
~_L____ _ _1L ~· i

B.B.Ir, Catholic University of Louvain, Belgium
(1965)

MS, University of Delaware
(1967)

Submitted in partial fulfillment

of the requirements for the degree of

at the

Massachusetts Institute of Technology

February, 1970

Signature of Author .. - - . _~ , ..... . .. • •. .-. ..
nPnartment of Civ2 Enainehfinc, January 8, 1970

Certified by . ..... y . ,, , . . ....... *
Thesis Supervisor

Accepted by . . . . . . . . . ...
Chairman, Departmental Committee on Graduate Students

1

Archives
OSS. INST. 7)

FEB 24 1970
LIBRARIES

·ItL- zz

FIRST PASSAGE AND OTHER FAILURE CRITERIA IN

NARROW-BAND RANDOM VIBRATION: A DISCRETE STATE APPROACH

BY

ERIK H. VANMARCKE



ABSTRACT

FIRST PASSAGE AND OTHER FAILURE CRITERIA IN NARROW-BAND

RANDOM VIBRATION: A DISCRETE STATE APPROACH

by

ERIK H. VANMARCKE

Submitted to the Department of Civil Engineering on January 8,
1970 in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

A closed-form analytical estimate is given for the
probability distribution of the time required for a narrow-
band random process to cross a specified threshold level for
the first time. The results are specialized for the case
when the process represents the response of a lightly damped
single-degree-of-freedom oscillator to wide-band random
excitation.

The solution is based upon a two-state description
of the threshold crossings of a stationary narrow-band pro-
cess and its envelope. The same concept is also used to
obtain the mean and variance of the fraction of the peaks
which exceed a specified threshold. The stochastic properties
of certain measures of the response of simple inelastic sys-
tems to random excitation are investigated.

It is shown that the theory of discrete state Markov
processes may provide an excellent tool for analyzing the
performance of structural systems for which various states of
damage may be identified, and where the complete excitation
history consists of a sequence of motions isolated in time.
The feasibility of performing a dynamic system design opti-
mization by means of this approach is indicated.
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INTRODUCTION

The response of structures to random excitation is of

wide engineering interest. The vibration environment may be

generated by such diverse sources as atmospheric turbulence,

ocean waves in a rough sea, ground motion due to earthquakes

or, acoustic pressures caused by jet engines and rocket mo-

tors. In each case, the excitation may be characterized by

the fact that vibrational energy is generated in a random

manner over a broad band of frequencies. A probabilistic

outlook on the design of structures or equipment functioning

in such an environment seems mandatory.

Those aspects of the theory of random vibration which

deal with the first and second order statistics of random

processes and with the input-output relations for linear de-

vices has been developed and used for almost 25 years in the

field of communication engineering [1-5], and have only fair-

ly recently [6, 7] caught the attention of mechanical and

structural engineers. One aspect of the theory is widely rec-

ognized [7, 8, 9] not to have been satisfactorily investi-

gated: that of the conversion of random vibration response

measures into useful performance or reliability measures.

Since the designer's chief aim is to insure satisfactory per-

formance of the structure, it is important that he be given
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the (preferably analytical) tools to adequately formulate and

then evaluate performance criteria. It is with this aspect of

the theory of random vibration that this thesis deals. Most

of the work in Chapters II through VII is believed to be

original.

One very important failure mechanism is that which

postulates failure when the dynamic response quantity first

reaches a maximum allowable value. The desired reliability

measure is the probability of the time to first passage across

a specified barrier. An exact solution to this classical prob-

lem has not yet been found [10, 11, 12]. Shinozuka [13] pro-

posed upper and lower bounds, and some widely used approximate

results may be obtained if the major assumption is made that

the threshold crossings occur independently according to a

Poisson process [14, 15]. Actual values of the first passage

probability may considerably deviate from this simple estimate,

however [16]. From numerical studies [17] and other analytical

work [18, 19] useful information has become available about

the nature of the dependence of say, the mean first passage time

on the barrier configuration, the barrier level and the char-

acteristics of the structure and the excitation. In Chapter

III, a new approximate closed-form analytical solution is ob-

tained to the first crossing problem for essentially arbitrary

narrow-band random processes, i.e., the solution is not re-

stricted to Gaussian response processes nor to white noise

input. The analytical result compares very favorably with the
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estimates obtained by simulation techniques and other numer-

ical and analytical work [17, 19]. Also, the proposed solution

is in agreement with the available information regarding the

behavior of the first passage probability under limiting con-

ditions associated with high and low thresholds [7, 8, 9].

The solution is based on a two-state description of the thresh-

old crossings of a stationary narrow-band random process and

its envelope.

The same concept (of a two-state process) is also use-

ful in obtaining other potentially important performance meas-

ures, e.g., the fraction of the peaks of the response which

exceed a specified threshold, or a closely related measure,

the fraction of the time the response envelope exceeds the

threshold. These fractions are random variables for which the

mean and variance are given in Chapter V. The approach also

leads to a new way of deriving the probability distribution
:

of the envelope and of the peaks in a narrow-band random pro-

cess,and to an uncommonway of viewing the problem of linear

cumulative fatigue damage [20, 21].

The above mentioned simple performance criteria do

not by any means constitute a final answer as to how random

response characteristics should be converted into useful re-

liability measures. In Section V.4 and also in Chapter VII it

is shown (on the basis of some simple three-state models)

that the theory of discrete state Markov processes [22, 23]



provides an excellent tool for modeling more complex (but

also more realistic) failure mechanisms. All of the Chapters I

through VI deal with the response of a structural system dur-

ing a single excitation (e.g., a single earthquake, a single

flight, etc.) of given intensity and duration. In Chapter VII

we study the occurrence pattern of a set of single isolated

motions and their effect on the structure. One of the most

useful properties of the proposed multiple state Markov chain

approach is that it provides a framework for quantifying the

performance of the structure in terms of losses and rewards.

This aspect of the theory of Markov chains has recently re-

ceived considerable attention in the field of control pro-

cesses and mathematical optimization [23-26]. The feasibility

of performing a dynamic system design optimization by means

of this approach is indicated.

Chapters III and IV (see Eqs.III-3.3,4 and IV-4.9-12)

contain the principal new results on first passage probabil-

ities. The fundamentals needed to arrive at the first-passage

results are developed in Chapter II. Chapters V, VI and VII,

each of which is also based on the work in Chapter II, may be

studied almost independently. Finally, the reader may wish to

bypass Chapter I, which is included mainly for easy reference.



CHAPTER I

SOME BASIC PROPERTIES OF STATIONARY RANDOM PROCESSES

Introduction

No introduction is needed for those probabilistic

concepts which are well-known and standard. They will be used

freely throughout the thesis. This chapter is devoted mainly

to a review of a few basic properties of random processes for

which conflicting definitions exist. First, the autocorrela-

tion function and the spectral density function are discussed.

Another concept of central importance here for which a formal

definition is needed is that of the envelope of a narrow-band

random process. Rice's [1] results for the mean stationary

threshold crossing rates are given for easy reference. For a

more extended treatment on these subjects see, e.g., Rice [1],

Crandall [7, 27], Cramer and Leadbetter [9). In the final

section of this chapter the spectral density shape factor of

a Gaussian stationary random process is introduced and evalu-

ated for a few well-known spectral density functions.
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I.1. Autocorrelation and Spectral Density

Let the zero-mean random process X(t) be stationary

in the wide sense (or weakly stationary). Then its autocorre-

lation function RX(,r), defined as the ensemble average of the

product of the random variables X1 = X(tl) and X2 = X(t2), is

a function only of the absolute value of the time difference

T = t2-tl. We have

+co +m

R(T) = E[X(ti)X(tl+T)] = f f x 1x 2p(xl1 tl;x 2,t 2 )dxldx 2
-oo -O0

where p(xltl;x 2 ,t2 ) denotes the joint probability density

function of X1 at time t, and X 2 at time t2 . Assuming the pro-

cess is ergodic, the temporal autocorrelation function of an

individual sample function x(t) also equals R(T).

+T

R(T) = <x(tl)x(tl+T)> = lim i / x(t)x(t+T)dt (1-1.2)
T-* T -T

The symbol < > denotes the operation of temporal averaging

and T is the averaging time.

If the autocorrelation function is absolutely inte-

grable and finite then its Fourier transform defines the

power spectral density G(w) of X(t). Since R(T) is real and

even, this can be written as a cosine transform,



2 "
G() - / R(T) cosr dT (1-1.3)

0CTO

R(T) = f G(w) cosT dw (1-1.4)
0

The above expressions are known as the Wiener-Kinchine rela-

tions [28, 29]. G(w) is the one-sided spectral density, which

exists only for w>O. The two-sided spectral density obtained

by taking the exponential transform, takes values for both

positive and negative w; it is an even function and for w>0

is equal to half the value of the one-sided spectral density.

The one-sided spectral density will be used exclusively

throughout this thesis.

The first few moments of the one-sided spectral densi-

ty are frequently used in the sequel. We have for the j th

moment,

. = f J3 G(w) dw (1-1.5)
J 0

In particular, for j=O, using Eqs. 1-1.5, I-1.4 and I-1.1,

2

10 = f G(w)dw = R(O) = E[X ] (I-1.6)
0

2

Also, for ergodic processes, A0 =<x >. Each sample function may

loosely be thought of as a superposition of elementary sinus-

oids each of which is characterized by its frequency w and has

II
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a random amplitude and phase. G(w)dw may be interpreted as

the ensemble average power (or "long-run" average power in

the ergodic case) contained in those elementary sinusoids

with frequencies in an infinitesimal band (w, w+dw).

1.2. Formal Spectral Representation of a Random

Process

A formal spectral representation of the real station-

ary random process X(t) is possible. The random time process

X(t) may be expressed in terms of the random components U(w)

and V(w) of the spectral process in the following way [2, 30]

X(t) = I [U(w)costt + V(w)sinwt]d (1-2.1)
0

Eq. I-2.1 states that the random process X(t) is a superposi-

tion (in the frequency domain) of elementary harmonic oscil-

lations [2]

[U((m)cosw(t + V(w)sinwt]dw = A cos(wt+B ) (1-2.2)

each of which has an angular frequency w while the random

amplitude AW and phase BW are functions of U(w)dw and V(A)dw.

If the random variables U(w)dw and V(w)dw have zero mean and

variance equal to G(w)dw and if for all (nonnegative)wi and w2,

with frequencies in an infinitesimal band (w, w+dw)

1.2. Formal Spectral Representation of a Random

Process

A formal spectral representation of the real station-

ary random process X(t) is possible. The random time process

X(t) may be expressed in terms of the random components U(w)

and V(w) of the spectral process in the following way [2, 30]

X(t) / [U(w)coswt + V(w)sinwt]dw

Eq. I-2.1 states that the random process X(t) is a superposi-

tion tin the frequency domain) of elementary harmonic oscil-

lations [2]

[V(cl!>coscot + V(w)sinwt]dw A cos(wt+B ) (1-2.2)
w w

each of which has an angular frequency w while the random

amplitude A, and phase E, are functions of U(w)do and V(o)dw.

If the random variables U(w)dw and V(w)do have zero mean and

variance equal to G(w)dw and if for all (nonnegative)oi and w2,



E[U(lo1)V(W2)] = 0

then it may be verified that

E[{U(w)coswt + V(w)sinwt}dw) = 0

E[ ({U(w)
2

coswt + V(w)sinwt}dw) I

= E[{U(w)dw} 2 Cos 2wt + {V(w)dw} 2sin 2wt]

= G(w)dw

The elementary

also have zero

processes U(w)

E[U(wl)U(m2)
]

representation,

factory in term

X(t). Following

oscillations, Eq. I-2.2,that contribute to X(t)

mean and variance G(w)dw. Furthermore, if the

and V(w) have orthogonal increments, i.e.,

E[V(WI)V(w2)] = 0 for wiw 2 then the spectral

Eq. 1-2.1, of X(t) may be shown to be satis-

Is of the first and second order statistics of

Crandall [30),

E[X(t)] = f E[U(w)]coswtdw + f E[V(w)sinwtdw = 0

E[X(t)X(t+T)] = fI E[{U( 1 )
0 0

{U ( 2 )cosw2 (t+T)

= f G(wl)dwl[coswl
0

= 7 G(wl)coswlTdw,
0

coswIt + V(wl)sinwit}

+ V(w2)sinw2 (t+) }dwldw2

tcosw•(t+T) + sinwltsinwl(t+T)]

= R(T) (1-2.7)

15

(1-2.3)

(1-2.4)

(1-2.5)

(1-2.6)

mI

P-
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In particular the variance of X(t) becomes

E[X2 ] = f G(w)dw (1-2.8)
0

Gaussian random processes are completely characterized

by their first and second order statistics. Hence their spec-

tral representation in terms of the processes U(w) and V(w)

with properties given above, will be entirely equivalent to

their time representation. The concepts discussed above, which

are fundamental to the theory of stationary processes, have

been included here mainly to allow a formal definition of the

envelope of a process to be introduced in the next section.

1.3. Envelope of a Random Process

Various definitions, formal and informal, of the en-

velope of a random process are in existence. Those that have

direct physical significance are closely related with pro-

cesses having narrow-band spectral densities. For example, the

earliest formal definition due to Rice [1] presumes the exist-

ence of a "representative midband frequency". In the case of

a narrow-band process the envelope is intuitively thought of

as a pair of smoothly varying curves R(t) and -R(t) where

IR(t)I is such that IR(t)IIX(t)I for all t, and IR(t)I=IX(t)I

at or very nearly at the peaks of IX(t)t.



If X(t) represents, say, the displacement response of

simple mechanical system (mass-spring-dashpot) then the fol-

owing "energy-based" envelope definition due to Crandall [31]

ay be adopted

V[R(t)] = V[X(t)] + lk2(t) (1-3.1)
2

[X(t)] is the potential energy per unit mass and -X2(t)2
here X(t) is the time derivative of the process, is the ki-

etic energy per unit mass. The envelope R(t) is defined as

he hypothetical displacement that would result if the total

nergy were converted into potential energy. A closely related

efinition also due to Crandall [7] defines IR(t) as the ra-

ius of the point (X/w0,X) in the phase-plane representation

f the random process

R2 (t) = X2 (t) + X2 (t)/Wo 2  (1-3.2)

here w0 is the average or expected frequency of the process

(t), to be formally defined in section 1.4.

Presume X(t) to be the response of a linear one-degree-

f freedom oscillator excited by white noise. Since X(t) is a

econd-order Markov process, the mathematical difficulties

ncountered in solving first-crossing problems for X(t) are

early insurmountable [11, 32]. In the work of Hellstrom [33],



Rosenblueth and Bustamente [171 and Caughey and Gray [34] the

envelope (or a closely related quantity in [15])of X(t) is

defined in such a way that the property of polar symmetry may

be used to reduce the second-order Markov process X(t) to a

first-order Markov process.

Cramer and Leadbetter's [9] definition,although essen-

tially equivalent [9, 30] to that of Rice [1], does not re-

quire a "representative midband frequency" to be specified and

can strictly be obtained for any stationary random process

(whether or not the concept of an envelope is physically mean-

ingful). Also, unlike the envelope definitions mentioned ear-

lier, their definition leads to an envelope process whose

mean-square derivative does exist. As will be shown subse-

quently, the latter property is needed to be able to compute

the mean number of times the envelope crosses a level x=a,

with positive slope, per unit time. According to Cramer and

Leadbetter [9], the envelope R(t) of X(t) is defined as the

modulus of the envelope vector R(t)

R(t) = R(t)l = [X2(t)+X2(t)]1/2 (1-3.4)

in which the random process X(t) is defined in terms of the

components U(w) and V(w) of the spectral representation of

X(t), Eq. I-2.1,

X(t) = f [U(a)sinwt - V(w)coswt]dw (1-3.5)
0

~



(t) is seen to be composed of elementary oscillations

[U(w)sinwt - V(w)coswt]dw (1-3.6)

ie vector diagram (figure 1.1) shows how the contribution to

ie vector ý(t) of the elementary oscillations with frequen-

Les in the range (w,w+dw) ,is related to the similar contrib-

:ions to X(t) and X(t) and in turn to U(w)dw and V(w)dw. This

apresentation is due to Crandall [30].

Contribution to X

bution to R

to X

.g.I.l. Rotating Vector Diagram Showing Contributions in the
equency Range (w,w+dw) to the Processes X(t), X(t) and R(t).



It is easy to see that IX(t) <IR(t) , and IR(t)jl=X(t)) for

any t such that X(t)=0.

The envelope process R(t) is directly related to X(t)

and X(t) which in turn are functions of U(w) and V(w). The

random variables X(t) and X(t) may be shown to be uncorrelated

and hence, in the case of Gaussian processes, they will be in-

dependent and Gaussian distributed. In that case it is possible

to derive the joint distribution of R(t) and its derivativeR(t)

[9, 30]

r -r 2 /2x o  1 -i2/(2B/X 0 )p(r,r) - e e (1-3.7)

0

with j given by Eq. I-3.5 and

B = Xo 2 - X? (1-3.8)

The above result, given by Cramer and Leadbetter [9],reveals

that R(t) and R(t) are independent random variables; R(t) has

a Rayleigh distribution and R(t) is normally distributed with

zero mean and variance B/Xo .

In closing this section on envelope definitions it

should be stressed that all available definitions are very

similar for narrow-band random processes [9]. Note, for exam-

ple, that the absolute value of X(t) defined by Eq. I-3.6 be-

comes nearly equal to the absolute value of X(t)/w 0 where X(t)



is the time derivative of X(t) and wo is the expected circu-

lar frequency. We have

X(t)- d [X(t)] d [ f [U(w)coswt + V(w)sintct]dw]
dt dto 0

= - I w[U(w)sinwt - V(w)coswt]d
0

(1-3.9)

Since, for a narrow band process, all frequencies are closely

centered around w , X(t) may be approximated as follows

(1-3.10)

1.4. Average Stationary Crossing Rates

The mean rate v a', of crossings with positive slope

("upcrossings") of a level X=a by the process X(t) may be

obtained from the fundamental result due to Rice [1],

va = f p(x,x)xdx (1-4.1)
x=a

in which p(x,x) is the joint probability density function of

X(t) and its time derivative X(t). The mean rate v of zero

crossings with positive slope is

vo = [va] (1-4.2)
a=0

and the apparent circular frequency of the process is w0 =2'vo0

X(t) = -o0X(t)

an



Similarly, the mean rate n of upcrossings of a
a

ild X=a by the envelope R(t) may be found from

na p(r,r) rdi
0 r=a

(1-4.3)

ch p(r,r) is the joint probability density function of

id R(t).

For a stationary Gaussian process X(t) with a (one-

spectral density G(w) we have

p(x,k) = ---- e
v/2Tr X

-x2/2X 1 .

/2TX e2

I,r) is given by Eq. I-3.7. The mean rates va and na of

3ings of a level X=a associated with the process X(t)

3 envelope R(t), respectively, become

1 L a2 -a2/

a 2 7 O

2• 1
0·rh o

(1-4.5)

-a2/2X0
(1-4.6)

1.5. Spectral Density Shape Factor

Much of our interest will focus on the ratio va/na,

rage number of upcrossings of a level X=a of the ran-

(1-4.4)



dom process X(t) for each upcrossing (of the same level) of

its envelope. For Gaussian processes, using Eqs. I- 4.5 and

I- 4.6,

Va 2 0= 2 (1-5. 1)
a 2' 2 (X0 X2-X2) a

where Xj is the j th moment of the spectrum G(W), Eq. 1-1.5.

Let the level X=a be expressed in terms of the r.m.s. value

/Xo of the process X(t),

r = ___ (1-5.2)

and let k be defined as follows

x2
k = {27n(- --1 )1/2 (1-5.3)

A012

Then one obtains the simple result,

Va 1a 1 (1-5.4)
na kr

Full advantage will be taken of the surprising simplicity

of the dependence of the ratio va/na upon the (normalized)

barrier level r. The factor k is a characteristic of the shape

of the spectral density of the stationary random process and

depends only on its 0 th, 1 st and 2 nd moments. It will be

m



1 density shape factor or simply, the shape
2
1rz' inequality, 0 < <1, and hence

Dnsists of a single spike, then k=0; for

k÷/2i. In the remainder of this section,

is computed for a few spectral densities

Jescriptive parameters.

nited Filter

Ectral density, G(w), of an ideal band-pass

in white noise input is defined by

G(w) = Go, O<W amwb

0 , otherwise
(1-5.5)

Wa Wb

r.I.2. Band-Limited Filter

:igure 1.2. The first few moments Xj are

24
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'1

-? J uO. U=j
" o 3 " b a

Introducing the values of the moments into Eq. I-5.3 the

shape factor k becomes

3w2 (W -Wa) 1/2
k = /2-T[1 -b (1-5.7)

b a

Wb+wa
in which wm is the midband frequency, i.e., wm- b a. Letting

S2

= M , it may be easily shown that
•0b-W ab a

k 1 2r7
k 2 (1-5.8)

QI12+Q-

For Q>>1 the following approximation will be sufficiently

accurate

k I(1-5.9)

ii) Gaussian Filter

The (one-sided) spectral density of a Gaussian filter with

Gaussian white noise input is defined by [35]

G ( _-Wo) 2
G(w) = exp[- 1, w>0 (1-5.10)

/22To 202

'qW

X0 = Go (b-w a

1 G (2_-~2) (1-5.6)



0(w)

Cn- a-

Fig.I.3. Gaussian Filter

as shown in figure 1.3. For cases in which a is substantially

smaller than w, one easily obtains the following approximate

results,

(1-5.11)

X2 =  G (w2 +072 )
0 r.

Introducing Eqs. 1-5.11 into Eq. 1-5.3 and letting Q'=w,/O

one obtains

k 1 f 2' (5.27 1 +Q '- 2 Q'

11ýiPPPPmm

- n , -

(1-5.12)



iii) Response of a Simple Linear Oscillator

asic input-output relationship of a linear system ex-

by stationary random excitation is [9]

GX( m) = GI (w) IH(w) 2 (1-5.13)

GI (w) is the (one-sided)input spectral density and GX(w)

one-sided) response spectral density. H(w) is the trans-

unction relating response to input for sinusoidal ex-

ion. For example, the spectral density of the displace-

response of a lightly damped linear oscillator when the

ation is a stationary Gaussian ideal white noise with

ral density GI(w)=Go for 0swms is given by

G
GX (M) = 0

(x-2 24 0 , OmSW- (1-5.14)

Dwn in figure 1.4.

GM()

Fig.I.4. Spectral Density of the Response of a
Lightly Damped Oscillator to White Noise Excitation.

27



in which o0 is the undamped natural frequency and c the ratio

of critical damping of the one degree of freedom system. The

first few moments of the spectral density are

S7TG o
X0 = f GX())dw =

0 4C n3

W_2 7Go 2c 2/1-2

n [1 - Itan-l( )]

12 =
nn

(1-5.15)

(1-5.16)

(1-5.17)

Inserting the above expressions into Eq. I- 5.3 one may easily

obtain the following approximate expression

k = 2/2 1/2 , for small (I-5.18)

Above expression is 'hsymptotically" (for •*O) exact.

