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CHAPTER I.

THEORY OF SIALL OSCILILATIOIIS.



CHAPTER I.
THEORY OF SMALL OSCILLATIONS.

In fhis study we assume:

(1) that the oscillations are small;

(2) that terms higher than first powers are neglect-—
ed;

(3) that there 1s a force of restitution proportion-
al to the first power of the displacement;

(%) that there is a force of resistance proportion-
al to the Tirst power of velocity;

(5) that the above forces produce an effective
force proportional to the first power of
the acceleration of all the mass of the sys-
temn;

(6) that the state of equilibrium is a function
of the force of restitution, the force of
resistance and the impressed force, and the
final effect is the sum of these three for-
ces, thelr products being neglected since

tile osclllatlions are small.

In synbols the above assumptions can be con-



tained in the equation

a2 x d x
R + 2 8 === +
a t at

-

b.x = 0 vee... (1)

when X denotes displacement, t, time, a and b
are constants. The first term is the effectlve
force; the second term, the force of resistance;

the third .term, the force of restitution.

Physical Derivation of Equation (1).

B

<Y v R I 2
c--_-Lf___J-_?__‘Z

Fig. 1.

Let Fig. 1 represent an oscillating apparatus.
B 1is the support for the coll of spring, to the low-

er end of wihich is attached a welght of mass —g;



slugs. When the spring is deflected, the weight
oscillates hack and fortir in a fluid. Let us

analyze tne motion from the instant when W starts

. dx
downvard. X gets greater and greater and ——-

at
azx -
is positive. But === is negative, the bvody
‘ at -

getting slower in its motion as x increases.
If the stiffness of spring is such that a force of
one pound elongates it h feet, then for x feet

X
the upward force will be 5 rounds, which is the

lmpressed force. By D'Alembert's Principle the

kimpressed force should be equal to effective force,
v 4% x
g at? n
a%x

since - ————- is negative.

N dtz'
w o oa%x 'Y
OI' - 2 + = O s s 0800 (2)

g dat h

At the same time a force of resistance due to the
friction in the fluld is acting in the same direc-
tion as the pull of the spring, veing proportion-
al to its velocity, or X —gf; . Hence we need

~at
to add one more term to equation (2)



———————— +k-—-‘-—~— + -"-"=Oo--.o (3)

Equation (3) can he obtained by the direct
application of D'Alembert's Principle. Tiug if
we put the inertia or effeqtive force dn the left
hand side of the equation, and equate it to the al-
gebraic sum of the impressed forces, we get

Effective force = < impressed forces

= Acting forces - resisting
forces.
Tne acting rorces in this case are zero,

. effective force + resisting forces = 0

v a2 x ax  x
------- $ K o= omme =0
g da 32 at h

W

Dividing through Py ---, Wwe have
g

% gk dx g
— + (=) —— + (——=)x = 0
a2 v dat Wwh
which is identically the same as (1) if we put
g K g

2a = —=—, P = - .
\ . Wn

Equation (3) is capable of being further am-



plified by introducing another term in conse-
guence of the motion of support B 1itself.
Suppose during time ¢t when W has descended X

feet, support B also descends a distance of Yy

feet. Then the real displacement is X - y feet,
and the real upward pull is —-——-—- pounds.
. n
Hence: P
W dx X X-Y
e K e =
g 4t dt h
W 4%k @ @ x
Or ——— —""é + k — + ——— = e » e ( u‘)
g at dt h n

where y may be zero or £ (t).

Equation (3) represents Damped Free Oscilla-
fion, (%) Damped Forced Oscillation. Vhen y
in (%) is zZero, the forced oscillation at once be-

comes Free Osclillation.



beginning at the left , the first texrm is the iner-
tia force due to mass; the second, the damping
force due to friction; the third, the restoring
force due to the pull of the spring; the fourth,
the external force due to thne forcing of the oscll-
lation.

There are four terms in equation (%).
Let us study what will result from omitting some

of these terms either singly or in groups.

dx 4%
(a) -=— =0 --» =0, motion of W = 0.
at at
X y
Spring is merely compressed., ——— = ——
' h h
ox | ax
(p) -=—== 0, X=0, -- = 0, motion of a
h ‘ at _ '

rigid body under the influence of exterxrnal force.

It yesults in the well known formila

42 )
v az% = —éf = Tforce. Tne suring is
g P



of great stiffness, and it moves with the weight

: A x
W as a rigid body by virtue of =—--.

h
ax v
(¢) == = 0, === =0 e have the case of
ét n
| v oacx  x ,
S.H.M. in frictionless medium: + =0
g adt2 h

dx
(d) —--= =0, we have the case of superposed nar-
dat '

monic mdtion in a frictionless medium:

v 4% x ¥
. B S,
g dt n n

(e) wmen all the terms are zero, it represents a

state of rest of a rigid bvody.

We are, however, particularly interested in

3"
one condition, nauely, - = 0. Equation (4)
becomes
¥ a2x dx X
o ‘-'-’é‘(‘k-"""i'*"""‘ = O s 6 0 98 (5)
g at dt h

rhich is the case of Free Oscillations.

Equation (5) is exactly the same as Equation (3)

and can pe put into familiar forau like Equation (1)

by making suitable substitutlon o constants.

THuS é2x ax
' =3 + 2a-- +DbX = O
dt at

7.
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— T — T s e e S it Tt Bt Tt W s O B B B Bt W e it S . B B1rt s

e e S% o o et Sk 40 € e e et e

There 1s a well Xnown analogy between the equa-

tions for linear motlion and those for angular motion.

Linear lotion Angular lotion.

Displa-cenlent D Y X s e as e s resaren 'g

. ax as

VelOCity "5 8888 T —":V -;--u-o.o-o"“:w
at at
a%x a2

Accelera.tiOn s 0000 -“""::a. s s e 08800 "““‘,‘)::d
| at2 = ate
lia.SS sessssevesnne I s e 0080 0 .n-n-.o-. I

Time CREEE I I RN N A ) t P e 0200000 sl t

Displacement ..... x=l/2at2 cesee. B =128

KeBe  vennerennenns 1/2HVE oo, 12 TW2

4% ax :
Hence we infer that what --» + 28-- + DX =0 s frﬂ/
. L 4t at
biicves rcoleon 6wll be L8, 200, 0 20 ---- (€)
for angular osclllatlons. The constants a and ®

contaln m which will be substituted by I accoré-
ingly. That Equation (5) is correct can be prov-
ed vy the direct application of D!'Alembert's Princi-

Ple, the procedure being the same as for the linear



oscillations.
) We shall in fujure make use of Equation (&)
A~ Z? ()
asince the oscillations in this special investiga-
tion are of an angular nature.

