 ) back to the z-axis with the rotation:

a (1i ( +1+1+ I + I + I ) I -iE(l1+ I + I + I + l5)  (23)e' 2 Y Y Y e2 (23)
= e-2i(61X1I +J2X22 +3X3 I3 4X4I4 +5X5I) (24)

R' = R' (El + El) (E2 + E-) (E+ + Ei_)(E 4 + E) (E_ + E_) (25)
•E 2 E 3 E 4 5 *-i(1 X 1 -E2 X2 t•X 3+-E4 X4- -E5 X5). E 2 .3 E 4 5

Each term has the form RM (x) E ~El 2E E(E'EX 1 2X 2 3
5 .1 25X)EiE E 4E E•E

where Ek E {-1, 0, 1}.

The average of each term is

e-i(e'x+E2x 2+ 3x3+E4x 4 x5 ) = -iP'(d)= e-lc (26)loo

The ensemble average of each R'(x) is a sum of terms

e -- " -*T d r [ • • 2 • 3 • 4 l '5 l -2 ! 3 4 • 5
e 2 (E xE2E3E E,5+ El _E_ 2 E_ 3EX 4 E 5) (27)

If all e = 0 for all j, then Eq. (27) gives 1. When one = +1 while e = 0 for all

i j, the terms in Eq. (27) become

e-2ix • = e- c33(Ej+ + EL) = e-td /2 (28)

If there are two nonzero di, Ek, Eq. 27 becomes

e- (o +2ckk+2e Ekc k) (Ej EEk + E -j Er-k) (29)

and

(EE,,Ek + E,- E,-k) = (1 + 4d IklIk) - E k(30)
2 - (30)

We can expand this result to find:

- 2i(XjI xk )  (c +ckk) ( tcjkE + e•tcIjkEk (31)

= e-~(ci +••Ckk) (Cosh(tcdjk) - sinh(tck)4II J)

=- 2(ci +ckk +IkII)

We do the same for the remaining cases in which there are three, four, or five

nonzero e terms and find the following average propagators for random rotations.

For three non-zero terms:

e-2i(X I
li
+ xkI + Ik Xz )= e- ~ +8 Ck (32)



3.4 Decoding

After the time delay or magnetic field-induced decoherence, we apply the decoding

circuit from Fig. (4). In the following analysis, we will use the second method of

decoding and error correction presented in Section 2 (as opposed to the circuits in

Figs. (3) and (5) as it is the most practical method to implement experimentally.

Applying the decoding operator SD to Pc gives the density matrix after decoding

PD = SDPCS'D (39)

Like the encoding operator SE, the decoding operator is a product of c-NOT gates,

SD = 31S5I3SI413S3I2S2I1

and, alternatively,

S'D = S211S312S413S513S3I1.

The order of the Silj gates is important as these c-NOT gates also do not commute.

Therefore, we must take care to use SD and SD appropriately.

We can expand SD into a sum of products of I and E3:

SD =(2I3EL + El ) (2IE 3 + E3 )(2I E3 + E ) (2I E2 + E ) (2I'EL + E_) (40)

=8I2 4 5 1 E 2 E + 162 3 4 5E1EE + 212E1 E2E3 + 412 3E' 2 E (41)
X=X•xI + + X16 xIXIXI - - X - + - XI E +(
+83 4 5 El1 2 E3 +445 El1 2 E3 23 El1 2 E3 +"El E 2]E 3

+ 8IX XI+E EE + 4IX XE+E E + 2I E+EE_ + E•E~E+

We can also write SD as
S'D =8EL E I 3I245 + 2EE EE3 I2 + 16EE 2 EIIII 3j45 + 4E1 EE ••IJ3 (42)

+ 2 X- - x •42E -E X+XIX

+8EE EIII + 2EE E IJ3 + 4E E+ E II~I + E1E +E

Now we have the density matrix PD after decoding:

PD = SDPCS'D

= SD(a + /32I3Ix Ix ) SD  (43)

x SDFC [1(1 + F 12I)(1 + F22I 2)(1 + F3213)(1 + F42I4)(1 + F5215) SD

SSD(& + -321I'III)SDP D

= (a + ,321 )
x FD A-•SD1 + FI)(1 + F••2)(1 + F•II)(1 + F•I~)(1 + F1 I)S]D ( + 2)



Four non-zero terms:

e-2i(xjIl +Xk +XIz +X m IM ) = (33)
6-t(cjj+CkkCll.cmm..8 kj Ik.8iIj Z .._8 m Im..ckkIt  ,,kmlkIm_ mlzm' "me ., 2 Z Z z ý+ 4m m+ Z Z! ~ 't  

Z Tv" 'Z Z

Five non-zero terms:

e-2i(XIj+XkkI+X l  xm  ) = exp - ( c + 8ek IzI (34)
S i=1 jfk=1

We rotate these averages back to Rp•,2,63,64,65 (X1, xX2 X3 X4, X5) by replacing all I
with Ix.

We can define the following time-independent, nonunitary operators

F = F (t) -= e-tcjj /2 (35)

and

F k = Fk(t) = e- tck4II (36)

The resulting density matrix after decoherence is

Pc = (a + 032'12II3II) (37)

x Fc [(1 + F1211)(1 + F2212)(1 + F3 2I3)(1 + F42I4)(1 + F5215)

(&5 + ý321 23II5II)

where Fc is defined as

.Fc [1] - 1

FC0 [21z] - 2PZ
Fc[4kI] - Fjk4I-t jk41j~k

e -tcjk4IVI 4I I (38)

-c [8IzI Iz] -Fik F" k8jIk Iz

e t(C k I + I l + c k4I il ) klz

k'l [16II IIm,] Fijk •lFmFcklckmplm I kIl m

Se-t(cjk41 Ik+c 4Ij +cjm4II +Ckl4IkIckm4IgI +c m 4 I r) 1 6 I k I"m.) =16Vz l
1c [321 I3I45 12 LF213 L314 15 23 24 L34 p35 4532i i5•-c[3I••I•~]-F; 1' 11 F; Fi Fi J. F Y 3211zz~~

exp 4II 321IIII
(jk=1



where YD [SDXS'D] = SDFC[X]S'D. For example:

FD[1] = 'D[SDS'D] = SD.F•C[1]SID = SDSID = 1

.FD[2I ] = -FD[SD2IS'D] = SDFc[2I']SD = SD2IS'D = 2I1
z z' [ D2IzSD SD.F[2']S z--"

FD[4II ] = FD[SD2I2SD] = SDFC[2I2]S D = SD2I =SD  4I1I

The complete list of values for the FD function is given in Appendix A.

We can also define F :

F SD-td 4I IkS: D -tdCkSD4IIlS'~

with the following relations:

SD4II SD = 4II

SD4II S'D = 8III

SD4II SD = 8II I

SD4IIS'D = 8I II

SD4II S'D = 212

SD4I IS'D = 8IWIJI
SD4IIxS'D - 8IXII

SD4II S'D = 4IxIx
35 x D 34X

SD4II S'D = 4I3I5

SD4I5IS'D = 4I5ISD4Ixj5S D = 4I4I5

Applying the SD and S' operators to the terms inside YD [] in Eq. 43 produces

the state:

PD = (a + 21') (49)

x D% 1(1 + FC 2)(1 + F24II2)(1 + F38III2)(1 + F48II I3)(1 + F58II I

x (i + /21)

3.5 Error Correction

The last step is to apply the error correction operator, Sc, to PD. We can expand
Sc:

Sc = V112 34 5 T 1 2 3 T 314 5 (50)

= (1 - (1 - 21)EEEE E )(1 - (1 - 2 )EE)(1 (1 2)S1 + ( - XE( - + E + (51)

= 1 -(1- 2)E4 E - (1 - 21)E2 E (1 E4 E) I(1 2)E 4 E
(52)

(44)

(45)

(46)

(47)

(48)



Note that in the first line T 1 2 3 represents the c2-NOT gate which flips data qubit

conditional on the state of the second and third qubits being 10213). This corresponds

to applying (1 - (1 - 211)E 2 E 3 ) to the state.