Similar computations may be performed for variety of

combinations of excitation spectra (other than white noise)

and transfer functions. A paper by Pulgrano and Ablowitz [36]

contains a fairly complete list of moments of all possible

transfer functions related to one-degree-of-freedom damped

oscillators. The paper lists explicit analytical expressions

for the incomplete integrals I(Q),

I(N) = f wJiH(w)1 2dw
0

(1-5.19)

28
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thus providing a straightforward method for computing the

spectral moments of the response in those cases where the

excitation spectrum G (w) is piece-wise linear.I



CHAPTER II

STATIONARY THRESHOLD CROSSING CHARACTERISTICS

II.l. Motivation

Measures of performance of physical systems undergoing

random vibration are often quite naturally specified in terms

of some fixed threshold value of an oscillitary quantity of

the system. This will be the case when failure of the system

is due to first excursion up to a certain level. Sometimes

failure is related to the number of crossings of a threshold

per unit time. For example, in a simple elasto-plastic system

subjected to stationary broad-band random excitation, impor-

tant response measures such as the total permanent deformation

or the energy dissipated due to yielding, are closely related

to the number of crossings of the yield level of the system.

Let X(t) be the dynamic (response) variable of inter-

est. Also, let X=a and X=-a represent fixed threshold values,

in terms of which the performance requirement of the system

is specified. Such a two-sided threshold configuration (X=a

and X=-a) will be called a D type barrier (following Crandall



et al.[171).Of all the information contained in a complete de-

scription of the random process X(t) only a small portion is

relevant to the designer attempting to characterize the thresh-

old-related performance of the system. The information contain-

ed, say, in the response r.m.s. value seems necessary, but not

sufficient to solve first passage problems. The same maybe said

of the statistic va, the expected number of times X(t) crosses

the level X=a at positive slope. The information of interest

to the designer is believed to be that needed to completely

characterize a simple two-state process (a zero-one process)

Da(n) associated with the D type barrier jIX=a. The process

Da(n) is observed at the peaks of IX(t) , i.e. when X(t)=O,

and n counts the number of peaks or observations. Figure II .la

shows the relation between the zero-one process D (n) and the

actual random process X(t). When the i th peak of IX(t)I ex-

ceeds the threshold jIX=a, then Da(i)=l, otherwise Da(i)=0.

It will be of interest to consider the length of sequences of

consecutive peaks for which the process D (i) has the same

value. Let N and N be discrete random variables de-O,D 1,D

scribing the number of consecutive peaks for which the process

Da(i) takes a value "zero" and "one", respectively. In many

cases interest will center on the value Nf,D (see figure II.la)

which represents the number of average half-cycles it takes

to cross the (two-sided) barrier for the first time.

The preceding paragraph deals with D type barriers.

1



X(t)

Fig.II.la. The Discrete Time Two-State Process D (n)
(for example, Da(1)=0, Da (7)=0 , Da(15)=1, Da(16)=l , etc.)

X(t)

Fig.II.1b. The Discrete Time Two-State Process B (n)
(for example, Ba (7)=1, Ba (13)=0, Ba (17)=l, Ba(20~=0, etc.)



In many cases of practical importance the barrier configura-

tion is a simple one-sided barrier X=a referred to here as a

B type barrier. This quite naturally arises, for example, in

processes with nonzero mean, e.g., where the total response

may be viewed as the result of a superposition of a random

oscillatory component and a slowly varying trend-setting com-

ponent. For a formal study of performance criteria related to

a B type barrier it will again be useful (as in the case of a

D type barrier) to introduce a zero-one process. The new pro-

cess Ba(n) is observed at the peaks of X(t), i.e., every

(vo)-1 seconds on the average. See figure II.lb. Let N1,B

denote the size of a clump of peaks of X(t) above the thresh-

old and N :the number of consecutive peaks of X(t) below
O,B

the threshold. Nf,B denotes the number of average cycles to

cross the threshold X=a for the first time.

Important statistical properties of Da(n) and Ba(n)

are derived in sections II.4 and 11.5 from the characteristics

of still another two-state process related to the envelope

R(t) of the process X(t). The latter is discussed in sections

11.2 and 11.3. The main results derived in this chapter,which

will be used extensively throughout the remainder of the the-

sis, are summarized at the end of the chapter.



lope

ope

ate

0

Fig.II.2. The Continuous Time Two-State Process E at)



Figure 11.2 indicates the sequence of times tfE, 1E '
t(2 ), t(2) t( ..3) i.e., the successive times spent in
1,E O,E' l,E

states 0 or 1. The time tfE is a sample value of the random

time Tf,E to first passage of the barrier R=a. The times tl

t , ... are sample values of the random variable T1lE, the

length of time of an excursion above the threshold. Similarly,

the times t(1) t(2) .. are sample values of T , the
O,E' O,E' 0,E

length of a "fade" (as it is called in the literature of com-

munications theory [91)

The steady-state behavior of the process Ea(t), i.e.,

the characteristics of TO,E and TI E, will be examined first.

Let E[TOE] and E[TIE] be the average holding times in state

0 and state 1, respectively. The average number of envelope

crossings of the level R=a with positive slope is na as given

by Eq. 1-4.3. The time lapse between two upcrossings is

TO,E+T1,E. It is a fundamental result of the theory of re-

current events [37] that

E[TO,E+T1,E ] = (II-2.1)
na

For similar reasons the expected half-period of the narrow-

band random process X(t) is related to the average rate 2vo of

crossings of X=O,

E[Half-Period] - (II-2.2)
2vo

IM



Next observe that the process IX(t) cannot cross the thresh-

old !Xl=a without the envelope being above the threshold. All

lX -upcrossings occur in groups or clumps each of which is

immediately preceded by an envelope upcrossing and followed

by an envelope downcrossing. Let Q denote the number of IXJ-

upcrossings for every R-upcrossing. If I is the number of

lXl-upcrossings during a fixed (very long) period of time s

and m the number of R-upcrossings during the same period then

it is not without meaning to take the ratio t/m as the aver-

age of Q. In fact we have lim 1/m = E[Q]. Note, however, that

1/m is equivalent to (1/s)/(m/s). For the period s (say, in

seconds) tending to infinity the ratios 1/s and m/s tend to

the average rates 2va and na, respectively. Hence we are led

to what amounts to a definition [37] of the expected value

of Q

2 va
E[Q] 2a (11-2.3)

na

In narrow-band processes each IxI-upcrossing of the threshold

Ixi=a corresponds to one crossing of X=O. Also the expected

time between consecutive 1XI-upcrossings of IXt=a will be the

expected half-period of the process. Finally, adopting the

reasonable assumption that the half-period (time between zero

crossings) and the random variable Q are uncorrelated one

obtains



] = E[Q]E[Half-Period]

2v a 1 _ a 1
na 2 v na V0

(11-2.4)

:he expected duration E[T 1 ,EI of an ex-

3e R(t) of a stationary narrow-band ran-

Lxed threshold,R=a,in terms of the basic

n (defined by Eqs. 1-4.1, I-4.2 and
a

1I-2.4 the mean holding time in state

.ngth of a fade" is found to be

= E[TO,E+T1,E] - E[T1,E]

V a( 1 1 1 (va
na V V n Voa a o a 0

(11-2.5)

hold for arbitrary narrow-band random

n processes these results become

1E[TI, E ]  
kro

1
] - {exp(r 2 /2)-1)

v kro

(11-2.6)

(11-2.7)

ormalized barrier level, vo is the aver-

ings at positive level and k is the

factor, Eq. I-5.3. The latter express-

s as an isolated result in electrical



engineering literature [9]. Its derivation there is based upon

some non-trivial theorems due to Volkonski [38].

11.3. Characteristics of Envelope Peaks above a

Fixed Threshold

Consider a typical complete excursion of the envelope

R(t) of a stationary normal narrow-band process X(t) above a

relatively high fixed threshold R=a, as shown in figure 11.3.

Suppose that the prescribed level is sufficiently high that

the probability of envelope troughs above the threshold is

negligibly small.

X(t)
n lA

a=- r

A-II
&.

Fig.II.3. An Envelope Peak Above a Fixed Threshold

r I



Two important characteristics of such peaks are the random

variable T1, the duration of the excursion and Z, the height

of the envelope peak above the threshold (see figure II.3)

According to Eq. II-2.6,the mean of T equals (vkr)- . Here,
:r I,E

it will be shown that the asymptotic (for r-M) distribution

of Z is exponential with mean /X0/r. Also, that this asympto-

tic distribution provides a reasonable approximation to the

true distribution of Z for threshold values as low as 2.5/A0 .

A proof follows later in this section. First the following

implications are noted.

i) For relatively high

the mean values E[T ] and

threshold value (see figure

E[Z]
E[T1,E]

threshold levels the ratio of

E[Z] does not depend on the

11.4) We have

(Xl 0 /r)
(vokr)-l

= vok/Xo (11-3.1)

ii) Consider the peaks above a fixed relatively high

threshold level of the envelopes of Gaussian processes with

different power spectral density shapes (but with a common

r.m.s. value /30,i.e., the processes transmit the same

average power). The asymptotic distribution of Z is identi-

cal in all cases. The means E[T 1 E], however, are inverse-
1,
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ly proportional to kvo, a factor which depends on the first

few moments of the spectral density; the average frequency

vo equals (½2/ 0 ) 1/2 (see Eqs. I-4.2 and I-4.5) and k is

the spectral density shape factor given by Eq. I-2.3 (it is

a simple function of X0X2/X 2 ). Figure II.5 comes close to

demonstrating the basic physical significance of the shape

factor k. The smaller k, the longer the average duration of

an envelope excursion, measured in terms of the average

period. Note that, while the horizontal scale in a plot of

X(t)//Io vs t is affected by a change in vok , the verti-

cal scale is not.

iii) It is believed that the above remarks suggest

the existence of a fairly high degree of correlation be-

tween the random variables TI,E and Z associated with en-

velope peaks above relatively high thresholds. If the varia-

bles were indeed completely correlated,i.e.,Ti,E=(vok/XO)-FZ

it would follow that Tl,E also has an asymptotic (for r-m)

exponential distribution, with mean (v0kr)-1. Of course,

no proof of that assertion is given here. However the re-

sults here do seem to provide some ground for the adoption,

in section 11-4, of the assumption of exponential holding

times T1, E.



Proof (that Z is asymptotically exponentially distributed)

The average frequency na of intersections at positive

slope of the envelope R(t) of a stationary Gaussian random

process and the threshold R=a are given by Eq. I-4.6

-a
a 2 /2A

na = c - e (II-3.2)
o

where
o 2- 2 1/2

c = [ (II-3.3)
27T Xo2

4z

X1 a
1 , ~

-~------ ' ' ----- ~ - -wI~ t

Fig.II.6. Envelope Crossings of a Relatively High Threshold

Let the threshold considered be sufficiently high so that al-

most every upcrossing is followed by only a single peak of

R(t), i.e. the probability of troughs of R(t) above R=a is

negligible (see figure 11.6). We will follow an approach simi-

lar to that first used by Powell [39] to obtain the distrib-

ution of the peaks of a narrow-band process. Let Y denote the

42

a - W4



random height of those peaks which exceed a specified high

threshold R=a. The ratio n y/na , where yea, may be interpreted

as the fraction of envelope peaks above R=a which also exceed

the level R=y. Hence in accordance with the relative frequency

interpretation of probabilities we may write (* )

n
P [Y>y] - Y

na
ya (11-3.4)

Using Eq. 11-3.2, the cumulative probability distribution of

Y takes the form(*)

Fy(y) = P[Yy] = 1 -
Y7

ye-y2/2X
= 1 --

ae-a2/2X0

yea

y2 a (11-3.5)

It is easy to verify that Fy(a)=0O and Fy(o)=l. The random

variable of interest is Z=Y-a, the height of the envelope

peak above the threshold. We have

FZ(z) = P[Z<z] = P[Y<z+a]

(z+a) 2a+z
= 1 - exp{-[ ]z}

a 2x
, z2O (11-3.6)

The density function of Z is obtained by differentiating F (z)

dF Z (z) (z+a)2 2a+zfz(Z) - [ 1] exp{-[ ]z} z20
dz a X, 210

(*) This result is also given by Crandall [32, 41],.
43

(11-3.7)

--



owing approximations to Eqs. II-3.6 and II-3.7

F*(Z) = exp{-(a )Z}

f*(z) = a-) exp{-( )z}Z AA 0 0

(11-3.8)

(11-3.9)

epresent respectively the cumulative dis-

sity function of an exponential random vari-

/a=i/olr.

o f/f*=fz(z)/f*(z) of the true and the ap-

functions of Z

f - (z+a) 2  - z 2 / 2 1 0

f* a X 0
(11-3.10)

erms of its approximate mean value xo/a as

follows

z = u(x 0 /a) (11-3.11)

one obtains

A0
a

u a 2 _- e-u2 0/2a 2

a /X0

S1 [ (!+r)2-11 e-u 2 /2r 2

rT r
(11-3.12)



It is easy to see that for any fixed value of u

(11-3.13)
f

lim

The ratio f/f* is plotted in figure 11.7 as a function of r

Cor several values of u. Figure 11.8 shows that for low

threshold levels (r=2, 3) the approximate exponential density

[unction fz(z) overestimates the likelihood of large values

of z (say, several times the mean value).

ýemark

It is of interest to note that the functional form

)f f (Z) as.given by Eq. 11-3.7, if not restricted by the

.ondition z>0, exhibits the following behavior. It has a peak

it z=z* where z* is determined by the condition

df (z)
S0

dz
÷ z+a=J/3i 0 (11-3.14)

Its maximum value, corresponding to z=/3Xo-a, is

2 (r 2 -3)/2
Max [fz(z)] = - e

all z a
(11-3.15)

Its value at z=0 is

(11-3.16)f z(0) = l[r2-1]
a
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Figs.II.7 and 8. The ratio of
f*(z), where z=u(X /a)z 0

2 3 4

the density function f (z) and

U=-3

U= Y



For a threshold level a=/3A0 or r='/3 the above equations

yield identical results. The above information is displayed

in figure II.9. The theorem proved in this section essentially

states that the probability density of Z which corresponds to

the tail portion (labeled fz(z), zz0) of the dotted curve

has the exponential form, Eq. 11-3.9, for large r=a//Jo.

X

4-

Z 3

a

------ fz(z) ,Z-o

d z

- %i

Fig.II.9. The Density of Envelope Peaks

II.4. Properties of Crossings of a D Type Barrier

Most crossing problems of practical significance are

directly related to the dynamic variable X(t) of interest

rather than to its envelope R(t). Fortunately, the threshold

crossing characteristics of the two processes are quite simi-

lar. Note for example, that

i) peaks of IX(t) exceed a given threshold only at times

when the envelope is above that threshold.

ii) peaks of IX(t) above the threshold tend to occur in

_-



clumps, the size of which is closely related to TI,E' the

duration of an envelope excursion above the threshold.

However some significant differences do exist. Note that not

all envelope upcrossings are immediately followed by a clump

of IXI-peaks exceeding the threshold. For any fixed threshold

value, the frequency of envelope upcrossings always exceeds

the frequency of occurrence of clumps. One of the main prob-

lems here is to find a way to identify and eliminate ("search

and destroy") those envelope upcrossings which are not imme-

diately followed by at least one IXj-upcrossing. Another more

obvious difference is the essentially discrete nature of the

occurrence of threshold upcrossings (or peaks) of the random

process X(t). It is also worth noting here that the time scale

of interest is presumed to be at least an order of magnitude

larger than the average period of X(t). Hence, no consider-

ation is given to the actual durations of single excursions

(each corresponding to a single peak) of. X(t)I above the

threshold.

Recall the nature of the zero-one process Da(n) de-

fined in the introduction to this chapter (see figure II.la).

The subscript a refers to the absolute value of the (two-

sided) threshold and the counter n records the total number

of peaks of IX(t) observed. Such peaks occur at time inter-

vals of average length (2vo)- 1. When, say, the i th peak ex-

ceeds the threshold X=a,then Da(i)=l, otherwise Da(i)=0. We

MQM



are mainly interested in the length or the size of sequences

of consecutive peaks for which the corresponding value of

D (i) is a constant, zero or one. Let N and N be (dis-a O,D I,D

crete) random variables describing the size of such clumps of

"zeros" and "ones". The mean values E[NOD] and E[N 1 1D] may

be obtained in terms of the characteristics of the holding

times TOE and T1,E of the envelope-related two-state process

E (t). To see this, recall that na represents the frequency

of envelope excursion above the level X=a and that T1, E is

the random duration of each such excursion. Whenever the dur-

-1
ation T is larger than (2vo ) , an average half-period of

X(t), it is almost certain that IX(t)J will cross the thresh-

old, at positive slope, at least once during the envelope ex-

cursion. However, if T is smaller than (2v0 )- , one has to1,E

account for the possibility that no peaks of X(t) occur during

the envelope excursion. The fraction pD of envelope excursions

above a threshold that thus has to be eliminated may be com-

puted as follows

-1
(2vo )

PD=P[N = 0 ] =  f P[N D= 0 T E=t ]f (t )dt (11-4.1)
D 1,DT 1 1

where fT (tj) is the probability density function of T E.
1, E

To arrive at a value for the conditional probability in the

integrand of Eq. II-4.1, visualize a segment of length t1 to

have fixed position on a time scale. Then let a pattern of



points which are regularly spaced at intervals of length

(2voo)- be randomly placed on the time scale (see figure II.10)

What is the probability that none of the points will cover

the segment?

t- -,

4, 4,1 4, 4,

Fig.II.10

It seems reasonable to take, for tl<(2vo )- I

(11-4.2)
(2v,) -t 1P[N, D=0T1 Et = (2v0  - 1-2vot

, , 1 (2v, ) l

Combining Eqs. II-4.1 and II-4.2, pD becomes

(2vo)-
pD =

0

(11-4.3)
(l-2votl) f T  (t)dt

1,E

In section 11.2 only the mean value E[T ,E] is computed. Here

the density function is needed. The results of section 11.3,

although by no means a proof, do provide an argument in favor

of the adoption of the assumption that TI E is exponentially

distributed. A major advantage is also that only a single

parameter is needed to characterize the density function. Thus

4



we take

-BEt( -- ) = ý e
TI1, E

1 0 (II-4.4)

where BE, the decay rate of the exponential function, is re-

lated to E[T ,E ] in the following way,

Etl 1
E[T1,E] I tl1 Ee  dt1 -

Hence, from Eqs. II-2.4 and 11-4.5,

(11-4.5)

nav oa a (11-4.6)
E va

where va, vo and na are defined in section 1.4.

Finally inserting Eqs. II-4.4 and II-4.6 into Eq. II-4.3 and

integrating one obtains

2va
p = l-n a(i-exp{-na/2a )a

l-PD is the fraction of envelope excursions above the thresh-

old X=a during which at least one peak of JX(t) occurs a-

bove the same threshold. Let it be called the fraction of

qualified envelope excursions or the fraction of qualified

envelope upcrossings. In figure II.ll,pD is plotted as a

function of na/Va (or kr for Gaussian processes). Recall that

(11-4.7)

r



0.25 0.5 1.0

Fig.II.11. The Fraction of Qualified Envelope Excursions Above
a Threshold.

average time between envelope upcrossing of a threshold is

E[Tl,E+TO,E]. The average time between qualified envelope up-

crossings becomes

1 E1 [T +T ]Il-p 1,E O,E
(11-4.8)

It also equals I-E[N +N ]. Thus we have
2v 1 ,,D OD

E[N _ 2v E[T +T ]
E[N1,DN 0, D ] 1-D 1E 0,E

(11-4.9)

An analogous relationship may be assumed to exist between

E[N1 ,D
] and E[T1, El,D 1 ,E

2V0
E[N ] - E[T II,D 1-pD 1,E

m

)D

n,/v

(11-4.10)



Clearly, if almost all envelope upcrossings qualify (E[T ]
1,E

large compared to (2v) ) we should have E[N 1D]=2voE[T1IE,

On the other hand if E[T 1 ,E] is very small compared to (2vo)-,

very few envelope upcrossings will qualify and E[NlD] should

be very close to one. To verify that Eq. II-4.10 properly re-

flects these properties it may be rewritten, by inserting

Eqs. II-2.4 and 11-4.7, into the following form:

1
E[N 1 (II-4.11)E[N,D l-exp{-1/2v0E[TE]}

In figure II.12 the mean E[N 1 D] is shown as a function of

2voE[Tl,E]. This statistic has been called [41] the "mean

clump size". It is discussed in some more detail at the end

of this section. We also have, using Eq. II-2.4,

E[N ]  = 1 (II-4.12)
1,D l-exp{-na/2va}

ELNI,DJ

5,

4

3

Forn

i n)o ki: L"- lAAk1

1 - e

-~ /~ E[,,] Pro/est kri

0,5 I/hv, E [TIEi= e/a CVl kr

Fig.II.12. The Mean Clump Size
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Subtracting Eq. II-4.10 from Eq. II-4.9 one obtains

E[ND] -1 E[T O E
[0,D 1-PD ,E

(11-4.13)

V0  -va 0

Va l-exp{-na/2 val
(II-4.14)

All the results in this section apply for arbitrary narrow-

band random processes for which the needed statistics va and

n exist. For Gaussian processes all results may be special-

ized in terms of r, the normalized threshold value, r=a//X-o

and the spectral density shape factor k (Eq. 1-2.3). We have

2
1--ý (1-exp{-kr/2})

PD kr

1
E1,D = l-exp{-kr/2}

E[N expr2/2 exp{-r 2 / 2 }
O,D l-exp{-kr/2}

10

I0

I
5

(11-4.15)

(11-4.16)

(11-4.17)

ECN,,Dj

r

Fig.II.13. Average Number of Consecutive Peaks Above and Be-
low a Fixed Double Threshold.

P

k-



In figure 113 the means E[N 1lD] and E[N 0 D] are shown as

functions of r=a/,/ for a fixed value of the shape factor k.

Clump Size

The random number N1,D has been called the "clump

size" by Racicot [40]. He proposed a numerical integration

procedure for estimating its mean value E[Nl,D] for the case

in which X(t) is the response of a linear oscillator to Gauss-

ian wide-band excitation. The concept and terminology, however,

have been introduced by Lyon [35], who essentially argued that

the quotient 2v a/na may be interpreted as the mean clump size.

His argument fails to account for the fact that a fraction of

envelope crossing are not followed by a clump of fXI-crossing.

In fact, the quotient 2va/na may easily become smaller than

one, in which case it loses much of its meaning as an esti-

mate of E[N 1 ,D] (since we must have E[N1,D]>l). Note that

Lyon's [35] estimate of E[N 1ID] is closely related to the ex-

pected value of the holding time T1, E in the envelope-based

zero-one process E (t).

E[N1, D]  
2 vE[T1,E] = 2va/na (11-4.18)

To compare the above approximation to the estimate proposed

here, Eq. II-4.11 or 11-4.12, see figure 11.12 where Eq. II-

4.18 is represented by a dotted line. As may be expected, the

two estimates converge when r approaches zero, i.e., when the

clump size becomes much larger than one.



II.5 Properties of Crossings of a B Type Barrier

T.-ie two-state process Ba (n) is very similar to the

process D (n). Recall from section II.1 (see figure II-lb)that

the index n of B a(n) counts the number of peaks of X(t) (rath-

er than those of IX(t) ). Peaks of X(t) occur every (v0 )-1

seconds on the average. If the i th peak of X(t) exceeds the

threshold X=a, then B a(i)=l. Otherwise, Ba(i)=O. Also, N1IB

denotes the size of a clump of peaks of X(t) above the thresh-

old and N the number of consecutive peaks of X(t) below
O,B

the threshold. To derive expressions for the means E[N 0,B ] and

E[N1,B ] from the characteristics of the envelope-related zero-

one process E (t) we need the fraction (1-p ) of envelopea

crossings that are followed by at least one crossing of the

one-sided barrier X=a. Following the arguments of section II.4

one obtains

(vo) -8zt 1

B tPB - 0 (1- otI) ze dt

= l_-a (1-exp{-n /v }) (11-5.1)
na a a

and also

E[N B = -5.2)
,B l-exp{-na /va



Vo 1-Va/Vo
E[N 0 ] -,B 0 Va l-exp{-n /v }a a a

Specializing the above results for Gaussian processes,

l-exp{-rk}
B rk

1
E[N ] =

1,B l-exp{-rk)

(11-5.4)

(I-5.5)

exp f r2/2}-1
0,B l-exp{-rk}

From Eqs. II-4.16 and II-5.5 note that, for small rk

(11-5.6)

(and

hence, for large clump sizes) one finds, not unexpectedly,

E[N 1 ,D] =2E[N 1 B ]

Summary of Results

A schematic summary of the important results to be carried to

the next chapters, is presented in table II.1.