Analogy between Mechanical_and

Electrical Oscillations.

Equation (%) gives for mechanical oscilla-

tions

v dsx dx pid y
===yt D= e = e

g at dt - h ., h
But it is well known in electricity that

s

acvy dv v e
L == + Reo= + === = e,

at“ dat X X

Corparing the two equations, we find

\if .
The mass -—-- corresponds with self-induction L.
g

The Triction per foot per second 7D, corresponds
with the resistence R.
The displacement x corrasponds with voltage
vV, V Dbelng a direct function of @ which is the
real electrical displacenment.

The want of stiffness of spring h corre-
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sponds with the capacity of condenser X

The forced displacement y. corresponds with
the forced E.M.F. of an alternator.

Thus the theory of smcll Oscillation is appli-
cable to all forms of oscillatiqﬁ, be it mecnanical,
electrical, etc.

’

Solution of Tquation (6).

Equation (6) is linear, and can be solved

a
with the symbolic method.  Let D denote ——-,
5 : at
a
DQ-—-E y then Equation (6) becomes
at
(D20 + 2aD+D)9 = 0 voueee (7)

The roots of (7) are

The nature of the roots depends upon tile character
of the constants under the radical sign. Tnere are
four cases to be considered.
I. a2 > b, roots. all real, &ll negative

“x‘i) 5T 5
II. a8 = b, Yroots all real, negative, cqual

- Q.- -

")



III. a?<< b roots complex ineglinary
-g+hi,-g-n1
IV. a2 =0 vroots pure imaginary
+ Vfif{}- fo o

In case I, our answer is:

- - %
oot It

6 = A + B e y  ee.. (8)

In case II,

at

2 (A+Bt)e ) ivveen. (9)

H|

In case III,
g = e-gt (Asinnht +Bcosht)..(0)
In case .IV, |
8 = A sin Jot +Bcos/’i>'t, ceneas (21)
Wnere 'A and‘B in 211 cases are arbitrary con-
stants. They can be deternined by tihe conditions
that € =0 when t =0 and %% = We when
t = 0.
The graphs of equations (&), (9), (10), (11)

are shown in Fig. 2.

11,
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Time

Flg. 2.

It is evident both from the equations and
from their graphs that in order that the motion
may be oscillatory, the roots of (7) rust be imag-
inary , compleX Or pure. That 1s, the quantity

under the radlcal sign should be negative
ft“ﬂzaz -b = -c

Conditions of Instability of Notion.

At Gt S B Bt P Bt T S

In the four cases considered, the motions
are all stable. That this 1s so may be showvn by
an inspection of the graphs iﬁ Fig. 2. Wone of
the graphs oxhibits any tendency to increased ampli-
tude with increase in time which 1s the cause of

instabllity.
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This stable condition is obteined vy the as-

sumption that b in

d29 ao
— + 2a-- + D8 = 0
ate : at

is a positive quantity, which renders the roots

of .
D2+ 2aD+Dd = 0

elther negative or imaginary which are crite-
riog - Tor stability. Vhen we agsume ,- and it
does ﬁappen physically,- that b 1s a negative
quantity, then the quantity undexr the radical

will be positive, and the roots are no longer imag—

inary. A real root means non-oscillatory mo-
tion. The roots may e Dboth positive or one
rositive and the other negative. In the foIlmer

cagse the solution of the equation becomes:
ot %y ¢
8 = Ae’ + Be cesaaes (22)
where & and 0(2 are positive roots of the equa-

tion. In the latter case the solution is

3 t
g = Ae " + Be-th.n.“.(lS)

where 48, and - 3, are rocts of the equation.
A and B are arbitfrary constants to be determined.

Bquation (12) shows that the displacenent in-



1Y,

creases with time. Hence it represents un-

stable notion.

Equation (13) may be written

e
~when t 1is large, the second term may be neglect-

ed. Vhen t 1s small, the first term uay be
neglected. The TormeY corresponds to unstable

motion, and the latter stable motion. It 1s

therafore a case of doubtliul stability.

Dependence of Dynamic Stability upon

—— e e o e 4 G B 9t s e S W

Ve have seen that when b 1s positive a

negative quantity under the radical sign,

means - oscillatory and stable mqtion; and that
when b 1s negative, the quantity under the rad-
ical 51gn will always be positive whichh means non-
oscillatory and unstable motion. It is clear
then that the dynamical stabllity depends upon
whether v 1is positive cr negative.

Let us eXamine the meaning of D. Referring



to the original equation

a“ @ ae
----- +2a-—— + DO = 0
a t2 at

we find,paralleling the intervretaetion of the terms
2 W%

d« &
on page 6) =5 representsﬂangular nomentum;,
dt :
a e
2 8 —— damping moment; b &, static restoring
at -
noment. As a matter of fact, ,b O does not

represent static restoring moment alone; 1t repre-
sents the algebraié sum of all static monments

which has © as-a multiplier. The final nunuer-
ical result may be positive or negative. Usually
~we call a static restoring moment positive. | Then
all static upsetting moments will be negative;

It 1s evident that when b & 1s negative, the sum
of static upsetting moment is greater’than the sum
of static restoring moment, which is a condition

of statlc instability. Hence wvhen b 8 1s posi-
tive, i.e., b is positive, the machine is stati-
cally stable. Vnen b is negative, the machine
is statically unstable. But a positive b and

a negative b also account for dynamical stability

15.
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and instability. Hence the dependance of dy-—
namical stability upon static stability.

The preceding discussion only applles to the
case of free oscillation. For forced oscillation
where the forcing and natursl oscillatlions may syn-—
chronize, there may be dynamic instabllity without
static instability.

SWunary .

—— v o S S

The foregoing conclusions may be summarized

in tabular form for reference.
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CEAPTER II.

APPLICATION OF THE THEORY TO THE

STABILITY OF AFROPLANES.
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CHAFTER II.

APPLICATION OF T THEORY TO TIHE
STABILITY OF ..  AEROTLANES

Tne Object of the Investlgation.

The present investigation is undertaken with
a view to determining experimentally certain of the
rotary coefficients necessary for the solution of
differential equations as set fortﬁ in Professor
G. H. Bryan's book "Stability of Aeroplanes™.
In particular, attention was directed towards ob-
taining the damping coefficient due to pure pltching.
. However, the methods developed and the apparatus de-
signed are equally applicable to the determination
of other rotary coefficients where the oscillations

are not of a forced nature.

