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Abstract

This thesis focuses on the detection of abrupt acoustic discontinuities in the speech
signal, which constitute landmarks for consonant sounds. Because a large amount
of phonetic information is concentrated near acoustic discontinuities, more focused
speech analysis and recognition can be performed based on the landmarks. Three
types of consonant landmarks are defined according to its characteristics—glottal
vibration, turbulence noise, and sonorant consonant—so that the appropriate analysis
method for each landmark point can be determined.

A probabilistic knowledge-based algorithm is developed in three steps. First, land-
mark candidates are detected and their landmark types are classified based on changes
in spectral amplitude. Next, a bigram model describing the physiologically-feasible
sequences of consonant landmarks is proposed, so that the most likely landmark se-
quence among the candidates can be found. Finally, it has been observed that certain
landmarks are ambiguous in certain sets of phonetic and prosodic contexts, while they
can be reliably detected in other contexts. A method to represent the regions where
the landmarks are reliably detected versus where they are ambiguous is presented.

On TIMIT test set, 91% of all the consonant landmarks and 95% of obstruent
landmarks are located as landmark candidates. The bigram-based process for deter-
mining the most likely landmark sequences yields 12% deletion and substitution rates
and a 15% insertion rate. An alternative representation that distinguishes reliable
and ambiguous regions can detect 92% of the landmarks and 40% of the landmarks
are judged to be reliable. The deletion rate within reliable regions is as low as 5%.

The resulting landmark sequences form a basis for a knowledge-based speech recog-
nition system since the landmarks imply broad phonetic classes of the speech signal
and indicate the points of focus for estimating detailed phonetic information. In ad-
dition, because the reliable regions generally correspond to lexical stresses and word
boundaries, it is expected that the landmarks can guide the focus of attention not
only at the phoneme-level, but at the phrase-level as well.

Thesis Supervisor: Kenneth N. Stevens
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Non-uniform Distribution of Speech Informa-

tion

In a speech signal, phonetic information is not distributed uniformly across the whole

utterance. For example, the silent region at around 900ms in Figure 1-1 does not

provide any phonetically-related cues about the utterance, although it may indicate

a possible word or phrase boundary. On the other hand, a lot of information can be

found in the vicinity of the abrupt spectral discontinuity near the 400ms time-point

[51]. For example, low-frequency energy below 1kHz is persistent across the tran-

sition but the higher frequency amplitude suddenly increases, indicating a possible

transition from a nasal sound into a vowel. Changes in the first formant frequency

and bandwidth provide additional evidences that support this assumption. The first

(F1), second (F2) and third (F3) formant frequencies slightly increase near the tran-

sition, which suggests that the consonant before the vowel is likely to be labial. The

F2 frequency on the right-hand side of the transition is as high as 2kHz, which is

a characteristic of a front vowel. Thus, transition regions in the acoustic signal are

particularly rich in cues to feature contrasts.

Speech information is also distributed in non-transitional periods as well. For

example, in the vowel sound which spans through the region between 1000ms and
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Figure 1-1: A spectrogram of an utterance “Did Mary not feel good?”

1100ms, the low F1 formant frequency and high F2 frequency show that this is a

high vowel as well as a front vowel. The information that can be found in this region

is not as rich as that found near consonant-vowel transitions, and the spectrum is

almost steady during the 100ms period, which implies that different points in the

vowel region contain similar characteristics. This property can be helpful in that the

information can be estimated reliably over a long period of time, due to the steadiness

of the signal. Moreover, additional characteristics besides phonetic information, such

as vowel quality and clues for speaker identification, may be found in this region.

Non-abrupt spectral changes are another indication of phonetically important

events. For example, at around the 530ms time-point of Figure 1-1, the second

and third formant frequencies decrease and then increase slowly over a 150ms pe-

riod. Such a change normally occurs due to a glide or liquid sound or an off-glide

of a vowel. In this example, F3 formant frequency decreased significantly, which is a

characteristic of an /r/ sound.

Therefore, a number of advantages can be gained by first locating and classifying

these points with different acoustic distributional characteristics. That is, a more

focused and detailed analysis can be performed at abrupt transitions where a large
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amount of phonetic information is likely to be concentrated; cues can be estimated

with higher confidence during a steady-state region; and less abrupt changes can also

be highlighted and handled according to their characteristics. These points of acoustic

importance are called landmarks.

1.2 Landmarks and Speech Analysis

1.2.1 Landmarks as Focal Points

Due to the non-uniform distribution of speech information in the signal, a listener

does not have to listen to all the time-points of a speech signal equally carefully

in order to understand it. Instead, the focus can be placed on the instances where

more information is located. Perceptual experiments support the hypothesis that

humans focus on the regions of abrupt change, where a large amount of information

is concentrated.

Jenkins et al. [27] performed an experiment that supports the assumption that the

information near consonant-vowel boundaries plays an important role in the classifica-

tion of vowels. This experiment compares the perception of vowels in /b/+vowel+/b/

syllables presented in three types: when each stimulus is presented as a whole syl-

lable, when the steady-state portions are replaced with silence, and when the center

portions are given without the transitional periods. The three types of stimuli are

illustrated in Figure 1-2.

The result of this experiment shows that the perception error does not change by

much (less than 1 percent point difference) when the steady-state portion of the signal

is omitted, but when the transitional periods are deleted, the error rate increases by

6%. From this experiment, it can be concluded that the information in the transitional

periods at the onset and offset of a vowel is more important than that provided by

the steady-state portion of the syllable in the identification of a vowel sound.

Furui [13] made a similar observation on Japanese syllables by performing percep-

tual experiments on truncated speech signals. By cutting off the initial part or the
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Figure 1-2: Three types of stimuli in the vowelless perception experiment (from Jenk-
ins et al. [27])

final part of a syllable at different time points, he found out that there is a critical

point at which the identification rate rapidly decreases, and the perceptual critical

points for initial and final truncations are separated by only 10ms. This result pro-

vides evidence for the assumption that the information in a speech signal is highly

concentrated near certain time points.

Stevens [49] carried out perceptual experiments based on synthesized syllables

with varying parameters, and also observed that the distinction between /s/ and

/T/, and between /s/ and /S/, depend not only on the spectral shape and amplitude

of frication noise itself, but also on the amplitude change at the acoustic boundary

between the fricative and the vowel.

Therefore, it can be reasonably assumed that by first locating the abrupt acoustic

changes in a signal, and then carrying out a focused analysis around the landmark,

important perceptual information can be extracted from the signal. As was discussed

in the previous section, landmarks provide the time-points where speech events with

acoustical prominence occur, and the type of a landmark—abruptness of a consonant,

steady-state period of a vowel, and non-abrupt transition of a glides—implies some of
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the feature characteristics of the event and also specifies the typical acoustic cues that

can be found nearby. Therefore, a more knowledge-based method of speech analysis

and recognition, which takes into account different characteristics of signal, can be

initiated by first recognizing landmark locations and types.

1.2.2 Landmarks as Boundaries

While an individual landmark pinpoints the location where speech-related information

is concentrated, a pair of landmarks marks the boundaries of a region where a certain

phonetic cue spans throughout. By locating the extent where one particular phonetic

feature has a dominant influence, the feature value can be estimated more reliably.

A perceptual experiment by Jongman [28] supports this claim by showing that at

least a 50ms interval is needed to determine the place of articulation features of non-

strident fricatives with 80% confidence, and when the whole extent of the frication is

provided, the correct identification of the place of articulation approaches 100%.

In addition, the length of the regions divided by landmarks provide temporal cues

to the speech events. An experiment by Jenkins et al. [27] also shows that when

both onset and offset parts of a vowel segment were presented without the steady-

state portion of the vowel, the listeners classified the vowel with significantly greater

accuracy than in the case when only one of the two boundaries was given. This result

suggests that the durational cues presented by a sequence of landmarks can be helpful

in the perception of vowel sounds.

1.3 Thesis Overview

The main object of this thesis is to implement an automatic algorithm that locates

the consonant landmarks of a speech signal. Because the consonant landmarks not

only correspond to quantal acoustic changes that occur during closures and releases

of consonants, but also correpond to the time-points where phonetic information is

highly concentrated, this can be applied as the initial step of a speech analysis and

recognition system.
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The next three chapters provide preliminary knowledge used in this thesis. In

Chapter 2, the definition of landmarks is clarified, and three different consonant

landmark types are defined. The landmark types represent different characteristics

of consonants, and so the articulatory and acoustic characteristics of each landmark

type are examined as well. In addition, the list of distinctive features used in this

thesis is explained in this chapter, and the close relationship between the landmark

types and the distinctive features are explored.

In Chapter 3, the landmark-based speech recognition system proposed by Stevens

[52] is described, and the current status of the development of this system is reviewed.

The landmark detection algorithm developed in this thesis aims to be applied as the

first step of this speech recognition system, which both provides information about

certain features and defines the focus of attention for the subsequent processes.

Chapter 4 explains the preliminary steps in the development of landmark detec-

tion algorithm. First, a landmark detection algorithm previously developed by Liu

[36] is briefly reviewed. From this background, possible avenues for improvement of

the algorithm are discussed and the general characteristics of the new system are

determined. This chapter also discusses the characteristics of the database and the

data preparation method, including an algorithm that maps phonetic transcriptions

to landmarks.

The implementation of the landmark detection algorithm is described in the fol-

lowing three chapters, each of which deals with different aspect of the algorithm.

Chapter 5 provides a probabilistic algorithm that detects different types of land-

marks individually without considering the relationship between adjacent landmarks.

This procedure detects possible landmark locations for different landmark types, and

then calculates their probabilities. This process aims to locate as many acoustic dis-

continuities as possible, so that only a small number of true landmarks are missing.

In Chapter 6, the constraints in landmark sequencing are investigated, and a

bigram model is used to represent the restrictions in the transition between differ-

ent types of landmarks. An algorithm that determines the most likely sequence of

landmarks based on the bigram transition model in addition to individual landmark
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probability is developed in this chapter. Some of the contexts in which the landmarks

are likely to be detected with more ambiguity are analyzed as well.

Chapter 7 presents an alternative algorithm that selects a possible landmark se-

quence from the previously detected landmark candidates. A representation that

distinguishes the regions within which the landmarks are reliably detected, from the

regions where the landmarks are ambiguous, is discussed, and an algorithm that cre-

ates such a representation is developed. This algorithm makes it possible to focus on

the regions where the utterance is produced more clearly.

The last chapter summarizes the results of this thesis, discusses possible appli-

cations within the landmark-based speech recognition system, and suggests further

improvements of the landmark detection algorithm as well as possible applications of

the landmark detector beyond a speech recognition system.
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Chapter 2

Landmarks and Distinctive

Features

2.1 Landmarks

2.1.1 Definition of Landmarks

As was mentioned in the previous chapter, landmarks are defined as the time-points

of acoustic events that are consistently correlated to major articulatory movements.

Landmarks correspond to abrupt discontinuities in the spectrum (consonants), locally

stable points of the spectrum (vowels), or slow movements of the formant frequencies

(glides). Five different types of landmarks—three for consonant, one for vowel, and

one for glide—are defined according to their acoustic characteristics. The list of five

landmarks and their descriptions are shown in Table 2.1, and the details of these

landmark types will be discussed later in this section.

Because the landmark types are closely related to the manner of articulation, it is

expected that the type of information that can be best estimated near each landmark

can be predicted by distinguishing the landmark types. In addition, the study of

Huttenlocher and Zue [24] shows that the number of possible word candidates can be

reduced significantly by knowing the manner features.
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Segment Type Landmark Description

g glottis Vocal fold vibration
Consonant s sonorant Velopharyngeal port opening

b burst Turbulence noise source
Vowel V vowel Vowel
Glide G glide Glide

Table 2.1: Five different landmarks and related events

Consonant Landmarks

Consonants are usually produced by abrupt formation and release of a constriction

in the mouth. This articulatory movement affects the acoustics so that the spectrum

of the speech signal changes abruptly at the time-point where the consonant closure

or release is produced [36, 35].

Three types of consonant landmarks have been proposed by Liu [35]: g (glottis),

b (burst), and s (sonorant). Examples of each type of consonant landmarks in an

actual utterance are illustrated in Figure 2-1. The spectrogram is extracted from the

utterance of the sentence “Did Mary not feel good?” recorded by a male speaker.

The lines represent the expected consonant landmarks of this signal. Dotted lines

are located at b-landmarks, thick solid line at s-landmarks, and thin solid line at

g-landmarks.

A g-landmark pinpoints a time when vocal folds start vibrating freely or when

the vibration ends or gets suppressed due to increased intraoral pressure. The voice

bar after the closure of a voiced stop consonant and the voicing during a voiced

fricative consonant are examples of suppressed vocal fold vibrations. Therefore, the

g-landmarks distinguish obstruent consonants or silence from vowels or sonorant con-

sonants.

A b-landmark corresponds to the existence of turbulence noise during obstruent

regions. Therefore, it is set at the boundary between a silent interval and a frication

noise of a stop or affricate burst. The silent interval is usually caused by a complete

closure inside the oral cavity, but the silence can also occur due to the wide opening of
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Figure 2-1: Examples of consonantal landmarks from an utterance “Did May not feel
good?”

the vocal folds at the start or end of an utterance or at a pause within an utterance.

An s-landmark mostly corresponds to opening or closing of the velopharyngeal

port during a sonorant sound. Phonetically, it is located at the boundary between a

vowel or glide and a sonorant consonant. Although an /l/ sound is not pronounced

with a velopharyngeal port opening, abrupt /l/ is included in the class of sonorant

consonants because the acoustic characteristic of abrupt /l/ sound is similar to that of

nasals, which will be explained in the following sections in more detail. The segments

/r/ and non-abrupt /l/, which is produced without making clear contact between the

tongue tip and the roof of the mouth, are considered glides in landmark type because

they do not accompany acoustic discontinuities.

The three types of consonantal landmarks are further classified depending on the

increase or decrease of energy in the vicinity of the landmark. When the energy

increases around a landmark, the landmark is classified as ‘+’, and if it decreases,

the landmark is classified as ‘−’. For example, at 650ms time-point of the spectrum

in Figure 2-1, which is the transition from a vowel to the following nasal at the

word boundary of ‘Mary not’, the high-frequency energy decreases due to opening

33



of the velopharyngeal port. Therefore, the acoustic discontinuity is classified as a

−s landmark. On the other hand, the 720ms time-point, which corresponds to the

transition from /n/ to /A/ of the word ‘not’, is classified as a +s landmark due to the

rise in energy amplitude.

Because g-landmarks are at the boundaries of sonorant-obstruent sounds, and

b- and s-landmark types are defined only for obstruent and sonorant regions, re-

spectively, the sequence of landmarks have intrinsic constraints; for example, a b-

landmark can be found only between a −g landmark and the next +g landmark, and

an s-landmark can be found only between a +g landmark and the next −g landmark.

Vowel and Glide Landmarks

Vowels and glides are produced without creating an oral constriction narrow enough

to produce turbulence noise or silence. Therefore, these segments do not create abrupt

discontinuities in the spectrum, and so it is difficult to set a clear boundary between

two vowels, or between a glide and a vowel. Thus, instead of locating the boundaries

of vowel or glide segments, landmarks for these classes of speech sounds are defined

to be the position where the effect of the vowel or glide on the acoustic signal is the

most dominant.

Figure 2-2 shows examples of vowel and glide landmarks extracted from the utter-

ance of the sentence “Which year were you lazy?” recorded by a female speaker. The

lines represent the expected vowel and glide landmarks of this signal. Dashed lines

indicate the position of G landmarks, and the solid lines are located at V-landmarks.

A vowel is produced with a maximum opening in the vocal tract, and when a

closure or narrowing is made in the oral cavity, the first formant frequency goes down

and its bandwidth widens. Thus, a vowel landmark can be located in the vowel where

the first formant frequency is the highest, or where there is maximum amplitude in

the range of the first formant frequency [23, 50].

On the other hand, a glide can be identified with minimum amplitude in the low

frequency range, and slow movements of the formants [50]. Therefore, according to

Sun [55], this landmark can be determined by a combination of low F1 frequency,

34



V V V V V VG G G G G

Figure 2-2: Examples of vowel and glide landmarks from an utterance “Which year
were you lazy?” The symbol V indicates vowel landmarks and G indicates glide
landmarks.

maximum F1 rate of change, along with low mean-square amplitude in energy and a

maximum in its rate of change.

2.1.2 Articulatory Characteristics of Consonant Landmarks

As was discussed in the previous section, information that can be found in a speech

signal can be located by three different classes of landmarks: abrupt discontinuities

by consonant landmarks, steady-state periods by vowel landmarks, and non-abrupt

transitions by glide landmarks. This thesis will focus on the consonant landmarks

alone.

A consonant is pronounced by making a complete closure or a significant nar-

rowing in the oral tract. The constriction can be formed with one of the following

three articulators: lips, tongue blade and tongue body. Such articulatory movement

modifies the overall shape of the vocal tract, and this change results in an acoustic

discontinuity in the speech signal.

However, not all articulatory movements related to consonants result in abrupt
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aa n m ae g n ix f ay d

Figure 2-3: An example of the change in place of articulation

changes. For example, the change of the tongue position in the transition from /m/

to /n/ in the word ‘alumnus’ or ‘remnant’ reduces the size of oral cavity and the

resonance pattern changes accordingly, but as can be seen in Figure 2-3, its acoustic

discontinuity between /n/ and /m/ sounds is not as prominent as the one in the

transition from a vowel into /m/. Change in the place of articulation does not affect

the overall shape of the vocal tract, and the corresponding acoustic change is generally

not consistent or prominent.

Therefore, it can be hypothesized that the acoustic abruptness is caused only by

a significant change in the general configuration of the vocal tract shape. The vocal

tract configurations can be roughly classified into one of the four types shown in

Figure 2-4: A vowel is pronounced without making a constriction in the oral tract

(open), a stop consonant is preceded by a complete closure in the oral tract, resulting

in a silent period before the burst release (closure), a fricative consonant is made

with a constriction which is narrow enough to generate turbulence noise across the

constriction (turbulence), and a nasal consonant is made with a complete closure in

the mouth but the nasal passage is open (side-branch). The acoustic abruptness

arises when the articulatory movement changes the vocal tract shape among these

four types of configurations.
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Figure 2-4: Four different types of vocal tract configurations

The characteristic of the acoustic discontinuity differs according to the manner

of the closure. For example, a /p/ sound is pronounced with a complete closure,

which increases the intraoral pressure and stops excitation of the resonance of the

vocal tract. On the other hand, an /m/ sound makes the same closure with the

same articulator, but because the nasal passage is still open, the intraoral pressure

does not increase as much and excitation of the resonance persists throughout the

closure, although it may be less prominent in the high-frequency region due to the

introduction of pole-zero pairs by the oral cavity. More detailed correlation between

the vocal tract shapes and their acoustic realizations are explained in Section 2.1.3.

Theoretically, there can be twelve different types of transitions between the four

configurations. These consonantal discontinuities can be classified according to the

acoustic characteristics that can be found nearby. The glottal vibration changes at

the transitions between the configurations with relatively open vocal tract (open and

side-branch configurations) and the configurations with a constriction (closure and

turbulence configurations). When there is a constriction in the vocal tract, intraoral
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pressure increases, which reduces the amount of pressure drop across the glottis.

Thus, the vibration of the vocal folds is stopped or suppressed during these types

of configurations. On the other hand, when the vocal tract is open, the intraoral

pressure does not increase and the vocal folds can vibrate freely.

Other transitions are related to certain acoustic characteristics as well. The tran-

sition between closure and turbulence configuration identifies an onset of a burst

noise or an offset of a frication into a silence, and the transition between open and

side-branch configurations indicates the acoustic change due to the pole-zero pairs

introduced by the side-branch.

2.1.3 Acoustic Correlates of Consonant Landmarks

As was mentioned in the previous section, the acoustic discontinuities arise when

the articulatory movement significantly changes the overall configuration of the vo-

cal tract shape. An example of a word which contains all four types of vocal tract

configurations is shown in Figure 2-5. The vowels are pronounced with open con-

figurations, the nasal /m/ with side-branch, /z/ with turbulence, and /d/ closure

with closure configuration. At each boundary between these segments, an abrupt

change can be observed. These discontinuities can be further classified according

to their characteristics: spontaneous vibration of vocal folds, existence of additional

poles and zeroes due to a side branch in the vocal tract, and turbulence noise source.

Acoustic properties of each type of abruptness are discussed in this section.

Glottal Vibration

Fundamental frequency of vocal fold vibration typically ranges from 80Hz to 210Hz

for male speakers, 150Hz to 320Hz for typical female speakers, and 300Hz and higher

for children [1]. Therefore, it is expected that the low-frequency energy at about

0-400Hz frequency band directly relates to vocal fold vibrations.

The 0–400Hz frequency band energies in each type of vocal tract configuration are

measured from 5,000 segments from the TIMIT database (see Section 4.2.1 for more

38



amazed

ix m ey z d

Figure 2-5: A speech signal containing all four types of vocal tract configurations
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Figure 2-6: A box-plot of low-frequency (0–400Hz) band energies in different types
of vocal tract configurations
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detail), and the box-plot of the result is shown in Figure 2-6. The measurements are

made in the middle of the segment, and their dB values are calculated relative to the

energy level within the silent region estimated from the first 30ms of the utterance.

Each box of the plot spans between the first and the third quartiles of the measured

data, and the line in the middle is located at the median value. It can be observed

that most of the utterances pronounced with open or side-branch configuration have

more than 25dB band energy, whereas the ones with narrow or complete constriction

have less than 25dB energy.

The side-branch configuration has even higher low-frequency energy on average

than the open configuration. This may be because a nasal resonance is introduced

near 250Hz, which is the lowest natural resonance of the whole vocal tract including

the nasal passage, and the added nasal-pole reinforces the fundamental or the second

harmonic by about 5dB amplitude [22, 8]. The low mean energy in vowels may be

caused by a large number of schwas as well.

It can be noted that the low-frequency energy in turbulence configuration spans

almost as high as that of open or side-branch configuration. This is due to the fact

that the vocal folds may keep vibrating during a voiced fricative sound like /v/ or /z/.

However, because the intraoral pressure must be increased to make turbulence noise

at the constriction, the glottal source amplitude is reduced at least by 9dB relative to

that of the neighboring vowel [35]. Therefore, the voicing in a fricative or the voice

bar of a stop consonant does not have as high glottal vibration energy as that of an

open configuration.

The glottal vibration not only increases the low-frequency energy, but also excites

high-frequency ranges. However, because nasals usually have less prominent high-

frequency energy, and strident fricatives are pronounced with turbulence noise whose

high-frequency amplitude is greater than that of the neighboring vowel, the high-

frequency band energy cannot be used as a consistent measure of glottal vibration.
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Nasal Passage

As discussed above, the low-frequency energy does not change significantly in the

boundary from a vowel to a nasal, except that it may show a weak low-frequency

prominence at 250–400Hz range [8]. On the other hand, the high-frequency range

shows a notable difference. This change in the high-frequency range is caused by nasal

pole-zero pairs introduced by the side branch between the velopharyngeal opening and

the closure in the mouth.

The theoretical trajectories of poles and zeros derived from a vocal tract model

for a labial nasal consonant are plotted in Figure 2-7(a) [50]. The estimated lowest

zero frequency of a labial nasal is near 1000Hz, and because the nasal zero frequency

is inversely proportion to the length of the side-branch, alveolar and velar nasals have

zeros at higher frequencies, which is in the range of 1600–1900Hz. The introduction

of a zero reduces the spectrum amplitude in the second and third formant frequency

range. This effect can be observed in Figure 2-7(b), in which the spectrum slices in

the middle of a nasal and its adjacent vowel are compared.

Liquids also accompany extreme types of formant frequency movements. A retroflex

liquid is produced by creating a small cavity under the raised tongue, which creates

additional zeros that causes significant drop of the second and third formant fre-

quencies. On the other hand, a lateral is produced dividing the oral tract into two

small branches with the tongue tip, and this change of vocal tract shape results in a

heightened F3 frequency.