(11I-5.3)



Stationary Two-State Processes
Related to a Narrow-Band Random Process X(t)

Two-State Process:

Characteristics

X(t) is an Arbitrar-
y Narrow-Band

Random Process

X(t) is a Gaussian
Narrow-Band
Random Process

Ea(t)

Continuous Time

TO,E: holding time
in state 0

T1,E: holding time
in state 1

S, L

1 Va= (
na

E[T1,E] n a,f l na
1

Vo

E[T 0 , E

S1 [expr 2/2-1]
vokr[expr

1
E[T ] -

1,E Vokr

_ ______ ___ ____
Ba (n)

Discrete T

N
0

B: no. of consec-
utive peaks of
X below a

Da(n)

Discrete Time

N ,D: no. of consec-
utive peaks of
HXI below a

N,D: no. of consec-
utive peaks of
Ixl with
values Ža

E[N0, D 0 o/va-1

l-exp{-na/2 va}
E[N1, D ] 1

1-exp{-na/ 2va}

Eexp{r 2 /2}-l
D 1-exp{-rk/2}

1
E[N1,D 1l-exp{-kr/2}

- --- ~-~- ~~_~~_~ __ _ _; __i__ _

po

ui (D
H0:,H

F-

-- 1
where: r=a//X o Vo1X2/Xo  k={2'(1-X2/X 2) 1/2 G()d

3 0

~ I I_ I_^_L__I_______________II_ III

N1 B: no. of consec-
utive peaks of
X with
values aa

[NB v 0 /va- 1

l-exp{-na/va}

E[N1,B
1

l-exp{-na/va)

exp{r2/2}-1

1
1,B l-exp{-kr}

----
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CHAPTER III

FIRST CROSSING PROBABILITIES

III.l. Scope

In the safety analysis and design of civil, mechanical

and aerospace structures undergoing random vibration it is of

considerable practical importance to be able to evaluate cer-

tain measures of quality of performance or reliability. One

quantity of central interest is the probability that the dy-

namic response variable X(t) will be kept within specified

bounds during the system operating time, or, the probability

distribution of the time to first passage across the bounds.

In this chapter a relatively simple analytical solu-

tion is proposed to the first passage problem for essentially

arbitrary stationary narrow-band random processes, i.e., the

solution is not restricted to Gaussian response processes nor

to white noise input. The starting condition considered

throughout this chapter is also random or stationary [17].

The effect of nonstationarity is investigated in the next



Thapter. The nonstationarity may be due to the transients of

:he response motion at its start or to the nonstationarity of

-he input or both. Also in chapter IV, the results obtained

iere are specialized for the case in which the random process

-epresents the response of a lightly damped linear oscillator

:o wide-band Gaussian excitation. The results are seen to com-

)are favorably with the first passage time estimates obtained

)y simulation techniques and other numerical methods [17, 42].

Ulso, the proposed solution is shown to be in agreement with

he ••v~ilabhl infonrmat-inn F7 A_ 1Ad_ '91 rardt-rrincr fhp hb-

havior of the first passage probability under limiting con-

ditions associated with high and low threshold levels.

Three types of failure conditions are considered each

of which corresponds to a particular barrier configuration.

In section III.3,the distribution of first passage times is

sought for the failure condition R(t)>a. Using Cramer and

Leadbetter's definition of the envelope R(t) of a stationary

random process X(t) (Eq. I-3.4), the failure condition may

restated as follows

R2 (t) = X2 (t)+kX2 (t) > a 2  (III-1.1)

where X(t), formally defined by Eq. I-3.5, is a (real, sta-

tionary) random process associated with X(t). Recall that,

for narrow-band processes, X2 (t)_X 2 (t)/K2 (Eq. I-3.l0),where
O



X(t) is the time derivative of X(t) and to is the average cir-

cular frequency (Eq. 1-4.2). The barrier associated with this

failure condition is a circle of radius R=a in the X-X plane,

as shown in Figure III.la. Very similar "circular" barrier

AI A,/

IN
or) -

Safe

01OP

ler

oo

a) E Type b) D Type c) B Type
Barrier Barrier Barrier

Fig.III.l. Barrier Configurations (adapted from Ref. 17)

configurations have been considered by Rosenblueth and Busta-

mente [15], Caughey and Gray [34] and Hellstrom [33] to ob-

tain an approximate (and conservative) estimate of the dis-

tribution of the time to first passage of the double barrier

IX(t) =a, shown in Figure III.lb. The latter consists of a

pair of lines X(t)=a and X(t)=-a. In those cases where nega-

tive values of X(t) do not cause failure, the single barrier

X(t)=a, corresponding to the failure criterion X(t)>a, will be

an appropriate model. Following Crandall et al. [17],and con-

sistent with the notation in the preceding chapter, the above
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barrier configurations are called, respectively, E type bar-

rier, D type barrier and B type barrier. The E type barrier is

discussed in section 111.3; the two linear barrier models will

be discussed in section II1.4. The treatment is almost entire-

ly similar for all three types. The basic concepts leading to

the new first-crossing results are discussed in the next sec-

tion.

III.2. Derivation of the Reliability Function in

Case of Random Start

The probability distribution of the time to first

passage of a barrier is directly related to the characteris-

tics of a corresponding zero-one process. To keep the dis-

cussion fairly general,presume that a complete stochastic

description of the particular zero-one process of interest,

say Z(t), is available. A sample function of the process Z(t)

is shown in figure 111.2. It may be seen as a sequence of

times t , t '), t(2) t(2), etc., where t is a sample0 1 0 2 0
value of the random time T the process Z(t) holds the value

0

zero and t(i) is a sample value of T , the random "holding
1 1

time" in state one.

I- 1-1

1;

Fig.III.2. A Sample Function of the Zero-One Process Z(t).



Assume the times Tr and Tl to be independent random variables

with density functions f (t ) and f (t ), respectively

Also, corsecutive pairs of holding times are assumed to be

mutually independent,

Let the event Z(t)=l be labeled "failure". Interest

focuses on the time Tf to first occurrence of Z(t)=l. Consider

a few sample functions of the two-state process as shown in

figure III.3.Corresponding to each sample function is a sample

value of Tf.

i'u
istories of the Zero-One Process Z(t).

-/

"• 0 Y I •I Clr.) , OL t Sl- i't.

?ig.III.3. Some Sample Functions of the Ensemble of Possible
Histories of the Zero-One Process Z(t).

When the start is random or stationary there is a finite prob-

ability that failure will be instantaneous. That probability

is equal to the fraction of the ensembles for which Z(O), the



V
value of the process at t=O, is one. It may be shown that(*)

E [T1
P[T =0] P[Z(0)=1] =fE E[TO]+E[T1]

(111-2.1)

The above result,which seems plausible,does in fact follow

(*)from a basic theorem of renewal theory [44] . The fraction

of the ensemble of two-state processes for which the time

to failure is positive, i.e., non-zero equals

P[Tf>0] = P[Z(O)=O] = 1-P[Tf=0]

E[TO]
E[TO]+E[T 1]

(111-2.3)

Let the reliability function LT (t),be defined as the
f

fraction of samples of the ensemble of the two-state processes

that still survive at time t, i.e., for which Z(to)=O, OSto0 t,

LT (t) = P[T >t] = 1-F (t)
f f

(111-2.3)

where F (t) is the cumulative distribution function of the

time to failure. The density function f (t) of T is related
T f

f(**)
to the reliability function Lm (t) in the following way

I

\ i

(*) The theorem requires that i) T and T be independent
random variables ii) (TO+T ) have0a continuous distribution
iii) E[T 0 ] and E[T 1] be finite.

(**) This representation is quite common in reliability liter-
ature [45, 46]

±



(111-2.4)f (t) d F (t) - L (t)
T dt T dt T

fT (t)dt is the probability that Tf takes a value in the in-

terval (t,t+dt). The density function contains a spike at

the origin, with enclosed area equal P[Tf=0]. See figure III.4

(t),

0 tt- +c lt

Fig. III.4

It is useful to introduce a conditional density function

fT >0(t) where fTf>0(t)dt is the probability that Tf_fLITf Tf Tf>Of

takes a value in the interval (t,t+dt), given no instantane-

ous failure occurred. In other words, of the original en-

semble,only those sample functions qualify for which Z(O)=0.

The condition eliminates, for example, sample function z(2)

in figure 111-3. It is easy to verify that

f (t) = P[Tf>0]f Tf (t)
Tf f T Tf>0

t>O (111-2.5)

There is a close relationship between the density function

fT (t) and f (t). Following an argument very similar to
TfiT > 0 TO

So>0



that given by Rice and Beer [473 for the case in which P[Tf>0]

is assumed to be equal to one,(i.e., for very high threshold

levels),it may be shown tiat(*)

1 m
fTf Tf>0(t) E[T ] f T (t )dt° (11-2.6)

In particular, if the holding time TO is exponentially dis-

tributed then the time to failure Tf, Tf>0, also has an ex-

ponential distribution. Quite apart from the analytical sim-

plicity that the assumption of exponential TO carries, its

adoption also seems indicated by the following facts:

i) The results of simulation studies [17] suggest

fT (t) to have the form

f T(t) = Aae - t (111-2.7)

ii) For high threshold levels, when crossings become

rare events, the assumption of Poisson occurrences (which

has been proved to be asymptotically correct [9, 43])also

leads to exponential first-passage times.

(*) Their argument [47] further leads to a simple relationship
which has been used [17, 46] to determine the expected first
excursion time from statistically measured recurrence times.
Its extension to the case of relatively low thresholds (for
which the number of TO-observations during a given observation
time will be much larger) has the form

E[Tf Tf>0] = E[T 2]/2E[T0 ]

~



iii) If E[T ] is relatively large compared to the

"correlation time" of the response process (as may be ex-

pected in most cases of practical interest) then the ex-

ponential assumption may be expected to be quite satis-

factory. (A unique property of the exponential distribution

is its being "memory-less" [461). The actual distribution

probably exhibits some peculiar behavior in a range close

to zero but this should not substantially influence the

results.

Now it will be shown how the first-passage solution proposed

here may be derived from the basic results of the preceding

chapter. An exponential distribution is adopted for the hold-

ing time TO . i.e.,

f (t) = ae t?0 (III-2.8)

The decay rate a is related to the mean value of Tot

1a - (111-2.9)
E[TO]

where E[T 0 ] has been derived in the preceding chapter as a

function of the barrier configuration, of the magnitude of

the threshold and of certain properties of the response pro-

cess. Since fT T >0(t)=f (t), we have from Eqs. III-2.5,

III-2.4 and 111-2.3,



f (t) = Aae - at t>0 (III-2.7)

LT (t) = P[Tf>t] = Ae-•ut t>0 (III-2.10)

where A, the parameter in the simulation [17] solutions

(Eq. 11-2.6), is equal to the probability, P[Tf>0], of no

instantaneous failure. From Eq. III-2.2,

E[T 0 ]
A = P[Tf>0] = [T (11-2.11)

E[TO]+E[T ]

Like a in Eq. I1-2.8, it is obtainable from the means of T

and T1 given in the preceding chapter. In the next two sec-

tions,the above results are specialized for the three barrier

configurations (E, D and B type barriers) discussed in sec-

tion III.1

111.3. First Passage Time for E Type Barriers

The two-state process corresponding to the "circular"

or E type barrier configuration is the process E (t) discussed

in section 11.2. Let Tf E denote the first passage time. The

decay rate in the reliability function LT (t) will be de-
f,E

noted by aE. It is related to E[TO,E], the expected length of

a fade. From Eq. II-2.5,



i n (-v /v ) (II-3.1)
E E[T O,E ]  a /V0

Also let the probability P[Tf,E> 0] be denoted by AE. From

Eqs. III-2.11, II-2.5 and 11-2.4

A P [T >0] =[T 1-v /v (III-3.2)E fE E[Ta 0
E [T ,E]+E[T,E]

Finally, inserting the above equations into the "standard"

form, Eq. 111-2.10, we find for the reliability function as-

sociated with an E type barrier, R(t)=a, under stationary

starting conditions

LT fE(t) = P[TfE>t] = AEexp{-aEt}

(1- a ) exp{-n a(1--a)- t} t>0 (111-3.3)
o a V

The above expression applies for arbitrary stationary narrow-

band processes for which the basic statistics va and n exist.
a

An extension to nonstationary processes will be discussed in

the next chapter. The narrow-band restriction entered into

the analysis in section 11.2, where it is assumed that the

average of the time interval between peaks of jX(t) is equal
-1

to (2vo0 ) or one - half the average period. For Gaussian pro-

cesses, by inserting Eqs. 1-4.2, I-4.5 and I-5.4 into 111-3.3,

one obtains



LT (t) = AEexp{-aEt}
f, E

(l-exp{-r2/2}) exp{-vot tt0 (III-3.4)
( exp{r2/2}-1

where r=a//Ao, a is the threshold level and k is the spectral

density shape factor given by Eq. I-5.3. These last two equa-

tions are basic results of this thesis.

III.4. First Passage Time for D Type and B Type

Barriers

The two-state process E (t) which corresponds to an

E type barrier is defined in the preceding chapter as a con-

tinuous time process. On the contrary, the two-state pro-

cesses Da(n) and Ba(n) are defined only at discrete points

in time. The process Da (n) associated with a D type barrier,

jXl=a, takes a value at times when a peak of X(t) occurs,
-1

i.e., about every (2vo)- seconds. Ba(n) is observed at the

-1
peaks of X(t), at intervals of approximate length(vo) . The

simplest approach here is to modify the discrete-time two-

state processes D (n) and Ba(n) essentially with the aim of

restoring the time continuity. This approach will be shown to

give good results. An alternate approach, discussed in some

detail in the Appendix,is to adopt a geometric distribution

for (say, in the case of D type barriers) NOD, the number of

consecutive IXJ-peaks below the threshold IXI=a. The results



of the two approaches are shown there to be almost identical

except in the range of low threshold levels when the average

number of half-cycles to failure is, say, less than five.

Let the modified continuous time two-state processes

be denoted by D' (t) and B' (t). They are characterized by the
a a

holding times TO,D , T1,D and TO B, T,B, the means of which

are related to the corresponding mean clump sizes of the dis-

crete time processes D (n) and B (n).a a

E[TO,D] = E[No,D]/ 2v,
(III-4.1)

E[T1,D] = E[Nl,D]/2vo

E[TO,B] = E[NOB]/vo (111-4.2)

E[T1,B ] = E[N1,B]/VO

Also, let TfD and TfB be the times to first passage of the

threshold configuration the second subscript refers to. Assume

TO D and TO B to be exponentially distributed with decay rates

a and a , respectively. The reliability functions correspond-
D B

ing to D and B type barriers then take the form

-e t
L (t) = A e D , t0 (III-4.3)
Tf,D D

-a t
L (t) = A e B , t> (111-4.4)

Tf B B
fl



The decay rates a and a may be obtained from Eqs. 111-4.1,
D B

111-4.2, II-4.14 and 11-5.3,

1 1-expf-na/2va
a - 2 2va (111-4.5)

D E[TO,D ]  a _va/vo

1 l-expf-na/V a (TTT-A FA
,a = = ,va (III-4 6)/B E- [T , BT ]  a Vla/vo

The probabilities AD=P[Tf,D>0] and AB=P[T f B>0] may be evalu-

ated as follows

E[TT D]  E[N0D a
AD = P[TfDJ D>0 = 1- V

, E[TOD]+E[T ID] E[N0,D]+E[N1,D] Vo

(III-4.7)
E[T O B

A =P[T >0 ] = E[T = 1- a  (III-4.8)
B f, B E [TO,B]+E[T1,B] V0

It should be noted that the above estimate of A is strictly
D

correct only if the start (t=0) is given to coincide with the

occurrence of a peak of the process IX(t) . The probability

of instantaneous failure, P[T f=0], may then be redefined to

be the probability that the first peak exceeds the threshold

XI=a. Note furthermore that the assumption that a peak X(t)

occurs at the start, i.e., X(0)=0, leads to a conservative

estimate of the probability of instantaneous failure. Thus

the true value of AD should be somewhat larger than that pre-

dicted by Eq. 111-4.7. This is precisely what is observed in

the simulation results [17] as is shown in figure 111.8.

The same remarks apply a fortiori to B type barriers. Some
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re discussed in the Appendix.

d 1II-4.7 into Eq. 111-4.3,

ion associated with a D type

y starting conditions, (that

a randomly selected peak of

St}

cp{-na/2v a
} t>0 (III-4.9)

1-va/4

SIII-4.9 becomes

(t) = (l-exp{-r 2 /2})exp{-2vOt l-exp{-kr/2} } t_0
exp{r 2/2}-1 (III-4.10)

where r=a//lX and k is the spectral density shape factor

(Eq. I-5.3)

Similarly, the reliability function associated with

a B type barrier, again under "almost" stationary starting

conditions (in the sense that t=0 is assumed to correspond

to randomly selected peak of X), takes the form

LT  (t) = P[Tf B>t] = ABexp{-aBtf,13

Va l-exp{-na/v }
= (1--)exp{-v t

• a- 1 - \)
Ua v

t>0 (III-4.11)
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4.11 becomes

- t>0 (111-4.12)
/2}-i

.3. These last four

sis. Eqs. III-4.9 and

w-band process for

ist.

ic First Passage

of Estimates

passage time distrib-

ution 17, 14, 161 for D type barriers is based on the assump-

tion that IX -upcrossings of a (high) threshold IXl=a occur

independently according a Poisson process with average occur-

rence rate 2va . It has been formally proved [9, 14] that this

assumption is asymptotically correct, that is, when the thresh-

old value tends to infinity. According to this simple model,

the reliability function has the form of Eq. 111-4.3, but

with A =P[Tf, >0=1 and with 2va substituting aD.
D f,D a

To compare the decay rates aD, aE and the approximate

(but asymptotically correct) mean rate 2v ,it will be conven-
a

ient to let 2va act as a reference quantity. This procedure

has also been used by Crandall, Chandiramani and Cook [17].



Thus consider the quotients

aE na/2vaaa (III-5.1)
2va l-va/vo

T l 1-exp{-n a/2v }
_ a (111-5.2)

2va l-va/V~

For Gaussian random processes, the above rates become, with

2a=2 r2/2

aE _ kr/2 (111-5.3)
2va 1-expf-r 2/2}

aD _ l-exp{-kr/2 (111-5.4)

2va 1-exp{-r 2/2}

These ratios are plotted in figure 111.5 as a function of the

normalized barrier level r=a//Vo for various values of the

spectral density shape factor k, given by Eq. 1-5.3. Note that

a /2v tends to one for r-+. For low values of k the ratio
D 0

aD/2va may be considerably smaller than one in the range of

threshold levels a=2/ 0o to 5/Xo . To use the approximate mean

failure rate 2v to estimate first crossing probabilities ina

such a case is very likely to be too conservative.

Figure 111.6 shows the probability of no instantaneous

fl2/2 AE= Pfailure AE=AD=P[Tf>]=-e-r2/2 as a function of r. Its value

increases monotonically to an asymptotic value one.

It is of considerable interest to note the striking

similarity between the curves shown in figures 111.5 and 111.6
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figures 111.7 and 111.8. The latter

rically estimating the distribution

age time of the response of lightly

to wide-band Gaussian excitation [171

While there is an unmistakable qualitative agreement between

the analytical estimates proposed here and the experimental

results, the quantitative aspects of this relationship need

further investigation. This is done in chapter IV.

B type barriers

The assumption that X-upcrossings of a positive thresh-

old X=a occur independently according to a Poisson process

leads to a reliability function of the same form as Eq. III-4.4

but with va substituting a B and with A =P[Tf, >01 =1 . Again

consider the ratios a B/V

aB l-exp{-na/ a}-exp-n (111-5.5)
Va 1-va/Vo

which for Gaussian processes takes the form

a B l-exp{-kr}
- - (III-5.6)Va voexp{-r 2/2} 1-exp{-r 2/2}

This ratio is plotted in figure 111.9 as a function of r for

a few values of the shape factor k. Again the ratio a B/a

tends asymptotically (for r-c) to one, in accordance with

Cramer's [43, 9] limit theorem.



Remark: Two-State Markov Process Assumption

A number of assumptions have been adopted regarding

the holding times of the two-state processes studied in this

and the preceding chapter. These assumptions almost add up to

one major assumption, i.e., that the processes E (t), D' (t)a a

and B' (t) are continuous time two-state Markov processes [44].a

Note, however, that none of the particular results derived

earlier,strictly requires the Markov assumption. For example,

to derive the first passage distributions, no assumption

needed to be made regarding the form of the density function

of T1 ,E . Nonetheless, it will be convenient in further work

(in chapters V and VII) to"cover"all earlier (somewhat less

restrictive) assumptions by taking the two-state processes

to be Markovian.

I.0

03

0.2

0. I

Fig. 111.9. First Passage Probability Decay Rate for B Type
Barriers.
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CHAPTER IV

FIRST CROSSING PROBABILITY AND MAXIMUM RESPONSE OF

RANDOMLY EXCITED LIGHTLY DAMPED OSCILLATORS

IV.l. Scope

In the preceding chapter an approximate analytical

solution is proposed to the classical problem of determining

the probability that the maximum value of a random vibration

X(t),remains below a specified threshold during a given time

interval. Recall that the solution is based on the concept of

a two-state process, whose properties are explored in Ch. II.

Here, the results are applied to the case where X(t) repre-

sents the response of a lightly damped linear or nonlinear

oscillator to random wide-band excitation.