System of Co-ordinates and Notation.

The system of co-ordinates and the notations

used are the same as that used in British Blue Book

1912 - 1913. Report No. 77, page 1k42«.

*Technical Report of the Advisory Committee for
Aeronautics 1912 - 1913,
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The usual mathematlcal conventions are obsorv-
ed as to signs. Forces are positive when acting
along the positive directlions of the axes, angles

and moments are positive when turming occurs
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or tends to occur from oy to 0z, 0Z to OX,

and ox to oy.

— . e e et B et et e Fa Mt et B M s n ot . - . G St T Gt B o o e Bt e —n o o s —

(Angle & ig exaggerated Tor the sake ol clear-

ness ).

Let Tig. % represent an apparatus for produc-

ing small oscillations.: Tha model of an aero-



Plane is mounted on the top of an upright niece
vhich is rigidly attached to the horizZontal rod.
Tne whole rests on a knife edge, héld down by two
powerful helical springs.

Let the horizontal and vertical pleces ve
axes of x and z, and the angular displacement be
called ©; C De the distance of c.g. of the
whole apparatus from the axis of rotation;

a, a,'the moment arm of springs s, s, 1 the
distonce of force X from axis ol rotation.

Let the apparatus be deflected one way vy
giving it a slight push. A strong restoring mo-
men g8 a will bring it back to 1its original po-
sition. The inertia of the apparatus, however,
carries it further then the original position.

It is Dbrought back again by s a, and carried
Tarther by the lnertia and so on. Thus we ob-
taln & motion of oscillation.

It has been noted that a powerful spring
vas used. This is necessafy in oxrder thnet an
oscillatory motlien can be produced. Tor consicd-

er again the original equation

22.
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a e a8

——— + 28 == + DO = 0
a te é ot

or D2 4+ 2aD+b = 0

the roots of which are - a * V/ag -1 .

Ve must make Db large so that the roots
will be imeginary and the motion osclllatory.
A poweriul spring gives a large D. Wit this,
arrangement e expect the solution of Equation

(6) to come under Case III, page 11, viz.:

6 = o &t (A sin ht + B cos ht)
or what 1s the same thing
6 = ¢ e 8% cos (nt + )

where C and ¥ are arbitrary constants.

s e e ot el s et e i S S

The motion of an aeroplane in space is
three-dimensional. Whatever effect a small va-
riation of one quantity in one direction nas
w1ll also set up variations of different amcunt

in otlier directions.
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Kence X, Y, Z, 1, 4, ¥, are functions of

U, V, W, Py 4, Ty 9, §

ond ¢, which, however,

can not ve expressed in any simple foxm.

For the study of small oscillation such as the

problem in hand, the general expression can be

reduced to tne form:

X

]

]

]

g sin & + Xy + uXy +

-g cos @ sin ¢ + Y,

-g cos & cos D + Z,

Yo

+ P§§P+

+'U.%’
+ pYp
+ uZy
+ DIy
+ uly

+ P13,

+ 1]‘[4?
+ Dlip

+ uiy

+ Dl

+

+

4

+

L

+

4

+

Vip + Bl

Qg

VY

+

+

+

+

TXp ves (14)

w YW
Y. ... (15)
Wy
TZp .vn (26)
Wiy
TLy «o. (17)
Wiky
Ty +00 (18)
au

TNy oee (19)

Zquations (14), (15), (16), (17), (18), and (19)

are obtained by expansioninto iMaclaurin series to

terms of the first order, all terms higher than

Tirst power and all products of first powers are
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neglected. This assumption is fundamental
in Difrferential Calculus.

In the present investigation, Y = 0,
L=0,N=0,g = 0. The aerodynomic force
and moment acting on the model are respectively
X and M. ‘Again with this special arrangement
of the apparatus, p =0, r=0, Vv =0, W= 0.
Hence |

X = Xo +Uky +QXg cveesesecscnssns (20)
COH = My Ul kGl eeeeeeiinnenen (21)
151nce drift = mX
S Drift = mXo + m uX, + n qxq! ceseeenes (22)
Again since pitching couple =m i
S Pitching couple = m Mg + m uly + m qiig (23)

Having simplified so far, let us analyze
‘the forces and couples acting on the model in a
new position of equilibvrium after being displaced
£ to the right, Fig. . The force of the wind
can be resolved into a force of drift and a cou-
ple of pitching. . They are moments acting about
the pivot. To tnis mist be added thie moment

dGue to the down pull'of gravity at c.g. The
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resisting moment is the moment of spring. By
DrAleribert's Priﬁciple,
EfféctivevMoment = Acting Moments -
-  Reslsgting loments

or in symbols | |

a2 ¢ v

I--———-=D1+G+6Wsin8-5Sa..... (24)

a t2
In (24%) I stends for Moment of Inertia in
slug—ft2, D, for driftt; 1, the‘distance from
CeEe of model %o pivot; G, the pitching couple;
¢, the distance of C.G. of whole apparatus to
the pivot; W, the mass of the whole apparatus;
S, the pull in the spring; a, the moment arm of
the spring. Making substitution of (22) for D,
(23) for G, © for sin & since € is very small,
and 8 = 85 +Ka#® where KX 1s the stiffness of
the spring, we obtain

a%g : éw
IE;E = (m Xo+ M uXy+ m @Xg) 1 + (m Mg+Hmd, +#mqify )
+CVWe-8a-Ka2e.... (25)
For initial condition |
mXp 1 + Mg = Sy a

or (MXo L +mip) — Sga = 0 .evvunesnss (26)



R7
subtra eting (26) from (29), there remains
429
I-—- = (m uXu+ m qXq )1+ m Wiyt m qiy
,dt ‘ +CWe-Xa2g.... (27)

Now we ¥now, using 9 iﬁ)

“ e .
- N [ ] L ]

Lo e, W =861, Q=486 Making the sub-

stitution, we have .