Lateral sounds do not always have slow transitions. For example, when it is used

in a word-initial position such as in the word ‘let’ or ‘lion’, the tongue-tip makes a

clear contact with the roof of the mouth, and in many cases, the release of the tongue

creates an abrupt discontinuity in the speech signal. On the other extreme, when the

/l/ sound is pronounced as a syllable-final consonant following a back vowel, such

as in the word ‘ball’ or ‘small’, occasionally the tongue tip does not touch the roof

of the mouth and no abrupt transition is made. Instead, a slight change in formant

frequency can be observed due to backing of the tongue. Sproat and Fujimura [48]
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Figure 2-7: Illustrations of the effect of nasal passage
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the lady’s

dh ax l ey dx iy z

small

m ao ls

Figure 2-8: Examples of two extreme cases of /l/

explain this acoustic difference by an asynchrony between dorsal retraction and apical

movement. Two of the extreme cases of the /l/ sound are shown in Figure 2-8. The

/l/ sound in the syllable-initial position of the word ‘lady’ shows a clear diminishment

in the spectral energy throughout all frequency range, whereas the /l/ following a back

vowel /O/ in the word ‘small’ does not show any significant spectral changes.

Turbulence Noise Source

There are generally two cases that create turbulence noise: stop or affricate burst and

fricative.

A stop burst is preceded by a complete closure in the oral tract, which builds up

the intraoral pressure and stops vocal fold vibration. When the closure is released, a

rapid airflow is generated through the previous closure point, during which the cross-

sectional area is increasing. This sudden burst of airflow causes a turbulence noise

which excites the region between the constriction and the lips.

The burst noise can affect all frequency ranges, although the spectral shape may

be affected by the shape of the front cavity, which depends on the place of articulation

of the stop consonant and the frontness of the adjacent vowel [53]. A labial stop burst

is the weakest among the three because there is no frontal cavity to be excited by the
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turbulence noise, a velar stop burst excites the frequency range near 2kHz due to the

long frontal cavity length in front of the closure, and an alveolar stop burst excites

higher frequency range because it has a shorter frontal cavity.

The burst of a stop consonant is produced with a rapid release of the stop closure

and the burst noise takes place for a short time during the release—the burst noise

of a stop consonant takes place for a short time during the release—about 5–20ms on

average. On the other hand, a fricative is produced by making a narrow constriction,

and so the duration of a fricative consonant is relatively longer than that of stop bursts

[28]. The duration depends on individual phonemes and various phonetic contexts

[33].

As was the case for stop consonants, the spectral shape and amplitude of fricative

consonants depend on the place of articulation. While some alveolar fricatives such as

/s/ and /z/ mostly affect the region higher than 3.5kHz, labial and dental fricatives

such as /f/ and /T/ affect the overall frequency range, although with less prominence

in energy.

Some allophones of weak voiced fricatives are pronounced without turbulence

noise. For example, the /v/ sounds in intervocalic position, such as in the word

‘every’, are sometimes pronounced without enough narrowing to make turbulence

noise across the constriction, and is produced with characteristics similar to those of

a glide /w/. Similarly, the voiced fricative /D/ following a nasal, such as in the word

sequence ‘in the’, is often produced without completely closing the velopharyngeal

port during the /D/ sound. Therefore, the intraoral pressure is not raised enough to

make a frication noise, and the sound takes characteristics similar to those of a nasal

/n/.
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2.2 Distinctive Features

2.2.1 Introduction

Distinctive features are binary-valued characteristics of a sound that can distinguish

one phoneme from another. The presence or absence of voicing, abrupt or transient

onset of an obstruent consonant, and the realization of a consonant sound from a

nasal tract or an oral tract are some of the examples of the correlates of distinctive

features.

The concept of binary distinctive feature was suggested by Jakobson, Fant and

Halle [25]. Distinctive feature theory is based on the assumption that the speech signal

can be segmented in time, and each segment can be described with a set of discrete

properties instead of by continuous-valued measures. Some observations assert that

those features are of a discrete nature; for example, a study by Lulich et al. [37] shows

that the discontinuity of the second formant frequency when it passes through the

second subglottal resonance influences the perception of the backness in the vowel.

In addition, a perception experiment by Miller and Nicely [41] also provide ev-

idence to the assumption that listeners focus on the acoustic evidence that distin-

guishes certain distinctive features. The experiment was performed by asking listen-

ers to distinguish 16 different consonant sounds in nonsense syllables with varying

degrees of noise levels and with different cut-off frequencies. The result of this ex-

periment showed that in noisy or frequency-restricted cases the confusion occurred

mostly across certain distinctive features, and that each of the distinctive features

for consonants—voicing, nasality, continuant, and place of articulation—is relatively

independent of the perception of other features.

Chomsky and Halle [10] suggested a universal set of distinctive features. Because

most of the features are defined according to the articulatory gesture that humans

make during speech, these features can be applied across different languages. Each

bundle of the distinctive features can specify a speech sound. Stevens [50, 52] derived

a subset of about twenty distinctive features from the universal feature set, so that it

can contrast among all the sounds in English.
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2.2.2 Two Classes of Distinctive Features

The set of distinctive features used in this thesis is based on the ones defined by

Stevens [52]. Stevens adopted Ladefoged and Halle’s [34] classification of features

into two broad categories: articulator-free features and articulator-bound features.

Articulator-free features are the ones that are not associated with any particular

articulator, and articulator-bound features describe the active articulators and their

movement.

Articulator-Free Features

An articulator-free feature does not relate to any specific articulator, but represents

the general manner of articulation. For example, the feature [sonorant] is defined to

be the sound produced with a vocal tract configuration that enables a free vibration

of the vocal folds, and the feature [consonant] represents the sound pronounced with

an abrupt constriction inside the vocal tract.

Stevens first defines three features that specify the broad classes of segments:

consonants, vowels, and glides. Consonantal segments can be further classified with

additional distinctive features: sonorant, continuant, and strident. A sonorant feature

contrasts the sounds that are produced with spontaneous vibration of the vocal folds

versus the ones with suppressed vibration or without vibration. A continuant feature

distinguishes the speech sound produced with a complete closure inside the oral tract

from the sound produced with a narrow constriction, which results in turbulence

noise during the sound. A strident feature contrasts the continuant non-sonorant

sounds based on the amplitude of the high-frequency. When the cavities and obstacles

around the constriction are positioned in a way that the spectrum amplitude in the

high-frequency region is higher than that of adjacent vowel, it is called to be strident.

When a speech sound has the characteristic defined by the feature, the feature is

represented with a + sign in front of it, and when a speech sound lacks the charac-

teristic, the feature is represented with a − sign. The values of the articulator free

features for some speech sounds are shown in Table 2.2. Note that not all the features
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æ, I w, j p, d z, S D, f m, n

Consonant + + + +
Vowel +
Glide +
Sonorant − − − +
Continuant − + + −
Strident + −

Table 2.2: Articulator-free features for some speech sounds in English

are assigned a value. Redundant features or the ones that cannot be defined in certain

contexts are not marked with a sign. For example, because the consonant, vowel and

glide features are mutually exclusive, only +values are marked. Similarly, because all

the [−consonant] sounds are pronounced with [+sonorant] feature, that is, without

significant increase in the intraoral pressure, the sonorant feature is marked only for

[+consonant] sounds. On the other hand, the strident feature is marked only for

[−sonorant, +continuant] sounds because the feature is defined for fricatives alone.

Articulator-Bound Features

While articulator-free features describe the manner of articulation of a speech sound,

articulator-bound features describe the specific movement of articulators controlled

in the production of the sound.

Some of the articulator-bound features specify the articulators in use. For exam-

ple, the sound /p/ is pronounced with a complete closure made with lips, therefore,

the /p/ sound has the feature [+lips]. There are three place-of-articulation features:

lips, tongue body and tongue blade. These features discriminate among the sounds

/b/, /g/ and /d/, respectively. Other articulator-bound features describe the move-

ment of certain articulators. For example, high and low features can differentiate

between different heights of the tongue body. Table 2.3 gives a complete list of the

articulator-bound distinctive features used in this work.

A list of the values for the articulator-free and articulator-bound features for

some speech sounds are tabulated in Table 2.4. As was the case with articulator-
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Articulator Feature Description

Vocal Folds stiff vocal folds Voicing vs. unvoicing
Glottis spread glottis Introduction of aspiration
Pharynx advanced tongue root Tense vs. lax
Soft Palate nasal Nasal vs. oral
Tongue Body body Place of articulation

high Tongue body position
low Tongue body position
back Tongue body position

Tongue Blade blade Place of articulation
rhotic Retroflexed tongue tip
lateral Oral tract is separated into two paths
anterior Constriction nearer to the lips

Lips lips Place of articulation
round Lips are rounded

Table 2.3: List of articulator-bound features that distinguishes English sounds

free features, not all the articulator-bound features need to be assigned a value to

distinguish a speech sound. The features that are not available or that cannot be

defined in the context of other features are not specified. For example, the place

of articulation features are available only for [−vowel] sounds because a vowel is

pronounced without a constriction in the oral tract. Similarly, because the anterior

feature describes the location of the tongue blade, the feature is specified only when

the sound has [+blade] feature.

In addition, the features that are not distinctive are not assigned a value as well.

For example, the /b/ sound in the word ‘bee’ is pronounced with fronted tongue body,

while the same sound in the word ‘boo’ is pronounced with the tongue position in

the back. Because the tongue body positions are not distinctive in the production

of a consonant sound, the features that specify the tongue body position—high, low,

back—are not given a value for [+consonant] sounds. The feature [round] is another

example of such features. While the sound /A/ and /O/ are distinguished by the

rounding of the lips, the sound /i/ does not have such counterpart. Because in

English, all the front vowels are [−round], and the feature [round] is distinctive only
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i I A O w p g z S T m

Consonant + + + + + +
Vowel + + + +
Glide +
Sonorant − − − − − +
Continuant − − + + + −
Strident + + −
High + + − − +
Low − − + + −
Back − − + + +
Round − + +
Adv. Tongue Root + − +
Lips + + +
Blade + + +
Body +
Anterior + − +
Stiff Vocal Folds + − − + +

Table 2.4: Feature bundle representation for some speech sounds in English

for back vowels, the round features are specified only when the segments have [+back]

property.

Due to these relationships between features, each speech sound can be distin-

guished from others by specifying five to seven features, instead of estimating all the

values of the twenty one distinctive features. The distinctive feature bundle represen-

tation of the complete set of English phonemes is shown in Appendix A.

2.2.3 Landmarks and Distinctive Features

Landmarks and the distinctive features are closely related in that the landmarks can

determine some of the articulator-free features, and also in that the landmark types

can restrict the type of articulator-bound features that can be estimated near the

landmark position to identify the speech sound.
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+g-Landmark

+consonant

+sonorant
−sonorant

or
Silence

+b-Landmark

Silence +consonant
−sonorant

+s-Landmark

+consonant −consonant
+sonorant +sonorant
−continuant

Table 2.5: Articulator-free features that can be identified from individual landmark
types

Landmarks and Articulator-Free Features

It can be understood from the definition that most of the consonant landmarks cor-

respond to the time-points where articulator-free features change from one sign to

another. The articulator-free features that can be determined from individual land-

mark types are shown in Table 2.5. The distinctive features written on the left of the

vertical line are the expected feature values of the sound that precedes the landmark,

and the ones on the right are the expected feature values of the sound that follows

the landmark.

The g-landmarks are defined as the onset or offset of spontaneous vocal fold vi-

bration and the feature [sonorant] is defined to be the speech sound produced with

freely vibrating vocal folds. Therefore, g-landmarks indicate the locations where the

sign of sonorant feature changes.

A b-landmark, on the other hand, does not correspond to the change of a particular

distinctive feature, because a b-landmark marks the boundary between turbulence

noise and silence (or closure of a stop consonant), and the features of a silent region

re not defined. Although b-landmark does not indicate the change of a feature, it

50



does provide information about some features of its adjacent segment. The turbulence

noise is made with a constriction in the mouth which increases the intraoral pressure.

Therefore, the speech sound adjacent to a b-landmark is expected to be [+consonant,

−sonorant].

An s-landmark marks an abrupt change during a voiced region. Therefore, an

s-landmark not only asserts that the adjacent segments have [+sonorant] feature, but

it also indicate the change of a [consonant] feature value at the landmark position.

Since the sonorant consonant is made with a complete closure in the oral tract, the

consonantal sound has [+consonant, −continuant] feature as well.

Because vowel and glide landmarks are not located at the boundary but at the

time-point where the acoustic characteristic is the most prominent, these landmarks

do not indicate the transition, but the existence of a segment with [+vowel] or [+glide]

feature at the position.

Although the landmarks correspond to most of the articulator-free features, it

should be understood that the landmark types do not completely describe the articulator-

free features of the adjacent segments. For example, a strident feature cannot be de-

termined from the landmark information, and the continuant feature can be decided

only in some particular cases.

As was stated before, all the sonorant consonants are non-continuant in English,

and so the continuant feature need to be distinguished only within obstruent conso-

nants. Because a non-continuant obstruent is made with a complete closure inside

the oral tract, there must be a region of complete closure before the release of a

burst noise, and this acoustic change is marked with a +b landmark. Continuant

consonants, however, are sometimes produced with a pause before the frication noise,

during which the intraoral pressure builds up high enough to make turbulence noise

through the oral constriction. Therefore, the continuant features need to be distin-

guished only for the sounds that accompany +b landmarks. Otherwise, it can be

assumed that the obstruent consonants are [−continuant].

As for continuant features, landmark pairs are more effective than individual land-

mark types. Table 2.6 lists all four types of landmark pairs that determine the bound-
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Landmark Pair Expected Features

(−g, +g)

+consonant
−sonorant
+continuant

or
Silence

(−g, −b)
+consonant
−sonorant
+continuant

(+b, +g)
+consonant
−sonorant
(?)continuant

(+b, −b)
+consonant
−sonorant
(?)continuant

Table 2.6: Landmark pairs that specify obstruent consonants, and the articulator-free
features expected from the landmark types

aries of obstruent consonants, and the distinctive features of the segment expected

from the surrounding landmark types are specified for each landmark pair. The ques-

tion mark (?) is used when the feature cannot be determined from the landmark

type only. Note that only the pairs that starts with +b landmark has ambiguous

continuant feature. Most of the continuant feature can be identified by the distance

between the two landmarks at the boundaries, because the burst release of a stop

consonant is usually abrupt and short.

Strident features are defined only for [+continuant] sounds. Therefore, this feature

can be estimated after the continuant feature value is known.

Landmarks and Articulator-Bound Features

While landmarks are closely related to articulator-free features, they do not exactly

correspond to any of the articulator bound features. However, because the types of

articulator-bound features that are available and distinctive are limited by the val-

ues of articulator-free features, the landmark types can provide information about the

articulator-bound features that can be evaluated and the locations where the acoustic
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+consonant −consonant −vowel
↓ ↓ ↓

sonorant high lips
continuant low blade

back body
+sonorant −sonorant +continuant

↓ ↓ ↓
nasal stiff vocal folds strident
+back −low +blade

↓ ↓ ↓
round adv. tongue root anterior

Table 2.7: List of features that are distinctive under certain contexts

cues that correspond to each feature can be estimated. Table 2.7 gives some exam-

ples of the features that are distinctive in certain contexts. For example, the features

for tongue body position—high, low and back—are distinctive only for [−consonant]

sounds, whereas the place of articulation features—lips, blade and body—are distinc-

tive only for [−vowel] sounds.

Due to the relationship between different landmarks, the number of articulator-

bound features that are needed to identify a speech sound does not exceed more than

five in most cases. For example, to identify a [+vowel] sound in English, the values

of at most five features need to be determined: high, low, back, round, and advanced

tongue root. Moreover, not all five features are always required because round feature

is distinctive only for a back vowel, and advanced tongue root is distinctive only for a

non-low vowel. A sonorant consonant, which is typically located by s-landmarks, can

be identified by specifying no more than two articulator-bound features, nasal and

the place of articulation.

2.3 Summary

In this section, three types of consonant landmarks were defined and their articulatory

and acoustic characteristics have been examined. In addition, a set of distinctive

features that is used in this thesis has been defined, and the relationships between
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landmarks and distinctive features have been discussed.

It is speculated that the landmarks can be an effective starting point for analyzing

the speech signal, not only because they point to the information-rich locations, but

also because the landmark types provide information about the broad classification

of the signal. This information provides two advantages to speech analysis system. It

indicates the distributional characteristics of acoustic cues that can be estimated near

the landmark position, and it can also highly reduce the number of the distinctive

features that can or should be determined to identify speech sounds.
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Chapter 3

Landmark-based Speech

Recognition

3.1 Introduction

As was discussed in the previous chapters, the landmarks can be an adequate start-

ing point for a speech analysis. Stevens [52] has proposed a knowledge-based speech

recognition system which utilizes the knowledge about the acoustic landmarks and

distinctive features. The recognition system aims to retrieve the word sequence from

an utterance of a sentence, by first locating the acoustic landmarks and then estimat-

ing the sequence of distinctive feature bundles at the detected landmark positions.

A simple block diagram of the model is in Figure 3-1. First, the landmarks

in a given speech signal are detected based on the acoustic cues described in Sec-

tion 2.1. The landmark detection include not only locating the time-points that are

information-rich, but also identifying the types of the landmarks, which provide in-

Landmark
Detection

Feature
Extraction

Sentence
Reconstruction

Figure 3-1: A block diagram of a landmark-based speech recognition system
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formation about the broad-class of the signal adjacent to it. Then, the acoustic cues

that are appropriate for the detected landmark types are measured near the land-

marks. Based on the acoustic measurements, the values of distinctive features can

be estimated at each of the landmark locations. As was explained in Section 2.2,

the landmark types highly restrict the number of distinctive features that need to

be evaluated, and the coarse syllable structure of the utterance can also be predicted

from the landmark sequence. After enough information about the feature bundles are

collected, it can be used to access lexicon and the original text can be reconstructed

from it.

3.2 Landmark Detection Process

The first part of the speech recognition system, the landmark detection process,

locates acoustic landmarks and classifies them according to their characteristics. By

knowing the landmark locations, the system can focus on certain information-rich

locations instead of distributing the attention uniformly throughout the signal, and

apply different method of analysis to different distribution of the acoustic cues such

as abrupt discontinuities and steady-state signal.

3.2.1 Segment-based Approach

This approach is different from typical frame-based models, which sample appro-

priate sets of cues at uniformly separated fixed-width windows called frames and

reconstruct the original sentence by comparing each frame with the distribution of

cues for different phonemes using method such as hidden Markov models (HMMs)

[43, 4] or graphical models [3, 61] along with reasonable language models, such as

n-gram models [2].

One of the limitations of the frame-based speech recognition system is that it

treats each frame with equal importance, and that it does not make use of the depen-

dency between adjacent frames. However, the sounds of phonemes are highly variable

depending on adjacent sounds, while the frame-based model treats each frame inde-
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pendent from one another. In addition, perceptual evidence shows that the acoustic

cues in the vicinity of the transition between different speech sounds play a critical

role in the perception of a syllable, compared to the stationary part of the signal [13].

Landmark-based approach can provide a way to overcome this problem by first

locating the points where transitional periods exist, and then applying appropriate

measure to analyze the information. Some statistical recognition systems have incor-

porated such transitional information. For example, Ghitza and Sondhi [14] created

a HMM system that recognizes the speech signal using a diphone model instead of

recognizing individual phonemes separately, so that the variation due to adjacent

phonetic context can be taken into account.

While such systems are only interested in incorporating the information of the

phonetic transitions into traditional speech recognition system, the Summit system

[59, 58] locates the acoustic discontinuities based on a spectral distance measure [15]

as a starting point of a segment-based speech recognition system. This system only

focuses on the position of the segment boundaries, not on the acoustic nature of the

discontinuities.

On the other hand, there are some knowledge-based recognition systems that seg-

ment a speech signal based on the broad-class classification. Juneja and Espy-Wilson

[29, 30], and Jansen and Niyogi [26] classify the speech into manner classes, such as

vowel, sonorant, fricative, stop, and silence, based on acoustic phonetic parameters.

However, the goal of the segmentation is different from landmark detection, since the

broad-class segmentation algorithm aims to be extended to a phonetic classification

process by incorporating additional binary distinctive features that distinguish speech

sounds [12, 42], instead of providing focus points to extract acoustic cues of phonetic

importance.

Hasegawa-Johnson et al. [20, 21] introduce a landmark-based speech recognition

system as well. This system uses a computationally-intensive landmark detection pro-

cess based on a large number of acoustic observations extracted every 5ms. The obser-

vations include energy, spectral tilt, Mel-frequency cepstrum coefficients (MFCCs),

formant frequencies and amplitudes, and other acoustic-phonetic cues. Instead of
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being the focus of attention, the detected landmarks are used as one of the cues

for speech recognition, along with broad-class segmentations and distinctive feature

classifications.

On the other hand, Liu [35] developed a consonant landmark detection process

that aims to be the focus point for the subsequent distinctive feature processing

[52], and the three types of consonant landmark defined by Liu not only enable us

to locate the time-points of acoustic discontinuities, but also estimate the value of

articulator-free features of the adjacent regions, as was explained in Section 2.1. The

vowel and glide landmarks also locate the places where the acoustic information is

the most prominent even though the vowels and glides do not accompany acoustic

discontinuities.

3.2.2 Current Status

Automatic detection algorithms for all three classes of acoustic landmarks (i.e., conso-

nants, vowels and glides) have been developed to some extent. A consonant landmark

detector was created by Liu [36], which detects the locations of acoustic discontinu-

ities, and classifies them into three types of landmarks as described in Section 2.1.

An automatic vowel landmark detection algorithm was built by Howitt [23] and has

been improved by Slifka [47]. A primitive algorithm for distinguishing glides from

vowels and liquids was proposed by Sun [55] and an algorithm that automatically

locates glide landmarks in a speech signal still need to be developed.

The three classes of landmarks are closely related to each other. For example,

the vowels, which is a sonorant sound, must come after a +g landmark and before

a −g landmark, and the glides and liquids are always adjacent to a vowel sound.

Therefore, when the three landmark detection algorithms are integrated together, a

better detection performance is expected.
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3.3 Feature Estimation Process

After the landmarks are located and their types are identified, the distinctive features

that describe the speech sound are estimated near each landmark position, or if

available, near an appropriate group of landmarks where the acoustic cues of the

same feature can be found.

3.3.1 Distinctive Features

Many speech recognition systems rely on the identification of phonemes based on

the statistical distribution of a set of acoustic cues. However, because the acoustic

realization of phonemes are highly variable depending not only on the context but also

on speaker’s gender, dialect and other characteristics, the performance of automatic

phoneme identification is not high. To compensate for this problem, the automatic

speech recognizers include possible allophones of the phonemes and use higher-level

information such as diphone or triphone model and word or language models, but

this requires a large amount of training due to a large number of tokens to be trained,

and the language models may not be appropriate when there is a word that is not

represented in the lexicon.

On the other hand, distinctive feature representation is less sensitive to such prob-

lems, because the acoustic realization of the sound is usually limited to a couple of

features and the value of each feature can be estimated relatively independent from

other features. These variation can be easily represented based on the distinctive

feature representations—e.g., palatalization of the second /d/ sound in the word

sequence “did you” can be represented by the change in the anterior feature from

[+anterior] to [−anterior], and nasalization of /D/ sound in “in the” can be repre-

sented by the change in sonorant feature from [−sonorant] to [+sonorant]. Thus, it is

possible to construct a knowledge-based pronunciation model utilizing the distinctive

feature in order to compensate for the phonetic variation.

Therefore, our system represents the lexical items in terms of the sequence of

feature bundles, instead of a sequence of phonemes, and the recognition of speech
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sounds are performed by estimating the values of distinctive features. The articulator-

free features can be estimated based on the landmark types, and once the articulator-

free features are identified, only at most five articulator-bound features need to be

estimated for the feature bundle to be able to identify a speech sound.

Some other knowledge-based speech recognition systems adopt the distinctive fea-

ture representation as well. Bitar and Espy-Wilson [5] use a decision tree based on

the distinctive features to identify the sound of a segment, and Hasegawa-Johnson et

al. [20] also categorize the utterance using a number of place classifiers that identifies

the features palatal, labial, voiced, high, front, etc.

In our system, not only the features that distinguish phonemes are estimated, but

the features that accounts for supra-segmental events, such as word boundary, syllable

affiliation of consonants, and lexical stresses are also considered. These features does

not distinguish a phoneme from another, but they can be useful in lexical access

because the knowledge of lexical stress reduces the size of possible word candidates

significantly even when only a partial information is known about the signal [24], and

the word boundary and syllable affiliation information can resolve uncertain situations

that cannot be distinguished by phonemic information alone, such as the distinction

between “lay style” and “lace tile” or between “baby” and “bay bee”.