Note that all the results in chapters II and III are

first obtained in a general (i.e., non-Gaussian) form. They

are stated in terms of a few basic statistical properties, i.e.,

v a n and v , which may be computed by means of Rice's [1]a a o

fundamental results, Eqs.I-4.1 and 1-4.3. The basic informaticn

needed consists of the joint probability distributions, p(x,kx

and p(r,r), respectively related to the process X(t) and its

envelope R(t),and their respective time derivatives.

i_
I -------- - --- ;~-- -==-
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Gaussian Random Processes

For a stationary Gaussian random process X(t), the

needed joint distributions are available (see Eqs. 1-3.7 and

I-4.4). It has been shown that all general expressions (in-

cluding the first-passage probability estimates) may be con-

veniently re-stated in terms of the first few moments X . of

the one-sided spectral density G(w) of the process X(t)

i. = f WO G(w )dw (1-1.5)
3 0

In fact, the results have been found to depend upon the nor-

malized (i.e. unit area) power spectral density, G(w)/X o , only

through vo, the average frequency, and k, the "spectral den-

sity shape factor",

=1 /> /X (IV-1.1)
0 2 x T 2  0

k = /2 7 (l-X 2 /x 2 ) (1-5.3)
1 0 2

The properties of the shape factor k are briefly discussed in

section 1.5 and the value of k is derived. there for some well-

known spectral densities. Furthermore, the threshold value may

be conveniently normalized with respect to the r.m.s. value

0/ =/E[XT]. The normalized threshold level is designated by r,

r = a// o0 (1-5.2)

veniently re-stated in terms of the first few moments Xj of

j the one-sided spectral density G(w) of the process X(t)

hi JO wjG(w)dw

In fact, the results have been found to depend upon the nor-

malized (i.e. unit area) power spectral density, G(w)/A,, only

through v,, the average frequency, and k, the "spectral den-

sity shape factor",

1

veniently re-stated in terms of the first few moments Xj of

the one-sided spectral density G(w) of the process X(t)

hi JO wjG(w)dw

In fact, the results have been found to depend upon the nor-

malized (i.e. unit area) power spectral density, G(w)/A,, only

through v,, the average frequency, and k, the "spectral den-

sity shape factor",

o 2~ JX2/A, (IV-1.1)

k J 2~(1-h:/hoh,)2 (1-5.3)

The properties of the shape factor k are briefly discussed in

section 1.5 and the value of k is derived. there for some well-

known spectral densities. Furthermore, the threshold value may

be conveniently normalized with respect to the r.m.s. value

jX =JEIX'7. The normalized threshold level is designated by r,

r a/JXo (1-5.2)

be conveniently normalized with respect to the r.m.s. value

jX =JEIX'7. The normalized threshold level is designated by r,

be conveniently normalized with respect to the r.m.s. value

jX =JEIX'7. The normalized threshold level is designated by r,

r a/JXo (1-5.2)



In this form, the "first-crossing" results are directly ap-

plicable to the case where X(t) represents the response of a

lightly damped linear oscillator to broad-band Gaussian ex-

citation. This very important class of structures is examined

in sectionsV.2 and V.3. The effect of nonstationarity of the

response is considered in section V.3.

To determine the shape factor k analytically by means

of Eq. 1-5.3, the spectral density function G(w) has to be

available. Often, in practice, the following experimental

method of determining k (and the other needed parameters, vo

and x )will be indicated. First, note that, to estimate the

shape factor k of a process experimentally (from a sample

history of the, presumably ergodic, process), one does not

need to estimate the whole spectral density function first,

and then, compute its first few moments. A much simpler meth-

od is to obtain a sample estimate of the average clump size,

E[N 1 ],D associated with some fixed threshold a. Recall that

E[N 1,] is the average number of consecutive peaks of IX(t)
[,D

above the double threshold, Xl=a. Presume that N is the
1,D

sample estimate of E[N 1  ]. Then from Eq. II-4.16,one may ob-l,D

tain the following estimate,k,of the shape factor,

- 21= - ~ln(l- _ ) (IV-1.2)
r N

1,D

where r=a/(x2) / 2 , with (x2 ) denoting a sample estimate of the

mean square of X(t). Note that a single sample history suf-



I

-(2

fices to obtain many point estimates,k(), k (2), etc., each

of which will correspond to a different threshold level setting

and hence, may be based on a different sample size. An inter-

esting study could be done on the reliability of the estimator,

Eq. IV-l.2. This will, however, not be pursued in this thesis.

Non-Gaussian Processes

The results of chapters II and III, in their general

form, i.e., in terms of va, n and vo, will be directly useful

in obtaining pertinent response statistics, e.g., first-cross-

ing probabilities, for nonlinear narrow-band systems subjected

to wide-band excitation or to linear narrow-band systems sub-

jected to non-Gaussian input. Basically, what is needed are

expressions for v and n , in terms of the mechanical proper-
a a

ties of the nonlinear oscillator and of the characteristics

of the random input. Some relevant results are available for

certain nonlinear vibratory systems [31, 35, 48, 49, 50].

This will be further discussed in section IV.4. , where the

usefulness of the proposed approach is demonstrated for the

case of a hard-spring oscillator subjected to Gaussian white

noise excitation.



. First-Crossing Probability for the Damped

Linear One-Degree-of-Freedom Oscillator Sub-

jected to Gaussian White Noise Excitation

S

scously damped single-degree-of-freedom oscillator

iPr m, ,,, ,, ^~~·11-~
La anywn to f gure IV. 1. The system may be excited either b

y

base motion Go (t),or by an applied force F(t).

Su0 SU
F (t

X= U-Uo

Fig.IV.1. A Viscously Damped One-Degree-of-Freedom Oscillator.

The general equation of motion for the system is

i+2ýwnx•+nx = f(t)-Uo(t)

n= K/M

S= c/2Mwo

f(t) = F(t)/M

in which ~n is the natural frequency and r is the damping

ratio. The transfer function associated with various input-

where

(IV-2.1)

(IV-2.2)



output combinations may be obtained. Presume that the struc-

ture is subjected to a support motion, characterized by its

acceleration history uo(t),and that one is interested in the

relative displacement x between the mass and the support. The

transfer function (or complex frequency function) H(w) may be

obtained by substituting f(t)=O, uo(t)=eict and x=H(m)eiwt in

Eq. IV-2.1. Then

-i
H() = (IV-2.3)

w 2w 2+2icwn"n

Let the excitation be a stationary Gaussian white noise with

(one-sided) spectral density G0 (for all frequencies from w=0

to w=+-). The stationary response spectral density is [9]

GX(w) = H(w)1 2 Go

= o 
(IV-2.4)

(W2_W 2 2 +4 5 222
n n

The first few moments, Ao, X1 and X2' of the above spectrum

are given in section 1.5 by Eqs. 1-1.15, I-1.16 and 1-1.17,

respectively. The average frequency vo of the response pro-

cess is

0 -
1 /A 2/ W = n/2 (IV-2.5)

The spectral density shape factor k has been shown in section

The spectral density shape factor k has been shown in section

m



1.5, Eq. I-5.18 to be approximately equal to

k 2 2r I ,/2 for small 5 (IV-2.6)

The above approximation closes in on the true value of k as

+0, (i.e., higher order terms in C vanish.)

First-Crossing Probability

We will concentrate here on the absolute value, X(t)I,

of the displacement response of the linear oscillator and on

its position w.r.t. a specified (double) threshold level

fXI=d. Failure is postulated to occur when !X(t)I first exceeds

the level d. Recall that L Tf,(t), the reliability function
Tf,D

for D type barriers, designates the probability that IX(t)

remains below the threshold d during the time interval 0 to to.

For stationary random processes and under random starting con-

ditions, we have, from Eq. III-4.9

L Tf,(t o ) = P[Tf,D >t o ] = A exp{-aDt}, tŽ_0 (IV-2.7)

where AD equals the probability that failure is not instanta-

neous, (i.e., AD=P[Tf D- 0 ) and a is the decay rate or the

failure rate of the first-crossing probability. For Gaussian

processes,A and a take the form,

AD 

D

A = l-exp{-r 2 /2} (IV-2.8)D

m



1-exp{-kr/21
a = 2 exp{-r2/2} (IV-2.9)

l-exp{-r 2
/ 2 }

where r=d//lo . Replacing v0 and k by Eqs. IV-2.5 and IV-2.6,

respectively, one obtains

Wn l-exp{-r/2r}
aD - exp{-r 2 /2} (IV-2.10)

D 1-exp{-r 2 /2}

Our estimate of the first crossing probability will now be

compared to other approximations [8,9,51] and to the results ob-

tained by simulation [17, 42] and numerical methods [17, 19].

Theoretical and experimental evidence will prompt a revision

of the estimate, Eq. IV-2.6, of the shape k.

Comparison with Available Simple Approximations

a) The approximation most often used by investigators

(e.g., Refs. 7, 9, 14, 15, 52, 53, 54)has the form

L (t o) = P[Tf,D>to] _ exp{-at} (IV-2.11)
Tf,D

where
Wn

a = 2voexp{-r 2 /2} = -nexp{-r2/2} (IV-2.12)

The above approximation is based on the assumption that suc-

cessive upcrossings of the threshold d by the stationary ab-

solute displacement IX(t) J, occur independently according to

a Poisson process [7, 15]. This assumption has been shown [9,

43] to be asymptotically exact, i.e., when r-+.
86
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12 will be nearly

the numerator of

.e., if kr becomes

o that exp{r 2 /2}>>l.

the failure rate,

proposed by Lin [8] and Lyon [35],presumes that envelope-

upcrossings of the threshold d occur independently according

to a Poisson process. Again, L (t) has a form as given by
TfD

Eq. IV-2.11, but a is now substituted by a new decay rate

c'=nd , where nd is the average rate of envelope-upcrossings

of the level d. Using our notation (see Eq. I-5.4 and 1-4.5),

Sn 2v kr 2v kr
a' = nd = 2vd 2 - 2 exp{-r 2/2}

= 2/20v r1/2exp{-r2/2} (IV-2.13)

The above estimate will be nearly equivalent to Eq. IV-2.10

under the following conditions:

i) if kr<<l, such that 1-exp{-kr/2}=kr/2 and

ii) if r is sufficiently large that exp{r 2/2}>>l.

The two requirements are somewhat contradictory. The latter

requires the relative threshold level, r=d//JV, to be high.

But recall that, at those high levels,a substantial fraction

of envelope upcrossings is not (immediately) followed by an

Ixl-upcrossing. It is easy to see that the estimate based on

87
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Fig.IV.2. Comparison of Estimates for the Decay Rate a ,c=0.01
A: Independent Crossings; B: Independent Envelope Crogsings[8];
C: Decay Rate a ; D: Mark's Analytical Work [19].
E: Digital Simu ation [17]; F: Analog Simulation [42]; G: Nu-
merical Diffusion of Probability [17].
k, k( 0), k(2): Various Analytical Estimates of the Spectral
Shape Factor; k*: "Experimentally" determined k-factor.



the assumption of independent envolope upcrossings, does not

exhibit the proper limiting behavior for high thresholds.

c) Two other estimates, quite similar to the above, may

be given. The first one is based on the assumption that envel-

ope peaks are independent [51,32]. The second one amounts to

using aE' the decay rate of the reliability function (Eq.III-

3.4) corresponding to type E barriers. The difference between

the three envelope-based approximations is notable only for

low threshold levels. Figure IV.2 (which is adapted from a re-

cent review paper by Crandall[32]) shows several of the above

approximations.

Sensitivity of k-Factor Estimate

Before comparing our estimate of the failure rate a ,
D

given by Eq.IV-2.10, to results obtained by simulation [17,42]

and other analytical work [19], it will be of interest to il-

lustrate the fact that the k-factor is highly sensitive to

the shape of the power spectral density function. Recall that

k is a simple function of /X 0 X2 (see Eq. I-5.3) where the

hX are moments of the power spectrum. For the response spec-

tral density GX(w), given by Eq. IV-2.4 and shown in figure

IV.3a, we found k 2/2O1/ 2 for low values of the damping ra-

tio c. Consider, however, the following two approximations to

the actual power spectral density function GX(w).

i) a band-limited filter (Fig. IV.3b)

ii) a Gaussian filter (Fig. IV.3c)
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0= elsewhere

b

Fig.IV.3. Approximate Spectra.

An expression for the shape factor k in terms of the para-

meters of each of the above filters is given in section 1.5,

by Eqs. I-5.9 and 1-5.12, respectively. The parameters of the

approximate spectra are so chosen,that the following two con-

ditions are satisfied

i) they transmit the same total power, i.e., X0 is given

by Eq. I-5.15

ii) their peak value equals GX (n) in Eq. IV-2.4.

The approximate spectra are depicted in figures IV.3b and c,

respectively. It is easy to show that the following estimates

of k result,

m

GX () (w-wn)2
Go n2 2

e n4 2 2

n

w>0
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"Band-Limited" Approximation k (i)T (IV-2.14)

(Fig. IV.3b)

(2)
"Gaussian" Approximation k 2) f (IV-2.15)

(Fig. IV.3c)

The above estimates show the shape factor to be linear in C.

Our earlier estimate, Eq. IV-2.6, indicates that k is propor-

1/2tional to c . The ideal white noise input upon which the

latter estimate is based, is, of course, physically unreal-

izable. It is also interesting to note that the "band-limited"

approximation for k has been used by Lin [8] ,to evaluate the

approximate decay rate a', given by Eq. IV-2.13. For a damping

(1)
ratio C=0.02, the estimates kand k differ by a ratio of 1

to 9. This discrepancy between the various approximations to

the shape factor, strongly suggests its rather pronounced

sensitivity to the extremes and/or skewness of the power spec-

tral density function. Note that all three estimates of the

spectral shape factor have the form

k = c •C (IV-2.16)

where the constant cI has the value 2.83, 2.22 and 3.14 in

Eqs. IV-2.6, IV-2.14 and IV-2.15, respectively, and c 2 takes

the respective values 0.5, 1.0 and 1.0.

Comparison with Numerical Solutions

Crandall [32] recently compared the author's estimate,



Eq. IV-2.10, of the decay rate aD of the first-crossing proba-

bility, to the results obtained by simulation [17, 42] and

numerical diffusion [17]. Also included in the comparison are

the analytical results due to Mark [19]. He obtained the

eigenvalues of a first order "equivalent" of the integral

equation characterizing a second-order Markov process. The

dominant eigenvalue is taken as an approximation for the decay

rate a . His method also requires a considerable amount of
D

computation.

Figure IV.2 shows the various estimates of aD' norma-

lized w.r.t. a, for a damping ratio t=0.01. The curve, labeled

"k", represents the case where the shape factor is estimated

by Eq. IV-2.6. If the estimates k( ) or k(2), given by Eqs.

IV-2.14 and IV-2.15, respectively, are used then a consider-

ably smaller value of the ratio aD/a results, as shown in

figure IV.2. In the face of the uncertainty as to the validity

of the available analytical estimates of k, an "experimental"

determination of k seems indicated. The form, given by Eq.

IV-2.16, of the relationship between k and ý is adopted on

theoretical grounds. It is found that excellent quantitative

agreement may be achieved between the numerical results and

the proposed analytical solution for aD, if we take c =2.5

and c =0.65,

k = 2.50.65 (IV-2.17)
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It should be emphasized that the agreement is achieved over

the whole range of threshold levels r and damping ratio's,

0.01<<0.08.

This "semi-empirical" estimate of the functional

relationship between the shape factor k and the damping ratio

C, may now be back-substituted into the expressions, derived

earlier,in terms of k, for a number of important response

statistics. For example, the expression for the mean clump

size, given by Eq. 11-4.16, now becomes

cl C

E[N1,D] = (1-expt2--rr 2) -  (IV-2.18)

= (1-expi-1.25rC0O65 ) - 1  (IV-2.19)

where r designates the normalized (w.r.t. the response r.m.s.

value) threshold level. The above equation is plotted in

Fig. IV.4 as a function of r for several values of the damping

ratio §.

5.

4

i

O

r=a/JX' 0

Fig.IV.4. Mean Clump Size for Stationary Response of a Lightly
Damped Oscillator to White Noise. (Based on Eq. IV-2.19)

IM



IV.3. Characteristics of the Maximum Response

Some General Results

a) Stationary Narrow-Band Gaussian processes

Consider an arbitrary zero-mean stationary narrow-

band random process X(t). The distribution function of the

time of first passage of a D type barrier, IXI=a, is directly

related to the distribution function of Xs, the maximum am-

plitude (in absolute value) of X(t) during the time interval

0 to s. We have

F (a) = P[X a] = P[TfD a>S] = Lf,D;a (s) (IV-3. 1)

where the symbols have the following meaning

FX (a): the cumulative distribution function of Xs
s

X

s

a

the maximum relative displacement (in absolute

value) during the time interval 0 to s

the motion duration

the threshold value

Tf,D;a: the time to first passage of a D type barrier

with threshold value a

L (s): the value at time s, of the reliability
Tf,D;a

function for a D type barrier, IXI=a.

Inserting Eq. III-3.3 into Eq. IV-3.1, one obtains

F (a) = L (s) = A exp{-D s}
Xs TfD;a D D s_0 (IV-3.2)
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where aD is the decay rate of the first passage density and

AD is a factor which depends on the starting conditions. In

the case of a stationary start it equals the probability of no

instantaneous failure. For Gaussian processes, using Eq. III-

3.4, Eq. IV-3.2 becomes

F s l-exp{-kr/2}
X (a) (l-exp{-r 2/2})exp-2s exp{r 2/2}- (IV-3.3)
s expfr2/2}-1

where r=a/ox, ~x=/Vo being the standard deviation of the

stationary process. Also, k is the spectral density shape

factor (Eq. I-5.3) and vo denotes the average number of zero

upcrossings per unit time. Let Rs be defined as the reduced

maximum amplitude

R, = Xs/a x  (IV-3.4)

It is easy to see that FX (a)=FR (r).
s s

Now, let rs;p denote the value of the reduced maximum

amplitude which has a given probability p of being exceeded

during s seconds of stationary motion. It may be obtained

by solving the equation

p = FR (rs;p) (IV-3.5)

where the right side of the above equation may be substituted

by the right side of Eq. IV-3.3, with rs;p replacing r. It

m



is clear that r will, in general, be a function of p, ns
s;p

and k. Many earlier studies [14, 43, 52, 53, 541 of the dis-

tribution of the maximum value of a random process are es-

sentially based on the following "asymptotic" expression for

F (r)

F (r) = exp{-2v s exp{-r 2/2}} (IV-3.6)

For the case in which kr becomes large and exp{r 2/2}>>l, the

two expressions, Eq. IV-3.3 and IV-3.6, will be equal. As may

be seen from Fig. IV.5, however, for very small k (or, in case

Based on
Eq. IV-3.6.

----- Based on
Eq. IV-3.3 with
k=0.2.

Ii

Fig.IV.5. Distribution Function of the Reduced Maximum Amplitude

X(t) represents the response of a linear oscillator, for a

very low damping ratio) and for low threshold levels, a sub-

stantial difference may result in the estimates of r s;p

computed by means of Eqs. IV-3.3 and IV-3.6, respectively.

The "clumping" of peaks (which becomes more pronounced for
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low values of k) has the effect of increasing the mean first

passage time and hence, of decreasing the expected maximum

value.

b) Nonstationary Narrow-Band Gaussian Processes

Visualize a zero-mean narrow-band Gaussian random

process X(t) with a time-dependent mean square value, but

whose unit-area power spectrum does not change in time. The

spectral density shape factor k and the average frequency v0

will then also be independent of time. To estimate the prob-

ability distribution of the time to first passage of a double

threshold level IX =a for such a nonstationary narrow-band

random process, it will be useful to introduce a time-depend-

ent failure rate aD(t), which may be interpreted as follows:

XD(t)dt is the probability that failure occurs in the time

interval t to t+dt given that it did not occur in the interval

(O,t). In fact, a complete similarity between the stationary

and the nonstationary case may be achieved by defining a time-

dependent two-state Markov process, with time-dependent rates

(D(t) and D(t) . The first-passage time distribution takes

the form

(*) This representation is an extension of a non-homogeneous
Poisson model for the occurrence of crossings of a high level.
Such a model has recently been proposed by Ang and Amin [55]to
study the characteristics of the response of structures to
strong-motion earthquakes. Of course, the two-state Markov
process will reduce to a Poisson process when the average
clump size tends to one.
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(IV-3.

ty of in-

Since only

time, a(t)

aD (t) =2v
l-expf-ka/2 a x (t)

exp {a 2 /20<(t)}-1
(IV-3.8)

he basic re-

wing express-

imum ampli-

al 0 to s, of

e-dependent

vel (x (0)=0),

s l-exp{-ka/2 ox(t)}
F (a) = exp{-2vo I
Xs  0 exp {a2/2 x

2 (t) }-1
x

dt} (IV-3.9)

In Eas. IV-3.8 and IV-9 the value of the shape factor k is

assumed to be independent of time. Furtner work is needed to

verify this assumption.

Statistical Properties of Lightly Damped Response Spectra

An important notion in practical and theoretical

studies of the response of structures to dynamic loads is

the response spectrum. It is a plot indicating the maximum

7)
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1

response of linear single-degree-of-freedom system to a given

(deterministic) excitation versus the natural period of the

(spectrum of) system(s) for various fractions of critical

damping. Corresponding to each sample function of an ensemble

of excitations is a "sample" set of response spectra. The aim

here is to obtain a complete probabilistic description of the

response spectra in terms of the properties of the ensemble

of input motions, i.e., its power spectral density and dura-

tion. Our study will be limited to a "quasi-stationary"

Gaussian excitation of duration s and with smoothly varying

spectral density function G(w). Its intensity function has a

step-function-like form, as shown in Fig. IV.6. The nonsta-

tionary behavior of the response of a spectrum of lightly

damped oscillators to such an excitation has been studied by

Caughey and Stumpf [56]. They found that, for small values of

the damping ratio ý, the time-dependent mean square value of

the response, 2 (t)=E[X2 (t)], has the following form

02(t) = E[X2 (t)] [l-exp{-2Cwnt}] 0<t<s (IV-3.10)
x 4wn

When t becomes large compared to the "correlation time",

1/(2:n,), of the response process, then ox (t) will become

equal to its "stationary" value ax, which equals

7rG(w n )
02 - (IV-3.11)x 4Cw3

n

of input motions, i.e., its power spectral densi-ty and dura-

tion. Our study will be limited to a "quasi-stationary"

Gaussian excitation of duration s and with smoothly varying

spectral density function G(w) Its intensity function has a

step-function-like form, as shown in Fig. IV.6. The nonsta-

tionary behavior of the response of a spectrum of lightly

damped oscillators to such an excitation has been studied by

Caughev and Stumpf [56]. They found that, for small values of

the damping ratio 5, the time-dependent mean square value of

the 2 (t)=EEX2 (t)], has the following form

·rr G (w,)

o' (t) E[X2(t)] [l-exp(-2Swt~l O<t<s (IV-3.10)

x 45w~

When t becomes large compared to the "correlation time",

1/(2~0,), of the response process, then o~(tj will become

eyual to its "stationary" value ax, which equals

~rrG(wn)

2 (IV-3.11)
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Fig.IV.6. Mean Square Value of the Transient Response of a
Single-Degree-of-Freedom System under White Noise Excitation
(taken from Caughey and Stumpf [561)

The transient nature of the response becomes important when

the total time s during which the system is exposed to the

excitation, is small compared to 1/(2c n). When the damping

ratio approaches zero, oa(t) in Eq. IV-3.7 becomes [561
rati appoachs zeo, x

7TG( n )
= lim E[X2 (t)] 2 t2

÷0- 2nn
(IV-3.12)

In Fig. IV.6, the mean square value o2 (t) is plotted as ax

function of t for various values of the damping ratio.

The probability distribution function of Xs, the

maximum displacement (in absolute value) of the oscillator,

is found by inserting Eq. IV-3.10 into Eq. IV-3.9,

100
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s 1-exp{-2 -[l--exp(-2w t)]  }
F (a) = exp{-2v x at (IV-3.13)
X o a 1t

s 0 exp{2 [1-lexp(-20 t)] }-1

For oscillators with a "correlation time", l/(2m c), which is
n

much smaller than the motion duration s, the response standard

deviation ox(t) will rapidly reach its stationary level, and

hence, the integrand in Eq. IV-3.13 will be nearly constant

throughout most of the interval (0,s). It will then be con-

venient to approximate Eq. IV-3.13 as follows,

l-exp{-ka/2cx T

F (a) = exp{-2v s* }- e p - k a / 2 x }

s exp{a 2 /2o x }-l

= exp-aDs*} (IV-3.14)

where s* may be interpreted as the "equivalent motion duration'

It is always smaller than s because the actual failure rate at

the start of the response motion is smaller than the "station-

ary" failure rate. The larger the "correlation time", the

more s* and s will differ.

Another useful form of presenting FX (a) is that in
s

which Crandall's simulation results [17] are reported, for the

case where the oscillator starts from rest.