16" = (m & 1 Xyt m X)L +m §'1 My+ m 601y

: +CWe-Xa2o..(28)

Collecting terms of &' and 9, w7e obtalin

Ig" = (m 12xu+ m 1l Xq}- m 1l M+ m mq) 8
+(CW=-X2a2)8 ......(29)

Erevious expe'riment’Ae shows thfl'b the value
for,xq is negligible when compared with .
Also from the consideration of horizontal steady
. flight, 15; = 0.  Hence (29) may be simplified
further to | | |
= (m mq+ m 12%\@4- (cw-xa2) (30)

. m M+ mi™ xu X a2 oV
o7 e g ) 4 (——mmmmmme )e=0 ..(31)
I

1
*British Report 1912-1913, page 159.
Xy = - 0.14; Xq = £ 0.05; Mg = - 210.
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' s : ( T ”'3:':-1 'y
et g 1) &0 = ~(ommy +ml¥%i) 8, wnere

‘//43'5' and//égs' stand for dampihg moments of

the apparatus without the model and of the model

alone respectively. Therefore (31) becones,
ae de

putting --—-5 for &%, ———— TOr &',
at< at

[2)
ac e + ) a9 K a~ oV , :
+ %0-{-‘:- — 4 (——m=————) 8 =0 ... (32)

ated 1 at I

which is exactly Siﬁilaf to equatiog (6) page 8.
The solution of (32) falls under Caée III,‘page 11.
It 1s %o be remembered that the apparatus was de-
signed to make the solution of the differential
equation representing the motion of the system,
come under Case III.  Hence the solution of (32)

is

| | (33)°
where C and ¥ are arbitrary constants, the rirst

depending upon fnitial displacement the second de-
pending upon initial velocity. = At the monment
vhen 9 Dbecomes &,, the amplitude of the swing
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veloelty is zero. Rewriting (33), we obtain

Aot A~ - N
- TTTmTTTT t Xa“=CW -
9 =260 2 I cos {K/: _____ (.&9__/?)2)”{-0}
I 21 (34

Meaning of Terms.

4=
0
The expression /-6-‘:—-—4’ is called loga-
2 I
rithmic decrement. The expression
Ka— CW ot ‘
4/ e = (LI Givided 1mto 277
I ‘ 2 I
gives period, l.e.,
27 .
P = - e e e (35)
4/1{8,2 - CW _ (/(AO +/“,>2
I 2 I

Which one to Measure, Logarithmic Decre-

ment or Period.

It 1s very easy to find p and it looks
ag though this is the way to find the coeffi-

cients X and My which are connected with

+h Al N0 = & 2
_“p and e by the rolation/uo-!-/a mify+ ml X
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agssuming that the moment of inertia of the whole
apparatus is Xnown. But the expression in-
volves quantities like X, the stiffness of the
spring, and C, the distance of c.g. of whole appa-
ratus from the pivot, both of which are difricult
toAget, especlally K. |

Turning now to the expression for logarith-
mic decrement, we find that it contains doeffi—

o

cient or _E;_ only which does not involve X
and C. It contains I which must be determined
just as 1I in the expreésion Tor period must bve
deteimined. ‘We see, therefore, there is every
advantagé in making use of the expression for log-
aritimic decrement for the determination of mxu
and mdq. It 1s to be noted that X;; can be de-
termmined vy a static test of a model, and therefore
the only unknown guantities in the expression are
‘mmq and I.

Referring to equation (33), if we draw a
curve through the points of oscillation correspond-

ing with
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l.e., through the highest points, its equation is
_f-~9:2;_ t '
e:eoe 2I ---'--- LI Y (37)
or
*) + ¢
lOge——" = "‘/-0:9 ‘‘‘‘‘ t s e sse v o (38)
e 2 I
o}
. s |
If we plot a curve of loge—-- on the
&
0

time t as base, the slope of the curve wnich is

+
a straight line will give /431974551, from which,
‘ 2 I "

when I is mown, mify can be obtained.

This declsion of observing logarithmic de-
crement 1nstéad of period suggests the design of
an apparatus such és above outlined with the addi-
tiongl auxlliary apparatus to make such observation
possible. In the next chapter, we shall de-
scrivbe the apparatus gnd the manner 1n‘which it

‘was handled to perform an experiment.
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CHAPTER III.

DESCRIPTION OF APPARATUS

AXD METHOD OF EXPERIMENT.

Reguigites of a Good Apparatus;'

The value of (m ¥y +m 12 X,) obtained
from the 1ogarithmic decrement gives theAtotal
damping erfecﬁ of the apparatus and the model,
i.e., o ﬁ/xb). In order to find the damp-
ing of the model, we have to subtract//a&o from
the observed values of the total démping. It
1s clear then, that the smaller the apparatus
damping the gréater the accuracy of the result |
for the model damping. | ‘

Apparatus damping is itself composed of
two items, viz.: <friction damping and wind damp-
ing. To reduce the formér, all pivots were point
_contact pivots; to reduce the latter, parts of the
~ apparatus were shielded. |

- The apparatus must have means for adding a
Inom. moment of inertia to the systenm without dis-
‘Jturbing the position of c.g. either horizontally
or vertically. This.adding or subtracting of

32
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moment of inertia from the system permits the ad-

Justment of long or short period which is very nec-
esséry in view of the fact the oscillations are to
e observed with eyes insteéd of a photographic
plate. | o

The apparatus must have means to indicate
the oscillation in a magnified degree. . A mechan-
ical magnifier, such as a long stick will offer too
mich apparatus damping by the air, and it is also
impossible to obtain a stick of small mass rigid
enough. " We are to use}a,beam of light in place
of a stick to do the magnification.

The apparatus must have means to produce

the oscillationJ'
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The sketeh shows in Fmme views the ar-
réngement of the opperatus for pitehing experi-
menﬁs in the riddle portion of the H;foot wind
tunnel in the Aerodynamic Laboratory of the liassa-
cihiusetts Iﬁstitute of Technology. ’
| On the trumpet of the balance which forms
the vertical axis is screwed a special fitting
vhich gives thie support to two pivot points.
Above the pointé and across tiie tunnel rests a
horizontel bar in well shnaped shallow cavitles.
Tne line joining the two points is the axis of
rotation for the systen. A horizontal rod
5t right.angles to the horizontal bar is secured
to the latter, on vhich are made a number of cav—
ities for the placing of the pointed ends of
hooks attached to the vertical springs vhich
maintain ﬁhe oscillation. The tension in
springs can be adjusted by turning the butter-
1y nuts at the lowver ends of the sprins.