3.3.2 Current Status

Most of the articulator-free features can be identified from the landmark types without

additional measure, and feature estimation modules for a large number of articulator-

bound features and prosodic features—e.g., nasality, place of articulation, stridency,

tongue position for vowel, voicing of obstruent consonant, lexical stress, etc.—have

been developed as well.

Most of these feature detection modules assume that the places to measure the

acoustic cues are already provided specifically. For example, a nasal detection module

developed by Chen [9] assumes that the onset and offset boundaries of a sonorant

sound is known, and the automatic detection algorithm that identifies the place of

articulation for stop consonant [54] is based on the fact that the stop consonants are
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already identified, and the related landmark positions—i.e., closure, burst release,

and the onset of the following vowel—are already known.

The locations that are needed for these feature detection modules correspond

to the landmark positions. The landmark detectors that have been developed only

identify individual landmark position of certain type, but they are not responsible

for the grouping of the detected landmarks that represent the acoustic events of the

same speech sound. For example, the three time-points that should be located in

order to estimate the place of articulation features of a stop consonant correspond to

(−g, +b, +g) landmarks. However, if the detected landmark sequence turns out to

be (−g, −b, +b, +g) or (−g, +b, −b, +g), it is not clear which of the landmarks

should be used as inputs for the feature detection module. Therefore, an intermediate

procedure that groups the related landmarks according to landmark types needs to

be developed.

3.4 Sentence Reconstruction Process

After all the features are estimated and grouped in appropriate feature bundles, this

information can be directly used to access the lexicon, which is also represented in

the form of sequences of feature bundles.

3.4.1 Difficulties in Lexical Access

Lexical access and sentence recognition based on the distinctive feature representation

are different from those based on traditional statistical-feature representation, because

the feature values are binary, and the number of features that are needed to specify

a speech sound is different from one sound to another, and so not all the features are

identified during the feature extraction process.

In addition, the distinctive features that are estimated from the realized acoustic

signal may be different from the lexical representation of distinctive features, due

to the overlapping of gestures and some other effects. For example, the place of

articulation of the /n/ sound in the word sequence “in my”, may be changed to
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[+lips] instead of [+blade] due to the adjacent /m/ sound, the /t/ sound in the

word ‘habitual’ may be pronounced with either [+anterior] or [−anterior]. However,

because most of the features remain the same and only some features changes within

limited contexts, appropriate linguistic rules may be applied to compensate for these

effects.

The incomplete performance of the landmark detection also introduces problems

to the lexical access. When a landmark is not detected, all the features that are related

to the landmark cannot be identified, and when a landmark is falsely detected, an

additional feature bundle with redundant information might be included in the input

sequence, and the lexical access system has to figure out the locations where the

feature bundles are lost or inserted.

3.4.2 Current Status

The process of sentence reconstruction is not fully developed yet, but there have been

several studies concerned with the difficulties due to the binary distinctive feature

representation. Zhang [57] proposed a simple template matching algorithm which

allows some modification according to a set of linguistic rules represented in the

distinctive features, and Maldonado [38] improved the speed of Zhang’s algorithm

using the hierarchical characteristics of distinctive features. Kim [32] has developed

an algorithm that compensates for falsely detected segments and other variants that

can be introduced with imperfect performance of the landmark detection process.

Each of these matching algorithms tackles some aspect of the problems, but they

are based on the assumption that most of the features are specified, with a few regular

errors allowed by linguistic rules. However, as the experiment of Huttenlocher and

Zue [24] shows, the lexical access can be performed without knowing all the distinctive

features, and it can still reduce the size of the cohort significantly. Therefore, it might

be more efficient to access the lexicon in the earlier stage of the speech recognition,

than to wait for all the features to be estimated.
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3.5 Research Scope

This thesis focuses on detection of the consonant landmarks, because the consonant

landmarks represent the boundaries of the speech sounds. The locations of other

classes of landmarks can be hypothesized by the consonant landmarks because vowels

are always restricted to be between +g and −g landmarks, and glides are always next

to vowels.

In Chapter 4, an overview of the previous landmark detection model proposed by

Liu [36] is given, and possible improvement of the detection algorithm is discussed.

Chapter 5 demonstrates a probabilistic algorithm that detects landmarks and clas-

sifies their types individually without considering the relationship among different

landmark types.

A bigram model that restricts possible landmark sequences and an algorithm to

determine the most likely landmark sequence based on the bigram model is proposed

in Chapter 6. Some of the possible contexts that create ambiguous recognition of

landmarks are discussed as well. Chapter 7 provides a method to represent multiple

possibilities for the ambiguously detected regions.
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Chapter 4

Preliminaries to the

Implementation of Landmark

Detector

4.1 Desired Properties of the Landmark Detector

Liu [35] has developed an algorithm that detects the acoustic landmarks by utilizing

linguistic knowledge. Liu’s approach is based on a deterministic algorithm that uses

a series of decision processes, each of which represents a piece of acoustic knowledge

about speech signal. The algorithm is briefly reviewed in Appendix B.

However, the algorithm used strict thresholds in each decision module which did

not allow unclearly realized landmarks to be detected and not adequately account for

individual variation between different speakers, and the speech-knowledge was built in

the structure of the decision tree so that additional speech knowledge cannot be easily

integrated into the system without changing the whole system. In this section, such

disadvantages are reviewed and the desired properties for a new consonant landmark

detector are discussed.
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4.1.1 Separation of Knowledge-base

By making use of linguistic knowledge and its acoustic correlates, Liu’s landmark

detection algorithm achieves a high performance of almost 80% detection rate without

any supervised training. However, the speech knowledge is embedded in the system

structure itself, which means that the whole system should be modified whenever a

change occurs in the criteria. To avoid this problem and to make the system more

flexible to change, it is desirable to separate the knowledge-base from the system’s

core structure.

In Liu’s consonant landmark detector, each criterion has been embedded in the

system as a branch of a decision tree. These elements can be separated from the sys-

tem by representing each criterion as a cue, and the decision algorithm as distribution

of the cues, as is illustrated in Figure 4-1. To incorporate additional knowledge to

the decision-tree model in Figure (a), one should change the connections among the

decision modules completely. However, the revised approach introduced in this the-

sis, of which the schematic diagram is shown in Figure (b), separates the knowledge

base from the system’s core structure by considering each decision process as a cue,

and represent the connections between decision modules as the distribution of the

cues. In this cue-distribution model, the update of the speech knowledge can be done

without affecting the whole system, just by adding additional cues relevant to the

speech knowledge.

4.1.2 Reduction of Deletions

Another weak point of Liu’s algorithm is that it uses hard thresholds in the peak

picking process and in the decision processes. Because the operation of the landmark

detection algorithm is based solely on the maximal transitions in energies in different

frequency bands that are detected, when some landmarks fail to be recognized as

transitions due to their less prominent properties, they will never be processed in the

subsequent steps. Similarly, when some of the energy transitions are rejected in one

of the knowledge-based decision steps, they will not be retained and the subsequent
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(a) Decision-tree model

System Core Knowledge-base

Cues

Vocalic
Abruptness

Distribution

Pairing

Location
of Peaks

Extraction
of Cues

Decision
Based on 

the Distribution

(b) Cue-distribution model

Figure 4-1: Comparison between (a) decision-tree based approach and (b) cue distri-
bution approach
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True Landmarks

Detected Peaks
for g-landmarks

Detected 
g-landmarks

Detected
Landmarks

When a peak fails to pass a given theshold
(the +peak at the start of utterance is not detected due to lack of abruptness)

Not only it affects the decision process of the landmark type
(the -g landmark is deleted because it failed to pass pairing process)

But it also affects the detection of other types of landmarks
(s landmarks are not detected because they are detected within (+g, -g) pairs.)

+g-g+s-s +b -g+g

Figure 4-2: An example of error propagation. When a +peak for a g-landmark fails to
pass the threshold, the pairing criterion will delete its corresponding -g landmark as
well, which also results in the deletion of s-landmarks between the deleted g-landmark
pair.

decisions will be affected by the deletions.

The propagation of deletion not only affects one type of landmark, but also affects

other types of landmarks. An example of such a domino effect is illustrated in Figure

4-2. In Liu’s landmark detection algorithm, g-landmarks are first detected with the

criterion that every +g landmark most have a pairing −g landmark, and then s-

landmarks are located only between each (+g, −g) landmark pair. Therefore, if one

of the +g landmarks is not detected in the peak-picking process (detected g-landmark

peaks are illustrated in the second tier as blue lines), the corresponding −g landmark

cannot be located due to the strict g-landmark pairing restriction (the detected g-

landmarks are illustrated in the third tier). Therefore, the region between deleted

g-landmarks is not searched for the existence of s-landmarks, and so the s-landmarks
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within the region will not be detected. As a result, four out of the seven landmarks

may be deleted due to the omission of a single landmark peak.

Deletion of landmarks causes more problems than insertion, because the land-

marks locate the time-points that need to be further investigated for additional cues.

Given a system that relies upon the detected landmarks, an omission of a landmark

means that no cues will be measured at the landmark point and that only higher-

level processes such as phonotactics and lexical access will be able to retrieve the

lost information. On the other hand, an insertion of a false landmark only results

in estimation of information at the false alarm position where no relevant articula-

tory events occurs, and this insertion can be easily removed after verifying that the

extracted information does not indicate important events.

Therefore, in the newly developed process, the thresholds are lowered in the peak-

picking process to avoid losing true landmarks, despite the fact that it will introduce

a large number of false alarms.

4.1.3 Probabilistic Process

Because the lowering of threshold values increases the number of insertion errors, a

measure of likelihood is introduced to compensate for the side-effect. The probability

calculation is merely an extension of the conversion from decision-tree approach to

cue distribution approach, because the probability of each landmark candidate can

be calculated from the distribution of the cues.

The probability measure of the landmark candidates can be used to distinguish

reliable landmarks from false alarms. In addition, it can also be utilized to locate

ambiguous landmark candidates and to extract additional information from them by

postulating possible phonetic contexts in which the landmarks may be produced with

less prominence.
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4.2 Data Preparation

4.2.1 TIMIT Database

Classification of Speakers

The algorithm for automatic detection of landmarks is trained and tested on the

TIMIT database [60]. This database consists of 6,300 utterances recorded by 630

speakers who are categorized into 8 different dialect regions based on geographical

area. The number of male speakers outnumbers that of female speakers, but there

are at least ten speakers per dialect region.

Because the landmarks correlate to the movement of speech organs, it can be

hypothesized that the landmarks are robust to different genders, dialects and lan-

guages. Since each speaker class determined by gender and dialect contains at least

100 utterances or approximately 2,000 expected landmarks, it is possible to reliably

estimate the performance of the algorithm for different dialects and genders on this

database.

Recorded Texts

Ten utterances are recorded by each speaker. Two sentences are recorded by all the

speakers to compare the effect of different dialect. Five of the utterances are from a

set of 450 phonetically-compact sentences, which are designed to include most of the

phone pairs and other phonetically interesting contexts. Each phonetically-compact

sentence is recorded by seven speakers. The other three utterances recorded by each

speaker are drawn from a set of 1,890 phonetically-diverse sentences, which are usually

longer and contain various allophonic contexts.

The wide coverage of phone pairs is an advantage of using the TIMIT database

because a landmark denotes the place where there is a transition from one segment

to another. Thus, it is of some importance that the broad sampling of contexts

allows us to observe how allophonic variations affect the landmarks in a relatively

comprehensive manner. The two universally recorded sentences are not included in
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Symbols Description

dx /t/ flap or /d/ flap
nx nasal flap
q glottal stop or irregular pitch periods
hv voiced /h/
ux fronted /u/
ax-h devoiced schwa
el syllabic /l/
en, em, eng syllabic nasals

Table 4.1: Allophones used for the phonetic transcription in TIMIT database

the development and testing of the landmark detection algorithm, because that would

overly emphasize only a small set of phonetic contexts.

Recording Quality and Phonetic Transcription

The utterances in the TIMIT database were read as isolated sentences, and recorded

in a quiet environment at a 16kHz sampling rate. Each utterance is handlabeled with

phones including certain types of allophones.

Some of the phones are defined ambiguously, which may cause a problem in auto-

matic mapping of expected landmarks. For example, the [q] symbol is marked when

there is a glottal stop, which is considered an offset of glottal vibration, but it also

labels any occurrence of irregular pitch periods, which is a continuation of glottal

vibration. A symbol for syllabic /l/ exists, but the use of this symbol mostly depends

on the lexical stress pattern of the word rather than on the actual realization of the

phones in the spoken signal. Therefore, in most cases, it is not possible to distinguish

non-abrupt /l/ from abrupt /l/ from the labels alone. The complete set of allophones

used in labeling the TIMIT database and their descriptions are listed in Table 4.1.

4.2.2 Predicting Landmarks from Phonetic Transcription

It is estimated that overall the TIMIT database contains about 100,000 landmarks.

Therefore, handlabeling all the landmarks of the TIMIT database would be a time-
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consuming piece of work. However, since the consonant landmarks mark the places

where there are abrupt changes in the spectrogram, the landmarks corresponds to a

boundary between a pair of phones. As a consequence of this property, the expected

landmarks can be automatically determined from the phonetic transcriptions.

The complete table of phone-to-landmark mapping is shown in Table 4.2. Be-

cause the landmarks generally do not depend on the articulator-bound features, the

mapping table is represented by broad classes of the phones for the sake of compact-

ness. The broad class assignment of each TIMIT symbol is listed in Table 4.2(a). For

each pair of adjacent segments, the landmark type that is typically expected to be

present at the boundary is tabulated in Table 4.2(b). The blank cells correspond to

the contexts where acoustic discontinuities are not likely to be found.

Due to ambiguity in the phonetic transcription, this mapping algorithm does not

predict all the landmarks that are actually realized. For example, /l/’s at syllable-final

position are sometimes realized without abrupt change at the vowel-sonorant bound-

ary, but the landmark mapping algorithm predicts a −s landmark at the boundary

because TIMIT’s phonetic transcription does not distinguish between abrupt and

non-abrupt /l/’s.

The symbol [q] can represent both glottal stops and irregular pitch periods, but in

the mapping algorithm, it is assumed to be irregular pitch periods. Most of the glottal

stops are at postvocalic positions followed by an obstruent consonant, and in those

contexts, the expected sequences of landmarks are the same even if [q] is considered

as a vocalic region. This assumption may change the positions of the landmarks

around the glottal stops, but considering that the glottal stops are relatively short in

duration, the difference will be small.

Although the flaps are variants of the stop consonants /t/ and /d/, they also have

similarities to a sonorant consonant. The flaps are produced with a rapid tap of the

tongue against the roof of the mouth instead of a complete closure and release. As

a result, intraoral pressure does not build up, and air continues to flow through the

vocal tract. Thus, the voice source is not turned off completely during the flap sound,

and no burst noise can be observed in the spectrogram. Because these acoustic cues
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Category Symbols used in TIMIT Note

voc ae, aa, ah, ey, eh, ow, ao, uw, uh, ih, iy, Vowels
ix, axr, ax-h, aw, ay, oy, ux, er, ax
w, y, r Glides

son m, n, ng, em, en, eng, nx Nasals
l, el Liquids

flp dx Flaps
ipp q Glottal stops
hvo hv Voiced /h/
fri s, sh, f, th, z, zh, v, dh Fricatives

jh, ch Affricates
b, d, g, p, t, k Stops
hh Unvoiced /h/

sil bcl, dcl, gcl, pcl, tcl, kcl Closures
epi, pau, h# Silences

(a) Classification of TIMIT segments. The classification is mainly based on the
articulator-free features of the segments. These classes are used in Table (b).

Following Symbol

voc son flp ipp hvo fri sil

P
r
e
v
i
o
u
s

S
y
m
b
o
l

voc −s −s −g −g
son +s −s +s −g −g
flp +s +s +s −g −g
ipp −s −s −g −g
hvo −g −g
fri +g +g +g +g +g −b
sil +g +g +g +g +g +b

(b) Mapping from a pair of segment categories to a consonant landmark

Table 4.2: Mapping tables to convert TIMIT phonetic transcriptions into expected
consonant landmarks
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are close to those of sonorant consonants, flaps are mapped to s-landmarks.

An abrupt change can be observed between a nasal and a flap, because there is a

substantial dip in energy for the flap sound and the formants above F1 mostly fade

out. These changes are similar to those seen in a sonorant consonant. Therefore, the

transition between a nasal and a flap is mapped to an s-landmark as well.
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Chapter 5

Detection of Individual Landmark

Candidates

5.1 Detection of Spectral Change

The first part of the landmark detection task consists of finding acoustic discontinu-

ities in the speech signal. Figure 5-1 shows a rough block diagram of this process.

First, the energies of six different frequency bands are calculated from the broadband

spectrogram of the signal, and the abrupt changes in the amplitude of each band-

energy are located with a two-pass algorithm. Each block of the diagram will be

explained further in the following sections.

Broadband
Spectrogram

Band Energies
Band 1:       0-  400Hz
Band 2:   800-1500Hz
Band 3: 1200-2000Hz
Band 4: 2000-3500Hz
Band 5: 3500-5000Hz
Band 6: 5000-8000Hz

Peak Picking

Coarse
Pass

Fine
Pass

Peak
Localization

Figure 5-1: A rough block diagram of the peak-finding process
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Parameter Value

Sampling rate 16kHz
Hanning window size 6ms
Window shift 1ms
FFT frame size 512 pt

Table 5.1: The parameters used to calculate the broadband spectrogram

No. Range

Band 1 0– 400 Hz
Band 2 800–1500 Hz
Band 3 1200–2000 Hz
Band 4 2000–3500 Hz
Band 5 3500–5000 Hz
Band 6 5000–8000 Hz

Table 5.2: Six bands used in the landmark detection algorithm

5.1.1 Broadband Spectrogram

A consonant landmark corresponds to an abruptness in the speech spectrum. Because

this spectral change takes place in a short time period and affects a wide frequency

range, a broadband spectrogram is best suited for the purpose of finding the time-

points of abrupt changes with accuracy.

The parameters of the spectrogram are listed in Table 5.1. The spectrogram is

computed with a 6ms Hanning window, shifting by 1ms steps to detect temporal

information with high resolution. For each time frame, a 512-point FFT is used to

provide enough frequency resolution for proper calculation of energy bands and other

spectral cues.

5.1.2 Energy Bands

As explained in Section 2.1, landmarks affect different frequency regions, depending

on the type of the landmark. To accommodate this property, the spectrogram is

divided into six different bands as shown in Table 5.2. Shannon et al. [45] observed
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that the manner features can be perceived by human correctly when the signal is

degraded into a small number of frequency bands with cut-off frequency at 800, 1500,

and 2500Hz. Therefore, this division into six frequency bands is expected to capture

the acoustic changes due to landmarks properly.

Energy in frequency band 1 reveals the presence of glottal vibration. Bands 2

and 3 include the 0.8-2kHz region, in which a zero may be introduced in sonorant

consonants [9]. The frequency regions of Bands 2 and 3 are overlapped lest the

movement of additional zero from one band to another should be mistaken with the

introduction of a zero. As illustrated in Figure 5-2, when the frequency bands are

overlapped, the movement of the zero can be captured at least in one of the bands.

Aspiration and frication noise affects the entire frequency range, but the change is

most prominent in Bands 4 and above. This frequency region is divided into smaller

bands for a more reliable detection.

The energy in each of these six bands is calculated by averaging the square mag-

nitude of the spectrogram over the frequency band. The energy band is calculated

in dB. Figure 5-3 shows an example of the energy levels calculated in the six energy

bands for an utterance of the sentence ‘Critical equipment needs proper maintenance.’

5.1.3 Finding the Peaks

Because the broadband spectrogram uses a 6ms window, a short-time disturbance

can affect the spectrum by a great amount. To avoid such effects without sacrificing

time resolution, the following methods are used: Introduction of rate of rise and

calculating peaks in two passes.

Rate of Rise

The first difference of a signal is generally used to estimate the rate of change. The

rate of rise (ROR) is similar in its purpose, but differs in that instead of taking the

difference between adjacent samples, it takes the difference between samples that are

farther apart. The distinction is illustrated in the following equations:
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Figure 5-2: If the frequency bands are not overlapped, the movement of a nasal-zero
from a band to another can be mistaken as an abrupt spectral change.
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Figure 5-3: Example of a broadband spectrogram and its six energy bands
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First Difference d[n] = x[n + 1] − x[n]

6-point ROR r6[n] = x[n + 3] − x[n − 3]

Because the rate of rise calculates the change after a certain period of time, it

is less affected by a change that occurs during a short period of time, and instead

detects a steady change over a longer period. Figure 5-4(a) illustrates this effect. A

signal at the transition from low energy to high energy is given as an input. The

first difference of the signal is more sensitive to the introduction of noise than to the

gradual increase during the transition, and so the peak height made due to the noise

is higher than that from the transition. On the other hand, 4-point ROR, which is

equivalent to the accumulated sum of four consecutive first differences, highlights a

consistent increase during a certain time-period more than the distortions introduced

via a sudden fluctuation by noise.

r6[n] = x[n + 3] − x[n − 3]

= (x[n + 3] − x[n + 2]) + (x[n + 2] − x[n + 1]) + · · · + (x[n − 2] − x[n − 3])

= d[n + 2] + d[n + 1] + d[n] + d[n − 1] + d[n − 2] + d[n − 3]

However, another example shown in Figure 5-4(b) illustrates the fact that even

though the ROR emphasizes the steady rise in a signal, it does not reduce the mag-

nitude of the noise signal itself. The height of the peak introduced by a sudden noise

is the same in the first difference and the 4-point ROR. Therefore, a low pass filter is

needed for a more robust estimation of abruptness.

An example of ROR based on a speech signal is provided in Figure 5-5. Note that

the local maxima of rate of rise indicate increases in the corresponding band energy,

and local minima indicate decreases. Dotted lines are inserted at some of the peaks

of the rate of rise for easier comparison.
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Original Signal with a Noise

First Difference

4-Point ROR

Noise

Transition
from Low to High

Noise signal peak is higher than transition peak

Transition peak
is higher than noise

(a) ROR detects steady change of the signal more robustly than sudden noise.

Noise signal

First Difference

4-Point ROR

Noise

Peak height of noise is not reduced by ROR

(b) The peak height is the same in both first difference and ROR.

Figure 5-4: Illustrations comparing the first difference and 4-point ROR
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Figure 5-5: Band energies and the corresponding rate of rises

Two Pass System

Low-pass filtering with a large window reduces the noise significantly and still retains

the overall energy change of the signal. However, it blurs the details, especially the

abruptness, of the signal at the same time; thus, a short window must be used to

pinpoint the exact location of the change. Therefore, to avoid noise and to keep the

high time-resolution, two parallel processes are applied: one with a short time window

(Fine Pass), another with a longer one (Coarse Pass). A shorter ROR distance is

used for fine pass to detect the location with more accuracy.

Coarse pass uses a 16ms time window and 20ms ROR distance. The ROR distance

is decided so that it is longer than the duration of a transition, but shorter than the

duration of a schwa vowel or a frication noise. The criterion is explained in Figure

5-6. Figure (a) compares the ROR of a signal based on three ROR distances, which

are shorter than, equal to, and longer than the transition time. It can be observed

that if the ROR distance is shorter than the transition period, the height of the ROR

peak is lower than those of the longer distances. However, the ROR distance longer

than the transition period does not give a higher peak. On the other hand, Figure

(b) illustrates that if the ROR distance is too long, so that the ROR distance exceeds

the duration of the segment, the center of the ROR peak moves farther from the
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Coarse Pass Fine Pass

Smoothing window 16 ms 8 ms
ROR distance 20 ms 10 ms
Threshold 7 dB 5 dB

Table 5.3: The parameters for peak picking in coarse and fine passes

actual abruptness. Therefore, the ROR distance should not exceed the duration of a

segment.

On the other hand, the fine pass uses the parameters half the size of that of the

coarse pass as shown in Table 5.3. This may be less robust to noise and may detect

other peaks from sudden fluctuations in the signal, but the correct peak will be located

at a more accurate place because less information about abruptness is filtered out.

Peak Picking

After calculating ROR, the peaks of the ROR are found with Mermelstein’s peak-

picking algorithm [40]. The peaks of ROR correspond to the abrupt changes in the

original signal. A simplified procedure of Mermelstein’s peak-picking algorithm is

shown below:

1. For each region over the threshold, find a maximum in the region.

2. Find a local minimum to the left and right of the maximum peak.

3. Take the difference between the minimum and the maximum peak height. If the

difference exceeds the chosen threshold, split the region and apply the algorithm

recursively for each region.