As in the previous operator cases, Sc / S' . Instead,

S'c = T314 5T 1123 V 1|2 3 45  (53)- (1 3 4 5 21 32E(1 4 5 1(
= 1 - (1 - 2I )E E+ - (1 - 21')EE(1 - E4E) - 2(1 - 2I')E E E+

(54)

Following the error correction step, we want to trace over the ancillae in order to

reproduce the initial state of the data qubit, 7 = a 0) + 3 11). Taking the partial

trace over the ancillae is equivalent to applying the projection operators and taking

the sum:

( )234516 (S[X]) 2345  16 K ,E E 2 2E3.3E3 E s4 E 5 XEd1EE2 2E3 3E 4E 5 5 (55)

Although Sc does not commute with E3 , an expansion of Sc[X]S'c produces the

result:

S[ScXS'~c] = ScS[X]S'c (56)

Therefore, we can take S[PD] prior to applying the error correction operation, which

will simplify much of the algebra. We can also apply the trace directly to the F

from (47). For example, take the partial trace of Fj1:
12~] E l-2 1G3 1-4 5 t(12141 2  3  4  5

[F = E E 2 E • 3E 4 E 5 ( e- 24I I) E 2 E 4EC4E 5

-= E 2E 3E 4E5 (cosh(tc12) - 4I 3 sinh(tcl 2)) E-2E.33E 4 E 5  (57)

- (cosh(tC12)(E 22E3 E~4 E 4 ) - 4IjI sinh(tc12) (E22 E 3 3E 4E5 5) (E 2E 3E 4E 4 5 )) 5

= cosh(tC12) E 2E 3 3E4 • 5 = cosh(tc 12) F F12
-- ~~ ~~ c6ht2 E Ec" C34"5-

EtE±1

Generally, we have

F j k =8{F]D = cosh(tck)

= [c - ctj c ik F jktFijk D D z D I Dk

=cosh(tc'j) cosh(tcik) cosh(tdc) - sinh(tcdJ) sinh(tci) sinh(tdk) (58)



We can also expand FP ikl = ,[FFF, D F:F,] and
F12345  [ 3- 23 24 F 34 • 3 FD 5 . Because they are large sums of prod-

ucts of hyperbolic trigonometric functions, and are therfore not listed here.

Finally, we apply the error correction operator, Sc, to the projection of each term

in (47). Before listing all possible terms of SDS[X]S' , let us consider the result of

taking the partial trace over the ancillae. This will eliminate all terms containing

combinations of I 2, 1, ,I , and I; or any term without a factor of IV. Therefore, we

can neglect such terms, and determine SD8[X]S'D only for X containing a factor of

I. Listed below are the results of the error correction operation on FD [1],FD [If], and

TD [4IIz]. The full list of terms remaining after taking the partial trace is given in

Appendix B.

ScE[-FD[1]]Sc =1

ScE[FD[2I']]S =1 [611 + 12I1 I - 4I13 - 4II4 - 4I 15 + 24I3II - 8I 12I4
2125 1314 13J5 145 12314

- 8IzI•I + 24III + 24IIII - 8I~II - 16IIIIf
-1611•II 1II12315 _ 6 12145 +4 113145 - 21123J45]

- 16IIII~ -16IIII 48IIIIII+32IIIII-]

ScS[YD[2I2]]Sc =F 22I

Scg[.FD[213]]Sc =F23 1 [21 3 - 4II - 4II - 8I3II]4IzI

SC,[TD [214I]]SI =F12342I4

Scg[.FD [2I5]]Sf =F12352I5
12]S , [i J2ii + 12i 3i 14 1J5 12J3 12J4

Sc[TD [4I I]]Sc = [61 + 121I + 121I - 4I - 4II - 8II - 8III

-8III -8IIl14 -8III - 8III4 +48III I3

23+ 48III - 126I4I5II - 16III + 12345+48I11 1611 - 161lz z' 96I11lI.z
z z z z z16I z l z zzz

