
6.824 - Fall 2002

6.824 Lab 2: A concurrent web proxy

Introduction

In this lab assignment you will write an event-driven web proxy to learn how to build servers
that support concurrency.

For clarity's sake, we define some terms. The proxy-server is the part of your proxy that
receives requests from a client, i.e., the part that accepts a connection, reads the request,
and, later on, writes back the reply. The proxy-client is the part of your proxy that talks to a
server, i.e., the part the connects to the server, writes the request, and then reads the
reply.

A rough definition of what it means for your proxy to be concurrent---we'll refine it later---is that,
if your proxy is waiting for some event on behalf of one request, it should be able to process
other requests. Note that this means that requests may be satisfied in a different order than the
order in which they were started. For example, if client A connects, but hangs a few seconds
before writing its request, client B could connect, write its request and have its reply back in the
time that client A was hanging there. In the Design Requirements, you'll find a more precise
definition of what concurrency means in this assignment.

Design Requirements

You should make sure your web proxy satisfies the following requirements.

Consider the following list of events that your web proxy must handle:

Arrival of a new connection,
Arrival of some or all of a request from a client,
The completion of a connect() to a server, and
Arrival of some or all of a response from a server.

While waiting for any of these events for one connection, your web proxy must be able to
handle any of these events for other connections.

It is OK if your web proxy blocks in these functions:

write, and
gethostbyname.

In addition, your web proxy should fulfill the following requirements. These are similar to the
requirements from the first lab; differences are marked in red.

Page 1 of 66.824 Lab 2: A concurrent web proxy

GET requests work.
Images/Binary files are transferred correctly.
Your web proxy should properly handle Full-Requests (RFC 1945, Section 4.1) up to,
and including, 65535 bytes. You should close the connection if a Full-Request is larger
than that.
You must support URLs with a numerical IP address instead of the server name (e.g.
http://18.181.0.31/).
You are not allowed to use fork().
You may not allocate more than 100MB of memory.
The restriction of not having more than 32 open file descriptors no longer applies. You
can have as many file descriptors as the system allows.
Your proxy should correctly service each request if possible. If an error occurs, and it is
possible for the proxy to continue with other clients or subsequent requests, it should do
so. If an error occurs from which the proxy cannot reasonably recover, the proxy should
print an error message on the standard error and call exit(1). There are not many
non-recoverable errors; perhaps the only ones are failure of the initial socket(),
bind(), listen() calls, or a call to accept(). The proxy should never dump
core except in situations beyond your control (e.g. a hardware or operating system
failure).

You do not have to worry about correct implementation of any of the following features; just
ignore them as best you can:

POST or HEAD requests.
URLs of any type other than http.
HTTP headers, other than the first line with the GET request.

If your proxy consistently passes all of our tester's tests (see below), you're done and we'll give
you an A. Assuming you handed it in on time. The tester for this assignment is not the same as
the tester for the first lab.

Getting started

We have provided a skeleton directory. It is available
in /home/6824/labs/webproxy2.tgz. The following sequence of commands
should yield a compiled version of the web proxy you should extend to pass the tests.

% tar xzvf /home/6824/labs/webproxy2.tgz
% cd webproxy2
% gmake

The tarball contains http.C, http.h, Makefile, and webproxy2.C.
webproxy2.C contains some example code that the discussion below refers to.

Things you need to know

Recall that the read system call will block until there is some data to read. This means you
cannot simply use read in your concurrent web proxy unless you know for sure that there is

Page 2 of 66.824 Lab 2: A concurrent web proxy

data to read. If you don't watch out, your web proxy might block on a read and, *poof*, gone
is concurrency.

The select system call is your big friend in this assignment. The main point of select is
that it will tell you which file descriptors can be read without the risk of blocking on them. If
you use select prudently, you will never block on a read, which is the first step to
concurrency.

You should use select in an event loop. An event loop is simply a while() loop like this:

while(1) {
 select(...); /* blocks until some fd is ready to read */

 /*
 * read the appropriate file descriptors
 * and do whatever is necessary to make progress
 */
}

This is how you should structure your web proxy, also. Notice that there's only one event loop
with one single select in your entire program.

Constructing parameters to select is a little tricky, and you should consult the "Using
select" article for the details. The example code in webproxy2.C contains an event loop
with select.

Notice that we haven't mentioned write yet. The short answer is that, as mentioned above,
it is OK if you call write and it blocks.

That's it? Almost. Unfortunately, there's one slight problem left. Recall that you need to
connect to a server to fetch the requested web page. What happens when that server is
down? Or what if, because of network problems, establishing the connection takes a long
time? Your web proxy will be blocking on the connect call thereby taking away
concurrency!