Some examples of peak-picking results based on this algorithm are shown in Figure

5-7. The algorithm picks at least one peaks from each region over the threshold, and

if there is more than one peak in a region, picks the largest one. However, if the

height of the dip between two peaks is larger than the threshold, the region is divided

into two and a peak is picked in each of them.

Mermelstein’s algorithm is applied to pick the local maxima whose absolute values

are larger than 7dB for a coarse pass or 5dB for a fine pass, and the minima with values
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Original Signal

Transition Duration
10 Points

4-Point ROR

10-Point ROR

14-Point ROR

Peak Height: 4pt

Peak Height
10pt

Peak Height
10pt

(a) ROR distance should be longer than transition time.

Center of 
Transition

Original Signal

Segment Duration
10 Points

Center of 
Transition

4-Point ROR

10-Point ROR

14-Point ROR

Center of peak does not correspond 
to the center of transition

(b) ROR distance should not exceed the segment duration.

Figure 5-6: An illustration for the criterion for choosing ROR distance
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Figure 5-7: A simple illustration of the peak-picking algorithm

less then −7dB and −5dB respectively. The expected threshold for the landmark

candidates is 9dB, [35] but this threshold is lowered to avoid losing landmarks. Using

the lower threshold has the advantage not only in that it finds low-height peaks, but

also in that it differentiates between two closely adjacent peaks. Falsely detected

candidates due to the low threshold can be handled by extracting additional cues

around the landmark by a method which is explained in more detail in Chapter 6.

Peak Localization

Because the coarse pass is designed to be robust to noise, and the fine pass to increase

the temporal resolution, the existence of acoustic discontinuity in a frequency band is

determined by a coarse-pass peak, and its exact location is determined by a fine-pass

peak. Therefore, the following process is applied for each coarse-pass peak in each

band, so that more exact time-points of acoustic changes can be determined. The

largest positive fine-pass peak within ±15ms of each coarse-pass +peak is considered

to be the localized +peak, and the largest negative one is chosen when looking for a

−peak. When no such fine-pass peak is present in the vicinity of a coarse-pass peak,

the coarse-pass peak is considered an error and is ignored.
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5.2 Finding Landmark Candidates from the Peaks

A peak in the ROR of an energy band only means that there is a certain change in the

given frequency range. This abrupt change may reflect a true landmark, when it indi-

cates a transition between different voice sources, or an opening of the velopharyngeal

port, but there are other events that can create variations in a frequency band, such

as formant frequency movements. To avoid false landmarks of this type, possible

landmark positions are extracted from the peaks in all six of the energy bands.

5.2.1 Criteria

A g-landmark candidate is determined by the Band 1 ROR peak location. Band 1

is directly related to the g-landmark, because the fundamental frequency, which is

generated by vocal fold vibration, falls in the Band 1 frequency range.

Although onset of glottal vibration does affect the whole frequency range, the

peaks in Band 2–6 are not used in g-landmark detection because they are more

dependent on the context in which the landmark occurs. For example, when a fricative

is followed by a vowel, the high-frequency energy in the fricative region has high

amplitude, and relatively lower amplitude in the vowel, which leads to decrease of

high-frequency energy at the boundary. On the other hand, if there is no fricative

consonant before a vowel, there is an increase in high frequency energy at the onset

of the glottal vibration. Because of this inconsistency, the ROR peaks in the higher

band energies are ignored in determining the g-landmark candidates.

On the other hand, b- and s-landmark candidates are determined by ROR peaks

in Bands 2–6. A sonorant consonant introduces a zero in the 800–2000Hz region,

and this phenomenon results in a significant energy drop in Bands 2–4. Moreover, an

obstruent consonant can be denoted by its frication noise or burst, which spans most

of the high-frequency range (especially Bands 4–6). Therefore, when three out of five

bands have peaks of the same sign at the same time, the position is considered to be

a candidate for both an s- and a b-landmark.
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5.2.2 Method

The g-landmark candidates can be determined directly from the ROR peaks, since

these candidates are at the same position as the ROR peaks in Band 1. For other

landmarks, however, this is not the case: A time-point where at least three peaks

are present in five different bands must be found, and in some cases, these three

peaks may not be detected at the exact same time-point. They may differ by several

milliseconds, and it is necessary to develop a measure to determine which of the peaks

can be considered to be at the same position.

For this purpose, a clustering algorithm is used. The following criteria are used

to align the peaks:

1. The time of the ROR peaks in a cluster can be at most 50ms apart from one

another.

2. No two peaks in the same frequency band can be in the same cluster.

3. No two clusters can be overlapped in time.

The 50ms criterion is used because some landmarks, especially those of sonorant

consonants, have slower transition periods. The offset of a fricative also shows dif-

ferent transition times in different frequency bands. When there are more than two

landmarks within a 50ms region, the second and third criterion can separate them.

The MaxCut algorithm [17] is applied recursively to cluster the peaks. An il-

lustration of the algorithm is given in Figure 5-8. The procedure of clustering is as

follows:

1. Create a graph on which the MaxCut algorithm will be applied.

• Vertices: Each vertex represents a localized peak extracted from the pre-

vious section. The peaks from bands 2–6 are all merged in one graph, as

shown in the “Merge” tier in Figure 5-8.

• Weighted Edges: Each pair of vertices has an edge between them. The

weight on each edge is decided by the time difference between the peaks.

When the two peaks violate the second criterion (i.e., when the two peaks
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are from the same band), the weight of the edge is set to be a certain fixed

value larger than 50ms.

2. Decide on a cut point which maximizes the sum of the weights on the edges

that connects the divided clusters.

Normally MaxCut is a non-deterministic polynomial-time hard (NP-hard) prob-

lem, which cannot be solved in polynomial time computational complexity. In

this case, however, the number of possible clusterings does not exceed the num-

ber of vertices, due to the third criterion. Therefore, the sum of weights of all

possible clusterings can be calculated in O(n2) time, where n is the number of

vertices, by the following procedure:

(a) The sum of weights for the first cut point—i.e., the cut between the first

and the second vertex—is the sum of the edges (1, i) for all i > 1.

(b) Given the sum of weights for the k − 1-th cut point Wk−1, the sum of

weights for the k-th point can be calculated by

Wk = Wk−1 −
k−1∑
i=1

w(i, k) +
n∑

j=k+1

w(k, j)

3. After the cut point is decided, the previous step is applied to each divided

cluster recursively, until the clusters satisfy all three criteria. Each row in the

“MaxCut” section of Figure 5-8 shows the clustering result after each recursion

step.

4. For each cluster, check whether it includes at least three peaks. If so, accept the

average time of the peaks as the time-point of s- and b-landmark candidates.

In Figure 5-8, only three of the five resulting clusters pass this criterion, and so

three landmark candidates are determined.

Figure 5-9 shows a step-by-step illustration of the candidate detection process in

a real speech signal. When a signal is given, the energies in six bands are estimated

first, and using ROR and peak-picking algorithm the ROR peaks are extracted from
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Landmark Type Cues Description

g-Landmark Abruptness Height of fine pass peak
Sonorant Levels Low-frequency energy on both sides

b-Landmark Abruptness Height of fine pass peak
Silence Minimum energy on one side
Non-Silence Maximum energy on the other side

s-Landmark Abruptness Height of fine pass peak
Lowered Energy Minimum energy on one side
Vocalic Energy Maximum energy on the other side
Increased Tilt Difference of tilt between both sides

Table 5.4: Additional cues used to determine the correctness of landmark candidates.

each band. The g-landmark candidates correspond to the peaks in Band 1, and the

b- and s-landmark candidates correspond to the cluster of the peaks in Bands 2–6.

5.3 Meaningful Cues for Each Candidate Types

Being selected as a candidate means that it is possible that there might be a mean-

ingful landmark at the position, but it does not mean that there will always be a

consistent event corresponding to the landmark type. The landmark candidates are

determined only from the difference in the energy bands, and so more cues are needed

to identify meaningful landmarks from random disturbances in the speech signal, and

to identify the correct type of the landmark (especially to differentiate between s and

b). Table 5.4 summarizes the cues that are used for each landmark candidate. Each

of these cues will be discussed in more depth in this section.

5.3.1 Glottis Landmark

Abruptness

The abruptness of a transition can be measured by the peak height in frequency Band

1 in fine pass. In the processing described in Section 5.1.3, fine peaks were detected

with only a 5dB threshold because that can differentiate two or more peaks that are

89



this was easy for us

dh ih s uh iy z y er ah sz f

Sp
ec

tro
gr

am
B

an
d 

En
er

gi
es

R
O

R
 P

ea
ks

C
lu

st
er

ed
 P

ea
ks

bu
rs

t/S
on

or
an

t
La

nd
m

ar
k 

C
an

di
da

te
s

this was easy for us

dh ih s uh iy z y er ah sz f

G
lo

tti
s 

La
nd

m
ar

k 
C

an
di

da
te

s

Figure 5-9: Consonant landmarks and corresponding ROR peaks. Red circles rep-
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candidate section, lighter lines represent +candidates and darker lines represent
−candidates.
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Figure 5-10: Using a low threshold in the Mermelstein peak-picking method differen-
tiates multiple peaks, but at the same time introduces peaks with smaller heights.

close together in time. While using such a low threshold is useful for differentiating

multiple peaks, it has the disadvantage that it also generates spurious small peaks

as illustrated in Figure 5-10. The parameter of peak height can be used to filter out

these small insertions.

Sonorant Levels

Because abruptness is calculated by a difference of two energies, having a high abrupt-

ness does not guarantee that the energy level is high on one side and low on the other.

This problem especially pertains to silent regions, because a small change in the back-

ground noise can be detected as a large jump when measured in dB. Therefore, it

is necessary to measure the sonorant level on both sides of a g-landmark candidate.

A g-landmark must be adjacent to a vowel or a sonorant consonant. Therefore, a

g-landmark must have a high sonorant level on one or the other side of it.

The sonorant level is determined from the fine-pass Band 1 energy. It is defined

to be the highest energy level such that Band 1 energy is higher than it for at least a

20ms time span, as shown in Figure 5-11. By using the criterion of 20ms time span,

we are able to exclude the effects of a sudden disturbance shorter than 20ms.
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Figure 5-11: An illustration of the definition of 20ms-span maximum.

5.3.2 Burst Landmark

Abruptness

As was the case for g-landmarks, abruptness of the fine pass peak can be a crucial

criterion for filtering out wrongly detected b-landmark candidates. A b-landmark

candidate is postulated when there are at least three peaks within a defined time

region. Therefore, instead of using five separate cues, one larger frequency band (1.2–

8kHz) is used for this purpose. Low-frequency energy is not included, to avoid a voice

bar during a stop closure from reducing the level of abruptness.

For the abruptness cue, the energy in the 1.2–8kHz frequency band is obtained

using a 20ms Hanning window and a 13ms ROR distance. The window size and ROR

distance is a little larger than the for fine-pass processing step, because the exact

time of transition may be different in different frequency ranges, resulting in a longer

transition period when the wider frequency band is used.

Silence

The most important criterion for the b-landmark is the existence of a silent region

next to the landmark. This is because, in order to make a burst noise, a complete

closure must be made to build up enough pressure so that when the pressure is

released, turbulence noise will create a burst. Fricatives may be adjacent to a vowel

or another fricative instead of to a silence, but those cases are not defined as b-
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Figure 5-12: An illustration explaining calculation of silence cue

landmarks because the boundary between a vowel and a fricative is marked with a

g-landmark. Moreover, the boundary between two adjacent fricatives does not have

consistent abruptness; the degree of abruptness depends on the individual phonemes

rather than on the general characteristics of frication noise.

The silence cue differentiates b-landmarks from s-landmarks. Since s-landmarks

always occur at the boundaries between vowels and sonorant consonants, no silent

region can be found next to s-landmarks. This distinction is important because b-

landmark and s-landmarks share the same landmark candidates.

The same frequency band (1.2–8kHz) and smoothing window size, which were

described above for detecting the abruptness cue, is used for determining the pres-

ence of silence. The silence cue is defined to be the difference between a 10ms-span

minimum of the band energy and average background noise (in dB), as illustrated in

Figure 5-12. The average background noise is determined as the average energy of

the first 30ms period of the recording. This short time span is used for the calculation

of minimum energy, due to the short closure duration for some stop consonants, and

also to account for the occasional short gap between sounds.

Non-silence

As was explained in the discussion of sonorant level cues for g-landmarks, a small

change in the background noise level can result in an abrupt energy difference during
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the silent region. Therefore, by introducing the non-silence cue, landmarks for a

frication noise or burst can be separated from changes in the background noise during

the silence.

For computational efficiency, the same frequency band and smoothing window size

used for detecting silence cue is applied for extraction of non-silence cue as well. The

non-silence cue is defined to be the difference between a 10ms-span maximum and

average background noise.

Extraction of the Cues

The acoustic cues must be estimated from different locations depending on the sign

of the b-landmark. Figure 5-13 gives a graphical illustration of the cue extraction

points.

A +b landmark means that there must be a transition from a silent region to a

region of frication noise. Therefore, given a +b landmark candidate, abruptness cue is

detected at the time point denoted by the candidate, silence cue is extracted from its

left-side (between the previous and the current landmark candidates), and non-silence

cues are extracted from the right-side (between the current and the next landmark

candidates). On the other hand, because a −b landmark denotes the transition from

a frication noise into a silence, the silence cues are extracted from the right, and the

non-silence from the left.

5.3.3 Sonorant Landmark

Abruptness

To ensure the validity of an s-landmark candidate, the abruptness cue is extracted

for these landmarks as well. The same frequency band (1.2–8kHz) is used, because

a sonorant consonant usually introduces a zero around 1.0–1.5kHz frequency and the

introduction of a zero causes energy drop in higher frequency regions. The specific

range of 1.2kHz–8kHz is determined to be the same frequency band as used in the

processing of b-landmarks, to reduce the computation time.
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Figure 5-13: An illustration explaining where abruptness, silence and non-silence cues
are detected for +b and −b landmark candidates

Lowered Energy

The energy in the high frequency band is usually lowered during a sonorant consonant.

This cue is also based on the same 1.2–8kHz band, and is used with a 20ms smoothing

window. The energy is defined to be the difference between 10ms-span minimum band

energy and the average background noise. The parameters are set to be the same

as those for the silence cues for b-landmarks, so that the cues do not need to be

measured twice.

Vocalic Energy

A sonorant landmark is always located between a vowel and a sonorant consonant. A

[sonorant]–[sonorant] sequence or a [sonorant]–[glide] sequence is not defined to have

a sonorant landmark at the boundary between them, because the abruptness at this

point is generally much lower than that for a [sonorant]–[vowel] sequence, and the

energy difference varies depending on the specific phonemes or on the contexts as

well. Therefore, the existence of strong vocalic energy next to a candidate can be a

cue for an s-landmark.

This cue is calculated as a difference between 10ms-span maximum energy and

the average background noise in the 1.2–8kHz band smoothed by a 20ms window.
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The same parameters as for the non-silence cue for b-landmarks are used for this cue,

to reduce redundant computation.

Increased Tilt

Tilt is defined to be the ratio of low-frequency-band energy (0–360Hz) to higher band

energy (0–5000Hz). This cue is different from the previous three cues in that it utilizes

the information of low-frequency energy as well as high. Therefore, this landmark can

distinguish s-landmarks from b-landmarks by recognizing the existence of glottal vi-

bration in the former. While frication noise generally tends to decrease the tilt (with

possible exception of voiced weak fricatives such as /v/) due to increased energy in

high-frequency region, sonorant consonants increase the tilt relative to the neighbor-

ing vowel because the nasal zeros suppress the energy in high-frequency region.

Because the duration of sonorant consonants ranges between 50–100ms depending

on consonant position and speaking rate, a 30ms window is used to avoid unwanted

fluctuations. The 10ms-span minimum values are measured for both the high- and

low-frequency bands, and their difference is calculated because the difference in dB

gives the ratio of actual values.

Extraction of the Cues

As was the case for b-landmarks, the sign of an s-landmark gives information about

the segments around it. A +s landmark is a transition from a sonorant consonant into

a vowel, and a −s landmark is from a vowel to a sonorant. Therefore, the acoustic

cues must be extracted at different points according to the sign of landmarks. The

extraction position for each cue is illustrated in Figure 5-14.

For each +s landmark candidate, the lowered energy cue needs to be extracted only

from the left-side of the candidate (between the previous candidate and the current

one), and vocalic energy cue should be extracted from the right-side (between the

current candidate and the next one). For the same reason, for −s candidates, lowered

energy cues are extracted from the right, and the vocalic energy from the left.

Because the value of tilt depends heavily on the type of vowel, it is not meaningful
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Figure 5-14: An illustration of how cues are extracted for s-landmark candidates of
different sign

to examine the tilt from one side alone. Therefore, the tilts are measured from both

sides and the difference is used as a cue.

5.4 Calculation of Probability

5.4.1 Introduction

Figure 5-15 shows a distribution of g-landmark cues extracted from a thousand can-

didate locations. The blue circled points mark the candidates that indicate the

acoustically-salient abruptnesses, and the red crosses are the false alarms. The two

clusters are well separated from each other, which means that the likelihood of a

candidate being an important landmark can be determined effectively based on these

cues. The algorithm for calculating the probability from the extracted cues is dis-

cussed in this section.
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Figure 5-15: The distribution of g-landmark cues. Blue circles are the actual land-
marks that are detected through landmark candidate detection process, and the red
crosses are the false alarms.

5.4.2 General Formula

When a set of cues C is measured around a candidate, the probability of the candidate

being a true landmark can be written as P (True|C). Because this value cannot be

evaluated directly, a simple Bayes’ rule is applied to derive a more computable form.

P (True|C) =
P (C|True)P (True)

P (C)

=
P (C|True)P (True)

P (C|True)P (True) + P (C|False)P (False)

To evaluate this formula, four probability components—P (True) and P (False),

P (C|True) and P (C|False)—needs to be estimated. These probabilities can be

trained from a reasonable data set with correct landmarks hand-labeled.
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5.4.3 Estimation of A Priori Probabilities

A priori probabilities of a random candidate being a true landmark or a false alarm

without any additional knowledge, P (True) and P (False), can be estimated by

counting the number of true and false landmarks among the detected candidates in

the training set.

P (True) =
Number of correctly detected landmarks

Number of total detected candidates from training data

P (False) =
Number of false alarms

Number of total detected candidates from training data

= 1 − P (True)

5.4.4 Estimation of Cue Distributions

The probability distribution of the acoustic cues for true landmarks, P (C|True),

and that of false alarms, P (C|False), can be estimated by approximating the distri-

bution of the cues measured in the training data set. This estimation can be done by

maximum likelihood parameter estimation on Gaussian mixture models. The number

of Gaussian components is determined to be two, based on prior experiments.

The probability distribution of a two-component Gaussian mixture model can be

written as the following, where x is a set of acoustic cues and θ is the set of all

parameters (p1, μ1, Σ1, p2, μ2, Σ2) in the model:

Pr(x| θ) = p1
1

(2π)d/2|Σ1|1/2
exp

(
−1

2
(x − μ1)

T Σ−1
1 (x − μ1)

)

+p2
1

(2π)d/2|Σ2|1/2
exp

(
−1

2
(x − μ2)

T Σ−1
2 (x − μ2)

)

= p1N(x; θ1) + p2N(x; θ2)

where p1 + p2 = 1.

Commonly, an Expectation-Maximization (EM) algorithm is applied to find the

maximum likelihood parameters of a mixture model for a set of training data [44].

The following procedure gives a method of finding the most suitable set of param-
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eters for the Gaussian mixture model by an EM algorithm, when a set of data

X = {x1, x2, · · · , xn} is given.

1. Pick an initial set of parameters θ̂, using a simple k-means clustering method.

2. Using the calculated parameters, estimate the probability of each data point

assigned to one of the two clusters: Pr(C1| xi, θ̂) and Pr(C2| xi, θ̂).

Pr(Ck| xi, θ̂) =
Pr(xi| Ck, θ̂) Pr(Ck| θ̂)

Pr(xi| θ̂)

=
p̂kN(xi; θ̂k)

p̂1N(xi; θ̂1) + p̂2N(xi; θ̂2)

3. Recompute the mixture parameters based on the previously given values.

μ̂k =

∑n
i=1 xi Pr(Ck| xi, θ̂)∑n

i=1 Pr(Ck| xi, θ̂)

Σ̂k =

∑n
i=1(xi − μ̂k)(xi − μ̂k)

T Pr(Ck| xi, θ̂)∑n
i=1 Pr(Ck| xi, θ̂)

p̂k =
1

n

n∑
i=1

Pr(Ck| xi, θ̂)

4. Repeat steps 2 and 3 until it converges or a maximum number of steps are

reached.

Figure 5-16 shows an example of the contour-plot of the probability distribution

function estimated by this method, overlaid on the scatter-plot of the original cues.

5.5 Performance of Individual Landmark Detec-

tion

5.5.1 Detection Rate

The first aim of this algorithm is to make the detection rate as high as possible, even

if this means that the number of insertion errors may rise as well. Elimination of the

increased insertions will be handled in the processes that are explained in Chapter 6.
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Figure 5-16: An example of cue distribution in two dimensions and the contour plot of
its estimated probability distribution. The plus sign marks the mean of each Gaussian
component.

Detection Criteria

In this section, the term detected landmark or matched landmark will be used to mean

a labeled landmark (i.e., the landmarks predicted from the phonetic transcription of

the TIMIT database using the mapping method described in Section 4.2.2) near which

a corresponding landmark candidate has been detected. It can be easily understood

that the landmark type and its corresponding candidate type should be the same,

and at most one landmark should be matched with a landmark candidate.

A landmark represents a time-point at which a lexically-significant acoustic event

occurs. Because accuracy in time is an important property of a landmark, another

criterion is added: the landmark and its corresponding candidate must be within

a certain distance in time. Figure 5-17 compares the results between the matching

algorithms with and without the temporal restriction. The matching result on the

left did not use distance criterion, and so the +g candidate on the right is matched

with the +g landmark to allow matching of the +b landmark. On the other hand,
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Figure 5-17: Comparison of landmark matching without distance criterion (left) and
with distance criterion (right)

the figure on the right hand side uses a more strict restriction, and only the g-

landmark is matched with a candidate. Short-time threshold may increase the number

of unmatched candidates, but the accuracy of the matching increases.

Detection Rate vs. Maximum Distance

Figure 5-18 shows the distribution of the distance between labeled landmarks and

their corresponding candidates when a distance criterion is not applied, based on

the utterances in dialect region 1 of the TIMIT test set. More than 95% of the g-

landmarks are detected correctly within 30ms distance, and 70% are detected correctly

within 10ms.

The b- and s-landmarks show similar distributions of distance between labeled

landmarks and detected candidates, except that b-landmarks are detected with more

accuracy and the distances of s-landmarks are more widely dispersed. This is due to

the fact that the segments represented by b-landmarks are generally burst noises and

are usually very short while the segments represented by s-landmarks are sonorant

consonants which have longer duration.
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Figure 5-18: The distribution of distance between landmarks and the corresponding
candidates for each landmark type estimated from the dialect region 1 of the TIMIT
test set

Threshold g-Landmark b-Landmark s-Landmark Total

10ms 68.9% 82.4% 49.3% 68.5%
20ms 89.4% 95.5% 67.2% 86.7%
30ms 94.1% 97.3% 73.4% 91.0%
40ms 97.3% 98.3% 77.0% 93.7%
50ms 98.0% 99.0% 80.1% 94.9%

Table 5.5: The detection rate based on different thresholds estimated from the TIMIT
test set
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Detection Rate

Table 5.5 gives the detection rate of each landmark type for different distance thresh-

olds, based on the entire TIMIT test set data. The detection rate is calculated to be

the number of detected landmarks divided by the number of total labeled landmarks.

Detection Rate (%) =
Number of Detected Landmarks

Number of Total Labeled Landmarks

Result shows that almost all the g- and b-landmarks are detected within 50ms dis-

tance from the labeled landmarks, and 96% of g-landmarks and 96% of b-landmarks

are detected correctly within a 30ms margin, but for s-landmarks only 75% are cor-

rectly detected. This is mostly due to the less abrupt nature of sonorant transitions,

especially those of non-abrupt /l/ sounds which could not be automatically distin-

guished from abrupt /l/’s based on the phonetic transcription, and due to syllabic

nasals which do not show clear distinction between vowel and nasal portions. Chen

[9, 8] has developed a nasal detection module which utilizes additional acoustic cues

besides band energies, and it is expected that this module will be able to compensate

for the lack of spectral abruptness of sonorant consonants.