(59)

Scg[.FD[4I I ]]Sc =F123 [-2I1 + 12I1 I + 12I1 I + 12I1 I + 12I1 I + 24I II3I- 8II~I
8
1215 1314 1315 1415 121314 21235

- 81I - 81 - 8I1IIz + 24III -16IIzI~I -16III

- 16IJIII -16II345I -321 III



Sc6[FD[4II ]]S'c = 1 F234[-21 - 4II + 121 + 121 I1 -4I1I - 8IzI zI +24II zI

(60)
- 8I1II5 - 8I I1 + 24I1II - 8I II + 48I 123II - 16II I2I35

8Iz z z zz z24Izz z 48z z z z zzzz
-16IzIzII4 + 48IIzIzI -32I lII4I5]

12I z zz zz z z 8Iz~

Sc[FD[4I Il]]Sc = 8F235 [-2I - 4II + 121 - 4II+ 121 - -81258 + 145 1 1235 - 8I IzI

+24II I2 + 24IzII - 8II Iz - 8III - 16IzI2II - 80I1II2I

-16II IzIz + 48I IzII -3211 2IzII]

We multiply the remaining terms by the appropriate FP, according to (50) to find

the final state after error correction:

PE ( PE) 2345  (a + (2I)ScPDSc( + 211)2345
PE-PE (a ,21)cpCS/ (61)

-(a + f2I)( Scg[D[1 + F12I1 + F2 4IIl + FF 2 3F 1 234I I

+ F2 F3 F 4 F 234 4I 1 + F2 F3 F5 F2354II + F 3811 I3
+ 1 3 F4 F134 81 214 + 1 3 F5 F1358125+F481 3 +51 35

+ FFFF 3 8I4IIz + F 3 5F'F F 8IzII + F4 8I Iz I + F 8II z Iz

+ F'F4F 5 F145 145 + F F2F4F 124 162 3 4 1 2 F 5 F125 16I2III

+ F 2F 4F5 F 245 16I II4I5 + F'F 2F 3F4 F5 F1234516I1 II4I5

+ F1FF 32II1II3I45]]S'c )2345(a + 211)

=(a + /321D) (1 + 211 (3F1 + 3F 2 + 3F 3 + 3F 4 +3F 5 - F1F 2 F 3 F 123 (62)x 2 z8

- F'F 2F 4F 24 -_ F1F 2F5 F125 - FF 3F4F 134 - F1F3F5Fla3 5

- F'F 4F 5F 145 _ F2F 3F 4F 234 - F2 FF3F5F 235 - F2F 4F 5F 245

- F 3F 4F 5F 3 45 + 3F'F2F 3F 4 F 5F 123 45))(a + +2I 1 )
1

=2[1 + 2!R(ii)2I 1 + (22(a53)2I' + (ja12 _ -31 2)II)E(t)]

where

e(t) 1 [3F' + 3F 2 + 3F 3 + 3F 4 + 3F 5 - F'F 2F 3F 12 3 - FIF2F 4 F124  (63)
8

SF'F 2F 5 F125  F1F3 F4 F134 _ F1F 3 F5 F135 - F1F 4 F5 F145

- F2 F 3F 4F 234 _ 2 FF3F 5F 235 - F2 F 4F 5F 245 _ F 3F4 F 5F 345

+ 3F'F2F 3F 4F s5 F 12345]
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Figure 8: Plot of fidelity versus decoherence time delay for the corrected and uncor-

rected states.

Again, Fi - e- 'c" and F j -= e- co with tc" and tc'j the variances and covariances

between the spin phases of the five qubits. p' is the final, error-corrected state of

the primary qubit. O(t) describes the the decay of the data qubit in the presence of

random fields.

