
6.824 - Fall 2002

Getting started with 6.824 labs
A gentle crash course

Introduction

The 6.824 labs require you to program C/C++ on FreeBSD machines. This document should help
you on your way with logging into the machines, reading manual pages, compiling C/C++ programs,
and understanding Makefile-s that we will give you.

Logging in with ssh

Students enrolled in this class log into class machines using ssh, with a username and password.
Other Unix versions are available on http://www.openssh.com/. Windows versions come with
Cygwin. If you just want ssh for Windows without the fancy stuff, you can also just install PuTTY.

Compiling and linking simple programs

A compiler takes one or more source files and produces object files that contain machine code.
Object files contain machine code and usually have a .o extension. C source files usually have a .c
extension and C++ files usually have a .C or .cc extension. Object files may have undefined
symbols (names of functions or global variables); linking object files into an executable resolves
these undefined symbols. Note that one of the object files must have a main() function to create an
executable.

Object files can be linked together to form an executable, provided that one (and only one) of the
object files defines a main() function.

An executable is similar to an object file in that it contains machine code, but an executable contains
some additional bits that allow the operating system to start the program and run it.

Compiling a source file into the equivalent object file is done using c++ -c. For example:

% c++ -c hello.C -o hello.o

The -c flag indicates pure compilation without linking. Even if hello.C defines main(), the
resulting hello.o is not executable. To compile a source file into an executable, omit the -c flag:

% c++ hello.C -o hello

This creates an executable hello. Note that c++ will bark at you if you try to create an executable
without a definition of main().

Note that all these examples assume you are compiling C++ files. Use gcc in stead of c++ if you are
compiling plain old C files.

Multiple object files can be linked together into one executable. Suppose we have the following files:

http://www.openssh.com
http://cygwin.com/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

Getting started with 6.824 labs Page 2 of 6

common.h

#ifndef __COMMON_H
#define __COMMON_H
void hello();
void bye();
#endif // __COMMON_H

hello.C

#include <stdio.h>
#include "common.h"
void hello() {

printf("hello!\n");
}

bye.C

#include <stdio.h>
#include "common.h"
void bye() {

printf("bye!\n");
}

main.C

#include "common.h"
int main() {

hello();
bye();

}

To turn these files into a working executable, do:

% c++ main.C hello.C bye.C -o hellobye

This compiles main.C, bye.C, and hello.C and links them together into an executable called
hellobye. The header file common.h declares---but does not define---hello() and bye() so that the
compiler can compile main.C, without knowing the details of their implementation.

Linking is only possible when no two object files try to define C or C++ functions or global
variables with the same name. For example, try declaring a variable int foo in both hello.C and
bye.C. Compiling each file separately is no problem, but linking fails with a multiple definition
of `foo' error. The same is true for functions. Depending on what you want, you can avoid this
problem in one of a number of ways:

z	 If you want hello.C and bye.C to share variable foo, you can declare one of them as extern
int foo.

z	 If you want hello.C and bye.C to each have their own independent variable named foo, then
declare one or both of them as static int foo. Keyword static limits the scope of the
declaration to just the current file.

z	 The best way to solve this problem is to avoid global variables altogether; use function
arguments, local variables, or C++ class members instead.

Makefiles

Getting started with 6.824 labs Page 3 of 6

While doing the 6.824 labs you probably don't need to create your own Makefiles from scratch,
because we will give them to you. However, you may need to modify them. This section gives a
quick overview of what a Makefile is and how it is used.

A Makefile is used in conjuction with gmake and describes how different source and header files in a
project relate and how to compile and link them. A Makefile usually bears the meaningful name
Makefile and its contents are probably roughly similar to this example:

Makefile

hellobye : libhellobye.a main.o
c++ main.o -L. -lhellobye -o hellobye

libhellobye.a : hello.o bye.o
ar cru libhellobye.a hello.o bye.o

this command puts hello.o and bye.o in a library libhellobye.a

hello.o : hello.C common.h
c++ -c hello.C -o hello.o

bye.o : bye.C common.h
c++ -c bye.C -o bye.o

main.o : main.C common.h
c++ -c main.C -o main.o

clean :
rm -f *.a *.o hellobye

This Makefile has 6 sections. Each section describes a dependency on the first line and some action
on the second. A dependency consists of a target file (before the colon) and prerequisite files (after
the colon). Lines starting with # are comments.

When you run gmake, it will execute a target's action if any of the prerequisite files have been
modified since the target was last modified. gmake executes the action in much the same way as if
you had typed it to the shell. gmake only tries to make sure that the very first target in the Makefile
is up to date. However, if the first target depends on other targets, gmake may end up executing
multiple actions.

The first section in the Makefile above states that the file hellobye depends on libhellobye.a and
main.o. If either libhellobye.a or main.o is newer than hellobye, then hellobye is rebuilt.
Building the whole project is now as simple as typing

% gmake

If you write your Makefile correctly, gmake will only compile and link those parts of a project that
have changed since the last gmake. If your project is big and the full compile/link process takes a
long time, then gmake is your friend. It saves time.