The result is comparable to the acoustic segmentation result of Glass [16], which

reports 70% boundaries within 10ms of the transcription, and 90% within 20ms. Be-

cause Glass’s method locates changes in the energy of the spectrogram with varying

degree of sensitivity, and finds the best alignment of the acoustic discontinuities with

the transcription, the result can be considered as a theoretical upper bound of the

segmentation based on spectral energy change. Our result is slightly lower than that

of Glass’s but the landmark detection not only locates the general acoustic disconti-

nuities, but classifies the abrupt changes according to the acoustic characteristics.

5.5.2 Insertion Rate

The insertion rate is the ratio of the number of landmark candidates that are not

matched to the number of labeled landmarks. Table 5.6 shows the insertion rate of

each landmark type based on a 30ms threshold.
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Landmark Type g-Landmark b-Landmark s-Landmark

Insertion Rate 75.9% 321% 263%

Table 5.6: The insertion rate based on 30ms thresholds estimated from the TIMIT
test set

The insertion rate is high due to the lowered threshold in the peak detection

process. This low threshold allows the uncertain landmarks to be detected. The b-

and s-landmarks show especially high insertion rates, and this is due to a structural

reason; the b- and s-landmarks share the same candidates at this point in the pro-

cessing. That is, even if only correct landmarks were detected as candidates, the

insertion rate of b- and s-landmarks would have to be at least 100%. This highlights

the need for additional processing steps to winnow out the inappropriate candidates.

The subsequent processes will be discussed in Chapters 6 and 7.

In addition, g-landmarks not only affect the low-frequency range, but also the

higher frequency energies (although not reliably enough to serve as a cue.) Therefore,

the b- and s-landmark candidates, which are decided solely from abrupt changes in

the high-frequency bands, are apt to be detected at the point where g-landmarks are

detected.

This phenomenon also increases the insertion rate significantly for b- and s-

landmarks, but since these insertions correctly reflect abruptnesses, this effect does

not pose a serious problem as far as the existence of a landmark is concerned. On the

contrary, when the lower frequency band energy cannot be estimated clearly due to

background noise, these b- and s-insertions can be used to help locate the g-landmarks.

The insertions do present a problem for recognizing the type of landmark, which is

dealt within following chapters.

5.5.3 Calculation of Probability

As was shown in the previous section, the initial candidate detection process locates

most of the landmarks but it also detects a large number of false time-points. These
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Type g-Landmark b-Landmark s-Landmark

Type I Error 10.2% 14.1% 36.3%
Type II Error 8.6% 11.1% 18.5%

Table 5.7: Two types of errors for each landmark type estimated from the TIMIT
test set

insertion errors can be dealt with partly by the probabilities calculated in this chapter.

A coarse measure of performance in probability estimation can be obtained by set-

ting a threshold at 0.5 probability. Type I error is calculated as the ratio of candidates

with probability less than 0.5 among the correctly-detected landmark candidates, and

Type II error is calculated by the ratio of candidates with probability less than 0.5

among the falsely detected candidates. The correctly-detected landmark candidates

are defined to be the landmark candidates which have corresponding labeled land-

marks of the same type within 30ms distance.

Type I Error =
Number of correct candidates with Prob < 0.5

Total number of correct candidates

Type II Error =
Number of false alarms with Prob > 0.5

Total number of false alarms

The two types of errors calculated from all utterances from TIMIT test set are

tabulated in Table 5.7. From the measure given in the table, it can be noted that

almost 90% of the falsely detected candidates can be identified solely from this coarse-

grained probability measure, except for s-landmarks.

A more detailed analysis of the probability of g-landmark candidates is shown in

Figure 5-19. This shows that not only are 90% of the candidates on the correct side

of the 0.5 threshold, but most of the landmark candidates have extreme probabilities

as well. That is, more than 80% of correctly-identified g-landmark candidates have

more than 0.9 probability and more than 85% of false alarms have less than 0.2

probability. Therefore, by this probability measure, we will be able to distinguish

false alarms from the correctly detected candidates with considerable confidence.

The next chapter will deal with the issue of distinguishing the correctly detected
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Figure 5-19: The probability distribution of correctly-detected g-landmark candidates
and false alarms estimated from the TIMIT test set

landmarks from the false alarms, based on the probability cues measured in this

chapter and additionally defined parameters.
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Chapter 6

Landmark Sequence Determination

6.1 Motivation

This chapter deals with the problem of landmark sequence determination. It is a

process that identifies and excludes the false alarms of the previous stage, and de-

termines a sequence of landmark candidates which is likely to be the most accurate

estimate of the actual landmarks. This process helps to improve the performance of

the subsequent processes.

6.1.1 Landmark Selection

The initial landmark candidate detection process finds most of the places where im-

portant feature-related acoustic events occur, but in order to ensure that few land-

marks are missed, the process also introduced a large quantity of false alarms. To be

able to distinguish these false alarms from correctly detected landmarks, additional

acoustic cues are extracted in the vicinity of the candidates, and the probability of

each candidate being a true landmark was calculated from the cues.

Therefore, as a reasonable next step, it is suggested that the false alarms be iden-

tified based on these cues, and the most likely set of landmarks be selected from the

previously detected landmark candidates. By removing the false alarms, unnecessary

computations in the subsequent processes, such as feature extraction near the falsely
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detected landmarks, can be reduced.

While it is possible to filter out some of the false alarms by setting a threshold

on the probability as discussed in the previous chapter, this may not be the most

reasonable method of finding the true landmarks. This is because the probabilities

assigned to the detected landmark candidates may depend on the context, such as ad-

jacent vowel quality or low subglottal pressure at the end of an utterance. Therefore,

a method of determining the most likely landmarks needs to be developed, incorpo-

rating some degree of knowledge about the surrounding speech signal.

6.1.2 Landmark Grouping

One of the most important uses of landmarks is to pin-point the exact place to

extract additional cues for the features of the underlying segments and words of an

utterance. For example, to find a spectral property of the sonorant consonant /n/ in

the word ‘money’, such as the frequencies of the spectral peaks, the property can be

found between the −s landmark located at the consonant closure and the following

+s landmark at the release, as shown in Figure 6-1. Likewise, to find the VOT

(Voice Onset Time) of the stop consonant /t/ in the utterance of ‘her teeth’, one can

calculate the time difference between the +b landmark at the burst and the following

+g landmark at the onset of the vowel /i/.

The cues for a single distinctive feature can be also found at several sequential

landmarks. For example, the cues for a stop consonant place of articulation can be

found at three different landmarks: the −g landmark at the closure, the +b landmark

at the burst, and the +g landmark at the release [31, 54]. Therefore, by grouping

the landmarks in a manner suitable for these subsequent processes, the performance

of the processes can be improved. Figure 6-2(a) illustrates a lexical access system

without an intermediate landmark grouping process. In this system, the distinctive

features must be estimated from each individual landmark, and so the same features

are found multiple times at different locations, and some other process then needs to

decide if these separate feature bundles represent the same underlying sound or not.

On the other hand, the system with a landmark grouping process in Figure 6-2(b)
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Figure 6-2: Illustrations of lexical access systems with and without landmark grouping
process

can estimate the distinctive features from a set of related landmark positions, and so

the estimation are more robust, and the resulting feature sets are not redundant.

6.1.3 Relation Between Landmark Selection and Grouping

The landmark selection and grouping processes may focus on different aspects of the

speech, but the two processes are related to each other. First, the landmark selec-

tion process must precede landmark grouping, because grouping cannot be reliably

performed before the large quantity of false alarms is reduced. On the other hand,

the landmark grouping process can provide constraints for finding a sequence of true

landmarks. For example, a landmark sequence (−g, +s, +g) does not correspond to

any of the possible landmark groups and such a landmark sequence should not be

selected in the landmark selection process in order not to conflict with the grouping

procedure.

112



Because of the mutual dependency of these two processes, an alternative process

is developed that combines their advantages. The landmark sequence determination

process explained in this chapter is designed to create an output that consists of

high-probability candidates and some of the low-probability candidates which do not

conflict with the constraints given by landmark groupings.

6.2 Bigram Method

6.2.1 Representation of Constraints on Possible Landmark

Sequences

The constraints from the landmark grouping can be represented efficiently with a

bigram model. A bigram model provides effective constraints on possible landmark

sequences, because each landmark represents a movement of an articulatory organ.

For example, a (+g, +g) landmark sequence cannot be produced by the voice source,

because a +g landmark denotes the onset of a vocal fold vibration and two +g land-

marks in a row means that the vocal folds can be turned on multiple times without

any turn-off or pausing in between, which would introduce a −g landmark.

Table 6.1 shows the theoretical constraints in the bigram model. More than half

of all landmark pairs cannot be produced for physiological reasons. Moreover, each

legal (meaning physiologically possible) landmark pair can provide information about

some possible characteristics of the segment between the landmarks.

A trigram model could also be used to get a stronger restriction, but because

the aspects of the landmarks are mostly binary—e.g., start and end of vocal fold

vibration, opening and closure of velopharyngeal port, existence of frication noise—

physiological constraints can be well captured with a bigram model. The additional

constraints that a trigram model can provide are mostly phonotactic constraints which

are dependent on specific languages, and this is not a great advantage, considering

the cost in increased complexity of computation.
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Table 6.1: A table of possible (marked with O) and impossible (marked with X)
landmark pairs

6.2.2 Estimation of the Bigram Model

A bigram model of the landmark sequence is trained. Given a landmark s1, the

probability that the next landmark will be s2 is calculated using maximum likelihood

estimation.

B(s1, s2) =
n̄(s1, s2)∑
s∈L n̄(s1, s)

In this formula, n̄(s1, s2) represents the empirical count of landmark sequences

(s1, s2) in the training set. The set of all the consonant landmarks L is defined

as L = {+b, −b, +s, −s, +g, −g, ust, uend}. Two additional symbols are used to

indicate the start and end of an utterance. The symbol ust represents the start of

an utterance, and uend represents the end of an utterance. The results obtained from

the labeled landmarks in the training set of the TIMIT database are shown in Table

6.2. The blank cells represent the impossible landmark pairs. This result verifies the

theoretically expected landmark pairs listed in Table 6.1.
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Next Landmark

+g −g +b −b +s −s uend

C
u
r
r
e
n
t

L
a
n
d
m
a
r
k

+g 55.8 9.2 35.0
−g 33.6 45.2 14.8 6.4
+b 90.2 9.8
−b 13.2 62.3 24.5
+s 66.3 0.4 33.3
−s 44.3 56.0 0.7
ust 40.3 59.7

Table 6.2: Bigram matrix for six types of landmarks estimated from the TIMIT
training set. The number denotes the probability of the landmark on the top row
following the landmark on the left. When the number is not specified, the transition
is illegal.

6.3 Landmark Selection with a Viterbi Search Al-

gorithm

6.3.1 Score

To select the most likely sequence of landmarks, there must be a measure of likelihood.

The likelihood score can be calculated based on the individual probability of each

landmark candidate calculated from the acoustic cues and the transition probability

given by the bigram. The overall score of a landmark sequence is calculated by the

product of these probabilities as shown in the example in Figure 6-3.

P (S) = PI(S)PT (S)

The individual probability score of a landmark sequence S can be calculated by

multiplying the probability of each selected landmark candidate being a true land-

mark, and the probability of each non-selected landmark candidate being a false

landmark. The product of the probabilities of non-selected landmark candidates be-

ing false landmarks is taken into account, because otherwise an empty sequence will

get the highest score.
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Figure 6-3: An example of scoring of a selected landmark sequence. A selected
landmark sequence is represented by the items within thick-bordered boxes, and its
corresponding probability score is calculated. The transition probabilities in Table
6.2 are used for this calculation.

PI(S) =
∏
s∈S

Pr(True| s)
∏
s �∈S

Pr(False| s)

=
∏
s∈S

Pr(True| s)
∏
s �∈S

[1 − Pr(True| s)]

The transition score of a sequence of selected landmarks can be calculated by

multiplying all the bigram transition probabilities in the sequence, including ust and

uend.

PT (S) =
∏

(si,si+1)∈S

B(si, si+1)

Therefore, the total score can be computed by multiplying the individual score

and the transition score.

P (S) =
∏
s∈S

Pr(True| s)
∏
s �∈S

[1 − Pr(True| s)]
∏

(si,si+1)∈S

B(si, si+1)

6.3.2 Viterbi Search

To find the landmark sequence S that maximizes the score P (S), a Viterbi search

algorithm is applied to a set of landmark candidates C = (c1, c2, · · · , cn). The search
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graph used for the Viterbi algorithm is constructed as the following:

• States: The states used in the Viterbi algorithm start with ust and end with

uend, and all the landmark candidates are arranged in time-order between them.

States = {c0 = ust, c1, c2, · · · , cn, cn+1 = uend}

• Transition: Transition can occur only from an earlier state to a later state.

The transition score from ci to cj is calculated as follows. Note that impossible

transition has transition probability of zero, which is equivalent to having no

edge.

Tran(ci, cj) = B(ci, cj) Pr(True| cj)
∏

i<k<j

(1 − Pr(True| ck))

Assume that Pr(True| uend) = 1 because the end of utterance must be always

reached.

An illustration of graph construction with a set of simple landmark candidates

is shown in Figure 6-4. By finding the maximum-score transition from ust to uend,

we can determine the most likely landmark sequence. Figure 6-5 shows the Viterbi

search result that corresponds to the example in Figure 6-3. Note that the product of

all the transition scores along the resulting path is the same as the probability score

of the selected landmark sequence in Figure 6-3.

6.4 Results

6.4.1 Evaluation Criterion

For the evaluation, each expected (i.e., labeled) landmark is matched with a corre-

sponding landmark candidate. The types of the landmark candidates are not consid-

ered in the matching process, and candidates more than 30ms from a labeled landmark

are ignored to emphasize the importance of the accuracy in time. The formulas for
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Type g-Landmark b-Landmark s-Landmark Total

Detection 86.2% 74.9% 52.3% 76.8%
Deletion 4.4% 12.6% 30.7% 11.6%
Substitution 9.4% 12.5% 17.0% 11.6%
Insertion 7.6% 27.3% 18.8% 14.7%
Error 21.4% 52.4% 66.5% 37.9%

Table 6.3: The error rate of landmark sequence determination with bigram constric-
tion estimated from the TIMIT test set

computing the rates of detection, deletion, substitution and insertion are as follows:

Detection Rate =
Number of landmarks matched with the same type

Total number of expected landmarks

Deletion Rate =
Number of unmatched landmarks

Total number of expected landmarks

Substitution Rate =
Number of landmarks matched with different type

Total number of expected landmarks

Insertion Rate =
Number of unmatched landmark candidates

Total number of expected landmarks

The total error rate is calculated to be the sum of the deletion, substitution and

insertion rates.

Error Rate = Deletion Rate + Substitution Rate + Insertion Rate

6.4.2 Evaluation

The detection rate estimated from the whole test set of the TIMIT database is listed

in Table 6.3.

Insertion errors are the detected time-points, but with no existing acoustic events

nearby. Therefore, these false alarms lead to unwanted computations in the processes

that follow. Applying the sequence determination process reduced the insertion rate

significantly from 100–300% to 15%. There are many b-landmark insertion errors,

but almost 80% of those insertions are located within 10ms of g-landmarks, and these
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Type g-Landmark b-Landmark s-Landmark Total

Detection 82.4% 86.5% 54.6% 77.0%
Deletion 8.3% 9.6% 37.4% 15.2%
Substitution 9.4% 3.9% 8.0% 7.8%
Insertion 13.1% 100.4% 114.8% 56.4%
Error Rate 30.8% 114.2% 160.2% 79.4%

Table 6.4: Landmark sequence determination result without bigram constriction es-
timated from the TIMIT test set

insertions can be eliminated without difficulty, by introducing duration cues.

Almost 12% of the expected landmarks are substituted with landmarks of different

types. The substitutions still indicate the locations of significant and informative

events, and in this sense are useful in the analysis process. However, these errors

may give incorrect information about the types of additional feature cues that can be

found near the landmark. Among the substitution errors, 59% occur between g- and

s-landmarks, mostly due to flaps and voiced fricatives which have significant energy

drop in 0-400Hz range but also have persistent voicing during the closure. About 13%

of the substitutions are due to the confusion of b-landmarks as g-landmarks. This

type of error commonly occurs because when the burst noise of a stop consonant is

too short to be recognized properly, the b-landmark label is often matched with the

neighboring g-landmark.

The deletion errors are the most crucial among the three types. This type of error

means that the location of an existing acoustic event is not detected at all, either

correctly or as another type of landmark, and additional measure must be taken to

find the ignored event. Fortunately, only 4.4% of g-landmarks are deleted completely,

which enables us to estimate the general syllable structure with confidence. A large

portion of the s-landmark deletions are due to non-abrupt /l/’s, which do not make

abrupt changes in the spectrum.

6.4.3 The Effect of Bigram Constraints

To understand the effect of the bigram constraints on the landmark sequence deter-

mination process, we show the results of sequence determination without applying
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Figure 6-6: An example of how bigram constraints help increase the correct detection

the bigram. This result is shown in Table 6.4.

Generally, the overall detection rate does not differ much from the results with

bigram constraints. The most significant difference is in the reduction of insertion

errors from 56.4% to 14.7%. When the bigram restriction is not applied, almost three

quarters of the falsely detected candidates are removed, as was expected from the

distribution of probabilities. However, due to the large number of false alarms in the

original set of landmark candidates, the rate of insertion errors for b- and s-landmarks

still remains at about 100%. When the bigram model of possible landmark sequences

is applied, these errors are reduced considerably.

Note that the deletion error rate of g-landmarks is reduced from 8.3% to 4.4% after

applying bigram restriction, even though a more strict constraint is applied. This

is because of the very extreme distribution of g-landmarks. Figure 6-6 illustrates

this effect. When a g-landmark is detected with a low probability, it will not be

detected when bigram restriction is not applied. On the other hand, when the bigram

restriction is used, the low-probability landmark can be accepted in order to avoid

the deletion of the neighboring high-probability candidates.

121



Training Test Detect Delete Subst Insert Error

Dialect 1 Dialect 1 76.8% 12.0% 11.2% 15.0% 38.2%
Dialect 3 Dialect 1 76.8% 11.8% 11.3% 15.0% 38.1%
Dialect 1 Dialect 3 76.8% 11.7% 11.5% 14.6% 37.8%
Dialect 3 Dialect 3 76.8% 11.7% 11.5% 14.5% 37.7%

Male Male 75.9% 12.2% 11.8% 13.9% 38.0%
Female Male 76.0% 12.4% 11.6% 13.9% 37.9%
Male Female 79.2% 10.1% 10.8% 16.9% 37.7%

Female Female 79.2% 10.1% 10.7% 17.1% 38.0%

Table 6.5: Comparison of results of landmark candidate detection followed by se-
quence determination across dialects and gender of the TIMIT database. Dialect 1
corresponds to New England, and Dialect 3 represents North Midland.

6.4.4 Comparison Across Dialects and Gender

The landmark candidate detection and sequence determination algorithms are trained

and tested on different dialect regions and genders, to compare the effect of these

factors on the detection performance. The results are listed in Table 6.5.

When different genders and dialects are investigated, the overall error rate does

not change by more than 1%, indicating that the landmark detection and sequence

determination processes are robust to those factors.

Individual error rates—detection, deletion, substitution, and insertion rates—

sometimes change more than 2–3% depending on the situations, but they differ less

than 0.1% when the same test set is used even when the models are trained in dif-

ferent contexts. This verifies the expectation that the distribution of acoustic cues

corresponding to landmarks and the probability of bigram transitions can be trained

robustly without considering the dialects and gender.

6.5 Comparison to Related Works

6.5.1 Liu’s Landmark Detector

A large portion of the landmark detection algorithm has been derived from Liu’s

landmark detector [35]. Liu’s landmark detection process was originally developed

based on LAFF (Lexical Access From Features) database, which consists of a hundred
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Type g-Landmark b-Landmark s-Landmark Total

Detection 91% 76% 44% 79%
Deletion 6% 19% 40% 15%
Substitution 3% 5% 16% 6%
Insertion 10% 72% 23% 25%
Error Rate 19% 96% 79% 46%

(a) Detection result based on automatically mapped landmarks

Type g-Landmark b-Landmark s-Landmark Total

Detection 96% 94% 60% 90%
Deletion 2% 3% 23% 5%
Substitution 2% 3% 17% 5%
Insertion 9% 23% 38% 15%
Error Rate 13% 29% 78% 25%

(b) Detection result based on hand-corrected landmarks

Table 6.6: Landmark detection result on TIMIT test set using Liu’s landmark detec-
tion algorithm

sentences constructed from a limited number of words (200 words), but a slightly

modified algorithm that is adapted to the TIMIT database has been developed as

well. The result on the TIMIT test set using the TIMIT-oriented algorithm is shown

in Table 6.6(a). Because the landmarks are not labeled in the TIMIT database, a set

of automatically generated landmarks mapped from TIMIT transcription has been

used for comparison.

Overall detection rate of Liu’s algorithm is generally higher than our landmark

sequence determination algorithm, but this is mostly due to low substitution rate;

the number of landmarks that are completely unlocated is higher in Liu’s landmark

detector than in ours. Also note that the strict bigram restriction in our landmark

detection algorithm could reduce the insertion rate by half.

Although overall performance of the landmark sequence is similar except for lower

insertion rate in the newly developed algorithm, the new algorithm has advantage in

that the landmark candidates are explicitly determined. Liu’s landmark detection

algorithm does not provide any cues for undetected landmarks, which comprises al-
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most 15% of the total landmarks. Therefore, for the undetected landmarks to be

located, the signal must be re-examined. On the other hand, the new algorithm first

generates a large number of landmark candidates which includes almost 97% of the

correct landmark positions, and a subsequent processing selects the most likely se-

quence. Therefore, when a landmark is not selected in the sequence determination

process, it can be later added when it is needed.

Liu’s algorithm has been also applied to TIMIT database with hand-corrected

labels [35], and its result is shown in Table 6.6. The hand-correction includes: remov-

ing landmarks due to non-abrupt /l/, marking abrupt changes due to heavily voiced

fricatives as s-landmarks, removing short burst less than 20ms apart from voice onset,

and so on. When the landmark detection performance based on the hand-corrected

labels were much higher than that of the automatic mapping. Therefore, it can be

expected that the new algorithm would be able to achieve much higher detection rate,

if correctly labeled landmarks were used instead of automatically mapped labels.

6.5.2 Other Segmentation Algorithms

The landmark detection algorithm can be compared to broad-class segmentation of

speech signal as well. Segmentation task divides the consonants into intervals of

uneven length, each of which represent a phonetic category.

Juneja and Espy-Wilson [30] segmented the speech signal into five broad classes—

vowel, sonorant consonant, fricative, stop and silence. The segmentation was per-

formed by extracting various acoustic parameters from each 5ms time frame, classify

each frame into one of the five categories using binary support vector machines [7],

and then merging the frames with same broad-class characteristics. The performance

evaluation shows that the correctness of the classification is 79.8% and the accu-

racy is 68.1%. The correctness corresponds to our detection rate, and the accuracy

corresponds to detection rate subtracted by insertion rate.

The accuracy is higher than that of our algorithm, which is 62.1%, but the com-

putational complexity of Juneja and Espy-Wilson’s algorithm is much higher because

their algorithm extracts acoustic cues from every 5ms frames and then classifies each
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frame into one of the categories using four different SVM’s. On the other hand, our

algorithm extracts acoustic parameters and calculates probabilities only near acoustic

discontinuities, which are mostly separated by 50–100ms from one another. This dif-

ference is because our approach is developed as a computationally-light process that

provides starting points for subsequent distinctive feature extraction processes, while

Juneja and Espy-Wilson’s approach aimed for an algorithm that can be extended to

phoneme recognition by applying complete feature hierarchy [30].

6.6 Analysis of Variable Contexts

Some examples of detected landmark sequences are shown in Figure 6-7. The ex-

amples are selected so as to include as many types of errors as possible. Although

the overall error rate of the landmark sequence detection is high, the locations of

most of the important acoustic events are identified either as correct landmark de-

tections or as substitutions of a different landmark type. It should be noted that

the substitutions and insertions do not occur randomly, but most of them occur in

similar contexts indicating that these error patterns may reflect additional acoustic

information which can be made use of.