To the two horizontal piéces is rigidly
secured a vertical piece vith such attachment
at its top as to permit the mounting of an aero-

plane model.
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The transverse horizontal bar has a total
refledting mirror at its =nd. A beam of 1light
coning from outside the window through a double
convex spectacle lens from a long filamént incen-
descent lamp is reflected upwards to the glass
ceiling of the tunnel end is received on a piece
of Tine ground glass. When experiments are
performed during day time, it is necessary to
cover‘ﬁhe glass window and ceiling with black
cloth, leaving openings fof the artificlal
light to pass through. The ground glass
screen 1s also enclosed in a dark box. - Vhen
the apparatus rocks about the latefal axls,
l.e.y, 0y , the reflected light is made to de-
viate from its normal or Zero position. The
oscillations are thus exactly reproduced and
indicated on the ground glass screen. Tne an-
gular motion is transformed to linear motion on
the screen which can be observed and recorded.
For this purpose a scale 1s devised whereby the
lin ear displacements can be measured. |

We have referred to the fact that tiie appa-

- ratus should include a device for producing the



37

notion. Tnis 1s accomplished by the bell
crank lever and cord underneatn the floor of

the tunnel, whereby the spring is given a slight
jerk through the chord by the observer on the
top of the tunnel. The spring reacts upon
the épparatus and, upon'releasing, sets the sys-
tem to oscillation, which is a free or natural
one since the supports for the springs are fix-

,ed during the motion.
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Method of Experiment

How to_Obtain Logarithmic Decrement.

The model uSed in this experiment 1s the
model of a viplane hydroplane supplied by a com—
pany. It has a single pontoon, and the engine
and passengers are enclosed in a snort,vblunt,
sudden~-terminating body, to the rear of which is
‘placed a propeller which is, however, absent on
the model. The tall and elevator are carried
at the end of four sticks attached to the rear
struts, sufficlently separated to allow the turn-
ing}of the propeller. The ends of the sticks
are collected two and two vertically, which, when
covered, form a horizontal knife edge, but which
is not covered ih this case. The distance of
the tall from c.g. of the model 1s about 6.5
inches. The machine has a small £ail and a
short lever arm for the tall.

The model is first mouﬁted on tne top of
the upright piecé with the nose towards the wind
and with correct altitude. This arrangement

i8 good for experiments in pitching only.  For
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yawing,with the nose heading the wind as before,
the wings w11l be placed vertical. For rolling,
the presentation and altitude of the model being
the same as for pitching, the whole apparatus
has to Pe turned 90° in the horizontal plane, so
that the rolling will take place about an axis
in the direction of the wind. It is to Dbe not-
ed that this shifting of apparatus necessitates
a corresponding change in the arrangement of
spring attachments and in the optical part of

the apparatus. |
| The model having been mounted in the
manner above described, the springs are then hook-
ed on to the horizontal rods. IT the period
is too rapid, we can do one of the following
things or the combination of thien.
(a) Slacken up the spring.
() Put the hooks closer to ihe axis
of rotation.
(c) liove ocut the Weights on the horizon-
tal rods.
(a) and (b) diminish the restoring moment of the

spring, i.e., make X a2 small in Equation (35).
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M/KaZ - v ey t/*))

I

3
il

resulting in a larger ©D. (¢) increases the mo-
ment of lnertia I in the same equation which af-
fecfs the périod directly.

The zero 1s seen to have changed when the
vind is on. Thig is due to the drift of the

: The txferimentar

wind upon the model. He should not snift the
box to adjust the new zero.  He should signal
to the other person to tighten or slacken the
- spring by turning the butterfly nuts. While
nis assistant is doing that he should watch the
movement of the light till it comes back to the
original zero, and then sisnel to the assistont
to stop. This 1nsures a true zero angle of
incidence of the planes with the \ind.

The danping erfect of the teil is to be
. Investigated at different speeds of the wind,
and the wider the range of speeds the more re-
liable will be the result. This tumnel gives.
a wind of forty miles per hour as the highest

speed. Let us say the speeds are to be Y0,
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35, 30, 25, 20 and 10 niles per hour. It is
preferable that we use the high speed first and-
then slow it dovnm. |

The observer now slgnals to his assistant
to give him a wind of forty miles per hour to be-
giniwith. _ The assistant makes the necessary ad-
Justment for the new zero. The observer then
gives a pull on the cord to set the apparatus to
oscillate, counts the beats; and jots them down.
He repeats the same process for at least a dozen
times while his assistant 1s leeping the wind cohy
stant)and gets a dozen sets of numbers. If
they come out pretty uniform, he need not repeat
any further, He now takes up a stop watch ond
gets the perlod of the oscillation at that speed
of the wind. (see Equation (35).)

He now signals tolhis assiétant to slov
down the wind to a speed previously agreed upon;
‘tells him to make the adjustment of the new zero
since the drift is changed With.change cf wind
speed. Then he does the pulling of the cord,
counting of the beats, and the taking of the pe-

riod as described above. The whole thing 1s
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The Determination of HMoment of Inertia

S i s = G St G v S = Bt T O v e - s S —

of the Vhole Apparatus:

Thus far we have dealt with the problem
of finding the logarithmic decrement. In or-
der thaq//ﬂ? and stz can be determined it is
necessary to eliminate I Dby direct experiment
or by calculation. The latter method is im-
practicable inasmich as the aeroplane model is a
complicated structure and the work is laborious
as well as lnaccurate. ‘

ihere is a well xnown experimental method
of finding the moment of inertia of a body that
 does not admit of geometrical treatment.  The
body is mounted on some oscillating apparatus and
the period of oscillation is observed. The quan-
tities,period and moment of inertia are connected

according to Equation (35)

, 2 77
P = - — -—
¢§aa- O _ (e A2
I 21

' wp *
The correction damping tern (~-5~§ff)2 can be
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neglected since the experiment 1s always periorm-
ed in still alr and apparatus friction is either
Zero or very small. Hence,

| 2 7T ~
p = seces s 00 0 (39)

,\/ Xa2 - CW
I

By adding a known moment of inertia Iy, we get

8 new period,

P1= s ssvs0esvrane (l,’.O)

From (39) and (40) we can rind I provided
'Ka2 - CW does not change in the two experi-
ments, and 1s equal to some unknown constant X
whicii can be eliminated since we have two squa-

tlons for two unknowns X and I. From (39),

4
p2 = L (1)
K
~From (40) .
n
p2 =4 7’2(14-11")‘ s e0 00 00 e ()‘;"2)
1 X

bividing (42) vy (41), we have
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—1 —-—--0-1', ..-out'lioti (LE'B)

I = 1 (—=2) = 1% eees (M)

Tne condition that X¥a2- OW must not
change dur;ng.the two experiments implies the
fact that the setting of the spring must not
change both as to its tension and moment arm;
and further that the adding of fhe norm moment
of inertia I, must not change thé mass of the ap-
paratus nor the vertical position of the c.g.

