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Abstract

In this thesis, we describe the use of medical insurance claims data in three important
areas of medicine. First, we develop expert-trained statistical models of quality of care
based on variables derived from insurance claims. Such models can be used to identify
patients who are receiving poor care so that interventions can be arranged to improve
their care. Second, we develop an algorithm that utilizes claims data to perform
post-marketing surveillance of drugs to detect previously unknown side effects. The
algorithm performed strongly in several realistic simulation tests, detecting side effects
a large fraction of the time while controlling the false detection rate. Lastly, we use
insurance claims data to improve our understanding of the costs of care for patients
who suffer from depression and a chronic disease.
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Chapter 1

Introduction

This thesis concerns three areas of health care: quality of care, drug surveillance, and

cost of care. The research makes use of a large database of health insurance claims

which cover a two-year period for 600,000 patients. The data capture all interactions

with the health care system that are covered by insurance including outpatient visits,

hospital stays, and prescriptions.

The thesis is organized as follows. In Chapter 1 we discuss the development of

statistical models to measure quality of care in diabetes patients. In Chapter 2 we de-

velop algorithms for performing large scale post-marketing drug surveillance. Chapter

3 reports our findings on the cost of care of patients who suffer from depression and

a chronic disease.

1.1 Insurance claims data

The research was conducted using medical claims data compiled by D2 Hawkeye, Inc.,

a medical analytics company based in Waltham, Massachusetts. D2 Hawkeye provides

computerized medical claims analyses for insurers, third-party administrators, risk-

bearing medical groups, and self-insured employers. All insurance-based health care

utilization by study subjects was reflected in this database.

Medical claims are generated when a patient visits a doctor or has a hospital

stay. Hospital stays generally generate many claims while doctors visit will typically

17



generate one to five claims. A medical claim records the diagnosis, the procedure

performed, the date, the doctor, the patient (identified by a unique ID number), and

several monetary values for billing purposes. Monetary values include the amount

that the doctor charged, the amount that the insurance company allows for the service

provided, the amount the insurer paid, and the amount the patient paid. The amount

that the insurer paid is the most reliably recorded, and it is the value that we use in

our research. The diagnosis must be handled carefully – if the patient is tested for

a particular disease, that disease will be recorded as the diagnosis on the insurance

claim, regardless of the test’s outcome. For a routine doctors visit, if the patient has

two or more diseases only one disease might be recorded on the claim.

Pharmaceutical claims are generated when a patient fills a prescription. The claim

records the drug that was dispensed, the doctor who prescribed it, the patient, the

date the prescription was dispensed, the number of days of supply that were dispensed,

and the monetary values for billing purposes.

Aside from the claims themselves the database also contains other administrative

information. The only other table relevant for our work is the eligibility table. For

each person, it records when their insurance coverage began (and if they are no longer

insured, when it ended), their birthdate, gender, ZIP code, and the type of member

that they are (an employee, a spouse, or a dependent of the employee). A person

may have multiple eligibility records if they left the insurance plan and later rejoined.

Their identification number would remain the same for all records in the eligibility

table and for all of their claims.

The database contains approximately 2.1 million people, 70 million medical claims,

and 29 million pharmaceutical claims. The 10 most frequent diagnoses, procedures,

and prescribed drugs are shown in Tables 1.1, 1.2, and 1.3.

Common diagnoses include high blood pressure (hypertension and benign essential

hypertension), high cholesterol (hyperlipidemia), and chest pain. Well-child care is a

diagnosis recorded when a child visits the doctor for a checkup. Diabetes, lumbago

(lower back pain), and acute pharyngitis (a sore throat) are also frequent diagnoses.

The most frequent procedures are office visits and different types of lab work and

18



Diagnosis Claims

Well Child Care 1,818,465
Routine General Medical Examination 1,090,132
Hypertension 895,062
Chest Pain 866,573
Diabetes Mellitus without complications 859,408
Hyperlipidemia 808,467
Gynecological Examination 775,985
Lumbago 691,741
Benign Essential Hypertension 686,958
Acute Pharyngitis 650,261

Table 1.1: The 10 most frequent diagnoses in the database.

Procedure Claims

Office/Outpatient Visit 8,449,886
Laboratory - Clinical 1,530,925
Venipuncture, Routine 1,387,652
Lab / Chemistry 1,233,029
Blood, hemogram& platelet count 945,782
Emergency Room 835,572
Lipid Profile 745,112
Psychiatry Visit 705,292
Physical Therapy 701,301
Chiropractic Manipulation 692,368

Table 1.2: The 10 most frequent procedures in the database.

blood draws. Emergency room visits are frequent, as are psychiatry visits, physical

therapy, and visits to chiropractors.

The most frequently prescribed drugs include antibiotics (amoxicillin and azith-

romycin) and blood pressure medications (lisinopril, metoprolol, atenolol, and am-

lodipine besylate). Levothyroxine is frequently prescribed for hypothyroidism, hy-

drocodone for pain relief, atorvastatin for high cholesterol, and albuterol for asthma.

Table 1.4 shows two months of claims data for a typical diabetic in the database.

On September 16, 2003 the patient had an office visit and some tests were performed

to monitor their diabetes. Later that month they filled prescriptions for glucose test

strips (One Touch Ultra), insulin (Novolog), and a drug to treat neurological side

19



Drug Claims

Amoxicillin 816,377
Levothyroxine 738,064
Hydrocodone 728,628
Atorvastatin 580,112
Lisinopril 557,330
Albuterol 448,860
Azithromycin 442,960
Metoprolol 406,891
Atenolol 390,484
Amlodipine Besylate 336,035

Table 1.3: The 10 most frequently prescribed drugs in the database.

Date Provider Diagnosis Procedure/Rx

2003-09-16 C LANCASTER MD Diabetes Urinalysis, By Dip Stick or
2003-09-16 C LANCASTER MD Diabetes Glucose Blood Test
2003-09-16 C LANCASTER MD Diabetes Hemoglobin, Glycated
2003-09-16 C LANCASTER MD Diabetes Office/Outpatient Visit, Est
2003-09-17 C LANCASTER MD Pharmacy ONE TOUCH ULTRA
2003-09-22 C LANCASTER MD Pharmacy NOVOLOG
2003-09-26 SINK, E DVM Pharmacy NEURONTIN
2003-11-26 R BEDGOOD MD Influenza Comprehensive Metabolic
2003-11-26 R BEDGOOD MD Influenza Blood, Occult, By Peroxid
2003-11-26 R BEDGOOD MD Influenza Flu Vaccine, Whole, Im

Table 1.4: Two months of claims data for a typical diabetic in the database. Not
all fields are shown. Pharmaceutical claims are designated with “Pharmacy” in the
Diagnosis column.

effects of diabetes (Neurontin). In November they received a flu vaccine and had a

blood test.

Because the primary purpose of claims data is for billing, not analysis, its suitabil-

ity for analysis has been studied previously. Most studies of the accuracy of diagnostic

coding in claims data have used medical records as a benchmark.Two common mea-

sures of accuracy in the medical literature are sensitivity and specificity. As it pertains

to claims data, sensitivity measures the fraction of time claims data accurately record

something that happened (e.g., the doctor made a diagnosis or performed a proce-

dure). For example, if the claims data for 100 diabetic patients were examined and
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it was found that a diagnosis of diabetes was only recorded for 75 of the patients,

the sensitivity of the claims data would be 75%. Specificity measures the fraction of

time claims data accurately reflect that something didn’t happen. For example, if the

claims data for 100 patients who were hospitalized but didn’t have x-rays taken were

examined and it was found that 5 patients’ claims data actually included charges for

x-rays, the specificity of the claims data would be 95%.

The sensitivity of coding for individual diagnoses in claims data varies widely,

but reported aggregate sensitivity in US diagnostic data is more consistent, from

a low of under 50% [49] to a high of 78% [69]. Higher sensitivity is reported for

diagnoses that are acute or symptomatic, and lower for diagnoses that are chronic or

asymptomatic [82, 69, 113, 46]. The sensitivity of coding for comorbidities is lower

than for primary diagnoses [48], and decreases as the number of comorbidities increase

[73]. The reported sensitivity of individual diagnostic codes is more consistent. For

instance, diabetes was coded with a reported sensitivity of 81-83% in three separate

studies of claims data, using medical records as a benchmark [49, 35, 76].

By contrast, recent studies of sensitivity of procedure codes show fairly close agree-

ment between claims data and the medical record for those procedure codes which are

applicable to both, with reported correlation rates of 94%-97% [33, 64, 29]. However,

minor procedures performed as part of routine care are more likely to be absent from

both types of data [77].

Prescription claims data correlate closely with medical record data [101], and

give a more accurate record of drugs actually dispensed [19]. In addition, combining

prescription codes and diagnostic codes for a particular disease significantly improves

both the sensitivity and specificity of diagnostic coding [15].

1.2 Quality of care

The quality of care patients receive in the US varies considerably. If markers of poor

care can be identified in a timely, automated fashion, then interventions (such as case

management) could be arranged to improve the care of individual patients. Our ob-
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jective was to develop a statistical model of quality of care for diabetes patients based

on insurance claims data. We used an expert-trained logistic regression model. The

model was developed on a set of 101 diabetes patients whose quality of care was rated

by a physician. An out-of-sample validation was performed on an additional set of 30

patients. A second physician also reviewed the set of 30 patients so that inter-rater

reliability could be assessed. The data set consisted of medical and pharmaceutical

claims over the period 2003-2005. The patients were diabetic, ages 35-55, with annual

health-care costs between $10,000 and $20,000. The main outcome measure was the

out-of-sample classification accuracy of the logistic regression model. Patients were

classified as receiving either good care or poor care. Two models performed partic-

ularly well. The best model achieved an out-of-sample accuracy of 80%, compared

with a baseline of 63%. We conclude that expert-trained statistical models based on

insurance claims data can identify patients receiving poor care accurately enough to

be of use in practice. Such models could be used to select and prioritize patients for

interventions to improve care.

1.3 Drug surveillance

At the point when a drug is released on the US market, only a relatively small number

of people have been exposed to it during clinical trials. When a larger number of

people begin using the drug, unexpected side effects (positive or negative) may be

discovered and we use insurance claims data to detect them in near“real-time.” Claims

data is promising for this use because it is available electronically for a large number

of people and is updated frequently. A key challenge in drug surveillance is avoiding

the loss in statistical power associated with testing a large number of hypotheses. We

present several promising methods for addressing this challenge. The methods were

tested using simulation and performed strongly, detecting side effects a high percent

of the time while maintaining a low false detection rate.
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1.4 Depression and cost of care

Over the past 25 years, a growing body of evidence has established an association

between depression and high utilization of general medical services. We used claims

data to study the association between depression and health-care costs in 11 chronic

diseases. We found that depressed patients have higher costs than not depressed

patients across all 11 diseases. In most of the diseases, the cost increase occurs

mainly in outpatient services and pharmaceuticals. Depressed patients also have a

higher mean number of comorbidities than not depressed patients, though this doesn’t

account for the total cost increase. The prevalence of depression is higher in each of

the 11 comorbid diseases than in the total research cohort, and the prevalence of each

chronic comorbid disease is higher in the depressed cohort than in the total research

cohort. There is a linear association between annual cost of care and prevalence

of depression in 10 of 11 chronic comorbid diseases. Depression is associated with

an increased risk for subsequent onset of all 11 comorbid diseases. All 11 comorbid

diseases are associated with an increased risk for subsequent onset of depression.

1.5 Contributions

The contributions of this thesis are several. In our work on quality of care, we have

shown how a decidedly non-quantitative concept, quality, can be modeled statistically

with the involvement of a subject matter expert. The findings show that quality of

care can be measured accurately enough using claims data to improve the way that

case management and other methods of health care intervention are targeted. Our

work on drug surveillance introduces a new approach to multiple hypothesis testing.

The approach combines techniques from both statistics and operations research. It

can reduce the time needed to discover harmful side effects, potentially saving many

lives. Finally, our work on depression and cost of care sheds light on the interplay

between depression and chronic diseases. Leveraging the size of our claims database,

we were able to study a wider spectrum of diseases than had been previously stud-
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ied. We were also able to provide a detailed examination of the sources of increased

costs. Such an understanding will hopefully lead in the future to better treatment for

patients suffering from depression and a chronic disease.
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Chapter 2

Measuring Quality in Diabetes

Care: An Expert-based Statistical

Approach

It has been demonstrated in recent years that many patients in the United States do

not receive high-quality health care [89, 21]. In this chapter, we address the problem

of identifying, in an automated fashion, diabetes patients who may be receiving poor

care so that interventions can be arranged to improve their care. We measure the

quality of care with an expert-trained statistical model using variables derived from

medical insurance claims data.

We focus on patients with diabetes for several reasons. First, it is a widespread,

costly disease. Over 20 million Americans are diabetic – about 7% of the US popu-

lation – and the annual cost of diabetes is estimated at $132 billion. One in every

10 health care dollars goes towards treating Diabetes [17, 3]. Second, there are well

established guidelines for its treatment, and third, limiting the study to one disease

minimizes variations in care from patient to patient that aren’t related to quality.

We are interested in identifying individual patients with poor care in “real-time”

so that interventions can be arranged to improve their care. This is somewhat distinct

from previous studies which have measured quality in order to assess the US healthcare

system [89, 21, 10, 23, 2, 88, 6, 61, 42], to provide rankings of doctors and hospitals
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[104, 45, 37], and to rate providers for “pay-for-performance” type reimbursement

[74, 80].

To measure quality, we use statistical models trained on a set of patients whose

care was assessed by a physician. The variables in the models are derived from the

patients’ insurance claims data. We use claims data because in practice they are the

only electronically available, timely source of information about the care a patient

has received. With them, the care received by a large population of patients can be

monitored on an ongoing basis. Other methods of measuring quality, such as reviewing

paper medical records, may be more thorough but they do not scale because of the

manual labor involved.

That is not to say that claims data are without drawbacks. They lack clinical

details such as symptoms, test results, and severity of disease. They reflect little about

the patient’s quality of life. Though overall the coding of diagnoses and procedures in

claims data are accurate, they can somtimes be vague [51]. When there are multiple

diagnoses during a single visit some may not be captured. Minor non-monetized

procedures – such as counseling a patient to stop smoking – are usually not recorded.

Our statistical models measure the quality of the process of care [13, 12]. In

trying to improve the care for a particular patient, structural aspects of care are

less relevant since they are fixed over the short term. Ideally, we would measure

outcomes of care but in general outcomes are difficult to infer from claims data since

lab results, symptoms, etc. are not captured [111]. For example, an insurance claim

may record that a diabetes patient had a glycated hemoglobin test, but it will not

record the results of the test. Whether the glucose level is improving or not cannot

be determined. Furthermore, because we have data only over a two-year period, long-

term outcomes cannot be measured. Though we didn’t instruct the physician to look

specifically at process of care, that is what de facto was available to him.

Of course, process measures of quality of care for diabetes exist in the form of the

guidelines of the American Diabetes Association [7] and others. These guidelines have

been developed based on the best available evidence and, where conclusive evidence

is still lacking, consensus of expert opinion. However, there are many aspects of a
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patient’s care which are beyond the purview of the guidelines. Measuring quality of

care for patients with multiple diseases can be problematic [57]. Guidelines in general

focus on the optimal treatment of a single condition, where in reality an individual may

have several coexistent disorders, and treatment demands for one disease may conflict

with recommendations for others. Some have argued that there are not enough hours

in the day for a physician to provide all of the care that is specified by each of the

guidelines when a patient has multiple diseases. Recent work shows that this may not

be the case, however [44]. Still, when a patient has multiple diseases the guidelines

cannot be taken literally in cases where the treatment for one disease conflicts with

the treatment for the other. Finally, intangible aspects of care might be difficult to

capture in written guidelines.

By having a physician review the claims data, we obtain a holistic view of the

patient’s care. We are able to take into account not just the care for their diabetes

but for comorbidities and routine preventive care. Nevertheless, the guidelines are

relevant and below we discuss how compliance with the guidelines correlated with the

physician’s assessment of care.