Solving this involves some nasty UNIX trickery. After you create the new socket, but before
you call connect, you should set the O_NONBLOCK flag on the socket, using fcntl.
This is what set_nonblock in webproxy2.C does. After that, you can call connect.
However, because of the O_NONBLOCK flag, connect will return immediately, whether it
really connected to the server or not! There's several things we need to do:

if connect returns -1 and sets errno to something else than EINPROGRESS, then
connect has failed and you should handle it as best as you can,

if connect returns -1 and sets errno to EINPROGRESS, then things are up in the
air and we need to wait for connect to finish---wait, but not block! You achieve this by
having the select in your main event loop also check for writability on the file

Page 3 of 66.824 Lab 2: A concurrent web proxy

descriptor used in connect. Once select tells you that the file descriptor is
writable, we know that connect completed. Now we still need to find out whether or
not connect was able to succesfully establish the connection. Who knows; maybe it
failed. The correct way to do this is to call getpeername (see man page) on the
socket. If getpeername returns -1, you know that the connection could not be
established and you should handle the crisis as best as you can. If getpeername
returns 0, then things are fine, and you can start writing stuff to the server, but not before
you disable the O_NONBLOCK flag on the file descriptor. You can use
clear_nonblock in the example code to do this.

Function do_connect in the example code shows how to connect to a server;
connect_ok shows how to check whether the connection was established successfully.

You may want to consult "Using select" article for more details.

Running and testing the proxy

Just as in the first assignment, your web proxy should take a port number as its only argument.

When you think your proxy is ready, you can run it against the test program webproxy2-
test, our tester, the source of which is in ~6824/labs/webproxy2/webproxy2-
test.C. Run the tester with your proxy as an argument:

% /home/6824/labs/webproxy2/webproxy2-test ./webproxy2

Note that this may take several minutes to complete. The test program runs the following tests:

Ordinary fetch

This test is the "normal case". We send a normal HTTP 1.0 GET request and expect the
correct web page.

Fetch by name

This tests whether you can handle a server name in the request, rather than an IP address.
We send a normal HTTP 1.0 GET request and expect the correct web page.

Split request

This tests sends the HTTP request in two chunks.

Large request

The tester sends a large request; the request contains a large header that causes it size to be
exactly 65535 bytes.

Large response

Page 4 of 66.824 Lab 2: A concurrent web proxy

The tester fetches a web page larger than the maximum amount of memory available to your
web proxy.

Zero-size response

The tester fetches a zero-length web page.

Recover after bad connect

The tester sends a request with a URL that specifies a port on which no program is listening;
this should cause connect() to fail. The tester makes sure your web proxy handles that failure
by sending a subsequent normal request.

Malformed request

The tester sends an HTTP request that is not syntactically correct. After that, it tries to fetch a
valid page to see if it your proxy is still doing ok.

Premature client close()

The tester sends a partial HTTP request and then closes the connection. After that, it tries to
fetch a valid page to see if it your proxy is still doing ok.

Infinitely long request

The tester swamps your proxy with a request larger than 65535 bytes. The tester expects your
proxy to close the connection. After that, it tries to fetch a valid page to see if it your proxy is
still doing ok.

Blocking server, concurrent request

The tester starts a request for a web page from a server that will block for 15 seconds halfway
through sending its reply. 2 seconds later, the tester starts a request for a web page from a
normal server. The reply for the second request should come back first.

Silent client, concurrent request

The tester starts a request for a web page, but waits 15 seconds before actually finishing the
request. Meanwhile, another client does a normal request. The reply for the second request
should come back first.

Infinite server, concurrent request

This test has been revoked.

The tester starts a request for a web page from a server, whose reply never stops. While your
proxy is dealing with this constant data stream, it has to handle a second, normal, request from
the tester.

Page 5 of 66.824 Lab 2: A concurrent web proxy

Unresponsive server, concurrent request

The tester starts a request for a web page from a server that cannot be reached. While your
proxy is waiting to connect to the dead server, it has to handle a second, request from the
tester.

Stress test

The tester starts 2 concurrent requests from the Infinite server (see above) to keep your proxy
busy, and then expects your web proxy to handle a barrage of normal requests, split requests,
malformed requests, and requests with large responses all at the same. A part of these
requests is done to the Blocking server that waits 15 seconds halfway through the reply.

Collaboration policy

You must write all the code you hand in for the programming assignments, except for code that
we give you as part of the assigment. You are not allowed to look at anyone else's solution
(and you're not allowed to look at solutions from previous years). You may discuss the
assignments with other students, but you may not look at or copy each others' code.

Handin procedure

You should hand in a gzipped tarball webproxy2-handin.tgz produced by gmake
dist. Copy this file to ~/handin/webproxy2-handin.tgz. Set permissions for
this file to 600 (chmod 600 ~/handin/webproxy2-handin.tgz). We will use
the first copy of the file that we can find after the deadline---we try every few minutes.

Page 6 of 66.824 Lab 2: A concurrent web proxy