F (a) = A' exp{-aDS} s>>1/2n c  (IV-3.15)
D
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The factor A' may be computed from Eqs. IV-3.14 and IV-3.15
D

A' = exp{a (s-s*) (IV-3.16)
D D

s-s* may be interpreted as the "rise time" of the response

r.m.s. value. It depends only on the oscillator properties,

wn and t. The failure rate aD (sharply) decreases when the

threshold value increases. In fact, aD is inversely propor-

tional to the (stationary) mean time between threshold cross-

ings. The product aD(s-s*) tends to zero, and hence A'D l,

when the threshold level increases. The predicted behavior

corresponds well with the simulation results [17], as shown

in figure IV.7.

1,4

I.0

[.0

S-s' ) = 1.5

f, 7)

Fig.IV.7. The Factor A' in the Reliability Function(Eq.IV-3.15)
Corresponding to a "Zero Start".

Let us now concentrate attention on o (s), the r.m.s.
x

value of the response at the end of the "exposure". In ar-

riving at Eqs. IV-3.14 and IV-3.15, it has been assumed that
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a (s) is very nearly equal to the stationary r.m.s. value .x x

For an oscillator with a very low damping ratio or a very long

natural period, however, ux(s) may be much smaller than Ox,

as shown in Fig. IV. 8.

t
0 S

Fig. IV.8.

In fact, an undamped oscillator will not (ever) reach a sta-

tionary state under stationary excitation. It is not meaning-

ful, in such cases, to express the reliability function (or

the distribution of the maximum response) in terms of the

stationary failure rate aD. The following approach may be

adopted, however. The stationary properties a and aD may be
x D

replaced by a (s) and O (s), respectively, in their role to
x D

act as reference quantities for the time-dependent statistics

a (t) and a (t), O<t<s. Let us define
x D

r ' =  a/a (s)
x (IV-3.17)

R' = Xs/ ax(S)s s x
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Then, from Eqs. IV-3.10 and IV-3.13, one may write

s l-exp{-kr'g(s,t)/2}
F (r') expi-2v

Rs 0 exp{r' 2g2(s,t)/2}-1
dt}

where

l-expf-2ýwn s} /2
g(s,t) = [ n 1/2

l-exp{-20mnt }

(IV-3.18)

(IV-3.19)

It may be useful in practice to write the above result in the

following form

FR (r') = exp{-aD(s)s * * }
s

(IV- 3. 20)

where s** will be some fraction of the exposure time s, and

aD (s) is given by

1-exp{-kr'}
a (s) = 2voexpr'2/2Dexp{r' 2/2}-

Let x
s;p

(IV-3.21)

designate the ordinate of the response

spectrum corresponding to a quasi-stationary Gaussian random

excitation of duration s and with a smooth power spectrum G(w),

which has a 100 % likelihood of not being exceeded. The quan-

tity, xs;p may be expressed in terms of ox(s),

x = r' x (s)
s;p s;px
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a (S) vý T Go n)/ [l-exp{-2mw s1 ] 1/2
x 2cl/2 C/2

n
(IV-3.23)

and r'; is implicitly given by the relationships;p

p = F, (r' (IV-3.24)
SK S;Pp

where FR,'(.) is given by Eq. IV-3.18.
S

The results given in the previous few pages are based on the

assumption that the shape factor k remains a constant. There

are some indications that this may not be a reasonable

assumption.Furter investigation is indicated.
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IV.4. Approximate Characteristics of the Response of a

Class of Oscillators with Nonlinear Restoring

Forces

The response to stationary Gaussian white noise ex-,

citation of a nonlinear one-degree-of-freedom oscillator is

of course,non-Gaussian. It has been pointed out in the intro-

duction to this chapter that the theory developed in Chapters

II and III does, in principle at least,accommodate this class

of structures. The basic information needed to render the re-

sults useful,essentially consists of the average crossing

rates, vd and nd corresponding to a specified threshold d.

The latter, in turn, may be found from the joint probability

density functions p(x,x) and p(r,i), respectively, by means

of Rice's fundamental relations, Eqs. I-4.1 and 1-4.3. The

joint density, p(x,x), of displacement and velocity of the

response of certain classes of nonlinear oscillators, excited

by purely random Gaussian noise, may be obtained from the

solution to the Fokker-Planck equation (for example, see Ref.

8, 48, 49, 50). To compute, for a nonlinear response quantity,

the joint density function p(r,i),of the envelope and its time

derivative, (provided the latter exists!),is a task of formi-

dable mathematical complexity. No exact solution has yet been

obtained. Lyon [35] reported an approximate solution for the

case of a randomly excited hard-spring oscillator. His aim

was to compare the values of the "mean clump size", (which,
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recall from section I.5, he defines to be equal to the ratio

Va/na) ,corresponding to oscillators with different spring

characteristics, i.e., linear vs. hardening spring. It should

be noted that Lyon's [35] analysis holds only for the case

where the nonlinearity effects are "small" (where "small" is

to be clarified later). His estimates of the basic statistics

vo, Va and na are accepted here without much further ques-

tioning, as the (limited) purpose of this section is, essen-

tially, to demonstrate the potential and the generality of

the proposed solution to first-crossing problems and other

reliability measures.

Consider the differential equation governing the

displacement response of a one-degree-of-freedom system with

a nonlinear restoring force

x+2cwnk+g(x) = f(t) (IV-4.1)

In particular, taking

g(x) = Wnx(l+ýx2) (IV-4.2)

one obtains the classical nonlinear equation of a (linearly)

damped Duffing system [57]. The function g(x) is shown in

figure IV. 9. The Duffing equation has been shown, through

experimental and theoretical studies,to describe in an ap-
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Fig.IV. 9. Hardening Spring Characteristics.

proximate way the periodic vibrations of beams and plates (see

for example, Ref. 8). The constant 13 introduces the effect of

the nonlinearity,and the other symbols in Eqs. IV-4.1 and IV-

4.2 have the same meaning as in Eq. IV-2.2. It will be useful

to express the equations of motion, Eqs. IV-4.1 and IV-4.2 in

terms of y=x/ /ý7, in which /v is the r.m.s. (relative) dis-

placement corresponding to the linear response, i.e., with

8=0. The equation of motion becomes

y+2wny+"~2y(l+yy 2 ) = f(t) (IV-4.3)

where =X00.

By solving the Fokker-Planck equations [11], Chuang

and Kazda [58] obtained p(y,y), the joint density of the nor-

malized nonlinear response Y(t) and its time derivative Y(t),

for a stationary white noise Gaussian input. Lyon and Smith

[50, 35] found approximate expressions for other pertinent

statistics needed here. To evaluate the first-crossing proba-
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bility corresponding to a D type barrier, under random start-

ing conditions, we need the decay rate or failure rate .D

From Eq. III-4.5,

l-exp{-nd/2vd }S= 2v )-l
D d

(IV-4.4)

where d is the specified threshold level. The failure criteri-

on is, iXad, or written in terms of the normalized threshold

value, r=d//I , it becomes, |IYIr.

We now summarize the pertinent results due to Lyon

and Smith [50, 35]. The rate of zero up-crossing has the

form

n 1
0 27 K(y)

(IV-4.5)

where the function K(y) is shown in figure IV.10. Its precise

(and fairly complex) mathematical form [35] will be of no

interest here. Not unexpectedly, the nonlinearity has the ef-

fect of increasing the rate of zero crossings, or the average

K(Y)
i

U 0.1 0.5 [0~

Fig. IV. 10

109

-1 moww7



frequency, of the hard-spring oscillator. Note, however, that,

for small values of y, say, of the order of 0.2, there will

only be a few percent increase in the average frequency. It

has also been established [50, 35] that

Vd r2  1
- exp E- 2 (+ -yr 2 )} (IV-4.6)

Vo  2 2

where r is the normalized threshold value, r=d/VX o . When y=0,

Eq. IV-4.6 reduces to the well-known "Gaussian" result. Lyon

[35] also found the following approximate relationship be-

tween the ratios nd/vd and (nd/vd)LO, respectively corre-

sponding to the hard-spring oscillator and to the linear

oscillator

nd nd 12 1/2-d d= (• K~) [l+!Yr 2 ] (IV-4.7)
vd Vd LO 2

This (approximate) expression is valid only for values of Y

less than 0.2. The ratio (nd/Vd)LO is given by Eq. 1-5.4,

nd
( ) = kr (IV-4.8)
Vd LO

where k is the spectral density shape factor, associated with

the response of a linear (y=0) oscillator to Gaussian white

noise excitation. Its dependence on the damping ratio r is

studied in section IV-2. From Eqs. IV-4.7 and IV-4.8, it fol-

lows that
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Insertinq IV-4.5, IV-4.6 and IV-4.9 into the expression for

the decay rate aD , given by Eq. IV-4.4, one obtainsD

kr 1 1
0 1-exp{-K(y) [1+2yr /20 22aD K(

D 7TK ( y) r 2  1
exp{- (1+y(r2 ) }-

2 2

(IV-4.10)

Finally, by making the following substitution,

r = r(l+ 1 yr2)1/2
r* 2

(IV-4. 11)

the decay rate aD of the first-passage density of the hard-

spring oscillator becomes,

D K(
D 7K(Y)

l-exp{-K(y)kr,/2)

exp{r,/2}-1
(IV-4.12)

We already noted that, for y<0.2, K(y) will only be slightly

different from 1. Observe that, if we take K(y)=l, then Eq.

IV-4.12 has the form of Eq. IV-2.9, which expresses the decay

rate aD' of the first-passage density of the corresponding

linear oscillator (Eq. IV-4.3, but with y=0).The essential

difference is that r is substituted by r,.

In fact, it may further be shown, using Eq. III-4.7,

that AD, the probability that IY(0) <r, (i.e., the probability

that failure is not instantaneous), for a stationary start,

has the form
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r2  1
A = 1) ,/v = l-exp{ (r2 +-yr 2 )}D d 02 2

= l-exp{ -r2 /2} (IV-4.13)

where r, is given by Eq. IV-4.11.

The net result of the above analysis is surprisingly

simple. Presume that we seek the probability of first passage

across a D type barrier, IX(t)l=d, where X(t) represents the

response of a hard-spring oscillator to stationary white noise

Gaussian excitation. It suffices to compute the first-passage

probability for the associated linear oscillator (,i.e.,B=y=0,)

but with an elevated threshold level d,. The ratio d*/d may

be found from equation IV-4.11,

d, r, (1+1yr2)1/2 (IV-4.14)
d r 2

y is the non-dimensional"nonlinearity-factor", restricted

here to values less than 0.2; r is the normalized threshold

level, i.e., r=d//x o , where /X0 is the r.m.s. value of the

associated linear response process. As noted before, the small

increase in the average frequency, which is given in Eq.IV-4.5,

is neglected. The ratio d,/d is plotted in figure IV.11 as a

function of r for several values of y. Consider the following

example. Let y be equal to 0.1 and let the specified threshold
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Fig.IV.11. "Threshold Amplification Factor':

value d be three times larger than the linear response r.m.s.

value, i.e., r=3. The new "ficticious" threshold level d, may

be computed from Eq. IV-4.14,

d, = 3/X (l+x0.1lx32)'/ 2

= 3.6/x 0  (IV-4.15)

The probability that the hard-spring oscillator response will

cross the threshold 3/Xo,during a given time interval, is ap-

proximately the same as the probability that the response of

the associated linear oscillator will cross the threshold

3.6 vA, during the same time interval.

The above described method for solving first-crossing

problems for "lightly" nonlinear narrow-band oscillators seems

very promising. Briefly, the idea is to express the basic sta-

tistics, vo, Vd and nd, and, subsequently, the first passage

probability, in terms of the mechanical properties of the non-
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CHAPTER V

OTHER FAILURE CRITERIA AND MEASURES OF RELIABILITY

V.1. Introduction

The preceding chapters primarily deal with one very

important mechanism of failure, i.e., that which postulates

failure when the dynamic response quantity X(t) first reaches

a maximum allowable value X=a. Recall that our solution to the

problem of determining the statistical properties of the time

to first passage of a threshold X=a is essentially based on

the concept of a two-state Markov process. Take, for example,

the case of a D type-barrier. As long as the peaks of jX(t)

remain below the double barrier jXl=a, the two-state process

Da(n) will have a value zero. However, as soon as the re-

sponse X(t) crosses the threshold it is no longer of interest

as failure is postulated to have occurred, i.e. state 1 is an

absorbing state. In a flow graph representation,(see,for ex-

ample,reference [23]) this situation may be depicted by a sin-

gle directed arc joining the nodes labeled zero and one, which

represent the two states. See figure V.1.
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Fig.V.i. Flow Graph Representation: First Crossing Failure.

The quantity q01, called the intens ity of transition from

state 0 to state 1, is equal to the decay rate in the reli-

ability function corresponding to the particular threshold

configuration of interest. For example, for a D type barrier

using the modified (continuous time) two-state process Da(t),

we have q01 =aD where aD is given by Eq. III-4.5. It is clear

that the two-state processes, introduced in chapter II, con-

tain more probabilistic information than that needed to solve

first crossing problems.They provide the groundwork for ana-

lyzing other potentially useful mechanisms of failure.

Often the response continues to be of interest after

the first crossing of a predetermined threshold has occurred.

In particular a designer might be more interested in the ques-

tion: "How often do the peaks cross the threshold during a

time interval 0 to T?" In that case we need to specify,not

only the characteristics of the time to make a transition from

state 0 to 1, but also of the time it takes to return from

state 1 to state 0. The two-state Markov model is depicted in
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the flow-graph, figure V.2

Fig.V.2. Flow Graph Representation: Fractional Occupation Time.

Again the transition intensities q01 and ql0 have values

which depend on the particular threshold configuration and

threshold value considered. For example, for a D type barrier,

1X =a, we have q01=aD where a is given by Eq.III-4.5 and
'1 D D

1
q0 E[TE ,where E[T1] is given by Eq. II-2.4.

D E[T1 ,EE] 1 ,E

A measure of the quality of performance that is dealt

with in some detail in the first part of this chapter,is the

fraction of peaks of the response process that exceed a spec-

ified threshold level in a given time. Failure is then de-

fined to occur when the fraction of peaks becomes greater

than a prescribed fraction. This failure criterion is essen-

tially the same as that proposed by Spence and Luhrs [59].

They presume the performance to be unacceptable when the av-

erage number of crossings of the threshold per unit time ex-

ceeds a prescribed rate. Another closely related measure is

the fraction of total time for which the response envelope

process R(t) exceeds the threshold. These fractions are ran-

dom variables whose ensemble mean and variance are reported

in section V-2.
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In the second part of this chapter the information

gathered in chapter II on the properties of the two-state

processes E (t) and D'(t) is used,to derive and, in a sense,a a

re-interpret the probability distribution of the envelope and

of the peaks in a narrow-band stationary process. It is also

seen to lead to an uncommon way of viewing the problem of fa-

tigue damage accumulation. All results are found to agree

with those available. This material is included here mainly

to demonstrate one of the major features of the two-state re-

presentation, proposed in chapter II, namely, that it leads

to a consistent and conceptually unified set of explicit ana-

lytical expressions for all common reliability measures re-

lated to narrow-band vibration.

In the final part of the chapter the concept of a

two-state process is expanded. It is shown that a simple three

state Markov process may be a satisfactory mathematical model

for analyzing certain important failure mechanisms which have

hitherto not received the attention they deserve,mainly due

to a lack of analytical capability. In general, a Markov model

may be expected to be satisfactory in cases where it is rea-

sonable to assume that the system dependence upon the response

history is completely characterized by the present state of

the system, i.e., future behavior depends only on the present

state. This is seldom strictly true. The response of a simple

linear oscillator, for example, even to memory-less (white
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process. 
However, 

the use-

esses to model failure cri-

teria related to linear oscillator response, has been demon-

strated quite convincingly in the preceding chapters. It is

therefore believed that multiple state Markov processes may

prove to be equally useful in modeling more complex (but also

more realistic) failure mechanisms.

V.2. Failure Criteria Based on Fractional Occupation

Time

A. Mean and Variance of the Fraction of the Time

the Envelope Exceeds a Fixed Threshold

Recall that the continuous time two-state process

E (t) is based on the envelope R(t) of a stationary random
a

process X(t). The envelope R(t) is below the threshold R=a

for a random time T,E, and makes excursions of random length

T above the threshold. See figure 11.3. The means E[T ]
1,E 0,E

and E[T ] are derived in section 11.2.
I,E

Let y (a) be the fraction of time the envelope pro-
T

cess R(t) exceeds the threshold,R=a,during the interval 0 to

T, i.e., the fraction of time for which the two-state process

Ea(t) has the value one. The fraction y T(a) may be represented

as a temporal average [44]
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T
y (a) = f IE (t)dt (V-2.1)

T To a

T
There is no contribution to I E (t)dt during time intervals

o a

for which E (t)=0, i.e., when the envelope is below the thresh-
a

old. The times during which the envelope exceeds the threshold

are simply added. Some results may be stated that do not re-

quire an assumption regarding the form of the density func-

tions of T and T . In particular, the following limit
0,E 1,E

theorem of probability,due to Renyi [60],may be called upon

to obtain the mean and variance and asymptotic distribution

of the fraction YT(a). The following assumptions need to be

made

i) the times TO, E and TI E are independent random variables

ii) TO E and TI E have finite variances

Note that these assumptions are no more restrictive than those

made in chapters II and III. The theorem asserts that the

fraction YT (a) is asymptotically,for T-*c,normally distributed

with mean and variance given below,

lim E[y (a)] = E[T1E] (V-2.2)
T-m T E[T I E]+E[TOE

lim Var[ (a)] 1 E2 [T1,E]Var[TO,E]+E 2 [T0 ,E]Var[TE (V-2.3)
lim Var[- (a)] '' (V-2.3)
T -- T T (E[T ,E ] + [T OE ) 3

The above expressions for mean and variance are also valid

for small and moderate values of T,when the starting condi-
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tions are random or stationary. Substituting E[T j and
0,E

E[T, by their values given in Eqs. II-2.4 and 11-2.5, we

have, in the case of a stationary start,

E[YT (a)] = v /v (V-2.4)

To evaluate the variance of YT (a) ,estimates of Var[T ,E] and

Var[T ] are needed. Let T and T E be assumed to be ex-

ponentially distributed,with means E[T OE]=1/aE and E[T 1 =

1/B E , respectively. (In other words, the two-state process

E (t) becomes a Markov process.) Then, using Var[T ]=1/a 2

a 0,E E
and Var [T ]=1/82, Eq.V-2.3 becomes

1,E E

1 2aEBE
Var[y (a)] (V-2.5)

T T (aE E+1 E)3

Again inserting Eqs. II-2.4 and 11-2.5, one obtains,

Var[y (a)] = -1 a (1-v )2 (V-2.6)
T voT na 0  0

For Gaussian processes,and under stationary starting condi-

tions,the mean and variance of the fraction of time the envel-

ope process exceeds the threshold X=a during the interval 0

to T, respectively take the form

E[YT(a)] = exp{-a 2/2o0 } = exp{-r 2 /2} (V-2.7)
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1 2exp{-r 2 / 2 }
Var[y (a)] 1 (1-exp{-r 2 /2}) (V-2.8)

T T kr

where r=a//i o and k is the spectral density shape factor. The

above expressions are plotted in figures V.3 and V.4. Note

Sr = '//A,

4

C,

4

3 IT

' (at)j

Figs.V.3 and 4. Mean and Standard Deviation of the Fraction
of Time the Envelope Exceeds the Threshold during a Time
Interval 0 to T.

that Var[yT(a)]0+O when r=a//,-O0 or when r÷*. There is little

uncertainty about the value of yT(r) corresponding to very

high or to very low threshold levels. Of course, for r+0,

E[y (a)]÷l and for r-2, E[y T(a)]0. It is also of interest to
T T

note that the statistics of l-yT(a), the fraction of time the

envelope process spends below the threshold R=a during the

interval 0 to T,is simply related to the characteristics of

y (a),as followsT
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E[l-y (a)] = l-E[y (a)]
(V-2.9)

Var[l-yT(a)] = Var[y (a)]
T

The coefficient of variation (c.o.v.) of y (a) has the form
T

VVar[YT(a)] 1 Jý exp{r 2/41
S(1-exp{-r2/2 1) (V-2.10)

E[yT(a)] /v0T /k r 1/ 2

It may be seen as a product of three factors:

i) the c.o.v. decreases in proportion to 1/vvoT, where vo T

is the expected total number of cycles.

ii) the c.o.v. decreases in proportion to 1//k, where k is

the spectral density shape factor, defined by Eq. 1-5.3. If

the stationary narrow-band process represents the response of

a lightly damped one-degree-of-freedom system to wide-band

Gaussian excitation,then we may take k=2/2ý1 /2 where C is the

damping ratio of the oscillator. The c.o.v. is seen to in-

crease for decreasing c,but the dependence is rather weak.

iii) the effect of changing the value of the threshold

level on the c.o.v. of the fraction Y T(a),may be seen from

figure V.5.

I0

0 -" a

Fig.V.5. The Coefficient of Variation of the Fraction T (a).
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Starting Conditions Other Than Random

Let q be the probability of finding the envelope be-

low the threshold at the start of the observation period, i.e.

the probability that the two-state process has a value zero

at time t=O.

q = Prob[E (0)=0] (V-2.11)
a

Again assume the holding times T0,E and TIE to be exponent-

ially distributed with mean values 1/a and 1/E , respectively.
E E

The value of the two-state process at time t, t>0, is of course

a random variable. Its expected value (ensemble average) may

be expressed in terms of the parameters aE and BE I the start-

ing characteristic q and the time t. Parzen [44] shows that

aE E -(aE + E ) t
E[E (t)] (q- _ )e (V-2.12)

a "E+ E cE+BE

Note that the effect of the starting condition fades away for

t-~. The expected value of YT (a), the fraction of time the

envelope exceeds the threshold X=a in the interval 0 to T,

may be obtained from Eqs. V-2.1 and V-2.12,

1 T
E[y (a)] = - f E[E (t)]dt

T T 0 a

EE 1 -(a E+E )T
ST E E1 (q E [l-e (V-2.13)
aE+BE T EE+BE aE+E
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3 stationary or random

ýliminates the dependence

(a)]. Let that value be

(V-2.
•oE

:ome s

14)

(V-2.15)Ja/"o

- that the expression for

to the estimate obtained

>f the Fraction of Peaks

'hreshold

erformed for the modified

D'(t). Recall that it is
a

state process D (n) by

(V-2.16)

a
taking

E[TO,D] = l/7D = E[NO , D ]/ 2 vo

E[T1,D] = D = E[N1,D /2v o
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The quantity of interest here is C (a), the fraction of the

peaks of IX(t) ,in the interval 0 to T,which exceed the thresh-

ol.d X a.