Though we have built a statistical model to identify poor quality care, we do

not claim that the model defines poor care. Identifying poor care is not equivalent to

defining it. For example, consider the statistical models used by credit card companies

to identify fraudulent patterns of transactions. The use of a credit card in rapid

succession at gas stations may be a red-flag that the card has been stolen. But that is

not to say that it is wrong for a person to use their own credit card in rapid succession

at gas stations. It is simply a fact that such behavior is correlated with fraud. In the

same way, if our statistical models incorporate the use of narcotics as a flag for poor

care this does not mean that all uses of narcotics are inappropriate. It simply means

that there is a correlation between the use of narcotics and poor care. We feel that an

advantage of our approach is that it doesn’t rely on an explicit definition of quality.

27



2.1 Methods

From a large claims database, we randomly selected 101 diabetes patients aged 35-55

with costs over the two-year study period (September 1, 2003 to August 31, 2005)

between $10,000 and $20,000. The lower bound on the cost was to ensure that each

patient had enough claims data so that the reviewer could make an assessment of the

care they received. The upper bound was to ensure that the claims record was not

so long that it became impractical to review. To identify patients with diabetes we

required that over the two-year period they had either two outpatient diagnoses of

diabetes or one inpatient diagnosis of diabetes.

The claims data consists of all insurance-based healthcare utilization for the pa-

tients in the study. Claims for medical services record the date of service, provider,

diagnoses, procedures performed, and the amount paid. Claims for prescription drugs

record the date the prescription was filled, the prescribing physician, the drug, the

number of days of supply, and the amount paid.

We attempted to oversample patients who might have received poor care so as to

ensure their representation in the sample. Of course, without a measure of the quality

of care at the outset, we couldn’t do this exactly. As an approximation, we scored

the patients based on the presence of hemoglobin HbA1c tests, lipid profiles, and eye

exams in their claims data [110]. We then drew a stratified random sample by score,

oversampling the lower scores (i.e., people with zero or one of the above procedures

performed).

Dr. Michael Kane, a physician at MIT Medical, reviewed the claims record for

each of the 101 patients and scored the quality of care they received. He rated the

care on a three-point scale: poor, average, or good. He also rated his confidence in his

assessment on a two-point scale: confident or not confident. In addition, he wrote a

summary description of each patient and the care they received and noted aspects of

it that influenced his rating. This information was used later in developing variables

for the statistical models.

Dr. Kane reviewed and rated 30 additional patients (not used to develop the
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models) in order to validate the models. A second physician, Dr. Thorvadur Love

of Brigham and Women’s Hospital in Boston, MA, also rated the patients in the

validation set independently of Dr. Kane. Having a second physician rate the patients

allowed us to assess the extent to which the models reflected beliefs about quality

specific to Dr. Kane. The contrast between the backgrounds and experience of the

two doctors is marked. Dr. Kane was trained in the United States, while Dr. Love was

trained abroad. Dr. Kane has over 30 years of experience, whereas Dr. Love recently

completed his residency.

2.1.1 Model Development and Evaluation

We modeled the data using logistic regression. We evaluated other modeling ap-

proaches as well, including classification trees, random forests, support vector ma-

chines, the Lasso, and several ad hoc optimization-based methods that we developed

ourselves. Logistic regression outperformed the other methods. Perhaps with a larger

data set the other approaches would have been more advantageous.

The dependent variable in our models is quality. Since we are mainly concerned

with identifying poor quality care, we grouped the average and good care patients

together into a single group which we will refer to as the good care group. A value

of 1 for the quality variable indicates good quality, and a value of 0 indicates poor

quality.

We used independent variables that could be calculated from the patients’ claims

data. Most of these variables capture general aspects of care but some are specifically

inspired by the physician’s comments. However, we avoided defining variables that

would only apply to one or two patients in the sample since we wouldn’t be able

to make any statistically meaningful statements about such variables. For example,

one patient was judged to have received poor care because she was treated over

a long period with an antibiotic for a urinary tract infection but without regular

gynecological exams. (When she finally did have a gynecological exam uterine cancer

was discovered.) As this situation arose with only one patient, we would not be able to

statistically assess the value of a quality indicator such as “on antibiotic for a urinary
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tract infection without gynecological exams.”

The variables fall into categories related to diabetes treatment, patient demo-

graphics, healthcare utilization, markers of good care, markers of poor care, providers,

claims, and prescriptions. The full list of variables with their definitions can be found

in the online appendix.

We also tried incorporating the information about the physician’s confidence as

well as disaggregating the good care group out into average care and good care.

Neither of these improved the models’ ability to accurately identify patients whose

care was poor.

We calculated the accuracy of a model as the percent of patients that it classified

correctly (i.e., that matched the physician’s classification). The assessment of the

models was based on both their in-sample and out-of-sample accuracy. Because we

had a limited number of observations, rather than splitting our 101 observations into

a training and a validation set we used bootstrap resampling to estimate out of sample

accuracy. The resampling procedure operates as follows. We draw 101 samples, with

replacement, from the data set. In general, some patients will be sampled more than

once and others not at all. We fit the model to the 101 sampled observations and then

used this model to classify the patients who were not sampled. We repeat this process

a large number of times (500 in practice) and estimate the out-of-sample accuracy

of the model across the 500 bootstrap trials, adjusting for bias as discussed in [41].

After all model selection and fitting was complete and we arrived at a final set of ten

models, we performed a true out of sample test on 30 additional cases.

We began by studying the individual relationships between each variable and

quality. We used logistic regression to classify the patients, using a separate model for

each variable. We next moved on to logistic regression models with three predictor

variables. We performed an exhaustive search of the model space by fitting each

possible three-variable model to the 101 observations and calculating their accuracy,

then further assessing the 50 models with the highest accuracy by calculating their

out-of-sample accuracy using bootstrap validation.

Because the majority of patients received good care, the simplest predictive model
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would be to blindly classify each patient’s care as good; 78% of patients would be

accurately classified. This serves as a useful baseline against which to assess our mod-

els. Another natural baseline model is one using only variables based on the diabetes

treatment guidelines. A logistic regression model based on only these variables also

had an accuracy of 78%. Comparing the performance of our models to such a model

would reveal whether looking at aspects of care beyond the guidelines is of value in

matching the physician with respect to assessing quality.

2.2 Results

2.2.1 Data Summary

Table 2.1 shows a summary of the scores for the 101 patients. 78% received average or

better care. The physician had high confidence in 76% of his assessments. Most of the

cases of low confidence occurred in the “average care” group (χ2 = 10.6, p = 0.005).

Low Confidence High Confidence
Low Quality 5 17

Average Quality 16 25
High Quality 3 35

Table 2.1: Summary of the physician’s quality ratings and his confidence in them.

Here is an example descriptive paragraph for a patient who received good care:

45 year old type 2 diabetic on metformin and glyburide. Also took lexapro

and ambien regularly, and crestor. He carried a diagnosis of sarcoid for

first part of the analysis period and was treated with prednisone for a

while-that’s appropriate for sarcoid, even in a diabetic. He was also ap-

propriately covered with fosamax initially. He seems to have changed

PCP’s in mid cycle. Had first labs 2/04. Had only one ER visit for a fore-

head laceration. He had a stress test 5/16/05 for chest pain, followed by

a catheterization on 5/27/05. Apparently nothing worrisome was found.

Despite sarcoid diagnosis he had no chest X-rays or pulmonary function
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tests. Had one podiatry visit in June ’05. No home testing, no eye ex-

ams. Overall, given pulmonary and mental health comorbidities, care

looks good with high confidence.

To determine how much variability there was in diabetes care among the patients

in the sample we assessed the compliance of the patients’ care with three measures

from the diabetes guidelines (glycated hemoglobin tests, lipid profiles, and eye exams).

Recall that this isn’t a random sample, so inferences can’t be drawn about the care

received by the entire patient population. 36% of the patients in the sample had

evidence of at least one eye exam. Since eye exams may be covered by a separate

insurance plan, this number should be treated as a lower bound. 54% had evidence

of a glycated hemoglobin test and 54% had evidence of a lipid profile. However,

when laboratory work is done in a hospital the claims often don’t describe the exact

work performed. 59 patients in the data set had instances of such lab work. If we

are generous and assume that when lab work was done it was the correct lab work

(according to the guidelines), then the compliance would be 91% for hemoglobin tests

and 92% for lipid profiles. Alternately, if we limit ourselves to the 36 patients all of

whose lab work was precisely recorded, 75% of them had hemoglobin tests and 78%

had lipid profiles. The correlation between the performance of hemoglobin tests and

the performance of lipid profiles was 0.46

Poor Average Good
Percent receiving eye exams 25 34 43

Percent receiving hemoglobin tests 40 53 62
Percent receiving lipid profiles 50 55 54

Table 2.2: Percent of patients receiving eye exams, glycated hemoglobin tests, and
lipid profiles by quality rating. For example, of the patients whose care was rated
poor, 26% of them received eye exams whereas 50% of the patients whose care was
rated good received eye exams.

Table 2.2 shows the compliance with each measure for the poor, average, and good

care groups. For eye exams and hemoglobin tests compliance tends to increase as the

physician’s rating of quality increases. The differences are not statistically significant
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Best Variables

Accuracy
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TotalVisits

Chiropractic

ProviderCount

PrescriberCount

Narcotics

StartedOnCombination

0.79 0.80 0.81

Figure 2-1: Estimated out-of-sample accuracy of classification models built on a single
variable.

however (p= 0.95).

2.2.2 Single-Variable Models

The six variables shown in Figure 2-1 all classified the patients more accurately than

the baseline. StartedOnCombination was the most accurate predictor, followed by

Narcotics, PrescriberCount, ProviderCount, Chiropractic, and TotalVisits. Starte-

dOnCombination is a 0/1 variable which indicates that the patients’ drug therapy

for diabetes started with a combination of drugs, rather than a single drug. The

variable Narcotics measures the number of narcotics prescriptions that the patient

filled over the two-year period. PrescriberCount is the number of different doctors

who prescribed drugs for the patient during the study period, and ProviderCount is
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the number of different providers that the patient saw. (Providers can include indi-

vidual physicians, clinics, and hospitals.) The variable Chiropractic is the number of

chiropractic visits that the patient had, and TotalVisits is the number of all visits,

inpatient and outpatient, that the patient had.

Table 2.3 shows the optimal classification rules based on each of the variables.

Note that in each case larger values of the variable result in a classification of poor

care. For example, based on the Chiropractic variable a patient with more than 57

chiropractic visits over the two-year period is classified as receiving poor care. While it

seems reasonable that the excessive use of narcotics is positively correlated with poor

care, a positive correlation between PrescriberCount, ProviderCount, Chiropractic,

and TotalVisits and poor quality is less intuitive. These four variables are all, in a

sense, measures of the quantity of care. So, there seems to be an inverse relationship

between the quantity of some aspects of care and quality.

Variable Classify as Poor Quality when...
StartedOnCombination True
Narcotics > 22
PrescriberCount > 19
ProviderCount > 33
Chiropractic > 57
TotalVisits > 47

Table 2.3: Classification rules based on a single variable.

2.2.3 Three-Variable Models

Figure 2-2 shows the accuracy of the 10 best three-variable models. The best model

has an accuracy of nearly 85% and as the figure shows there are a number of models

with roughly comparable accuracy above 83%.

There are several variables that are included in more than one of these models.

StartedOnCombination is a part of seven of the top 10 models. LongestOfficeGap is a

part of four of the models and ChronicDrugsBeginning is a part of three. Mammogram

and the related variable binary.mammogram are also a part of three of the models.

34



Best Combinations of Three Variables

Accuracy

V
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Narcotics & StartedOnCombination & ChronicDrugsBeginning

ERVisits & ERPerOffice & StartedOnCombination

ClaimLines & StartedOnCombination & MedianMonthlyCost

HemoglobinTest & StartedOnCombination & AcuteDrugGapSmall

DaysSinceLastERVisit & StartedOnCombination & longestOfficeGap

EyeExam & ProviderCount & StartedOnCombination

GlucoseSupplies & ClaimLines & StartedOnCombination

Mammogram & DrugsBeginning & longestOfficeGap

binary.mammogram & ChronicDrugsBeginning & longestOfficeGap

Mammogram & ChronicDrugsBeginning & longestOfficeGap

0.830 0.840

Figure 2-2: Estimated out-of-sample accuracy of classification models with three vari-
ables.
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We also see variables directly related to diabetes care among the top models:

GlucoseSupplies, EyeExam, and HemoglobinTest.

As an illustrative example, the form of the first model from Figure 2-2, involving

the variables Mammogram, ChronicDrugsBeginning, and LongestOfficeGap is:

logit(binary.quality) = −0.79

+ 0.57 × Mammogram

+ 0.2 × ChronicDrugsBeginning

+ 0.01 × longestOfficeGap

Table 2.4 shows the classification accuracy of this model. In-sample accuracy is 87.1%

while the estimated out-of-sample accuracy is 84.6% as shown in Figure 2-2. 45% of

the cases of poor care were identified correctly and only one patient who received

good care was misclassified.

Predicted
Actual Poor Good
Poor 10 12
Good 1 78

Table 2.4: The actual classification of the patients’ care based on the physician’s
review compared with the predicted classification of the model.

Table 2.5 shows the in-sample accuracy, sensitivity, and specificity for each of the

models. We see the general pattern of very high specificity and lower sensitivity. Very

few patients who received good care were misclassified by any of the models. However

only from 36% to 55% of the patients who received poor care were correctly identified

by the models. In practice, where there may be more cases of poor care then there

are resources available to intervene, this level of detection may be quite sufficient.

Actually, the model allows us to trade off sensitivity and specificity. Table 2.5 were

obtained by setting the cutoff value between poor care and good care to maximize

overall accuracy. Figure 2-3 shows the range of sensitivity and specificity that can be
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Sensitivity−Specificity Trade−off
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Figure 2-3: Trade-offs between sensitivity and specificity obtainable using the first
logistic regression model.
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obtained using the first logistic regression model in the table. A higher sensitivity will

result in a higher percentage of poor care cases being correctly identified. In practice,

this may be more important than the overall accuracy.

Accuracy Sensitivity Specificity
Model 1 0.87 0.45 0.99
Model 2 0.87 0.50 0.97
Model 3 0.87 0.45 0.99
Model 4 0.86 0.45 0.97
Model 5 0.86 0.55 0.95
Model 6 0.86 0.41 0.99
Model 7 0.86 0.55 0.95
Model 8 0.86 0.41 0.99
Model 9 0.85 0.36 0.99

Model 10 0.85 0.41 0.97

Table 2.5: The accuracy, sensitivity, and specificity of the 10 best three-variable
models.

Table 2.6 shows the coefficients of the top 10 models. For the purposes of this

table the predictor variables were standardized by subtracting their mean and divid-

ing by their standard deviation so that the coefficients could be compared to each

other in a meaningful way. (Indicator variables, such as StartedOnCombination, were

not standardized.) The table gives a sense of the direction and the strength of the

relationship between each of the variables and quality of care. Variables with pos-

itive coefficients in the table are positively correlated with good care. Across the

models, StartedOnCombination is the single largest determinant of quality of care.

There is a second tier of variables consisting of ChronicDrugsBeginning, LongestOf-

ficeGap, EyeExam, ProviderCount, HemoglobinTest, AcuteDrugGapSmall, ERVisits,

and Narcotics. A third tier of variables has a smaller effect on the quality score:

Mammogram, binary.mammogram, DrugsBeginning, GlucoseSupplies, ClaimLines,

DaysSinceLastERVisit, MedianMonthlyCost, and ERPerOffice. Of the variables di-

rectly related to diabetes care, EyeExam and HemoglobinTest are in the second tier

and GlucoseSupplies is in the third.
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10
Mammogram 0.51 0.55

ChronicDrugsBeginning 0.69 0.71 0.87
longestOfficeGap 0.79 0.75 0.67 0.42

binary.mammogram 0.41
DrugsBeginning 0.45
GlucoseSupplies 0.48

ClaimLines −0.50 −0.79
StartedOnCombination −3.12 −2.99 −3.19 −4.23 −3.24 −2.95 −2.73

EyeExam 0.94
ProviderCount −0.74

DaysSinceLastERVisit 0.59
HemoglobinTest 0.82

AcuteDrugGapSmall −0.81
MedianMonthlyCost 0.39

ERVisits −0.69
ERPerOffice 0.46

Narcotics −0.86

Table 2.6: The coefficients of the 10 best three-variable logistic regression models.
Variables have been normalized so that the coefficients can be compared directly.

