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Abstract
A new technology is proposed for lightweight, high density energy storage. The objective of this

thesis is to study the potential of storing energy in the elastic deformation of carbon nanotubes
(CNTs). Prior experimental and modeling studies of the mechanical properties of CNTs have
revealed nanoscale structures with a unique combination of high stiffness, strength and flexibility.
With a Young's modulus of 1 TPa and the ability to sustain reversible tensile strains of 6% [1, 2] and
potentially as high as 20% [3-5], mechanical springs based on these structures are likely to surpass
the current energy storage capabilities of existing steel springs and provide a viable alternative to
electrochemical batteries. Models were generated to estimate the strain energy of CNTs subject to
axial tension, compression, bending and torsion. The obtainable energy density is predicted to be
highest under tensile loading, with an energy density in the springs themselves about 2500 times
greater than the maximum energy density that can be reached in steel springs, and ten times
greater than the energy density of lithium-ion batteries. Practical systems will have lower overall
stored energy density once the mass and volume of the spring's support structure and any
additional extraction hardware are taken into account, with a maximum achievable stored energy
density predicted to be comparable to lithium-ion batteries. Due to the poor load transfer between
MWCNT shells and the radial deformation of larger SWCNTs, bundles of SWCNTs with diameters of
1 nm or smaller are identified as the best structure for high-performance springs. The conceptual
design of a rechargeable portable power source is developed as a tool to study the performance
and feasibility of building such a device. In this design, energy is stored in a grouping of densely-
packed, aligned CNTs stretched in tension. The design includes an escapement mechanism to
regulate the. energy release from the spring and a generator to convert the output work from the
spring into the electrical domain. The results indicate that the performance of the power source
scales well with size so there is flexibility in choosing the overall scale of the device. Achieving a high
fraction of CNTs in the overall device proved to be challenging. Future work should concentrate on
building and testing high-quality, densely-packed macroscale SWCNT assemblies that are expected
to form the basis of sqper-springs for implementation into practical devices.

Thesis Supervisor: Dr. Carol Livermore
Title: SMA Assistant Professor of Manufacturing



Table of Contents

1. Introduction ............................................................................................... ......... 5

1.1. Thesis outline ........................................................................................................... 7

2. Carbon nanotubes: structure and properties ............................................... .......... 9

2.1. Carbon nanotube structures ..................................................................................... 9
2.1.1. Single-walled carbon nanotubes ................................................................... 10
2.1.2. M ulti-walled carbon nanotubes ................................................... 11

2.2. Carbon nanotube synthesis............................................................................................ 11
2.3. M echanical properties ................................................................................................... 13
2.4. Applications of carbon nanotubes .................................................... 19
2.5. M acroscale assemblies and their properties .............................................................. 20
2.6. Attachment methods ................................................. 25

2.6.1. Design Recommendations ......................................................... 26

3. Energy storage estimates ............................................................................................. 28

3.1. Axial tension ................................................................................................................... 29
3.2. Axial com pression .......................................................................................................... 35
3.3. Bending ........................................................................................................................... 39
3.4. Torsion ............................................ 43
3.5. Comparison of deformation modes ............................................................................... 46
3.6. Coupling of deformation modes .................................................................................... 49
3.7. Support structures ................................................... 53

3.7.1. Cost analysis of a diamond supporting structure ..................................... ... 60
3.8. Im plementation Issues ................................................................................................... 63
3.9. Comparison of energy sources....................................................................................... 64

3.9.1. Steel watch springs ................................................................................................. 64
3.9.2. Energy density com parisons ........ ..................................................................... 66

4. Energy storage mechanism s ......................................................................................... 72

4.1. Basic system architecture of a power source ........................................................ 72
4.1.1. Exam ples ................................................................................................................. 75

5. Power source with controlled energy release ....................................... ...... ... 79

5.1. Conceptual design of a unit cell ...................................................... 79
5.2. System architecture .................................................... 82

5.2.1. Escapement Design ................................................................................................. 88



5.3. M odel and Analysis .............................................. ..................................................... 93
5.3.1. System M odel ............................................... ..................................................... 93

5.3.2. Design constraints......................... ................................................................... 107

5.3.3. Sim ulink m odel ........................................ 111

5.4. Sim ulation Results ....................................................................... ............................ 111
5.4.1. Subm illim eter-scale case ................................................................................. 113

5.4.2. Results for three size scales ............................................................................... ... 118

5.4.3. Subm illim eter-scale case with a long spring............................... 121

5.5. Discussion of results ............................................................................................... 123

6. Conclusions and Future W ork ................................................................... .......... ............ 126

References .................................................................................. .................................. 129

Appendix 1 ................................................. 136

A p p e n d ix 2 .................................................................................................................................. 1 3 9

Appendix 3 ................. ................................................................................................... 142



1. Introduction

In response to the growing energy requirements of electronics and the need for higher

efficiency and higher density energy storage systems, a demand exists for breakthrough

technologies in the field of energy storage. Reliable, high density energy storage is key to

supplying long-lasting power to applications such as portable electronics and electric vehicles,

or storing energy from intermittent renewable power sources such as wind or solar power.

Current storage technologies include batteries, fuel, supercapacitors, compressed gas, pumped

hydro, mechanical springs and flywheels. Fuel stores chemical energy with an energy density as

high as two orders of magnitude greater than batteries, but the need for a combustion engine

makes fuel impractical as an energy source for many portable applications. Batteries are the

most common and versatile form of energy storage, though cited drawbacks are their low

energy density, long recharge times, limited operating temperature range, self-discharge and

low power densities. Capacitors offer rapid charge and discharge times and high power

densities but still cannot match the energy density of batteries. Flywheels, mechanical springs,

compressed air and pumped water all store mechanical energy. Although their energy densities

are typically lower than batteries, mechanical energy storage devices can deliver long lifetimes

and high power in a reliable, cost-effective and environmentally safe manner. While different

energy storage systems are well-suited for particular modes of usage, none are ideal for all

applications. There is still a need for sustainable, high density energy storage systems that offer

both high energy density and high power density. Further research is being conducted to

improve upon the capabilities of the current energy storage methods, such as batteries and

capacitors, but it is worthwhile to also consider new, alternative technologies that may improve

upon the limitations of the conventional storage systems.

An alternative form of energy storage is proposed based on the elastic deformation of

carbon nanotubes (CNTs). Carbon nanotubes, first observed in 1991 [6], are carbon-based

molecules with ideal graphitic bonding in high aspect ratio cylindrical structures a few

nanometers in diameter and with lengths on the order of microns. Studies of their mechanical

properties have revealed a remarkable combination of high stiffness, strength, flexibility and



low density, properties that set CNTs apart from all other materials. The carbon-carbon bond in

graphite is the strongest bond found in nature [7], and a CNT is effectively a sheet of graphite

rolled into a cylinder. The advantage of nanoscale materials is their ability to reach near-ideal

crystallinity with few defects and impurities. The result is nanoscale materials with mechanical

properties far superior to those of bulk materials [8]. The Young's modulus of CNTs is 1 TPa, five

times greater than that of steel. Their failure strength of 50 to 200 GPa is over a hundred times

greater than the strength of steel. With their strong bonding structure, CNTs can sustain

considerable deformation in a reversible manner. Experimentally, CNTs have been shown to be

capable of sustaining tensile strains as high as 6% [1, 2], and strains in defect-free CNTs are

predicted by theoretical models to be as high as 20-30% [3-5].

These mechanical properties have motivated a study to explore the potential of using CNTs

as "super-springs" for high density, lightweight, reversible, mechanical energy storage. Elastic

strain energy is stored in a CNT by deforming it under an applied load. Once the load is

removed, the released energy from the CNT can be used to perform mechanical work. The

ability of CNTs to deform reversibly, along with their high strength and stiffness, indicate that

springs made of CNTs would be an ideal medium for mechanical energy storage. Such a spring is

expected to be able undergo repeated charge-discharge cycles elastically and without fatigue.

The term "super-spring" refers to the expectation that CNTs will store elastic strain energy with

a density several orders of magnitude higher than conventional spring materials such as steel.

Strain energy density in a material is proportional to the product of its Young's modulus and the

square of an applied strain. Accordingly, springs made of CNTs are expected reach energy

densities as much as four orders of magnitude greater than the energy density of steel springs

and on the same order of magnitude as the energy density of lithium-ion batteries. While a

number of applications already take advantage of the unique mechanical properties of CNTs,

including scanning probe tips, polymer composites, torsional springs and foams, the use of

CNTs for energy storage is a new application that has been little studied to date.

CNTs present a useful alternative to conventional energy storage technologies. The ability of

springs to discharge very rapidly suggests that CNTs can reach not only high energy densities

but also high power densities. Because elastic strain energy relies on stretching bonds rather



than chemical reactions, advantages of CNT energy storage over batteries are a potentially

infinite numbers of charge-discharge cycles, long term storage without losses, little or no

degradation of the storage medium over time, rapid recharging and temperature insensitivity.

An important distinction between CNTs as a storage material and conventional energy

storage devices is their small size. Individual CNTs have diameters measured in nanometers and

lengths on scales ranging from microns to millimeters. For CNTs as springs to store useful

amounts of energy, they must be assembled into larger groupings. An important challenge is

developing methods of arranging the CNTs in such a way that a single mechanical load can

deform many CNTs in a macroscale assembly at once while maintaining the mechanical

properties and energy storage characteristics of a single CNT. Excellent load transfer is required

between individual tubes so that an applied load is evenly distributed among all tubes in a

grouping.

Given a spring made of CNTs, the next step is to study how it can be incorporated as the

energy storage element into a rechargeable power source. Energy can be input into a spring

using a motor, stored for a period of time prior to the spring's release, and once released,

converted into electrical energy using a generator. For large-scale applications, achieving

macroscale levels of energy storage can be done using either many small springs that release

their energy at once or a single, much larger spring that is itself capable of storing a macroscale

amount of energy.

1.1. Thesis outline

The following chapters will focus on assessing the feasibility of using CNT super-springs for

energy storage. Chapter 2 provides background material on the atomic structure, methods of

synthesis, mechanical properties, macroscale assemblies and applications of CNTs. Chapter 3

presents models that are used to predict the strain energy density of CNTs under different

modes of mechanical deformation. These estimates are compared to the energy storage

capabilities of other common storage devices. Chapter 4 examines the architecture of a power

source that stores energy in the deformation of CNT springs. In particular, the question of scale

will be addressed to evaluate the feasibility of building power sources at the nanoscale or at the



macroscale. Chapter 5 presents the design of a conceptual microscale portable power source. A

model is used to examine the effect of scale on energy storage, power output, efficiency and

system performance while assessing the potential utility and identifying the implementation

issues associated with building such a device. Finally, Chapter 6 summarizes the results and

suggests directions for the project to take in the future.



2. Carbon nanotubes: structure and properties

2.1. Carbon nanotube structures

2.1.1. Atomic structure

The structure of a CNT is similar to a graphene sheet rolled into a seamless cylinder with

capped ends. Both CNTs and graphite have sp2 bonding, a highly stable covalent bond that is

stronger than the sp3 bonding in diamond and is responsible for the high strength and stiffness

of CNTs [8, 9]. Three a bonds form the strong planar hexagonal network and an out-of-plane iT

bond gives the CNT its thermal and electrical conductivity. The curvature of the graphene sheet

causes the It bond to be more delocalized than in a planar sheet, which results in a structure

that is mechanically stronger and more conductive than graphite [10].

There are two types of CNTs: single walled carbon nanotubes (SWCNTs), with a single shell,

and multi walled carbon nanotubes (MWCNTs), made of two or more concentric shells as

shown in Figure 2.1. The presence of defects in a largely hexagonal network can create more

diverse shapes. Stone-Wales defects, pentagon-heptagon pairs in the hexagonal network, result

in non-planar structures that include capped nanotubes, helically coiled nanotubes, toroidal

structures, cones, and branched nanotubes.

H

(b)

(a)

Figure 2.1: (a) Planar sheet of graphene rolled into (b) a SWNCT and (c) a MWCNT with four

shells. [11]
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2.1.1. Single-walled carbon nanotubes

A SWCNT is single graphene sheet that has been rolled into a cylinder and capped. The

structure of a SWCNT is uniquely characterized by a diameter d and a chiral angle 6, or

equivalently by a chiral vector [12]. The chiral vector Ch is defined perpendicular to the CNT axis,

as shown in Figure 2.2 (a). Its length is equal to the perimeter of the cross-section, so that the

ends of the vector overlap in the rolled structure. A translation vector T is defined in the

direction of the CNT axis, perpendicular to Ch. The chiral vector is expressed as Ch = nal +

ma2 = (n, m), where al and a2 are unit vectors. Special structures include armchair CNTs when

n=m and zigzag CNTs when m=O, as shown in Figure 2.2 (b). Chirality affects electrical

conductivity, determining whether a CNT is metallic or semiconducting, but has little impact on

mechanical stiffness and strength.

(a(

(ia) chirl

)(h

Figure 2.2: (a) An unrolled graphene sheet showing the chiral vector Ch and translation vector T
of a CNT [12]. (b) Examples of armchair, zigzag and chiral CNTs [8].

Experiments have shown that the diameters of SWCNTs fall in the typical range of 0.6 nm to

2 nm, though diameters as small as 0.4 nm and as large as 3 nm have been observed [10]. With

small diameters and long lengths, SWCNTs can have aspect ratios as high as 1000 [7]. The

stability of a SWCNT cross-section decreases as diameter size increases. The cross-section of a

SWCNT deforms in the radial direction when it comes into close contact with another tube or a

substrate because of the van der Waals interactions between them, forming structures called



nanoribbons. The flattening effect becomes more pronounced in tubes with larger diameters

[13].

During synthesis, CNTs often form groupings because of the attractive van der Waals forces

between them. The products of CNT synthesis processes are typically SWCNTs bundles [8],

densely packed groupings of several hundred tubes arranged in a hexagonal lattice.

2.1.2. Multi-walled carbon nanotubes

Each concentric shell of a MWCNT has the same structure as a SWCNT, though each shell

can have its own chirality. The interactions between neighbouring shells are based on van der

Waals forces, and these are generally weak. MWCNTs typically have an outer diameter less

than 100 nm and inner diameter greater than 2 nm [10], and can have between two to over a

hundred shells [14]. The distance between adjacent shells in a MWCNT is measured to be 0.34

nm, the same distance as the separation between graphene sheets in graphite.

2.2. Carbon nanotube synthesis

Synthesis techniques have been developed to grow CNTs with millimeter-scale lengths,

high purity, low defect density, rapid growth rates and at reasonable costs. Three common

synthesis techniques are the arc discharge method, laser ablation and chemical vapour

deposition.

The arc discharge method applies a voltage between two graphite electrodes spaced about

1 mm apart. A chamber is filled with low pressure helium or argon. The temperature of the gas

between the electrodes reaches above 30000C and the carbon in the electrodes sublimates to

form a plasma. The anode is consumed as deposits form on the cathode. MWCNTs grow

without the need of a catalyst, and these deposit in bundles on the cathode. SWCNTs can be

grown when catalyst particles such as iron, nickel, cobalt or yttrium are added to the graphite

anode. SWCNTs also deposit in bundles on the cathode. The lengths of the produced CNTs are

relatively short, generally about 20 pm long [14]. The geometry and type of CNTs produced can

be varied by changing the pressure and feed rate of the background gas, the temperature, type

of catalyst, the applied current and voltage and the distance between the electrodes. This



technique produces CNTs of high quality and with few structural defects, but the CNT products

are mixed with graphite, metal clusters and amorphous carbon that must be separated to

obtain purified CNTs. Drawbacks of this method include limited control of CNT lengths and

diameters and the high cost of the gases and electrodes used in the synthesis process [15].

The laser ablation technique sends laser pulses toward a graphite target located in a quartz

tube filled with low pressure argon. The tube passes through a furnace operating at 12000C.

The laser pulses decompose the target into small carbon aggregates which recombine to form

long nanotubes in the vapour phase. These are carried with the surrounding gas toward a

cooled collector made of copper at the end of the tube where they deposit in bundles with

lengths on the order of tens of microns. The properties of the CNTs are varied by changing the

catalyst, gas composition, temperature, pressure, flow conditions and laser pulse intensity.

Graphite and metal catalyst particles also deposit on the collector and these must be removed

using purification techniques. A target made of graphite results in the formation of MWCNTs

while a target of graphite mixed with catalyst particles forms SWCNTs. CNTs produced with

laser ablation are typically of high quality and contain few structural defects.

Growth of SWCNTs or MWCNTs using chemical vapour deposition (CVD) takes place on a

small substrate that has been patterned with catalyst particles, often iron, nickel or cobalt. The

substrate is placed in a quartz tube inside a furnace that heats the tube to a temperature

between 500 and 10000C. Hydrocarbon gas mixtures of methane, ethane, ethylene or acetylene

flow through the tube during the growth period, which is followed by the flow of an inert gas

while the tube cools down. The process parameters are temperature, gas composition and type

of catalyst which determine the number of walls, lengths, and diameter distributions of the

CNTs. The result is densely packed, vertically aligned CNTs grouped into bundles on a substrate,

mixed with amorphous carbon and catalyst particles. Alignment of the CNTs depends on the

process parameters, and can range from tangled, poor alignment to relatively good vertical

alignment [16]. The lengths of CVD-grown CNTs can be as long as millimeters and MWCNTs can

be grown with more than a hundred shells [14]. The defect density of CNTs grown using CVD is

higher than with the other two methods because of the low temperature used in the process,



though it can be improved through annealing [17]. An important advantage of CVD is its ability

to produce bulk quantities of CNTs at lower costs than other methods.

The highest quality CNTs are synthesized using arc-discharge and laser ablation methods

that operate at very high temperatures. CNTs produced with CVD have higher defects densities

and inferior mechanical properties [10] but the highest purity. An important advantage of CVD

and the arc discharge method is that they are well-suited for large-scale production, while laser

ablation is not [10]. CVD produces the longest tubes, provides the most control over diameter

distribution and grows CNTs in ordered, vertically aligned arrays.

2.3. Mechanical properties

Considerable work has been done to experimentally characterize the properties of SWCNTs

and MWCNTs despite the challenges posed by their nanoscale sizes. CNTs are difficult to

manipulate, align and attach to surfaces. The experimental quantities being measured, such as

length, diameter, force and displacement are small themselves and limited resolution at that

scale introduces uncertainty in the measured data. Defects can have a large impact on the

properties being measured, but these defects are hard to characterize.

A number of techniques have been devised to measure the mechanical characteristics of

CNTs. The Young's modulus has been determined by measuring the amplitude of thermal

vibrations of CNTs in a TEM [18], and embedding CNTs in a polymer and measuring stress using

micro-Raman spectroscopy [19]. Other techniques, including performing tensile tests by

mounting CNTs between AFM tips [2, 20] and deflecting a suspended CNT using an AFM tip [1,

21], have been used to measure both the Young's modulus and axial strength.

Many different types of models of CNTs have been built to validate the experimental results

and explain their observed properties, such as their strength and stiffness, load transfer

mechanisms and fracture modes. Common modeling techniques are ab initio methods,

molecular dynamics, continuum approaches and finite element methods.

Carbon nanotubes are expected to have a Young's modulus near 1 TPa, the in-plane

stiffness of graphite [2]. Assigning a Young's modulus to a CNT is applicable only within a

continuum framework in which each shell is assigned an equivalent thickness. Proposed



thicknesses include 0.066 nm by Yakobson et al. [22], 0.154 nm by Liew et al. [11] and 0.076 nm

by Wang et al. [23], but the more commonly used shell thickness is 0.34 nm, which is equal to

the spacing between graphene sheets in graphite.

Studies have shown that CNTs are able to withstand considerable strains elastically. CNTs

can undergo large deformations under axial and radial compression, bending, stretching and

twisting reversibly and without permanent atomic defects forming in the hexagonal network of

covalent bonds [21, 22]. This behaviour is explained by their nanoscale structure that doesn't

form the stress concentrators that lead to failure in macroscale materials [24]. Maximum

tensile strains as high as 6% have been measured experimentally to date [1, 2], though

modeling studies predict strains in defect-free CNTs as high as 20-30% [3-5]. The experimental

measurements are likely lower than the theoretical predictions because of structural

imperfections. Strength is limited by the presence of defects and impurities, so high quality

fabrication techniques are needed for experimental strains to reach the theoretically predicted

values.

A summary of reported values for the Young's modulus of individual SWCNTs, MWCNTs,

and ropes of SWCNTs obtained through experimental and theoretical work are listed in Table

2.1. Reported values for the shear modulus of CNTs are listed in Table 2.2. While the results

contain some variation, there is generally good agreement between the experimental and

theoretical values. Studies have shown that the Young's modulus is independent of the number

of shells in a MWCNT and van der Waals interactions between the shells [25], so similar

stiffness for both SWCNTs and MWCNTs is expected. The mean values are about 1 TPa for the

Young's modulus and 450 GPa for the shear modulus.

Table 2.1: Experimental and theoretical determination of the Young's modulus of CNTs

Author Structure Young's Thickness Method
modulus

Lu [25] SWCNT 0.97 TPa 0.34 nm Empirical force-constant
SWCNT ropes 0.43 - 0.8 TPa model
MWCNT 0.97 - 1.1 TPa

Yakobson et al. SWCNT 5.5 TPa 0.066 nm Molecular dynamics
[22]
Meo et al. [4] SWCNT 0.92 TPa 0.34 nm Molecular mechanics and

finite elements



Lourie et al. [19] SWCNT 2.8 - 3.6 TPa Micro-Raman spectroscopy
MWCNT 1.7 - 2.4 TPa

Yu et al. [2] SWCNT ropes 1.0 TPa 0.34 nm Tension using an AFM
probe

Yu et al. [20] MWCNT 0.27 - 0.95 TPa 0.34 nm Tension using an AFM
probe

Wong et al. [26] MWCNT 1.28 ± 0.59 TPa Bending force
measurement using AFM

Salvetat et al. SWCNT ropes 1 TPa 0.34 nm Deflection using an AFM
[21] tip
Treacy et al. [18] MWCNT 1.8 TPa Measurement of thermal

vibrations using a TEM

Table 2.2: Experimental and theoretical determination of the shear modulus of CNTs

Author Structure Shear modulus Method
Lu [25] SWCNT 436 - 478 GPa Empirical force-constant

MWCNT 436 - 541 GPa model
Yu et al. [27] SWCNT 370-500 GPa Molecular dynamics
Popov et al. [28] SWCNT 414 Lattice-dynamical model
Hall et al. [29] SWCNT 410 ± 36 GPa Torsional springs

Table 2.3: Mechanical properties of CNTs compared to common engineering materials [10, 30,
31]

Material Young's modulus Strength Failure strain Density
SWCNTs/MWCNTs 1 TPa 50-200 GPa 5-20% 2200 kg/m3
Graphite 350 GPa 2.5 GPa 0.7% 2200 kg/m 3

Carbon fibres 230 GPa 4.2 GPa 1.8% 1800 kg/m 3

Steel 200 GPa 0.4 GPa 0.2% 7800 kg/m 3

Titanium 116 GPa 0.14 GPa 0.12% 4500 kg/m 3

Wood 16 GPa 0.08 GPa 0.5% 600 kg/m 3

Epoxy 3.5 GPa 0.05 GPa 1.4% 1250 kg/m 3

The mechanical properties of CNTs are compared to the properties of common engineering

materials in Table 2.3. The advantage of CNTs over the other materials is apparent. The

unmatched combination of high Young's modulus, high strength and low density suggests that

CNTs could form the basis of new, high-quality structural materials. The advantage of CNTs over

carbon fibres, widely used as a reinforcing material in polymer composites, has motivated the



fabrication of CNT-based polymer composites, as discussed in section 2.5. The properties of

CNTs have important implications in terms of mechanical energy storage. Elastic strain energy

density u in a material is

= 1EE2, (2.1)
2

where E is the Young's modulus and E is the applied strain. With a higher combined Young's

modulus and failure strain than any other material, CNTs can store large elastic strain energies,

and this has prompted the investigation into the potential of CNTs as springs for mechanical

energy storage.