Notice that the last section in this Makefile is not a real dependency, but allows the user to
conveniently call

% gmake clean

to remove all object files, the library, and the executable.

Getting started with 6.824 labs Page 4 of 6

Makefiles can get pretty complicated, but this gentle introduction may very well suffice for your
6.824 needs. If you're interested, read the full gmake manual (info make). It's fabulous.

Libasync in Linux

The lab machines run FreeBSD. However, you may be able to compile and run libasync programs on
Linux.

We will not answer Linux-related questions! We discourage you from writing libasync
programs on anything else but our lab machines! The grade you get is based only on our own
test results on the FreeBSD lab machines. Make sure you verify that the results you get on
Linux are the same on FreeBSD.

First and foremost: as opposed to FreeBSD, you need to link your binaries with -lresolv. Your
friendly teaching assistant has made this really easy for you. If you are using Makefiles that we give
you, you can just type:

% gmake LFLAGS="-lresolv"

The rest of this section explains how to compile and install SFS on your Linux system. You need
SFS to compile most of the lab assignments.

The rest of this section assumes you are running RedHat. I myself run RedHat 7.3, but I've had
success with 7.2, also. This doesn't mean you can't get it to work on other Linuces.

First of all, you should use GCC 3.1. Forget about RedHat's broken GCC 2.96. Even if, by a stroke
of fortune, SFS compiles with GCC 2.96, the resulting executables are broken. I use GCC 3.1
without removing the standard GCC 2.96 installation by installing GCC 3.1 in a separate directory. (I
first configured GCC 3.1 with --prefix=/usr/local/gcc-3.1/, then ran gmake install.)

Before trying to compile anything with GCC 3.1, make sure to prepend /usr/local/gcc-3.1/bin/
before any other path in environment variable PATH. Similarly, prepend /usr/local/gcc-3.1/lib/
to LD_LIBRARY_PATH. Verify that you are running the right compiler by doing gcc -v.

Libasync is part of SFS. Always check out the latest CVS snapshot using the anonymous CVS
repository. You don't have to fully install SFS; a successful build suffices. Grab a coffee---building
SFS may take a few hours, depending on your processing power. Online documentation tells you
about the SFS compilation process. Libasync is in the async/ subdirectory in the SFS source tree.
You may have to struggle through some compiler errors. I think I fixed most or all of them. Here's a
summary of my fixes:

Index: agent/sfsauthmgr.C

72c72

< auth_sess_mgr::timeout (bool cb = false)

> auth_sess_mgr::timeout (bool cb)

181c181

< authmgr::timeout (bool cb = false)

> authmgr::timeout (bool cb)

Index: arpc/authopaque.C

29c29

< bool_t xdr_opaque_auth(XDR *, struct opaque_auth *);

> bool_t xdr_opaque_auth(XDR *, struct opaque_auth *) __THROW;

Getting started with 6.824 labs Page 5 of 6

Index: async/daemonize.C

294,295c294,295

< void abort (void) __THROW __attribute__ ((noreturn));

< void exit (int) __THROW __attribute__ ((noreturn));

> // void abort (void) __THROW __attribute__ ((noreturn));

> // void exit (int) __THROW __attribute__ ((noreturn));

Index: authserv/authclient.C

31c31

< extern "C" char *crypt (const char *, const char *);

> extern "C" char *crypt (const char *, const char *) __THROW;

Index: authserv/authmisc.C

30,32c30,32

< extern "C" char *getusershell(void);

< extern "C" void setusershell(void);

< extern "C" void endusershell(void);

> extern "C" char *getusershell(void) __THROW;

> extern "C" void setusershell(void) __THROW;

> extern "C" void endusershell(void) __THROW;

Index: crypt/bigint.h

35c35

< extern "C" {

> // extern "C" {

37c37

< }

> // }

Index: rex/connect.c

27a28

> #include <stdlib.h>

Index: sfsrodb/sfsrodb.C

48c48

< extern int errno;

> // extern int errno;

Most of these fixes solve one of these problems:

z	 GCC 3.1 does not allow a default parameter to be specified in both the header file and the
source file. Remove one of the defaults. For example:

auth_sess_mgr::timeout (bool cb = false)

in sfsauthmgr.C, around line 72, should be

auth_sess_mgr::timeout (bool cb)

since the = false part is specified somewhere else, also.

z	 If you get errors about function definitions being different, try appending __THROW to the
function definition in the SFS source tree. Apparently, FreeBSD and Linux header files differ
somewhat. For example:

Getting started with 6.824 labs Page 6 of 6

bool_t xdr_opaque_auth(XDR *, struct opaque_auth *);

in authopaque.C, around line 29 should be

bool_t xdr_opaque_auth(XDR *, struct opaque_auth *) __THROW;