2.2.4 Out Of Sample Validation

Dr. Love
Dr. Kane Poor Average Good
Poor 4 4 3
Average 6 5 2
Good 1 2 3

Table 2.7: A comparison of the two physicians’ ratings.

Table 2.7 shows the level of agreement between the two doctors’ ratings on the

30 out-of-sample cases. The doctors were in complete agreement on 12 of the 30

patients. On an additional 14 their ratings differed by a single level (e.g. a case rated

as good by one doctor was rated average by the other). In only four cases was there

a complete divergence of ratings, with one doctor rating the care as good and the

other doctor rating it as poor. In three of these four cases, Dr. Kane was the one

who rated the care poor and in all three cases Dr. Kane’s comments indicated that

he felt the patient was on an inappropriate combination of drugs. Dr. Love did not

make comments about drug combinations for any of the 30 patients.

Here are sample paragraphs written by the two physicians, chosen for one of the

patients for which both doctors rated the care as good with high confidence. We

begin with Dr. Love’s assessment:
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This patient was closely monitored for blood glucose, had ophthalmology

follow up, multiple urinalysis, on an ACE ARB. Treated with multiple

oral agents. Seen for foot problems. Might have benefited from a platelet

inhibitor, but otherwise high quality care.

And Dr. Kane’s assessment:

She is a Type 2 diabetic on several oral agents. She also had regular

prescriptions for an ACE inhibitor and for diabetes testing supplies. Had

regular prescriptions for nortriptyline (antidepressant) and lorazepam with

no formal mental health care, but I saw no sign of excess care or other

issues that would indicate active mental health problems. She had eye,

gyn and podiatry care and a mammogram, and regular visits with her

PCP. She had an ER visit for abdominal pain in July ’04 with a prompt

follow up visit afterward with her PCP. There were no hospitalizations.

Care was orderly and looks to be good care with high confidence.

Neither doctor tended to be harsher in their overall ratings than the other. Dr. Kane

rated 11 patients’ care as poor, 13 as average, and six as good. Dr. Love rated 11

patients’ care as poor, 11 as average, and eight as good.

The doctors also provided confidence scores for their ratings. Dr. Kane rated

his confidence as high for 25 of the patients, Dr. Love for 21 of the patients. Since

Dr. Kane has more experience reviewing claims data, this difference is not surprising.

The doctors were jointly confident in their ratings of 18 of the patients. Their quality

ratings were in complete agreement on nine of these 18 patients, a rate marginally

better than for the whole set of 30 patients. They still reached opposite conclusions

in three cases.

Of the top 10 three variable models identified in Figure 2-2, two of them per-

formed very well out of sample when compared with Dr. Kane. The model based

on the variables StartedOnCombination, HemoglobinTest, and AcuteDrugGapSmall

had an accuracy of 80%. (Because the patient mix was different for the sample of 30,

the relevant baseline statistic for comparison is not 78% but 63%. Direct comparison
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of the accuracy rates to those in Table 2.5 aren’t meaningful, though comparisons of

sensitivity and specificity are.) The model has an out-of-sample sensitivity of 54%

and specificity of 95% (See Table 2.8). The model based on StartedOnCombination,

ChronicDrugsBeginning, and Narcotics has an accuracy of 83%, with a sensitivity of

54% and specificity of 100%. This latter model is notable for two reasons. First,

it is not based on variables specifically related to diabetes so it has the potential

to be applied more generally. Second, it was also one of two models that did rel-

atively well when compared with Dr. Love’s ratings. It had an accuracy of 67% in

matching Dr. Love’s ratings with a sensitivity of 36% and specificity of 84%. None

of the other models did better in matching his ratings, though the model involving

StartedOnCombination, EyeExam, and ProviderCount did equally well. Overall, the

models matched Dr. Kane’s ratings more closely.

Because these two models performed well both in-sample and out-of-sample, we

consider them the two best candidates. The use of these models also seems justi-

fied by the fact that their coefficients and variables have reasonable medical inter-

pretations. In the first model, we have already discussed the drawback to starting

treatment on a combination of drugs (StartedOnCombination). Glycated hemoglobin

tests (HemoglobinTest) are recommended by the diabetes treatment guidelines. The

variable AcuteDrugGapSmall, which is negatively correlated with quality of care, in-

dicates the repeated use of an acute drugs. Such repeated use may indicate that the

diagnosis or the choice of drug is incorrect. In the second model, the chronic use of

narcotics may indicate that the doctor is unable to determine the underlying cause of

the pain and there is also the serious hazard that the patient may become addicted to

the narcotics. ChronicDrugsBeginning is positively correlated with good care. This

variable measures the number of chronic drugs that the patient was on at the begin-

ning of the study period. A larger number of drugs may indicate that the physician

has recognized the patient’s comorbidities and is taking measures to address them.
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Model
Dr. Kane Poor Good
Poor 6 5
Good 1 18

Table 2.8: Dr. Kane’s classification of the 30 out-of-sample cases compared with
the classification of the model based on the variables StartedOnCombination,
HemoglobinTest, and AcuteDrugGapSmall.

2.3 Conclusions

We have demonstrated that an expert-trained statistical model using insurance claims

data can accurately identify patients who are receiving poor care. Furthermore, only

a simple model is required to capture a majority of the cases of poor care while

maintaining a very low false positive rate. We developed several competitive models

and validated them out of sample.

Though we have focused on the use of logistic regression to classify patients, in

practice the fitted probabilities could be used directly as quality scores. Rather than

treating patients in the poor care group as homogeneous, it would make sense for

the reviewers or case managers to begin with the patient whose quality score was the

lowest. Next, the patient with the second lowest quality score, and so on. In this way,

resources are focused first on the patients who may be the likeliest to be receiving

poor quality care.

In practice, the model can be improved over time. If a reviewer disagrees with the

model’s rating for a particular patient, the reviewer can record their own rating. As

these ratings accumulate in the database, the model can then be re-fit. This approach

could be a cost-effective way to create much larger training data sets with minimal

additional overhead.

In several of the models a pattern emerged of an inverse relationship between the

quantity of care and quality. There could be many reasons for this. For example, the

more interactions a patient has with the healthcare system the more opportunities

there are for a mistake or other error to occur. An alternative explanation could be

that some of these patients require so much care because the care they are receiving
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is poor: that is, the care is not making them better and so they continue to seek more

care.

There are several characteristics of the patients in our study that may limit the

generality of our model. The patients are all insured, and this is necessary because our

method cannot be used without the electronic insurance claims data. The patients are

between the ages of 35 and 55. The general approach would apply to patients outside

this range, though the specific regression model may change. The patients have

relatively high health care costs. It may be difficult to apply this method to patients

below a cost threshold, since the density of the claims data may not provide enough

information on which to base a judgment of quality. Although high-cost patients are

of the most interest to insurers implementing case management, a specific weakness

of this methodology is its insensitivity to evaluating the quality of care received by

low-cost patients.

Another limitation of the study is that we have used a relatively small sample

size. More data will lead to more accurate and more generalizable models. Further-

more, we’ve only consulted two physicians. Assessments about quality will differ from

physician to physician. Ideally, we would include the opinions of several experienced

physicians when building the model. Finally, a question of immediate interest is how

well the models identified in this study would perform on a general population not

limited to diabetics.

43



44



Chapter 3

An Optimization Approach to

Large Scale Drug Surveillance

3.1 Introduction

At the point when a drug is released on the US market, only a relatively small number

of people have been exposed to it during clinical trials. When a larger number of

people begin using the drug, unexpected side effects (positive or negative) may be

discovered and in this chapter we present an approach to detect such side effects in

near “real-time.” would need for such surveillance was highlighted by the drug Vioxx

which was withdrawn from the market in 2004 after being linked to increased rates

of heart attacks and strokes. From 1999 to 2004 it is estimated that Vioxx may

have been responsible for tens of thousands of fatal heart attacks [40]. Improved

surveillance therefore has the potential to save many lives.

Claims data is ideally suited for systematic drug surveillance because it is available

electronically for a large number of people and is updated frequently. The use of claims

data for drug surveillance was presented in [40] and [14]. However, they consider the

case when the side effect of interest is known a priori. A key challenge that we

consider is conducting surveillance across all possible side effects while avoiding the

loss in statistical power associated with testing a large number of null hypotheses.

To detect previously unknown side effects to a drug we compare the insurance
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claims data for patients taking the drug (the treatment group) with the claims data

for a suitable control group (i.e., an appropriately chosen set of patients not on the

drug, possibly on a comparable drug). From the claims data, we determine the rates

at which different diagnoses occur in the two groups and identify discrepancies in the

rates that might suggest side effects.

Each possible diagnosis is identified by a three digit code, the ICD-9-CM code

(International Classification of Diseases, Clinical Modification, 9th Revision). There

are approximately 900 such codes. Some diagnoses occur quite frequently, such as

462 Acute pharyngitis (i.e., a sore throat), while others occur very rarely, such as

032 Diphtheria. (Actually, there is a further level of specificity available by adding a

fourth and fifth digit to the code for some diagnoses. However, these “modifier” codes

aren’t consistently recorded in the claims database and so we restrict ourselves to the

three digit codes.)

An interesting aspect of the codes is that they fit in a hierarchical structure from

general categories to specific diagnoses. For example, all of the diagnoses related to the

circulatory system form a category with codes between 390 and 459. The diagnoses

of the circulatory system can be broken down into 9 more specific categories. The

codes 390-392 correspond to Acute Rheumatic Fever, for example, while the codes

430-438 correspond to Cerebrovascular Disease. Each of these nine categories can

be broken out once more into individual diagnoses, each with its own ICD-9 code.

For example, within Acute Rheumatic Fever there exists Rheumatic fever without

mention of heart involvement (390), Rheumatic fever with heart involvement (391),

and Rheumatic chorea (392).

Thus, the ICD-9 codes form a tree with a root node and three levels beneath

it. There are 17 large categories of diagnoses below the root, 110 smaller categories

beneath them, and 913 individual diagnoses at the leaves of the tree. We will let N

represent the set of nodes of the tree. N can be partitioned into subsets D and G,

where D is the set of nodes corresponding to individual diagnoses (i.e., the leaves of

the tree) and G is the set of nodes corresponding to categories of diagnoses. For the

tree of ICD-9 codes, |N | = 1041, |D| = 913, and |G| = 128.
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For each diagnosis, we would like to test the null hypothesis that the drug in

question has no effect on the rate at which the diagnosis occurs. We thus have a set

of approximately 1000 hypothesis tests that we would like to perform using the claims

data. Because of the large number of tests, there are challenges involved with trading

off the risk of false detections with the need for statistical power (or equivalently, the

risk of a missed detection).

Note that the problem of selecting an appropriate control group is not an easy

one, but for the purpose of this analysis we assume that one exists. Such a group

should satisfy the condition that, in the absence of a treatment effect, each diagnosis

would occur in the treatment group at the same rate that it occurs in the control

group.

We propose several new approaches to this problem and conducted several sim-

ulation studies to compare the performance of these approaches to each other and

to the traditional approach to the problem. We begin by considering a single-period

setting in Section 3.2 to set the groundwork and introduce several key concepts. We

introduce several approaches for this setting and in Section 3.3 briefly compare their

performance using simulation. In Section 3.4, we extend one of these approaches

to create a dynamic algorithm for the multi-period setting and report on simulation

results in Section 3.5. We conclude with a discussion of our results in Section 3.6.

3.2 The Single-Period Setting

We begin with a single-period setting in order to set the foundation and build intuition

before addressing the more realistic multi-period setting. In the single-period setting,

all of the data become available at the same time and there is a single round of

hypothesis testing. The data consist of the number of times each diagnosis and

category of diagnosis occurred in the treatment group and the control group. Let

xT
i , i ∈ N denote the number of occurrences of i in the treatment group and let

xC
i , i ∈ N denote the number of occurrences of i in the control group. Here i can

represent either a single diagnosis or a category of diagnosis. From the observed data,
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we can construct the 2 × 2 table:

Treatment Control

People having i xT
i xC

i

People not having i NT − xT
i NC − xC

i

Based on the number of occurrences of i and the total number of people in the

treatment and control groups, NT and NC , respectively.

Because the rate of occurrence of some i may be small (for example, where i

corresponds to a rare disease), we test each null hypothesis using the Fisher exact

test [79] on the 2 × 2 table rather than the χ2 test. More formally, for each i we

perform a hypothesis test of

H0 : µT
i = µC

i

H0 : µT
i 6= µC

i

where µT
i and µC

i are the true rate of occurrence of i in the entire population for

people taking the drug and not taking the drug, respectively.

Before proceeding, we review a few relevant statistical concepts. The p-value of a

statistical test is the probability that the observed data (or more extreme data) would

have occurred under the null hypothesis. Accordingly, small p-values work against the

null hypothesis. The significance level of a statistical test, usually denoted by α, is a

value that we set. We will reject the null hypothesis if the p-value is less than α. The

significance level can be interpreted as the probability of rejecting the null hypothesis

when it is true, known as a Type I error. In the context of drug surveillance, we will

refer to a Type I error as a “false detection.” The power of a statistical test is the

probability of rejecting the null hypothesis when it is false. One minus the power is

the probability of accepting the null hypothesis when it is false, known as a Type II

error. In the context of drug surveillance, we will refer to a Type II error as a “missed

detection.”

48



The power of a statistical test depends on several factors. It depends on the sample

size – the larger the sample, the more powerful the test. It depends on the true size of

the effect, for example whether the drug makes a particular diagnosis twice as likely

or 100 times as likely. The larger the effect, the easier it will be to detect, hence

the more powerful the test will be. Note that the sample size is constrained by the

size of our claims database and the true effect of the drug is naturally beyond our

control. Therefore, most importantly for our work, the power of a test depends on

the significance level – the larger α is, the more powerful the test will be. We will

also make use of the fact that, as a function of α, the power of a test is an increasing

concave function. The power of a test is 0 when α = 0 and 1 when α = 1.

Note that in practice the power of a test is generally not known because the true

effect size is not known (if it were, there would be no need for the statistical test). In

the single-period setting, then, our use of the power of a test will only be notional. We

will make the naive assumption that the drug has the same effect on every i. In the

multi-period setting we will make successively more accurate estimates of the effect

size as time goes on and use these estimates to approximate the curve that relates

the power to α.

For a set of multiple hypothesis tests, the family-wise significance level, also re-

ferred to as α, controls the probability of at least one of the null hypotheses in the set

being falsely rejected. Note that performing each individual test at an α significance

level will not lead to a family-wise significance level of α. For example, suppose 100

hypothesis tests are carried out, each at a 5% significance level. Then, the probability

that at least one null hypothesis is falsely rejected (assuming all of them are true) is

1− .95100 = .994, much higher than 5%. Therefore, in order for a family-wise signifi-

cance level of α to be maintained, each individual test in the set must be carried out

at a smaller significance level. A review of approaches to multiple hypothesis testing

is provided in [90].
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3.2.1 Approach 1: Bonferroni

The classical approach to multiple hypothesis testing is the Bonferroni approach [79].

If k null hypotheses are to be tested at a family-wise significance level of α, then

each hypothesis can be tested individually at the significance level α/k. Applying

this approach to our diagnosis data, we would conduct 1041 tests and test each one

at a significance level of .05/1041 so that the family-wise error is controlled at 5%.

(Of course, levels of α other than 5% could be used. Since we are concerned with

the comparative performance of different approaches, the selection of α is not crucial

since changing it would affect all of the approaches.)

We include the Bonferroni approach in the study as a baseline because it is a

standard approach which we hope to improve upon. It will likely suffer from a lack

of power: because the significance level for each individual test is so low it is unlikely

that any particular null hypothesis will be rejected.

3.2.2 Combining tests

Because combining diagnoses (i.e., testing nodes further up on the tree rather than

at the leaves) will be a central feature of several of the approaches, we take a moment

to consider it more fully.

Whether combining two (or more – here, we consider only two for simplicity)

diagnoses into a single group results in a better or worse test partly depends on

the nature of the diagnoses and the effect of the treatment upon them. In general,

combining two diagnoses leads to a larger number of events and a more powerful test.