T
ST(a) = f D (t)dt (V-2.17)

As the occurrence of the peaks is,in fact,a discrete time

process, the right side of Eq. V-2.17 is really meant to be

a good approximation for

N
1 Z D (n) (V-2.18)
N n=l a

where N is the random number of peaks occurring in the inter-

val 0 to T. When properly interpreted,all the results of the

preceding section still hold here,if the subscript D is sub-

stituted for E and YT(a) for c (a). In particular, when the

rates a and 8D are replaced by their actual values (see
D D

Eqs. 111-4.5, V-2.16 and III- 5.4 ), the following estimates

are obtained for the mean and variance of the fraction T (a),

in the case of a stationary start,

E[C (a)] = v /v (V-2.19)
T 0

Var[C (a)] = 1a/ (1-v /v )2  (V-2.20)
T v T (1-exp{-na/2va}) a
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he following relations between the

rs y (a) and , (a),
T T

)] = E[y T (a) ] (V-2. 21)

na/2u a Var[YT (a)]
-xpf-na/2Va}

1 Var[y T(a)]
P DD

(V-2.22)

[I-4.7,and for Gaussian random pro-

t may be seen from figure V.6 that

Var L TT(a)j

0.05

-- k = i/•
~L k = 1/4

r (m I k-o

T·~/lx

Fig.V.6. Comparison of the Variances of the Fractions y (a)
and ý (a). T

the variance of the fraction of the peaks of JX(t) exceed-

ing a fixed threshold,is somewhat higher than that

of the time the envelope exceeds the same threshold during

the same time interval. The corresponding mean values are

identical.
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V.3. Distribution of the Envelope and of the Peaks in

a Stationary Narrow-Band Process. Fatigue Failure

Let g (a)da be the fraction of the time interval 0 to

T, during which the envelope R(t) of a stationary random pro-

cess X(t) is between the threshold levels R=a and R=a+da. The

fractions gT(a)da and y (a) are related in the following way
T T

d
S(a) = -- [ (a)] (V-3.1)

T da T

YT(a) = g T(a)da (V-3.2)
a T

Note that Eqs. V-3.1 and V-3.2 essentially state that the

random variables on both sides of the equality sign are equiv-

alent. Recall that the fraction y (a) takes a value zero forT

sure when a- ,and one for sure when a--0. For intermediate

values of a it has a mean given by Eq. V-2.4 and variance

given by Eq. V-2.6. g T(a) may be interpreted as being pro-

portional to the (random) fraction of time the envelope spends

in the neighborhood of the level R=a. Its ensemble average is

found by introducing an expected value operator into Eq. V-3.1.

d
E[g (a)] = E [y (a)] (V-3.3)

T da T

If X(t) is a Gaussian random process and assuming the starting
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conditions to be random, i.e., q=q (Eq. V-2.14), we have
a2 Stat.

-a / 2A0
E[y T ( a ) ]=e (Eq. V-2.7). Hence

d
E[g T(a)] = da [exp{-a /2X1}]

a [exp{-a 2 /210}], a>0 (V-3.4)

One recognizes the right side of Eq. V-3.4 to represent the

Rayleigh probability density function. It has been shown [1,7]

to be the density function for the envelope of a narrow-band

normal process.

A similar argument may be used to obtain the expected

likelihood of the height of the peaks of IX(t) . Of all the

peaks of IX(t) I occurring in the interval (0,T), let g' (a)da
T

be the fraction for which the height of the peak lies between

a and a+da. We have

d
gT(a) = -d [T(a)] (V-3.5)

Co

CT(a) = f gT(a)da (V-3.6)

Again making use of Eqs. V-3.5, V-2.2 and V-2.7, one obtains,

for Gaussian random processes,and assuming stationary starting

conditions
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E[q' (a)] _d E[ (a)]
T da T

d

d-a exp{-a'i210
)

a exp{-a 2/2X0 } a>O (V-3.7)
xo

Again the Rayleigh distribution is obtained, which has been

shown [39] to represent the probability distribution for the

peaks of a narrow-band normal process.

To analyze the cumulative fatigue failure mechanism

a parametric representation of the two-state model, in terms

of all the possible threshold levels X=a, O<a<w, is required.

Note that TgT(a)da equals the total number (during the inter-
T

val 0 to T) of peaks whose height lies between the threshold

levels a and a+ada. Adopting the Palmgren-Miner hypothesis

[61, 62] of incremental damage, one may compute the value of

the damage, D(T), accumulated during the time period 0 to T,

in the following way

Sg (a)
D(T) = T I da (V-3.8)

0 N(a)

where N(a) is the number of cycles to failure in a constant-

amplitude fatigue test with stress amplitude a. It is easy to

show that, under random starting conditions, the mean value

E[D(T)] equals that obtained by Mark [7, 63]. Also, the vari-
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ance, Var[D(T)], may be shown, according to this approach,

to be proportional to voT/k.

V.4. Discrete State Markov Models of Failure Mecha-

nisms Caused by a Random Vibration Environment

The two types of structural failure most commonly

considered are first-excursion failures and fatigue failures.

Another type, where failure is postulated to occur when the

fractional occupation time exceeds a prescribed value, has

also been proposed [7, 59]. It has been shown in the preceding

sections that reasonable estimates of the relevant properties

of all three types may be obtained by considering a simple

two-state model of the type discussed in chapter II. In fact

the approach has led to new and useful results for the first

crossing and fractional occupation time failure modes.

Although the above mentioned performance criteria are

widely accepted they do not by any means constitute a final

answer to the question as to how the random response charac-

teristics should be converted into useful reliability measures.

On the basis of a few examples the author hopes to demonstrate

in this section that the (well-developed) theory of continuous

time discrete state Markov processes provides an excellent

tool for describing and analyzing certain failure mechanisms

which are essentially due to the random vibration environment.
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A somewhat similar method of treating complex failure criteria

in earthquake response reliability has recently been proposed

by Zsutt-y [643. Here, attention focuses on some simple con-

tinuous time Markov models. The usefulness of the two-state

model has already been established. Several potentially useful

three-state models will be discussed next.

Model A. If the absolute response process JX(t) crosses the

barrier Xi=a, ,the system fails irreversibly (and the response

process ceases to exist). If IX(t) makes a first excursion

into the range (al, a2) where al<a 2 , a change occurs in the

system's properties (say, stiffness decreases due to crack

formation or perhaps, the ultimate capacity, barrier a2, is

lowered). A flow graph representation of the process is shown

in figure V.7.

902.

Fig.V.7. Flow Graph Representation of a Single Deterioration
Process.

The three states are: 0 Max X(T) <a
0 . < t

1 a 1 sMaxjX(T) <a2

2 Max!X(?-) JIa2
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A transition from state 0 to state 2 is said to occur when

the first crossing of the lower threshold is immediately fol-

lowed by a crossing of the higher threshold. The labels qjk

on the branches are called the transition rates. They are

defined as follows: qjkAt equals the probability that a pro-

cess which presently occupies state j, will make a transition

to k in the short time interval At. The probability of two or

more state transitions in the same time interval is assumed

to be zero if At is sufficiently small. The assumptions imply

that the times between transitions are assumed to be exponent-

ially distributed with mean rate qjk"

Let us define the "failure rates":

a : the decay rate of the first passage density corre-
D;a

sponding to a D type barrier with a threshold

value al,for the undamaged structure

a : the decay rate of the first passage density corre-
D;a

2
sponding to a D type barrier with a threshold

value a , for the undamaged structure

C : the decay rate of the first passage density corre-
D;a

sponding to a D type barrier with a threshold

value a2 , for the damaged structure.

Each of the above decay rates may be evaluated in terms of

the threshold value, the structural properties and the input

characteristics. For example, D;a2 has the form
D;a2
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l-expi-ka /2o }
2v / 2 2

0  ('v-4. 1)
D;a 2  ex•p{a 2 /20a}-l

where v, is the average (response) frequency, ox is the r.m.s.
X

value of the response and k is the (response) spectral density

shape factor. All quantities are related to the initial prop-

erties of the structure. To compute a a, Eq. V-4.1 may still

be used, but with vo, k and a referring to the damaged struc-
x

ture. The transition rates shown on the flow-graph (Fig.V.7)

are related to the above defined first passage probability

decay rates in the following way

01 = aD;al-aD;a 2

q02 = D;a 2  (V-4.2)

q12 = aD;a

The quantities sought here are the probabilities

Pjk(t),that a structure which starts in state j (e.g., j=0,

the structure is undamaged at the start) will be in state k

after t seconds of stationary random response. The prob-

abilities Pjk(t) may be found by solving a set of differen-

tial equations [23]. The use of Laplace transforms (see,for ex.

Ref.23) considerably simplifies this task. Only some of the

principal results are stated here:

p 0 0 (t) = exp{-(q 0 1 +q 0 2 )t} = exp{-aD; t (V-4.3)
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q0 1
p (t) = [ exp{-ql 2 t}-exp{-(q 0 1+q 0 2)t}]
01 901q02-q 12

D;a I D;aa [exp{- }-exp{-a }] (V-4.4)
aD -D;a D;a D;a;a D;a 2  2

p02 (t) = 1-P 0 0(t)-p 0 1 (t) (V-4.5)

p12 (t) = expf-q 1 2t}

= exp{-aD;a 2t) (V-4.6)

The possibility of instantaneous damage or instantaneous

failure may also be incorporated in the analysis. This will

not be further pursued here, however.

Model B. If the absolute response process IX(t) crosses the

barrier IXI=a 2 the system fails irreversibly. If it ever

makes an excursion into the range (al,a 2) a loss or damage of

non-structural nature is suffered. The structural properties

(and hence, the response characteristics) are not affected.

The loss may be due to sensitive equipment becoming non-oper-

ational, nuisance to people, cracking of finishings, etc.

The state definition is identical to that given above for

model A. The main difference between Model A and Model B,

apart from the economic aspects (which will be discussed at

some length in Chapter VII), is that, in the present case
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(V-4.7)
12 0 2 D;a2

This is so because the structural properties are not affected

by the damage. The flow graph is shown in figure V.8.

90L.

Fig.V.8. Flow Graph Representation for the Case in which the
Performance Criterion Involves Both Structural and Non-Struc-
tural Damage.

Using Eqs. V-4.3 to V-4.6 and Eq. V-4.7, it is easy to show

that the probabilities pjk(t), defined earlier, reduce to

p 0 0 (t) = P 1 1 (t) = exp{-aD;aj

P 0 2(t) = P 1 2 (t) = l-exp{-aD;

p 0 1 (t) = 1-p 0 0 (t)-p 0 2 (t) (V-4.8)

where D;a and aD;aD;a D;al have a form as in Eq. V-4.1.

The probabilities Pjk(t) essentially characterize the behav-

ior (w.r.t. the multiple-damage performance criterion) of the
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CHAPTER VI

SOME APPLICATIONS OF THE TWO-STATE PROCESS CONCEPT

IN THE ANALYSIS OF THE RESPONSE OF SIMPLE NONLINEAR

HYSTERETIC SYSTEMS TO RANDOM EXCITATION

VI.1 Introduction

In chapter IV we studied some important statistical

properties of the random response of elastic single-degree-of-

freedom systems. Recall that this was done by specializing

the more general results on first passage times obtained in

chapters II and III.

For many structural and mechanical systems it is per-

missible to allow for plastic deformations during severe but

infrequent random vibratory motions.Taking advantage of their

plastic capacity often provides an efficient means of ab-

sorbing energy and for damping the response of structures or

equipment subjected to dynamic loading. The growing interest

in the analysis of the response of nonlinear hysteretic

structures to random excitation is indicated by the large

number of numerical and simulation studies that recently have

been reported (e.g., Refs.65,66,67,68). Other work, (e.g.,
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Refs. 69, 70] attempting at rigourously analyzing the (ran-

dom) response of such systems attests to the fact that the

mathematical complexity is formidable.

The stationary two-state process concept, discussed

at length in chapter II, will be shown here to lead to a po-

tentially very useful set of approximate analytical results

for the statistical properties of certain important response

measures of hysteretic systems. Among those: the maximum ab-

solute displacement or the ductility factor, the plastic work

dissipated, the time required for yielding to progress to

the point of collapse. Several well-known (see, for example,

Refs. 66, 71, 72) types of force-deformation relationships

are considered. They are shown in figure VI.1.

-r-erc c re- Fororce.
A

Deform.

Elasto-Plastic Elastoplastic- Bilinear System
System Elastic System (BIL)
(E-P) (EP-E)

a b c

Fig.VI.l. Simple Idealized Hysteretic Systems.
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The Iel.asto-plastic (E--P) system, shown .in figure VI.la, is an

idealized inelastic system whose strains are reversible. The

systems, labeled b and c, have irreversible plastic strains.

Following Veletsos [66], we call system b an elastoplastic-

elastic (EP-E) system. Fig. VI.lc pictures a bilinear (BIL)

system.

A widely accepted way of representing the response of

a hysteretic system is by the ductility factor, which is de-

fined as the ratio of the peak displacement to the displace-

ment at yielding [66, 71, 72]. For E-P systems, however, where

strain reversal is likely to occur, the ductility factor may

not properly represent the state of damage of the structure

[73]. For such systems, a more appropriate response measure

may be the amount of energy dissipated in yielding [73, 74].

In fact, Coffin [75, 76] established, on the basis of exten-

sive experimental evidence, that a close correlation exists

between the latter measure and the fatigue life of some mate-

rials.

It will be useful, in our study of the statistical

properties of these inelastic response measures, to distin-

guish two basically different types:

i) measures that monotonically increase with time, e.g.,

the total plastic deformation in EP-E and BIL systems,

the amount of energy dissipated in yielding (say, in

E-P systems).

ii) measures that may fluctuate in time, e.g. the perma-
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y+2.w y+ ny = F(t) (VI--2. 1)n n

wheren and r are the natural (circular) frequency and

damping ratio, respectively, of the associated linear system.

In between yield level crossings, the EP-E system also behaves

like a linear oscillator. In fact, presume that the most re-

cent yield level crossing brought the total plastic deforma-

tion up to the value d*. The total displacement will then

consist of a permanent set d* and an(linear elastic) oscil-

latory component X(t), i.e.,

Y(t) = d*+X(t) (VI-2.2)

For d*=O, i.e., before any plastic yield occurred, we have

Y(t)=X(t). The differential equation describing the oscillatory

part, X(t), of the total displacement of the EP-E oscillator

takes the form

x+2(,nx+w2x = F(t) (VI-2.3)

The process X(t) may be viewed as the response of the "arti-

ficial linear system" shown in figure VI.2b. It is directly

related to the inelastic response Y(t) at times when d* is

fixed, i.e., in between plastic excursions. It will be useful

to concentrate attention to the peaks of X(t).
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Recall that the response X(t) of a lightly damped

linear oscillator to random broad-band excitation may be de-

scribed by means of a discrete two-state process D (n), whose

characteristics were discussed in chapter II. They are briefly

repeated here. The process Da(n) is observed at times t ,t 2,

etc., at which peaks ofIX(t)l occur, i.e., X(t)=O for t=t1 t 2,

etc. If X(tj)i , the absolute value of the process at the

j th peak, equals or exceeds a specified level a, then the

two-state process assumes the value one, i.e., D (j)=l. If

the magnitude of the n th peak is below the threshold a, then

D (j)=O. The proposed scheme of approximating the inelastic

response by an "artificial linear process" X,will be restrict-

ed to cases where plastic deformations occur relatively in-

frequently, i.e., when a large fraction of the peaks of the

inelastic response process occur below the yield level. It is

important to note that this restriction does not imply that

yield level impacts need to be isolated events, occurring

approximately according to a Poisson process. To see this,

recall that, in linear systems, the peaks above a threshold

X=a, i.e., with D (j)=l, tend to occur in clumps. Let pa,Da a,D

be defined as the average rate at which such clumps occur.

For Gaussian processes, pa,D may be written as follows

= n (1-p ) = 2v (l-exp{-kr/2}) (VI-2.4)
a,D a D a

where n is the average number of envelope crossings (at posi-
a
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tive slope) of the threshold a, and (1-p ), given by Eq.II-4.7,

is a reduction factor which accounts for the fact that some

envelope crossings of the threshold a are not immediately fol-

lowed by peaks of jXI above a. Also, k is the spectral density

shape factor and r=a/x ,o being the (linear) response r.m.s.

value(oa=/X ). The characteristics of the random number NI,D Y

where N ,D=1,2,.., of peaks in a clump have also been studied

in chapter II. The expected clump size is given in Eq. II-4.16

E[N ] = (1-exp{-rk/2}) -1  (VI-2.5)
I,D

From Eqs. VI-2.4 and VI-2.5 it follows that

[a,DE[NID] = 2va = 2voexp{-r 2/2} (VI-2.6)

The larger the mean clump size corresponding to a given (nor-

malized) threshold level, the smaller the average rate of

occurrence of clumps. Hence, if the inelastic system is char-

acterized by a (viscous) damping ratio of, say, 1%, then the

average time between clumps of plastic excursions will be

(much) larger than it would be for a system with, say, i=5%,

the normalized threshold level being constant. In fact, the

average time between clumps is smallest when the average

clump size tends to one. The isolated clumps will be treated

here as points in time at which the permanent set d* changes

its value. Furthermore, these points which represent the times
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will be assumed to arrive in a Poisson-
(*)

ate pa  . The relationship between
a,D

e "artificial" linear process X(t) and

the "real" elasto-plastic process Y(t)

problems. Note, however, that, if

All results in the following sections

r this limiting case. A more exact

vestigate the dependence of the in-

s on the damping ratio, particularly

, when E[N1,D] may be substantially

further discussed at the end of

lastic-elastic system) corresponds to

g. VI.3) in the same way as an E-P

D type barrier. The mean rate of d*-

a,B, a being the yield level. The

be shown to hold

Va(1-exp{-rk}) (VI-2.7)

E[NI,B] (l-exp{-rk}) L (VI-2.8)

Sa,BE[NI1,D = Va = v0oexp{-r
2/21 (VI-2.9)

(*) This is in line with our earlier assumption that the time
T, D is exponentially distributed. Since we restrict ourselves
to cases where E[T D]<<E[T' A], the sum TI D+TO D may also
be expected to be appfoximate~ exponentially' distributed.
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Fig.VI.3. Elastoplastic-Elastic System and its Associated
Linear System (and B type barrier).

All earlier remarks about the E-P response also apply in this

case. In particular, the limiting value of a,B' the mean

occurrence rate of d*-jumps, becomes va

Amount of Plastic Deformation Due to a First Excursion into

the Plastic Domain

The results outlined here are due to Karnopp and

Scharton [74]. Suppose that the elasto-plastic response pro-

cess Y(t) has been below the yield level for some time. Let

the current value of the permanent set be d*, as shown in

Fig. VI.4. During that time the oscillating part of the pro-

cess is governed by the linear differential equation, Eq. VI-

2.3. Let M and K respectively denote the mass and the (ini-

tial) spring stiffness of the inelastic system. When the pro-
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cess X(t) impacts a barrier a corresponding to the yield level,

it is known to have a potential energy !Ka2. The kinetic ener-
21

gy 2 MX^ is a random variable which depends on the impact ve-

locity X. If the excitation is Gaussian white noise then the

stationary response X(t) and its derivative k(t) are inde-

pendent Gaussian random variables [7]. Therefore the condi-

tional distribution of X, given X=a, is simply Gaussian and

does not depend on a. Also, since X has a zero mean, it fol-

lows that E[X2]=Co, a. being the standard deviation of the
x x

linear response velocity. Hence, the expected kinetic energy

at impact is given by

E[K.E] = E[1MX 2] =  CM (VI-2.10)
2 2 x

Karnopp and Scharton argue that all the kinetic energy at

impact will be released by yielding action. (Note that the
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influence of the forcing function during the excursion is

ignored. The higher the normalized yield level the more

accurate the result is likely to be.) The elasto-plastic

response process Y(t) will only then reverse itself (and re-

enter the "linear" domain) when Y(t) becomes zero. The ap-

proximate absolute plastic deformation IAicorresponding to

an impact velocity X may be obtained from the energy equation

2
2

Using the relations w2=K/M and F=Ka, one obtains

JA1 2 (VI-2.12)
2w2 an

If the excitation is a stationary white noise, then we have

~=w2 (2, where ax and o. denote the r.m.s. values of thex nx x x

linear response displacement and velocity respectively. The

expected absolute plastic deformation is [74]

1 o2
Ew --r 2 E2[k2] 2 (VI-2.13)

2n a 2a

where a designates the yield level.
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VI.3. Properties of Irreversible Inelastic Response

Measures

The Amount of Energy Dissipated Due to Yielding in E-P Systems

Karnopp and Scharton [74] combined the result of the

preceding analysis with an approximate measure of the fre-

quency of excursions into the plastic domain, to obtain the

expected value, E[D ], of the sum of the absolute deformations,t

A. •, accumulated during the time interval 0 to t. Assuming

that single plastic excursions occur independently, according

to a Poisson process, with mean rate 2v a they estimate

E[Dt] = 2vatE[ Ai ] (VI-3.1)

Inserting Eq.VI-2.13 into Eq. VI-3.1, and taking r=a/ax, a

being the yield level, and ox the ("linear") r.m.s. displace-

ment, they obtain

E[Dt] = v ta -er 2 /2 (VI-3.2)t 0 xr

Using the same general model, a number of additional

results will now be obtained, again for the case where the

mean rate of occurrence of yield level crossings may be esti-

mated by 2va. First it is observed that, since the impact

velocity X is a zero-mean Gaussian random variable, X/ol will

be a standard Gaussian random variable, and therefore, X2/a2
x
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will have a y2 -distribution with one-degree-of-freedom (or, a

: -distribution). The total of the absolute plastic deform-

ations,accumulated in the time interval 0 to t, is

Dt = A 2 **I * +...+IAt (VI-3.3)2+'' Nt

It is a sum of a random number, Nt, of identically distributed

contributions. Assuming the sizes of these (infrequent) con-
(*)

tributions to Dt to be mutually independent and (also) in-
(*)

dependent of the number of yield level impacts, one may

write [44]

E[Dt] = E[Nt]E[JAil] (VI-3.4)

Var[Dt] = EINt]Var[lAil]+Var[Nt]E2[1Ai] (VI-3.5)

Eq. VI-3.4 leads to Karnopp and Scharton's [74] estimate of

the average of Dt (see Eq. VI-3.1 ). We will now evaluate the

above expression for the variance of Dt.If the yield level

crossings are Poisson distributed, with approximate mean rate

2v , then
a

E[N t ] = Var[Nt] = 2v t (VI-3.6)
t t a

(*) Actuly]]v. one only needs N and A I tob h uncorrelated in
Eq. VI-3.4. In Eq. VI-3.5, one needs Nt and !.1, and the IKi's
uncorrelated. t
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Xk/o". The latter is a x -distributed random variable. Hence,
x

its expe.cted value equals i and its variance

Eq. VI-2.12, it follows that

is 2. Using

2

x

[x 2 2 ox 2I2a Var[ 2a

Var[ =2a 2Va~r[l = 2(2i 2a ak

(VI-3.7)

(VI-3.8)

Inserting Eqs. VI-3.6, VI-3.7 and VI-3.8 into Eq. VI-3.5 one

obtains the following estimate of the variance of Dt.

Var[Dt] = 6v t(o 2 /2a) 2
t a x

3 2-1 -r 2 /2
2- ot r2e (VI-3. 9)

where r=a/o x , a being the yield level and ox the ("linear")

r.m.s. displacement. From Eqs. VI-3.2 and VI-3.9, the coef-

ficient of variation of Dt is found:t

3 r 2 /4
\•2vot

(VI-3. 10)

The c.o.f. of D is plotted in figure VI.5. It decreases in
t

proportion to ft. It increases for increasing values of the

ratio r=a/o x , of the yield level to the ("linear") r.m.s.

response.
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Fig.VI.5. The Coefficient of Variation of the Total Absolute
Plastic Deformation in E-P System Undergoing Stationary
Gaussian Random Vibration.