When a small load is applied to a CNT, the induced strain is distributed through the CNT

structure. When sufficiently large loads are applied, CNTs can deform into complex buckling

patterns [13, 32]. Buckling causes regions of high local strains to develop, and these buckles

concentrate most of the deformation [33]. CNTs buckle in bending, compression and torsion,

but not in axial tension [22, 34]. These buckles are observed to have regular patterns with

characteristic intervals regardless of their position on the nanotube, which suggests that the

buckles are a result of the structure rather than defects, and thus are reversible [32]. Both

experimental and theoretical studies have shown that the distortions from buckling can remain

elastic and reversible, even with local strains as high as 16% [17, 22, 32]. Figure 2.3 shows the

calculated strain energy in a (7,7) SWCNT under axial compression as a function of strain [22].

Each singularity on the graph corresponds to a strain at which the nanotube adopts a distinct

buckling shape. The critical buckling strain is the strain at which the nanotube first buckles, or

equivalently the strain at which the first singularity appears on the graph. Even at strains

beyond the first singularity, it is possible for no defects to form among the atomic bonds and

for the deformation to remain elastic. Similarly, the plot in Figure 2.4 shows the calculated

strain energy in a (10,10) SWCNT as a function of twisting angle [33]. As the angle gets larger,

the cross-section of the tube collapses to form a ribbon. The critical shear strain of a CNT under

torsion is the shear strain at which the first discontinuity appears in the plot of strain energy as

a function of twist angle.

In terms of energy storage, a buckle in a tube is the region where defects are most likely to

form. For loading in compression, torsion and bending, applying a load beyond the first buckling



point increases the overall energy that can be stored in the structure, as shown in Figure 2.4

and Figure 2.5. However, beyond the first buckle, the quadratic relation between strain energy

and strain is lost and the relation becomes roughly linear. Loading above the buckling point also

increases the likelihood of permanent defects forming in the lattice to release the localized

strain. To avoid permanent defects forming in the lattice and to maintain elastic behaviour,

applying loads above the buckling strains should be avoided for these deformation modes.

Loading in tension presents a useful alternative to compression, torsion and bending since

buckling is avoided altogether and a quadratic relation is maintained between strain and strain

energy up to higher strains. Consequently, tension is a good choice for a loading mode. This

issue is addressed in more detail in Chapter 3.

A"
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Figure 2.3: Modeled strain energy for a compressed (7,7) SWCNT of diameter 1 nm [22]. The

singularities in the strain energy graph at points b, c, d and e correspond to buckling strains. The
strain at which buckling first occurs is the critical buckling strain and occurs at 5% in this
SWCNT.
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Figure 2.4: Modeled strain energy as a function of twisting angle for a (10,10) SWCNT [33]. The
nanotubes are shown in their buckled shapes at different twist angles. The first singularity in
the graph occurs at a twist angle of 500, when the first buckle forms.

Failure of MWCNTs under tension has been described as a "sword-in-sheath" fracture
mechanism [20] in which the outer shells fractures and the unaffected inner shells are pulled
out. That behaviour is a result of poor load transfer from the outer shell of a MWCNT to the
inner shells, with only weak van der Waals forces acting between the layers. A load applied to
the outer shell of a MWCNT is largely carried by that outer shell. The effect is to lower the
strength of a MWCNT since only the area corresponding to the outer shell contributes to
supporting a load, using the continuum assumption. Limited load transfer between shells
restricts the usefulness of MWCNTs [8] and indicates that SWCNTs may be the more useful
structural material for springs.

Long CNTs have been found to have lower stiffness and strength than short CNTs. Pan et al.
tested the strength of very long bundles of MWCNTs produced using CVD with lengths of 2 mm,
and measured maximum strains of 0.4% [35]. They attributed their low results to high defect
density, which reduces mechanical stiffness and strength. Among synthesis methods, a tradeoff
exists between length and defect density. CVD produces the longest CNTs with the highest
defect densities, while the arc discharge method and laser ablation technique produce higher
quality CNTs but with much shorter lengths, so it is not surprising that CNTs produced by CVD
with millimeter lengths are found to have lower strength. Aside from the synthesis process,
another explanation is that CNTs with longer lengths are simply larger structures, so they have
a higher probability of containing concentrations of defects that will lead to failure [8].
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2.4. Applications of carbon nanotubes

A broad range of applications of CNTs have been motivated by their mechanical, chemical,

electrical, thermal and optical properties. In electronics, applications include CNTs as field

emission electron sources [10, 36], electrode material for lithium-ion batteries [37], as well as

in nanoelectronic circuits as transistors [38], logic gates [39] and random access memory

elements [40]. Other applications include CNTs as nanosensors [41], nanopipettes [42],

nanotweezers [43], for drug delivery [44] and as a storage medium of hydrogen for fuel cells

[45].

Recent work has been done to integrate CNTs into energy storage systems. Researchers are

developing new supercapacitors that use CNTs in the electrodes [46, 47]. Capacitance is directly

related to the surface area of a capacitor's electrodes. Since dense forests of CNTs have very

large exposed surface areas and excellent conductivity according to their chirality, CNT forests

as electrodes show excellent promise for improving the energy storage capacity of

supercapacitors.

An important subset of CNT applications takes advantage of their mechanical properties.

For their high aspect ratio, small diameter and high stiffness, CNTs are being attached to the

end of AFM probe tips to improve AFM imaging [48]. CNTs are being used to fabricate

lightweight high strength polymer composites, and work is being done to develop ceramic and

metal composites as well. The combined high strength, high stiffness, low density, high surface

area and large aspect ratio of CNTs make them an ideal structure for reinforcement. CNTs can

produce composites with higher strength to weight ratios than any other reinforcing materials

[8, 49]. To obtain the best matrix composite properties, CNTs must be well dispersed and have

good adhesion to the polymer. Challenges to the process include weak interactions between

CNT shells in MWCNTs and between tubes in bundles [50] as well as the high cost of obtaining

bulk quantities of high quality CNTs. Current research is being done to develop ways of

preventing CNT agglomeration, align CNTs throughout a matrix and improve load transfer

between the CNTs and the matrix material [51].

CNT have been recommended for use in energy-absorbing composite materials due to their

ability to absorb mechanical compression in a reversible manner [52]. For their compressive



strength, Cao et al. propose that forests of CNTs are an ideal material for fabricating strong,

lightweight foams that could be used for packaging, energy dissipation and cushioning [53].

Torsional springs are being developed from single CNTs [29, 54, 55]. These devices consist of

either a SWCNT or MWCNT placed over a trench patterned into a silicon wafer. The CNT is

attached to the wafer at the edges of the trench using patterned metal electrodes, and a metal

paddle is attached to the CNT at the centre of the trench. Electrostatic actuation deflects the

paddle towards the substrate, inducing a torsional deformation in the CNT. The devices display

high sensitivity, good precision and control over the angle of rotation, resilience, and no

degradation over time with repeated actuation [29, 54]. Proposed applications of the torsional

springs are sensors, optical modulators and high frequency electronics clocks. While these

springs are not designed for energy storage, the devices show that elastic springs can indeed be

built from CNTs.

Anyone who has deformed a CNT has stored energy, whether as part of an application or

while testing the mechanical properties of these structures. As a result, a distinction should be

made between incidental energy storage in applications in which CNTs were deformed, and

purposeful energy storage with the intent of releasing the energy at a later time to perform

useful work. CNTs have already been successfully demonstrated as elastic torsional springs. The

use of CNTs as mechanical springs for reversible, elastic energy storage is a new application that

has been little investigated to date, and merits further study.

2.5. Macroscale assemblies and their properties

While energy can be stored with high density in a single CNT, grouping individual CNTs into

larger assemblies offers the advantages of storing a large amount of energy in a single spring

and the ability to manipulate the spring at a macroscopic level. A single CNT can constitute a

spring, but it is also important to consider the possibly of building macroscale springs as well. To

maintain a mechanical advantage, macroscopic assemblies must be made of CNTs with high

purity and low defect density, and demonstrate the same properties and energy storage

characteristics as individual CNTs. It is often the case, however, that the mechanical and

electrical properties of macroscale assemblies are inferior to those of individual CNTs [56], so



stiffness and strength are important criteria for selecting the best macroscale CNT structure for

energy storage. Macroscale structures that can be fabricated from individual CNTs include

bundles, mats, fibres, forests and solids.
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Figure 2.5: (a) Cross section of a bundle showing hexagonal packing. (b) Model of a bundle of
straight nanotubes on the left and ropes with twisted nanotubes on the right [57].

Mats of CNTs, also called bucky paper, are created by drying solutions of CNTs to form thin

films [58]. The mats are made of CNT bundles arranged in disorganized, tangled networks. The

lack of alignment results in poor interactions between the bundles, high porosity and measured

stiffness and strength several orders of magnitude lower than individual CNTs [59].

Fibres or yarns are long assemblies of MWCNTs or SWCNTs that are drawn from solutions

and spun together [60, 61]. These fibres can be as long as several centimeters to tens of

centimeters and have diameters on the order of 50 pm. Ericson et al. report a Young's modulus

for a fibre of 120 GPa and a tensile strength of 116 MPa, considerably lower than the stiffness

and strength of individual CNTs. Fibres improve upon the mechanical properties of mats with

better alignment between the bundles, but still cannot match the stiffness and strength of

SWCNTs in the axial direction due to relatively high levels of impurities and imperfect alignment

and overlap between bundles [60, 61].

A bundle, often also called a rope, is a naturally occurring dense array of SWCNTs arranged

in a lattice with hexagonal packing, as shown in Figure 2.5. The tubes are held together with van

der Waals forces, and the bundles can be several hundreds of microns to a few millimeters long

[62]. Ideally, the intertube spacing approaches 0.34 nm. The tubes are parallel and highly

aligned within the bundle. Bundles of CNTs can also be found in which natural twisting occurs

between the strands, and these structures are sometimes called ropes.
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A continuous bundle of CNTs is one in which all tubes have the same length and span the

entire length of the bundle. Bundles of continuous CNTs are expected to maintain the same

stiffness as individual CNTs since the hexagonal network of covalent bonds gives CNTs their

stiffness in the axial direction, and this structure remains unchanged in a bundle [21]. Salvetat

et al. measured a bundle stiffness of 1 TPa [21], the same value as individual SWCNTs, by

deflecting a suspended bundle of SWCNTs using an AFM tip. It is important to note that their

measurement technique used bending, which ensured that all tubes within the bundle were

loaded during the test. Similar to the interaction between the shells of a MWCNT, the forces

between tubes in a bundle are weak van der Waals forces. Yu et al. [2] measured the stiffness

of SWCNT bundles by stretching a bundle of SWCNTs in tension. One end of the bundle was

attached to the end of an AFM tip using carbonaceous deposits. They noticed that only the

SWCNTs on the perimeter of the bundle were supporting the load, with little load transfer to

the inner tubes of the bundle. These observations were a result of their attachment method

which gripped only the SWCNTs on the perimeter of the bundle. For energy storage, bundles

are useful only if all of the inner tubes are equally loaded. For a bundle to display its true

stiffness and strength under tension, all tubes must be gripped at the attachment site since the

load transfer mechanism between tubes does not adequately distribute a load throughout the

structure. It should be noted that the condition on the gripping method is relevant only for

loading in torsion and tension since compression and bending will load all tubes within a bundle

regardless of the attachment method. These observations suggest that it is indeed possible to

achieve excellent stiffness and strength in continuous bundles. The shear modulus of bundles

falls short of that of individual CNTs. Salvetat et al. measured a shear modulus of 1 GPa [21] and

Lasjaunias et al. reported 1-2 GPa [63], considerably lower than 450 GPa for a SWCNT. The

authors attributed their result to a shear modulus in bundles that is dominated by interactions

between nanotubes rather than by the hexagonal lattice of an individual CNT.

Bundles of discontinuous CNTs are bundles in which the constituent tubes do not

necessarily span the entire length of the bundle, as shown in Figure 2.6 [64, 65]. The bundle still

maintains CNTs arranged in a hexagonal lattice, though vacancies may be present because of

the discontinuous nature of the tubes [21]. The intercalated arrangement of tubes in the



bundle requires excellent load transfer between the tubes for the overall bundle to maintain

high strength and stiffness. With weak shear interactions between tubes at the overlaps,

slipping between the SWCNTs would be the principal failure mechanism. Ideally, van der Waals

forces between the tubes could allow the CNTs in array to be loaded to the maximum loads of

individual CNTs [64]. Yakobson et al. modeled such bundles and concluded that the length of

the constituent SWCNTs should greater than 10 pIm for the bundle to approach the strength of

an individual SWCNT. Qian et al. estimated that contact lengths must be on the order of 10 to

120p.m or greater for optimal load transfer [57]. If the results of Yakobson et al. and Qian et al.

are correct, then macroscale bundles with this structure could be built with long lengths and

large diameters and maintain excellent properties. The structure of bundles of discontinuous

CNTs is similar to that of fibres, but improved fabrication techniques would be needed to obtain

ideal bundle lattices with tight packing, high crystallinity, good load transfer and long overlaps

between the tubes.

I

Figure 2.6: Diagram of a bundle of discontinuous CNTs where the length of individual CNTs is
less than the length of the overall bundle [65].

Qian et al. report that twisting or weaving fibers can create a rope with better load transfer

in tension than a grouping of straight fibers [8, 57], which applies equally to the twisting of

CNTs in bundles. Twisting increases radial compression in a rope and friction between the

fibers, resulting in improved load transfer with increased contact surface between the tubes.

Better structural reliability is achieved because load is redistributed in case of the failure of one

fiber. Consequently, CNT bundles with twisting between the tubes [8, 57] and helical

geometries [66] are expected to be able to sustain higher loads in tension than straight

bundles.

Irradiation has been proposed as a technique to improve the properties of CNT bundles.

CNTs are strong because of their lattice of covalent bonds, but between SWCNTs in a bundle



there are only weak van der Waals forces. Exposure to irradiation can promote the formation of

covalent bonds between SWCNTs in a bundle or even between shells in a MWCNT [64]. As long

as the doses are sufficiently low that defects in the hexagonal lattice don't undermine the

strength of individual CNTs, this technique has the potential to improve the strength and

stiffness of bundles [67, 68].

Forests of CNTs are arrays of aligned, uniform SWCNTs or MWCNTs that grow vertically

upward from a substrate. Synthesis is done using CVD on a silicon substrate patterned with

catalyst. Forests can grow as high as 4 mm [69] with carbon purity as high as 99.98% [70]. The

density of forests is relatively low, with a percentage of filled volume only on the order of 3%

[56]. Advantages of CNT forests are their high degree of alignment and their large surface area,

though forests tend to have high defect densities because of their fabrication using CVD at

relatively low temperatures. With weak attachment between the forest and the substrate,

forests can be easily removed from the substrate after they have been grown [70].

Once forests of CNTs have been synthesized, techniques have been proposed to densify

forests into compact structures with densities approaching that of graphite. Liquid capillary

forces are used to draw low density forests into densely packed "solids" of vertically aligned

tubes with a density 20 times that of the original forest [56]. Applying a light pressure to a

forest has a similar effect of causing the forest to collapse into a structure with a much higher

density. The application of lateral forces creates compressed structures with vertical alignment,

while shear forces can create flattened sheets which significantly improve upon the properties

of mats due to their high degree of CNT alignment [56]. It is expected that with good alignment

between the tubes and few defects in the CNTs, these compact structures should have

excellent mechanical properties.

Macroscale assemblies must demonstrate exceptional properties to be selected as a

material for super-springs. The objective is to group CNTs into a configuration so that a single

applied deformation will load all individual CNTs within the grouping to their elastic limit, to

maximize elastic strain energy density. The macroscale assembly must demonstrate strength

and stiffness that approach the properties of individual CNTs. The grouping should have a mass

density approaching the density of graphite. Forests show considerable promise as a starting



material for building super-springs because of the excellent alignment between the tubes and

their millimeter lengths. The density of as-grown forests is too low, but compactifying

techniques to increase their density show significant potential. Forests of CNTs can be used to

build highly densified "solid" bundles of continuous CNTs a few millimeters long in which each

CNT would span the length of the bundle, or dense sheets of CNTs with a high degree of

internal CNT alignment. Forests could also be used as the starting material to fabricate bundles

of discontinuous CNTs arranged into ideal structures as shown in Figure 2.6, with long overlaps

between tubes and tight packing into hexagonal arrangements with inter-tube separation

distances of 0.34 nm. Further work on assembling SWCNTs into macroscale structures is still

needed to build and test materials that will be appropriate for the highest quality springs.

2.6. Attachment methods

Developing a reliable method of attaching CNTs to a surface is important for CNTs to be

loaded to their elastic limit without inducing fracture at the attachment site. Attachment has

previously been done by applying a soft acrylic adhesive to an AFM tip in an optical microscope

[71], by applying a voltage between an AFM tip and a CNT to attach them using van der Waals

forces [72], by direct CVD growth on an STM tip [73], and by deposition of SiO 2 over the ends of

CNTs to rigidly attach them to a silicon substrate [74]. Attachment has also done by scanning an

electron beam in a SEM at the attachment site between a CNT and an AFM tip. Dissociation of

hydrocarbon gases in the chamber causes amorphous carbon to deposit at the joint, bonding

the CNT to the AFM tip [20, 75]. Tensile tests performed by Yu et al. on MWCNTs attached to

AFM tips using carbonaceous deposits showed that the attachment site is strong since in most

cases the MWCNTs could be loaded and broken before the attachment site failed [20]. These

encouraging results suggest that good attachment is indeed possible.

An important disadvantage of attachment using amorphous carbon deposits is that only the

outer shell in the case of a single MWCNT and the outer, perimeter SWCNTs in the case of a

SWCNT bundle come into contact with the carbon deposits, and consequently these are the

only structures that are bonded to the surface [2, 20]. Little load transfer between tubes means

that the inner shells of a MWCNT and the inner SWCNTs in a bundle will contribute little to



carrying an applied load. This has important implications for springs, in which even load transfer

between all shells and all tubes is critical.

2.6.1. Design Recommendations

Due to the limitations of previously demonstrated attachment methods, several

alternatives attachment techniques are proposed for loading CNTs in tension. If long bundles

using the structure proposed by Yakobson et al. shown in Figure 2.6 can indeed be built with

long overlaps between adjacent tubes and excellent load transfer, then the attachment

methods shown in Figure 2.7 may be feasible. Figure 2.7 (a) shows a bundle wrapped around a

post. Here, the attachment no longer relies on the strength of the attachment material or the

attachment site but on the strength of the bundle itself, as long as a sufficiently sturdy post can

be fabricated. Figure 2.7 (b) shows how a bundle can be secured around a post by tying knots

[76]. The ability to tie knots has already been demonstrated in 30 pm diameter fibres [77].

Figure 2.7 (c) shows how splicing of individual CNTs within a bundle [76] can be used to create

continuous structures with junctions for attachment purposes. These attachment methods rely

on load transfer between tubes rather than on the strength of a single attachment site.

Another attachment design is proposed that makes use of friction and the capstan effect.

Wrapping a rope around a shaft increases the load that can be carried because of friction

between the rope and the shaft. The force required to carry a load decreases exponentially

with the number of turns of the rope around the shaft, according to the relation T1 = T2e-P ,

where T2 is the force of a load, T- is the force required to carry the load, p is the coefficient of

friction between the rope and the shaft, and 0 is the angle corresponding to the number of

turns of the rope around the shaft, as shown in Figure 2.8 (a). One can take advantage of this

effect to create a stronger attachment between CNTs and a surface. The CNTs are attached to

the surface of the shaft using a conventional technique, such as a wetting epoxy that ensures

that all tubes are firmly affixed to the surface. The CNTs are then wrapped around the shaft, as

shown in Figure 2.8 (b). In this case, T, corresponds to the reaction force of the attachment site

and T2 corresponds to an applied tensile load. The applied load can be considerably larger than

the reaction force of the attachment site because of the effect of friction along the contact



surface. For sufficiently long CNTs or bundles, this would be a useful technique to reinforce the

attachment site and ensure that loading a CNT in tension is not limited by failure at the

attachment site. Calculations based on this technique are limited by uncertainty in the value of

the coefficient of friction between a CNT and a substrate surface, with reported values falling in

the range of 0.01-0.09 [78, 79].
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Figure 2.7: Alternative proposed methods for attachment.
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Figure 2.8: Attachment method using the capstan effect.
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3. Energy storage estimates

Estimates of the energy that can be stored in springs made of carbon nanotubes under a

mechanical deformation were used to evaluate the potential utility of this method of energy

storage. First, simple estimates are presented of the total elastic strain energy and average

energy density that can be stored in CNTs subject to four modes of mechanical deformation:

axial tension, axial compression, pure bending and torsion. Advantages and disadvantages of

each deformation mode are discussed. Once a CNT is deformed, a support structure is needed

to carry the load of the spring prior to its discharge. The effects of support systems on the

overall energy density of the spring system are presented next. Combined loadings are then

presented to determine whether these deformations offer additional energy storage gains.

Finally, implementation issues are addressed and the energy density estimates of CNT springs

are compared to other common energy sources to evaluate whether energy storage in CNTs is

worth further investigation.

Springs for energy storage would most likely be made of SWCNTs or MWCNTs arranged into

dense bundles of long, aligned tubes. Energy density estimates will be generated for individual

SWCNTs and MWCNTs as well as bundles of these structures.

When sufficiently large strains are applied to CNTs in torsion, bending and compression,

they will buckle. Permanent defects to the atomic structure are more likely to form at these

locations and buckling is a dominant failure mode [80]. In addition, buckling limits the total

energy storage density so it is preferable to avoid applying strains to the mechanical springs

above the buckling limit. Strain energy will only be calculated in SWCNTs and MWCNTs loaded

up to their buckling point in compression, bending and torsion. Loading in tension will be up to

the estimated failure strain.

To determine the pre-buckling mechanical behaviour of CNTs subject to external loads,

CNTs are treated as linear elastic isotropic beams, with a thickness assigned to each CNT shell

based on the continuum assumption [3, 25, 40]. The amount of energy that can be stored in

mechanically deformed CNTs under reversible strains is estimated using this model. Each CNT

layer is treated as a homogenous cylindrical shell, as shown in Figure 3.1. SWCNTs are assigned



an effective shell thickness of 0.34 nm, the distance between adjacent graphene sheets in

graphite, and an effective Young's modulus of 1 TPa, the in-plane Young's modulus of graphite

[2, 8, 81, 82]. The shell thickness of a MWCNT with n shells is n-0.34 nm. Treating a CNT as a

beam is a simple model that does not account for the nested tube structure, the van der Waals

forces, shear interactions between the layers, or non-linear post-buckling behaviour [13], but it

provides reasonable strain energy density estimates. The calculations that follow rely on simple

models of carbon nanotubes and make approximations about the behaviour of individual CNTs

as well as CNTs grouped into bundles. However, the calculations provide a means of comparing

the energy stored in different deformation modes and yield reasonable estimates of the order

of magnitude of the energy density that is expected to be stored in these springs.
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Figure 3.1: Equivalent continuum structure of SWCNT and MWCNT cross-sections, modeled as

hollow cylindrical beams [83].

3.1. Axial tension

The equivalent continuum structure of a CNT of length L and diameter d under axial tension

is shown in Figure 3.2. The hollow cylindrical tube has a thickness n.h, where n is the number of

layers in a CNT and h = 0.34nm is the thickness of one shell. For SWCNTs, n=1, and n is greater

than 1 for MWCNTs. The tube has a mean radius r and diameter d, and a Young's modulus E.
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The cylinder has inner and outer radii of ri = r - - and ro = r + . The cross-sectional area

of the cylindrical tube is A = ir(rO-rj2 ) and the total enclosed area is Aenci = T0r2.
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Figure 3.2: Equivalent continuum structure of a CNT with an applied load in axial tension.