For example, if among the patients on a drug there were 4 heart attacks and 6 strokes,

we could compare the combined 10 strokes and heart attacks to the combined number

of heart attacks and strokes in the control group. However, suppose the treatment

only has a true effect on one of the diagnoses. Adding in the number of times that

the other diagnosis occurred only adds noise and will not increase the power of the

test. If the treatment has a true effect on both of the diagnoses, and the “direction”

of the effect is the same (e.g., it increases the frequency of both) then combining
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the tests will increase the power. If the treatment has opposite effects on the two

diagnoses, making one more frequent and the other less frequent, then combining the

tests can lead to neither being detected even though on their own each might have

been detected. These are the trade-offs involved in combining diagnoses.

3.2.3 Determining whether a test has power

Another key concept for several of our approaches is whether or not a test has power.

As it turns out, some diagnoses are very rare and, given the amount of data on hand,

effects of the treatment upon the frequency of the diagnosis are unable to be detected.

Whether they can be detected or not can be determined in advance of performing

any hypothesis tests. Those that cannot be detected should not be tested, and in this

way we can reduce the denominator k in the Bonferroni approach.

To determine whether a test of i has power, we count the number of times that i

occurred in the entire sample of patients (the treatment and control groups combined),

blinding ourselves to whether or not each occurrence came in the treatment group or

the control group. For example, if there are 1000 patients in the treatment group and

1000 patients in the control group we would allow ourselves to be privy to the fact

that there were (say) eight occurrences of i among all 2000 patients, but we would

not “peek” to see how many of the eight occurrences were in the treatment group and

how many were in the control group.

Suppose there were xi occurrences of a particular diagnosis all together and sup-

pose we are conducting the test at an α significance level. The most unlikely situation

under the null hypothesis (and hence the situation leading to the smallest p-value)

would be if all xi occurred in a single group, say the treatment group. The corre-

sponding 2 × 2 table would be:

Treatment Control

People having i xi 0

People not having i NT − xi NC

(If the treatment and control groups are the same size, then whether all occurred in

the control group or the treatment group would be irrelevant. If one group is larger
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than the other group, then the smallest p-value will occur when all of the diagnoses

occur in the smaller group.) We assume that this is the case and perform a Fisher

exact test on this hypothetical situation and obtain a p-value. This p-value represents

the smallest obtainable p-value under all possible allocations of the xi occurrences

between the two groups. If the p-value is larger than α then we can conclude that the

test has no power. That is, given the data at hand we would be unable to reject the

null hypothesis of no difference in the rate of occurrence of i between the treatment

and control groups. On the other hand, if we obtain a p-value less than α, then the

test does have power. Albeit, the power could be small or large and we make no

assessment of the magnitude of the power. We only create the dichotomy: tests with

power and tests without power.

We can generalize this situation to the case when we are not testing only a single

null hypothesis, but k null hypothesese simultaneously. In this case, note that each

individual test will be performed at an α/k significance level and so whether the test

of a particular i has power depends on how many other tests are being performed.

The test of a given i will decrease in power as the number of simultaneous tests

increases until at some point it may no longer have power. For example, a given test

may have power when only 10 tests are being performed (and a significance level of

α/10 is used) but not when 20 tests are performed (and a significance level of α/20

is used).

For each i ∈ N we define si to be the maximum number of tests that can be

performed simultaneously (inclusive of the test of i) without causing the test of i to

have no power. For example, suppose we have computed that the smallest obtainable

p-value for a test of a particular i is 0.009. At the 5% significance level, if i were the

only node being tested its test would have power since 0.009 < 0.05. If five nodes

were being tested, each test would be performed at a 0.05/5 = 0.01 significance level

and so the test of i would still have power since .009 < 0.01. However, if six nodes

were being tested, each test would be performed at a 0.05/6 = 0.008 significance level

and so the test of i would not have power, since 0.009 ≮ 0.008. In this example, then,

si = 5. For computational purposes, we limit si to be at most |N | (no more than |N |
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j si(j)

1 20
2 17
3 9
4 9
5 8
6 7
7 6
8 5
9 4

10 4
11 2
12 1
13 1
14 1
15 1
16 0
17 0
18 0
19 0
20 0

Table 3.1: Example of possible values of si, in descending order.

can be performed anyways).

3.2.4 Approach 2: A simple algorithm

We use this idea about power to reduce the number of tests performed. The tests

that remain will have increased power. Note that this approach will increase the

probability of a detection and, even though not all tests are performed, it will not

increase the probability of a missed detection.

Using a straightforward algorithm, we find the largest subset of tests to perform

such that all of the tests being performed have power. To find such a subset, we

compute si for each test and order the tests in decreasing order of si. We label the

ordered tests i(1), i(2), . . . , i(|N |) and perform all tests such that j < si(j) .

For example, if we have the values shown in Table 3.1 we would perform tests 1
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through 6. We would not perform test 7 since it only has power when 6 or fewer tests

are performed. Note that this algorithm not only finds the largest subset of tests to

perform such that all of the tests being performed have power, but in some sense it

also finds the most “powerful” such subset because it chooses the tests with the largest

si, a quantity which increases with the power of the test.

3.2.5 Approach 3: A mixed integer optimization approach

The previous algorithm discards tests that are not powerful enough. Alternatively,

rather than discarding tests we can combine them with their neighbors on the tree,

in effect “rolling them up” to their parent node and performing a test on the parent.

As with Approach 2, this approach will identify a subset of tests S such that |S| <

si ∀i ∈ S.

It also seems desirable to enforce the constraint that if a test is performed at a

given node, then no tests will be performed at its children, and vice versa. This will

reduce redundancy among the tests performed.

Of course, it is possible to find many different subsets of tests that satisfy these

requirements. What criteria should be used to determine the optimal subset is not

obvious. It seems that a reasonable objective would be to choose the largest subset.

That is, to maximize the number of tests performed. This objective isn’t without its

drawbacks, because the more tests performed the less powerful each test will be. We

address this drawback later.

The optimization problem can be formulated as follows. For a given node i, the

decision variable pi will be 1 if the test of node i is to be performed and 0 otherwise.

maximize
∑

i∈N

pi

subject to pi ≤
1 + |N | −

∑
i∈N pi

1 + |N | − si
∀i ∈ N

pk + pl ≤ 1 ∀k, l where k is a descendant of l

pi ∈ {0, 1} ∀i ∈ N .
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The objective function maximizes the number of tests performed. The first constraint

enforces the condition that we may only perform a test if it has power. For a particular

i, the value on the right hand side of this constraint will be at least 1 when the number

of tests performed is less than or equal to si, allowing the test of i to be performed.

When the number of tests being performed is greater than si, the value on the right

hand side will be strictly between zero and one, forcing pi = 0. The expression on

the right hand side was carefully constructed to prevent it from ever being negative,

which would render the constraint infeasible. The second constraint ensures that we

only perform a test at a node if we don’t perform a test at any descendant nodes.

The objective function formulated above ignores the fact that tests performed at

the leaves of the tree are more specific than tests performed higher up in the tree.

That is, they have the potential to identify a particular diagnosis as a side effect rather

than a more general category of diagnosis. All else begin equal, given a choice between

performing two tests, one of which is further down on the tree, we will generally prefer

to perform the one that is further down and hence more specific.

To enforce this preference, we weight the nodes lower down on the tree more

heavily in the objective function. We can do this in the following way. If there are k

leaves, we can weight the test at each leaf by 1 + 1
k+1

. The tests at the next level up

are assigned weights 1 + 1
k+2

, and so on. These weights are chosen small enough so

that a subset of n + 1 tests is always preferable to a subset of n tests, regardless of

where on the tree the tests are.

Our objective function becomes:

maximize
∑

i∈N

wipi

where the wi’s are the weights.

Note that this formulation also allows us the flexibility to assign more weight to

diagnoses we are particularly interested in. For example, we may want to weight more

serious diagnoses more heavily or weight diagnoses by their average annual treatment

cost. Based on the clinical trials for a drug or biological aspects of the drug, certain
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side effects might be of particular concern and medical experts can set the weights

accordingly.

3.2.6 Approach 4: Unequal significance levels

For Approaches 2 and 3, we have used a simple dichotomy: a test either has power

or it doesn’t. However, even if two tests have power they may differ substantially in

their power and it may improve our testing algorithm if we take this into account. To

illustrate this idea, we begin with a simple example.

Consider a case in which there are only two diagnoses of concern, but one is rarer

than the other. Suppose we have a treatment group of 10,000 patients and a control

group of 10,000 patients. In the control group the “common” diagnosis occurs at a

rate of 4 in 1000 and the “rare” diagnosis occurs at a rate of 1 in 1000. Finally,

suppose that the treatment doubles the rate of occurrence of both diagnoses. That

is, in the treatment group the common diagnosis occurs at a rate of 8 in 1000 and the

rare diagnosis occurs at a rate of 2 in 1000.

Not knowing that this is the true effect of the treatment, we would like to test

the two null hypotheses that the treatment does not affect the rate of the common

diagnosis nor the rare diagnosis. We would like to use a family-wise significance level

of 5%. This 5% can be “distributed” between the two tests in a variety of ways and

how it is distributed affects the power of our two tests. For example, we could test for

an effect of the treatment on the common diagnosis at the 5% level and not test for an

effect on the rare diagnosis at all. In this case, the test of the common diagnosis would

have power of over 90%. The rare diagnosis test would have no power, since it is not

conducted. On the other hand, we could test only for an effect on the rare diagnosis

and not test for an effect on the common diagnosis. In this case, the rare diagnosis

test would have power of approximately 40% (note the power is lower because the

diagnosis is less common). The common diagnosis test would have no power, since it

is not conducted.

These are the two extreme cases. In general, to maintain the 5% family-wise Type

I error rate, we can conduct the two tests at any combination of levels αc and αr (“c”
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for common, “r” for rare) such that αc +αr = 0.05. Conducting the tests at the levels

αc = αr = 0.025 would be equivalent to the Bonferroni approach. However, it may be

advantageous to deviate from the Bonferroni levels to increase the combined power

of the two tests.

There are different ways one could measure, and hence optimize, the overall power

of the two tests. One reasonable objective is to minimize the expected number of

missed detections. Other objectives are possible as well, such as minimizing the

probability of no detection or maximizing the probability of detecting both effects.

The latter seems overly aggressive for drug surveillance, a situation in which we would

be happy to detect even one of a number of side effects.

The expected number of missed detections is given by (1 − pc) + (1 − pr) =

2− (pc + pr) where pc and pr are the power of the tests of the common diagnosis and

the rare diagnosis, respectively. Figure 3-1 shows how the expected number of missed

detections varies as we vary pc, observing the constraint that pc + pr = 0.05.

Note that the function is minimized when a slightly higher significance level is

used to test the rare diagnosis than is used for the common diagnosis.

This approach can easily be generalized to an arbitrary number of diagnoses (and

categories of diagnosis) of varying levels of rarity. Although the power functions

are nonlinear, they can readily be approximated by piecewise linear functions. The

problem of determining the optimal significance level for each test can be formulated

as a mixed integer linear optimization problem. As we noted before, since the true

effect of the treatment on the rate of each diagnosis is not known, the power functions

themselves are not known. (In the multi-period setting, this isn’t a grave problem

because we can build successively more accurate estimates of the power functions as

we move forward through time.) The approach we take in the single-period setting

is to assume that the treatment has the same effect on all diagnoses, say doubling

their rate of occurrence. For a very common diagnosis, this assumption may be

quite unrealistic. For example, it would in fact be impossible to double the rate of

occurrence of a diagnosis that occurs at a rate of 700 in 1000. Therefore, it might make

sense to assume a smaller effect size for more common diagnoses. Indeed, if there were
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Significance Level for Common Diagnosis
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Figure 3-1: Varying the significance level of the two tests yields (maintaining a com-
bined 5% significance level) affects the expected number of missed detections

58



a large effect on a common diagnosis it would most likely be detected in clinical trials

or through the FDA’s Adverse Event Reporting System and the techniques discussed

here would be unnecessary.

Approach 4 can be formulated as follows. For each node i we approximate the

power curve of its test with n linear pieces with slopes mi
j and intercepts ni

j for

j = 1, ..., n. As with Approach 3, we assign a weight wi to each test based on its

height in the tree. The decision variables αi are the significance levels at which to

perform each test. Because our objective is piecewise linear in each αi we introduce

a set of variables ri, representing the power of each test, in the objective and handle

the piecewise linear aspect in the constraints. We use a binary decision variable pi to

indicate whether each test is performed or not.

maximize
∑

i∈N

wiri

subject to
∑

i∈N

αi = 0.05

αi ≤ pi ∀i ∈ N

ri ≤ αim
i
j + bi

j ∀i ∈ N , j = 1, . . . , n

pk + pl ≤ 1 ∀k, l where k is a descendant of l

pi ∈ {0, 1}, αi ≥ 0 ∀i ∈ N .

The objective function maximizes the sum of the power of the tests, which is equivalent

to minimizing the expected number of missed detections. The first constraint ensures

that the significance levels add to 0.05. The second constraint relates the binary

variables to the continuous ones so that if a test is not performed its significance level

must be zero. The third constraint corresponds to the piecewise linear functions,

which give the relationship between the significance level and the power.
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3.3 Simulation of the Single-Period Setting

We have performed simulations comparing the performance of these four approaches.

Rather than running the simulations on the whole ICD-9 tree we used a very simple

tree structure with one root node and two leaves. There are two diagnoses, diagnosis

A and diagnosis and B. We also have a category that includes A and B, so the tree

has three nodes: the root, R, and two leaves, A and B, as shown below.

R

A B

There are 1000 people in the treatment group and 1000 people in the control

group. In each trial of the simulation, for each person each individual diagnosis either

occurs or does not occur according to the appropriate probability (specified below).

We constructed 21 different scenarios in which we varied the size and direction of the

true effect at each leaf and performed 1000 trials for each scenario. We used each of

the four approaches to test for side effects and counted the fraction of times that the

null hypothesis at each node was rejected, accepted, or not tested by each approach.

Two scenarios are presented in detail below to demonstrate the simulation method

and highlight some of the findings, followed by a summary of the whole set. The

details of the scenarios can be found in Table B.1.

The algorithms were implemented in R [78], as were the simulations. The opti-

mization models were expressed in ZIMPL [59] and solved using the freely available

SCIP solver [1], using SoPlex [112] as the LP solver.

In the first scenario each diagnosis occurred at a rate of 2% in the control group,

and the treatment had the effect of doubling the rate of occurrence of each diagnosis.

Note that in this scenario the effect size is the same for both diagnoses and the

direction is the same.

Since in this case there is a true effect at each node in the tree, we will compare the

approaches based on how often they reject the null hypothesis at each node. Table 3.2

shows the results.
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Approach
Node 1 2 3 4

R 5.9% 9.0% 1.3% 14.5%
A 1.5% 1.8% 2.4% 0%
B 2.0% 2.1% 4.5% 0%

Table 3.2: Detection rates of the four approaches on the three nodes, scenario 1.

At the root node, Approach 4 outperformed the others by a large amount. It was

followed by Approach 2 and Approach 1. Approach 3 was a distant fourth.

The leaves were rejected less often than the root. This is because the number

of occurrences is smaller at the leaves and so the statistical tests have less power

than the combined test at the root. On leaf A, Approach 3 had the highest rejection

rate. Approach 2 was second and Approach 1 was close behind. The standings are

similar for leaf B, with Approach 3 performing best, and Approaches 1 and 2 having

approximately half the rejection rate of Approach 3.

Across all the nodes, Approach 2 strictly dominates Approach 1. Approach 3

dominates all other approaches on the leaves, but does not perform as well on the root.

Recall that in Approach 3 the leaves are weighted more heavily, so it often chooses to

test one or both leaves rather than testing the root. These results demonstrate the

trade-off between performing a test at a parent or a child. Interestingly, Approach 4

almost exclusively tests the root and ignores the leaves.

In the second scenario, diagnosis A occurred at a rate of 4% in the control group

and 2% in the treatment group. Diagnosis B occurred at a rate of 2% in the control

group and 4% in the treatment group. Note that the treatment has opposite effects

on the two diagnoses in this case: it increases the frequency of one and decreases the

frequency of the other. This will cause trouble for approaches that favor testing at

the root, because the effects will cancel out to some extent. The results are shown in

Table 3.3

In this case, Approach 4 was again the best at detecting an effect at the root

node. But the 1.5% of the time that it detected an effect at the root is less than the

61



Approach
Node 1 2 3 4

R 0.6% 1.4% 0.3% 1.5%
A 1.2% 1.4% 1.5% 0.2%
B 1.6% 1.7% 3.3% 0.1

Table 3.3: Detection rates of the four approaches on the three nodes, scenario 2.