For the sake of completeness, it should be mentioned

that it is possible to obtain the characteristic function,

D (u)=E[e iuDt],of Dt. The latter is well-known to contain the
t

same information as the probability density function [44]. It

is particularly useful to generate higher order moments of At

The characteristic function of the sum Dt,of a random number,

Nt , of independent identically distributed random variables

,A ,is obtained from the characteristic functions Nt (u)
ii Nt

and A (u) by the following relationship [44, 77]

Dt (u) = N Ail (u)] (VI-3.11)

It is somewhat more convenient to work with the normalized

deformations IA*l=2alAi /12 (that are x2-distributed) and the
i i x 1

normalized total of the absolute deformations,D*=2aDt/02. Thentt x
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D (u) = [Nt[P (u) i
Dt Nt

1

(VI-3.12)

(u) is the Poisson characteristic function [44],

2V t(u-1)
NP (u) =e a
N t

(VI-3.13)

x characteristic function [44],

(VI-3.14)

Hence,

-1/2
'P (u) = exp{2v t[ (l-2iu) -l]/2
ta

(VI-3.15)

If the number of excursions into the plastic range were a

given number nt, then the normalized absolute deformation

would be a x2-distribution with nt degrees of freedom. To

acquire information as to the shape of the density function of D*
t

one might compute E[Nt]=2vat. The density function of D* willt t

not be unlike the density function of a x2 variable with E[N t]

degrees of freedom. Thus, figure VI.6 shows that, for E[Nt ]

small, say, less than 5, the density function of D* may be
t

expected to be significantly skewed. For large values of

E[Nt], the density function actually approaches that of the

normal distribution.
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Fig.VI.6. The Density Function of D,* for a Given Number n of
Yield Impacts.

Total Plastic Deformation in EP-E Systems

According to an analysis completely similar to that

given in the preceding pages, it is possible to obtain the

statistical properties of the total plastic deformation A',
t

developed, during a time interval 0 to t, in an elastoplastic-

elastic system (shown in Fig. VI.1b) subjected to stationary

Gaussian random excitation. The "asymptotic" mean rate of

yield level impacts is now v a' rather than 2va, because we

deal with a single barrier. The results are given here for the

expected value and for the coefficient of variation of A'
t

E[A'0 = 1to le-r2/2 (VI-3.16)

jVar[A'l]VarAt] 3 r2/4S3• er2/4 (VI-3.17)
E[A'] ot
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Effect of Clump Size.

Threshold crossings are likely to occur in clumps

when tLe damr,ing ratio of a linear oscillator becomes small.

It has been argued in section VI.2 that the rate at which

such clumps occur equals aDI given by Eq. VI-2.4. To be

able to extend the analysis given in the preceding pages, an

estimate is needed of the characteristics of the amount of

plastic deformation due to all yield level crossings in a

single clump. The size of a clump of yield level impacts is

likely to be much smaller than that of a clump of threshold

crossings of the associated linear oscillator. This is so

because the initial plastic deformation is likely to destroy

much of the energy that would otherwise cause a (long) envel-

ope excursion above the threshold (and hence a large clump

size) in the linear system. This problem is studied in some

detail by Karnopp and Scharton [74]. It will not be further

considered here.
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rersible Inelastic Response

P Systems

'mation in an elasto-plastic

system, responding to a zero-mean stationary random excitation,

tends to fluctuate about a zero mean value. This is so, be-

cause a "randomly selected" single plastic excursion is equal-

ly likely to produce a negative contribution to At, the total

plastic deformation, as a positive one (see figure VI.2).

Again, we consider the case where the mean rate of occurrence

of jumps in At may be approximated by 2v . This implies that

the number of IxI-peaks which contribute to the size of sin-

gle jump in At, is nearly always equal to one.

Recall that the normalized absolute value, Ail , of

the inelastic deformation,corresponding to a single plastic

excursion, has been found to be approximately X2 distributed.

It is clear that the density of Ai is symmetrical and defined

by,

1
f (A.) =  - f (A ) A.>0f Ai i 2 fAil

(VI-4.1)

fL (A ) - f (-A.) ,A <0Ai i 2 Ail

The density function of Ai is shown in figure VI.7.
1
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Fig.VI.7. The Density Function of the Amount of Deformation
due to a Single Yield Level Impact in Elasto-Plastic Systems.

It will again be found useful to work with the normalized

incremental deformation, A=2aA./G2 and with the normalized
S 1 X

value,A~=2aAt/o',of the total plastic deformation accumulated

in the time interval 0 to t. The first two moments of Aý are
1

1 1E[Ai ] = (-1)-+(+1)1 = 0
1 2 2

E[A i ] = Var[A*] (3)1+(3)1 = 3
1 1 2 2

(VI-4.2)

(VI-4.3)

The total plastic deformation or the total permanent set At,

developed in the time interval 0 to t, equals

A = A +A+. .+AN2 "'" N (VI-4. 4)

The random number Nt, of contributions to At, is again as-

sumed to have a Poisson distribution with average rate

Sa, 2v . The contributions A. have a distribution given bya,D a 1
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Ea. VI-4.1 and are assumed to be mutually independent and un-

correlated with Nt. Then

E[At] = E[N ]E[A i ] = 0

Var[A ] = E[N ]Var[Ai]+ V a r [ N t ] E 2 i

= ( 2 v t) 3(Gx2/2a) 2
a x

3vot 2 1 -r2/2
2 x r e

(VI-4.5)

(VI-4.6)

in which r=a/ox, a being the yield displacement, and o the
x x

("linear") r.m.s. displacement. The r.m.s. value of the total

plastic deformation, expressed in terms of the ("linear")

r.m.s. displacement ox, has the form

At) /VarA t 1 -r2/4
R.m.s. of (a) L -- -e

x x 2 r

It is seen to increase as /t, and to decrease for

(VI-4.7)

increasing

relative yield levels, r=a/ox , as shown in figure VI.8.

B3

i 2 3

Fig.VI.8. The Standard Deviation of the Total Plastic Deforma-
tion Developed in an Elasto-Plastic System During t Seconds of
Stationary Random Vibration.

R.n'i
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eteness, it should be mentioned that it

obtain the characteristic function,

lized total plastic deformation A*. Re-
t

re related in the following way,

x _xA* 2r t9• t 2r t (VI-4.8)

The characteristic function of IAi* is given by Eq. VI-3.14.
1

Using Eq. VI-4.1, we may write

iuA*
A (u) = E[e 1]

1

iulA* -iulA*l
-= E[e 1 ]+ E[e i

2 2

1 1
2 I• (u)+ 1 (-u)2 I* ai

= (1-2iu)- 1/2 1(l+2iu) -1/2
2 2

Inserting Eqs. VI-4.9 and VI-3.13 into the relationship

(VI-4.9)

(VI-4. 10)A, (u) = N [ (u)]
t t i

one obtains the characteristic function of A*, the normalized
t

total plastic deformation in E-P systems responding to sta-

tionary zero-mean random excitation

A (u) = exp{2v t[l(1-2iu ) /2+1 (1+2iu)-1/2-1]}
At L a 2 2

(VI-4.11)
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age Time to Collapse in Bilinear Systems

structure characterized by a bilinear

relationship, as shown in figure VI.9.

Slc m c et

Fig.VI.9

Dractical interest is the following:

"What is the average time for the maximum displacement D,of

a randomly excited bilinear oscillator to reach some prede-

termined allowable level d* ?" The problem is, of course, e-

quivalent to determining the average time required for the

permanent set S to reach a level s*=d*-a ', where a' is depicted

in Fig. VI.9.

We first obtain an expression for the average time,

E[T ], it takes the system to"travel"from s to s+As. Let
SS+As

f be the force level corresponding to the displacement s. See

figure VI.10. Note that jumps in s occur at (unknown) discrete

points s=so, s=sl, ..., s=s i  If none of the points si, i=0,1,.

lie in the interval (s,s+As), it means that the interval is

travelled during a single plastic excursion. The time Ts,s+As

will then be negligibly small compared to its value which
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Fig.VI.10

corresponds to the case, s<s.<s+As, for at least one i. In

fact, the characteristics of the time Ts+As clearly depend

on just how many jumps occur in the interval (s,s+As). We have

i) T s+As=0, if no jump occurs in (s,s+As)

ii) Ts,s+As has an exponential distribution, (with a mean

rate which depends on s,or f),if-one jump occurs in

(s,s+As)

iii) T is approximately Gamma distributed if two

jumps occur in (s,s+As)

etc.

If two jumps occur in (s,s+As), then, in accordance with

earlier assumptions, Tss+As will be the sum of two independ-

ent nearly identical (for As very small) exponentially dis-

tributed random variables. Its distribution may therefore be

expected to be nearly equal to the second member of the GamrM

family [77]. The expected value of T ,s+As may be computed as

follows,
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E[T ] = OxP[no jumps in s,s+As]
S , s+As

SE[Ts,s+As jump in s,s+As]P[l jump in s,s+As]

SE[T s 2 jumps in s,s+As]P[2 jumps in s,s+As]

+ .... (VI-5.1)

When As becomes infinitesimally small, the probability

P[i jumps in s,s+As], for i>l, will vanish. Eq. VI-5.1 becomes

E[Ts,s+ds] = E[Ts,s+ds 1I jump in s,s+ds]P[l jump in s,s+ds]

+ 0[(ds) 2] (VI-5.2)

The time between jumps is exponentially distributed with a

mean rate which depends on the threshold level. Let the mean

rate, corresponding to the force level f, be denoted by aB (f)

where the subscript B refers to the fact that we deal with a

B type barrier. The mean of Ts,s+ds, given the occurrence of

one jump "at s", equals,

E[TS+dS 1 jump in s,s+ds] = 1 (VI-5.3)
s, s+ds B (f )

Also, it seems reasonable to take(*)

P[l jump in s,s+ds] = ds (VI-5.4)
E[jump size]

(*) A more detailed analysis may be made. It involves condi-
tioning on the jump size and requires an assumption of equal
likelihood.
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where E[jump size] is taken to be that which corresponds to

a fixed yield force level f. From Eq. VI-2.13

MW 2x2
E[jump size] - 2f

Inserting Eq. VI-5.5 into Eq. VI-5.4, one obtains

2fP[l jump in s,s+ds] - ds
nx

(VI-5.6)

From Eqs. VI-5.2, VI-5.5 and VI-5.6,

2 f
E[Ts,s+ds ]  ds

nx
(VI-5.7)

k, and k2, where 0<k 2<k1 , are the stiffnesses which charac-

terize the bilinear force-displacement relationship.Note that,

for positive values of s, df=k2ds. Therefore

E[T s+ds] 2 f df
ss+ds k 2MWao B(f)

2 f
s,ls+dsf k k2 0 aa ( f )

12 X

(VI-5.8)

(VI-5.9)

Finally, the average time needed for the bilinear system to

develop a permanent set s*, or to reach a force level

F+(d*-a)k2 (see Fig.VI.9 or 11) is found by integrating

Eq. VI-5.9
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F+(d*-a) ]2
E[T ] = /2 df

F k k2 o, 2 aB(f)
(VI-5.13)

,or simplicity, let us again take the case where excursions

into the plastic domain are independent events, i.e.,

aB (f) = voexp{-f 2/2k2y 2}

(d*-a)k
2Jsing the notation, r=F/k ox , r*=r+ k o

1 X

(VI-5. 11)

and r'=f/klc x,

the meaning of which is clarified in Fig. VI.11, Eq. VI-5.10

>ecomes

E[T * = 70 V
k r

(k ) rr'exp{r'2 /2}dr'

4() [exp{[r+ (d*2a)k 2 }-exp{-r2
2 2 xk1 2

forc e

(VI-5.12)

(e- ) k.

c(ASLaernc at

Fig.VI.11.
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When k2 becomes zero, the bilinear system reduces to an elasto-

plastic-elastic (EP-E) system. In that case, Eq. VI-5.12 leads

to an Indefinite expression. Using de L'Hospital's rule, one

finds

1 s* +r2/2sE[T ] 2re (VI-5.13)
E[TS* -o,k2= 0  0 x

The above expression may be seen as the product of the follow-

ing two factors

i) the average time between yield level crossings, -1 er2/2
Vo

ii)the average number of yield level crossings, s*/E[Ai],

where, E[Ai]=ox/2r, is the average jump size.
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CHAPTER VII

STRUCTURAL SYSTEM PERFORMANCE ANALYSIS FOR

MULTIPLE OCCURRENCES OF RANDOM EXCITATION

VII.l. Occurrence Patterns of Random Vibration

Phenomena such as atmospheric turbulence, ground

motion or ocean waves, giving rise to random excitations of

interest in structural engineering are basically intermittent

in nature (see, for example, ref. [781). Relatively short ac-

tive periods of varying intensities are separated by long

quiescent periods. In fact, to be distinguishable, the active

periods have to be examined on a more detailed time-scale of

minutes or seconds compared to the total operational lifetime

of the system, which may be measured in months or years. This

intermittency phenomenon makes it impractical to perform a

harmonic analysis of a complete sample history, including

quiescent periods. Clearly only the active periods are of any

real interest to the designer of engineering systems. Another

fact, first drawn attention to by Mandelbrot [79, 80] is the

Iierarchical nature of these clusters of activity. The energy

of wind is concentrated in a hierarchy of puffs, gusts and

storms. Earthquake energy release occurs in a hierarchy of
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foreshocks and aftershocks, respectively preceding and follow-

ing the main shock. Observing a single shock on a finer time

scale, the intensity builds up to a peak value, perhaps levels

off for a few seconds,and finally gradually drops to a low

level. Mandelbrot [80] calls this property by which phenomena

appear similar whichever the scale at which. they are observed

the property of self-similarity. Particularly in reference to

the behavior of error clusters in communication systems he

proposes to order clusters of activity according to their in-

tensity. Thus, for example, what he calls "clusters of the

highest order",are rare events, essentially by definition.

Rare events tend to occur independently according to a Poisson

process. Fortunately,for several important types of random

excitation of structural engineering interest, the lowest in-

tensity level at which system integrity may become in jeopardy

is often sufficiently high that the events may reasonably be

assumed to have a Poisson occurrence pattern. For example, in

earthquake risk analysis studies [81, 82, 83, 84], the use of

a Poisson model for the occurrence of high intensity earth-

quakes at a site is widely accepted.

Other types of random excitation causing high levels

of dynamic response have an almost perfectly predictable oc-

currence pattern: the acoustic excitation induced by jet noise

during take-off of missiles, the vibrations due to runway un-

evenness, experienced by airplanes during take-off and landing,

blast induced vibrations, etc. These operational loads may be



assumed to occur at known discrete points in time. Their in-

tensity level, duration and non-stationarity characteristics

may often be predicted much more accurately than the corre-

sponding properties of random excitations due to natural phe-

nomena.

In conclusion,most types of disturbing forces that

may give rise to high levels of random vibratory response have

occurrence patterns that may be modeled in one of the follow-

ing two ways (*) :

i) Events,with an intensity exceeding a fixed level io,oc-

cur according to a Poisson process with average rate X
10

ii) Events (with an intensity exceeding a fixed level i )

occur according to some fixed pattern, i.e., the number

of events occurring during a given time interval is per-

fectly predictable or, alternatively, time or "life" may

be counted in number of loads, e.g., number of flights.

(*) More general inter-arrival distributions may in some cases
have to be considered. Much of the work to be presented in
this chapter may then be extended by making use of the theory
of semi-Markov processes [83]. A semi-Markov process
is one that makes transitions according to the transition
probability matrix of a Markov process, but whose times be-
tween transition can be an arbitrary random variable that de-
pends on the transition. The discrete-and continuous-time
Markov processes are special cases of the semi-Markov process,
which is, on the other hand, much less tractable in its gen-
eral form.
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VII.2. Representation of a Sequence of Excitations

Consider a structure to be subjected to a sequence of

events (say, strong earthquakes or wind storms) each of which

causes a random vibratory response of the structure. Let the

times at which these events occur be denoted by TI, T2 , ..,etc.

A sample function of the complete excitation process V(t),

0ltýT, where T is the structure's operational life, is shown

4 f• i X7TT 1
Ln I urLA Vq lJ

V kT)

Li 3 T T5n rnth,
or jc art.

Fig.VII.l. A Sample History of the Excitation Applied to a
Structure.

The characteristics of the excitation corresponding to each

event in the sequence are assumed to be, in a probabilistic

sense, of the same type. Specifically, let the following

ground rules be adopted:

i) The intensity I and the duration S randomly vary from

event to event in the sequence. Each pair of values (i, s)

constitutes a sample from the joint distribution p(i,s),which

characterizes the sequence.
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ii) The sequence is also characterized by its normalized

(i.e., unit area) input power spectrum G V(). A refinement,

which will otherwise not be further pursued here, is possible

by assuming GV(w) to have a few random parameters, i.e.,

GV(L)=g(l,A,B,..), where A and B are random variables, which

may either vary randomly from event to event,or take a common

(but random) value for all events in the sequence. For exam-

ple,in earthquake spectra, the former (randomly varying com-

ponents) may be due to uncertainty regarding the regional

geologic environment,and the latter (non-changing components)

to inadequate knowledge of the local soil conditions [85].

iii) Nonstationarity properties of the excitation corre-

sponding to each event,may also be dealt with through some

parametric representation similar to that proposed for GV(W).

Often, however, explicit consideration of nonstationarity of

the input may be avoided by using the self-explanatory con-

cepts of a quasi-stationary motion and an equivalent duration.

These concepts have been rather successfully applied to earth-

quake loading (Barnstein [86], Housner and Jennings [87] and

others) and wind loading (Davenport [881).

In conclusion, we assume the sequence of excitations

to be characterized by its occurrence characteristics, (i.e.,

lower bound intensity io and, in the case of Poisson occur-

rences, the arrival rate Xi ), its unit-area power spectrum
0

GV(w) and the joint distribution p(i,s) of intensity I and
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duration S. The excitation corresponding to a single event,

say the j th event in the sequence, may be described by its

occurrence time -j, the unit power spectrum GV() ,and the

sample intensity i. and sample duration s. (where the pair
3 3

(ij,sj) is statistically independent of (ik,sk) for j k).

VII.3. Conditional and Marginal Transition Probability

Matrices

Consider a simple structural system subjected to a

sequence of excitations with properties as described in the

preceding section. Let V(t), O0t•T represent the complete ex-

citation process and let X(t), Ost!T be the corresponding ran-

dom response process. See figure VII.2.

V(tM) X(t)

SrT STRUCTURMA

tt r 2. t
7/
i. i 1t

Fig.VII.2. Excitation and Response Sample Functions.

One visualizes the structure, under the influence of the ex-

citation V(t),to make a series of transitions from one state
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to another. The initial state may be labeled "survival"; the
structure may then go through several states of "damage" (e.g.,

failire of sensitive equipment stored in the structure, or say,

a decrease in structural stiffness properties) or may perhaps,

through corrective action,be made to return to a state of less

severe damage. Finally, it may reach a state of permanent un-

serviceability,called "failure". Jumps from one state to an-

other may occur only at times T1 , 2'...' which may be either

fixed or random, as discussed in section VII.I.

Conditional Transition Probability Matrices

In section V.4 it is shown that, for an m-state model,

the uncertain effect of a single random excitation with given

intensity and given finite duration may be summarized in terms

of an nixm matrix P=[Pjk ] , the "one-step" transition probabil-

ity matrix. The element pjk denotes the probability that the

event will cause the system to make a jump to state k,given

that it occupied state j just before the event. The exact

structure of the matrix P depends on the definition of the

states and the nature of the failure mechanism the model is

meant to represent. For example, consider the two three-state

models studied in section V.4. Both models have in common the

fact that system performance relates to two threshold levels,

a, and a2 , a2>a1.

Model A represents a simple deterioration process.

I Failure (state 2) occurs when the response exceeds the higher
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threshold (say, its ultimate strength). When it first exceeds

the lower threshold (i.e., reaches state 1), a basic change

is postulated to occur in the mechanical properties of the

system, and hence, in the nature of the response process. The

flow graph representation,in figure VII.3,depicts what may

happen during a single event.

A

Fig.VII.3. Markov Model of a Simple Deterioration Process.

Just before an event takes place the system may occupy either

state 0 or state 1. If in state 0 just before an event,the

system may be found in either of the three states immediately

after the event. If in state 1 just before the event, it may

either stay there or move to state 2. The excitation ceases

to be of interest once state 2 is reached. The one-step tran-

sition probability matrix PA takes the form

r
A A A
P00  P01  P02

0 A A
11  12

0 0 1

(VII-3.1)
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A A
where the probabilities pk' the elements of P , are given injk
section V.4 in terms of the structural properties, the excita-

tion characteristics (including input intensity and duration)

and the threshold levels. Since each row in Eq. VII-3.1 must

sum to one, the one-step transition matrix PA is seen to be

specified by 3 (independent) probabilities (say, p 0O, PA2 and

A
P12)

According to model B a loss of non-structural nature

is sustained when the response process,corresponding to a sin-

gle event,first crosses the lower of the two fixed threshold

levels. Structural failure is postulated to occur when the

higher threshold is first crossed. Since the mechanical prop-

erties of the structural system are not altered when state 1

is reached,the transition probabilities are not influenced by

the state of the system (0 or 1) at the start of each motion.

The system is defined to be in state 1 if, during the most re-

cent event, its response crossed the lower, but not the higher

threshold level. The system is in state 0 if, during the most

recent event, its response did not exceed any of the barriers.

State 2, the absorbing state, is reached when the response

process crosses the higher barrier for the first time. Again,

the response process then ceases to exist,or say, ceases to

be of interest. The flow graph in figure VII.4 shows what

transitions are possible during a single event.

For example, visualize a structure, in which sensitive equip-

ment has been installed, to be subjected to a number of strong-
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B

Bot

P11
Fig.VII.4. Markov Model of a Performance Criterion Involving
Both Repairable Non-Structural Damage and Structural Failure.

motion earthquakes. A sequence, e.g., 001012, means that the

structure is initially in state 0 (i.e., satisfactory per-

formance); it is still there immediately after the first

earthquake; it moves to state 1 (say, equipment fails) as a

result of the 2nd event; the equipment is repaired or replaced

and survives the 3rd earthquake; the equipment again becomes

unoperational during the 4th event; finally, the structure

itself becomes unserviceable as a result of the 5th ground

motion.

The one-step transition probability matrix has the form

B B B
P00  P01  P02

B B B
P00  P01 P02

0 0 1

(VII-3.2)
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PB is completely specified by only two probabilities, say, p
00

B
and p These are given in section V.4 again in terms of the02"

structural properties, the excitation characteristics,and the

threshold levels.

Before discussing the implications of the fact that

the duration and intensity corresponding to each event are not

given (as the preceding analysis presumes),but rather random

and different from event to event, some elementary properties

of discrete state Markov processes are noted (mainly for the

benefit of the reader not familiar with discrete state Markov

processes). They will be entirely relevant in the discussion

to follow.

Presume that events in a sequence occur at known dis-

crete points in time. Let P=[Pjk] be the mxm one-step transi-

tion probability matrix. Also, let P(v)=[Pjk(v) ] be the v-step

transition probability matrix, where Pjk(v) denotes the proba-

bility that the system will be in state k immediately after

the vth event,given that it is in state j immediately before

the first event. Of course, we have P(1)=P.' The Chapman-Kol-

mogorov equations [44] have the following matrix form,

P(v) = PxP(v-l) v=1,2,.. (VII-3.3)

From VII-3.3, it follows by induction that
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P(v) = PxP .. xP = PV (VII-3.4)

The above relationship holds for so-called homogeneous Markov

processes, that is, processes where P remains unchanged.