The first condition is easily met. The second
condition suggests that‘we mst not'intro&uée any
extra nmass from outside into the system, and that
in order not to change the vertical c.g. tilie
shifting weights mist 1lie in the horizontal
plane containing the axis of rotation. Both
are satisfied by'shifting the weights on the hor-
lzontal rods outwards preferably in equal amounts
clthough nét necessary.

h The precauvtion taken for tine constant c.g.

is not absolutely necessary in view of the fact
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that the influence of gravitational moment is
small compared with spring and aerodynamic mo-
ments for small oscillations.

From Equations (%1) and (42) we see that
the period is arffected by the square root of mo-
ment of inertia. It is evident, therefore,
that in oxder to obtain an appreciable difference
in period in the second experiment, we need to
add a large nown moment of inertia. This 1s
done by substituting long arms for the short ones
used in the experiments for logarithmic decrement,
taking care that in doing so we have not introduc-
ed any extra mass into ﬁhe system. By shifting
the original weights on the new long rods to a
good distance outward, we add a large moment of
inertia. Ve must remember that I e m xz,
D ocf/T o yWx, and a changé in X 1is much
mbre powerful than a change In m as far as its

influence on the period is concerned.*

*The statement is only general. m 1is not
permitted to change in this case in accordance with
the restriction stated on page 43.
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Elimination og,Awo

We have on page 28 separated tihe apparatus
damping and the model damping by calling tne for-
mer b and the 1atte€/ﬁw-. It remains for us
to determine the numerical value of o With a
view to determining the numerical value of «~
which may be used for stability calculations after
proper correction for a scale of model and speed
of wind. To do so, we must take away the model
and repeat the experiments of logarithmic decre-
ment and those of moment of inertia, the parts exX-
posed to the wind as well as the mass of the appa-
ratus being different from before. The equation

expressing the motion is similar to Equation (32),

page 28.
i2g de X a’2 - cn
T - )8 =0 ... (45)
ate I' at I

the primes denoting new values of the quantities
when the model 18 off the apparatus. The dif-
fe?ence of (#%+ a+) obtained from the first set
of experiments with the model, ané//aﬁobtained
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Tfrom the second set of experiments without the

model, gives net for the model.



CHAPTER IV,

METHOD OF COMPUTATION FRONM

OBSERVED DATA AND ANALYSIS OF RESULTS.



CHAPTER IV.

METHOD OF COMPUTATION FROM

OBSERVED DATA AND ANALYSIS OF RESULTS.

Data for Logarithmic Decrement

- =t e oy et

when the Model is on.

TABLE I

Common € $

8Cale e e e e e e
log € 6.=7 0 10 20 25 30 35 40
0. gl ; ' mi/nr mi/hr mi/hr mijhr mijhr mi [hr
8- 6-0 600 6-0 5-0 )i‘o)“" )f.O
0.699 5 - - -
17 9 11.0 ‘9.0 1.7 7.4 5.6 .3
0. 477 3 -
18 5 10,6 8.0 7.9 * 6.67? 6.6 e 8
00301 2— T
©27.1 17.4 1%.2 15.0 1h. M 8. 5 7.4
0. 000 1— —-— -
, 0— ” - -
~Period of 0.83% 0.820%0.79% 0.774% 0.74%7 0.73% 0.727
Complete
Swing in
Seconds.
*Interpolated.
46 in Column two are half amplitudes.
+1 Complete Swing = A *— B

Yotei- The values of number of swings are thne aver-
age values of a number of observations as—shown

Cormon logs are used for convenience.

They should be multiplied by 2.30 to get log,.
Period in seconds was obtained with a stop-

watch.

48
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On page 29 we Iind the solution of the dif-

ferential equation to be

Ir we draw a curve through the points of oscilla-

tion corresponding with

Xat- oW . . + o |
cos V/ SRR R — )t o= f,
| I 21

i.e., through practically the highest points its

-

Taking logarithms on both sides, we have

_ A T
1og¢e = - f—g—i-~t + 1ogeeo
If we plot 1og,6 on a base of %, the graph will

+ R
be a straight line and 22924 w111 ve the

slope of the 1line. Chart I éhows the general
disposition of the curves. The ordinates repre-
sent the common log of the half amplitude, and the

abscigsae the number of complete swings which is a
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function of time. A point A on the chart has
the meaning that it takes little over 13 complete
swings to reduce the halil amplitude 7 on the scale
to thie half arplitude 2 on the same scale. Re-
Terring to Tdble I, we find the period of oscil-
lation for 40 miles per hour to bé . 727 second.
Therefore, it takes 13 X .727 = 9.45 seconds for
the wind to damp the motion to 5/7 of what it was.
Tne rate of damping is:

log, 5/7 %8 0 - 108, T _ 2,3(1og 5-log, ,7)

9.5 9.45 9-45
2.3(0.7-0.845) -.33%
9. 45 9. 45
= - 3} %per second.

The following table shows the rate of damn—»
ing in J per second at different wind speeds, vinich
is evidently the tangent of the angles made by the
stralght lines with the axis of abscissae in Chart
I. In calculating the tangent, the sides of the

largest triangle made by the inclined line with the
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For instance, for tanol ,
B E

—

B C
see Chart I - === 15 just as good asg .
( ) C A e & E D

axes have been used.

But the latter is preferred for the reason that

we can measure B E, I D much more accurately

than B C, C A.



Speed of Wind
liiles per Hr.

20 viunan
25 vrrnes
30 curen.

35 virens

1;’0 LR A )

53

TABLE 1II. (See Chart I).

Tan /u +
<80 L7
: 2

2.30 X .8 .
———— e v m e e 5 s s A s O L] 05 );'O
72 X .834%

2.30 X .8

————————— = R 0-01;99
45 X .820

2.30 X -85

——————————— = LI S I B I 3 0.067)’4’
3645 X TN

2.30 X .85

“““““““““““ = s iasdtes 000751;'
33.5 X .77

2.30 X .82

—————————— = sssenes 0.081;‘0
30 X JTH7

2.30 X .80

——————————— = ....--cv00091i“3

26.5 X 734

2.30 X .80
- s W R e S S ey S = LI I N I I Y Ol 1177
21 X .727

LCTK S o G ol s BaS o a ke |

ag 23 +ro _anaad of 11ing
e 3 e - .

T

In saying that tan o is the rate of damp-

ing expressed in per cent per second, we are as-
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+
signing a unit to -——9—~4f:, vhich 1s equal to
‘ 2 I

tan o(,' and whicih is nitherto undefined. That

the unit is correct may be seen from the expres—

108;e 517 .
sion ———=——w—— on vage 51, whichh is similar to
9.45 .
those vnder column of tan o in Table II. The

numerator expresses the ratio of the half ampli-
tudes and fhe denominator expresses the time in
seconds during which this change takes place.