Approach
Rank 1 2 3 4

1 3 3 18 0
2 1 3 3 0
3 7 15 0 0
4 10 0 0 21

Table 3.4: Ranking of approaches, leaf A

percentage of time that some of the other approaches detected effects at the leaves.

Approach 3, for example, detected effects at each of the leaves at least 1.5% of the

time. As before, Approach 3 dominates the other approaches on the leaves.

Across all 21 scenarios that we simulated, the following tables show the number of

times each approach placed first, second, third, or fourth. Table 3.4 shows the results

for leaf A, where Approach 3 performed best. Table 3.5 shows the results for leaf B,

where again Approach 3 did the best overall. Table 3.6 shows the results for the root.

This is where Approach 4 was more advantageous. Approach 3 fared poorly.

In conclusion, in the single-period setting all three of our approaches demon-

strated the ability to outperform Approach 1, the Bonferroni approach. The two

integer optimization-based approaches, Approaches 3 and 4, showed the strongest

performance. Approach 4 is the most nuanced, allowing the significance levels to be

adjusted over a range, rather than the more crude all-or-nothing characteristic of Ap-

proaches 2 and 3. Approach 4 also has the most appealing objective function because

it explicitly minimizes a value of concern, missed detections. Therefore, we now turn

our attention to adapting Approach 4 to the multi-period setting.
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Approach
Rank 1 2 3 4

1 0 0 12 0
2 0 1 0 0
3 2 11 0 0
4 10 0 0 12

Table 3.5: Ranking of approaches, leaf B

Approach
Rank 1 2 3 4

1 0 1 0 20
2 3 20 0 1
3 18 0 0 0
4 0 0 21 0

Table 3.6: Ranking of approaches, root node

3.4 The Multi-Period Setting

We now consider the more realistic setting in which surveillance is conducted over

time. Typically, new claims data would become available monthly. In this setting,

it is possible to test a different set of null hypotheses each month. We Approach 4

from the single-period setting to dynamically update the set of tests performed each

month. As in [14], we specify in advance the number of months over which we will

monitor the drug.

3.4.1 Determination of p-values

When there was only one period, we specified the family-wise significance level α.

With multiple periods, we again specify α, but in this case the Type I error rate

must be controlled not only across the multiple tests performed in a single period but

across all tests performed in all periods. Therefore, in each period a significance level

less than α must be used. Let αt be the significance level used in period t and let T

denote the total number of periods. (Note that αt will be the family-wise error rate
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for the set of tests performed in period t.) The αt’s must be set in such a way as to

control the overall error rate at α. We can determine the αt’s using simulation.

Furthermore, it is not necessary that α1 = α2 = · · · = αT . How the individual αt’s

are set can affect the probability of detection and the time until detection. There are

trade-offs involved in having larger αt’s at the beginning or end of the time horizon.

For example, suppose we set α1 = .05, and α2 = α3 = · · · = αT = 0. Then, all the

power to reject the null hypothesis is allocated to the first period and we might hope

to reject the null hypothesis very quickly. The drawback is that in the first period

we have the least data available to us, which mitigates the benefit of the larger αt.

Setting α1 = α2 = · · · = αT−1 = 0 and αT = .05 would allow us to use the most

power when we have the full set of gathered data but would preclude the possibility

of rejecting the null hypothesis at any point prior to the last period. Between these

two extremes there lies a set of αt’s that balances this trade-off.

We conducted simulations to compare six strategies: constant αt’s (i.e., α1 =

α2 = · · · = αT = c), linearly increasing αt’s and linearly decreasing αt’s. For each of

these three variations, observations were either accumulated (that is, in period t all

observations gathered up to and including period t were used in the test) or treated

one period at a time (that is, in period t only observations gathered in period t were

used in the test).

The αt’s were determined via simulation such that the overall significance level was

controlled at α = 0.05 for all six strategies. These strategies, and the corresponding

αt’s are illustrated in Figure 3-2.

To compare the power of the strategies, we simulated a situation in which the null

hypothesis was false and compared the ability of the six strategies to detect this.

Table 3.7 shows the percent of time that the null hypothesis was rejected using

each strategy and the number of periods it took to reject it (when it was rejected).

The three strategies that used accumulation (strategies 4-6) had detection rates

more than double the strategies that didn’t (strategies 1-3). A constant αt led to the

highest detection rate by a 10% margin when data wasn’t accumulated. When data

was accumulated, constant αt’s were tied for the highest detection rate. Whether
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Figure 3-2: The six strategies for setting significance levels. The upper three are with
data accumulation and the lower three are without.
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Percent rejected Periods until rejection
1 48 9.5
2 38 12.5
3 37 7.0
4 99 6.5
5 99 7.4
6 96 6.3

Table 3.7: Rejection rate and rejection time for the six p-value strategies.

data was accumulated or not, a strategy of decreasing αt led to the fastest detections,

and increasing αt led to the slowest, with constant αt’s somewhere in between. For

the implementation of the dynamic algorithm we will use constant αt’s.

3.4.2 The Dynamic Algorithm

Suppose we are in period t. We want to set the levels αt
i at which to test node i in

period t, ∀i ∈ N . We use the data collected in periods 1, . . . , t−1 to estimate the rate

of occurrence of i in the treatment group, r̂T
i,t, and the control group, r̂C

i,t. The estimate

is simply the rate at which i has occurred thus far in each group. It is calculated using

the following formulas, where xT
i,j and xC

i,j are the number of occurrences of i in period

j in the treatment and control groups respectively and NT
j and NC

j are the number

of people in the treatment and control groups, respectively, in period j:

r̂T
i,t =

t−1∑

j=1

xT
i,j/

t−1∑

j=1

NT
i

r̂C
i,t =

t−1∑

j=1

xC
i,j/

t−1∑

j=1

NC
i

For each i we use the estimated rates to compute an estimated power curve for its test.

The power curves are calculated using the method described in [34] and implemented

in the bpower function in the Hmisc library in R. For each possible value of αt
i the curve

gives the probability of detecting an effect. As in the single-period setting, to maintain

linearity in our optimization model we then compute a piecewise-linear approximation
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of the estimated power curve, using n pieces (n = 100 in our implementation). The

curve only needs to be computed over the interval [0, αt].

To determine which tests to perform and at which significance levels, we solve

the following optimization problem. Let t be the current period. For each node i

we approximate the power curve for its test with n linear pieces with slopes mi,t
j and

intercepts bi,t
j for j = 1, ..., n. We assign a weight wi to each test based on its height

in the tree. The decision variables αi,t are the significance levels at which to perform

each test. The variables ri,t represent the power of each test and binary variables pi,t

indicate whether each test is performed or not. We also keep track of nodes that have

been rejected (as there is no need to test them again) using an indicator variable Ri

that is updated every period. Ri is set to 1 if the null hypothesis corrresponding to

node i has been rejected.

maximize
∑

i∈N

wiri,t

subject to
∑

i∈N

αi,t = αt

αi,t ≤ pi,t ∀i ∈ N

ri,t ≤ αi,tm
i,t
j + bi,t

j ∀i ∈ N , j = 1, . . . , n

αi,t ≤ 1 − Ri ∀i ∈ N

pk,t + pl,t ≤ 1 ∀k, l ∈ N where k is a descendant of l

pi,t ∈ {0, 1}, αi,t ≥ 0 ∀i ∈ N .

The only new constraint is the fourth one, which ensures that we don’t perform a test

if it has been performed previously and resulted in the null hypothesis being rejected.

When solving the MIP the full tree of ICD-9 codes we relax the integrality con-

straints to speed up the solution. We do this by removing the constraints that prevent

a node and one of its descendants from being tested simultaneously. Once these con-

straints are removed, the remaining maximization problem is an LP. The solution of

the LP can be transformed into an approximately optimal solution to the original
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MIP by using a simple heuristic that “pushes down” the power to the bottom of the

tree.

The heuristic works as follows. For each leaf of the tree that has been assigned a

positive significance level by the LP, check to see if any nodes above it have also been

assigned a positive significance level. If they have, decrease their significance level

to 0 and increase the significance level of one of their children by the same amount.

(This can be done in several ways: the significance level can always be given to the

left-most child, it can be divided evenly between all children, it can be allocated to

the child with the highest current significance level, etc.) Repeat this process until no

leaf that has a positive significance level has an ancestor with a positive significance

level. Note that the “power” is “pushed down” the tree one level at a time. Next,

repeat this process for the second level of the tree, and so on up the tree until the

root node has been reached. At this point, the solution will be feasible for the MIP.

An alternative approach would be to “push up” the power from the bottom of the

tree to the top.

There is also the issue of initializing the algorithm in the first period, when we

have no previous data with which to estimate the rates. There are several ways to

initialize the algorithm. In our implementation, we set the estimated rates for the

control group to the base rates in the whole population and the rates for the treatment

group to double those in the control group. Information gathered during the clinical

trials or from experts in the field can also be used to specify initial estimated rates

for some or all of the i.

There are two variants of the approach which we also tested in our simulations.

In the first variant, the observations are allowed to accumulate from period to period.

That is, when a particular hypothesis is tested, all data gathered so far is used in the

test, not just the data gathered in the current period. This can lead to more powerful

tests as time goes on, but introduces the complication of using data to decide whether

to test a hypothesis and including the same data when testing the hypothesis. This

may increase the rate of false detections. The second variant is to allow hypotheses

to be retested after they have been rejected. This allows for stronger confirmation
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of a result but also leaves open the possibility of a reversal in outcomes which could

be difficult to interpret. Also, there is a trade-off to consider between detecting the

largest number of possible side effects or, once a single side effect has been detected,

concentrating effort on confirming that side effect.

3.5 Simulation of the Multi-Period Setting

We performed three small-scale simulations of six variations of this approach to better

understand its behavior and performance. In all three simulations there were four

diagnoses grouped into two categories and one large category of all four diagnoses.

The corresponding tree structure is shown in Figure 3-3. Nodes D, E, F, and G

represent the four diagnosis. Category B consists of diagnoses D and E. Category C

consists of diagnoses F and G. Category A consists of all four diagnoses.

There were 100 people in the treatment group and 100 people in the control

group. They were followed for 20 months. In each month, each patient incurred

diagnosis x with the appropriate probability (described below), independent of any

other diagnoses incurred in the month. Thus, a given patient in a given month could

have from zero to all four of the possible diagnoses. Diagnoses incurred in one month

were independent from those incurred in other months. 1000 trials were performed.

The six variations of the algorithms that were tested in the simulations were:

1. αt = .05 in each month.

2. αt = .0066 in each month so that the overall α = .05 across the 20 months.

3. αt = .0066 and hypotheses that have been rejected can be retested. The dispo-

sition of the hypothesis is taken as the result of the last test if more than one

test was performed.

4. Observations are allowed to accumulate over time. To control the overall sig-

nificance level at .05, αt = .012 was used in each month.
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Figure 3-3: The structure of the tree used in the simulations.

5. Observations are allowed to accumulate and a smaller significance level, αt =

.0066, was used in each month.

6. Observations are allowed to accumulate and retesting of rejected hypotheses is

allowed. An αt = .0066 was used in each month.

The Bonferonni Approach was also included in the simulation for comparison and is

labeled variation 7 in the results.

3.5.1 Simulation of a single effect

In the first set of simulations, diagnoses E, F, and G each occurred at a rate of 10%

in both the treatment and control groups (i.e., the “treatment” had no effect on these

diagnoses). Diagnosis D occurred at a rate of 20% in the treatment group and 10% in

the control group (i.e., the treatment doubled the rate of occurrence of this diagnosis).

Figure 3-4 illustrates what our approach (using Variation 1) did in each period

in one trial of the simulation. In the first period, when no prior information was

available, all the leaves were tested and it happened that the effect at node D was

immediately detected. Node B was tested in the next three periods (along with some
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of the leaves) and the effect at node B was detected. Then testing focused on node A,

where four periods later the effect was detected. After that point, testing focused on

the remaining leaves but no additional effects were detected (as, in fact, there were

none).

Table 3.8 shows the percent of trials in which each variation detected the increased

rate of diagnosis D in the treatment group. Variations 1, 4, 5, and 6 detected the

effect all the time. Variation 2 detected the effect almost all of the time. All five of

these variations performed better than the Bonferroni approach, which only detected

the effect 66% of the time. Variation 3, which allowed retesting but not accumulation

of the data, performed poorly.

1 2 3 4 5 6 7
100 97 18 100 100 100 66

Table 3.8: Perecent of trials in which the increased rate of diagnosis D was detected
by each variation.

Table 3.9 shows the average number of months until the increased rate of diag-

nosis D was detected by each variation (when it was detected). The variations using

accumulation – Variations 4,5, and 6 – all detected the effect in approximately three

months on average. Variation 1 took four months. Variations 2 and 3 took over twice

as long as the variations that used accumulation. All the variations outperformed the

Bonferroni approach, which took nine months on average.

1 2 3 4 5 6 7
3.1 6.4 6.5 2.7 2.8 2.9 9.2

Table 3.9: Average number of months until the increased rate of diagnosis D was
detected.

Table 3.10 shows the percent of trials in which each variation detected the in-

creased rate of diagnosis D’s parent (node B) and grandparent (node A) in the tree.

(Note that for the variations that actually detected the effect at node D, whether

the effect at its ancestors is detected is really of secondary importance.) Variations 4

and 5 performed the best. The variations that used retesting – 2 and 6 – performed
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Figure 3-4: The behavior of the algorithm. A tree is shown for each month. Solid
black nodes are those that were tested and rejected. Solid gray nodes were tested
but not rejected. Nodes that were rejected in earlier periods are shown with a gray
outline. The figure reads across from top to bottom.
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quite poorly. They most likely spent every month retesting the leaves, rather than

testing nodes A and B, which would explain their poor performance. Variation 1

was the third best. Variation 2 was a distant fourth, although it did outperform the

Bonferroni approach.

1 2 3 4 5 6 7
A 85 22 0 100 100 2 22
B 100 67 0 100 100 9 37

Table 3.10: Percent of trials in which the increased rates at nodes A and B were
detected.

Table 3.11 shows the percent of trials in which effects of the treatment were found

at other nodes in the tree. These are false detections. Variations 2, 3, and 6 had

the lowest false detection rates, comparable to the Bonferroni approach. Note that

the retesting used by Variations 3 and 6 can only reduce the rejection rate, which

would explain why they had so few false detections. Variations 4 and 5 had higher

false detection rates, with Variation 5 performing slightly better than Variation 4.

Variation 1 had the highest false detections rate, which makes sense because we made

no attempt to account for the number of time periods when setting αt.

1 2 3 4 5 6 7
C 5 1 1 4 2 0 2
E 11 2 0 5 5 2 0
F 5 0 0 1 0 0 1
G 9 0 0 6 2 1 0

Table 3.11: Percent of trials in which there were false detections at the other nodes
in the tree.

Looking across all of these measures of performance, Variation 2 never performed

worse than the Bonferroni approach and substantially outperformed it on nearly all

of the measures. Of the other variations, many did dramatically better than the

Bonferroni in terms of detections and time until detection, though not in terms of

false detections.
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3.5.2 Simulation of two effects on same branch

We next simulated a scenario in which there were effects on two diagnosis that share

the same parent node in the tree. Diagnoses F and G each occurred at a rate of 10%

in both the treatment and control groups as before. Diagnoses D and E each occurred

at a rate of 10% in the treatment group and 5% in the control group.

Figure 3-5 illustrates what our approach (using Variation 1) did in each period

in one trial of the simulation. The algorithm spent several periods testing leaves on

the tree. By period four it began to focus on the correct half of the tree and by

period seven it detected the effect at node B. Note that it detected the combined

effect at node B before it detected the smaller individual effects at nodes D and E.

The effect at node E was actually detected in the following period. The algorithm

then focused on node A, but failed to detect the effect following nine successive tests.

Finally in period 18 it returned to node D and detected the effect there. In period 20

it detected the effect at node A, though since the effects at B, D, and E had already

been detected, detecting the effect at node A is really of little importance.