The contexts of the common errors are analyzed and classified in this section.

This analysis will provide knowledge about the acoustic properties of landmarks in

more depth, and about the possible variation in the realization of landmarks in differ-

ent contexts. Eventually this information can be applied in utilizing the systematic

wrongly-detected landmarks as the system becomes more knowledge-based.

6.6.1 Error Type 1: Variants

Landmarks are closely related to the manner features of pronounced words, but they

are mainly defined and detected based on the acoustic properties of the signal. There-

fore, when the realized acoustic property is different from the typical pronunciation

of a phoneme, the detected landmark type should be different accordingly. The errors

collected in this section are due to the inconsistency between the phonetic transcrip-
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Figure 6-7: Examples of the results of landmark sequence determination
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Figure 6-7: Examples of the results of landmark sequence determination (Continued)
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tion and the realized pronunciation.

Flaps

One of the most common examples of such variants is a flap sound. In many contexts,

the stop /t/ or /d/ sound is usually pronounced with a complete closure in the oral

tract along with the offset of glottal vibration (−g landmark), followed by a sudden

release of burst noise (+b landmark) and eventually into the onset of another vowel

sound (+g landmark). In conversational speech, however, when a /t/ sound is located

between a stressed and a reduced vowel, as in the word ‘bottom’ or ‘muddy’, it is

usually realized by rapidly tapping the tongue against the roof of the mouth, instead of

making a complete closure with pressure buildup inside the mouth. Therefore, it does

not show a strong burst noise, and voicing is not suppressed during the flap sound.

This means that flaps are realized with properties closer to sonorant consonants, and

the expected landmarks for a flap sound are defined to be a −s landmark at the

closure and +s landmark at the onset of the following vowel.

The degree of closure for an alveolar stop realized a flap can vary very widely. An

extreme example is shown in Figure 6-7(b). The flapped /d/ of the word ‘do’ has

very short closure duration, but the voicing is almost turned off during the closure

and the burst noise is present. Another example is shown in Figure 6-7(c), where

the flapped /d/ of the word ‘had a’ is flapped and the burst noise is not present, but

because the voicing is suppressed during the closure, a (−g, +g) landmark sequence

is detected instead of the expected (−s, +s) landmarks.

Due to such variations in the realization of flap sounds, almost half of the flaps,

as hand-transcribed in the TIMIT database, are detected as g-landmarks by our

algorithm, due to the large drop of energy in the lower frequency band.

Syllabic Sonorants

About 80% of syllable-final /l/ sounds do not have abruptness. Figure 6-7(a) gives an

example with such /l/ sounds. When syllable-final /l/ follows a back vowel, such as

in the word ‘ball’ or ‘small’, the lateral sound is pronounced with the backing of the

128



tongue, instead of the tongue tip touching the roof of the mouth. As a result, many

of these syllable-final /l/’s do not create abruptness in the spectrogram. Because the

TIMIT database does not have a distinctive symbol for the non-abrupt /l/, these

are viewed as deletion errors of s-landmarks, even though no s-landmark actually

occurred at the time-point.

Figure 6-7(d) shows a case with −s landmark insertion in the middle of a syllabic

nasal. Some of the syllabic nasals, as transcribed in TIMIT database, are not nasalized

during the whole period, and the transition due to the opening of the velopharyngeal

port can be identified with a spectral abruptness.

Nasalization

Nasalization is defined as the opening of the velum during voicing, creating a nasal

pole-zero pair and a distinct acoustic signature. One of the commonly occurring

contexts for nasalization is that of the /D/ sound. Figure 6-7(d) shows a token of

nasalization of /D/ in the word sequence ‘on the’. According to its feature spec-

ification, the /D/ sound should be pronounced with frication noise along with the

suppression of glottal vibration due to the raised oral pressure, resulting in (−g, +g)

landmark pair, but occasionally, the velopharyngeal port does not get completely

closed during the /D/ sound due to the nasal sound in front of it, and the realized

landmarks are −s at the closure of /n/ sound, and +s at the release of /D/ sound.

A similar phenomenon occurs with stop consonants following a nasal, such as in

the case of ‘finger’ or ‘number’. Figure 6-7(c) shows an example of the word ‘finger’.

The expected landmark sequence for a nasal followed by a stop is (−s, −g, +b,

+g), in which −s and −g represent the closure of nasal and stop respectively; +b

denotes the onset of the burst noise (although this is often deleted after a nasal), and

+g represents the onset of the vowel. In some cases, however, when a voiced stop

consonant follows a nasal, the velopharyngeal port does not get closed completely

during the stop closure, which leads to the deletion of both g-landmarks. In many

cases +s is detected in the place of +g landmark, marking the onset of the vowel.
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6.6.2 Error Type 2: Insertions

Because one of the purposes of detecting landmarks is to find the locations such

that important acoustic information can be found nearby, insertion errors do not

pose serious threats in the processes that follow; they merely increase the number of

locations that need to be processed further. This section collects some of the common

insertion errors.

Insertions Indicating Additional Information

Some of the insertions do indicate the occurrence of informative acoustic events, but

they are classified as insertions because the events are not as consistent or abrupt as

might be defined as typical characteristics of landmarks.

For example, glides sometimes provoke the detection of s-landmarks. The /w/

sound of the word ‘we’ in Figure 6-7(b) does show s-landmarks with more than 0.5

probability at the boundaries between the glide and adjacent vowels, although they

are not selected in the landmark sequence determination process.

In addition, regions of irregular pitch periods in a vowel can result in s-landmarks,

as can be seen in Figure 6-7(a) between the words ‘alfalfa’ and ‘is’. The boundaries

between this region and the neighboring vowels do not show abrupt changes, ex-

cept that the distance between the pitches becomes greater during the irregularity.

However, due to the wide window size in the coarse pass of the landmark candidate

detection process, the irregular pitch periods are considered as a period of low en-

ergy, and s-landmark candidates are apt to be found at the boundary where modal

phonation begins.

The +b landmark detected at the start of the utterance in Figure 6-7(a) also

indicates an additional characteristic of the speech signal. When a sentence or a

phrase starts with a vowel, a glottal stop is sometimes inserted at the vowel onset.

The b-landmark captures this insertion of the glottal stop, even though it does not

reflect a burst after a stop consonant.

A fricative may introduce a period of pause, or epenthetic silence, as shown in the
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/T/ sound in the word ‘healthy’ in Figure 6-7(a). A b-landmark is correctly detected

at the boundary between the silent region and the frication, although this was not

originally expected from the phonemic transcription.

Insertions Near Other Landmarks

The onsets and offsets of vocal fold vibration are detected from the abruptness in

the 0–400Hz frequency range, but these onsets and offsets also create abrupt changes

across the entire frequency range, which includes the range used in the detection of

b- and s-landmarks. As a result, b- and s-landmarks tend to be found right next

to g-landmarks, where they are not predicted and do not correspond to separate

articulatory events.

An example can be found at the end of the word ‘we’ in Figure 6-7(b). A −b

landmark is detected with a high probability, which is understandable because the

high-frequency energy drops down abruptly, and a silent region follows the time-point.

Since the locations of such inserted landmarks are usually at the same positions

as g-landmarks, these insertions do not increase the number of locations to be further

processed. In addition, because more than 70% of these false alarms occur within

7ms of g-landmark locations, most insertions of this type can be eliminated (without

loss of information) simply by ignoring the b- and s-landmarks located within 7ms of

g-landmarks. A simple revision of the algorithm that used a hard threshold of 7ms

minimum distance between b- and g-landmarks could reduce the insertion rate of the

b-landmarks by half.

6.6.3 Error Type 3: Deletions

The most serious types of errors are deletions, because this means that the acoustic

event cannot be located with any of the detected landmarks. Some of the deletion

errors are due to insufficient change in the signal, short duration between landmarks,

or unexpected noise in the signal.
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End of Utterance

The subglottal pressure tends to drop near the end of an utterance. This leads to less

energy in the vowel sound, which lowers the probability of s- and g-landmarks. The

examples given in Figure 6-7 are short and do not show much effect of the lowered

subglottal pressure, but Figures 6-7(c) and (d) show some tapering of the probabilities

toward the ends of utterances.

Therefore, the landmarks—especially s-landmarks due to the lack of abruptness—

are likely to be deleted at the end of an utterance. It might be possible to compensate

for the effect by analyzing the envelope of the overall energy level and using this

information to compensate for the reduced abruptness.

Error Propagation

It was shown in Figure 6-6 that the application of bigram constraints enables us to

detect a low-probability candidate if the adjacent candidates have high probabilities.

In the opposite manner, when a deletion error occurs in the candidate detection

step or when the probability of a landmark is incorrectly estimated to be very low,

this error can propagate to adjacent landmarks, and the nearby landmarks can also

be deleted in the landmark sequence determination stage because the sequence of

landmarks has a strict grammar structure.

However, this type of error is mostly local, that is, only one adjacent landmark is

affected due to the error propagation in most cases. Deletion of a g-landmark, for ex-

ample, occurs mostly when the g-landmark marks a boundary of a schwa. Therefore,

the g-landmark error will propagate only during the period of the schwa. When a

b-landmark is deleted, it will have an affect only in that obstruent consonant cluster,

but most of the obstruent consonants do not appear in clusters, and fricative-fricative

sequences do not produce any landmarks in between unless there is a silent region

between them. Therefore, in most cases a b-landmark deletion does not propagate at

all. An s-landmark occurs next to a sonorant consonant and nasal clusters are rare,

so this error will propagate only within the consonant.
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In addition, even when the true landmark is completely deleted in the signal,

another landmark of a different type is often detected in many cases, which leads

to a substitution instead of deletion. As we have seen, substitution errors can be

interpreted as information about the signal’s characteristic.
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Chapter 7

The Representation of Reliable

and Ambiguous Regions

7.1 Introduction

7.1.1 Motivation

The method described in the previous chapter determines the most likely landmark

sequence from the set of independently-detected landmark candidates by means of

individual probability and transitional probability. It was established that the correct

landmarks can be detected by means of their individual probabilities, and that fur-

ther restriction using the bigram transitions helped in rejecting most of the wrongly

detected insertions.

However, because this method determines the single most likely landmark se-

quence, landmarks that are realized with some level of uncertainty are sometimes

deleted or substituted with different landmark types. This results in the loss of

already-detected information because as was discussed in the previous chapter, most

of the unclearly detected landmarks are not random errors. Instead, they occur

in a limited set of contexts, such as nasalization of obstruent consonants, flaps, or

sonorant-like realization of fricatives. Such contexts accompany alternative or unclear

realization of distinctive feature cues due to overlapping of articulatory gestures, or
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incomplete closures and releases.

It was also noted that in those unclear instances, some of the actual landmarks

had been detected during the individual landmark candidate detection process, but

failed to be recognized during the landmark sequence determination process because

the probability of the landmark sequence was not as high as the alternative choice.

Therefore, by locating the region where the landmarks are detected with a certain

level of uncertainty, more careful inspection can be applied to the ambiguous region,

so that the contexts of the region can be determined. Then, the cues that provide

the most information in the given contexts can be used to disambiguate the existence

of landmarks and the types of landmarks.

Another motivation for the separation of reliably detected landmarks from ambigu-

ously detected ones is the extreme distribution of probabilities. As can be observed

in the probability distribution of landmark candidates shown in Chapter 5, extremely

high probabilities are assigned to most of the correctly detected landmarks; that is,

more than 80% of the correctly detected g-landmark candidates have a probability

greater than 0.9. When a series of landmark candidates, which do not violate the

bigram transition restriction, is detected with such clarity, the landmark sequence

can be decided with confidence.

Figure 7-1 gives a simple illustration of a series of reliably detected landmark

candidates, as opposed to a landmark sequence that contains an uncertain candidate.

If a sequence of candidates has high probability, then all the candidates in the sequence

are likely to be the landmarks of the actual signal. However, when one or more of the

candidates in a region are detected with low probability, the sequence determination

is less clear.

Because most of the correct landmark candidates have very high probabilities

and most of the false alarms are detected with low probabilities, it is likely that the

individual landmark detection process will result in many sequences of candidates

in which all the candidates have either extremely high or low probabilities. In such

regions, the landmark sequence determination process will be able to determine the

true landmark sequence with more confidence. However, some landmark candidates

136



+g -g +g -g

0.9 0.95 0.95 0.9

Landmark Candidates

Landmark Sequence Probability

+g −g +g −g 92%

(a)

+g -g +g -g

0.9 0.95 0.3 0.9

Landmark Candidates

Landmark Sequence Probability

+g −g +g −g 32%
+g −g 45%
+g −g 21%

(b)

Figure 7-1: An example of a series of landmark candidates detected with high prob-
abilities (top), and one with an uncertain candidate (bottom)
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Figure 7-2: Unless all the landmark candidates have probability of one, there might
be other alternatives, although with minuscule possibilities.

will be detected with intermediate probabilities, and in these regions, where there are

candidates with less extreme probabilities, confidence will be lower.

When an utterance is pronounced clearly, the speaker produces unambiguous cues

that make clear distinctions between features. This means that landmarks, which are

a special class of cues, should become more prominent as well. Therefore, it can

be expected that if one can identify the regions where the landmarks are detected

reliably, then it would be possible to estimate the distinctive features of the sounds

in those regions with more certainty.

7.1.2 Reliable and Ambiguous Regions

In this section, the terms reliable regions and ambiguous regions are defined.

A reliable region is defined to be a portion of the signal where there is only one

likely landmark sequence. However, as Figure 7-2 shows, unless all the landmarks are

detected with probability of exactly one, there will always be some other alternatives,

however unlikely they may be. Therefore, a less stringent criterion that distinguishes

reliable regions from ambiguous regions must be determined.

Once the clarification of a reliable region is in place, an ambiguous region can be

simply defined to be the parts of the speech signal that do not meet the criteria for
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reliable regions. In other words, it means an interval where one cannot confidently

say that a certain landmark sequence should be the true landmark sequence; instead,

there may be two or more alternative choices. For example, a flapped /t/ sound is

usually realized with either a (−g, +g) or a (−s, +s) landmark pair, and when the

closure is not made clearly, both alternatives are likely to appear in the landmark

sequence determination process.

In the reliable regions, the determined landmark sequences can be trusted, and

can be the center of focus in later stages of processing. The uncertain regions, on

the other hand, can provide some useful knowledge about the local signal by pointing

out the possible alternatives. For example, when two possible alternatives for a

region are (−g, +g) and (−g, +b, +g) landmark sequences, then it can be concluded

that the region is obstruent. In other cases, an uncertain region can indicate which

additional cues need to be detected around the region to assure correct landmark

detection. For instance, when the landmark pairs (−s, +s) and (−g, +g) are two

possible alternatives of a region, the correct landmark sequence can be determined

by verifying the existence of voicing within the region.

This chapter will focus on finding the regions where the landmarks are detected

reliably as opposed to the regions where the landmark detection is ambiguous, adding

a third processing steps to the previous steps of individual landmark detection and

landmark sequence determination described earlier.

7.2 Graph Representation

7.2.1 Target Representation

There are two main problems that need to be solved in the representation of reliable

and ambiguous regions. One is how to tell the ambiguous regions from reliable regions,

and the other is how to express alternative choices of landmark sequences in each

ambiguous region.

One of the approaches that would solve such problems is to apply an N-best
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Figure 7-3: N-best result of the landmark sequence determination process

search algorithm instead of the Viterbi search [56]. By applying this approach, the

true landmark sequence may be detected as one of the N most likely alternative

choices. Figure 7-3 shows an example of the N-best result of a speech signal. The

top tier shows the labeled landmarks, and the landmark candidates that are detected

from the landmark detection process in Chapter 5 are shown below the phonetic

transcription. The eight most likely sequences of landmarks determined by N-best

search algorithm are shown in the last eight rows. From this example, it can be said

that the region between 500–2500ms has reliably detected landmarks, whereas there

might be three alternatives in the 2700–2900ms region.

However, the major drawback of this approach is that the value of N must be

determined beforehand and the size of N may need to be increased exponentially with

respect to the length of the signal in order to include all possible alternative choices.

In addition, as the size of N increases, the number of computations and the resulting
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Figure 7-4: Comparison of an N-best representation and its corresponding reliability
representation

set of landmark sequences would have to become as large, but the information the

result represents does not increase as much. As can be seen in Figure 7-3, an N-best

algorithm introduces a large amount of redundant information; the resulting landmark

sequences are almost the same except for a small number of changes. To avoid this

problem, it would be more ideal if the different alternatives are all collapsed so that

the speech signal can be separately represented as Reliable Regions and Uncertain

Regions as shown in Figure 7-4.

This representation of alternative landmark selection results has the advantage

that the size of the representation is much more compact, resulting in a reduction

of the redundancy in the N-best representation. The classification of reliable regions

and uncertain regions is visually presented, and alternative choices for each ambiguous
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region are clearly identified. These are desired properties for the target representation.

Although the size of the representation could be reduced by this method, the

problem of determining the size of N and the exponentially increasing complexity

of N-best search algorithm cannot be resolved. In addition, the likelihood of each

alternative choice in an ambiguous region cannot be reliably calculated by simply

compressing the N-best search results.

Therefore, in this chapter, a different approach is proposed to generate the same

representation, using a graph pruning method instead of utilizing an N-best search

algorithm.

7.2.2 Graph Construction

A method that generates a weighted directed acyclic graph from a set of detected

landmark candidates based on the bigram constraints and individual probabilities

was proposed in Chapter 6. A simple description of the construction method is

revisited below.

• Nodes: The nodes correspond to all the landmark candidates arranged in serial

order, and two additional nodes are added which denote the start and end of

an utterance—marked as ust and uend, respectively.

• Edges: Edges connect all the legal pairs of landmarks. The direction of the

edge follows the serial order. ‘Legal’ means that the bigram probability between

two landmarks is non-zero. The weight on each edge is calculated by the product

of the bigram transition probability and the probabilities of all the candidates

in between.

Each path from the start node (ust) and the end node (uend) represents a selection

of a landmark sequence that does not violate the bigram transition rules. In the

previous chapter, the Viterbi search algorithm was applied to this graph, so that

the most likely landmark sequence could be determined by finding the path with the

largest weight.
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ust +g +b -g +s uend

Figure 7-5: A simple example for the explanation of node pruning criterion. Omission
of nodes strictly depends on the structure of the graph, and does not affect the
probability of resulting paths at all.

In this section, however, the method of pruning the least likely possibilities is

adopted instead of finding the most likely paths. This approach can preserve al-

ternative possibilities of landmark sequence determination, while reducing unlikely

instances at the same time.

7.2.3 Pruning Nodes

The pruning of a graph can be performed in two ways—pruning of nodes and of edges.

The criterion of node pruning depends on the structure of the graph itself. Figure 7-5

shows an example of such a case. The +s node, located right before the last node,

only has an edge directing to it but no edge starting from it. Therefore, no path

from ust to uend can visit the +s node, and so deleting this node can will not affect

the possible landmark sequence determination results. This can be interpreted as the

following: because it is not possible to end an utterance with a +s landmark, the +s

landmark can be disregarded as a candidate for the final landmark.

A generalized criterion for node pruning can be written as the following: When

a node, which is not a start or an end node, has no incoming edges or no outgoing

edges, the node can be deleted from the graph without affecting the search result

from the start node to the end node.
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Figure 7-6: A simple illustration of edge pruning criterion. Deleting edges may change
the probability of possible paths, but the product of weights on each edge remains
the same.

7.2.4 Pruning Edges

Unlike the case of node pruning, some of the edge pruning may affect possible paths

from the start node to the end node, and it may change the probability of each path,

however small the effect may be. Figure 7-6 gives an example of when an edge may

be safely pruned out. The edge connecting the +b node to uend has much smaller

weight than the other nodes. Therefore, it is highly unlikely that the resulting path

will contain this edge, and so this edge can be pruned out without affecting the search

result significantly.

However, the value of the edge weight alone cannot be a reasonable measure to

prune out an edge. For example, in Figure 7-7, all three possible paths have the

same product of weights, but the weights on individual edges vary from 0.001 to 0.9.

Therefore, edge pruning should depend on the probability of each edge being in the

resulting landmark sequence, rather than on individual weights. For example, even if

the edge between ust and the first +g node has larger weight than the edge between

ust and the third +g node, the probability of the former being selected should be the

same as that of the latter because the weight of the following edge is much smaller. A

clearer definition of this probability measure will be given in more detail in the next

section.
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ust +g +g +g -g uend
0.9 0.1 0.9

0.001

0.01
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0.009

Figure 7-7: A graph with multiple paths with the same product of weights

7.3 Edge Probability

7.3.1 Definition

Some of the terms that will be used throughout this chapter are clarified in this

section.

The edge weight, or the weight of an edge, is defined to be the weight calculated

from the bigram transition probabilities and individual probabilities, as described in

Section 6.3.2.

The product of weight of a path, or score of a path, is calculated by multiplying

the weight on all the edges that the path traverses. This is the same as the overall

score (see Section 6.3.1) of the landmark sequence determined by the sequence of

nodes that the path visits.

The path probability, or the probability of a path, is the normalized value of the

path score, such that the probabilities of all possible paths from the start node to

the end node sum up to one. The normalization can be simply described with the

following formula:

Normalized Probability =
Product of Weights on a Path

Sum of Products of Weights on All Possible Paths

Figure 7-8(a) gives an example of the path scores (products of weights) and path

probabilities of a graph. The numbers written on the edges represent the edge weights.
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There are four possible paths going from the first node to the last. All possible paths

from node 1 to node 5 and the products of weights on the paths are tabulated below

the graph.

The probability of an edge, or the edge probability, is defined to be the sum of the

probabilities of all the paths that traverse the edge. For example, the edge 1–2 is

traversed by two different paths 1–2–4–5 and 1–2–5, so the probability of the edge

1–2 being selected as the resulting landmark sequence is calculated as the sum of the

probabilities of both paths: 0.2 + 0.1 = 0.3. Because the sum of all possible paths is

defined to be one, an edge that is traversed by all possible paths will have probability

of one, and an edge that can never be visited will have zero probability. The list of

edges and their probabilities are shown in Figure 7-8(b).

Figure 7-9 shows the edge probabilities of the graph given in Figure 7-7. As

was expected, all the possible edges that branch from the first node have the same

probability, even though the weights on the edges vary widely. Note that the edge

between −g and the following uend node has probability of one, implying that this

edge will be always traversed no matter which path is selected. This means that the

−g landmark will always be selected.

7.3.2 Properties

Note that the previously described method that calculates the edge probabilities is

not an efficient one, since it has to find all possible paths, and calculate the product

of the weights in each path. The number of all possible paths is expected to be about

the order of O(2n), which grows exponentially with respect to the number of nodes.

Therefore, a more efficient method that calculates the edge probabilities should be

developed. As a preliminary step, some of the properties of the edge probability are

examined in this section.

Property 1. The probabilities of all the edges that start from the start node sum up

to one. The probabilities of all the edges that point to the end node also sum up to

one.
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1 2 3 4 5

0.2

0.30.4

0.2

0.5

0.2

0.8

Path Product of Weights Probability

1–2–4–5 0.08 0.2
1–2–5 0.04 0.1
1–3–5 0.12 0.3
1–4–5 0.16 0.4

(a)

1 2 3 4 5

0.1

0.30.3

0.3

0.2

0.4

0.6

Edge Traversing Paths Edge Probability

1–2 1–2–4–5, 1–2–5 0.3
1–3 1–3–5 0.3
1–4 1–4–5 0.4
2–4 1–2–4–5 0.2
2–5 1–2–5 0.1
3–5 1–3–5 0.3
4–5 1–2–4–5, 1–4–5 0.6

(b)

Figure 7-8: Illustration explaining the definition of edge probabilities. (a) shows a
simple graph with weighted directed edges. All possible paths of the graph and the
products of weights of the paths are listed below it. The probability is the normalized
value of the product of weights. (b) shows the calculated edge probabilities of the
graph above.
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ust +g +g +g -g uend
0.33 0.33 1.0

0.33

0.33

0.33

0.33

Figure 7-9: The edge probabilities of the graph in Figure 7-7

Proof. Let’s say that n edges, e1, e2, · · · , en, start from the start nodes, and the sets

Pi for i = 1 to n be the sets of all paths from the start node to the end node which

traverse the edge ei. Then, it is obvious that the n sets are mutually exclusive and

each of the paths from the start node to the end node must be a member of exactly

one of the n sets.