Assuming that all shells are loaded equally, the strain energy of the axially loaded cylinder to an

elastic strain of E is

U = (=@-E)dxdydz =2 EeAL = 2 2)L (3.1)

The strain energy density is the strain energy divided by the enclosed volume:
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The expression in (3.2) indicates that A/A eni should be large for high energy density, so there

should be little empty space within each CNT. Consequently, a spring in axial tension should

consist of either SWCNTs with small diameters or uniformly-loaded MWCNTs with densely

packed shells to maximize A/Aencl.

If CNTs are arranged in groupings, such as bundles, the strain energy density must be

reduced by a fill factor k to account for the spacing between the individual CNTs in the grouped

structure. For bundles of SWCNTs or MWCNTs under tension, the expression for energy density

1 A
is rewritten as u = -Ee2k . Consider the cross-section of a bundle of closely-packed

2 Aencl

SWCNTs of radius r, arranged into a two-dimensional triangular lattice with a lattice constant of

2r+h, as shown in Figure 3.3. Ideal packing is assumed with graphitic spacing of h=0.34 nm

between the tubes [56], a bundle structure that has previously been observed experimentally
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and studied using models [57, 62, 84]. It is assumed that MWCNTs are also arranged in similar

bundle configurations, with spacing of 0.34 nm between adjacent MWCNTs.

(a) Ahex (.. (b) A1

h = 0.34nm

Figure 3.3: Geometry of the cross-section of a bundle of SWCNTs with a lattice constant of 2r+h.
The equivalent continuum structure is shown on the right.

The hexagonal shape shown as a dotted line in Figure 3.3 with an area of Ahex is taken to be the

3m2 ) _

repeating geometrical unit in the bundle lattice. Then k- = (r+ ) 91% and
Aiex -- (2r+nit)2

2 2
A 2 so a bundle cross-section consists of a fraction k of CNT shells by= - 02 , so a bundle cross-section consists of a fraction k of CNT shells by

Aencl 0o Aendc

area. Assuming that the cross section is uniform along its length, the bundle also consists of a

A
fraction k.A of solid CNT shells by volume. In reality, there may not be ideal packing within

Aend

a bundle, so the actual fraction k may be lower than the values calculated here.

For example, a bundle of SWCNTs with diameter d=1.36 nm and ideal packing has - =0.64
Aencl

A

and k=0.91, so the fraction of the bundle filled with solid shells is kA = 58% by volume. The
Aendc

lattice constant is 1.7 nm. For a MWCNT with an outer shell diameter of 20 nm, ideal packing

results in a bundle of MWCNTs with k=91%. The total fraction of the bundle filled with solid

A
shells depends on -, which is determined by the number of inner shells. For 10 inner shells

Aencl

0.34nm



with ro=10.17 nm and r;=6.77 nm, this yields - =0.56, so the fraction of the bundle filled with
Aencl

A
solid shells is k* = 51% by volume.

Aencr

The expression for strain energy density in (3.2) shows that it is advantageous to apply high

tensile strains to the springs to maximize energy storage since energy density is proportional to

the square of strain. Energy density is plotted against strain for a 1.02 nm diameter SWCNT in

Figure 3.4 to show the quadratic relation between energy density and strain. Indeed, tensile

strains are not limited by buckling behaviour, so large elastic strains can be applied to the

springs. Theoretical models predict that reversible tensile strains as high as 15%-30% [5, 20, 85]

could be reached in CNTs, although strains at failure of only 6% for SWCNTs [1, 20, 85] and 12%

for MWCNTs [20] have been demonstrated experimentally to date.

Figure 3.5 shows the strain energy density of SWCNTs in tension with applied strains of 5%

and 15% as a function of diameter. Each graph plots the energy density for a single SWCNT with

k=1, and a bundle of SWCNTs with ideal packing and k=0.91. Clearly, higher energy densities are

achieved with larger applied strains. CNTs of low defect densities are critical to fabricating

springs that can sustain high strains of up to 15% reversibly and without inducing failure. The

plot also demonstrates that smaller diameter SWCNTs store energy more densely because of

less unused space within the tubes. Bundles have slightly lower energy density than single

SWCNTs because of the extra spacing between each tube.
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Figure 3.4: Energy density as a function of strain for a 1.02 nm diameter SWCNT.
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Figure 3.5: Strain energy density for SWCNTs as a function of diameter with applied strains of

5% and 15%, for individual SWCNTs with k=1 and ideally packed bundles with k=0.91.

-15% strain, Single SWCNT, k=l1
- . - 15% strain, Bundle of SWCNTs, k=0.91

5% strain, Single SWCNT, k=1
- - -5% strain, Bundle of SWCNTs, k=0.91
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Figure 3.6: Plot comparing the strain energy density in MWCNTs as a function of outer diameter

under an applied strain of 5%.

The graph in Figure 3.6 shows the strain energy density of MWCNTs as a function of outer

diameter for nanotubes with 3 inner shells, 10 inner shells and solid shells, under an applied

strain of 5%. Solid MWCNTs are considered as an approximation to the case of a very large

number of shells. Ideal packing is assumed for MWCNTs, and k=0.91 is used for MWCNT

bundles. The plot shows that higher energy density by volume can be reached in more densely

packed MWCNTs because the greater number of nested inner shells reduces unused space

inside the tubes. MWCNTs with nearly solid shells reach the maximum strain energy density,

which becomes independent of the outer diameter. If the packing of MWCNTs in a bundle has

spacing higher than the ideal inter-tube distance of 0.34nm, then the energy density of MWCNT

bundles will be lower than what is shown in Figure 3.6.

An important challenge to the deformation of CNTs in tension is the difficulty of grasping

the inner shells of a MWCNT. Tensile tests of MWCNTs attached to AFM tips at both ends show

that fracture occurs at the outer shell by a sword-in-sheath mechanism, indicating loading of

the outer shell and little load transfer to the inner shells [20, 57]. One effect is a lower stiffness

and strength for MWCNTs than would be observed if all shells were equally loaded [57]. The

results for strain energy density in Figure 3.6 assume that all shells of the MWCNTs are equally

x 10•  Maximum strain of 5%
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loaded in axial tension, which may in fact not be the case. If the outer shell carries most of the

load, then the strain energy density for MWCNTs will be significantly reduced. Unless a method

of loading all shells equally in tension is developed, the inability to grasp the inner shells

represents a significant limitation to storing energy by stretching MWCNTs. For that reason,

bundles of SWCNTs are likely the better structure out of which to build springs that will be

deformed in axial tension. Both the radial deformation of SWCNTs with larger diameter and the

relationship between diameter and energy density suggest that bundles of SWCNTs with very

small diameters would be the ideal structure for springs stretched in tension.

SWCNT ropes that have twisting between the tubes may be used instead of bundles. The

tensile stiffness of ropes is expected to be similar to that of individual SWCNTs [21]. Ropes are

more stable than loosely packed bundles and provide better load transfer and structural

reliability because of the tighter packing of the tubes, as described in section 2.5. As a result,

SWCNT ropes may have higher tensile strength than bundles and could be an excellent

structure for springs in tension.

3.2. Axial compression

A similar analysis is performed on CNTs subject to compressive loads. A CNT is modeled as a

hollow cylindrical beam of length L, Young's modulus E, and thickness n-h, where n is the

number of layers in a CNT and h = 0.34 nm is the thickness of one shell, as shown in Figure 3.7.

The continuum tube has a mean radius r and diameter d. The cylinder has inner and outer radii
nh nh

of r i = r - 2 and ro = r + . The shell's cross-sectional area is A = n(r2-ri2) and the total

enclosed area is Aenci = ro2 .
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F

Figure 3.7: Equivalent continuum structure of a CNT with an applied load in axial compression.

Figure 3.7: Equivalent continuum structure of a CNT with an applied load in axial compression.



The strain energy that can be stored in the bar under axial compression to a strain of E is

U = 2f(cre)dxdydz 2 Ee2AL= Ee2 r L (3.3)

The strain energy density is the strain energy divided by the enclosed volume:

1 E nhE, r 2nh)2
Ee2 AL 1 A E2 I2 -r(; '  (r h 2 ) - - - (r h)

u 2 Ee - ) =nh (3.4)
AenL 2 A 2 2  2(r+ nh)2

2

Once again, the strain energy density is reduced by a fill factor k to account for the spacing

between the individual CNTs in groupings, and the energy density is rewritten as

1 A
u = - Ee k for bundles. Just as in tension, high energy densities are achieved with a high

2 Aeni t

A/Aenc ratio, so a spring in axial compression should consist of SWCNTs with small diameters or

MWCNTs with densely packed shells.

It is advantageous to apply large strains to reach high energy densities since energy density

is proportional to the square of the strain. To avoid buckling in the spring, the strain that can be

applied to a CNT in compression is limited by the critical buckling strain in compression. Chang

et al. used molecular mechanics to develop an expression for the critical buckling strain Ecr of

individual SWCNTs under compression [86]

Ecr =1 (3.5)

where d is the SWCNT diameter, t=0.339 nm is the effective wall thickness, Do= 0.85 eV is the

bending stiffness and Et = 360 J/m2 is the in-plane stiffness of the SWCNT. The relation shows

that SWCNTs with smaller diameters begin to buckle at higher strains. Higher buckling strains

are advantageous for energy storage. Using molecular dynamics and the Tersoff-Brenner

potential, Yakobson et al. developed another relation between the critical buckling strain and

SWCNT diameter [22], Ecr = (0.077nm)d -1 , where d is the tube diameter. Both relations for

the critical buckling strain of SWCNTs are plotted against diameter in Figure 3.8, which shows

good agreement between the two models.



Liew et al. used molecular dynamics to study the buckling behaviour of bundles of SWCNTs

in compression [87, 88]. Their results showed that the van der Waals interactions between the

tubes in a bundle were a strengthening mechanism which increased the critical buckling strain

of the bundle by about 5% over the buckling strain of the individual SWCNTs.

Chang et al. found that the critical buckling strain for thick MWCNTs is insensitive to the

inner diameter di and depends only on the outer diameter do, and proposed the relation

Ecr = 0.0985nm/d o [86]. Thick MWCNTs are defined as having a ratio of di Id o less than 0.62.

Critical buckling strain is plotted against outer diameter for thick MWCNTs in Figure 3.8 along

with the critical buckling strain of SWCNTs. The plot shows that critical buckling strain decreases

with the outer diameter of thick MWCNTs, similar to the trend of SWCNTs. Since thick MWCNTs

generally have larger outer diameters than SWCNTs, MWCNTs will generally have lower critical

buckling strains than SWCNTs.

u. I

0.09 - Thick MWCNTs, Chang et al. -

.- 0.08 SWCNTs, Chang et al.
0.07 - - SWCNTs, Yakobson et al.

0.05 -
" 0.04 -

0.03 -
3 0.02 -

0.01
n
0 2 4 6 8 10 12 14 16 18 20

Diameter (nm)

Figure 3.8: Critical compressive buckling strain plotted against diameter for SWCNTs and outer
diameter for thick MWCNTs, using the models from Chang et al. [86] and Yakobson et al. [22].
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Figure 3.9: Maximum strain energy density plotted against diameter for SWCNTs, MWCNTs with
3 shells and solid MWCNTs, as well as bundles of these structures.

Strain energy density is plotted against tube diameter in Figure 3.9 for SWCNTs, MWCNTs

with 3 shells and solid MWCNTs, along with bundles of each of these structures. For the

purposes of this calculation, bundles of SWCNTs and MWCNTs are assigned a critical buckling

strain 5% higher than their individual structure of the same diameter. The combination of

higher critical buckling strain of bundles and lower packing density results in curves for the

bundles that are nearly coincident with the curves of the individual structures. At low

diameters, the strain energy density for compression is on the same order of magnitude as

tension. Solid MWCNTs have higher energy density than thinner MWCNTs and SWCNTs for the

same outer diameter because of their dense inner shells, but since SWCNTs generally have

smaller diameters, their energy density will typically be higher. There is a more rapid decay in

energy density as the diameter gets larger in compression than in tension because both empty

space inside the tubes and critical buckling strain contribute to reducing the energy density.

Strain energy density of solid MWCNTs is a function of diameter in compression, while it was

independent of diameter in tension, because of the critical buckling strain. An important

advantage of compression over tension is that it will affect all of the inner shells of a MWCNT.

Consequently, deformation in compression would be better suited than tension for a spring

Solid MWCNT
-.--- Bundle solid MWCNTs

- Single 3 shell MWCNT
- - Bundle of 3 shell MWCNTs

-Single SWCNT
-.- Bundle of SWCNTs

r
i I
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made of MWCNTs. However, overall, SWCNTs would be a better structure than MWCNTs for a

spring in compression because their smaller diameters ensure high energy densities.

3.3. Bending

To estimate the strain energy of a carbon nanotube of diameter d in bending, an external

moment M is applied to a hollow cylindrical beam of length L. The tube has a Young's modulus

E, and thickness n-h, where n is the number of layers in a CNT and h = 0.34nm is the thickness of

one shell, as shown in Figure 3.10. The tube has a mean diameter d and mean radius r, an inner

ri= r - and an outer radius ro = r + . The shell's cross-sectional area is A = ir(r-r 2 )

and the total enclosed area is Aenci = Jro2 .

y
A Aenci

z

1o

Figure 3.10: Equivalent continuum structure of a CNT in pure bending.

A moment M is applied about the z-axis, and the beam is bent to have a constant curvature.

The axial strain in the beam is a linear function of the distance from the neutral axis along the y-

axis, E• = E6. The maximum strain of ±e occurs at y = ±ro. The total strain energy of the beam
ro

is

E 2 Ee 2L 2EE 2L r= 0 / 2
U = -2 Ex dxdydz = fy2dydz = 2 3 (sin 9)2 dOd r

2ro ro r=r e=o

- 1 E 2Lz (ro4 
- - 1EE2Ae,,ntL 1-riJ (3.6)8 ro 8

The strain energy density is the strain energy divided by the enclosed volume:
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1 E2A ,1 [Kr,1Ee'A2,,clL - r) (3.7)

AL 8Aend L 8

The expression above indicates that high energy density can be reached when the ratio of

inner to outer diameter, ri/ro, of the CNT is small, which implies that the highest energy

densities are achieved in SWCNTs with small outer diameters or in MWCNTs with densely

packed shells.

For SWCNTs or MWCNTs arranged into bundles, k represents the fraction of the grouping

volume filled with CNTs, and the energy density of bundles is rewritten as

4
u = -EcoEk I1- i . This expression makes the assumption that when bending is applied to

8 r, )

a bundle, individual CNTs in a grouping can slide against neighbouring tubes so that each CNT in

the grouping develops a strain gradient of -E to E.

The amount of bending that can be applied to a CNT is limited by the strain at which a CNT

begins to buckle. In bending, buckling occurs along the compressed inner surface of the curved

tube. Yakobson et al. modeled the critical buckling strain of a SWCNT under bending as

e,r = (0.077nm)d - ' [22], where d is the SWCNT diameter. In the continuum model, buckling

occurs when the strain at the inner edge of the tube reaches Ecr, so the critical radius of

curvature at buckling of a SWCNT is approximated as per = d2/0. 155nm. Chang et al. modeled

0.11 nm
the critical buckling strain of thick MWCNTs in bending as ecr - , where do is the outer

(d, + t)

diameter and t=0.34 nm is the interlayer spacing [86]. The corresponding critical radius of

curvature is Pcr =do(do+) . These two expressions for critical buckling strain are plotted
0.222nm

against diameter for SWCNTs and thick MWCNTs in Figure 3.11, showing an inverse relation

between buckling strain and diameter. As in compression, deforming a CNT in pure bending has

the advantage of deforming all shells of a MWCNT.

Few studies have compared the critical buckling strain in bending of individual SWCNTs to

SWCNT bundles. For the purposes of these calculations, it is assumed that SWCNTs and



MWCNTs in groupings can slide amongst neighbouring tubes due to the weak interaction forces

[68] so the buckling strain in bending of a grouping is the same as that of the individual tubes,

although this may not necessarily be the case in practice.

The critical radius of curvature of SWCNTs is plotted against diameter in Figure 3.12. An

important observation is that the critical radius of curvature is in the sub-micron range. If the

assumption that CNTs within a bundle can slip with respect to each other is correct, then a

bundle in bending must reach the critical radius of curvature of a single CNT to achieve the

highest energy density. If CNTs are assembled into bundles with diameters on the order of

microns, then applying such a small radius of curvature may be difficult. In that case, bending

may not be the most practical mode of deformation for bundles.

Strain energy density as a function of diameter is plotted in Figure 3.13. The graph indicates

that energy density decreases rapidly with diameter because of the limit on the applied strain

due to buckling. For the same outer diameter, MWCNTs store energy with higher density than

SWCNTs because of the dense packing of inner shells. However, SWCNTs generally have smaller

diameters than MWCNTs so SWCNTs will tend to store energy with higher density.

Consequently, SWCNTs with small diameters, less than 1-2nm, would be the best structure for a

spring deformed in bending.

The strain energy density of CNTs in bending at small diameters is somewhat lower than in

compression and tension. This is explained in part because of lower critical buckling strains.

Another reason for lower energy density is that tension and compression load the whole

structure to a uniform stress, while bending induces a stress gradient in the continuum

structure so that the maximum stress is reached only at the outermost layer.
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Figure 3.11: Critical buckling strain for SWCNTs and thick MWCNTs
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Figure 3.13: Strain energy density as a function of diameter for SWCNTs and o

MWCNTs with 3 shells and solid shells.

3.4.

uter diameter for

Torsion

To estimate the strain energy of a CNT under torsion, a moment M is applied to a hollow

cylindrical tube with a uniform cross-section. For a CNT of length L, diameter d, radius r and

shear modulus G, the equivalent continuum structure has a thickness n-h, where n is the

number of layers in a CNT and h = 0.34nm is the thickness of one shell, as shown in Figure 3.14.

The moment is applied about the x-axis. The mean radius and diameter of the tube are r and d,

nh nh
and the cylinder has an inner and outer radius of ri = r - and r = r + .The polar

moment of inertia of the tube is] = -(r - (r - )4 . The shell cross-

sectional area is A = n(r2 -r 2) and the total enclosed area is Aenci = 702 .

y
Aencl

zL

Figure 3.14: Equivalent continuum structure of a

Figure 3.14: Equivalent continuum structure of a

)

CNT under torsion.
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The beam is fixed at one end and the torsional moment M is applied to the other end. The

maximum stress at the outer edge is rmax. The elastic strain energy is

2 M2 M2 L o M 2 Lu = -dV = a dA 0= - r221rdr = - r =4) (3.8)
2G 2G \ 2Gj 2 ri 2G] 2 2 2GJ

The strain energy density is the strain energy divided by the enclosed volume:

M
2

L M
2  2 (r_44T-)

u T (r-- (3.9)2 G]AenclL 2G]rrro2 4G max r4(

The failure mode for a tube in torsion is buckling since the circular cross-section of a carbon

nanotube collapses once a certain torsion angle is applied [27]. Buckling occurs when the

maximum shear stress at the outer surface of the tube reaches a critical shear stress rc,. To

avoid buckling in the energy storing spring, the shear stress developed in the continuum

structure should not exceed the critical shear stress. To find the maximum strain energy density

that can be stored in the structure, a critical moment Mcr should be applied so that the stress at

Mcrrothe outer surface of the tube is equal to the critical shear stress, Mcrr The critical shear
I

Mcrro
strain Vc, is then given by Ycr =

The critical shear strain of a CNT has been shown to depend on the length, diameter,

chirality, direction of loading and number of shells in a MWCNT [89, 90]. Wang et al. [23]

propose a simpler model for the critical moment of long SWCNTs or MWCNTs based on a

classical formula from Timoshenko and Gere [91] for the critical moment of long shells:

4EJ 4 ( 4D \3
M E 7_ 3(3.10)Mcr d 3 Ehd2)

where d is the mean diameter of the tube, E is the Young's modulus, J is the polar moment of

Eh3

inertia of the tube's cross-section, h is the thickness of the tube, D = 1( ) is the bending12(1-v2)

rigidity of the cylinder, and v is the Poisson's ratio. Wang et al. suggest the parameters h=0.076

nm for a single shell and E= 5.11 TPa [91]. A Poisson's ratio of v= 0.21 [82] and a shear modulus

of G=450 GPa are also used in the calculations that follow. Critical shear strain is plotted against

diameter d for SWCNTs in Figure 3.15. Superposed on the graph are data points reported by

Chang [89] for critical buckling shear strain using molecular dynamics simulations. The

difference between the two curves suggests that the simple relation by Wang et al. may



overestimate the buckling strain at low diameters, which will in turn cause the strain energy

density to be overestimated. Both results show that critical shear strain decreases with

diameter.
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Figure 3.15: Critical shear strain for a SWCNT plotted against diameter d using the model from

Wang et al. [23]. Superposed on the graph are the data points for critical buckling shear strain

as reported by Chang [89].
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iergy density as a function of outer diameter for SWCNTs and MWCNTs

The strain energy density of a SWCNT and a MWCNT with 3 and 10 shells is plotted against

diameter in Figure 3.16 using the buckling strain model of Wang et al. [23]. This graph shows
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that higher energy density is achieved with small diameters, and energy density decreases

rapidly with diameter. For MWCNTs, it is assumed that all shells are equally affected by an

applied moment, not just the outer shell, which may not necessarily be the case since it is

challenging to grasp the inner shells [20]. MWCNTs have higher energy density than SWCNTs

for the same outer diameter because of their dense inner shells. Indeed, Wang et al. [92] used a

multiple-elastic shell model to study the torsional buckling of MWCNTs, assuming that all shells

are equally affected by the applied moment, and observed that nearly solid MWCNTs with

dense layers of shells can support higher torsional loading and have higher critical shear

stresses than MWCNTs with fewer shells. If MWCNTs are used for energy storage, then they

should have small diameters and densely packed inner shells. It is important to note, however,

that the energy density advantage of MWCNTs is lost if all shells are not equally supporting the

torsional load.

In general, SWCNTs will have a higher energy density than MWCNTs because of their

smaller outer diameters. For energy storage in pure torsion, the plot in Figure 3.16

demonstrates that the highest energy densities are achieved in SWCNTs with small outer

diameters of less than 2 nm.

3.5. Comparison of deformation modes

The previous sections have shown that there are advantages and disadvantages to each

deformation mode and type of CNT structure. Deforming MWCNTs in axial tension or torsion

comes with the challenge of grasping the inner shells, while compression and bending ensure

that loading is applied to all inner shells. Torsion, bending and compression are limited by

critical buckling stresses, while tension is limited only by the stress at which failure occurs.

Energy density is highly dependent on the diameter of the nanotubes. MWCNTs with densely

packed shells and SWCNTs with small diameters can reach the highest energy densities. For all

loadings, the best performance is displayed by SWCNTs with diameters of 1 nm or smaller.

Since SWCNTs naturally occur in bundles, densely packed bundles of SWCNTs would be an ideal

structure for CNT-based springs.



Strain energy density in bundles of SWCNTs for all four deformation modes as a function of

diameter is plotted in Figure 3.17. The energy density in units of kJ/kg is plotted on the graph in

Figure 3.18. To convert the energy density from units of kJ/m 3 into units of kJ/kg, the density of

the spring structure is needed. The density of a bundle of SWCNTs is estimated by multiplying

the density of graphite, 2200 kg/m 3, by k , A to account for empty space inside the CNTs and
Aenel

within the groupings.
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Figure 3.17: Strain energy density of SWCNT bundles as a function of diameter for four

deformation modes in units of kJ/m 3 .
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Figure 3.18: Strain energy density of SWCNT bundles as a function of diameter for four
deformation modes in units of kJ/kg.