Now we can calculate the fidelity, f. The fidelity is a measure of the overlap of

the initial and final states. It is given by

f = (4initial IpfinalIVinitial) (64)

We can find f using I4) = a 10) + 3 11), the intial state of the data qubit, and p,

the corrected final state of the data qubit. We can compare this to the fidelity of pB,

the decoded state of the data qubit before error correction. fcorrected and fdecoded are

displayed in Fig. (8). The time on the x-axis is the length of the time delay during

the decoherence process.

This figure shows that the error corrected state has higher fidelity than the non-

corrected state. The code does produce final states that are closer to the initial state

than if there was no error correction.

--decoded
- \\ . - corrected

L
.N,,



4 Discussion

4.1 Results

We saw in Section 2 that the quantum error correction code displayed in Fig. 5 will
correct 2nd order bit-flip errors. A detailed analysis of the operator algebra for this

code produced the corrected state of the data qubit. In the prescence of decoherence,
the data spin will decay according to O(t). If we can test the system experimentally,
we can determine O(t) along with the variances and covariances.

We have seen that it is possible to correct for second order bit-flip errors, and we

have computed the state of the five qubit system at each step in the error correction

process. The code does indeed produce states with out errors in the data with higher

fidelity than if the code were not used.

4.2 Further Work

The next step is to test this circuit experimentally. This would involve determining

the pulse sequences required to execute each gate in the circuit. Errors correspond to

decoherence from time delays, but we can simulate this decoherence with magnetic
field gradients in an NMR experiment. We can apply the unitary operations to the

system through RF pulses and periods of free revolution.

Such an experiment would use labeled spin-1/2 atoms. Each nucleus spin in a
molecule has a different resonant frequency, which would allows us to apply pulses

that flip individual spins after considering couplings between all the spins that will
affect each operation.

An experiment could measure the variances and covariances between spins as well

as the decay of the data spin, described theoretically by E(t). We could also measure
the fidelities fcorrected and fdecoded and compare to the theoretical results.
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A Values for FD

FD [1]

FD[21l]

ED [2I12]

ED[213z]

TD[214z]
.D[2I5]

E& [4II]
ED [4I1I ]D [4I 12]

ED [4I1I3]

D[4Izlz]

ED [4I I ]

ED [4I I ]

ED [4I I ]
1 4D [4I Il]

ED[8I~I~I]
1 5.FD[41IzJz]
2 3

ED[8I~LII]

ED[8I~LII]

TD[81 15]
2 4

EFD [4IIlz]2 5
.FD[4lI4~]

3 4
.FD[4Izl5]

3 5
5%[4I31z]

ElD [8 45I~.F[4Iz1z]
z23

.FD [124II
ED[8IzIIz]
-- 81' 1251

ED [16I3I4II]

S [16III2I]
T-D[ 11314

T [8Iz 1315]
T•D[1 1415]

T[8Iz1z1z]

.F[8Iz1z1z]
."D [821415]

[8131415]

zD [16Iz11z1314]

.FD [1 6 I z 1 21 31 5]

1

2I1

zz-tC 24I•1• I 2

4I)I~e-tda'21'2ia

-t(C12 3 13 1 2 3 22321 )422+e-t(c24I2I +c24 8I 344I~ 8I )4I~ 2Ixc8xxxc4x)4e 2Iz
-t(C2 3 212 5 2 3 15 4e 2Iz

e c1 2III44Izzz

e -tc 3 4 4I I4e -tc 14  3 13 1 2 3

e-tc45 4 I 4I I2-t(c 2811 x 3 •• 4II) 11-t(c 2 3+ 18 IIx l+c 354 I I ) 25

e-tc44z  125 152-4

e-t(c2 4 1 2I 3
-t(C 25 1 28 1 3  4e xIx ) x2 X)41

zzzz

-t(c 23 21C2 4  12 5 152 142

e-t(c1 24II 4 5

-t(c1 2 4 I 8 4 C 61381' 123 14213e-t~c 8Ixx4 Izc 8 Iz~zc4zx I~13i 1 2 315 125 313c x 4 1 4
1541 1 2 5154 4 4