Table 3.12 shows the percent of trials in which each variation detected the in-

creased rates of diagnoses D and E in the treatment group. The variations that use

accumulation detected both effects all of the time. Variation 1 was close behind.

Variation 2 didn’t perform as well, but still outperformed the Bonferroni approach.

Variation 3, with its retesting without accumulation, performed very poorly. Overall,

the relative order of the variations was the same as in the previously simulation. The

gap between Variations 4, 5, and 6 and Variations 2 and 7 widened.

1 2 3 4 5 6 7
D 91 36 2 100 100 100 32
E 90 27 0 100 100 100 22

Table 3.12: Perecent of trials in which the increased rate of diagnoses D and E were
detected.

Table 3.13 shows the average number of months until the increased rates of di-

agnoses D and E were detected by each variation (when detected). Variation 3 had
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Figure 3-5: The behavior of the algorithm. A tree is shown for each month. Solid
black nodes are those that were tested and rejected. Solid gray nodes were tested
but not rejected. Nodes that were rejected in earlier periods are shown with a gray
outline. The figure reads across from top to bottom.
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the quickest detections, but this figure is misleading because these detections were

always reversed by later re-testing. Variations 4, 5, and 6 each took approximately

six months. Variation 1 took nine months, Variation 7 took 11 months, and Variation

2 took a little more than 11 months. Note that the variations took longer in general

to detect the effects than in the previous simulation because the rates at which the

diagnoses occurred were smaller.

1 2 3 4 5 6 7
D 8.6 11.4 3.4 5.5 6.2 6.3 10.7
E 9.1 12.0 5.5 5.8 6.4 6.7 10.9

Table 3.13: Average number of months until the increased rates of diagnoses D and
E were detected.

Table 3.14 shows the percent of trials in which each variation detected the in-

creased rate of diagnoses D and E’s parent (node B) and grandparent (node A). For

node B, all of the variations outperformed the Bonferroni approach with the excep-

tion of the variations that used retesting. For node A, the Bonferroni approach did

better than Variation 2, but again this is of little concern because detecting the effect

at node B is more valuable and Variation 2 did better there. The retesting variations

had very low detection rates at node A because they devoted their efforts to retesting

nodes further down on the tree.

1 2 3 4 5 6 7
A 68 4 0 98 98 1 18
B 100 93 19 100 100 58 64

Table 3.14: Percent of trials in which the increased rates at nodes A and B were
detected.

Table 3.15 shows the percent of trials in which false detections occurred at the

other nodes. As before, Variations 1, 4, and 5 had much higher false detection rates.

The variations that use retesting had no false detections. Variation 2 also had no

false detections, slightly better than the Bonferroni.

In summary, again Variation 2 outperformed the Bonferroni approach while the

other variations had mixed results. Note that Variation 2’s performance on the leaves
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wasn’t exceptional, but it detected the effect at node B over 90% of the time, which

demonstrates the advantage of using the hierarchy of diagnoses rather than just testing

individual diagnoses.

The retesting variation with accumulation did very well at detecting the effects

at the leaves and had no false detections. It also detected the effects faster than the

Bonferroni approach. Although its detection rate at nodes A and B was worse than

the Bonferroni, this really isn’t important since it made the detections at the leaves.

The variations that used accumulation without retesting had the highest detection

rates and quickest detections, but had unacceptably high false detection rates.

1 2 3 4 5 6 7
C 1 0 0 7 4 0 1
F 3 0 0 4 2 0 0
G 5 0 0 6 4 0 1

Table 3.15: Percent of trials in which there were false detections at the other nodes
in the tree.

3.5.3 Simulation of two effects on different branches

Lastly, we simulated a scenario in which there were effects on two diagnoses that have

different parent nodes. Diagnoses E and G each occurred at a rate of 10% in both

the treatment and control groups. Diagnoses D and F each occurred at a rate of 10%

in the treatment group and 5% in the control group.

Figure 3-6 illustrates what our approach (using Variation 1) did in each period

in one trial of the simulation. The testing was generally spread across three of the

four leaves, and occasionally included one of the mid-level nodes. Node A was never

tested. The effect at node D was detected in the 11th month. After that, testing was

still spread across nodes B, F, and G, until the 16th period when the focus started

to narrow to nodes B and F. However, by the 20th period the effect at node F still

hadn’t been detected.

Table 3.16 shows the percent of trials in which each variation detected the in-

creased rates of diagnoses D and F in the treatment group. Even with the effects
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Figure 3-6: The behavior of the algorithm. A tree is shown for each month. Solid
black nodes are those that were tested and rejected. Solid gray nodes were tested
but not rejected. Nodes that were rejected in earlier periods are shown with a gray
outline. The figure reads across from top to bottom.

78



separated into different halves of the tree, the variations that used accumulation had

no problem detecting them. Variation 2’s performance was markedly stronger than

the Bonferroni approach.

1 2 3 4 5 6 7
D 88 37 2 100 100 100 25
F 94 35 4 100 100 100 22

Table 3.16: Perecent of trials in which the increased rate of diagnoses D and E were
detected.

Table 3.17 shows the average number of months until the increased rates of di-

agnoses D and F were detected by each variation (when detected). The results are

similar to the previous simulations.

1 2 3 4 5 6 7
D 6.8 10.5 10.3 5.1 5.7 5.7 10.9
F 8.3 10.6 10.2 5.5 6.1 6.2 9.8

Table 3.17: Average number of months until the increased rates of diagnoses D and
F were detected.

Table 3.18 shows the percent of trials in which each variation detected the in-

creased rate of diagnosis D and F’s parents (nodes B and C, respectively) and grand-

parent (node A) in the tree. The variations that used accumulation without re-testing

performed strongly here and the variations that used retesting performed poorly. The

Bonferroni approach did much better at detecting effects at nodes A and C than Vari-

ation 2 did. As illustrated in Figure 3-6, these nodes were rarely tested by Variations

1 and 2.

1 2 3 4 5 6 7
A 71 5 1 100 99 5 19
B 32 2 0 93 85 6 6
C 31 0 0 92 85 2 13

Table 3.18: Percent of trials in which the increased rates at nodes A, B, and C were
detected.
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Table 3.19 shows the percent of trials in which false detections occurred at the

other nodes. Variations 4 and 5 continued to have higher false detection rates than the

rest. Between the remaining variations the differences are much smaller than in the

other two simulations, with very low false detection rates. Even Variation 1, which

had a higher false detection rate in the other two simulations, has a low false detection

rate here. This is most likely because there are true effects at five of the seven nodes

on the tree, so it spent very little power testing for the non-existent effects.

Overall, the story was more mixed in this scenario. This is to be expected – when

the true effects are dispersed the hierarchical approach doesn’t lead to stronger tests.

For example, in this scenario a test at node B is really no more likely to discover an

effect than a test at node D – it only has the added noise from node E, where there

is no effect.

While Variation 2 performed better on the leaves, it didn’t spend much time

testing nodes A and C, where the Bonferroni approach was able to detect effects.

Variation 1 dominated the Bonferroni approach in this scenario, having much higher

detection rates at all the nodes and it wasn’t hurt by a high false detection rate as it

was in the other scenarios.

1 2 3 4 5 6 7
E 0 0 0 5 3 0 0
G 1 0 0 4 3 0 1

Table 3.19: Percent of trials in which there were false detections at the other nodes
in the tree.

Across these three sets of simulations, we have tested our approach against a

range of situations that might arise in practice: a single side effect, multiple related

side effects, and multiple unrelated side effects. In all three simulations our approach

outperformed the Bonferroni approach, often by a considerable margin. Consistently,

“plain vanilla”Variation 2 and the accumulation/retesting Variation 6 performed best.

Variation 2 had higher detection rates than the Bonferroni approach while maintain-

ing a comparable false detection rate. In particular, when there were two related side

effects, it detected the effect on their common parent node 93% of the time com-
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pared with 64% for the Bonferroni approach. When accumulation is combined with

retesting of rejected hypotheses, as in Variation 6, the performance is very strong.

This combination led to detection rates up to four times higher than the Bonferroni

approach and detection times that were twice as fast. The variations that used data

accumulation without retesting, on the other hand, led to false positive rates that

were unacceptably high. A possible extension would be to consider a variation that

uses a fraction of the data collected each month to estimate the power curves and the

remaining fraction to perform the hypothesis tests.

3.6 Conclusion

We have demonstrated a promising algorithm for conducting large scale drug surveil-

lance. The algorithm allows the rates of all diagnoses to be monitored, yet controls

the rate of false detections. Based on our simulations, side effects were generally

detected more quickly and more often than the Bonferroni approach. The integer

optimization formulation also entails great flexibility, allowing diagnoses of particular

concern to be prioritized.
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Chapter 4

Depression and Cost of Health

Care

4.1 Background

Chronic diseases constitute a growing proportion of total global disease burden [63],

and are projected to increase to 60% of global disease burden by the year 2020 [66].

Depression is currently ranked fourth of all causes of global disease burden, and is

projected to rise to second by 2020 [66]. However, in spite of its global importance, the

interaction between depression and chronic comorbid diseases remains incompletely

understood with regard to prevalence, severity of disease, and potential causative

factors mediating this interaction [32].

Over the past 25 years, a growing body of evidence has established an association

between depression and high utilization of general medical services. Recent studies

of this issue have used cost of services as a measure of utilization of care, and have

quantified the increased cost of general medical services associated with depression in

several different medical settings.

Simon [97] found the per capita annual cost for primary care patients diagnosed

with depression was $4246, compared to $2371 for nondepressed primary care patients.

Mental health care accounted for only 20% of increased cost in depressed individuals.

Henk et al [43], in a study of high utilizers of care, found that depressed patients
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had per capita annual cost of $5,764, compared to $4227 for nondepressed patients.

Unutzer [105] found that median annual healthcare costs in Medicare recipients who

were diagnosed with depression was $2147, compared to $1461 for Medicare recipients

who were not depressed. Druss [28], in a Veteran’s Administration cohort of medical

and surgical inpatients, found that the average annual cost of the most depressed

patients was $9,408, compared to $5,290 for the least depressed patients. Thomas et

al [102], in a study of Medicaid beneficiaries, found that depressed patients had total

annual cost of $7,284, while nondepressed patients had total annual cost of $2649.

Studies of specific chronic medical illnesses have found that depression is associated

with significantly greater annual per capita cost of care. Ciechanowski [20] found

that the median annual cost of care for patients with diabetes and depression was

1.86 times the cost of care for diabetic patients without depression. Egede [30] found

the annual cost of care in depressed diabetics was 4.5 times the cost of care for non-

depressed diabetics. Sullivan [100], in a study of patients with congestive heart failure,

found that depressed patients had median annual cost of care 1.29 times the cost of

nondepressed patients.

Although there is some consistency in the magnitude of cost differences reported

in these studies, the relative magnitude between various chronic comorbid diseases

remains unclear. Thus far there has been no attempt to measure and compare the

cost differences associated with depression in the most prevalent chronic comorbid

diseases in a primary care population.

Administrative data sets allow accurate measurement of medical costs across large

populations and a wide range of treatment settings [65]. They also sometimes reflect

real-world patterns of utilization and medical practice more accurately than data

from randomized trials [11]. For these reasons, a large administrative data set was

considered the optimal basis for measuring the cost of healthcare in different disease

states.

The objectives of this study were:

1. To examine the relationship between depression and cost of non-mental health

care in 11 chronic comorbid diseases.
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< 2,500 Patients
2,501 − 5,000 Patients
5,001 − 10,000 Patients
10,001 − 30,000 Patients
> 30,000 Patients

Patients in the Study, by State

Figure 4-1: Geographic distribution of the research cohort.

2. To examine patterns of utilization of services, comorbidity, and prevalence, for

evidence of causation between depression and 11 chronic comorbid diseases.

4.2 Methods

The database for this study consisted of de-identified medical claims data for 618,780

patients in self-insured plans. Only patients enrolled in an insurance plan for the entire

12-month study interval were included. The geographical distribution of patients is

shown in Figure 4-1. No Medicare or Medicaid recipients were included. The study

interval was September 1, 2004 to August 31, 2005.

Codes for chronic comorbid diseases were selected by the criteria of prevalence

and chronicity in order to capture the maximum number of patients with chronic

comorbidity. Previously published comorbidity indices [18, 31, 81, 25] were considered

but not used, because they were developed to measure mortality risk, not cost of care.

All diagnostic codes were ranked in order of 12-month prevalence in the study
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cohort. In order to select comorbidities with high prevalence, codes with a 12-month

prevalence lower than 8.0 per 1000 were not included in the study. Of the codes sat-

isfying prevalence criteria, only those which capture mainly chronic diseases, defined

as diseases requiring care for years or decades, were selected for the study. Individ-

ual diagnostic codes were then grouped into 11 chronic diseases (see Table C.1). To

further exclude non-chronic diseases, study subjects were not assigned a diagnosis of

a chronic comorbid condition unless they had at least two outpatient visits or one

inpatient admission under any one of these ICD-9 codes during the 12-month study

interval. The chronic comorbid disease did not have to be the primary diagnosis.

Patients were designated as depressed by either of two criteria:

1. If during the study interval they received at least two outpatient codes or one in-

patient code for any one of the 21 ICD-9 codes for depression listed in Table C.2.

Depression did not have to be the primary diagnosis. Patients designated as

depressed may or may not have had pharmacy claims for antidepressant med-

ication. Patients who received a diagnostic code for depression but no antide-

pressant medication were included in the designation of depressed.

2. If during the study interval they filled two or more prescriptions for an antide-

pressant medication. It was not necessary for all prescriptions to be for the

same antidepressant.

Patients designated as depressed were then assigned to one of three categories:

1. Patients not having received a coded diagnosis of depression, but taking antide-

pressants.

2. Patients having received a coded diagnosis of depression, and taking antidepres-

sants.

3. Patients having received a coded diagnosis of depression, but not taking antide-

pressants.
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Patients who did not meet study criteria for designation as depressed were desig-

nated as not depressed.

For each chronic comorbid disease, the median annual per patient cost of care for

the study interval was calculated for patients designated as not depressed, and for each

of the three categories of patients designated as depressed. Costs were then compared

between depressed and not depressed patients, and the differences calculated in both

absolute dollar amounts and as ratios.

Most patients in the study cohort were under separate mental health management

arrangements, which made the cost data of all inpatient and some outpatient mental

health care unavailable for this study. Because of this fragmentation of mental health

administrative data, median annual per patient mental health expenditure could not

be calculated in this study, and was not part of the final cost analysis. However,

mental health pharmaceutical charges and some outpatient mental health service

charges were present in the medical administrative database. These were subtracted

from the median annual per patient cost to calculate median per patient non-mental

health cost.

Median annual per patient cost for inpatient, outpatient, emergency room and

pharmaceutical services was calculated for each chronic comorbid disease, both in the

depressed and not depressed cohort, and the difference was calculated both as an

absolute dollar amount, and as a ratio.

In order to control for number of comorbidities as an independent cause of in-

creased cost, the relationship between the number of chronic comorbid diseases per

patient and median annual per patient cost was calculated.

The prevalence of each chronic comorbid disease was calculated in the depressed

and not depressed cohorts in the study population, and the difference in prevalence

between depressed and not depressed was expressed as a ratio.

The prevalence of depression in patients with each of the 11 chronic comorbid

diseases was calculated, and compared to the prevalence of depression in patients

without that comorbid disease. The difference in prevalence was expressed as a ratio.

Each chronic comorbid cohort was then divided into cost deciles, and prevalence

87



of depression in each cost decile was determined.

Because of separate mental health management arrangements, median annual per

patient cost for specialty mental health care could not be calculated, and consequently

the relationship between prevalence of chronic comorbid diseases and cost of mental

health services could not be examined.

Longitudinal relationships between depression and chronic comorbid diseases were

calculated for an extended 24 month study interval. The incidence of first diagnosis

of each chronic comorbid disease subsequent to a diagnosis of depression or treatment

with antidepressant was calculated for all 11 chronic comorbid diseases and compared

to the incidence in not depressed individuals. The incidence of first diagnosis of de-

pression or first antidepressant prescription subsequent to a diagnosis of each chronic

comorbid disease was calculated for all chronic comorbid diseases, and compared to

the incidence in individuals without prior diagnosis of that chronic comorbid disease.