The plot in Figure 3.17 shows that there are advantages to storing energy in tension rather

than compression, bending or torsion. This is particularly the case for SWCNTs with diameters

greater than 2 nm since energy density drops off rapidly in compression, bending, and torsion

because of the limits on applied strain due to buckling. For diameters smaller than 2 nm, the

energy densities of all deformation modes are in the same range, so any of the deformation

modes could be selected for a spring. Nevertheless, if strains of 10% or greater can be applied

to CNTs in tension before failure, then tension would be the best choice. A distinction between

Figure 3.17 and Figure 3.18 is that energy density in tension is no longer a function of diameter

when the units are in kJ/kg because energy density decreases only due to limits on the applied

strain and not due to empty space within the tubes. If energy per unit mass is the quantity of

interest rather than energy per unit volume, then tension would be the deformation mode of

choice for SWCNTs of any diameter, assuming large applied strains. All of these results confirm

that a good choice for a spring would be a dense bundle of SWCNTs with diameters less than 2

nm, stretched in tension.

- SWCNTs in tension, 10% strain
- - - SWCNTs in tension, 5% strain
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I I I I I I

i\

--- --- - - - - - - - -



3.6. Coupling of deformation modes

The previous calculations show that considerable energy can be stored in CNTs under pure

axial tension, compression, torsion and bending. The next step is to determine whether

combined loadings offer any additional energy storage gains. Simple models are adopted to

study energy density under coupled loadings.

For instance, energy can be stored in CNTs under combined stretching and twisting,

stretching and bending, or compression and bending. Twisting, stretching and bending can all

be combined by placing a bundle of CNTs between two supports and rotating one of the

supports with respect to the other. In some cases, deforming CNTs with combined loading may

simply be more convenient than one deformation mode alone. For instance, wrapping a

stretched CNT around a support shaft, which combines bending and stretching, is a more

compact way of storing energy than stretching a long CNT in pure axial tension.

Mohr's failure criterion is used to predict the failure of a CNT under combined loadings,

with failure assumed to occur when the principal stresses at a point are greater than either the

compressive buckling stress or tensile failure stress. The diagrams in Figure 3.19 show the

allowable principal stresses and the failure boundary for normal and shear stresses in ao- space.

In reality, CNTs are anisotropic and their complex failure modes depend on geometry, chirality,

temperature, loading and defects [93], but this simple model can be used to generate order of

magnitude energy density estimates. The ultimate tensile stress at can range roughly between

50 GPa to 100 GPa, corresponding to maximum strains of 5% to 10% using a Young's modulus

of 1 TPa. The relation developed by Yakobson et al. [22] is used to find the critical compressive

buckling stress Uc.

Wang et al. modeled MWCNTs under combined torsional and axial loading using a multiple

shell model and found that the critical shear stress at which buckling first occurs in axial tension

and torsion is higher than the critical shear stress of torsion and axial compression [90]. His

results also showed that applying tension makes MWCNTs resist higher torsional loads. As long

as the limiting compressive stress is smaller than the limiting tensile stress, these same results

can be observed from Figure 3.19.
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Figure 3.19: (a) Allowable principal stresses in the structure. (b) Allowable boundary for shear
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Figure 3.20: Predictions for critical shear strain of SWCNTs from the failure model are plotted
along with the model from Wang et al. [23] and the data from Chang [89].

This model will accurately predict failure in pure compression and pure tension, so the next

step is to evaluate the model by determining how well it predicts failure in pure torsion. If the

limiting compressive stress is ac and the limiting tensile stress is at, then the maximum pure

shear stress that can be applied is 2ac and the maximum shear strain is -

The critical shear strains for SWCNTs predicted by the failure model are plotted with the

previous results of Figure 3.15 and are shown in Figure 3.20. The critical shear strain is plotted
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using maximum tensile strains of both 5% and 10% and maximum compressive strains based on

the relation from Yakobson et al., Ecr = (0.077nm)d - 1 [22]. The graph shows that at small

diameters, the curve for the predicted critical shear strain lies between the curves from Wang

et al. [23] and the data from Chang [89], so it is assumed that critical shear strain is reasonably

well predicted by the failure model for SWCNTs with small diameters, given a certain amount of

uncertainty in all of the models.

Cylindrical coordinates r, 0, z are considered here, where z is the axial direction along the

length of the CNT. The state of stress on an element under any combination of tension,

compression or bending is shown in Figure 3.21 (a). Each of these deformation modes

contributes only to ozz, so there is no energy gain in combining them. The state of stress from

combining any of tension, compression or bending with torsion is shown in Figure 3.21 (b).

Tension, bending and compression all contribute to ozz, while torsion contributes to zo, so there

can be a gain from combining torsion with another deformation mode. It is important to note

that this analysis focuses on a single CNT since pure torsion, without any bending, is difficult to

apply to CNTs within a grouping. Radial compression due to interactions between neighbouring

CNTs is neglected in the calculations.
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Figure 3.21: States of stress under combined loadings for (a) a combination of tension,
compression or bending and (b) combining torsion with any of tension, compression or
bending.
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Figure 3.22: State of stress in the structure subject to a tensile stress azz and a shear stress re.

The strain energy density of a body under a general state of stress is

u =Jv .azzEzz + ,arrErr + - OOeeErz•Yr + -TzzeYe + -•TYr-e dV (3.11)

If only stresses ozz and rez are applied,

u = z + 1 2ed V  (3.12)

Let rz,ot be the maximum shear stress at the outer surface of the cylinder. Using the

continuum model of a CNT, the integral is evaluated and the energy density is rewritten as

1 ro 1 2rz2crdr + 'ro 0  rze,outr 2rrdr
2 2

2E= 4G ,out 
(3.13)

While treating the strain energy density as a linear sum of the strain energies from the

individual deformations is an approximation, Sears et al. used molecular dynamics models to

show that this linear approximation is reasonable [82].

Finding the maximum shear and tensile stresses, or combination of ozz and raz, that can be

applied without reaching failure is an optimization problem. The Mohr's circle for the plane

stress in the structure is shown in Figure 3.22. The circle must lie within the failure envelope

while maximizing energy density. The objective function to maximize is the equation for energy

density rewritten in terms of the principal stresses o0 and 02,

u = -(a + a2)2  ri + (-0a2) (3.14)
2E r0o 4G ro
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where az = a, + u2 and rze,out = /-••2. The variables aj and O2 must fall within the ranges

aCc 02 • 0 and 0 5 oal at. Additional constraints are applied so that the Mohr's circle of the

stress state falls within the boundary imposed by the failure envelope. The centre of the circle

is located at a = with a maximum shear stress max= 2. The following constraints
2 2

apply:

Fl+o2 -Icat 0--1 2 uc b 2 1 ac2 2
For -c at2 must be less than or equal to - + .

2 - |cl+t 2 2 2 2

- lclo<t, l+ <2  lxclt 1-e 2  1 itlc) C T1 + 2  1For <- 2- I0,l+ c z must be less than or equal to + + tl2cl+at 2 acl+at 2 2 v Ia1 2 2

For laclt < al"z -at oal-• must be less than or equal to - al
lcl+et - 2 - 2 /2 2 ) 2)

The optimization code is shown in Appendix 1. The results show that there is no gain in

combining torsion and tension for SWCNTs with a maximum diameter of 3 nm and thick

MWCNTs. In these cases, the maximum strain energy occurs when a,, is equal to at and rs is 0.

The analysis is the same for compression and torsion, and bending and torsion. Using this

simple model, the analysis has shown that based on the simplifying assumptions that were

made, there is little to gain in energy density by combining two deformation modes.

While combining deformation modes contributes little to increasing the energy density, it is

likely that the best choice will be a coupling of multiple modes for convenience and

compactness. In the end, the type of deformation that is chosen depends not only on the

highest energy density, but also on which mode can be practically implemented and offers the

most straightforward integration with the rest of the system.

3.7. Support structures

The calculations used to estimate energy density in the previous sections omit an important

consideration: a support structure for a fully loaded spring. A support structure is needed for

energy to be stored in a spring for a period of time prior to its release. For instance, a support

structure in compression can be used to maintain a bundle of CNTs in tension. There are no

materials as strong in compression as carbon nanotubes are in tension, so the supporting

structure must be sufficiently large to support the load without reaching failure itself. When



accounting for the support structure, the energy density that can be stored in the combined

spring and supporting structure will necessarily be lower than the strain energy density of the

spring alone because of the added volume and mass. New estimates for energy density must be

generated when a support structure is taken into consideration.

While the support structure under a load stores energy itself, the conservative assumption

is made that only the energy from the spring can be extracted to perform useful work. For this

reason, the energy stored in the support structure is neglected when calculating the overall

energy density of the combined spring and support system. In practice, an architecture could be

designed in which the energy in the support structurelis used to perform work as well, so it may

be possible to reach higher energy density levels than the ones proposed in the calculations

that follow.

In a simple model of CNTs in tension, the support structure must support a compressive

force Fs equal to the tensile force F in the carbon nanotubes, as shown schematically in Figure

3.23.
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Figure 3.23: Schematic diagram of a support structure carrying the tensile load of a CNT spring.

The loaded spring and the support structure have a length of L. For the support structure, As

is the cross-sectional area, Es is the Young's modulus, Es is the maximum allowable strain, as is

the maximum allowable stress, and ps is the density. For the spring, the CNTs are treated as

continuum structures where A is the shell cross-sectional area, Aencl is the enclosed area of the

CNTs, E is the Young's modulus, e is the applied strain, a is the stress in the spring, and p is the

density. The compressive and tensile forces acting on the two structures in equilibrium are

equal and opposite, so F=Fs and aA = usAs. Then, the minimum allowable cross-sectional area

of the support structure can be expressed in terms of the cross-sectional area of the spring:

u/



As = a A (3.15)
as

The strain energy density of the combined spring and support is the strain energy in the spring

divided by the enclosed volume of both the spring and the support:

1 1 1
1Ee2AL -Ee 2AL Ee2
2 2 2 (3.16)

Ai L + A, L c+-- AL - +enet S AencL+ AL end +
as A as

Strain energy was divided by the loaded volume rather than the unloaded volume because the

difference between the two is small, and the loaded volume better reveals the trends. The fill

factor k for bundles is neglected in this calculation, so k is set to 1. With no support structure,

the energy density is given by u = 1EE2 - the same result that was found in section 3.1.
2 Aencl

The energy density by mass is calculated by dividing the strain energy by volume by the

effective density of the combined spring and support structure. The effective density is

calculated as:

pV + pV, pAL + pAL PS (3.17)
Pegf = = - (3.17)V +V, L(A + A,) , +1

Calculations are performed using bundles of 1.02 nm diameter SWCNTs, with A/Aencd=0.75.

The density of the spring is estimated by multiplying the density of graphite, 2200 kg/m 3 , by

A
k ., , for a density estimate of p=1650 kg/m . Table 3.1 lists properties of several materials

endc

that could potentially be used to build a support structure, chosen for their high compressive

strength. The plots in Figure 3.24 and Figure 3.25 show the strain energy density by volume and

mass of a bundle of SWCNTs stretched in tension when a support structure made of different

materials is taken into account.



Table 3.1: Mechanical properties of materials for a support structure [94-96]

Material Young's Compressive Compressive Density
modulus yield strength yield strain

Single crystal silicon 160 GPa 7 GPa 0.044 2300 kg/cm3

Single crystal SiC 450 GPa 21 GPa 0.047 3200 kg/m3

Hot-pressed SiC-N 460 GPa 7 GPa 0.016 3200 kg/m 3

Single crystal diamond 1 TPa 53 GPa 0.053 3500 kg/m 3
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Figure 3.24: Strain energy density by volume for a bundle of SWCNTs with d=1.02 nm as a

function of tensile strain (a) with no support structure and (b) with a support structure made of

different materials.

2.5 SSingle Crystal Diamond
- Single Crystal SiC
- Single Crystal Si

Hot Pressed SiC-N
"",

C

-a

ujC:
W

0.5
I I I

~

. . . . . . CIC 13 • a.•

.J
I

E

F



6000

6000

- 4000
:=-,

3000

S2000

L 1000

n
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

(a) Strain

1UUU
- 800

600

400

w 200

n
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

(b) Strain

Figure 3.25: Strain energy density by mass for a bundle of SWCNTs with d=1.02 nm as a function
of tensile strain (a) with no support structure and (b) with a support structure made of different
materials.

The plots in Figure 3.24 and Figure 3.25 indicate that once a supporting structure is taken

into consideration, the strain energy density is considerably reduced. The choice of material for

the support structure is important because its properties have an important impact on the

resulting energy density. The best material for the support structure is single crystal diamond,

followed by single crystal silicon carbide. For example, at a strain of 0.1, a CNT spring under

tension on its own can store 3.75 x 106 kJ/m 3 . With a support made of diamond, the energy

density is reduced by 59% to 1.55 x 106 kJ/m 3 . For a support made of silicon carbide, the energy

is reduced by 78% to 8.2 x 10s kJ/m 3 . The reported energy density of lithium-ion batteries is in

57
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the range of 1.08 x 106 to 1.44 x 106 kJ/m 3 [97], so the energy density of a spring at the highest

strains with a support structure made of diamond is in the same range as the energy density of

batteries. With a support made of silicon carbide, the energy density is lower than batteries.

The energy density of the best large-scale carbon-steel springs available today is about 3000

kJ/m 3 [98] or 0.385 kJ/kg. With a strain of 0.1 in a CNT-based spring, the energy density by

volume is 500 times greater with a diamond support and 270 times greater with a silicon

carbide support than the energy density of a carbon-steel spring. These encouraging results

indicate that CNTs can be used to make mechanical springs with far more energy storage

capacity than the best mechanical springs currently available. Diamond would be a better

choice than silicon carbide for the support structure, but its cost is a concern. There are some

high-end applications, such as mechanical watches, where expensive components may be

acceptable, so an analysis of the cost required to build a support structure made of diamond is

performed in section 3.7.1.

The first support structure proposed for a CNT-based spring in tension was a support in

pure compression, as shown schematically in Figure 3.23. An alternate support structure is

proposed below. The second design is a circular shaft around which a stretched CNT spring is

wrapped, as shown in Figure 3.26. When a CNT bundle with a stress of a is wrapped around the

circumference of the shaft, the pressure acting on the shaft is P = at/R, where t is the thickness

of the CNT bundle and R is the radius of the shaft. For a solid circular shaft under a uniform

pressure P, assuming plane stress, the radial stress is cr= -P and the tangential stress is coo= -P,

throughout the cylinder. This stress distribution results in a uniform Mises stress of P, so the

maximum pressure that the shaft can support is equal to the compressive yield strength ,y of

the material. The maximum stress that can be applied to the CNT bundle wrapped around the

shaft is aax = cyR/t. Single crystal silicon carbide has a high compressive yield strength ay of

21 GPa, so for the purposes of this discussion, silicon carbide is the material chosen for the

shaft.



Figure 3.26: Shaft of radius R supporting a CNT spring stretched in tension.

A bundle of 1.02 nm diameter SWCNTs with A/Aenci1=0.75 is modeled with k set to 1 in order

to obtain values for the maximum energy density in this support configuration. The overall

strain energy density is the strain energy in the spring divided by the enclosed volume of both

the spring and supporting structure, and is modeled as

SEE 2 27tRtL -A/Aec Ee2tA A/A

u 2 (3.18)
2nRtL + R 2L 2t + R

R Ee
Parameters t and R are related by the expression Omax = r,,R/t, or -- = - where

t a",

E is the strain applied to the spring and E is the Young's modulus of the CNT bundle. The

expression for strain energy density is rewritten as

EE2 A/Ae Ee 2 -A/A
u = =end (3.19)

2+R/t EE
2+-

For a shaft made of single crystal silicon carbide with a compressive yield strength Co of 21 GPa,

Ee 2 •0.75
u = J/m3  (3.20)

EE
2+

21 x 109

For a shaft made of single crystal diamond with a compressive yield strength a, of 53 GPa,

EE2 . 0.75u = J/m3  (3.21)
Ee

2+
53x109



Strain energy density is plotted against strain in Figure 3.27 for a circular shaft as the support

structure, for both silicon carbide and diamond. On the same graph, the strain energy density is

shown for a supporting structure in pure axial compression, to compare the two results.
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Figure 3.27: Energy density as a function of strain for single crystal diamond and silicon carbide

support structures in axial compression and a circular shaft support under uniform pressure.

The graph in Figure 3.27 shows that higher strain energy density can be reached with a

circular shaft support than with a support in axial compression, though the difference between

the two support structures is relatively small. The choice of support structure type will likely

depend on the best way to integrate a support structure with the rest of the system

architecture.

3.7.1. Cost analysis of a diamond supporting structure

It is useful to estimate the cost of a diamond support structure for a CNT spring used to

power a mechanical watch, since single crystal diamond is the best choice of material for a

support structure. The support structure is a cylindrical shaft made of diamond around which a

CNT bundle is wrapped. It is reported that a mechanical watch requires 1 to 2 pW to operate
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[99]. Using the upper limit of 2 IW, a mechanical watch requires Emw=0.1728 J to operate for

one day. The energy required for y days is y. Emw J. Let the diamond shaft have a radius R and a

length L. The thickness of the CNT spring wrapped around the circumference is t, as shown in

Figure 3.28.

Figure 3.28: Schematic diagram of a CNT-based spring wrapped around a supporting shaft.

When a CNT bundle with a stress of a is wrapped around the circumference of the shaft, the

pressure acting on the shaft is

P = or / R = Et / R, (3.22)

where E and E are the Young's modulus and strain in the bundle. For a solid circular shaft under

a uniform pressure, the Mises stress in the cross-section of the shaft is uniformly equal to the

applied pressure, so the maximum pressure that the post can support is equal to the

compressive yield strength y, of the material. The expression for pressure acting on the shaft is

rewritten as

R EE (3.23)
t "

The strain energy that is stored in the spring is

U = I Ee 2n2RtLA J (3.24)
2 Aendc

Let A/Aencd = 0.75. The energy that is extracted from the spring will be less than the energy that

can be stored because of the losses in the watch mechanism, and let the efficiency of the

energy conversion be rt. The strain energy extracted from the spring must be equal to the

required energy to operate over y days. Then,

I-Ee2 2RtL A7 = E,,, .y J (3.25)
2 Aendci



An expression for the length of the spool needed to support a spring of strain E is

LEmw Y
L= m (3.26)

A -prE 2 3t2 / ,
Aencl

The corresponding volume of the spool is

? E,,yY Ew YE 3
V - = 'w Y m (3.27)

A A
- iprE2e 3t 2/ -- 77E *0C,7

Aenc Aecl

If the density of the spool is p, then the mass of the spool is given by

E y
m = Ep A " kg (3.28)

The cost of diamonds in dollars/kg is C. Then the cost of the spool is

cost= C -p M (3.29)

Aen,,

The estimated cost per unit mass of single crystal diamond is C= 25 x106 dollars/kg, the density

of diamond is p=3500 kg/m 3, and the yield stress of diamond is 53 GPa. Substituting all values,

the total cost of the spool becomes

cost = $ 25 x 106 -3500 0.1728y (3.30)
0.75•E-5.3x10 9

This result indicates that the cost depends on the strain in the spring, the efficiency of the

energy conversion and the number of days that the spring should operate. The higher the strain

applied to the CNT spring, the lower the cost of the diamond shaft. The cost is inversely

proportional to the efficiency, so a high efficiency is needed for a low cost. The cost of the

diamond spool needed to support a spring that stores enough energy to run a mechanical

watch for 30 days is plotted against strain in Figure 3.29, for a watch mechanism that operates

with 50% and 100% efficiency.
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Figure 3.29: Cost of the diamond spool plotted against strain for a watch mechanism that stores

enough energy for 30 days and operates with 100% efficiency and 50% efficiency.

The cost of the diamond support structure decreases with the strain in the spring, so it is

advantageous to apply high strains to the CNT spring. Even at the highest strains, the cost of the

material for the support structure remains large, so such a support could only be used in

applications such as mechanical watches where this high cost is acceptable.

3.8. Implementation Issues

In an actual device, the energy density will be lower than the theoretical estimates. Any

additional mechanisms coupled to the spring add mass and volume to the system and lower its

overall energy density. A support structure reduces the energy density, as would the optional

addition of a generator, motor or energy release rate regulation mechanism. Since energy

cannot be extracted from the springs with 100% efficiency, the extractable energy density will

be lower than what is stored.

The mechanical properties of carbon nanotubes are sensitive to defects and impurities

which lower their Young's modulus and failure strength [64, 100]. CNTs of high purity and low

defect density are needed for the springs to be able to reach the largest theoretically predicted

strains reversibly and without inducing fracture or plastic deformation.



Strong attachment methods are important for large strains to be applied to CNTs or CNT

groupings without inducing failure at the attachment site. The attachment site must also ensure

that all tubes and all shells are well gripped so that loading is evenly distributed among all tubes

in the structure. Otherwise, the strength of the spring will be lower than the predicted values.

Previous research has demonstrated that it is possible to fill the inside of CNTs with atoms.

Filling CNTs has been shown to provide reinforcement to the CNTs in the radial direction, which

may help prevent buckling in torsion and bending [8]. This could be a valuable technique for

building CNT springs because it would allow CNTs to withstand higher stresses without buckling

and extend the limits of energy storage.

3.9. Comparison of energy sources

In this section, the estimates of energy density of carbon nanotube springs are compared to

the energy density of common micro-scale and macro-scale energy sources.

3.9.1. Steel watch springs

The energy density that can be reached in a carbon-steel spring is modeled so that it can be

compared to estimates for CNT springs. Watch springs, also called mainsprings, are torsional

springs made of a long strip of hardened steel wound into a tight coil. This type of spring is used

to power mechanical watches because of its compact shape and the high energy density of

steel. The thin strip of steel has a rectangular cross-section. One end of the steel strip is

attached to and coiled around an inner shaft while the other end is attached to a fixed outer

casing, as shown in Figure 3.30. Rotating the shaft in one direction winds the steel strip around

the shaft. The elastic deformation in the steel results in energy storage. When the shaft is

released, the steel strip unwinds, driving the shaft to spin in the opposite direction, which is

used to drive external gears. The energy stored in the spring is equal to the elastic strain energy

of the spring in its fully wound state.
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Figure 3.30: Illustration of a fully wound steel mainspring.

A maximum strain of E can be applied to the steel, above which bending is no longer elastic

and the spring becomes permanently deformed. For maximum elastic energy storage, the strain

should be just below E at the outer surfaces of the coil along the entire length of the strip. For a

shaft with a small radius, the strip requires an initial curvature so that the steel can be bent to

the required curvature without exceeding its elastic limit. Indeed, the initial curvature of the

steel varies along the length of the strip since the radius of curvature of the fully wound spring

also varies along the length of the strip. When bending is applied to a beam with an initial

curvature, the strain varies hyperbolically throughout the thickness of the beam, and the strain

energy in the spring will depend on the dimensions of the steel strip and the diameter of the

shaft. To estimate the amount of energy in a carbon steel spring independently of the

dimensions of the spring and the shaft, the simplifying assumptions are made that the neutral

axis is located at the centre of the beam and that the strain varies linearly through the thickness

of the beam. It is assumed that the strip of carbon-steel has an initial curvature that varies

along its length such that a maximum strain of E is reached at the inner and outer surfaces

throughout the coil.
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Figure 3.31: Beam with a rectangular cross-section



For a beam in bending with a moment applied about the z-axis, a rectangular cross section and

a linear distribution of strain with a maximum strain of E at the outer surfaces, the strain in the

beam is

(y) = --- (3.31)
h/2

The elastic strain energy of the beam is

1 Ew y=
U=- f(,)dxdydz = -dy = EwLhe (3.32)

2 2 _h2h/ 4  6-h /

The estimate for the strain energy density in the coil is then

I
u = Ee2  (3.33)

6

With a maximum allowable strain of 0.005 for carbon steel and a Young's modulus of 210 GPa,

the strain energy density that can be stored in such a spring is 875 kJ/m 3 . With a density of

carbon-steel of 7800 kg/m 3, this corresponds to an energy density by mass of 111 J/kg. The

current maximum energy density of a watch spring is reported to be between 1080 kJ/m 3 [99]

and 3000 kJ/m 3[98], presumably using higher strength steel, so the simple estimate made here

is reasonable.