e-t~c 8xII+ x I~~~ 4I4z8i3z z14

2 4 235

- ~ 38125 P23 c4 81 21+C4 35) 124

-(1381 12 13 C14 8 1 2 15 +C51 3 1244 8 l 2135 2

8 1 1 314 25 2

-t(C148IzI1P+05 811 12 14+C45414I15 )816Xlll2341

tC412 1 3 15 ) 1 21 14+c 8z

-t(c2 82314I• X)c8I213I x 5 2a41iii



JD[16I 4IIzI] = -t(C24 12315 25234 45 Il II (65).FD 16Iz1z1z1 z  (65)
[16IIIzI] t(C12 13 1c 83 I +cl4l25 15 1 124 23 2 C24 2 3J5 25 23341 

5 = e 
41 

5 3 4845

x e- t(c4IxIx+c 4IxIxc44IxI ) 1 6 Iz I3I45
FD 163 43 12 3 14 x 2 51512 4 34 I 5 35 I 4 z = 16I4IIzI

D II 3 =4 e 21-t(C3441315+c341+c454II)212 3445YD [321'zJz1z1zJz] = e )3211lz3z4 z



B Values of Scg[X]S'

ScS[FD[1]]Sc =1 (66)

ScS[,TD[21]]Sl1 = 1 [611 + 121 I2 - 4I - 4 14 - 15 + 24123 -8 124
SCC[8 z 4Iz zz 4z z 4fz +8 4~~~ 24IzIzIz 111

-8II I- + 24IIzI -+24IIzI3 - 8I II - 16IzIzI Iz

-16IzIzIzI - 16IzIzIzI + 48I1III1 -32I1 IzIzIz]

ScS[FD[2I ]]S' =F 1222I

SS[FD[2I ]]Sc =F=2 3 1 [213 -4I3I -4I3I -8I3II ]
z c 2 8Iz z zI z]

ScE[FD[21z]]Sc =F 1 2342I
SC$[- 2I3Sc... z 8zzz

Sc[.FD[2I5]]S c =F 
12352I

ScS [FD[4I 12]]S 1 [611 + 12I1 I2 + 121 i - 41114 1- 41 - 8 23 -8 124
8 4Iz z -z Iz  81214

- 8IIDI 2 -8134- 8I1II3 - 8II45 + .48I II2I +- 48I III3

- 16I JI2I5 - 1611 I3I 5 + 96I III4 ]8z z z 8z z z Iz z z Ifz z + +

ScS [D[4II 3]]S/ =F1231 [-2I1 + 121 I2 + 121 J3 + 1214 4 + 121 I5 + 243I II - 8 124I

- 8111215 - 8I II3 - 8III3 + 241I II - 16IIIIL3 - 16I1123

- 161L 121II - 16I 13J45 3211 I

Sc[TD[4IzI ]]Sc 8 [-21 - 4I1 1 + 121 1 + 121 - 41 5 - III + -24I IzI

- 8ILlI1 - 8I1I134 + 24 13I5 - 8I1II + 48I 2I3I4 - 16I21I 35Iz z z 8z z z 8z z z +
- 16I 2II45 + 48I 5III - 3 21 345]6z z z z 16z z z z  32z z z z zSC [ D 15]S -1 1 234[2I 12 13 14 + 15 _ 11213 1214

cSF[D[4II ]]Sc =- 235 [-21 - 4II + 121 I - 41 +121 I - I-81I

8 IIzI 8III 1 1 -8I I 111 2134 - 81112135

-- 16IIII ±z 48IIIII -z zz z 2z zIzI z161 5 1F3_21415 +411 13 321 1213415
24z z z + 24z z z 8z z z Iz z z