Eq. VII-3.3 constitutes the basic relationship from which all

important statistics of discrete time discrete state Markov pro-

cesses may be obtained. Fast flow-graph techniques, based on

z-transformations [23], may be used to carry out the actual

computations (at least in those cases where the number of

states is fairly small, say, m<5)

Non-homogeneous discrete Markov processes are somewhat

less tractable. The one-step transition probability matrices

p(1), p(2),.., p(v), differ from event to event. The Chapman-

Kolmogorov equations take the form,

P(v) = P vxP(v-1) ,v=1,2.. (VII-3.5)

and, hence, by induction,

p(v) = p(1)xp(2)...xp(V) (VII-3.6)

Marginal Transition Probability Matrices

The analysis in the preceding section and throughout

the earlier part of this work presumes the values of important

excitation parameters such as motion intensity and duration to

be given. Therefore, the one-step transition probability

178

m



matrix, P=[p jk], referred to in the last few pages, may be

thought of as being conditioned, i.e., the elements of P are

conditional probabilities, given I=i and S=s. In the present

context, intensity and duration corresponding to a single e-

vent are random variables. What is worse, they take different

values from event to event, thus rendering the resulting

Markov chain non-homogeneous, i.e., each event in the sequence,

say the v th, is characterized by a one-step transition proba-

bility matrix P(V) which depends upon the sample intensity iv

and sample duration s . For any given sequence (i ,s ),(i22 ' 2

(i ,s ),a non-homogeneous Markov chain results. The pairs
v

of sample values of intensity and duration are mutually in-

dependent and identically distributed. Let p(i ,s ) be the

joint density function of I and S . The marginal one-step
v v

transition probability jk may be found by integrating pjk

over all possible values of intensity and duration

jk is jkP(i ,s )di ds (VII-3.7)

or

Pjk = E[p (VII-3.8)

where it is understood that the expectation is with respect to

I and S only. Also, let the marginal (with respect to I and

S) one-step transition probability matrix be denoted by

P*=[p k] . We may write
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P* = E[P ( ] (VII-3.9)

Eq. VII-3.6 shows that the v-step transition probability

matrix P(v)= [Pjk(v)] of a non-homogeneous Markov chain de-

pends upon all the one-s'tep matrices P1), p (2),., p(

which in turn depend on ii, sl,..., i ,s.~ Hence, the marginal

v-step transition probability pk (v) becomes

P k(v)=E[pj Pjk )p(i ,s, .. i s )di ds .. di ds

(VII-3.10)

The expectation here is with respect to all the random vari-

ables that Pjk(v) depends on, i.e., i , s 1 ... , i , s.

The crucial question upon which the tractability

(and hence feasibility) of our approach rests is, in mathe-

matical terms, the following,

P*(v) " P*xP*(v-l)
M (VII-3.11)

or: E[P(v)] "E[P ]E[P( -1)]

In words, is it possible to reproduce the homogeneous form of

the Chapman-Kolmogorov equations (Eq. VII-3.3), with P* re-

placing P ? The answer is yes.

Proof:

First, take r=2. Let the pairs (il,s 1 ) and (i2 ,s2) be given.

Let the one-step transition probability matrix corresponding
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to (i1 ,s )be denoted by P(M) and that corresponding to1

by P (2). The two-step transition matrix P(2)

(i2,s 2 )

will depend on

S1 , i2, S2 . We have

P(2) = P(1)p(2) (VII-3.12)

An element of P(2), say Pjk(2), has the form,

= (1) Pk(2)+P(1) P (2) +'
jO Ok jl 1k

(1) (2)
jm mk

(1) (2)
t=0 Pjt tk

(VII-3.13)

Its expected value, with respect to all random variables in-

volved is found by integrating over i ,

P*jk(2) = E[pjk (2)] = f f j f

s 1 i2 and S2'

Pjk P(ils l ' i 2 ,s 2 )di ds di 2 ds 2

m

t=O 11 S5

(1)
Pit P(i 1 ,s l )di ds1}{ f (2) s

s2 Ptk 
p 2(i

2
2)di 2 ds 2 }

(VII-3.14)

Note that this derivation critically depends on the assumption

that the pairs (il,sl) and (i2 ,S2 ) are statistically independ-

ent. Eq. VII-3.14 may further be written

m

t=0
E[p (1)]E[p (2)jt tk

m

= E P0 t p kt=0 tk (VII-3.15)

And therefore,
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P* (2) = [P*] (VII-3.16)

An simple induction argument may be used to complete the proof.

It has been shown in this section that the theory of

homogeneous discrete state Markov processes may be applied

to problems of the type encountered here, i.e., where each of

the one-step transition probability matrices depend on a (set

of) random variable(s), whose sample value(s) varies (vary)

randomly from event to event. It suffices to compute the ex-

pected values of the one-step transition probabilities. The

expected value P*, of the random one-step transition proba-

bility matrix, may then be used as a constant and many

homogeneous Markov chain results remain valid (as they are

essentially based on the Chapman-Kolmogorov equations.) In

particular, let r*(r)={rT*(r) ; *(r) ...T* (r)} be the
0 1 m-1

vector of (unconditioned) state probabilities. 'rr(r) is the

(marginal w.r.t. il,sl'.. ,i sr) probability of being in

state j immediately after the r th event. The initial condi-

tions are expressed in terms of the vector Tr(0) of initial

state probabilities. For example, if the system is certain to

start in state 0, then 0o(0)=1 and 'j (0)=0 for j0O. It is

easy to establish that

T*(r) = T(0)P*(r) = T(0)[P*]r (VII-3.17)

The results may be shown to hold also for the case in which
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according to a Poisson process with average rate,

N be defined as the number of events in a given

time interval 0 to T. It will be a Poisson distributed random

variable. Also, let n*(T) designate the probability that the
-J

system will be in state j at time T. It is easy to show that

a*(T) = u*(r)P[N=r] = X T*(r)e r (VII-3.18)
J r=0 3 r=O j r!

The continuous time discrete state chain (i.e., when inter-

arrival times of events are exponential) may be analyzed more

efficiently using the notion of transition intensities dis-

cussed in section V.4. Important statistics, such as rr*(T),

may then be obtained by using fast Laplace Transform Tech-

niques [23].

VII.4. Decision Making in the Design of Structural

Systems to Resist Random Vibration

One of the most useful properties of the proposed dis-

crete state Markov process approach to random vibration reli-

ability analysis, is that it provides a framework for quantify-

ing system performance in terms of losses or rewards. This

aspect of the theory of discrete state Markov processes has

recently received considerable attention in the field of con-

trol processes and mathematical optimization [23, 25, 26].
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Basically, the structural system is visualized to generate a

sequence of rewards (or losses) as it travels from one state

(of damage) to another. In the analysis of a given system, our

interest focuses on the total value that system is likely to

realize during its "life". In design, we seek the optimal val-

ues of the design parameters, i.e., those that maximize the

total expected value of the system.

First, the notions of the "reward matrix" and the

"present value" are discussed, and some important relations,

due to Howard [23],are quoted. Next, the theory is applied to

several simple two-and three-state Markov models of failure

mechanisms.

Some Basic Relations

a. Events Occur at Discrete Times

Let us define an mxm reward matrix R=[rjk] , whose

element r jk represents the "reward" received (or loss sus-

tained) if the system makes a transition from state j to

state k during a single event. Let vj(v) be the expected to-

tal reward earned during v transitions if the system starts

in j. Often, in decision making involving engineering struc-

tures, it will be very important to discount future returns.

Assume for simplicity, that events occur at unit time inter-

vals. Let the factor r denote the present value of a unit

reward to be received at the end of a unit time interval.

Some Basic Relations

a. Events Occur at Discrete Times

Let us define an mxm reward matrix R=[r i, whosejk

1 element rjk represents the " reward" received (or loss sus-

Some Basic Relations

a. Events Occur at Discrete Times

Let us define an mxm reward matrix R=[r i, whosejk

element rjk represents the " reward" received (or loss sus-

tained) if the system makes a transition from state j to

state k during a single event. Let vj(v) be the expected to-

I tal reward earned during v transitions if the system starts

in j, Often, in decision making involving engineering struc-

tures, it wiP1 be very important to discount future returns.

Assume for simplicity, that events occur at unit time inter-

vals. Let the factor i; denote the present value of a unit

reward to be received at the end of a unit time interval,
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Presume that the system makes a transition from j to k

during the first event(with v-1 events remaining), then the

expected accumulated reward vj (v) will be equal to rjk, +k(v-1).

Considering all possible values of k, one is led to the fol-

lowing simple iterative relationship [23]

m
v.(v) = k Pjk[r.j+Bv (v-l)] v=,2,... (VII-4.l)
SIt is usk=eful to define a quantity k

It is useful to define a quantity qj as the expected immediate

reward for state j as follows

m
q kl Pjkrjk (VII-4.2)

k-1

.It is the reward expected to be received during the next event,

if the present state is j. Inserting Eq. VII-4.2 into Eq.VII-

4.1, we may write

m
v. () = q.j+ pjkVk(v-l) v=1,2,... (VII-4.3)

i3 k=l

A closed form solution may be obtained for vj(v) by means of

z-transformations [23]. For large values of v, however, the

difference between v.(v) and v.(v-1) will become negligible.

The limit v.=lim v.(v) is called the present value of the

system if it starts in state j. The present values vj may be

obtained by solving the system of m equations [23]

Vj(LI) "j +Bk=lc PjkVk (v-l) v=1,2,... (VII-4,3)
At

vj (V) "j +Bk=lc PjkVk (v-l) v 1,2, (VII-4 3)
j

A closed form solution may be obtained for vj(v) by means of

z-transformations ~231.· For large values of v, however, the

) difference between vj(v) and vj(u-l) will becmne negiigible.I
The limit Vj =limv-~oo vj(v) is called the present value of the

system if it starts in state j. The present values vj may be

obtained by solving the system of m equations [23]



~1

m

v = qj+~ k PjkVk j=1,2,..,m (VII-4.4)

b. Events Occur According to a Poisson Process

Very similar results may be obtained for continuous

time discrete state Markov processes. Some quantities have to

be re-interpreted, however. The quantity rjj becomes the re-

ward earned by the system per unit time it occupies the state

j. If the system makes a transition from state j to state k,

it earns a reward rjk, j/k. (Note that rjj and rjkljk, do

not have the same dimensions.) A quantity q! is defined as

the "earning rate" of the system [23]

q3 = r +j XPjkrjk (VII-4.5)

where X is the mean rate of arrival of events. Let v (t) be

the expected (discounted) total reward that the system will

earn in a time t if it starts in j. The following differential

equation, which is the continuous time equivalent of the dif-

ference equation in Eq. VII-4.4, may be obtained [23]

dv. (t) mSW+(6+X)vj (t) 1= q + p j k (t) (VII-4.6)
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where 6 is the (continuous) discount rate (a unit quantity of

money received after a very short interval dt is now worth

1-sdt). Laplace Trasfransformations 123] may be used to obtain



closed form solutions for vj(t), as shown in Ref. 23. For

large t, however, v,(t) will remain almost constant, i.e.,
dv- (t)

S =-0O. Hence to obtain the present values, vj =lim v.(t),dt t+
one only has to solve the following system of m equations,

m
(6+A)vj = q'+A Z Pjkv (VII-4.7)3 j=l jkk

Two-and Three State Models of Failure Mechanisms

a) Models Involving a Single State of Damage

The simple two-state models, corresponding to a first-

passage failure criterion, may be described by a 2x2 matrix P*

of "expected" (w.r.t. motion duration and intensity) transi-

tion probabilities, and a 2x2 reward matrix R. For example,

presume that failure is postulated to occur when the response

process X(t), (which essentially consists of a sequence of

isolated motions,) first surpasses a D type barrier, IX=al,

where a denotes the predetermined threshold value. At least

two different "replacement policies" are possible [see, for

example, Esteva [81]) leading to somewhat different state

definitions and different sets of matrices, P* and R.

Policy 1: The structure is not replaced after failure has oc-

curred. State 0 corresponds to "survival" and state 1 to

"failure". The flow-graph of this 2-state model is shown

in figure VII.5.
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Fig.VII.5. Reward Structure With Policy 1.

Let cf designate the "cost of failure". The matrices P*

and R take the form

P o P*

P* =

0 1
R I: i1 (VII-4.8)

The probability p* =l-P* , that the structure will fail
01 00

due to a single "typical event" will be computed subse-

quently. Let event occurrences be Poisson-like with

average rate X. The earning rates q' and q may be eval-
0 a1

uated using Eq. VII-4.5. We have q=-Xc p01 and q =0. To

compute v0 , the present value of the system if it starts

in state 0, Eqs.VII-4.7 need to be solved.

(6+A)v = -~cfp1+ (P*00 +P 1V 10 0 ~~00 00
(6+X)v 1 = 0 +x (v1)

(VII-4.9)

The solution is
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v = -XcfP* / ( 6+Xp* )

0 01 01 (VII-4. 10)
v =0

where 6 designates the (continuous) discount rate. This

result has been derived, in a very different way, by

Esteva [81].

Policy 1: After structural failure has occurred, the struc-

ture is "instantaneously" replaced by an identical struc-

ture. As shown in the flow graph (Fig. VII.6), a loss cf

ro= 0 ri=0

o.=- Cf

Fig.VII.6. Reward Structure With Policy 2.

is now sustained each time a transition 0+1 or 1+0 occurs.

The emphasis here is not on whether or not state 1 is ever

reached, but rather, on how many times the structure

changes its state. The matrices P* and R may be written

as follows

p* p*

pp
01 00

[ 0
R =

-c f

-cf

o0
(VII-4.11)
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The Eqs. VII-4.7 now yield the following set of present

values

v =v = -c (VII-4.12)o 1 6

which again corresponds to Esteva's result [81]. Note that,

if 6 tends to zero, v0 and vl tend to infinity. As rewards

keep accumulating in time at a constant average rate, the

concept of "present value" loses its meaning. It may be

substituted by the "gain" of the process, i.e., the average

reward received per unit time when time becomes very large.

The gain is directly related to the so-called "steady state

probabilities"whichmay be obtained by simply solving a

system of linear equations. For further details, see Ref.23.

Let c0 designate the cost of acquisition of the struc-

ture, (which is presumably a non-decreasing function of the

value a of the threshold level.)In design the aim is essen-

tially to minimize the total present cost or to maximize the

total present value of the structural system

Maximize (v0-c0 ) (VII-4.13)

where v0 is the present value of the "built" structure (which

is likely to increase as the threshold value a increases).

Note that v in Eq. VII-4.10 or in Eq. VII-4.12 depends upon
0
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the structural properties and the input statistics only

through p*1 , which is the probability that failure occurs as
0

a result of a "typical" event in the sequence of motions that

characterize the response process X(t). If failure is postu-

lated to occur when X(t) first surpasses a D type barrier,

iXi=a, where a denotes the predetermined (double) threshold

value, then we have

* = i P[T <s]p(i,s)dids (VII-4.14)
"01 is f,D

where P[T f,Ds]=l-LTfD(s), denotes the probability that Tf,D'

the time to first passage across the D type barrier, will be

less than or equal to the motion duration. Using Eq. 111-3.

one may write

-aDS
P* = - ADe p(i,s)dids (VII-4.15)
01 is D

In many practical problems, where failure is very unlikely to

be due to any given "typical" event, it will be reasonable to

take AD 1 and to approximate exp{-a D s} by 1-aDs. Eq. VII-4.14

then reduces to

p* - E[s] a DP(i)di (VII-4.16)
01 D

where E[s] is the expected motion duration. By substituting
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by its value given by Eq. IV-3.9,one finally obtains an

expression for p* in terms of several potentially important
01

design parameters, e.g., the barrier level a.

1 -2voE[s] I j p(i)di (VII-4.17)
i exp{a 2/2a0}-l

where ax, the mean square response, is proportional to the

(input motion) intensity i. Furthermore, k, vo and ax all de-

pend on the first few moments of the output spectral density,

which in turn depends on the structural properties and

characteristics of the excitation.

b) Models Involving Two Damage States

The Markov approach becomes particularly attractive

when more than a single damage state needs to be defined to

adequately describe a failure mechanism. Consider, for ex-

ample, the three-state processes, models A and B, discussed

in the preceding section.

Presume that, in model A, which represents a simple

deterioration process, actual loss is suffered only when the

response exceeds the higher of the two prescribed threshold

levels, i.e., when the system enters state 2. This occurs as

a result of the transition 0+2, or 1+2. The corresponding

"rewards" are denoted by r02 and r1 2 . Furthermore, let r02
rl2:-cf, where cf denotes the "cost of failure". No penalty
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or reward is received as a result of other possible transi-

tions. Figure VII.7 shows the flow-graph for model A with the

Fig.VII.7. Model A Reward Structure

values of all nonzero "rewards" appearing as labels on the

corresponding branches. Dropping the superscript A in Eq. VII-

3.1 , the matrix P* of "expected" (w.r.t. intensity and dura-

tion) transition probabilities takes the form

*o
P* - 0

0o
* P*
01 02

11 12
0 1

(VII-4.18)

The vector q'={q' ;q2 ;q q

using Eqs. VII-4.5

The present va

of "earning rates" may be evaluated

q' = { -Ac p02 -cp* ; 0 }(VII-4.
f 02 m 12

lues v. may be obtained by solving the systemJ

of equations, Eqs. VII-4.7
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(+)v = -cfP02 00 01 1 02 206 CfP) +X (p* v p

=1 = -Ac 2+ (p 1v1+P 2v 2 ) (VII-4.20)

( + )v 2 = 0 + Xv2

One easily finds:

v0 = - f[p*+12
02 6+xp* 01012

= -cf 2* /(6+Xp*) (VII-4.21)SXf12 12

V2 = 0

Note that, if the discount rate 6 equals zero, then one ob-

tains, not unexpectedly, v0=vl=-Cf, v2=0. The probabilities

P02' Pi2 and p•1, may be expressed in terms of the pertinent

design parameters (e.g., the threshold levels al and a2 ) by

taking the expection with respect to motion duration S and

intensity I of P02(s), P1 2 (s)and P01(s), respectively. The

latter are given by Eqs.V-4.4 to V-4.6.

In model B, a loss of non-structural nature is sus-

tained when the response first crosses the lower of the two

fixed thresholds. An additional (and presumably larger) loss

is suffered if the higher barrier is also exceeded. Let those
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losses be represented, respectively, by cd , the cost of non-

structural damage, and cf, the cost of structural failure. The

flow craph for model B, again with all nonzero rewards shown

as labels on the corresponding branches, is shown in figure

VII.S.

=0
!-- o

Fig.VII.8. Model B Reward Structure.

Again dropping the superscript B in Eq.

pected" (w.r.t. intensity and duration)

VII-3.2 , the "ex-

one-step transition

matrix, P*, becomes

'01 p 021
p* p* I01 02

0 1 J

(VII-4.22)

From Eqs. VII-4.5 the vector of earning rates becomes

q' I-[P0Cdpcd 2P (cd+cf)] c -A[P* cd+p 2 (cd+cf)] ; 0}(VII-4.23)

Eqs. VII-4.7, with the p k and q' substituted by the above

values, yield the following set of "present values":
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0 L
*[P1cd+P2 (cd +c )]

6 +Xp*
(VII-4.24)

v2 = 02

For 6 =0, we obtain

0
V0 = V1 = Cf+(l+ )cd

p02

(VII-4.25)

The probabilities p* and p* are the expected values, w.r.t.
01 02

the motion duration S and intensity I, of p01 (s) and p02 (s),

respectively. The latter quantities have been derived in

Ch. V, and are given by Eqs. V-4.8. For example,

p* = 1- f I [p (s)+p (s)]p(i,s)dids
01 i s 02 00

= If [exp{-D;a s}-exp{-D;a s}]p(i,s)dids
II-4D;a 

D;al

(VII-4.26)

where a and D are the decay rates in the D type
w D;a2 D;a

barrier first passage densities corresponding to the threshold

values a and a,,, respectively. When a crossing of the lower

threshold is unlikely to be due to any given "typical" event

in the sequence, then it may be reasonable to approximate

Eq.VII-4.26 by

P* 2,o Es] f [a -a01 0 i D;a D;a
1 2

]p(i)di (VII-4.27)
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l-exp{-ka,/2o x } i-exp{ka2/20 x
2* ,2v E[s]f I [-expa------ /- p(i)di01 02 2-i expfaL/2 }-! expla2/2011

(VII-4.28)

where X2 , the mean square response, is proportional to the
x

(excitation) intensity. The integrand depends (through the

spectral shape factork, the average frequency vo and the r.m.s.

value of the response, a ) on the first few moments of the
x

response spectral density, which in turn depends on the

structural properties and on the characteristics of the ex-

citation. It also depends on the threshold levels a and a
1 2

The total present value v0, given by Eq. VII-4.25, will depend

(explicitly) on all above quantities, and also on the (rela-

tive) value of the losses cd and cf, on the discount rate 6

and finally, on the event arrival rate X.

The designer's aim is to balance cost and (expected)

performance [89]. For the particular damage criterion con-

sidered (i.e., Model B) the objective is to maximize the total

present value (v0-c0 ) of the structural system, where co de-

notes the acquisition cost, and v0 is the present value of the

"built" structure. The factors which influence (v 0 -c 0 ) are

related to the excitation, the structural system,and the

characteristics of the damage criterion.
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APPENDIX

To derive the distribution of the time to first

passage of a D type or a B type barrier in the same way as

that of an E type barrier, it was proposed (in Section III.4)

to substitute the discrete two-state processes D (n) and B a(n)

by the continuous time two-state processes D' (t) and B t),

respectively. The respective holding times in state zero,

T0,D and TO B were further assumed to be exponential random

variables. This led to the estimates, Eqs.. III-4.9 and 111-4.11,

for the first passage time distributions.

An alternate approach is to adopt a geometric dis-

tribution for (say, in the case of D type barriers) N0,D, the

number of consecutive IXI-peaks below the threshold IXi=a. The

two approaches lead to first passage distributions that are

nearly identical except when the average of NO,D is very small,

say,less than five. Note that the time to first passage is

really a continuous random variable. It will be estimated here

by (2vo)-INf,D, where Nf,D is the total number of peaks of IXi

below the threshold value before "failure" occurs (see Fig.II.1)

This estimate is expected to deviate from the true first pas-

sage time in several ways. First, the time until the arrival

of the first peak of 1Xl will not be correctly accounted for.

Also, the actual time between peaks of IXI is not a constant,

but a random variable with mean (2vo)- .

Let a geometric distribution be adopted for the dis-

crete random variable NO,D. The probability mass function of
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N has the formS (n) = Pr =n] = (-p),D (

P7 (nI) = Pr[NnT 1=n] = (1-p)nl (Al)
-O,D

where p denotes the probability that the process D a(n) will

make a transition to state 1 when it is next observed,given

that it is presently in state 0. To satisfy Eq. 11-4.14, we

must have,

1 (va) l-exp{-na/ 2va}
E[N ]- vo 1-v / (A2)

The following reliability statement involving Nf,D

may be made in the case of a random start,

P[Nf,D>n] = AD(1-p)n n=0,1,.. (A3)

where p is defined by Eq. A2, and AD equals the probability

that failure does not occur before the first arrival of the

first peak of JXi. Note that, if the first peak happens to

be above the threshold, the actual first crossing occurs some

time before the arrival of that peak. Hence, AD will be nearly

equal to the probability that a randomly selected peak of IXI

has a value exceeding the threshold value. We have

E[NlD Va
A = = 1 (A4)D E[NO,D]+E[N1,D] VO
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Equation A3 may be cast into the form of Eq.III-4.3

by defining a new decay rate estimate a', in the following way

(1-p)2vot -e-Dt (A5)

Therefore,

aD = -2volog (1-p) (A6)

D a 1(i-a~l-  aa' = -2volog ( 1- a/ (A7)D vo 1-l a/VO

Using Eqs. I-4.5 and I-5.4 the above result may be easily

specialized for Gaussian processes. The new estimate of the

decay rate is shown in figure 111.5 (by a dotted line). An

entirely similar analysis may be performed for B type barriers.
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