4.2.1 Statistics

Median costs were used rather than mean costs because the cost distributions are

skewed to the right and the mean cost is highly sensitive to a few very expensive

patients. Therefore, the median gives a better sense of the location of the center of

the distribution. We performed a sensitivity of analysis by comparing means, first

quartiles, and third quartiles, and in each case the general pattern was the same.

The bootstrap was used to construct confidence intervals for the differences be-

tween median costs of the depressed and not depressed patients. To compare preva-

lences, standard chi-square tests were used. 95% confidence intervals are provided for

all of the comparisons. All analyses were performed using R [78].

4.3 Results

Selection criteria yielded a study cohort of 618,780 subjects with a mean age of 41

(s.d. 12), of whom 53% were female and 47% were male (Table 4.1). 14.3 % of the

study cohort had one or more of the 11 chronic comorbid diseases selected for the

88



Subjects Percent Female

Research cohort 618,780 53%
One or more chronic comorbid diseases 88,687 56%
No diagnosis of depression, on antidepressants 55,945 72%
Diagnosis of depression 14,005 72%
Diagnosis of depression on antidepressants 9,208 74%
Diagnosis of depression not on antidepressants 4,797 68%

Table 4.1: Summary of research cohort.

study. 11.3% of the study cohort were designated as depressed, but only 2.3% of

the study cohort received a coded diagnosis of depression. In the patients designated

as depressed, 72% were female. 11% of the study cohort were prescribed an antide-

pressant without receiving a coded diagnosis of depression during the study interval.

The most prevalent chronic comorbid diseases were, in order of prevalence, diabetes,

hypertension, pain in joint, back pain, and intravertebral disc disease (Table 4.2).

Total
Non-
depressed

On antidepres-
sants, not
diagnosed

Diagnosed,
on antide-
pressants

Diagnosed,
not on an-
tidepressants

Asthma 5,406 3,988 1,087 237 94
Back Pain 13,434 9,942 2,673 604 215
CHF 1,131 826 250 39 16
CAD 5,758 4,609 981 120 48
Diabetes 20,843 16,632 3,499 523 189
Epilepsy 1,597 1,202 253 87 55
Headache 9,133 5,909 2,541 507 176
Hypertension 20,624 16,553 3,502 395 174
IVDD 13,158 9,623 2,739 584 212
Obesity 1,341 896 290 101 54
Pain in
Joint

15,575 11,882 2,906 559 228

Table 4.2: Number of members in each disease category in the study.

The distribution of diagnostic codes for depression was concentrated in codes

296 and 311, which respectively comprised 50.6% and 23.2% of all depression codes

assigned (Table C.2).
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Median Annual Cost Per Patient

C
os

t (
$1

,0
00

)

5

10

15

20

25

H
yp

er
te

ns
io

n

O
be

si
ty

H
ea

da
ch

e

D
ia

be
te

s

A
st

hm
a

IV
D

D

B
ac

k 
P

ai
n

P
ai

n 
in

 J
oi

nt

E
pi

le
ps

y

C
A

D

C
H

F

Depressed
Not Depressed

Figure 4-2: Annual per patient cost with and without depression. Costs of antide-
pressant prescriptions and mental health treatment are excluded.

Depressed patients had higher non-mental health costs than not depressed patients

in all 11 comorbid diseases studied (Figure 4-2). The per-patient difference in non-

mental health cost between depressed and not depressed patients ranged from $2027

in hypertension to $10,644 in CHF. Diseases with higher median annual per patient

costs tended to have larger absolute dollar differences between depressed and not

depressed patients. The ratio of cost between depressed and not depressed patients

ranged from 1.64 in both CHF and obesity to 2.56 in epilepsy.

Patients in all three categories of depression consistently had higher costs than

not depressed patients (Figure 4-3). Of the three depression categories, the patients

diagnosed with depression and on antidepressants tended to have the largest cost

differences, and patients not diagnosed with depression but taking antidepressants

had the smallest cost differences.

Median annual pharmaceutical costs of depressed patients were consistently higher

than the costs of not depressed patients (Figures 4-4 and 4-5). For most chronic

comorbid diseases pharmaceutical cost was the largest component of total cost dif-

ference. The per-patient difference in pharmaceutical cost between depressed and
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Figure 4-3: Annual per patient cost by depression subgroup. Costs of antidepressant
prescriptions and mental health treatment are excluded.

not depressed patients ranged from $928 in obesity to $1911 in CHF. The ratio of

depressed to not depressed pharmaceutical costs ranged from 2.17 in CHF to 7.55 in

pain in joint.

Median annual outpatient costs of depressed patients were also consistently higher

than the costs of not depressed patients (Figures 4-4 and 4-5). The difference in

outpatient cost ranged from $964 in obesity to $1785 in CHF. The ratio of depressed

to not depressed outpatient costs ranged from 1.32 in CHF to 2.04 in epilepsy.

Inpatient cost differences were a significant component only in CAD and CHF, in

which the inpatient cost differences were $2312 and $4519 respectively. Emergency

room cost differences were $95 for CHF and $317 for epilepsy, but for other chronic

comorbid diseases, emergency room cost was not a significant component of cost

increases associated with depression.

Depressed patients have a higher number of comorbidities than non-depressed

patients (Table 4.3). The mean number of comorbidities in the depressed cohort was

0.8, and in the not depressed cohort was 0.34.

When controlled for number of comorbidities, depressed patients still had higher
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Median Annual Per Patient Cost by Category
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Figure 4-4: Median annual per patient cost by type of service. Costs of antidepressants
and mental health treatment are excluded.

Comorbidities 0 1 2 3+

Not Depressed 77% (423,236) 16% (86,756) 5% (27,024) 2% (11,814)
Depressed 41% (29,082) 34% (23,507) 15% (10,271) 10% (7,090)

Table 4.3: Number of comorbidities versus depression status. Each row sums to 100%.
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Annual Median Cost vs Comorbidities

Comorbidities
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Figure 4-6: Annual cost vs. number of comorbidities.
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Prevalence of Chronic Diseases
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Figure 4-7: Prevalence of chronic diseases vs depression status.

costs than non-depressed patients (Figure 4-6). In each disease graph, the number

of comorbidities increases from 1 to 4. For most patients with only one chronic

disease, the difference in cost between depressed and not depressed patients was low.

With rising number of comorbidities, the cost difference between depressed and not

depressed patients increased in some comorbid diseases, but remained fairly constant

in others.

Each of the 11 chronic comorbid diseases was more prevalent in the depressed

cohort than in the total study cohort (Figure 4-7). The ratio of prevalence between

depressed and not depressed patients ranged from 1.93 in hypertension to 4.28 in

headache.

Depression is more prevalent in each of the 11 comorbid diseases than in the total

study cohort (Figure 4-8). The ratio of depression prevalence between those with one

particular chronic comorbid disease and those without it ranged from 1.78 in CAD

to 3.22 in headache.

For each disease, patients were divided into non-mental health cost deciles (Fig-

ure 4-9). Within each cost decile, the 12 month prevalence of depression was calcu-

lated. In almost all of the diseases, the prevalence of depression increases linearly with
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Prevalence of Depression
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Figure 4-8: Prevalence of depression vs chronic disease status.
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Figure 4-9: Prevalence of depression vs cost. Each disease has been broken into ten
equal-sized cost strata. These are labeled along the horizontal axis. The vertical axis
shows the percent of members in each stratum who are depressed.
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Percent in Not
Depressed Cohort (%)

Percent in Depressed
Cohort (%)

Ratio

Asthma 0.61 1.1 1.8
Back Pain 1.1 3.1 3.9
CHF 0.17 0.38 2.2
CAD 0.55 1.0 1.8
Diabetes 0.98 1.9 1.9
Epilepsy 0.14 0.31 2.2
Headache 0.74 2.4 3.3
Hypertension 1.6 3.2 2.0
IVDD 1.0 3.0 3.0
Obesity 0.10 0.35 3.4
Pain in Joint 1.7 4.2 2.4

Table 4.4: Members without disease in Year 1 who are diagnosed with disease in Year
2.

non-mental health cost. The exception is obesity, for which prevalence is biphasic.

Longitudinal measurement of incidence revealed that depressed individuals had a

higher incidence of subsequent onset of all 11 chronic comorbid diseases than did not

depressed individuals (Table 4.3). The odds ratio ranged from 1.8 in both asthma

and CAD to 3.9 in back pain. Furthermore, individuals with any of the 11 chronic

comorbid diseases had higher incidence of subsequent onset of depression than did

individuals with none of the 11 chronic comorbid diseases (Table 4.3). The odds ratio

ranged from 1.5 in asthma to 3.6 in headache.

4.4 Comment

The central finding of the study is that depression is associated with markedly greater

cost of non-mental health care in all 11 chronic comorbid diseases studied. Even

when controlled for number of chronic comorbid diseases, depressed patients had

significantly higher costs than nondepressed patients. The magnitude of the cost

difference is similar to that reported in prior studies, but the consistency of the

magnitude across 11 chronic comorbid diseases is a finding not previously reported.

These cost differentials are unlikely to be an artifact of methodology or data set,
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Percent in Cohort
without Disease (%)

Percent in Disease
Cohort (%)

Ratio

Asthma 2.7 4.2 1.5
Back Pain 2.7 6.8 2.6
CHF 2.7 6.6 2.4
CAD 2.7 5.0 1.9
Diabetes 2.7 4.6 1.7
Epilepsy 2.7 5.0 1.8
Headache 2.7 9.7 3.6
Hypertension 2.7 4.5 1.7
IVDD 2.7 7.3 2.8
Obesity 2.7 7.0 2.6
Pain in Joint 2.7 5.5 2.1

Table 4.5: Members without depression in Year 1 who are depressed in Year 2.

since similar cost differentials have been reported with survey-based methodology

[43, 105, 28, 20, 30], and with different administrative data sets [102, 97].

In this study, the most important components of higher cost in depression were

higher pharmaceutical and outpatient costs. Emergency room costs were not a sig-

nificant factor in most chronic comorbid diseases, and inpatient costs were significant

only in CAD and CHF. This pattern of increased utilization in depressed individuals

was consistent with prior studies [20, 30]. Outpatient and pharmaceutical differences

follow similar patterns when graphed as absolute dollar amounts, but follow very dif-

ferent patterns when expressed as ratios (Figure 4-5). Further research is necessary

to determine the underlying reasons for these variations. However, these differences

in utilization do indicate that depressed patients not only saw doctors more often,

but also were prescribed non-mental health drugs at higher cost or in greater quantity

than not depressed patients.

Only 14.1% of those patients taking antidepressants received a coded diagnosis

for depression during the study interval. There are four possible reasons for this

low rate of coding of depression. First, in the primary care setting, 36-65% of de-

pressed patients are not recognized as depressed, and therefore are never coded as

such [22, 96, 70]. Second, over 50% of primary care physicians intentionally assign al-

ternative diagnoses to depressed patients due to diagnostic uncertainty or barriers to
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reimbursement [84]. Third, an unknown number of depressed patients were treated by

mental health professionals who bill a mental health management companies for their

services, through administrative databases separate from the medical database. An-

tidepressants prescribed by these mental health professionals are recorded in the med-

ical database, but services and diagnostic codes for depression care are not. Fourth,

some patients may have been receiving antidepressant medication under a diagnosis

other than depression, such as anxiety disorder.

The absolute prevalences of chronic comorbid diseases in both the depressed and

not depressed cohorts were somewhat lower than reported in survey based studies,

probably because of lower sensitivity of administrative data for diagnostic codes.

However, the prevalence of chronic comorbid diseases in depressed individuals ranged

from 1.93 to 4.28 times the prevalence in not depressed individuals. The principal

importance of this finding is the relative prevalence of the 11 chronic comorbid diseases

in depressed individuals. As has been previously reported [55], the largest differences

in prevalence tended to occur in chronic comorbid diseases characterized by pain as

the primary symptom, with the exception of obesity.

In this study there was an increased prevalence of depression associated with all

11 chronic comorbid diseases, relative to the prevalence in the not depressed cohort.

The prevalence of depression in these chronic comorbid diseases was similar to that

reported in previous studies [32, 4, 50, 85, 99, 5].

Prior research has shown an association between number of comorbid illnesses and

increased cost [92]. In our data, number of comorbid illnesses had a linear relationship

to annual cost, with the exception of patients with a diagnosis of obesity. However, in

all chronic comorbid diseases, the cost differences associated with depression persisted

even after controlled for number of comorbidities, a result which is consistent with

the prior finding that higher annual costs associated with depression persisted even

after controlled for severity of comorbid illness [97].

The longitudinal analysis of patterns of onset demonstrates that depression is as-

sociated with a greater than expected subsequent incidence of all chronic comorbid

diseases in the 12-month period. Each chronic comorbid disease is also associated
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with higher than expected subsequent incidence of depression. These data are consis-

tent with the hypothesis that depression and chronic comorbid disease are reciprocally

causative. However, in both cases, administrative data cannot ascertain that coding

of a diagnosis occurs at first onset of that diagnosis. Therefore, replication of this

analysis using either medical record data, or a longer study interval, would be neces-

sary to more accurately quantify the increased risk of incidence in both directions.

While the causes of the association between depression and increased non-mental

health cost are unclear, several possibilities should be considered.

The first consideration is whether it is an artifact of administrative data. In light

of the findings regarding sensitivity of administrative data discussion in Section 1.1, it

is likely that the methodology of this study created a bias towards identification of the

more symptomatic patients in each chronic comorbid condition, while patients who

were less symptomatic were identified at a lower frequency. However, it is unlikely that

this selection bias would affect the main findings regarding cost, since it would apply

equally to depressed and nondepressed cohorts. It would increase the median medical

costs in both cohorts, but it would not affect the ratio between cost of depressed

patients and cost of not depressed patients, nor would it affect the relative size of cost

differences between the 11 chronic comorbid conditions.

The cohort designated as depressed was probably not selected with bias towards

greater severity to the same degree as the cohorts of chronic comorbid diseases. The

12 month prevalence of depression in primary care populations has previously been

reported as 5-10% [53]. Diagnostic coding for depression in this primary care database

identified only 2.3% of the study population, but combining prescription and diag-

nostic codes raised the identification of depressed individuals to 11.3 % of the study

cohort, a level consistent with that reported in prior survey-based studies. This

methodology appears to have accurately identified a high percent of the depressed in-

dividuals in the study population. However, it may also have identified some patients

who were receiving antidepressants for indications other than major depression.

In the cohort of patients on antidepressants, 1,977 (3.5% of this cohort) carried

a diagnosis of anxiety or panic disorder in the absence of a diagnostic code for de-
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pression. This subgroup was not removed from the cohort designated as depressed,

because anxiety is a common presenting symptom of depression, and an unknown

proportion of these patients on antidepressants were probably suffering from depres-

sive pathophysiology. Whether this subgroup is included in or excluded from the

designation of depressed, it is not large enough to affect the main findings of the

study.

Low sensitivity for comorbid diagnoses is another potential source of artifact.

Survey-based studies of individuals with depression report an average of approxi-

mately 3 comorbid conditions per patient [106, 103], but the average in this study

is 0.8 chronic comorbid conditions per patient. Prior research has found that the

sensitivity of administrative data is under 30% for second diagnoses, and even lower

for third diagnoses [73]. Therefore, the low number of chronic comorbid conditions

per patient in this study can be attributed to this artifact of administrative data.

Nevertheless, this artifact has equal effect on the depressed and nondepressed cohorts

and consequently is unlikely to affect relative cost of the two cohorts.

A second possible cause of greater cost associated with depression is patient be-

havior. Self-neglect is a documented behavior of depressed patients with comorbid

disease. In diabetes and heart disease, depressed patients are less compliant with care

than are non-depressed patients, and this behavior is correlated with higher utiliza-

tion of emergency room, outpatient, inpatient, and specialty services [20, 27, 114, 16].

Depression is also associated with higher rates of harmful lifestyle factors such as

smoking, overeating, and lack of physical activity [83, 39].

A third possible cause of greater cost is more severe pathophysiology of comorbid

disease when it occurs in association with depression. There is a growing body of

evidence that depression is associated not just with increased prevalence of comorbid

disease but also with more severe pathophysiology of that disease. Compared to

nondepressed cardiac patients, depressed cardiac patients have increased incidence

and severity of ventricular arrhythmias, higher mortality and readmission rates [16,

36], decreased heart rate variability [67, 98], and increased platelet reactivity [68].