3.9.2. Energy density comparisons

On-board energy sources available to MEMS devices include batteries, fuel cells, internal

combustion engines and capacitors. The energy densities of MEMS energy sources are listed in

Table 3.2. The energy density and conversion efficiency of energy sources for larger scale

applications are listed in Table 3.3.



Table 3.2: Energy density of energy sources for MEMS applications [99, 101]

Energy source Energy density by volume
Power capacitor 4 kJ/m 3

Fuel cell 6.5 x103 kJ/m 3

Thick film battery 1 x10 6 kJ/m 3

Thin film battery 2.5 x106 kJ/m 3

Hydrocarbon fuel (gasoline) 35 x106 kJ/m 3

Table 3.3: Energy density of energy sources for large-scale applications [97, 102-104]

Energy source Energy density by volume Energy density by Conversion
weight efficiency

Carbon-steel springs 3 x103 k/m3  0.38 kJ/kg
Ultracapacitor 10-20 kJ/kg 90-95%
Fuel cells 10.8 - 18 x106 kJ/m 3  720-900 kJ/kg 25-35%
Lithium-ion batteries 1.08-1.44 x106 kJ/m 3  468 kJ/kg near 100%
Gasoline 32 x106 kJ/m 3  40-50 x103 kJ/kg 20%

A CNT spring made of bundles of densely packed 1.02 nm diameter SWCNTs stretched to a

10% strain is predicted to hold 3.4 x106 kJ/m 3 or 2272 kJ/kg, with A/Aenci=0 .7 5, k=0.91 and a

density of 1501.5 kg/m 3 . When taking into consideration a support structure made of single

crystal silicon carbide, this energy reduces to 1 x10 6 kJ/m 3 or 672 kJ/kg. Without accounting for

the volume and weight of any additional energy extraction hardware, the energy density of

carbon nanotube springs is greater than that of mechanical springs and ultracapacitors and in

the same range as the energy density of batteries. The energy density of CNT springs is still far

lower than the energy density of hydrocarbon fuels.

Once energy extraction mechanisms are taken into account, the energy density of a power

source incorporating CNT springs will likely be lower than that of batteries. An exact value of

the energy density depends on the extraction hardware and choice of material for the support

structure. In general, CNT springs may not be a viable alternative to batteries strictly in terms of

energy density. However, CNT springs have the potential to significantly improve upon the

energy density limits of current mechanical springs. A CNT spring stretched to a 10% strain

holds more than 330 times by volume and 1200 times by weight the energy of a steel spring, a

result that suggests that macroscopic assemblies of carbon nanotubes could be used to



fabricate high performance mechanical springs with far greater energy storage capabilities than

what is currently available.

The energy density of a bundle of 1.02 nm diameter SWCNTs under tensile loading is

summarized in Figure 3.32, once a cylindrical shaft support structure of different materials is

taken into account. The energy density of lithium-ion batteries and steel springs are plotted on

the same graph for comparison. The maximum achievable overall stored energy density is

predicted to be comparable to lithium-ion batteries as long as high elastic strains can be applied

to the CNTs and a high quality material is used for the support structure.
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Figure 3.32: Energy density of a bundle of SWCNTs under tensile loading with a cylindrical shaft

support structure made of single crystal diamond, single crystal silicon carbide and single crystal

silicon, compared to the energy density of conventional energy storage technologies.

A number of applications have been identified that would benefit from improved

mechanical springs. At the microscale, CNT springs could be used as an energy source for

MEMS, particularly for devices that require energy supplied in the mechanical domain. The
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weight and volume of on-board power sources for MEMS tend to be disproportionately large

compared to the rest of the device [99]. With sizes on the microscale and a low density, CNT

springs would offer an alternative to MEMS batteries and capacitors. In applications where

kinetic energy is available, the motion of an eccentrically rotating mass could be used to create

a CNT spring that is self-winding. At the macroscale, CNT springs can be used to build an

improved mechanical watch spring. The use of CNTs would enable watch springs that store

more energy and require less frequent windings than current steel mainsprings. Regenerative

braking systems convert the kinetic energy of a vehicle during braking into stored energy that

can be later used to accelerate the vehicle. In bicycles, these mechanical regenerating braking

systems typically use either metal springs, which have low energy storage capacity, or

generator/motor systems for storing energy during braking, making the systems heavy and

unwieldy [105]. Regenerative braking could be improved by using lightweight, high energy

density CNT springs.

CNT springs are added to the Ragone plot in Figure 3.33 [106] to illustrate how CNT springs

compare to other energy sources. The estimated energy density of a CNT spring with a single

crystal silicon carbide support of 672 kJ/kg corresponds to 187 Wh/kg, in the same range as the

energy density of lithium ion batteries. The power density of the spring is dominated by the

mechanism used to extract the energy. A spring coupled to a generator may release its energy

on a timescale of seconds to minutes, or longer. A spring coupled to a mechanism analogous to

a catapult may release its energy in a timescale on the order of milliseconds. Discharge times of

50 ms and 1 minute result in a power densities of 13 MW/kg and 11 kW/kg respectively. The

ability of springs to discharge very rapidly indicate that they may be able to reach similar power

density levels as capacitors, or potentially even higher, which places CNT springs in the top right

corner of the graph.
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Figure 3.33: Ragone plot [106] with the expected energy density and power density of carbon

nanotube springs.

In addition to their high energy density and potentially high power density, CNT springs may

improve upon the limitations of other energy storage media. Electrochemical batteries must

operate within a specific temperature range for acceptable performance. The operating range

of lithium-ion batteries is -200C to 600C, with limited performance at cold temperatures and

rapid discharge at high temperatures. CNT springs would have a much wider range of operating

temperatures, with structural stability up to 20000C [107, 108]. Temperature insensitive springs

made of CNTs could operate far above 600C where batteries cease to be operational.

Self-discharge of batteries, due to electrochemical reactions taking place inside the battery

even when not in use, can result in discharge rates as high as 20% per month. Since elastic

energy storage relies on stretching bonds rather than on chemical reactions, CNT springs are

expected to have little or no self-discharge. Self-discharge of batteries is particularly

detrimental in battery-powered devices that are used infrequently or only in emergency

situations. Another drawback of chemical batteries is their limited number of charge-discharge

cycles. If the strains applied to CNT springs can remain elastic and reversible, then their number

of charge-discharge cycles is potentially infinite. With their short lifetime, batteries require

continual disposal and replacement. A power source with a potentially infinite lifetime would

help to alleviate the waste generation problem of batteries.
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Energy storage based on CNT springs can offer a safer alternative to batteries. Leaks or

degradation of battery packaging can lead to exposure to toxic chemicals. Risks include

explosion or pyrolysis if battery casing is damaged, dismantled or heated. In contrast, CNT

springs contain no toxic, poisonous or carcinogenic chemicals so their operation is expected to

be safer.

In summary, CNT springs offer the potential to provide a reliable method for high density

energy storage that offers rapid discharge, unlimited charge-discharge cycles, no self-discharge,

safer operation, and no degradation at high temperatures or under harsh conditions. For

applications where these criteria are important, CNT springs for energy storage may provide a

valuable alternative to electrochemical batteries.



4. Energy storage mechanisms

4.1. Basic system architecture of a power source

A mechanical spring must be coupled to external mechanisms to build a power source that

is functionally useful. On its own, a spring stores potential energy when an external force is

applied to it but releases the energy in a single rapid burst once the force is removed. An

effective power source needs to store energy over a period of time, release the energy only

when needed and discharge the energy at a desired power level. A CNT-based portable power

source should have a basic architecture made of four main components: a CNT spring, a

supporting structure for the spring, a generator-motor combination, and a coupling mechanism

between the spring and the generator.

Before considering the components required for a power source, the scale of the system

must be addressed. The size of the spring is flexible and can be chosen to meet the energy

requirements of the system being powered. Individual or small bundles of nanotubes have

nanometer-scale diameters and lengths on the order of microns. With low defect densities and

excellent mechanical properties, these structures are well-suited for use as mechanical storage

elements for nanoscale or microscale systems, particularly devices that require a rapid

discharge of energy in the mechanical domain. At this scale, manipulating, positioning, and

attaching the springs to a substrate are considerable challenges. Any external components

coupled to the spring to provide enhanced functionality to a power source must be designed

with low complexity since micro structures can be fabricated with considerably less accuracy

relative to their size than macroscale structures. Simple and error-insensitive components are

needed with few moving parts because of wear and friction at the microscale.

Macroscale CNT assemblies tend to have inferior properties than their nano or microscale

counterparts, but as springs they have a larger capacity for energy storage and are easier to

manipulate. Applying a deformation to a macroscale assembly enables thousands of CNTs to be

loaded to their elastic limit at once. Complex mechanisms such as gears, generators and motors

can be coupled to the spring to build a power source with enhanced functionality.



Another scaling alternative is to build power generating "unit cells". Each unit cell would be

an energy generating unit containing a spring along with some extraction hardware, built at a

scale that facilitates fabrication and optimizes efficiency and energy density. A larger power

source with longer lasting operation or higher power levels can be built from an array of unit

cells that are activated in parallel or in series. This would be an efficient way of storing large

amounts of energy while keeping the spring at an optical scale for energy density.

The objective of a power source is to store and deliver a large amount of energy, so high

conversion efficiencies throughout the design are essential. The design of a power source

should be made within the context of optimizing performance, manufacturability, cost

effectiveness, reliability and system complexity. The entire device should be composed of a

large percentage of CNTs by volume and mass to maximize its storage capacity and energy

density. Any additional mechanisms coupled to the spring reduce the overall energy density of

the system.

The first component of the architecture for the power source is the CNT spring; its design is

informed by the analyses of Chapter 3. The spring can be made of a single CNT or CNTs

arranged into microscale or macroscale groupings with a range of diameters, lengths and

numbers of shells. How best to build the spring depends on the scale at which the highest

energy density and extraction efficiency can be achieved as well as on the amount of energy the

power source is expected to store. If CNTs are arranged in groupings, then tight packing and

good alignment are needed between the tubes to achieve a high density. Good load transfer

and effective attachment techniques are required so that all shells in the case of MWCNTs, and

all tubes in the case of bundles, can be loaded to near their elastic limit. If the springs are made

of bundles of discontinuous CNTs, then long overlaps on the order of 100 pm [57] between the

tubes are needed to ensure that the bundle's performance is similar to that of individual CNTs.

Most importantly, the size and mass of the spring must be significant compared to the rest of

the mechanism to ensure that the overall energy density remains high. The results of the

previous chapter suggest that the poor load transfer between MWCNT shells makes these

structures largely unsuitable for energy storage, while bundles of highly aligned continuous or

discontinuous small diameter SWCNTs in densely packed lattices show considerable promise as



a material for springs. A deformation mode is needed to store energy in the spring, which can

be any combination of axial tension, axial compression, torsion or bending. The choice depends

not only on energy density but also on which of the deformation modes can be most easily

applied in practice and how the deformed spring will integrate with the rest of the system. The

highest energy densities are expected to be achieved with deformation in axial tension, though

loading primarily in tension can be combined with bending to increase the compactness of the

spring. Loading in tension is not limited by buckling strains and can achieve uniform loading

throughout the entire structure. A final consideration is that the power conversion mechanism

must match the scale of the spring. This requires either the ability to couple large numbers of

CNTs to a single power conversion mechanism, or the ability to couple small numbers of CNTs

to very small power conversion mechanisms. Since the technology for creating CNT groupings is

more mature than the technology for very small, efficient generators, a more practical

approach at this point is to use springs composed of large numbers of CNTs in conjunction with

a larger generator.

A support structure is required to hold the spring in its fully loaded state prior to its release,

as described in section 3.7. The design of the support structure will depend on the scale of the

spring, the deformation mode and the architecture of the rest of the system. The material

selected for the structure should have high strength because the added mass and volume of the

support contribute to reducing the energy density of the entire system. Single crystal silicon

carbide and diamond were previously identified as good materials for this structure. Support

structures may be superior at the microscale because of the sometimes higher strengths of

microscale materials as compared with bulk materials.

A generator is used to convert the mechanical work from the spring as it discharges into the

electrical domain. To build a rechargeable power source, the generator should operate in

reverse as a motor so that an electrical input to the system recharges the power source by

rewinding the spring. Certainly, simpler systems can be designed without the need of a

generator or a motor; the mechanical work from a spring can drive a mechanical load directly,

and a motor can be eliminated from a device that is recharged using a mechanical input or that

is intended for only a single use. The type of generator used depends on the scale of the



system, the amount of energy stored in the spring and rate of energy discharge from the spring.

At the microscale, magnetic, electrostatic, and piezoelectric MEMS generators [109-114] would

be feasible for implementation. The conversion efficiency of any motor or generator must be

high to minimize energy losses. Generators and motors of reduced size and complexity are best

since all mechanisms external to the spring reduce the energy density of the system.

The last component of the architecture is a method of coupling the spring to the generator.

The role of the coupling mechanism is to convert the mechanical work of the unwinding spring

into a form of work with an acceptable frequency and amplitude of motion for input into the

generator. For instance, a simple coupling mechanism will allow the energy from the spring to

be released in a single, rapid burst. A more complex coupling mechanism composed of a set of

gears can be used to control the discharge of energy from the spring so that energy is released

gradually over time to match a generator that operates at a lower frequency and handles

smaller amounts of energy. In general, a tradeoff exists between the functionality provided by

the coupling mechanism and the size and complexity that it adds to the system.

4.1.1. Examples

Simple schematic examples of power sources that store energy in CNT springs demonstrate

the architecture needed to transform a simple spring into a useful power source. Figure 4.1

shows a power source that stores energy in a bundle or grouping of bundles of CNTs stretched

in tension. Rack and pinion gears are used to convert the linear motion of the spring as it

stretches and contracts into a rotational motion appropriate for input into a generator. These

gears form the coupling mechanism. One end of the CNT grouping is attached to a fixed support

and the other end is attached to the rack. The spring is stretched by turning the pinion in the

clockwise direction, which can be done either mechanically or with an electrical input via a

motor. A ratchet prevents motion of the pinion in the counter-clockwise direction so that the

stretched spring cannot contract and energy can be stored in the spring prior to its release. The

ratchet is the support structure, and it must be able to support the load of the fully stretched

spring; the gear teeth must also be able to support the load. To release energy from the spring,

the ratchet is disconnected from its gears, permitting the spring to contract, which drives the



rotation of the pinion in the counter-clockwise direction. The contraction of the spring will

happen very rapidly. The rotation of the pinion can be used to drive either a mechanical load

directly or a generator to obtain an electrical output.

A disadvantage of the design is the rapid contraction of the spring after its release. Most

applications require an even input of energy over a period of time rather than a rapid burst of

energy. Additional components may be added to the design to demonstrate how a more

complex coupling mechanism can be used to control the rate of energy release from the spring.

The design shown in Figure 4.2 is still made of groupings of CNT bundles stretched in tension, a

rack, pinion and ratchet. An escapement mechanism, comprising an escape wheel, a pallet and

a torsional spring are added to control the unwinding of the CNT spring. Escapement

mechanisms are described in more detail in Chapter 5, but their operation is described here in

brief. The pallet is driven by the torsional spring to have an oscillating motion. The periodic,

oscillating motion of the pallet allows the escape wheel to rotate only in small increments at a

time. The incremental rotations of the escape wheel in turn constrain the rotation of the pinion

to be gradual, which slows the contraction of the CNT spring. To wind the spring, the gears of

the escapement mechanism should be disconnected from the pinion. The ratchet acts as the

support structure, ensuring that energy is stored in the spring until it is disengaged. A generator

and motor may be coupled to the pinion for the system to deliver an electrical output and be

wound using an electrical input.
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Figure 4.1: Conceptual design of a power source using a CNT spring stretched in tension, a rack
and a pinion.
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Figure 4.2: Conceptual design of a power source using a CNT spring stretched in tension, a rack,
pinion, and an escapement mechanism.
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Figure 4.3: Designs of power sources using CNT-based springs.

Two additional schematic designs are shown in Figure 4.3. Figure 4.3 (a) shows CNT

groupings attached to a cylindrical structure made of a fixed base and a top rotating shaft. In

the diagram on the left, the CNTs are fully extended but unstrained. Rotating the top shaft with

respect to the base stretches the CNTs in tension. The upper shaft is latched in place to keep

the energy stored in the device. A motor and generator may be coupled to the upper shaft so

that energy can be input to and removed from the system via the electrical domain. An

advantage of this device is the ability to stretch many grouped CNTs at once, and the shaft and

base serve as support structures in compression. Figure 4.3 (b) shows an alternative design in

which a long CNT grouping is wound around a fixed shaft so that it is taut. One end of the

grouping is attached to the fixed shaft while the second end is attached to a second rotating
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shaft. The diameters of both shafts are sufficiently large so that deformation in bending is small

and buckling due to bending will not occur. Both shafts serve as support structures. Winding

the rotating shaft stretches the grouping in tension. Lubrication is needed to achieve minimal

friction between the spring and the shaft surfaces since without lubrication, only a short

segment of the grouping will become strained in tension due to the capstan effect. As with the

other designs, a generator and motor pair could be integrated into the device. The advantage of

this design is that it permits large amounts of energy to be stored in a single compact spring,

whose scale can range from the microscale to the macroscale. All CNTs in the spring can be

deformed using a single loading mechanism. A drawback is that radial deformation of the tube

cross-sections will occur as the stretched grouping becomes compressed against the shaft

surfaces.

As these conceptual designs demonstrate, there are many ways to design and build a

mechanism to store and extract energy from CNTs. The scale of the spring and the choice of

components to integrate with the spring can be selected with a high degree of flexibility. A

good starting place is to build a simple proof of concept device that would demonstrate energy

storage and release from a spring before more complex designs focused on optimization are

untaken.



5. Power source with controlled energy release

5.1. Conceptual design of a unit cell

In this chapter, a design is presented of a conceptual microscale power source that stores

energy in the elastic deformation of CNTs. The device is intended as a single unit cell that could

be arrayed to form a larger power system. The design is proposed as a conceptual model to

study the operation of a microscale unit cell and identify the challenges and limitations

associated with designing such a system. The objectives for the unit cell are to achieve high

energy conversion efficiency, a high percentage of CNTs by mass and volume, and the ability to

control the rate of energy release from the spring. The'system architecture is presented along

with an analysis and discussion of each of the components. A model of the system was built in

Simulink to simulate the system's performance. The simulation results are used to determine

how scaling affects the power output, overall system efficiency, operating frequency of the

energy regulation mechanism, and energy discharge time. Finally, the advantages and

drawbacks of the system are discussed to assess the feasibility of building such a power source

and to determine how the design may be improved.

One of the design objectives for the power source is the ability to control the rate of energy

release from the spring. While the simplest way to release energy from a loaded spring is in a

rapid burst, most applications require a steady flow of input power over a longer period of

time. In a mechanical watch or clock, a single winding of a torsional spring can power the device

for hours or days by means of an escapement mechanism. An escapement mechanism is a set

of carefully designed gears whose rotation is controlled by an oscillator. In a watch, the

oscillator is a torsional spring called a balance spring, and in a clock it is a pendulum. Two

escapement designs are shown in Figure 5.1. The deadbeat escapement is used in pendulum

clocks while the lever escapement is made for mechanical watches. Both designs have three

main components: an oscillator, an escape wheel and a pallet.
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Figure 5.1: (a) A deadbeat escapement for a clock and (b) a lever escapement for a mechanical
watch. Both escapements have three main components: an oscillator (pendulum or torsional
spring), an escape wheel and a pallet [115].

Energy is stored in a watch or clock by winding a steel torsional spring called a mainspring.

As the mainspring unwinds, it drives the escape wheel, a gear with specially designed gear

teeth, to rotate. The pallet is a gear that is used to control the mainspring's rate of unwinding

via the escape wheel. The motion of the pallet is driven by the oscillator. Through precise

interlocking of the pallet and escape wheel teeth, each successive oscillation of the pallet

allows the escape wheel to advance by an angle corresponding to a single gear tooth. The pallet

has two locking faces and two impulse faces, as shown in Figure 5.2 (a). When a locking face of

the pallet is in contact with an escape wheel tooth, the escape wheel is held stationary and

prevented from rotating. As the pallet continues its rotation, an impulse face of the pallet

comes into contact with an escape wheel tooth and the escape wheel becomes free to rotate.

As the escape wheel rotates, it pushes against the impulse face of the pallet, and the elastic

energy released from the spring gets transferred through the escape wheel and the pallet to

the oscillator. This event is called an impulse. The motion of the components of an escapement

mechanism is illustrated in more detail in Figure 5.2 (b).

The incremental rotations of the escape wheel allow the mainspring to correspondingly

unwind by only a small increment with each pallet oscillation. Adjusting the period of the

80



oscillator, the size of the gears and the spacing of the teeth on the escape wheel provides a

means of controlling the rate at which energy is released from the spring. The small boost of

energy that the oscillator receives from the spring during each impulse replaces the energy it

lost to damping during that period. Models of clock escapements show that if the frictional

losses and the driving force of the impulses are constant, then the oscillator will maintain

motion with a constant amplitude over an extended period of time and be stable to external

disturbances [116, 117]. The regular motion of the oscillator results in motion of the pallet and

incremental rotations of the escape wheel that also remain regular over time. The small,

periodic rotations of the escape wheel allow a mechanical watch or clock to keep accurate

time. The ability of the escapement to carefully control the rate of energy release from a

mechanical spring has motivated its implementation into the power source design.
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Figure 5.2: (a) Diagram of a deadbeat escapement showing the impulse faces and locking faces
of the pallet. (b) Stages of an escapement mechanism. Step 1: An impulse is taking place on the
left pallet tooth. The pallet is rotating in the clockwise direction about its pivot. As the escape
wheel rotates clockwise, the green escape wheel tooth pushes against the left impulse face of
the pallet. Step 2: The impulse is finished as the yellow escape wheel tooth catches the right
locking face of the pallet. The escape wheel is locked and cannot rotate, while the pallet is free
to oscillate. Step 3: The escape wheel remains locked, and the pallet has reached its maximum
oscillation amplitude. Step 4: The escape wheel is still locked as the pallet changes direction and
rotates counter-clockwise. Step 5: An impulse is taking place on the right pallet tooth. As the
escape wheel rotates, the yellow escape wheel tooth pushes against the right impulse face of
the pallet. Step 6: The impulse is finished as an escape wheel tooth catches the left locking face
of the pallet, preventing the escape wheel from rotating. Step 7: The escape wheel remains
locked, and the pallet has reached its maximum oscillation amplitude. Step 8: The escape wheel
is still locked as the pallet changes direction to rotate clockwise. Following this step, the process
returns to Step 1. The images in the figure are modified from [115].

5.2. System architecture

The energy storage element implemented in the conceptual power source is a spring made

of CNTs. The results of Chapter 3 indicate that energy can be stored with high density in

bundles or groupings of bundles of SWCNTs stretched in axial tension, so this is the form of

spring chosen for the model. The spring is modeled as a defect-free grouping of aligned, parallel
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SWCNTs densely packed into an ideal hexagonal lattice, with a stiffness of 1 TPa and ideal

strength. The groupings are assigned microscale diameters and lengths ranging from the

microscale to a few millimeters. The length and diameter of the SWCNT groupings are adjusted

in the model to vary the amount of energy stored in the spring. All groupings are assumed to be

composed of continuous CNTs that span the entire length of the grouping. Van der Waals

interactions between the tubes are assumed to give the assemblies ideal properties, and

excellent load transfer is expected between the SWCNTs so that all tubes can be loaded to a

uniform stress. While combining deformation modes may be more practical and compact in an

actual device, loading in pure tension is a simple and useful representation of energy storage in

a CNT spring for an analytical model.