By the definition of edge probability, the edge probability of ei is determined to

be the sum of all path probabilities of the paths in the set Pi. Because the n sets,

P1, P2, · · · , Pn, contain each path exactly once, the sum of the edge probabilities of

e1, e2, · · · , en must be the same as the sum of the path probabilities of all the paths

from the start node to the end node, which is one, according to the definition of path

probability.

Therefore, the probabilities of all the edges that start from the start node sum

to one. By a similar argument, it can be concluded that the probabilities of all the

edges that point to the end node sums to one as well.

Property 2. For each intermediate node, which is not the start node or the end

node, the sum of probabilities of all the incoming edges is the same as the sum of

probabilities of all the outgoing edges.

Proof. Let’s say that an intermediate node v has n incoming edges, e1, e2, · · · , en.

Because all the paths that go through v must traverse exactly one of the n incoming

edges, the sum of edge probabilities of e1, e2, · · · , en is the same as the sum of the

path probabilities of all paths that go through the node v.
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1 2 3 4 5

0.1

0.5 0.4 0.8 0.7

0.3 0.2

1 2 3 4 5

0.1

0.5 0.8 0.4 0.8

0.6 0.1

Multiply incoming 
edge weights by 2

Divide outgoing
edge weights by 2

Figure 7-10: An example of the operation that preserves edge probabilities. The
weights on the incoming edges of node 3 are multiplied by 2, and the weights in the
outgoing edges of node 3 are divided by 2.

By similar reasoning, it can be shown that the sum of the path probabilities of all

the outgoing edges of the node v is also the same as the sum of the path probabilities

of all paths that go through the node v.

Therefore, the sum of probabilities of all the incoming edges and that of the

outgoing edges are equivalent.

The next property defines an operation on the edge weights that does not affect

the path probabilities. An example of the operation is illustrated in Figure 7-10.

Property 3. [Probability-preserving Operation] For a given node, when the weights

of all the incoming edges are multiplied by a value x and the weights of all the outgoing

edges are divided by the same value x, the probability of each path remains the same.

Proof. Assume that the target node is neither the start node nor the end node. Then,

the paths from the start node to the end node can be classified into one of the following

two types: the ones that go through the target node v, and the ones that do not visit
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the node v.

When a path visits the target node v, then the path must traverse exactly one of

the incoming edges and one of the outgoing edges, because no nodes can be traversed

more than once. Therefore, the product of weights on this path is multiplied by x

and divided by the same value x, which results in the same path score. On the other

hand, when a path does not visit the target node v, then the path does not traverse

any of the edges with modified weights. Therefore, the product of weights of this

path is unchanged.

Therefore, if the operation is performed on an intermediate node, the path prob-

ability remains the same because the product of weights is preserved.

However, if the target node is the start node, all the paths from the start node to

the end node must traverse exactly one of the outgoing edges. Therefore, the products

of weights of all the paths are divided by the value x. Because all the path scores are

evenly divided by the same factor, the normalized path probability stays the same.

The same argument holds for the case when the target node is the end node.

Corollary 1. The operation described in Property 3 preserves edge probabilities.

Proof. The edge probabilities are defined based on the path probabilities, and the path

probabilities are invariant under the operation. Therefore, the edge probabilities are

invariant as well.

7.3.3 Efficient Algorithm

Based on the properties observed in the previous section, a more efficient algorithm is

developed. The algorithm has two-steps; the first step changes the weights according

to the probability-preserving operation explained before, so that the overall edge

probabilities do not change. The second step calculates the edge probabilities using

the property that the sum of incoming edge probabilities should be the same as the

sum of outgoing edge probabilities.

The pseudo-code of the overall procedure is given below, and a step-by-step illus-

tration of an example is shown in Figure 7-11.
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• Backward Step

Starting from uend and going backward to ust, do the following for each node i.

– Let S be the sum of the weights on all the edges stemming from node i.

– Divide the weights on all the outgoing edges of node i by S.

– Multiply the weights on all the incoming edges of node i by S.

• Forward Step

Starting from ust to uend, do the following for each node i.

– Let S be the sum all the weights of the incoming edges to node j.

– Multiply the weights of all the outgoing edges from node j by S.

Note that the backward step normalizes the outgoing edge weights of each node,

so that the sum of the weights on outgoing edges of a node equals to one. In addition,

because each backward step uses the probability-preserving operation, the change in

the weight does not affect the resulting edge probabilities.

Because each step is applied backward starting from the last node to prior nodes,

it is also true that the products of weights on all the paths from any one node to the

last node always sum up to one, assuming that there are paths connecting from the

node to the last node. A detailed proof is given below:

Claim 1. After the backward step of the algorithm is performed, the products of

weights on all the paths starting from any one node v to the end node always sum up

to one, assuming that there are paths connecting from the node to the end node.

Proof. This claim can be proved by a simple mathematical induction.

Assume that there is a graph with n nodes, and that all the nodes that do not

have any possible path to the end node have already been removed. Then, there must

be an edge that connects the (n − 1)st node to the end node, because there must be

a path between them. Since all the edges should connect from prior nodes to later

nodes, this edge is the only path that starts from (n− 1)st node. Therefore, after the

backward step, the edge weight of this edge must have become one.
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Figure 7-11: Step-by-step illustration of the probability calculation algorithm
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Now, assume that kth node to the end node all have the claimed property, that

is, the product of weights on all paths from ith node to the end node sum up to one

for all i ≥ k. Let’s say that (k − 1)st node v has m different outgoing edges, namely

e1 = (v, v1), e2 = (v, v2), · · · , em = (v, vm). Because the edges always connect to later

nodes, all of the nodes v1, v2, · · · , vm must have the claimed property.

Any path from node v to the end node must first go though one of these m nodes.

Let Pi be the set of all paths from the node v to the end node that traverses the

edge ei. The sum of products of weights of the paths in Pi is the same as the sum of

products of weights of the paths that connects node vi to the end node, multiplied

by the edge weight of the edge ei. Because it is assumed that the product of weights

on all paths from vi to the end node sum up to one, the products of weights of the

paths in Pi must sum up to the edge weight of ei.

Because all the paths from node v to the end node must traverse exactly one of

the m edges, e1, e2, · · · , em, the products of the weights on all paths from the node v

to the end node is the same as the sum of the edge weights of e1, e2, · · · , em. Because

the outgoing edge weights are normalized in the backward step so that they sum up

to one, the sum of edges weights of e1, e2, · · · , em must be one. Thus, the products of

the weights on all paths from the node v to the end node must sum up to one as well.

By mathematical induction, the products of the weights on all paths from any

node in the graph to the end node sum up to one.

If the target node is the start node, the following simple corollary can be derived

from the previous claim.

Corollary 2. After the backward step is done, the product of weights of any path is

the same as the path probability of the path.

Proof. By Claim 1, the sum of product of weights of all the paths from the start node

to the end node must be one. Therefore, by definition of path probability, the path

probability is the same as the product of weights of the path.

Because of Claim 1, we can also prove that after the backward pass, the edge
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weight on any edge starting from the start node must be the same as its edge proba-

bility. A more generalized claim is shown below.

Claim 2. After backward step, the ratio among edge weights of the edges starting

from the same node is the same as the ratio among the edge probabilities.

Proof. Think of two edges starting from the same node, say e1 = (v, v1) and e2 =

(v, v2). We need to prove that the ratio of edge probability of e1 vs. e2 is the same

as the ratio of edge weight of e1 vs. e2.

By definition, the edge probability of e1 can be calculated as the sum of path

probabilities of the paths that traverse the edge e1. Because of Corollary 2, the edge

probability of e1 is the same as the sum of product of weights on all the paths that

traverse the edge e1.

Let P0 be the set of all paths from the start node to v, and P1 be the set of

all paths from v1 to the end node. Then, the edge probability of e1 can be written

mathematically as the following.

Probability of e1

=
∑

p∈P0,q∈P1

(Score of p) × (Weight of e1) × (Score of q)

=
∑
p∈P0

(Score of p) × (Weight of e1) ×
∑
q∈P1

(Score of q)

Due to Claim 1, it is known that
∑

q∈P1
(score of q) = 1. Therefore, the edge

probability of e1 can be calculated as

Probability of e1 = (Weight of e1)
∑
p∈P0

(Score of p)

By the same argument, the edge probability of e2 can be calculated as

Probability of e2 = (Weight of e2)
∑
p∈P0

(Score of p)

Therefore, it can be concluded that

Probability of e1 : Probability of e2 = Weight of e1 : Weight of e2
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This provides the following corollary that is the first step of the forward step.

Corollary 3. After the backward step is performed, the edge weights of the edges that

start from the start node are the same as their edge probabilities.

Proof. The last step of the backward step normalizes the outgoing edge weights so

that their sum is one. Because the ratio among the edge weight is the same as the

ratio among edge probabilities, and the sum of the edge weights and the total of edge

probabilities are both one, the edge weights and edge probabilities are the same for

the edges outgoing from the start node.

Using the properties and the claims proved above, we can finally claim that the

forward step produces the edge probabilities.

Claim 3. After each of the forward steps, the edge weights of the edges starting from

the target node become the same as the edge probabilities.

Proof. Proof by mathematical induction. The first step is already proved by Corollary

3. Now, assume that this claim is true for all the nodes that have been processed.

This means that the edge weights of all the incoming edges of the current target node

v must be the same as their edge probabilities.

Due to Claim 2, it is known that the ratio of the weights on outgoing edges of

v must be the same as the ratio of the edge probabilities. Also Property 2 states

that the sum of edge probabilities of outgoing edges of v must be the same as the

sum of probabilities of incoming edges. Since the probabilities of the incoming edges

are known, the outgoing edge probabilities can be calculated based on this. The

procedure given in the forward step calculates these values.

Claim 3 proves the validity of the proposed algorithm. The complexity of this

algorithm is O(n2) where n represents the number of nodes, because each of the two

steps consists of n iterations, each of which deals with summing and modifying the

weights of at most n edges.
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7.3.4 Graph Pruning Procedure

Using the edge probability defined previously, the overall pruning procedure can be

performed as the following:

1. Node Pruning: Prune out all the structurally meaningless nodes, that is, the

nodes that do not have any incoming edges or outgoing edges are deleted from

the graph and the edges that are attached to the removed nodes are also deleted.

This step is performed before the edge pruning step because Claim 1 assumes

that every node must have a path connecting to the end node, and also because

deleting meaningless nodes will reduce the computation time for the probability

computation time.

2. Probability Calculation: Apply the edge probability calculation algorithm

to the pruned graph.

3. Edge Pruning: Prune edges whose edge probabilities do not pass a certain

criterion. The edge pruning is not performed by setting a threshold on the

value of the individual edge probability. This is because there may be dozens of

edges stemming from the same node, and when that happens, none of the edge

probabilities may exceed the given threshold. Instead, the following algorithm

is used:

(a) For each node, find the maximum outgoing edge probability.

(b) For each edge stemming from the node, if the ratio of its edge probability

relative to the maximum edge probability does not exceed a given thresh-

old, delete the edge.

(c) Do the same for the incoming edges.

By using this algorithm, the edges with maximum probability will always be

retained, however small their absolute values may be.

4. Repeat: The procedure should be repeated because the pruning of edges may

result in isolated nodes and further changes in the edge probabilities. The
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algorithm will be terminated when no more pruning occurs in both node and

edge pruning steps. Because the change of probabilities due to the pruning is

generally smaller than the threshold value, the pruning procedure is stabilized

quickly within three repetitions in most cases.

7.4 Result

7.4.1 Evaluation Criteria

The performance evaluation was carried out based on three aspects: the compactness

of the pruned graph, the reliability of reliably detected landmarks, and the ambigu-

ity of ambiguous regions. The compactness represents how small the graph can be

reduced without sacrificing the detection rate of the landmarks excessively, the relia-

bility represents how much the landmarks in the reliable regions can be trusted, and

the ambiguity represents how many alternatives there are for each region detected as

ambiguous.

Compactness

The compactness of the pruned graph can be evaluated by comparing detection rate

to the size of the graph, such as numbers of nodes and edges, so that it can be

confirmed that the excessive elements have been pruned out without sacrificing the

correctly detected landmark candidates.

The detection rate is defined to be the maximum number of correctly detected

landmarks among all the possible paths in the graph, divided by the number of true

landmarks. For example, assume that the true landmark sequence of the graph in

Figure 7-12 is (+b, +g, −g). Although all three landmarks are present in the pruned

graph, there are no paths that visit all three nodes. Because there is a path that goes

through two of the true landmarks, the detection rate of this graph is determined to

be 2/3.
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+b +g -g uendust

Figure 7-12: Illustration for explaining the definition of detection rate

Reliability

Reliability is estimated using three different measures: proportion of the reliably

detected landmarks, and the deletion and insertion rate within reliable regions.

The proportion of reliable detected landmarks is measured by calculating the ratio

between the number of reliably detected landmarks compared to the number of total

labeled landmarks. This measure is calculated to make sure that some sizable portion

of the true landmarks is actually detected as reliable.

Because a reliable region is represented by a linear graph with no side branches,

and so has only one likely landmark sequence, the detection rate can be defined

simply by the number of correctly determined landmarks out of the total number

of true landmarks that are supposed to be within reliable regions. Note that this

definition of deletion rate is the same as the sum of deletion and substitution rates

defined in Section 6.4.1. The insertion rate in a reliable region also needs to be

measured to make sure that the number of missing landmarks is low within a reliable

region.

Ambiguity

Ambiguity is estimated by three measures as well: proportion of the ambiguous re-

gions, number of alternatives in each ambiguous region, and the detection rate within

ambiguous regions.

The proportion of the ambiguous regions is calculated as the complement value

of the proportion of reliable landmarks. The number of alternatives is evaluated by
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counting the number of possible paths in an ambiguous region. Because all ambiguous

regions should have at least two alternative choices of possible landmark sequences,

this value should always be at least two. Detection rate within an ambiguous region

is another factor for measuring ambiguity, because even if the number of alternatives

is small, it would not be useful if none of the alternative sequences represent the true

landmark sequence.

7.4.2 Evaluation

For performance evaluation of the pruning algorithm, a hundred utterances were

randomly selected from the dialect region 1 of the TIMIT database, and the evaluation

was carried out on four different edge-pruning thresholds: 0.2, 0.1, 0.05 and 0.01.

Compactness

Table 7.1 lists the size of the pruned graph and the error rate for different thresholds.

When threshold 0.2 is used—i.e., when no elements with probability more than 2%

are removed—the result is very similar to that of the Viterbi search result. On the

other hand, when a small threshold 0.01 is used, the number of nodes is not reduced

as much as that from the 0.2 threshold, but half of the nodes in the unpruned graph

are removed, and the number of edges is reduced to one eighth of the unpruned graph.

Also note that overall detection rate is not affected appreciably even if the size of the

graph is reduced significantly, even with a small threshold.

Threshold Viterbi 0.2 0.1 0.05 0.01 Unpruned

Nodes 25.2 26.0 29.8 34.8 43.8 87.2
Edges 24.2 27.6 36.5 53.5 86.2 640.9

Detection 76.8% 77.0% 83.3% 88.5% 93.0% 95.2%

Table 7.1: Size of graph and detection rate for different thresholds
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Reliability

The deletion and insertion rate within the reliable region is shown in Table 7.2.

The proportion represents the proportion of the reliable region, that is, the ratio

between the number of reliably detected true landmarks and the total number of true

landmarks.

Note that the detection and insertion rate within the reliable region is much

smaller than that of the Viterbi search result from Chapter 6 even when a large

threshold is used. Considering that the compactness measures of the graph pruned

with a threshold of 0.2 and the Viterbi search result are almost similar, the large

difference in the error rates is unexpected. This means that most of the errors in the

Viterbi search results were detected as ambiguous when the graph pruning method

was applied.

When the threshold of 0.01 is applied—that is, when no edges with more than 1%

probability are pruned out—the proportion of the reliable region is still as high as 40%.

In addition, the deletion and insertion error rate within the reliable regions is as small

as 5%, which is almost as small as the deletion rate within the input candidates (see

Section 5.5.1 for the detection rate for the individual landmark candidate detection

process).

Threshold Viterbi 0.2 0.1 0.05 0.01

Deletion 23.2% 12.8% 11.2% 7.7% 5.6%
Insertion 14.7% 8.1% 7.3% 5.6% 4.2%

Proportion — 70.0% 63.9% 55.5% 40.9%

Table 7.2: Deletion and insertion rates within reliable regions for different thresholds

Ambiguity

The number of alternatives and detection rate within ambiguous regions are given in

Table 7.3. The proportion represents the proportion of the ambiguous region, which

is the complement of the proportion of the reliable region. The ambiguous region
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of an unpruned graph is not 100% because there were landmarks that were detected

with absolute confidence and were judged to be as reliable.

Note that the detection rate within ambiguous regions increases rapidly when the

threshold is lowered, and the detection rate within ambiguous regions becomes almost

comparable to that of the unpruned graph when the threshold of 0.01 is used. On the

other hand, the number of alternatives increases significantly if this lower threshold

is used. There are mostly two alternative choices when the threshold 0.2 is used,

but when the threshold 0.01 is used, the number of alternatives increases up to 13.6,

although this value is still negligibly small compared to that of the unpruned graph.

Assuming that each additional measurement of acoustic cue can reduce the number

of alternative choices by half, we can decide on the correct landmark sequence within

an ambiguous region by measuring no more than 3–4 additional cues on average.

Threshold 0.2 0.1 0.05 0.01 Unpruned

Alternatives 2.2 2.9 5.0 13.6 > 1000
Detection 40.3% 70.1% 82.8% 92.0% 95.2%
Proportion 30.0% 36.1% 44.5% 59.1% 96.2%

Table 7.3: Detection rate and number of possible alternatives within ambiguous re-
gions

7.4.3 Discussion

From the evaluation, it can be concluded that graph pruning based on edge probability

can be used as an effective method to differentiate the reliable regions from ambiguous

regions. The evaluation shows that substantial portions of the erroneous contexts are

captured in the ambiguous regions even when a high threshold is applied.

For example, Figure 7-13 illustrates two pruned graphs generated from the same

utterance by applying the graph pruning method with different pruning thresholds—

0.2 and 0.05. The numbers under the landmark types represent individual proba-

bilities of the landmark candidate, the numbers written above the edges are edge

weights, and the numbers written below the edges are edge probabilities. The dark
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Figure 7-13: Comparison of pruning examples with different thresholds. An utterance
of the sentence “This was easy for us” was used for this example. The numbers under
landmark types are individual probabilities, the numbers written above the edges
are edge weights, and the numbers below the edges are edge probabilities. The dark
shaded nodes represent the landmarks that are reliable, and lightly shaded nodes are
the landmarks that are in ambiguous region, but still have a high probability of being
true landmarks.

162



ust +g -s +s -g uend+b +g -g -b

Ambiguous Region 1 Ambiguous Region 2

Figure 7-14: An example of a pruned graph. The shaded nodes represent the land-
marks that are reliable.

shaded nodes represent the landmarks that are reliable, and lightly shaded nodes are

the landmarks that are in ambiguous region, but still have high probability of being

true landmarks. The edges are drawn with think lines when the edge probabilities

are larger than 0.5.

The graph pruned with the threshold of 0.2 detects most of the landmarks as

reliable, and only one region is detected as ambiguous. This ambiguous region cor-

responds to an erroneous case in which a +g landmark is missing due to a heavily

voiced fricative /z/. When the graph is pruned with a lower threshold, the resulting

graph may have more ambiguous regions, but the landmarks that could have been

missed in the high threshold case can be detected. The example in Figure 7-13 shows

that the offset of the last fricative in the word ‘us’, which should be detected as a −b

landmark, is not detected in Figure (a) due to its low individual probability, but is

detected in (b), although as one of the possibilities in an ambiguous region.

Figure 7-14 shows a graph of an actual utterance of the sentence “did you eat

yet,” pruned with threshold of 0.05. The weights and probabilities are not indicated

for visual clarity. The graph has two ambiguous regions and five reliably detected

landmarks. Note that an ambiguous region always has to be an interval between two

(reliable) landmarks, while reliable regions can be sometimes represented by a single

landmark.

As for reliable regions, the landmark sequence is determined with more confidence,

and it can be assumed that the landmarks have been clearly produced by the speaker.
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Therefore, the distinctive features within the region can be estimated with more

confidence.

It has been also observed that the reliable regions may correspond to word bound-

aries and stressed syllables. Figure 7-15 shows a pruning example of a relatively long

utterance. This is an utterance of the sentence “This, he added, brought about petty

jealousies and petty personal grievances,” and the threshold of 0.05 was used for the

pruning algorithm.

The regions that are judged as reliable correspond to the content words ‘brought

about’, ‘jealousies’ and ‘personal grievances.’ Especially for the last two words, the

underlined syllables of ‘personal’ and ‘grievances’ were detected as reliable, supporting

the assumption that the landmarks are more reliably detected within the syllables

with lexical stresses.

On the other hand, for ambiguous regions, certain decisions about the phonetic

context can be made based on the possible alternative landmark sequences, and ad-

ditional cues can be subsequently measured within the region so that the correct

alternative can be chosen with more confidence. The first ambiguous region in Figure

7-14 has two alternatives, (−g, −b, +g) or (−g, +g). From these alternatives, it

can be determined without additional measurement that the ambiguous region has a

[−sonorant] feature, and there may or may not be a turbulence noise, which can be

determined with more confidence by measuring additional cues for noise detection.

The second ambiguous region has four alternatives depending on the existence of

+s and −s landmarks. This means that the region is [+sonorant] no matter which

alternatives may be true, and the actual landmark sequence can be confirmed by

measuring additional cues for vowels and nasals.

The choice between Viterbi search versus reliable-ambiguous region notation is a

trade-off between simplicity and correctness of the result, and it may be determined

according to the characteristics of the application. When Viterbi search is applied,

there is only one possibility, and it would become simpler to perform further pro-

cessing on the result. However, there may be some undetermined landmarks and

these errors may lead to problems that require additional attention. On the other

164



0

0.050
0.155

0.890
0.845

0.079
0.514

0.065
0.486

0.539
0.514

0.374
0.816

0.060
0.184

0.899
0.816

0.085
0.080

0.187
0.581

0.013
0.055

0.057
0.284

0.022
0.080

0.252
0.315

0.145
0.266 0.229

0.080

0.638
0.370

0.336
1.000

0.082
0.139

0.429
0.861

0.438
0.139

0.142
1.000

0.257
1.000

+b
0.85

+g
1.00

+s
0.86

-g
0.82

+b
0.82

+g
1.00

-g
0.15

-s
0.64

+g
0.18

+s
0.57

-g
0.99

+g
1.00

-s
0.24

-g
1.00

-b
1.00 E

0
0.325
1.000

0.033
0.313

0.050
0.495

0.017
0.192

0.268
0.090

0.108
0.183

0.007
0.040

0.342
0.465

0.022
0.120

0.070
0.224

0.140
0.454

0.019
0.161

0.165
0.143

0.034
0.081

0.350
0.287

0.072
0.168

0.136
0.590

0.020
0.192

0.006
0.057

0.033
0.222

0.072
0.530

0.625
0.414

0.438
1.000

0.674
1.000

0.206
0.383

0.226
0.617

0.438
0.383

0.392
0.845

0.050
0.155

-g
0.99

+g
0.97

+s
0.66

-s
0.79

-g
0.78

+g
0.21

+g
0.53

-g
0.62

-s
0.55

+g
0.90

+s
0.73

-g
0.99

+b
0.96

+g
0.75

-s
0.60

-g
1.00

+b
0.85

0
0.148
1.000

0.019
0.565

0.014
0.435

0.438
0.565

0.447
1.000

0.726
0.868

0.012
0.132

0.023
0.130

0.290
0.685

0.005
0.053

0.033
0.130

0.052
0.408

0.033
0.277 0.234

0.262

0.585
0.408

0.461
1.000

0.899
1.000

0.058
0.099

0.469
0.901

0.438
0.099

0.336
1.000

0.559
1.000

-g
0.99

+g
0.44

-s
0.69

-g
1.00

+b
1.00

+g
0.85

-g
0.04

-s
0.88

+g
0.82

+s
0.53

-g
1.00

+b
1.00

+g
1.00

-s
0.17

-g
1.00

+g
1.00

-g
0.99

0.355
1.000

0.029
0.644

0.015
0.356

0.438
0.644

0.142
1.000

0.078
0.306

0.131
0.598

0.015
0.096

0.106
0.168

0.026
0.138

0.355
0.598

0.235
0.168

0.280
0.862

0.372
0.860

0.040
0.140

0.605
0.702

0.025
0.158

0.148
0.842

0.312
0.158

0.031
1.000

0.404
0.889

0.031
0.111

0.651
0.889

S +g
0.93

-s
0.76

-g
1.00

-b
1.00

+g
0.52

+b
0.46

-g
0.38

+g
0.70

-s
0.94

+s
0.87

-g
0.92

-g
0.50

+g
0.93

-s
1.00

+s
0.91

-g
0.99

Figure 7-15: An example of a pruned graph of a relatively long utterance, “This, he
added, brought about petty jealousies and petty personal grievances.”
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hand, when the reliability-ambiguity representation is used, the correctness of the

detection within reliable regions is generally higher than the Viterbi search result.