ScE[.FD[8I II3]]Sc = [6I1 - 4III + 1214I - _- 4I I +24II I- +24II I

+24II~I II -- 1•-III -8I 3II - 8III4 - 16III2I3

-16I I2II + 48I I2II - 164I1 II -321 III4II

ScE[FD[84 12I4 ]]S = 134 [-21 - 4I I2 + 121I I + 12II4 -4 - 8I II23 + 24III

- 8III. - 8I I1 + -241I II - 81III + -48I 12II3

- 16II I2I3 -_ 161I I2II + 48II I3I4 - 321 IIII]

S125[8I II]]Sc =F[135[2I - 4I-I- + 12I+I3 - 41 + 12I~I~ - 8III - 81+ I I2

+ 1211 1I2 -48I II - 8I~I 3I - 8II II -_ 16Ifl JI~I

+ 248IIII35 - 16IIII + 48II 3II - 321 23I4I5]

ScE[YD[81II S]]S =i [61 - 41 I - 413 - 411 4- + 121II 5- 8III2 + 24II I2

- 81III + 24I4 IJ - 16II~I + -244I I + 48I1III

- 16I3I5 II - 16II 3I - 161131415 - 321 12131415
z zz zz z z z z z z zz z z121I

ScE[YD[8I'I3I]]S-S = F[6I1 - 4I - 4Il + 12II4 - 4 1 - 8I~II - 8I1 I2I

+ 24I II -_ 161I I + 481II5 + 48I ~I4I - 16I II2I3

+ 4812I35 - 16IIII45 - 164I III - 3241 IIII5z z 16I I z z z 48z zIzz Iz

ScE[ FD[8I 4II]]Sc =F 145[--2I - 4Il -+ 24I I - 4I I -- 4II 5- 8II~I 2 - 8I~I I

Sc[D[16IIII]] =8F 124[ 52 1231I -4I 12 - 45I - 8III4 - 8III
8+ 24IIz + 24•1 24III - 8III 4 - I1I

- 16III + -48I II2I - 16II II + - 48 3 213III

ScE[.FD[161S =284F125[-21 + 121I I - 4I- 4I3 12 I4 4 - 81II IJ - 8I IIIJ4 1 24II I3 -- 8I 12 5 - 164II + 48I II 1348III

- 16IIIIl I -- 3232III21I44Iz I + 12z I 4Iz z z 8Iz I I
ScE[TVD[1681I3I5I]]Sf 1 15[ -26I 211J 4I •1 l J3 -1 l4 + 1 21 35 - 1 21 - 1 34

+2 12 35 -8'45_1621344 + 813514 5+41 12345
+ 24•zI 16Iz zI zzI z+4IzzI 48zI 16IzI I I
-16 23145 -3 1l2134I5 1 4 4
+ 48••zI 16•zIz 16zII 32zII zI



1S cg[.T 1 4I5] , = _1 245[ _ 1 4 z z 2 4 zl 13 4 zl  44 iz z 15 -- 12J3S [F[[16III ]]c 8 [-2 - 4 - 4 - 4l - 4I + 24IzIIz

+ 24II 12 + 24I 125I - 8I13I - 8 1315 + 24I5II
24z z z + 24 z z z  Iz z z Iz z z +

=- 16IIzIzI3 - 16I IzII3 + 48IIIz 1 z +I 48IIIzI z

3211 I 4I5II ]

13415]]S ! F12345 [1 3 41112 14 15 123
SC8 [FD[16I~II ]] =c F [6I - 4II - 8II + 12I1 + 121I - 8IIIz z z 8 z zz 12Iz z  12z z  zz

- 81 12 4 - 81 I2I5 - 81'3I4 - 81' 135 - 81145
Iz z z z8Iz z z Iz zI 8z z z zz

- 16IIzIIz z - 16II I + 48IzIIzI z + 48IzIzIzI z

1 2 4

S [z D8 Izz 4Iz z z4 z 8IzSkSF [32IzIzlzIIIz]]S'c 8=F'4 -2.... -4 I -4 - II 8IzlII

+ 24Iz II2 + 24IzII z - 8IzII3 - 8IIIz + 24I1II

- 16IzIzIzI - 16I IzIzI - 16 IzIzII + 48IzIzIzI z

+96I IzIII