A generator is needed to convert the output work from the spring into electricity. Different

types of microscale generators have been previously fabricated, including MEMS electrostatic

[113], magnetic [109], and piezoelectric [110-112] generators. The disadvantages of

electrostatic and magnetic generators are high-speed rotating components and a relatively high

level of operation and fabrication complexity. Piezoelectric generators have a small number of

moving parts, an energy conversion efficiency as high as 80% [118], and the ability to operate at

the microscale [110, 119], and they can be represented analytically using simple models. These

reasons have motivated the selection of a piezoelectric generator for the model. The

implementation of the piezoelectric generator in this application is similar to vibrational energy

harvesters that use resonating piezoelectric cantilever beams to generate electrical power [110,

111]. The main difference between the present application and energy harvesters is that here

the mechanical energy comes from a spring rather than from vibrations in the environment.

The form chosen for the piezoelectric generator is a unimorph cantilever beam, consisting of a

base made of elastic material and a top piezoelectric layer. The unimorph operates in 31 mode

to enable large displacements.

The conceptual design presented here employs components that are chosen for simplicity

of operation and ease of modeling rather than for microfabricatability. The design can

therefore shed light on how such a unit cell would operate, but should not be viewed as a

blueprint for microfabrication.



The design of the conceptual power generating unit cell is shown in Figure 5.3. The spring is

a grouping of bundles of CNTs connected between a right-handed screw and a left-handed

screw. In this conceptual model, the attachments between the CNT grouping and the end of the

screws are considered to be sufficiently strong to withstand the force from the fully stretched

spring without fracture occurring at the points of attachment. The attachment is assumed to

evenly distribute the load among all tubes within the grouping. Energy is stored in the system

by rotating both screws at once, stretching the CNTs in pure tension. Two screws with opposite

handedness are used so that the linear extension and contraction of the spring can be

converted into a rotation without applying torsion to the spring. An escapement mechanism is

implemented to control the release rate of energy from the spring using an escape wheel, a

pallet, and a pair of cantilevers as the oscillator. In this design, the escapement is the coupling

mechanism between the storage element and the generator since its purpose is to convert the

energy released from the spring into a form acceptable for input into the generator. Once the

spring is fully stretched, the energy is stored in the system by latching the two screws in place

to prevent them from both rotating and translating. To discharge the energy from the spring,

the latching on the screws is changed so that the screws can translate but still cannot rotate.

This latching mechanism allows the escape wheel to spin while preventing the screws from

doing so. The force from the spring acting on the screw threads of the escape wheel drives the

escape wheel to spin. As the escape wheel spins, the spring contracts. Without any additional

mechanisms, the escape wheel would accelerate and release all of the energy from the spring

in a single burst. The role of the pallet is to control the rotations of the escape wheel. The

motion of the pallet is driven by the pair of identical cantilever beams that oscillate at their

resonant frequency and have a phase difference of 180 degrees. As the pallet oscillates, it

alternately locks the escape wheel in place and then allows it to rotate by a small increment.

The interlocking motion of the pallet and escape wheel is the same as the motion described in

Figure 5.2 (b). The escape wheel is locked in place when an escape wheel tooth is in contact

with a locking face of the pallet. As the pallet continues its oscillation, an escape wheel tooth

comes in contact with an impulse face on the pallet, and the escape wheel is free to rotate.

When the escape wheel rotates, it transfers elastic strain energy from the spring through the



pallet to the cantilever beams. The energy received by the cantilever beams during each

impulse allows the beams to maintain oscillations with large amplitudes over an extended

period of time despite damping losses that would otherwise cause the oscillations to die out

rapidly. The two cantilevers are coated by a film of piezoelectric material with patterned

electrodes above and below it. The structure of a piezoelectric bender that operates in the 31

mode is shown in Figure 5.4. A mechanical stress in the cantilever beam in the 1 direction

induces a voltage in the 3 direction. As the cantilevers oscillate, the piezoelectric layer converts

the stress in the beams into electrical energy. The electrical energy is removed from the system

using the electrodes contacting the piezoelectric material.
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Figure 5.3: Schematic diagram of a conceptual power generating unit cell in (a) front view and
(b) isometric view.
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Figure 5.4: Unimorph piezoelectric cantilever beam operating in 31 mode.

The system is designed to be reversible. In the normal mode of operation of an escapement,

a moment acting on the escape wheel in the clockwise direction drives the motion of the pallet.

However, if it is the pallet that is driven instead, the oscillations of the pallet drive the escape

wheel in the counter-clockwise direction. Referring to Figure 5.4, in the charging mode of

operation, an alternating voltage applied in the 3 direction to the piezoelectric cantilevers

induces alternating tensile and compressive stresses in the 1 direction, which drives the

cantilevers to oscillate. The oscillations of the cantilevers drive the motion of the pallet, which

er



in turn rotates the escape wheel in the counter-clockwise direction. This operation stretches

the spring and puts energy into the system for storage. Unimorph cantilevers have been chosen

for the design for their ability to have large displacements, which is useful in the discharging

mode of operation. In the charging mode of operation, large forces as well as large

displacements are needed for the cantilever beams to overcome the forces from the spring, but

piezoelectric bending actuators typically can generate only small forces [120]. The maximum

forces required of the cantilever beams and the required applied voltages needed to reach

these forces to fully stretch a spring will be examined in more detail in the system model.

In practice, the escapement and screws would not literally be implemented in a microscale

device, though they could be built at the millimeter scale. The screws here represent a

mechanism to convert linear motion to angular motion with frictional losses. Screws have been

included in the model for their analytical simplicity, to facilitate a study of the overall system's

operating range and performance, but would be replaced with a MEMS mechanism with

comparable functionality in an actual implementation.

Although some of the fabrication challenges in the design can be remedied by appropriate

design choices, such as the elimination of screws from a MEMS-scale system, others are

fundamental to the device. First, CNTs can be manipulated individually using atomic force

microscope probe tips, but simple and reliable techniques for aligning and manipulating CNTs

on a large scale are still needed. Second, a strong method of attaching the ends of CNTs to a

structure is required for the CNT spring to reach high strains without the point of failure being

the attachment site. A third challenge will be creating defect-free CNT assemblies that can

reliably and uniformly reach the maximum strains reported to date in experimental work on

individual CNTs, as well as extending these limits to approach the theoretically predicted

strains. The mechanical properties of CNTs are highly sensitive to defects and impurities which

reduce their strength, so CNTs of consistently high purity and low defect density are needed. A

final challenge will be to design and successfully implement a small, high quality support

structure that carries the load of the stretched CNTs. The structure must be both large enough

to carry the load of the CNTs and fabricated with high enough quality to avoid premature

failure. While large support structures can be built with relative ease, smaller, high quality



support structures have less of a detrimental impact on overall energy density but present

significantly greater fabrication and cost challenges.

The size of the system is flexible. The device can be built at a size scale that is most

conducive to system performance, ranging from the microscale to millimeter scale, or above,

assuming that sufficiently long CNT springs are available. The system's performance at a range

of size scales has been studied using simulations.

5.2.1. Escapement Design

For the design of the escapement mechanism, a dead beat escapement, or Graham

escapement, has been adopted since it is commonly used in pendulum clocks and is well

understood [117]. The operation and geometry of the deadbeat escapement are described by

several sources [115, 121-123]. There are two differences between the deadbeat escapement

found in pendulum clocks and the one implemented here: microscale components rather than

centimeter scale components, and a pair of cantilever beams forming the oscillator to drive the

pallet rather than a conventional pendulum.

First, we will examine the geometry of the pallet and escape wheel in detail. The initial step

is to form the escape wheel. First, a circle of radius R is drawn. The radius of the circle can be

chosen to be any convenient length. A second circle of radius 3/4R is drawn inside the first

circle. A radius of the larger circle is drawn. A line is drawn that forms a 60 angle with the radius,

passing through the point of intersection between the radius and the outer circle. A second line

is drawn that forms a 120 angle with the radius, passing through the same point of intersection.

These steps are shown in Figure 5.5 (a). The two angled lines form the first escape wheel tooth.

To draw a second tooth, a second radius is drawn 120 from the first radius. Once again, two

lines are drawn that make 60 and 120 angles with the radius line, passing through the point of

intersection between the radius and the outer circle. These two lines form the second tooth.

This process is repeated by rotating the radius each time by 120, until 30 teeth have been

drawn. The completed drawing of the escape wheel is shown in Figure 5.5 (b) with construction

lines shown as dotted lines.



Figure 5.5: Construction lines used to draw the escape wheel teeth.

Once the escape wheel has been drawn, the next step is to add the pallet. A line is drawn

through the centre of the escape wheel circle and extended to form a centreline. Two radii of

the circle are drawn perpendicular to each other, at 450 angles to the centreline, above and

below it. A second circle with a radius of R is drawn so that its centre lies on the centreline and

it passes through the two points of intersection between the first circle and the two

perpendicular radii. The centres of the circles are separated by a distance of -2¶R. Two

perpendicular radii of the second circle are drawn to the two points of intersection of the

circles. The lines of all four radii are extended for construction purposes. Next, 8 additional lines

are drawn that are 30 to either side of the four radii and pass through the centres of the circles.

These construction steps are shown in Figure 5.6.
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Figure 5.6: Construction lines for drawing the pallet.

To form the locking faces of the pallet, vertical and horizontal lines are drawn through the

intersections of these extended lines. Next, two more concentric circles are drawn about the

centre of the pallet circle. These two circles have radii lengths of 0.952-R and 1.057-R. A

diameter of the pallet circle is drawn perpendicular to the centreline. Two pallet arm

construction lines are drawn at an angle of 240 to this diameter through the centre of the circle.

An additional two lines are drawn to the right and left of each of the two pallet arm

construction lines at a distance of 0.04R, and it is these four lines that form the pallet arms.

These steps are shown in Figure 5.7.

!11



Figure 5.7: Construction lines to form the pallet

The construction of the deadbeat escapement is complete, and the next step is to remove

all construction lines. The resulting diagram is shown in Figure 5.8. The final step is to finish the

detail on the escape wheel and the pallet. The escape wheel is completed by hollowing out the

centre and adding spokes leading outwards. The completed escape wheel and pallet are shown

in Figure 5.9.



Figure 5.8: Escapement with all construction lines removed.

Figure 5.8: Escapement with all construction lines removed.

Figure 5.9: Completed drawing of a deadbeat escapement.



5.3. Model and Analysis

5.3.1. System Model

Energy is stored in the spring as elastic strain energy. The spring is assumed to be a

grouping of bundles of closely-packed SWCNTs in a hexagonal lattice with a roughly overall

circular cross-section, as shown in Figure 5.10. The spacing between adjacent SWCNTs is taken

to be 0.34 nm. Treating each SWCNT as a hollow cylinder of thickness 0.34 nm using the

continuum approximation, the amount of energy stored in the spring is

U =1EE2AeL, (5.1)

where E is the Young's modulus, e is the applied strain in the spring, Ae is the effective cross-

sectional area of the bundle, and L is the length of the bundle. The effective cross-sectional area

of the bundle is the area that is filled with solid CNT shells, excluding the hollow centre of the

tubes and the space between the tubes,

Ae = rr2k A , (5.2)
Aencl

where r is the outer radius of the bundle, k is a fill factor to account for the spacing between

the SWCNTs in the grouping, A is the cross-sectional area of a SWCNT shell and Aenci is the total

enclosed cross-sectional area of a SWCNT. The model assumes that the spring is made of

SWCNTs in an ideal lattice arrangement as shown in Figure 5.10. The energy in the spring is

rewritten as

U = EE2 r2k A L. (5.3)
2 Aencl

Figure 5.10: Schematic diagram of a CNT grouping cross-section showing each tube as an
equivalent continuum structure.
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A support structure is needed to support the load of the fully stretched spring. The

structure is not shown in Figure 5.3, but its mass can be calculated based on equation (3.15).

The mass of the support structure is given by

S= Eax k A Lpsupp (5.4)
asupp Aencl

where E is the Young's modulus of the CNTs in the spring, Emax is the maximum strain applied to

the spring, asupp is the yield stress of the support structure material, r is the radius of the spring,

L is the length of the spring, and supp is the density of the support structure material.

The spring is connected on each end to a screw. When a strain of e is applied to the spring,

the spring exerts a force Fs = EAe on the two screws, as shown in Fig. 19. This force is

distributed over the whole area of the screw threads. When energy is being stored in the

system, the screws are in equilibrium and the latches apply forces FL= Fs to hold the screws in

place.

FL <

FL < Fs

---- FL

----- FL

Fs- I -- F,

Figure 5.11: Equilibrium forces acting on the stretched spring and the screws.

Once the latches are removed, the two forces FL are removed and the system is no longer in

equilibrium. A mechanism is applied to prevent the screws from rotating, but they can still

translate. Since the screws cannot rotate, the only way for the spring to contract is for the

escape wheel to rotate. The force from the spring is distributed over the area Athread of the

threading in the threaded hole in the escape wheel, as shown in Figure 5.12. Square threaded

screws are assumed in the model. The screws have a pitch I, mean screw diameter ds and



perimeter tr-ds, as shown in Figure 5.13. Figure 5.14 shows a single unrolled thread of the

threading along the hole in the escape wheel with the forces acting on the thread [124]. The

net axial force acting on the entire thread surface due to the spring is F, and N is net normal

force from the screw threads acting on the escape wheel threads. The coefficient of friction

between the screw threads and the threading surface of the escape wheel hole is p and the

frictional force opposing the motion is Ff. P is an applied force needed to overcome friction and

cause the escape wheel to rotate.

Fs
*1Atd dE

Figure 5.12: The force from the spring is distributed over the area of the threading in the
threaded hole of the escape wheel.

Figure 5.13: Diagram of the square threaded screws used in the model showing the pitch and
the mean diameter.
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Figure 5.14: Free body diagram of the forces acting on a single unrolled thread of the threaded
hole in the escape wheel [124].

For the system in Figure 5.14 to be in equilibrium,

SF. =-F1 +Ncos+uNsin 0 = 0 (5.5)

Fr = uN cos - P - N sin O = O (5.6)

Eliminating the normal force N and substituting in the relation tane = 1/(wrds)

P F=rd'u- = EASe (rdU-/) (5.7)
Mi., + #l M, + ul

When the pitch is large or the coefficient of friction is small, P becomes negative. In this case,

the escape wheel will rotate without any applied external forces, and a force P acting in the

positive x-direction is needed to prevent the screw from unwinding on its own. When no

external force P is applied, the system is no longer in equilibrium and the magnitude of P

represents the net horizontal force that causes the escape wheel to rotate. For this design, the

escape wheel must rotate without any external effort and a negative value of P is required, so

the condition rrds, < 1 must be satisfied.

The moment acting on the escape wheel from one screw is the product of P and the radius

of a screw, ds/2, the distance between the applied force and the axis of rotation. Since there

are two screws, the total moment on the escape wheel is multiplied by two. During operation,

as the spring contracts, the magnitude-of the moment is a function of the strain in the spring,

M(e) = EA.ed( (5.8)
m0., +'Ul

The efficiency of the screws is equal to the moment on the escape wheel with friction present

divided by the moment on the escape wheel when there is no friction, setting p=O,



77 = (1 -idu) (5.9)
1 scew + ul

A plot of screw efficiency as a function of I/ds in Figure 5.15 shows that a maximum efficiency

can be reached by choosing an optimal value of 1/ds. Both the optimal value of 1/ds and the

maximum efficiency depend on the coefficient of friction. With p=0.05, the maximum efficiency

of 90% occurs at l=3.3ds. A low coefficient of friction is needed to achieve high screw efficiency.

A lubricant applied along the contact area between the screw threads may help to reduce the

friction.

1
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Figure 5.15: The screw efficiency rlscrew plotted as a function of lids with different values of the
coefficient of friction.

The graph in Figure 5.15 shows that a relatively large screw pitch is needed to achieve the

highest screw efficiency. Even with a low coefficient of friction of 0.05, the pitch must be 3.3

times greater than the diameter of the screw to reach 90% efficiency. As the pitch gets smaller

with respect to the diameter, the efficiency drops off rapidly. A small pitch is preferable for

operation of the power source because each incremental rotation of the screw during an

impulse should allow the spring to contract by only a small amount, so that the spring returns

to its original length with more escape wheel rotations. A greater number of escape wheel

rotations results in a longer overall discharge time and provides more control over the rate of

energy release from the spring, since a smaller amount of energy is released from the spring

with each pallet oscillation. As a result, there is a tradeoff when selecting the pitch of the screw,



which should be carefully designed by considering the energy release rate, discharge time and

efficiency that are required of the power source.

A similar analysis of the screws is done to study the efficiency of winding the screws to

stretch the spring. The diagram in Figure 5.16 shows a single unrolled thread of one of the

screws with the forces that act on it [124]. There is a net axial spring force Fs acting on the

entire thread surface, a friction force Ff opposing the motion, a net normal force N from the

threads in the escape wheel acting on the screw threads, and an applied force P needed to

overcome friction and wind the screws. For the system to be in equilibrium, the sum of the

forces in the x- and y-directions is 0. Eliminating the normal force N and using the relation that

tan 9 = 1/(•d.,), one obtains

P= F-(l+ ) (5.10)

The applied moment required to wind each screw is the product of P and radius of the screw,

d, /2. Since there are two screws, the total moment required to wind both screws is multiplied

by two,

(1 +uda,) (l+pl, )M = Fd, = EAls e (5.11)

The efficiency of winding the screws to stretch the spring is equal to the moment required

to wind the screws if there were no friction present, setting p=0, divided by the moment with

friction,

1 (,zd - pl)
wid 1 (d -= iOl) (5.12)

In order to store energy U in the spring, a larger amount of energy U/rlwid must be

supplied to the system due to frictional losses during winding. While the value of 1/ds is chosen

to meet performance conditions during the unwinding phase rather than to optimize winding

efficiency, 77wind can be kept high with a low value of the coefficient of friction.
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Figure 5.16: Free body diagram of the forces acting on a single unrolled thread of a screw
during winding [124].

The fully stretched spring has a starting strain of Emax. During operation, the escape wheel

rotates and the spring contracts until it returns to its original length. For every rotation of

escape wheel of 2nr radians, the spring contracts by 21, where I is the pitch of the screw

threading. The strain E in the CNT grouping during operation is a function of the angle 6 that

the escape wheel has rotated:

61 01
E = Emax for - < Emax, and E = 0 otherwise, (5.13)

nL 7rL

where L is the unstretched length of the spring. At any time during operation, the number of

times that the escape wheel has rotated is 0/(2nr). The total number of escape wheel rotations

for the spring to unwind completely is EmaxL/( 21).

The next step is to model the escape wheel, pallet and cantilever beams. The geometry of

the pallet and the two cantilever beams is shown in Figure 5.17. The pallet arms have length R.

The cantilevers are placed underneath the pallet arms and contact each arm at its midpoint. In

the neutral position, the tips of the cantilevers contact the pallet at a vertical height of ho and a

horizontal distance of b, from the centre of rotation of the pallet. In the neutral position, the

pallet arm forms an angle 60 with the horizontal axis so that bo = cosOo and ho = sinOo.
2 2

The design requires that the pallet and the cantilever tip displace together so that the

cantilever drives the motion of the pallet. Maintaining a connection between the pallet arm and

the cantilever tip is also important so that the cantilever can receive the impulses from the

pallet on both the upward and downward motion of the pallet. When a pallet arm is moving

downwards, it will press down on the tip of the cantilever beam, constraining the cantilever tip

to move with the pallet. When a pallet arm is moving upwards, an additional component is

L< >15ý



required to constrain the tip of the cantilever to move with the pallet. Such a component

requires careful design in an actual implementation, but in this conceptual model it is

represented by a small block on the underside of the pallet arm placed below the point of

contact in the neutral position. The angle of displacement of the pallet with respect to its

neutral position is denoted O8(t) and the tip displacement of the cantilever beam is denoted

x(t), where both are functions of time, and these two variables are related with a simple

approximation. Using the geometry of Figure 5.17, the pallet angle and cantilever tip

displacement are related by

Op(t) = tan - 1 (ho+x(t) (5.14)kbo

(a)
Pallet/' K

fhoh,o o+O

Centre of rotation I. bobo

(b)

Cantilever x

Figure 5.17: (a) Geometry of the pallet. (b) Diagram showing the geometry and connection
between the pallet and the cantilever beams, the pallet angle Op and the cantilever
displacement x.
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Together, the escape wheel, pallet and cantilever beams form a mass-spring-damper

system. The spring functionality is provided by the two cantilever beams. Damping in the

system is a result of mechanical losses and the piezoelectric conversion of energy from the

mechanical to the electrical domain. The overall damping coefficient is modeled as a sum of the

mechanical damping coefficient b,, and the electrical damping coefficient be. The mass

functionality comes from the inertia of the cantilevers, pallet and escape wheel. Finally, the

spring provides the driving force in the system which is transferred to the mass through the

escape wheel mechanism.

Each beam is modeled as a tip loaded cantilever. The cantilevers have length L, height H and

33width W. The effective mass meff of each cantilever is calculated as mft =- 1 i,,,, where
140

mbeam = p- LWH is the actual mass of the cantilever beam and p is the density of the material

EWH3

of the cantilever. A spring constant of k = E is assigned to the cantilevers, where E is the
4L-

Young's modulus of the cantilever material.

The three free body diagrams in Figure 5.18 show the forces acting on the escape wheel,

pallet and cantilevers while an impulse is taking place. As defined previously, Op is the angle of

rotation of the pallet with respect to its neutral position and x is the vertical displacement of

the cantilever tip. 0, is the total angle of rotation of the escape wheel with respect to its

starting position prior to the release of the spring. During an impulse, a tooth of the escape

wheel pushes against the impulse face of the pallet, and the contraction of the spring drives the

escape wheel to rotate. The pallet and escape wheel both rotate by an angle of 60 during an

impulse, by design of the escapement. The escape wheel and pallet are constrained to move

together, so they must have the same angular velocity and acceleration. In the free body

diagram of the escape wheel, Ex and Ey are the reaction forces at the escape wheel's pivot at

point E. M is the moment driving the escape wheel to rotate due to the spring. Fp is the normal

force exerted by the pallet on the escape wheel tooth. In the free body diagram of the pallet, Px

and P, are reaction forces at pallet's pivot at point P, Fp is the force exerted by the escape wheel

tooth on the pallet impulse face, and Fcl and F2 are the forces exerted by the cantilever beams
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on the pallet. In the free body diagram of the cantilever, Fj1 is the force exerted by the pallet on

the cantilever and Fk and Fb represent the damping and spring forces acting on the cantilever.

Escape wheel Pallet Cantilever

Figure 5.18: Free body diagrams showing the forces acting on the escape wheel, pallet and
cantilevers during an impulse.