However, further processing may need to be applied to each of the reliable regions

and ambiguous regions to make use of the additional information.
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Chapter 8

Conclusion

8.1 Summary

8.1.1 Objective

In this thesis, a probabilistic model for finding consonant landmarks has been devel-

oped. The consonant landmark detector locates the time-points of abrupt acoustic

changes, corresponding to closures and releases of consonants. Not only does this

algorithm pinpoint the location of abruptness, but it also classifies the detected land-

marks according to their characteristics—onsets and offsets of spontaneous glottal

vibrations, existence of burst noise, and closures and releases of sonorant consonants.

Therefore, this landmark detector can serve as a first step of a knowledge-based auto-

matic speech recognition system, by finding the locations where phonetic information

is highly concentrated, and also by determining the type of information that can be

found in the vicinity of each detected landmark or between each group of adjacent

landmarks.

8.1.2 Method

The landmark detection algorithm is developed in three stages. The first stage pro-

vides a probabilistic algorithm that detects the consonant landmarks individually,

that is, without considering the relationship among different types of landmarks. The
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second stage makes use of the strict dependency that we observe among true land-

mark sequences to determine the most likely sequence among the detected landmarks.

The last stage distinguishes the reliable regions, where the detected landmarks can

be highly trusted, from the ambiguous regions, where more information needs to be

extracted for more reliable landmark sequence detection.

Individual Landmark Detection

The individual landmark candidate detection algorithm developed in the first stage

is largely a direct conversion of Liu’s consonant landmark detector [35] into a proba-

bilistic system. The new design has the following three advantages:

First, instead of implementing the landmark detector and classification module as

a series of decision processes, each of which represents a piece of speech knowledge,

the overall system has been redesigned to have a separate knowledge-base and a

computation core system. The separation of the knowledge-base makes it possible to

update the speech knowledge without requiring redesign of the whole system.

Secondly, the new algorithm allows more candidates to be detected, by increasing

the sensitivity to acoustic changes. The resulting reduction of landmark deletions is

considered more important than the reduction of insertions, because once a landmark

sequence is determined, a deleted landmark can be retrieved only with higher level

knowledge such as phonotactic constraints and lexical access, while an insertion can

be discarded by measuring low-level cues alone. This change in sensitivity reduced

the landmark deletion rate significantly, from 18% to less than 5%.

Finally, the algorithm was developed as a probabilistic system by assigning a prob-

ability of each landmark candidate being a true landmark. The probability measure

can be used in later processing steps to sort out false alarms that have arisen due to in-

creased sensitivity of the landmark candidate detection algorithm. The result shows

that not only can 90% of the falsely detected landmark candidates be filtered out

based solely on the probability measure, but also 80% of the correctly detected land-

marks have probability higher than 0.9 and 85% of the false alarms have a probability

less than 0.2, implying that most of the landmarks can be detected with considerable
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confidence.

Landmark Sequence Determination

The landmark sequence determination process developed in the second stage is mean-

ingful not only because it determines a single landmark sequence that can be directly

input to the next step of automatic speech recognition, such as distinctive feature

detection or lexical access based on manner features, but because this process models

the relationship among different landmark types with a simple bigram representation.

The bigram model that represents the constraints on possible landmark pairs

has significance in two ways. One is that among 36 theoretically possible pairs of

landmark types, only 16 pairs are articulatorily feasible. The other 20 landmark

sequences are not just probabilistically unlikely: it is physiologically impossible to

produce them. Therefore, the bigram representation of landmark sequence constraints

can be effectively used to filter out unlikely sequences of landmarks.

Another advantage is that each of the sixteen landmark pairs describes some of

the acoustic properties of the signal between the two landmarks. Because the acoustic

characteristics mostly correspond to the articulator-free features of the segment, when

a landmark sequence that follows the bigram constraints is observed, the articulator-

free features of the signal can be directly derived from the landmark sequence.

The landmark sequence that is determined based on both individual probability

and bigram transition probability shows about 12% deletion and substitution rates

and a 15% insertion rate, which are generally less than those of Liu’s algorithm. Most

of the detected landmarks that do not correspond to the labeled landmarks occur in

similar contexts, implying that these errors may provide additional information about

the speech signal. Some of the common contexts include flaps, syllabic nasals and

/l/’s, glides, and irregular pitch periods.

Representation of Reliable and Ambiguous Regions

The last stage of the algorithm distinguishes the regions where the landmark se-

quences can be determined reliably from the regions where more than one possible
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sequences can be hypothesized. It is expected that where one speaks more carefully,

e.g., near word boundaries or lexical stresses, cues to the distinctive features will

be produced more clearly and the landmarks will be detected more reliably, and so

the reliably detected landmarks can be given more focus in later stages of speech

recognition. On the other hand, the ambiguous regions can be given multiple possi-

bilities of landmark sequences, and evidence for additional cues can be sought based

on the possible choices, so that the landmark sequence can be determined with more

confidence.

This stage uses the same measures that were used in the landmark sequence

determination process—individual probabilities and bigram transition probabilities.

However, instead of finding a single most likely landmark sequence using a Viterbi

search algorithm, this stage uses a graph pruning method based on a specially defined

edge probability measure.

Even when the pruning method is applied with a low threshold of 0.01, the size

of the graph can be reduced considerably—the number of nodes is halved, and the

number of edges can be reduced to one eighth of the unpruned graph on average—

and still retain a detection rate as high as 93%, which is almost comparable to the

theoretical maximum of 95%. The graph pruning method determines about 40% of

the landmarks are reliable, and the deletion rate among the reliable landmarks is as

low as 5.6%, which is significantly reduced from the 23% deletion rate of the Viterbi

search algorithm. The ambiguous regions are also reduced to a manageable size, so

that it is possible to find a true landmark sequence by measuring no more than 3–4

additional cues per ambiguous region.

8.2 Applications

8.2.1 Distinctive Feature Estimation

Each landmark type corresponds to a major movement of the speech organs. There-

fore, when the landmark types are estimated, some of the articulator-free features can
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be determined directly from the landmark types. For example, a +s landmark speci-

fies a change from a [+consonant, +sonorant, −continuant] sound to a [−consonant]

sound, as in the transition between two sounds in the word ‘no’.

The bigram transition constraints applied in the landmark sequence determina-

tion and reliability representation processes help in the estimation of articulator-free

features in two ways. First, because the bigram restriction asserts that the resulting

set of landmarks should follow the strict rules of landmark sequencing, it reduces the

possibility of contradiction between the sets of distinctive features estimated from

adjacent landmarks. For example, when the bigram restriction is not applied, a se-

quence of (+b, −s) landmarks can be detected as a result. Because a +b landmark

implies that the region following the landmark must be [+consonant, −sonorant] and

a −s landmark implies that the region preceding the landmark must be [−consonant,

+sonorant], the articulator-free feature between the landmark pair cannot be deter-

mined. Constraints on successive landmark pairs reduce such contradictions.

Another advantage is that, as was discussed in Section 2.2, landmark pairs are

more effective than single landmarks in determining some of the articulator-free fea-

tures. For example, a −g landmark alone cannot correctly determine the features

of the following region—it could be either a [+consonant, −sonorant] region, or a

silence—and a −b landmark cannot determine the continuant feature of the preced-

ing region. However, when the landmark sequence (−g, −b) is detected, it can be

derived that the region between the landmark pair has the features [+consonant,

−sonorant, +continuant].

The bigram constraints help with the estimation of articulator-bound features

as well, not only because the determination of articulator-free features restricts the

number of articulator-bound features that need to be determined as stated in Sec-

tion 2.2, but also because a landmark pair provides a region where the cues for a

certain distinctive feature can be found throughout. For example, when a sequence

of (+g, +s) landmarks is detected, defining the features of a sonorant consonant, the

nasality feature of the sonorant consonant can be detected by verifying the existence

of a nasal murmur in the region between the landmarks, and also by examining the
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nasalization of the adjacent vowel in the region between the +s landmark and the

following landmark.

8.2.2 Lexical Access

A study by Shipman and Zue [46] showed that even an incomplete representation of

segments can help to reduce the number of possible word candidates in an isolated

word recognition system. They report that when only the CV pattern of a word

is known, the average number of possible word candidates reduces to 25 words for

a 20,000 word vocabulary, and in the worst case, the maximum size is reduced to

1,500 words, which is only 7.5% of the entire lexicon. On the other hand, when more

detailed characteristics of the segments are known, that is, when each segment is

specified to be one of the six broad classes—vowels, stops, nasals, strong fricatives,

weak fricatives, and glides and semivowels—the average number of possible word

candidates reduces to about 2.5 words and in the worst case, the candidate set size

is reduced to 200 words.

A similar experiment can be performed on the sequence of landmarks, since the

landmark types can specify some of the articulator-free features of the segments. The

result was expected to be better than that of CV pattern but not as good as that

of six-way classification, because the landmarks alone cannot decide the continuant

and strident features clearly, and consonant landmarks cannot distinguish a series of

vowels and glides from a single vowel.

The result is shown in Table 8.1. The average is calculated by averaging the num-

ber of word candidates across all the possible landmark patterns, and the weighted

average is calculated using the frequency data in the Brown Corpus. The maximum

is calculated by finding a landmark sequence that has the largest number of possible

word candidates. The average number of possible word candidates was reduced to

5.6 words with the worst-case result equal to 722 words, which is about 3.6% of the

total number of candidates. As was expected, these results fall between those for CV

sequences and for a full representation of broad manner classes.

Huttenlocher and Zue [24] extended the same experiment to the case where rea-
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CV Patterns Landmarks Six-way Classes

Average 25 5.6 2.5
Weighted Average 600 195 40
Maximum 1500 722 200

Table 8.1: Comparison of the numbers of possible word candidates when incomplete
information about the word is known. A 20,000 word vocabulary is used for the
comparison, and weighted average is calculated according to the frequency in the
Brown Corpus.

sonable confusion errors in the broad classes are allowed, and found out that the

additional confusions did not change the number of word candidates. In addition,

they performed a further experiment that examined the effect of unspecifying some

parts of words completely. The result showed that when the unstressed syllables were

ignored, the expected size of the set of word candidates grew from 25 to 40, but when

stressed syllables were ignored, the size increased significantly to 2,000.

This experiment supports the validity of our proposed reliability-ambiguity repre-

sentation, because the reliable regions are expected to correspond to lexical stresses

and word boundaries. Therefore, specifying the landmarks in the reliable regions and

allowing confusion within the ambiguous regions would still reduce the size of the

word candidates considerably.

8.3 Future Work

8.3.1 Improving the Landmark Detector

Temporal Cues

One of the most common errors in the landmark sequence determination process was

high insertion rate of b-landmarks near g-landmarks. Of all the b-landmark insertions,

almost 80% occurred within 10ms from g-landmarks. This problem arises because g-

landmarks not only affect the low frequency region but also create a discontinuity in

the high frequency region, which is used for b-landmark detection.
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Such problems can be reduced by using the distance between landmarks in de-

termining the landmark sequence. For example, by simply not allowing a sequence

of b- and g-landmark within a 7ms interval, the insertion rate of b-landmark was

reduced by half without affecting the detection rate significantly. For a more general

application of temporal cues, the distribution of the distances between each possible

landmark pair can be estimated and applied in the landmark sequence determination.

Three Classes of Landmarks

This thesis only dealt with three types of consonant landmarks. Because knowledge

of the types of consonant landmarks makes it possible to hypothesize possible vowel

and glide positions, the consonant landmarks alone can provide a large amount of

information about the speech signal.

However, as was discussed in Section 2.1, the vowel and glide information can be

detected reliably based on the acoustic cues extracted from a longer time period than

consonant information. Therefore, if vowel and glide landmarks are incorporated

together with consonant landmarks, the resulting landmark sequence will become

more reliable than the result from consonant landmarks alone.

The possible transitions between all three classes of landmarks can be represented

by a bigram transition model as shown in Table 8.2. Adding vowel and glide land-

marks changes the allowed transition between consonant landmarks as well; for ex-

ample, (+g, −g) landmark pairs are no longer allowed because there must be a vowel

between these two landmarks. Such finer constraints would increase the accuracy

of landmark sequence determination, especially for the instances where acoustic dis-

continuities are less reliable. For example, in the consonant-only case, a glide was

sometimes detected with s-landmarks, but when the bigram transition including a

glide landmark is used, such insertions will be deleted because neither (−s, G) land-

mark transitions nor (G, +s) transitions are possible. Similarly, a schwa vowel tends

to have less abruptness at the segment boundary, but it will be detected with more

accuracy when a vowel landmark is located in the middle of the schwa.
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Table 8.2: Bigram restriction of all three classes of landmarks. The capital letter V
represents a vowel landmark and G represents a glide landmark. Other symbols with
+ and − signs stand for different types of consonant landmarks.
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Processing in Ambiguous Regions

The reliability-ambiguity representation discussed in Chapter 7 can distinguish sec-

tions of the speech signal where the landmarks are produced ambiguously from sec-

tions where the landmark distinctions are clear. It has been suggested that for each

ambiguous region, the list of hypothesized landmark sequences be used to extract

the features that are common to all alternative choices and the features that vary

depending on the alternatives, so that the common features can be confirmed and the

non-common features can be evaluated by measuring additional cues. Such a process

still needs to be developed.

In addition, as discussed in Section 6.6, most of the errors occur within a limited

set of phonetic contexts. Therefore, it can be assumed that if the error contexts are an-

alyzed comprehensively, by making a list of all possible phonetic contexts that trigger

ambiguous landmark realization and the frequency of these contexts, this informa-

tion will be useful in determining the correct landmark sequence for the ambiguous

regions.

8.3.2 Other Applications

Suprasegmental Features

It has been observed that the reliably detected regions described in Chapter 7 gener-

ally correspond to lexical stresses or word boundaries. It has been generally accepted

that stressed syllables have robust acoustic cues for phonetic features [11]. Gow et al.

[19] also suggest that in continuous speech, word onsets show more robust acoustic

realization of phonetic features and are less variable in terms of phonological assim-

ilation than other parts of words. Therefore, it would be worthwhile to investigate

the relationship between reliable detection of landmarks and suprasegmental features

such as word onsets and lexical or prosodic stress.

The experiment by Huttenlocher and Zue [24] shows that knowledge of lexical

stress and of the broad phonemic classification of the stressed syllables makes it

possible to reduce the number of possible word candidates significantly. In addition,
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the phonetic information in word onsets plays an important role in many lexical

access models [18, 39]. Thus, if it is verified that landmark reliability corresponds to

perceptual islands of reliability, the landmarks within the reliable regions can be used

as providing valuable information for lexical access.

Language Independence of Landmarks

It is observed in Section 6.4.4 that landmark detection is likely to be independent of

dialect of American English and also of gender, although a more extensive analysis is

needed to confirm the claim. It has been assumed that this property is due to the fact

that the consonant landmarks do not depend on specific phonemes but depend only

on the overall configuration of the vocal tract shape. If that assumption is true, it can

be hypothesized that the landmarks should be independent from the characteristics

of different languages as well.

Although the individual realization of landmarks may be independent from lan-

guage, the transition constraints between successive pairs of landmarks are thought

to be different across languages. For example, Korean speakers do not have conso-

nant clusters and do not release syllable final obstruent consonants. Therefore, the

sequences of landmark pairs (−b, +b) and (+b, −b) are less likely to be realized

in Korean. Similarly, the Japanese language does not have syllable-final consonants,

except for the /N/ sound, which is often pronounced as a syllable instead of as a coda.

Therefore, by investigating the language-independent and language-dependent

characteristics of landmarks, the landmark detection algorithm can be easily adapted

to speech analysis and recognition systems for different languages, and the language-

dependent characteristics may be used as one of the cues for language identification

as well.

Landmarks and Speaking Styles

Similar experiments can be carried out on other characteristics of speech. For exam-

ple, Boyce et al. [6] estimated consonant landmarks from clearly pronounced speech

and conversational speech and showed that these two speaking styles can be distin-
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guished based on the different distribution of certain landmark clusters. She also

observed that the number of landmarks present in clear speech is more than that in

conversational speech, due to overlapping of articulatory gestures in the latter style.

It would be also worthwhile to examine the reliability-ambiguity representations

in different speaking styles. It is expected that the proportion of reliable regions in

conversational speech may be less than that of clear speech, but that the landmarks

near the stressed syllables or content words will still be reliably detected.

Although the characteristics of landmark sequences may vary with different speak-

ing styles, it is likely that the acoustic characteristics of individual landmark types

may not depend on speaking styles, because both speaking styles make the same or at

least similar articulatory movements. However, individual landmark characteristics

may be different in some atypical speech, such as the utterances of speakers with

speech disorders or of young children still learning to talk. The differences may be

investigated further to acquire deeper understanding of the acoustic characteristics of

atypical speech, and to improve the recognition of landmarks as well.
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Appendix A

Feature Bundle Representation of

English Sounds
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Appendix B

Review of Liu’s Landmark

Detection Algorithm

Liu [35] has developed an algorithm that detects the acoustic landmarks by utilizing

linguistic knowledge. Since the first part of the automatic landmark detection process

described in this thesis—especially the general pre-processing algorithm in Section

5.1— is mostly derived from Liu’s landmark detector, the algorithm is briefly reviewed

here.

Liu’s approach is based on a deterministic algorithm that uses a series of decision

processes, each of which represents a piece of acoustic knowledge about speech signal.

The detection algorithm for each type of landmarks is summarized below.

B.1 Detection of g-Landmarks

The g-landmarks are detected based on the amplitude of the energy in 0–400Hz

frequency bands. The time-points that show at least a 9dB change of band-energy

in 50ms period, as well as a 6dB change in 26ms period are selected to be possible

locations of landmarks. The term peaks is used to represent the selected time-points.

A +peak is the time-point where the energy increases, and −peaks is where the energy

decreases.

After the peaks are selected, the sequence of peaks goes through a series of decision
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processes that use the following acoustic knowledge about the speech signal:

• Pairing of g-landmarks: An utterance always starts with a +peak, and end

with a −peak. There must be an alternation of signs from one peak to the next.

• Minimum vowel requirement: There must be a vowel between a +g land-

mark and the following −g landmark. Acoustically, this means that the energy

between the (+g, −g) landmark pair should be no less than a certain amount

lower than the highest energy in the utterance. This amount is taken to be

20dB.

• Duration: The distance between a +g landmark and the next −g landmark

should not exceed a certain duration—this duration threshold is decided to be

250ms. This is not an obligatory condition because a long series of vowels and

nasals—such as in the phrase ‘in an animal’—can result in a longer interval

between +g and −g landmarks.

A simplified flowchart of the decision process that incorporates the speech knowl-

edge listed above is shown in Figure B-1. The flowchart consists of three sections:

the initial section that starts with ‘start’ node, and the other two sections starting

with nodes A and B, respectively. The initial section of the flowchart, which starts

with the start node, locates the first +g landmark. After the initial part is over,

the process alternates between section A and section B, determining the sequence of

g-landmarks with alternating signs located at proper distances apart. After the end

of signal is reached, the process terminates after final processing in section B, which

filters out the g-landmark pairs that does not pass the minimum vowel requirement.

B.2 Detection of s-Landmarks

An s-landmark can exist only between a +g landmark and the following −g landmark.

If peaks can be found in all of the four different frequency bands—0.8–1.5kHz, 1.2–

2.0kHz, 2.0–3.5kHz and 3.5–5.0kHz —within a certain time-period, this time-point
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Start

Is the first peak
positive?

YesNo

Record it as
+g landmark

Find 
closest +peak

A

A

Is the next peak
negative?

YesNo

Multiple -peaks
in a row?

NoYes

Pick one

Far from
previous +g?

YesNo

Can add
peaks between?

YesNo

Record the -peak 
as -g landmark

Add -g and +g 
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YesNo
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and this +peak

A

B

No more peaks?
YesNo

Record it as
+g landmark

B

A

Choose the first
+g/-g pair
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as +g landmark

Vocalic?
YesNo

Delete the
+g/-g pair

Are there
more +g/-g pairs?

No

End

Choose the next
+g/-g pair

Yes

Figure B-1: A simplified flowchart that decides the g-landmark sequence that satisfies
a set of restrictions.
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is determined to be a pivot. If all four peaks are present but they are not close

in time, the set of peaks is represented by the term tagged-pivot. The tagged-pivot

is separately classified because the spectral change for a sonorant consonant is not

as abrupt as that of an obstruent consonant, and different frequency band may be

affected at slightly different time-points.

After the pivots are decided, the following set of knowledge-based constrants is

applied to confirm the existence of landmarks.

• Steady state: The shape of the oral tract is stable during a sonorant conso-

nant, and so the spectrum of the 0–600Hz frequency region stays almost the

same throughout the consonant. This condition may not hold for an intervo-

calic position where both the closure and the release of the consonant happen

sequentially.

• Abruptness: A sonorant consonant introduces a zero near the second formant

frequency, and this causes the 1.3–8kHz frequency band energy to go through

an abrupt change at the landmark position.

The thresholds for these criteria depend on the position of the sonorant consonant—

intervocalic, syllable-onset, syllable-offset. For example, a syllable-offset sonorant

consonant tends to be less steady than that of syllable-onset consonant and so a less

strict threshold is used in processing the syllable-offset pivots.

Unlike g-landmarks, the s-landmarks do not always need to be paired with other

landmarks, because the sonorant landmarks are not always abrupt. Therefore if at

least one of the closure and release is abrupt enough (i.e., detected as an untagged

pivot), then it is selected as a landmark.

Simplified flowcharts for the decision processes are shown in Figure B-2. The

first flowchart shows the decision process of the sonorant consonant position. This

process classifies each pivot position into four categories: onset, offset, intervoc and

unknown. In the following processing, which is described in the second flowchart,

different thresholds for abruptness and steady-state criteria are used for different

categories. The second flowchart shows how the different criteria interact to decide
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the s-landmarks. For example, to be determined as an s-landmark, the pivot should

pass abruptness and steady-state criteria and at least one of the closure and release

should be untagged. However, it is also allowed that neither closure and release need

to be untagged at the end of an utterance, and if the pivot is at intervocalic position,

the steady-state criterion does not have to be met.

B.3 Detection of b-Landmarks

Contrary to s-landmarks, the b-landmarks can be found between a −g landmark and

the succeeding +g landmark. The pivots are decided by the same criterion — peaks

can be found in all four frequency bands within a certain time period.

The criteria for determining a b-landmark are the following:

• Silence: A +b landmark represents a stop burst, and therefore it should be

preceded by a complete closure in the mouth for the intraoral pressure to be

built up. Therefore, a +b landmark should be preceded by a silent region which

is acoustically represented as low-amplitude signal across all of the frequency

range. Similarly, a −b landmark should be followed by a silence, but to allow

the existence of voice-bar, only the 1.2-8kHz frequency region is measured for

this purpose. When a stop consonant is preceded by a vowel, such as in the

word ‘finger’, the closure may not be complete due to the opening in the nasal

tract.

• Duration: The silent region should be persistent over an interval of at least

5ms, and the burst onset duration—the distance between the end of the silence

to the burst landmark—should be shorter than 30ms.

Figure B-3 gives a simple flowchart of the b-landmark decision process. This

diagram represents the two criteria with possible exceptions for utterance-initial con-

sonant, utterance-final consonants and stop consonants followed by nasals.
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Figure B-2: Simplified flowcharts that describe the decision process of the s-landmark
sequence.

188



A

+pivot?
YesNo

No

Silence
found?

Yes

Utterance initial/
or preceded 

by nasal?

Yes

Delete
landmark

b-landmarkDuration
check

Not passed Passed

b-landmarkDelete
landmark

Yes

Silence
found?

Yes

No

Utterance final? No

b-landmark

Delete
landmark

No

Figure B-3: A simplified flowchart that describes the decision process of the b-
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