From this 1t is obvious that we are interassted

only in the ratio of the amplitudes and not in the
absolute value of tne individual amplitudes, and
that it 1s immaterial as to the unit of the scale,;
inches, feet, radians, degrees, etc. ™is Tact

- permits changing the scale at will. For eXauple,
the scale for the experiment without model was dif-
Terent from the one with the model.

Reference has been made to the fact that we
were taking the half amplitudes. It is possible
that the two halves are not symmeitrical. In or-
der to edimmak this error, the above exporiment

was repeated and the otner half amplitude was taken.
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The following tables are identical with

Table I, page 49, and Table II on page 53.

TABLE III.

Common €

— v —

To.of Complete Swings at Wwind ol Speed

log & Scale

507 e )

0 10 20 25 30 35 e}
mi/hr mi[hr mi/hr mi/hr mi/hr mi/ar
o__ ______ : e - e e S T T 0 R S e e S S A S D D i Sl oo S S
0.000 ¢ e e e e e et e e e e e e
%7 — 12.8 1%.0 9.8 9.9 10.0
0.301 2 — - — - -
28 —— 805 708 605 601 6-7
S0 477 3 — - —_— ———
31 _——s 9-5 8-8 6-7 607 7-0
0.699 8§ — ———mmmmmmmmm—— e ————————————
A 21 _— 7.5 7.0 5.7 5.0 5.0
0.84" 7 — - - e
' 0.830 —-—— 0.775 0.755 0.74%0 0.700 0.678

Period of
complete '
Swing in
Seconds.

¥Interpolated.
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TABLE IV. (See Chart II).

Speed of Vind +
Milles per Hr. Tan /;—9~~<ft~

O--o-;on- —————————— CRC R 'Y 0-0202
116 X .83

2.3 X .8ls5

20 20 s e s e TmUmSemesmimsasmeme 260 000 000650
38.5 X 775
2.3 X .8U5

25 e s o0 s 000 - T asss e’ 0-069)‘;"
37 X 755
2.% X .8ls

30 288 a9 s TUmTSTITSemsacsames s s e 0 e 0-0920
: 28.5 X .74
2.7 X .8h5

35 e 65088 TUESmEmmImImemecemens= s 20088 0.1010
27.5 X .70

}IIO s e s e e W TUTmTmmesamesece= :-.0-‘ 0.1060

It 1s necessary <o caldulate the moment of
inertia of the apparatus and the model together

as a unit to eliminate I in “——=2--C- shovn

in Table II and IV.
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The distribution of mass is shown in Fig.6,
and the values of Imowvn noront of inertia are given

in Tavle V.
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TARLE V.
Items Ifass in Sliugs %2 in Tt. I in slug-ft2
: - 1“5 2 M
A+ A 0.0523 (--2) 0.005410
12
1.1 o
B + B 0.0161 (==—=) - 0.000135
12
%, <
' 6/12)‘T _
¢+ C . 0.0051 (== 0.000%2)
3
(2)?
D+ D 0.020%  m———— 0.027200
2
o ) 1,’:,"”1‘ o
E"’WAB 3 O- 0062 “““““ O. 00292 !
T 0.0340 = e negliglbly
small.
lodel &
Fitting 0.0323 = ———e—- 70 b~ found.
Total 0.166% slugs = 5.36 pounds.

- St s P18 T > o Bt S S Bt s et S o B e v, Bt et Sy

*me monent of inertia of 2 slender rod about

an axis perpendicular to it at its end is

o

.
whe
b =——, vnere 1 1s the langth of the Tod.
7

]
-
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Let I %De the moment of inertia ol the ap-
paratus and the model together. Then
I-(AA+BB+CC) gives the moment of iner-
tia of thie unright and the model viich are Tixed
in the apparatus. ne valuve of AA, B, CC,
are found in Table V to e

AYA sieieee. 0.005:40

BB .e0eeses 0.000135

CC eivenees. 0.000%24

Total 0.005999 = 0.005 scy
fence, in thé experiment Tor moment of inertia’
vhen A A, BB, C C are removed and longer rods
D D are substituted,and wvhen A A& are no longer
9" zpart but some other dlatance (say 10" in this

exveriment ), the moment of inertia of the system

' o)
- 0.006) + 0.0054% X 45)° + 0.0272
Fixed parts New I of A A I of long rods.
(see Table V) = I + 0.0279.

¥hen in the second experiment A A are fur-
ther removed from tihe axis of rotation (%" apart

in this case), the moment of inertia is, by the
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same Treasoning,

s}
I - Oo 006 + 0-005]{—”- X ( ***** )L- + O- 0272
I of rFixed Parts. " Hew I of AA I of long rods.

~

= I + 0.1508
These two moment of inertia of the two systems
are to each other as the squares of the periods.
Hence
P I + 0.0279

in which Py> P Ve find that by = 1.113 JSee.
; ' £ 0;676 Sec .

0.676 I + 0.0279

2
From this we find I = 0.0'i38 slug-Tt.

We will take the average values of
—————————— ~in Tables II and IV on pages 53 ond 56

and multiply them by 2 I to get rid of 1I.



Speed
of
Wind

nu/hr.

0
10
20"
25
30
35
)

G 2

TABLE VI.
g + +
K!ﬁ.g_[f: ) (/_.fé...{f‘:\ Ave -_9-(:—) +
o1 1 o1 2 p g T
0.0340 0.0202 0.0271 0.00238
0.0%99 . .... - 0.0'99 0.00%37
0.0674% 0.0650 0.0662 0.00580
0.075% 0.069% 0.072% 0.0063%
0.0&%0 ' 0.0920 0.0880 0.00770
0 0946 0.1010 0.0978 0.00856
0.1177 0.1060 . 0.118 0. 00980
I = 0.0438 2 I = 0.0476
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Apparatus Darping.

— e " Gt G248 e G s Bt Wt et B S St

We have edtrurtated. It remains for us
to get rid of //og in the 1ast'cblumn of Table VI.
The model was removed and readings for logarithmic
Gecrenent both with énd without wind were taken,
for apparatus damping 1s* itself composed of fric-

tional damping and serodynamic damping.

TABLE VII.

log -8 8 No. of Complete Swings
10 Scale . at wind Speed of
£ =
— o .- — -
. ¢} 30 mi/hr-
0.778 6  ———=—mmmmeme e -
14%.0 10
0.60% T T — ,
4.0 e
0.%77 3+ e 246
17.%
0.301 2~ e -
29.1 27.5
0,000 1 — e e
o —
Period in Sec. 0.584 0.58%

On Chart III we find curves similar to
those in Chart I and II, from which we obtain the

following:
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Yo wind

30 mi/hr.

in which I

ratus alone.