The following equations are obtained from the free body diagrams:

Wheel: X MR = -F,,R cos45+M = Iw w (5.15)

R R
Pallet: I M, = FpR cos 45- F ---- F2 -= 1, ,2 2

Cantilevers: F, = -kx - (bM + be)x- Fcl cos(,, + 9Op) = mff (5.17)
(5.17)

Since the escape wheel and pallet have the same angular velocity and acceleration during an

impulse, 8, = O,, and 0, = 0,,. Combining these three equations, the equation of motion of the

escape wheel, pallet and cantilevers during an impulse is:

cos(0, + 0, )
meff 2+(b,, +be)k+ kx = [M - (I,. + Ip,)9,

R (5.18)
where 9, (t)= tan-' (h )-_

A locking phase occurs between impulses. During a locking phase, an escape wheel tooth is

in contact with the locking face of the pallet, so that the escape wheel cannot rotate. The free

body diagrams in Figure 5.19 show the forces acting on the escape wheel, pallet and cantilevers

102

(5.16)



during this phase. The reaction force Fp on the escape wheel tooth from the locking face of the

pallet produces a moment that balances the moment on the escape wheel from the spring so

that the escape wheel is locked in place and prevented from rotating. The force from the
escape wheel tooth on the locking face of the pallet acts in the direction of point P, the pallet's

pivot, so this force has no effect on the pallet's motion. It is assumed that the effects of friction

between the escape tooth tip and the locking face of the pallet are negligible in the simplified

analysis. During this phase, the escape wheel is fixed in place while the pallet and the tip of the
cantilever beams displace together.

Escape wheel Pallet F, Cantilever

Figure 5.19: Free body diagrams showing the forces acting on the escape wheel, pallet and
cantilevers between impulses.

The following equations are obtained from the free body diagrams.

Wheel: MR =-F,,R+M = 0
(5.19)

R RPallet: 1M, = F,R cos90-F 2 Fc2 (5.20)
2 2 (5.20)

Cantilevers: F, =-kx-(b, +be)i- F,, cos(O8 + 0,)= mefx (5.21)

Combining these three equations, the equation of motion of the pallet and cantilever during
the locking phase is:

meffV + (b,,, + b,)i + kx = -I, s( +P) (5.22)
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where9o(t)=tan-(ho+ x(t)) 30 - and , = 0.

With this particular escapement design, an impulse will take place for - 3" < ,, < 3". For

9,, > 3"and 9,, <-3", the escape wheel is locked in place and the pallet oscillates freely. To

summarize, the motion of the pallet is described as

m'V+(b,,, +b,)c+kx=-,, cos(O,, +9,,) U(cos(,, + ,,)(523)
me,. +(b,,, +b)l+kx= 9 + U(9,,) [M - 1, R (5.23)

R R

where U(Op) = 1 for -3" < 0, < 3", and U(Op)=0 otherwise.

The moment of inertia of the pallet Ip and escape wheel I, are needed to implement the

model. Both components are given a depth of d. The mass of the escape wheel is approximated

as

m w = pr[R2 - (0.75R) 2 ]d 1 4 + p4r[(0.75R)2 - (0.625R)2 ]d, (5.24)

and the moment of inertia of the escape wheel is modeled as

I
I, = -m,[(0.75R) 2 + (0.625R)2], (5.25)

2

where p is the density of the material of the pallet and escape wheel and R is the outer radius

of both the escape wheel and pallet. To calculate the moment of inertia of the pallet, it is

separated into two components: the two pallet arms, each with a mass of

mrp = pR .0.08Rd , (5.20)

and the two pallet teeth, with a mass of

mp2= 1/15pn[(1.05R)2 - (0.95R) 2 ]d. (5.26)

The total mass of the pallet is mp = 2mp2 + mp2. The moment of inertia of the pallet is modeled

as

1 11
I, = 2- m, R2 + -- m,,p2[(1 .05R 2 ) -(0.95R2 )]. (5.27)

3 15 2

The total mass of the device is sum of the masses of the CNT spring, pallet, escape wheel,

cantilever beams, screws and the support structure. The percentage of CNTs by mass in the

overall system is the mass of the spring divided by the total mass of the device.
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The frequency of operation of the system f depends on the effective mass and spring

constant of the cantilever beams, the moments of inertia of the pallet and escape wheel and

the mechanical and electrical damping in the system. An exact value of the system's frequency

is generated by the Simulink model.

Damping can vary considerably depending on the load driven by the piezoelectric generator

and the detailed structure of the beam. To capture the effects of these differences, ranges of

damping coefficients are considered. The mechanical damping bm cannot be known precisely

without measuring the performance of the actual system, but it can be approximated using

values for the quality factor of cantilever beams reported in the literature. The electrical

damping coefficient be is calculated as

be =2m ew (5.28)

where

wk 2
e= wk (5.29)

jw 2 +1/(RLC)2

is the electrical damping ratio [111], C is the capacitance of the piezoelectric layer, RL is the

external load resistance, and w is the angular frequency of the cantilever oscillations. The

electromechanical coupling factor k31 is expressed as [111]

k2  d 2  

(5.30)

k3 = 31 (5.30)
8 33s 11

where d32 is the piezoelectric constant, ET, is the dielectric constant and sE is the mechanical

compliance of the piezoelectric material. The capacitance of the piezoelectric layer C is

calculated from

C- = E A'  (5.31)
t

where Ap is the area of the piezoelectric layer and t is its thickness. The electrical damping

coefficient be depends on the parameters of the electrical circuit and the load driven by the

generator, so a suitable circuit can be designed by choosing an appropriate load resistance to

adjust the value of be. A range of values for the electrical damping coefficient is considered by

varying the magnitude of the load resistance RL driven by the piezoelectric circuit.
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Using a simplified model for piezoelectric power generation [110, 111], the electrical power

generated by a single piezoelectric cantilever beam is equal to the power removed from the

mechanical system due to the electrical damping,

P blb .i (5.32)
2

Since there are two cantilever beams, the total output power of this device is multiplied by two.

The total energy extracted from the system using the cantilever beams over the duration of

operation is

ten 1

E = 2. b, -2dt (5.33)

Models of clock escapements show that if the frictional losses and the driving force of the

impulses are constant, then the oscillator will settle down to have constant amplitude and be

stable to external disturbances [116, 117]. In this device, the driving force on the cantilevers

will decrease linearly with time since it is linearly dependent on strain, so the amplitude of the

cantilever oscillations will vary over time.

Once energy is stored in the spring, three main sources of losses reduce the amount of

energy that can be extracted from the system: the frictional losses in the screws, losses

inherent to the escapement mechanism, and losses in the piezoelectric energy conversion.

Additional losses to friction in the system may be present but have not been included in this

conceptual model. The overall efficiency of the system q is expressed as the total energy

removed from the system by the piezoelectric cantilevers divided by the starting energy in the

spring U:

2. f -61 idt

] = U-""- (5.34)
U

To run the system in reverse and wind the spring, a voltage is applied to the piezoelectric

cantilevers to drive their oscillations. For a unimorph cantilever subject to an applied external

force F at the tip and an applied voltage V, the tip displacement 6 is [120]

6 = aF + bV (5.35)

106



where

4s~1 L3  AB+1a = (5.36)Wt 3 1+4AB+6AB 2 +4AB 3 +A2 B4

b = 3d 3 1 L2  AB(B+1)
t2  1+4AB+6AB2 +4AB 3 +A 2B 4

A=Em , B= , L is the beam length, W is the beam width, tm is the thickness of the
Ep tp

cantilever substrate layer, tp is the thickness of the piezoelectric layer, Em is the Young's

modulus of the substrate layer and Ep is the Young's modulus of the piezoelectric layer. For the

pallet to drive the escape wheel, the cantilevers must be able to displace a known distance 6

while supporting a large force applied to the tip of the beam acting in the opposite direction.

The largest force that the cantilever beam must generate to fully recharge the system is

Fc,max = m5' (5.38)

where Mmax is the moment on the escape wheel with the fully stretched spring. As the spring

becomes stretched, the voltage required to drive the pallet will increase over time as the strain

in the spring increases, up to a maximum voltage Vmax once the spring reaches its highest strain.

The maximum voltage required to displace the cantilever tip by 6 while supporting a load Fc,max

is

Vmax = S+aFmax (5.39)
b

5.3.2. Design constraints

All of the parameters in the design must be selected prior to running a simulation. The

overall scale of the system is flexible and dimensions can be selected accordingly. Parameters

can be adjusted to meet a particular specification, such as efficiency, operating frequency or

magnitude of energy storage. The choices that must be made include the dimensions of the

screws, cantilevers, pallet and escape wheel, the materials of all components, the composition

and size of the spring, the friction in the screws and the mechanical and electrical damping. The

complete list of parameters is given in the Matlab file parameters.m in Appendix 2. While the
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design does allow some degree of flexibility in terms of parameter selection, a number of

constraints apply to the parameters to obtain acceptable performance and proper functioning.

A good guideline when selecting the dimensions of the escape wheel, pallet and cantilevers

is to keep these components small relative to the size of the spring to maintain a high

percentage of CNTs in the system for high overall energy density.

Stresses in the device should not lead to the fracture of any component. The highest

stresses are found in the cantilever beams and escape wheel gear teeth, and these stresses

must not exceed the yield stress 0, of the material. If the maximum tip displacement of the

cantilever is 6, then

3 HE
3max -- 23 6 (5.40)
2 L

2

which must be less than the yield stress. Each gear tooth of the escape wheel is modeled as a

cantilever beam with a length Lt of R/4, a width Wt equal to the thickness of the escape wheel,

and a height Ht of nR/40. The largest force Fp,max applied to the tip of a tooth occurs during the

locking phase at the start of operation when the spring is fully extended. The maximum stress is

found at the base of the gear tooth and has a magnitude of

6L, EA,emaxd , (trd, l + l) (5.41)max H , W, R rd , - l

This value must not exceed the yield stress of the material of the escape wheel, and so the

dimensions of the escape wheel, the screws and the spring must be selected accordingly.

Another design constraint applies to the inertia of the escape wheel. The resonance

frequency of the cantilever beams determines the frequency of the pallet oscillations. The

moment from the spring must be able to accelerate the escape wheel from rest to rotate 6

degrees during the time of an impulse. If the inertia of the escape wheel is too large and the

wheel cannot rotate 6 degrees during an impulse, the mechanism will fail because the precise

interlocking mechanism of the pallet and the escape wheel will become unsynchronized. A

small escape wheel inertia ensures proper functioning of the mechanism. Since inertia scales

with the fifth power of the linear dimension of an object, reducing the scale of the wheel is

advantageous. In addition, overall efficiency of the device is reduced because energy from the

spring is needed to drive the motion of the escape wheel and pallet, so keeping the escape
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wheel and pallet small helps to reduce these losses. The degree to which the escape wheel can

be reduced in size is limited by the stresses in the gear teeth, which increase as the escape

wheel gets smaller, for a given magnitude of the impulse forces.

Ensuring that the escape wheel can complete its rotation in the given time can also be done

by keeping the resonant frequency of the cantilevers low. The resonant frequency of the

cantilevers depends on the dimensions and materials of the cantilevers, the escape wheel and

t 140E
the pallet. In the general case of a simple cantilever, the resonance frequency f = 33 p

scales with the inverse of the linear dimension of the cantilever, so a cantilever oscillates faster

as it gets smaller. A similar trend was observed from simulations of this model, with the

resonant frequency scaling roughly with the inverse of the linear dimension of the overall

system. Faster cantilever oscillations give the escape wheel less time to complete its required

rotation during an impulse, so a good design guideline is that once the size of the pallet and

escape wheel have been fixed, the dimensions of the cantilevers should be large within the

scale of the system to maintain a relatively low oscillation frequency. Of course, larger

cantilever beams reduce the energy density of the overall system.

The oscillation frequency of the cantilever beams affects the rate of energy release from the

spring. Two impulses occur during each pallet oscillation, so energy is released twice for each

time period of the pallet. With a frequency in kHz or MHz, energy will be released in a time

scale on the order of milliseconds and microseconds respectively. A slower oscillation

frequency helps to lengthen the discharge time of the spring, which is the purpose of the

escapement and one of the main objectives of the design.

Due to the escapement design, the angle of oscillation of the pallet Op must not exceed 9

degrees. If the angle is above the limit, a pallet tip will collide with the escape wheel and the

mechanism will cease to function. This places a constraint on the oscillation amplitude of the

cantilevers which drive the pallet. The dimensions and material of the cantilevers must be

chosen so that their oscillation amplitude is acceptable for a given set of impulse forces and

mechanical and electrical damping. Large cantilevers with higher stiffness are needed to handle

large impulse forces from springs with large diameters. A smaller screw pitch can reduce the

magnitude of each impulse force, but this is done at the expense of efficiency.
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The cross-sectional area of the spring should be large relative to the scale of the device to

maximize energy storage. The spring must have a sufficiently large diameter so that the energy

released during an impulse is capable of driving the escape wheel and the pallet. However, a

larger cross section means more energy is released in a single impulse, and the magnitude of

this energy is constrained by the limits on the oscillation amplitude of the cantilevers. A larger

cross-section also means higher stresses on the escape wheel gear teeth. The size of the spring

must be carefully chosen as a compromise between these constraints.

The diameter of the screws is chosen to be on a scale compatible with the rest of the

system. The choice of the pitch is a tradeoff between efficiency and performance. For a

coefficient of friction of 0.05, the maximum efficiency of 90% occurs at I = 3.3dm. A smaller pitch

has a lower efficiency but it offers more escape wheel rotations, smaller increments of energy

released in each impulse, more impulses, and a longer discharge time, all desirable

performance characteristics.

These constraints combine to create a set of interdependent parameters that are restricted

to a relatively narrow range of acceptable values. All of the conditions must be met for the

escapement mechanism to function properly.

General steps are recommended for selecting the dimensions and materials of a device. The

first step is to choose the general scale of the system. Next, the length and diameter of the

spring are chosen. The diameter and depth of the escape wheel are selected to be compatible

with the diameter of the spring. The size of the escape wheel must be sufficiently small so that

it can be driven to rotate by the spring without too much energy loss, but large enough that the

stresses in the gear teeth do not exceed the maximum allowable stress. The screw diameter

and pitch are chosen as a compromise between efficiency and regulation of energy release.

Finally, cantilever dimensions and materials are selected so that the cantilevers are sufficiently

large to drive the motion of the pallet, have an acceptable oscillation amplitude under the

impulse forces from the spring, and have acceptable maximum stresses.
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5.3.3. Simulink model

The simulation is set up in Simulink using equations to model each of the components of

the system: the CNT-based spring, the escape wheel, the pallet, and the cantilever piezoelectric

generators. A sample input file containing the parameters for the model, parameters.m, is

found in Appendix 2. The Simulink model unitcell.mdl is shown in Appendix 3.

5.4. Simulation Results

Simulations are run for systems at different scales to determine the effect of scaling on the

stored energy, operating frequency, power output and efficiency. Three cases are presented

here of systems that are designed at the micron-scale, the submillimeter-scale and the

millimeter-scale, with all dimensions scaled by a factor of 10 in each case. The parameters for

each system have been chosen to optimize energy storage, efficiency, overall percentage of

CNTs by mass and discharge time while meeting the constraints outlined in section 5.3.2. The

dimensions of the three systems are listed in Table 5.1. The operation of the submillimeter-

scale device is presented in detail as an example to illustrate the device's operation and

demonstrate how energy is released from such a system.

In all three cases, the spring element is taken to be an assembly of 1.36 nm diameter

SWCNTs with ideal packing, so that k=91% and A/Aenci=0.64. The length of each SWCNT is

expected to span the entire length of the spring. A maximum initial strain of 6% is applied to

the spring in each case.

The material chosen for the cantilever beams and the escape wheel is silicon carbide

because of its high stiffness. The material chosen for the pallet is silicon because stresses in the

pallet are not limiting and silicon has a lower density than silicon carbide. The material

properties of silicon and silicon carbide are listed in Table 5.2. The piezoelectric material is

assumed to be PZT, and the piezoelectric properties used in the model are d3l =171x10 -12 m/V,

E33=1.505x10-12 F/m, and s1,=16.4x10 -12 m2/N. The piezoelectric coupling coefficient k31 is

calculated to be 0.344.

Appropriate values of the mechanical damping coefficient b,m are selected by considering

mechanical damping coefficients that yield quality factor Q values of 24 and 200, values that
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have previously been reported in the literature for cantilevers used as piezoelectric generators

[118, 125]. The corresponding values of bm are listed in Table 5.3. The electrical damping

coefficient be is varied by considering a range of values for the load resistance RL.

The pitch and diameter of the screws are scaled so that screw,=0.4 7 in all three cases, using a

coefficient of friction of p=0.05. Depending on the scale of the system, the screws are not

realistic structures for actual implementation, but they provide a reasonable analytical stand-in

for a more practical linear-to-rotational coupling mechanism.

Table 5.1: System dimensions

Micron-scale Submillimeter-scale Millimeter-scale
CNT grouping diameter 3 pm 30 pm 300 pm
CNT grouping length 80 pm 800 pm 8 mm
Screw pitch 3 pm 30 pm 300 tpm
Screw diameter 10 pm 100 pm 1 mm
Escape wheel and 30 pm 300 pm 3 mm
pallet thickness
Escape wheel radius, 50 pm 500 pm 5 mm
pallet arm length
Cantilever length 400 pm 4 mm 4 cm
Cantilever width 80 pm 800 pm 8 mm
Cantilever height 20 pm 200 pm 2 mm

PZT thickness 0.5 pm 5 pm 50 pm

Table 5.2: Material properties of silicon and silicon carbide [94-96]

Young's modulus Yield stress Density
Single crystal silicon 160 GPa 120 MPa 2300 kg/m 3

Single crystal SiC 450 GPa 450 MPa 3400 kg/m 3

Table 5.3: Mechanical damping coefficients bm corresponding to Q=24 and Q=200.

Micron-scale Submillimeter-scale Millimeter-scale
Q=24 0.00004 kg/s 0.004 kg/s 0.4 kg/s
Q=200 0.0000045 kg/s 0.00045 kg/s 0.045 kg/s
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5.4.1. Submillimeter-scale case

To demonstrate how the unit cell works, the operation of the submillimeter-scale device is

presented in detail. The spring is a 800 pm long, 30 pm diameter grouping made of 1.36 nm

diameter SWCNTs. Filled shells constitute 58% of the volume of the spring. An initial strain of

0.06 is applied to the spring and the stored energy is 5.93 x 10-4 J. For the spring to return to its

unstretched length, the escape wheel must rotate 0.8 times. The angular displacement and

angular velocity of the escape wheel are plotted against time in Figure 5.21. The graphs show

that the rotation of the escape wheel is marked by a series of rapid 6 degree rotations during

an impulse followed by a longer period with no displacement during a locking phase. The

discharge of the spring is complete once the escape wheel completes 0.8 of a rotation, or 5.02

radians, as shown in Figure 5.21 (a). Energy is gradually released from the spring during each

incremental escape wheel rotation.

The graph in Figure 5.22 shows the oscillations of the pallet over time, using damping

parameters of bm=0.004 kg/s and be= 0.01 kg/s in this case. The oscillation frequency is 19.4

kHz. As required, the pallet angle does not exceed 9 degrees. The pallet begins with no

oscillation since the cantilevers start from rest, and the pallet oscillation amplitude grows

rapidly as energy is transferred to the cantilever beams. As operation continues, the amount of

energy transferred to the cantilevers with each impulse drops as the strain in the spring

decreases, and so the amplitude of the pallet oscillations drops as energy is lost to damping.

The red curve is added to the plot to show the escapement phase in relation to the pallet angle.

When the pallet angle is between -3 and 3 degrees, an impulse is taking place, and the red line

has a value of 1 or -1. The escapement is in the locking phase when the pallet angle is between

3 and 9 degrees or -3 and -9 degrees, and this is denoted by a value of 0 in the red line. After

1.2 ms, the spring has discharged completely, the escape wheel stops rotating, and no further

impulses occur. The cantilevers continue to oscillate until all of their energy is dissipated to

either mechanical or electrical damping.

Average power output is defined as the average electrical power output during the

discharge time, with the discharge time taken to be the time for the electrical system to reach

95% of the total converted energy. The plot of output power vs. time is shown in Figure 5.23,
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showing that power output is uneven over time because of the nature of the energy transfer

from the spring. The plot in Figure 5.24 shows the converted energy by the piezoelectric

generator as a function of time. For this device with bm=0.004 kg/s and be= 0.01 kg/s, the

discharge time is 1.02 ms and the average power output is 0.088 W.
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Figure 5.21: (a) Angular displacement and (b) angular velocity of the escape wheel over time.
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Figure 5.24: Electrical energy converted by the piezoelectric cantilevers as a function of time for

the submillimeter case, with bm=0.004 kg/s and be= 0.01 kg/s. The time for the electrical system
to reach 95% of its total converted energy is 1.02 ms, as shown on the graph.

The output energy and power from the piezoelectric cantilever beams depend on both the

mechanical and the electrical damping in the system. In this case, be= 0.01 kg/s corresponds to

a load resistance RL of 440 kW, and the total output energy is 8.98 x 10-5 J, from Figure 5.24, for

an overall efficiency of 15%. Efficiency and average power output are plotted as a function of

load resistance for two different values of the mechanical damping coefficient in Figure 5.25.

The efficiency approaches 18% with a Q of 24 and 22% with a Q of 200. Average power output

reaches 0.11 W and 0.13 W with a Q of 24 and 200 respectively. As expected, greater

efficiencies and higher average power output can be reached with greater values of Q.

20

-015

• 10

n
0 5 10 15 20 25 30

(a) Load Resistance (MOhm)

116



120

100

E 80
0
0- 60

40

20

n
0 5 10 15 20 25 30

(b) Load Resistance (MOhm)

Figure 5.25: (a) Efficiency vs. load resistance and (b) average power output vs. load resistance

for the submillimeter-scale case.

The support structure is considered to made of silicon carbide, with its properties listed in

Table 5.2. Using equation (5.4), the mass of the support structure for the spring is 1.5 x 10-7 kg.

In contrast, the mass of the spring is 7.25 x 10-10 kg. The mass of the support structure is

considerably larger than the mass of the spring because the silicon and silicon carbide used in

the design have not been specified as single crystal materials, so the strengths of these

materials listed in Table 5.2 are lower than the strengths previously reported in Table 3.1. Once

the mass of the escape wheel, pallet, cantilevers, screws and support structure are taken into

account, the percentage of CNTs in the device by mass is 0.015%. The cantilevers are the largest

structures, and contribute most to the total mass of the system.

The maximum stress on the escape wheel gear teeth is 363 MPa and the maximum stress in

the cantilever beams is 338 MPa. These two stresses are high because they are the limiting

constraints on the size of the escape wheel. The size of the escape wheel can only be reduced

as long as these two stresses do not exceed the yield strength limit of 450 GPa for silicon

carbide.

Finally, the reversibility of the device is considered. At the maximum strain in the spring, the

moment acting on the escape wheel is Mmax=1.12 x 10-4 Nm. To fully wind the spring, the

displaced cantilever must be able to generate a force of Fc,max = 0.317 N, based on equation

(5.38). A pallet oscillation amplitude of 8 degrees corresponds to a maximum pallet tip
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displacement of 6=44 pm. Using equation (5.39), the voltage applied to the piezoelectric

material required to generate both a force of Fc,m, xand a displacement of 6 is Vmax=1. 6 kV.

5.4.2. Results for three size scales

The operating parameters for all three cases are shown in Table 5.4.