Compared to nondepressed diabetics, depressed diabetics have more complications of
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diabetes, including retinopathy, neuropathy, nephropathy, and vascular disease, and

have more severe glycemic dyscontrol [24].

Finally, this study raises the question of whether the overall cost of health care

could be reduced by creating systems of care that treat depression more effectively.

Prior studies have reported that the proportion of patients receiving antidepressant

treatment in the primary care setting was between 60% and 80% [91, 71], and the

fastest-growing segment of patients treated for depression in the United States are

those treated in primary care settings [108]. Studies of patients treated for depres-

sion in the primary care setting have generally found that they are less likely to

receive adequate doses and duration of antidepressant drugs, and have lower rates of

response or remission, compared to patients receiving specialty mental health care

[62, 58, 109, 56]. Because a large majority of depressed patients receive care exclu-

sively from non-mental health professionals, there has been significant interest in the

question of whether disease management programs of depression in the primary care

setting have the ability to improve outcomes or lower total medical costs. In the last

decade, a number of studies have compared “usual care” of these patients with dis-

ease management that integrates the functioning of mental health professionals with

primary care [52, 54, 26, 9]. Features of these innovative approaches to the treatment

of depression include diagnostic screening, physician education, patient education,

availability of mental health consultants either on site or off-site, close monitoring of

patients, adherence to best practices, and increased use of telephone both for consul-

tation between clinicians and for direct patient management [72, 38].

Studies of disease management of depression in primary care have reported lower

depression scores and higher response rates compared to patients receiving usual care

in the primary care setting [92, 8]. However, the findings with regards to cost have

been variable. The cost of treating depression in these innovative programs was

consistently higher than in usual care [107, 60, 93, 94, 87]. Most studies did not find

a reduction in non-mental health costs, but in those that did, the reduction was not

enough to offset the higher mental health costs associated with disease management of

depression [95]. Disease management programs which target depression unequivocally
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reduce psychiatric morbidity, but it remains unclear to what extent they have an

impact on severity and cost of chronic comorbid conditions. Consequently, there is

growing concern that meaningful reduction of the total disease burden of depression

will require fundamental restructuring of the healthcare system, in a way that more

effectively integrates the treatment of mental diseases with the delivery of primary

care [108, 75].

4.4.1 Limitations

Research using administrative data is vulnerable to problems of accuracy, as well

as unforeseen flaws in internal, construct, or external validity. Extrapolation of the

study results to different settings and populations should be done with caution. For

instance, the findings of this study cannot be generalized to all patients, but apply

only to patients who are diagnosed with the codes used here. Patients with alternative

diagnostic codes may or may not demonstrate the cost effects and comorbidities found

in this patient population.

The use in this study of all ICD-9 depression codes fails to discriminate between

unipolar major depression and other types of depression. However, in daily practice,

medical billing professionals frequently are unable to accurately make this discrimina-

tion, and administrative data therefore cannot be as diagnostically precise as clinical

interviews of individual patients. Nevertheless, the more inclusive set of depression

codes used in this study probably results in a study cohort of depressed patients who

are symptomatically similar to that encountered in primary medical practice.

4.4.2 Conclusions

Depression was associated with significantly greater non-mental health cost in all

comorbid diseases studied, and the increase cannot be explained solely on the basis of

artifact or number of comorbidities. Greater non-mental health cost is driven mainly

by greater pharmaceutical and outpatient utilization. Our findings provide evidence

for reciprocal causation between depression and a wide range of comorbid diseases,
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although they do not reveal mechanisms by which this may occur. Efforts to improve

treatment of depression in the general medical setting have not yet yielded significant

reduction in non-mental health costs of chronic comorbid diseases in patients suffering

from depression.
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Appendix A

Full List of Variables used in

Modeling Quality

A.1 Diabetes Treatment

The following variables are based on the guidelines for the treatment of diabetes or

otherwise related to diabetes care.

EyeExam The number of eye exams. Note that this variable is hampered by the

fact that some people may have visits with eye doctors that are not covered by

their insurance or are covered by a different insurance plan.

HemoglobinTest The number of glycated hemoglobin tests.

LipidProfile The number of lipid profiles.

GenericLab The number of times unspecified lab work was performed (generally at

a hospital where the details of the lab work are not recorded as carefully as for

outpatient lab work). Multiple tests performed on the same day are considered

one occurrence.

AnyLab the number of times any of the following lab work was performed: glycated

hemoglobin tests, lipid profiles, or unspecified lab work.

105



DiabetesLab This variable is similar to AnyLab with two differences: the diagnosis

recorded with the lab work must be diabetes, and a broader range of lab work

is included. The included lab work is: glycated hemoglobin tests, lipid profiles,

unspecified lab work, hemoglobin tests, metabolic panels, urine microalbumin

tests, and serum creatinine test.

GlucoseSupplies The number of times glucose testing supplies were ordered. Note

that supplies are sometimes stored in the claims database as medical claims and

sometimes as drug claims.

AceInhibitors The number of prescriptions for ace inhibitors that the patient had.

Ace inhibitors are a class of drugs used to lower blood pressure and which can

slow damage to kidneys in diabetes patients.

AceInhibitorDays The number of days for which the patient had ace inhibitors

prescribed. This may be a more accurate measure than the number of prescrip-

tions, since prescriptions can vary in length.

ARBs The number of prescriptions for angiotensin II Receptor blockers that the

patient had.

A.2 Patient

The following variables are demographic information about the patient or about the

patient’s claims data.

Age the patient’s age.

Female 1 if the patient is a female, 0 otherwise.

Diabetic 1 if the patient is diabetic. After reviewing each patient’s claims data,

in the physician’s opinion a handful of patients in the study were not actually

diabetics but were included due to spurious coding.
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DrugsMissing An indicator variable which is 1 if the pharmacy claims for the pa-

tient were unavailable.

DiseaseCount The number of chronic diseases that the patient had.

Anxiolytics The number of prescriptions that the patient had for anxiolytics.

Antidepressants The number of prescriptions that the patient had for antidepres-

sants.

Pain 1 if the patient had any coding for pain, 0 otherwise.

MedianMonthlyCost The patient’s median monthly cost over the study period.

CostDerivative The slope of the patient’s monthly costs over the study period.

This was calculated for each patient by fitting a linear regression of monthly

cost versus time (as an index of 1 . . . 24 for the 24 months in the study period)

and taking the coefficient for time.

CostSecondDerivative The second derivative of the patient’ s monthly costs over

the study period. This was calculated for each patient by fitting a linear regres-

sion of monthly cost versus time, including a quadratic term, and taking the

coefficient for the quadratic term.

A.3 Utilization

InpatientDays The number of days spent in the hospital.

ERVisits The number of visits to the emergency room.

OfficeVisits The number of visits coded as 99213 or 99214 and taking place in an

office or outpatient hospital setting.

InpatientPerOffice The ratio of inpatient days to office visits.

ERPerOffice The ratio of emergency room visits to office visits.

107



TotalVisits The sum of the number of office visits, emergency room visits, and

inpatient days.

ERVisits.normalized ERVisits divided by TotalVisits.

InpatientDays.normalized InpatientDays divided by TotalVisits.

OfficeVisits.normalized OfficeVisits divided by TotalVisits.

ER.outpatient When an emergency room visit occurs, the percent of time that the

next visit is an outpatient visit.

ER.inpatient When an emergency room visit occurs, the percent of time that the

next visit is an inpatient visit.

ER.ER When an emergency room visit occurs, the percent of time that the next

visit is another emergency room visit.

ER.other When an emergency room visit occurs, the percent of time that the next

visit is any other type of visit than outpatient, inpatient, or emergency .

DaysSinceLastERVisit The number of days between the patient’s last emergency

room visits and the end of the study period. For patients who didn’t have any

emergency room visits this was set equal to the length of the study period.

PhysicalTherapy The number of days on which the patient had physical therapy

performed. When a patient has physical therapy it often lasts a large number

of days and this may drive up some of the quantity of care measures.

Chiropractic the number of days in which the patient had chiropractic services

performed. As with physical therapy, chiropractic is usually performed a large

number of times and this may drive up some of the quantity of care measures.

A.4 Ratios

GenericLabsPerOffice GenericLab divided by OfficeVisits
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CostDrugRatio The patient’s median monthly cost divided by the average number

of “chronic” drugs they were on.

InpatientDrugRatio The number of days the patients spent in the hospital divided

by the average number of “chronic” drugs they were on.

DiseaseVisitsRatio The number of chronic diseases divided by the number of visits.

DiseaseRegularityRatio The number of chronic diseases divided by VisitRegular-

ity.

A.5 Markers of good care

The following variables correspond to aspects of the patient’s care that are considered

to be markers of good care.

Mammogram The number of mammograms.

BinaryMammogram 1 if the patient had at least one mammogram, 0 otherwise.

VisitRegularity The entire span of the patient’s claims history is broken up into

three month intervals and VisitRegularity is the fraction of those intervals in

which there is a claim.

OfficeVisitRegularity The same as visit.regularity except that only office visits are

counted, not all claims.

LongestOfficeGap The longest gap, in days, between successive office visits.

A.6 Markers of poor care

Narcotics The number of prescriptions for narcotics that the patient had.

NarcoticsDays The number of days for which the patient had narcotics prescribed.

This may be a more accurate measure than the number of prescriptions, since

prescriptions can vary in length.
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B12 The number of prescriptions or injections of vitamin B12 that the patient had.

Over-the-counter use of vitamin B12 would not be included if the patient paid

for out of their own pocket.

Polypharmacy An indicator variable which is 1 if the patient’s pharmaceutical

treatment for diabetes was initiated with a combination of drugs at once. By

default, the indicator is set to 0 for patients who were already on diabetes drugs

at the beginning of the study period.

A.7 Providers

ProviderCount The number of providers (i.e. doctors) that served the patient.

Note that a hospital or a lab or a clinic can be counted as a provider.So what

will anesthesiologists, pathologists, and so on.

PrescriberCount The number of doctors who prescribed drugs for the patient.

DiabetesProviders The number of providers who treated the patient’s diabetes.

We include all providers who had a claim for which diabetes was listed as the

diagnosis.

PrescribersPerProvider The number of prescribers divided by the number of providers.

A.8 Claims

MedicalClaims The number of days on which the patient had a medical claim (i.e.

all claims except prescriptions).

ClaimLines The number of medical claims that the patient had. This differs from

MedicalClaims in that multiple claims on the same date are each counted.

ClaimsPerDate A patient may have multiple claims on any given date. This is the

total number of claims a patient had divided by the number of dates on which

the patient had claims. This variable is an attempt to get at the “complexity”of
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a visit – presumably the more claims that occurred on a date the more complex

the encounter.

A.9 Prescriptions

DrugsStarted The number of drugs started during the time period. (Any drug for

which the first prescription occurs within the first 90 days of the study period

is not included since it is likely that patient was already on the drug and is

renewing their prescription.)

DrugsEnded The number of drugs stopped during the time period. (Any drug for

which the last prescription occurs within the last 90 days of the study period

is not included because the patient may have continued on the drug after the

study period ended.)

DrugsAtBeginning The number of drugs the patient is on at the beginning of the

time period. (Any drug for which the first prescription occurs within the first

90 days of the study period is included here.)

MaxDrugs The maximum number of drugs the patient is on at one time.

AverageDrugs The average number of drugs the patient is on at a time

UniqueDrugs The number of distinct drugs that the patient is one over the course

of the study period.

DrugGapNone The fraction of refills which occurred immediately after the previous

prescription ran out (i.e. there was no gap before the refill).

DrugGapSmall The fraction of refills which were preceded by a small gap (between

1 and 30 days) after the previous prescription ran out.

DrugGapMedium The fraction of refills which were preceded by a medium gap

(between 31 and 90 days) after the previous prescription ran out.
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DrugGapLarge The fraction of refills which were preceded by a large gap (more

than 90 days) . These likely aren’t refills at all but indicate that the patient

went off of the medication for a while.

We included three versions of the prescription variables: one set that applies to all

drugs, one that applies only to chronic drugs, and one that applies only to acute drugs.

The versions applying to chronic drugs are prefixed “Chronic” and those applying to

a cute drugs are prefixed “Acute.”
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Appendix B

The 21 single-period scenarios

Control A Treatment A Control B Treatment B
1 0.02 0.04 0.02 0.04
2 0.04 0.08 0.04 0.08
3 0.08 0.16 0.08 0.16
4 0.02 0.04 0.02 0.02
5 0.04 0.08 0.02 0.02
6 0.08 0.16 0.02 0.02
7 0.02 0.04 0.04 0.04
8 0.04 0.08 0.04 0.04
9 0.08 0.16 0.04 0.04

10 0.02 0.04 0.08 0.08
11 0.04 0.08 0.08 0.08
12 0.08 0.16 0.08 0.08
13 0.02 0.01 0.02 0.04
14 0.04 0.02 0.02 0.04
15 0.08 0.04 0.02 0.04
16 0.02 0.01 0.04 0.08
17 0.04 0.02 0.04 0.08
18 0.08 0.04 0.04 0.08
19 0.02 0.01 0.08 0.16
20 0.04 0.02 0.08 0.16
21 0.08 0.04 0.08 0.16

Table B.1: The rate of occurrence of each diagnosis in the 21 single-period scenarios.
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Appendix C

ICD-9 Codes Used in Depression

Study
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Asthma

49300 extrinsic asthma
49310 intrinsic asthma
49390 asthma unspecified
49391 asthma unspecified with status asthmaticus
49392 asthma unspecified with acute exacerbation

Back Pain
7242 pain low back
7244 thoracic or lumbosacral neuritis or radiculitis unspecified

CHF 4280 congestive heart failure, unspecified

CAD
41400 coronary atherosclerosis of unspecified vessel
41401 coronary atherosclerosis of native coronary artery

Diabetes

25000 diabetes without mention of complication
25001 diabetes with ketoacidosis
25002 diabetes with hyperosmolality

Epilepsy
34510 tonic-clonic seizure
34590 epilepsy NOS
78039 non-febrile convulsions

Headache

34600 classic migraine
34601 classic migraine with intractable migraine
34610 common migraine
34611 common migraine with intractable migraine
34690 migraine unspecified
34691 migraine unspecified with intractable migraine
7840 headache

Hypertension
4010 malignant hypertension
4011 benign hypertension

Intervertebral Disc
Disease (IVDD)

7220 displacement of cervical intervertebral disc
7221 displacement of thoracic or lumbar intervertebral disc
7224 degeneration of cervical intervertebral disc
72252 degeneration of lumbar intervertebral disc
7231 cervicalgia

Obesity
27800 obesity unspecified
27801 morbid obesity

Pain in Joint

71940 site unspecified
71941 shoulder
71942 upper arm
71943 forearm
71944 hand
71945 pelvic region and hip
71946 lower leg
71947 ankle and foot
71949 multiple sites

Table C.1: Diagnostic Codes.
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ICD 9
Code

Description Members

311 Depressive disorder, not elsewhere classified 3003

3004 Dysthymic disorder 1452

29632 Major depressive disorder, recurrent episode – moderate 1226

3090 Adjustment disorder with depressed mood 871

29633
Major depressive disorder, recurrent episode – severe,
without mention of psychotic behavior

677

29630 Major depressive disorder, recurrent episode – unspecified 666

29622 Major depressive disorder, single episode – moderate 484

29620 Major depressive disorder, single episode – unspecified 422

29623
Major depressive disorder, single episode – severe, without
mention of psychotic behavior

325

29621 Major depressive disorder, single episode – mild 132

2963 Major depressive disorder, recurrent episode 127

29631 Major depressive disorder, recurrent episode – mild 126

29634
Major depressive disorder, recurrent episode – severe,
specified with psychotic behavior

101

29635
Major depressive disorder, recurrent episode – in partial or
unspecified remission

70

2962 Major depressive disorder, single episode 54

29636
Major depressive disorder, recurrent episode – in full
remission

51

29624
Major depressive disorder, single episode – severe, specified
with psychotic behavior

27

3091 Prolonged depressive reaction 26

29625
Major depressive disorder, single episode – in partial or
unspecified remission

26

29626 Major depressive disorder, single episode – in full remission 21

2980 Depressive type psychosis 2

More Than One Code 4116

Table C.2: ICD-9 codes used to identify members diagnosed with depression.
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