S

L%
2.30 X .788 2 I
——————————— = 010632
55 X 0.384
2.30 X .788 .
= 0.0850

55 X 0.38%

is the moment of inertia of the appa-

The difference of the two gives

0.0218 -which must be interpreted as additional

damping cue to the 30 mi/hr. wind. If we as-

sune ,- and that assumption is probably correct

for the parts exposed to wind stream were very

small,- that wind damping is a linear function orf

vind speed, then for other speeds, the wind damp-

ing vill be

______ X speed. Thus



vind
Speed
mi/hr.

0

TABLE VIII.
Fribtonal Aerodynanic Total
Dorping. -Dermping
~0
_9.:.9.2.?.'.?}{8139 ed 21
30
0.0632 0 0.0632
S 0.0073 0.0705
L 0.01%5 0.0777
" 0.0182 0. 0814
" 0.0218 0.0850
" 0.0254 0.0886
" 0.0291 0.0923

lioment of Inertia

Q & o
Q

tf

Total I =

0. 005440
0.000135
~0.000%2%
0.002920

——— . — ——— 0 G (- o Bt Bt e W

66

g e
(2 I = 0.018)

C.0011k
0.00127

'0.001%0

0. 00147
0.00153
0.00160
0.00166

0.008919 = 0.009 slug-fte
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Combining Tables VI ond VIII, we obtain

TABLE IX.
;’gl;lgr:")l?eed Ft./‘Sec. A, T A ’/'(vft-net

O +uun 0 .... 0.00238 .. 0.0011l% ..0.0012k%
10 .... 1%.5 ... 0.00%37 .. 0.00127‘,.0.00310
20 ..ve 29.0 ... 0.00580 .. 0.001%0 :.0.0044%0
25 ..ve. 37.0 ... 0.0063% .. 0.00147...0.00%87
30 .... 44O ... 0.00770 .. 0.00153 ..0.00617
35 +ees 51.0 ... 0.00856 .. 0.00160 ..0.00696
5O .... 5845 ... 0.00980 .. 0.0.166 ..0.0081k

1 [y U alnst s
In Chart IV, we plOt/“'net against speed
in miles per hour. With due allowance for exper-
imental errors, a straight line can bo. drawn

through these points. Then the tangent = =--

-

U
will be constants for all speeds, where U 18 the
relative velocity of the wind to the model or to

an aeroplane. Taking o at 30 miles per Lour,
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We find the constant rate to be

0, 00617
------- = 0.000206 if U is in mi/hx.
30
0. 00617 |
(o} O— = 0.,00014%0 if U is in ft./sec.

m

Herice, using ft.sec. unlts,

= 0.0001%0 U ...... N - @e)
SinQe/ﬁ =~ (m ,Mq+ m X, ), page z 8
il Mq+ mX, =- 0.0001%'U .. (47)

‘From (47) when X, 1s kmown, m liy may be
Tfound. -In general X, 1s very small conpar-

ed with If; and may be neglected.

.". m I&'Iq = - 0-00011‘1- U sesssessasens (‘4’8)
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— s — T Y

§Eei3ping up of__Ehe Result for Liodel

fo _Full Scale Aeroplane.

m i, in (4 8) applies to model only.
It is necessary to consider the d{imension of

o I Lk .

In the original equation

2}

a2g oJe)

Q- Vo W)
I ——— + ( + ) — + (M@ —ew) 6 = 0
azz . o at ’

¥

Each term expresses a moment and has the dimen-

sion
da e
( /“-0 + /‘-) a—;’ = moment
= force X distance
1 12
=M e X 1= Deee
T< T2
ot Lo 28
T 72
12 1
+ = -== = ml (==
Mo T . ( - )
13 1 ooy,
= = m 1l (=29 = - l)* v
13 T 15

TV ceeenssese (49)

il
R
o
5=
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where /P 1is the density of the filuid. This
1s correct provided a certain function
vi 186
£ (mmmy =)
Vv v
i1s Xept approximately constant, in which ) 1is
the kinetic viscosity of the fluid.
From (49) it is evident that_ec is pro-
portiohal to 1, If the scale of the nodel

is 1/20,of the full size machine then

*

m k= - (20)% % 0.0001% U

I U = 80 ft./sec. (55 mi p.h. ),
m = %0 slugs, then
22.4 X 80

q %0 :
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Discussion of the Result.

s s 1t G o Pt B e Bl o . W Wt W S S B s S8 S s S

In Report No. 78 of "Technical Report of
the Advisdry Cormittee zﬂélheronautics, 1912-1'13¢"
an experimental investigation ﬂ»f'a similar char-
acter was undertaken uvpon a model of & monoplane
of the Bleériot Type. The drawing of the model
is found in Fig. U Report No. 75. The logarith-
mic decrement was photographed instead of being
observed with -the &ewa cye, as in the case of the
present investigation. Among other things,

the Report gives for m mq
m iy = - =~ 0,00069 U Loy ymodel

on top of page 177, which 1is about five fimes
larger than the value obtained in this experi-
nent. | ‘

- 0.00069

- 0.0001k

This dliscrepancy can be explalned by the
fact that the two models differ a great deal both

in the disposition of tail surfaces, and in the
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character of the body. The British model has
a‘large tall far removed from the c.g. and has an
enclosed body vith its Imife-edge horizontal.
Not only the damping surface is large but also
the moment arm of the damping moment is mich lon-
ger." On the other hand, our model has a small
tall comparatively close to the c¢.g. of tihie model,
and has not anything like a body %o speak of.
(See Frontispilece). Ve naturally expect less

damping in our model than that in the British
' model. ' |

If we take into consideration the scale of

linear dimensions of the moment arms of the damp-
ing moments of tihe two models, we shall find the
results agree very well. The damping coefli-
clents are to each other as the fourth power of
the linear dimensions.

n
1y (Pritisn Model) !

12 (our model)

. ): ‘
-1 = ;75 = 1l.5 gpproximately



1

1

1

2

= 1} inches

actually measured

8 inches.
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Conclusion. .

In the absence of other coefficients which
are necessary for the calculation of stability,
it ig difficult to say whether the iachine will

Dbe longltudinally stable or unstable. One

thing is certain, however, that the damping coef-
ficient for pitching for thils particular machine

is only one-fifth that of the Blériot lonoplane

as reported in the British Report.

" The End.
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