Table 5.4: Operating parameters for devices at three scales, with Q=200

Micron-scale Submillimeter-scale Millimeter-scale
Applied strain 0.06 0.06 0.06
Energy storage 6 x 10-7 J 6 x 10-4 J 0.6 J
Operating frequency 192 700 Hz 19 400 Hz 1906 Hz
Max overall efficiency 22 % 22 % 22 %
Average power output 0.0013 W 0.13 W 13 W
Discharge time 0.1 ms 1 ms 10 ms
Mass of the spring 7.25 x 10-13 kg 7.25 x 10-10 kg 7.25 x 10-7 kg
Mass of the support 1.5 x 10-10 kg 1.5 x 10-7 kg 1.5 x 10-4 kg
structure

Mass of the escape 2.3 x 10-10 kg 2.3 x 10-7 kg 2.3 x 10-4 kg
wheel
Mass of the pallet 3.5 x 10-11 kg 3.5 x 10.8 kg 3.5 x 10-s kg
Mass of the 4.4 x 10-9 kg 4.4 x 10-6 kg 4.4 x 10-3 kg
cantilevers
Mass of the screws 2.6 x 10-12 kg 2.6 x 10-9 kg 2.6 x 10.6 kg
Percentage of CNTs by 0.015 % 0.015 % 0.015 %
mass
Maximum cantilever 4.4 pm 44 pm 440 pm
tip displacement 6
Maximum moment on 1.12 x 10-7 Nm 1.12 x 10-4 Nm 0.112 Nm
escape wheel Mmax
Maximum stress in 363 MPa 363 MPa 363 MPa
gear teeth
Maximum stress in 338 MPa 338 MPa 338 MPa
cantilever beams
Voltage required to 157 V 1 570 V 15 700 V
recharge

Since energy stored in the spring is proportional to volume, energy storage scales with the

cube of the linear dimension. Operating frequency scales inversely with the linear dimension of

the system. Both the scaling of energy storage and operating frequency favour the use of larger
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scale systems. Lower operating frequencies are generally preferred for this type of system

because they provide the escapement mechanism with more control and produce longer spring

discharge times.

The results in Table 5.4 show that maximum stresses in the gear teeth and the cantilever

beams are scale independent, as expected based on equations (5.40) and (5.41) since all

dimensions have been scaled by a factor of 10. The overall percentage of CNTs by mass is

0.015% at all three scales. This low result was obtained because the components coupled to the

spring are far larger than the spring itself. While this result is lower than desired, it is the

highest value that could be obtained within the limits of the constraints of the problem, which

indicates the difficulty of obtaining a significant composition of CNTs in the overall device. The

principal limiting factors were the stresses in the cantilever beams and escape wheel teeth,

which dictated that the cantilever and the escape wheel had to be much larger than the size of

the spring for the forces acting on them to be manageable.

Figure 5.26 (a) and Figure 5.27 (a) show plots of efficiency vs. load resistance for the micron-

scale and the millimeter-scale cases. In both cases, overall efficiency approaches 18% with a Q

of 24 and 22% with a Q of 200, just as in the submillimeter-scale case. The same magnitude of

load resistance is required to achieve the highest efficiency in all three cases. These results

indicate that efficiency is unaffected by the scale of the system within the limits of this model.

The results here should not be taken as the maximum achievable efficiency but rather as the

efficiency that can be realistically expected based on a preliminary examination of this type of

system.

Average power output vs. load resistance is plotted for the micron-scale and the millimeter-

scale cases in Figure 5.26 (b) and Figure 5.27 (b). Power reaches 13 W in the millimeter-scale

case, 0.13 W in the submillimeter-scale case, and 0.0013 W in the micro-scale case. Energy

scales cubically with the linear dimension and the discharge time scales linearly with the

dimensions, so as expected power output scales with the square of the linear dimension. High

load resistances are required to reach the highest power output levels.
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Figure 5.27: (a) Efficiency vs. load resistance and (b) average power vs. load resistance for the

millimeter-scale case.

In terms of reversibility, the voltage required to drive the cantilever beams to recharge the

systems scales linearly with the overall scale of the system, with 157 V, 1570 V and 15700 V

required for the micron-scale, submillimeter-scale and millimeter-scale case devices

respectively. These voltages are high and largely infeasible, although they can be lowered by

using thicker layers of piezoelectric material. The high voltages needed to recharge the system

favour a micron-scale or smaller system for this particular configuration of piezoelectric

material. To avoid needing to apply such large voltages, the devices could be intended for single

use only or recharged to strains in the springs lower than the 6% applied here. While the

piezoelectric unimorph is useful as a generator, it may not be the most practical actuator for

recharging the system since unimorphs can generate large displacements, but only small forces.

As a result, alternative actuators or motors should be considered for recharging the system,

though they would add considerable more complexity.

5.4.3. Submillimeter-scale case with a long spring

The lengths of the CNT springs used in the previous simulations were 80 pm, 800 pm, and

8mm for the devices at three different scales. These lengths were chosen to reflect the current

state of technology available for growing CNTs, which are typically grown to lengths no longer
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than several millimeters. No long, macroscale assemblies have been built to date that

demonstrate a stiffness of 1 TPa and strains as high as 6%. However, it is assumed that the

technology for fabricating individual CNTs and high quality assemblies of CNTs will continue to

progress so that high quality, much longer springs will be available in the near future. One can

neglect the current constraints of CNT technology to examine the results that can be obtained

using more optimistic dimensions for the CNT springs.

The simulation for the submillimeter-scale case is rerun using the same parameters listed in

Table 5.1, but changing the length of the spring from 800 pm to 50 cm. In this case, the energy

stored in the spring is 0.37 J. For the spring to return to its unstretched length following an

initial strain of 6%, the escape wheel rotates 500 times. The discharge time of the spring is 3s,

for an average power output of 0.12 W. Comparing these results to the results of the

submillimeter-scale device with a spring length of 800 pm indicates that power remains

unchanged but discharge time increases significantly. Efficiency remains unchanged at 22%. The

higher energy storage and longer discharge time indicate that the use of longer springs is

advantageous.

The mass of all of the components in the design are listed in Table 5.5. The mass of the

spring, the support structure and the screws are different than in Table 5.4. The mass of the

screws have increased to accommodate 500 rotations instead of 0.8 rotations. The mass of the

support structure increases since it must support a longer spring. The mass of the remaining

components are unchanged. The percentage by mass of CNTs in the device is 0.46%, an

improvement over the previous result of 0.015%, but still a low value. With the longer spring,

the mass of the overall system is dominated by the mass of the support structure, rather than

the mass of the cantilever beams, as was previously observed. The support structure is now the

limiting component to achieving a high percentage of CNTs by mass in the system, illustrating

the importance of using very high quality material to build the support structure. If the strength

of silicon carbide of 450 MPa used in the calculation for the mass of the support structure is

replaced by the strength of single crystal silicon carbide, with properties listed in Table 3.1 and

a strength of 21 GPa, then the mass of the support structure becomes 2 x 10-6 kg, and the

overall percentage of mass of CNTs in the system becomes 5%, a far more encouraging result.
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limeter-scale device with a 0.5 m long spring

Mass of the spring 9.1 x 107 kg
Mass of the support 1.9 x 10-4 kg
structure
Mass of the escape 2.3 x 10-7 kg
wheel
Mass of the pallet 3.5 x 10-8 kg
Mass of the 4.4 x 10-6 kg
cantilevers
Mass of the screws 3.3 x 10-6 kg

5.5. Discussion of results

The current work to model a portable power source provides only an early-stage

mathematical proof of concept design; it is not yet optimized for performance or

manufacturability. At all three size scales presented here, the CNT-based energy storage

element occupies only a small fraction of the mass and volume of the total system because of

the power-regulating and energy conversion hardware. The model indicates that such a system

can be used to first store and subsequently release and convert the stored energy to the

electrical domain, but does not show that a complete system can be engineered that maintains

high overall energy density. However, the model is a useful tool to study the implementation

issues associated with building a power source based on CNT springs.

The results of this work indicate that energy storage, operating frequency, efficiency,

discharge time and power all scale well with size, leaving flexibility in the choice of the overall

size scale. Higher power output and energy storage levels are achieved at larger scales. The

voltages required to recharge the system using piezoelectric actuation are prohibitively large at

larger scales, indicating that an alternative type of motor should be implemented for recharging

a system with dimensions of millimeters or above.

The inclusion of the generator and the escapement added considerable complexity and

mass to the system. While both perform useful functions, the resulting fraction of CNTs in the

system ranging from 0.015 - 0.5% is too low for implementation in an actual device. Further
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work is needed to design an optimized system that provides power regulation and energy

conversion without significantly affecting the energy density of the overall device.

The design of this conceptual power source has highlighted that an important challenge of

working with CNT springs is managing their forces. For their size, the forces from the springs are

large and tend to overwhelm other structures coupled to the spring. Since there are no

materials with properties to match those of CNTs, the only way to build structures that are able

to interact with a CNT spring and handle its forces is to make these structures much larger than

the spring. In this design, the forces on the escape wheel teeth were a limiting factor, so the

diameter of the escape wheel had to be much larger than the diameter of the spring. Increasing

the size of the coupled extraction hardware significantly reduces the energy density of the

overall system, losing the energy storage advantage of CNTs. The system's design has

demonstrated the challenge of designing a complex power source that maintains the high

energy density of the spring.

Alternative design paths can be pursued to obtain higher energy densities. One option is to

build all coupling structures from the highest quality materials such as single crystal silicon

carbide or single crystal diamond to limit the energy density losses. A shortcoming of this

particular design was that it tried to match the scale of the spring to the scale of the rest of the

hardware, which proved to be difficult. Rather than match the scale of a single spring to the

scale of the generator, it is possible to couple a large number of smaller springs, with smaller

applied loads, to a single generator. The springs can be triggered to release sequentially so that

the forces on the coupling mechanism and generator are manageable. In this way, the fraction

of the system composed of CNTs can be high without overwhelming the rest of the coupling

structures. Alternatively, eliminating the power-regulating hardware would be suitable for

power systems that can utilize uneven power levels. Eliminating the conversion hardware

would be appropriate for applications that require input power in the mechanical domain. Both

options would simplify the design of the power source and increase the volume fraction of the

CNT-based energy storage element.

The design of only a single unit cell has been presented here. Further work should address

the design of a larger power source made from an assembly of a large number of unit cells that
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are triggered to release in parallel or sequentially to customize the level of power output and

overall discharge time.
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6. Conclusions and Future Work

The concept for a highly promising new method of energy storage using carbon nanotubes

has been presented. An examination of the capabilities of CNT super-springs for elastic energy

storage has been motivated by extensive experimental and theoretical studies of the

mechanical properties of CNTs that have revealed nanoscale structures with a remarkable

combination of high stiffness, strength and flexibility. The ability of CNTs to sustain tensile

strains of 6% and potentially as high as 20% in a reversible manner indicates that mechanical

springs based on these structures are likely to surpass the current storage capabilities of

existing steel springs. Considering the spring element alone, calculations predict the energy

density of CNT springs at the highest applied strains to be three orders of magnitude greater

than that of steel springs and almost ten times greater than the energy density of

electrochemical batteries. Once practical considerations are taken into account, such as the

need for a support structure or additional extraction hardware, the energy density of a power

source containing a CNT spring will be lower than the calculations predict for the spring

element alone. However, even when a support structure is taken into consideration in energy

density calculations, a CNT spring can still store energy with a density more than two orders of

magnitude higher than a steel spring and on the same level as batteries. CNT springs

incorporated into a power source may offer a viable alternative to batteries because of their

predicted high power density, ability to store energy without self-discharge, potentially infinite

lifetime, and ability to operate in extreme temperatures.

Models of CNTs as continuum structures under different deformation modes were used to

estimate the energy density that can be reached in CNT springs. Loading was applied in tension,

compression, bending and torsion. The assumption was made that a spring should not be

loaded past its buckling limit to ensure reversible energy storage. As a result, tension offers the

most promise for high density energy storage because tensile strains are limited only by the

elastic limit of the material rather than the buckling limit. Calculations of energy density in CNTs

under combined loadings have shown that there is little to gain in terms of energy density by

combining two or more deformation modes. However, it is likely that the best choice of loading
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for a spring will be a combination of two or more deformation modes so that a spring can be

built that is compact and can integrate well with the rest of the architecture of a power source.

Energy density estimates indicate that SWCNTs are best suited for energy storage. Poor load

transfer between shells of a MWCNT limits the effectiveness of these structures for energy

storage. The radial deformation of SWCNT cross-sections due to van der Waals interactions

from other nanotubes or a substrate suggests that SWCNTs with small diameters, ideally 1 nm

or smaller, would be best for springs. Since SWCNTs naturally occur in bundles, the springs

should be composed of dense groupings of bundles of SWCNTs with spacing between tubes

that approaches the ideal spacing of 0.34 nm.

The conceptual design of a portable power source was presented to study how energy can

be stored in the elastic deformation of CNTs and subsequently released as an electrical output.

The power generating unit cell design is composed of a CNT-based spring, an escapement

mechanism to regulate the energy release from the spring, and a piezoelectric generator to

convert the released mechanical energy into the electrical domain. A model of the power

source was generated as a tool to study the operation of the system at different size scales and

assess the potential utility and challenges associated with building such a device. Modeling

results of systems at different scales indicated that energy storage, power output and overall

efficiency scale well with size, leaving some flexibility in the choice of the size scale for the

system. A support structure, generator and escapement mechanism all contributed useful

functionality to the power source, but their added mass and volume resulted in a system that

was composed of only a small fraction of CNTs by mass because of limitations inherent to the

design. The current model is an early-stage design that indicates only that energy can be stored

and released from a spring in a controlled manner using a coupling mechanism and generator.

It does not yet demonstrate the extent to which systems can be engineered to maintain high

overall energy density. Optimizing the fraction by mass and volume of CNTs in the power

source should be the main focus of subsequent designs.

The presented models indicate that CNT super-springs show significant potential, but

additional experimental research is still needed before a spring can be fabricated and

incorporated into a power source. Future work should focus on building and testing CNT

127



springs. Assumptions are made throughout this work that large groupings of CNTs can achieve

ideal stiffness and strength. In reality, many macroscale assemblies, such as yarns and mats,

demonstrate mechanical properties inferior to those of individual CNTs and would be

inadequate as a medium for energy storage. High quality macroscale SWCNT assemblies are still

needed that display a high degree of alignment, near-ideal packing density, strong interactions

between adjacent tubes and good load transfer. Forests of CNTs grown using CVD are

promising starting materials for super-springs because of their long lengths, close-packing,

organized structure and parallel alignment. Further progress is needed in CVD synthesis and

purification techniques to grow high quality, millimeter-length forests of SWCNTs with ideal

stiffness and strength. Densification techniques using capillary forces and mechanical pressure

have already demonstrated that it is possible to increase the density of as-grown forests, and

these densified structures are expected to display excellent mechanical properties. Subsequent

work should be done to further develop the densification techniques to build aligned groupings

of SWCNTs with graphitic spacing that can have a range of diameters and lengths. Fabrication of

springs should focus on groupings in which SWCNTs span the entire length of an assembly, for

shorter springs, as well as on longer groupings of discontinuous SWCNTs with high contact

surface area between the tubes to ensure excellent load transfer. The development and testing

of strong attachment methods, using either epoxy or strong covalent bonding to silicon, is

essential to ensure that applied loads are distributed evenly throughout an assembly and that

springs can be loaded up to near their elastic limit. Finally, work in mechanical characterization

and modeling is needed to determine the effect of packing density, inter-tube spacing, tube

diameter, defect density, twisting, contact lengths and load transfer on the measured stiffness

and strength of bundles. The results of this work will provide valuable information about the

behaviour and properties of macroscale assemblies and help to identify the best structure and

configuration to maximize energy storage in CNT springs.
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Appendix 1
Optimization of energy density for multiple deformation modes

function [] = optimize_energy_density()

% This function takes a maximum compressive stress and maximum
% tensile stress and computes the maximum strain energy density that is
% possible in the structure by varying values of sigma_zz and tau_ztheta.
% Principal stresses sigmal and sigma2 are varied over their allowable
% range to find the optimized objective function.

% Parameter definition
E=1e12; %A
G=450e9; %A

sigmac = -50e9; %A

sigmat = 100e9; %A

Young's modulus
Shear modulus

Limiting compressive stress
Limiting tensile stress

% Radius of failure envelope circles for tension (r2) and compression (rl)
rl = abs(sigmac/2);
r2 = sigmat/2;

% X-coordinate of left and right intercepts between tangent line and
% tensile and compressive failure envelope circles
xlim_comp = -2*rl*r2/(rl+r2);
xlim_tens = 2*rl*r2/(rl+r2);

% Define range of principal stresses
sigma2 = sigmac:.le9:0;
sigmal = O:.le9:sigmat;

% Initialize variables
track_sigmal=0;
track_sigma2=sigmac;
track tau ztheta = 0;
max energy = 0;

% Dimensions of the CNT
diameter = 1.36e-9;
n=1;
ro = diameter/2+0.17e-9*n;

% sigmal at max energy density
% sigma2 at max energy density
% tau_ztheta at max energy density
% Maximum energy density

% CNT diameter
% number of shells
% outer radius
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ri = diameter/2-0.17e-9*n;
ratio_tension = (roA2-riA2)/roA2;
ratio_tors = (roA4-riA4)/roA4;

% Begin computation

for i=l:length(sigmal)
for j=1:length(sigma2)

centre_x = (sigmal(i)+sigma2(j)) /2;
peak_y = (sigmal(i)-sigma2(j))/2;

% inner radius

% center of current sigmal, sigma2 circle
% max tau of current sigmal, sigma2 circle

% Check if sigmal, sigma2 combination is admissible
if ((centre_x <= xlim_comp & peak_y <= sqrt(rl^2 - (centre_x+rl)A2) )) I (( peak_y <= ( (r2-

rl)/(2*sqrt(rl*r2)) * (sigmal(i)+sigma2(j))/2 + sqrt(rl*r2) & centre_x>=xlim_comp &
centre_x<=xlim_tens)) I (centre_x >=xlim_tens & peak_y <= sqrt(r2^2 - (centre_x-r2)^2)))

% Compute energy density of current sigmal, sigma2 values and
% compare it to the previous maximum
sigmazz = sigmal(i)+sigma2(j);
tau_ztheta = sqrt(-sigmal(i)*sigma2(j));
energy = 1/(2*E) * sigmazzA2* ratio_tension + 1/(4*G)*tau_ztheta^2* ratio_tors;
track_energy(i,j) = energy;

if energy>max_energy
max_energy = energy; % max energy density to date
track_sigmal = sigmal(i); % sigmal at max energy
track sigma2 = sigma2(j); % sigma2 at max energy
track_tau_ztheta = tau_ztheta; % tau_ztheta at max energy
track_sigmazz = sigmazz; % sigmazz at max energy

end;
else

track_energy(i,j) = 0; % Not an admissible sigmal, sigmal combination
end;

end;
end;

% Print results
max_energy
track_sigmal
track_sigma2
tracktauztheta
track_sigmazz

% Maximum energy density found
% sigmal value at maximum energy density
% sigma2 value at maximum energy density
% corresponding tau_ztheta value at maximum energy density
% corresponding sigmazz value at maximum energy density

137



% Convert sigmazz and tau_ztheta back into principal stresses, for verification
sl = track_sigmazz/2 + sqrt(track_sigmazzA2/4 +t ra ck_tau_ztheta ^ 2)
s2 = track_sigmazz/2 - sqrt(track_sigmazzÂ2/4+track_tau_ztheta^ 2)

% Compare resulting energy density value with energy density of pure tension
compare = 1/(2*E) * sigmatA2 * ratio_tension

% 3D Plot of resulting energy density over range of sigmal and sigma2 values
mesh(sigma2,sigma l,track_energy)
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Appendix 2
Input file parameters.m for Simulink model unitcell.mdl

% Model parameters

strain_max = 0.06;

% Material properties
E_Si = 160e9;
rho_Si =: 2330;
sigma_Si = 7e9;
E_SiC = 450e9;
rho_SiC = 3400;
sigma_SiC = 21e9;

% CNT dimensions
CNTdm = 30e-6;
LengthCNT=800e-6;
A_CNT =: pi*(CNTdm/2)^2;
E_CNT=lel2;

% maximum strain applied to the spring

Young's modulus of silicon
density of silicon
strength of silicon
Young's modulus of silicon carbide
density of silicon carbide
strength of silicon carbide

% diameter of the spring
% length of the spring
% cross-section of the spring
% CNT Young's modulus

% Elastic energy stored
U = 1/2 * E_CNT * strain_max^2 * A_CNT * LengthCNT * 0.91 * 0.64

% Screw dimensions
1=30e-6;
dm=100e-6;
m u=0.05;

% screw pitch
% diameter of screws
% coefficient of friction of screws

% Unwinding screw efficiency
screw_efficiency = (pi*dm)/l*(I-pi*dm*mu)/(pi*dm+mu*l)

% Number of escape wheel rotations for the screw to unwind
rots_to_unwind = strain_max*LengthCNT / (2*1)

% Escape wheel parameters
Length Escape=300e-6;
douter=1000e-6;
dinner=douter*3/4;
router=douter/2
rinner=dinner/2;

% length of escape wheel
% outer diameter of escape wheel
% inner diameter of escape wheel
% radius outer of escape wheel, length pallet arm
% radius inner of escape wheel
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mass_wheel = rho_SiC*pi*((0.25*(router^2 - rinnerA2))+((0.75*router)A2 -

(0.625*router)A2))*LengthEscape % mass of the escape wheel
inertia_wheel=1/2*mass_wheel*((3/4*router)^2+(5/8*router)^2) % wheel inertia
moment_wheel_noeps = E_CNT*A_CNT*0.64*0.91*dm * (-pi*mu*dm+l)/(pi*dm+mu*l);
bo=router/2*cos(pi/6)
ho=router/2*sin(pi/6)
x_displacement = bo*tan(38*pi/180)-ho

% Pallet parameters
m l=rho_Si* router*0.08*router* Length Escape;
m2=12/180 *rho_Si* pi*((1.05*router)A2-(0.95*router)A2)*LengthEscape;
m_pallet=2*ml+m2 % pallet mass
I_pallet = 2*1/3*ml*router^2 + 12/180*1/2*m2*((1.05*router)A2+(0.95*router)^2)

% pallet inertia

% Cantilever parameters
L= router * 8 % cantilever length
W = L/5 % cantilever width
h = W/4 % cantilever height
m_beam = 3400*L*W*h; % actual mass of the cantilever
m_eff = 33/140*m_beam; % effective cantilever mass
k = E_SiC*W*hA3/(4*L^3); % cantilever spring constant

% Damping coefficients
bm=0.00045; % mechanical damping coefficient
be=0.001; % electrical damping coefficient
b=bm+be; % total damping coefficient

% Frequency estimates
wo = sqrt(k/m_eff - (b/(2*m_eff))A2);
fo = wo/(2*pi)
calculate_f = 1/(2*pi)*sqrt(k/(m_eff+l_pallet*(cos(pi/6))^4/(2*bo^2)))

% Piezoelectric properties
eps=1.505e-12; % dielectric constant
k31 = 0.344196; % electromechanical coupling factor
C=eps * L * W / (0.5e-6); % capacitance of piezoelectric layer
Re = be/C / sqrt(4*m_effA2*woA4*k31^4-woA2*be^2) % external load resistance
be = 2*m_eff*woA2 * k31^2 / sqrt(woA2+1/(Re*C)A2) % electrical damping coefficient

% Mass of the support structure
mass_Support = E_CNT*0.06/sigma_SiC * A_CNT * 0.91 * 0.64 * LengthCNT * rho_SiC

% Percentage of CNTs by mass
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CNT_density = 2200; % density of CNT spring
mass_CNT = A_CNT*LengthCNT*CNT_density*0.91*0.64 % mass of the spring
mass_Escape = mass_wheel % mass of escape wheel
mass_Screw = 2*rots_to_unwind*I*3*pi*(dm/2)^2*rho_Si; % mass of screws
mass_Pallet = m_pallet % mass of pallet
CNT_percent = mass_CNT / (mass_CNT + mass_Escape + mass_Screw + mass_Pallet +
m_bearn*2 + mass_Support) * 100 % percentage of CNTs
by mass

% Maximum stresses in the cantilevers and escape wheel teeth
delta = 4e-5; % maximum cantilever displacement
largestforce = delta*E_SiC*W*hA3/(4*L^3); % maximum force applied to cantilever
sigma_max = 6*largest_force*L/(W*h^2) % maximum stress in cantilever
Max_stress_gear_teeth = 6*router/4 / ( (router*pi/40)A2 * LengthEscape ) *
moment_wheel_noeps * strain_max / router % maximum stress in escape wheel teeth
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