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ABSTRACT

In the thesis, I derive the optimal operating strategy to maximize the value of a storage facility by
exploiting the properties in the underlying natural gas spot price.

To achieve the objective, I investigate the optimal operating strategy under three different spot
price processes: the one-factor mean reversion price process with and without seasonal factors,
the one-factor geometric Brownian motion price process with and without seasonal factors, and
the two-factor short-term/long-term price process with and without seasonal factors. I prove the
existence of the unique optimal trigger prices, and calculate the trigger prices under certain
conditions. I also show the optimal trigger prices are the prices where the marginal revenue is
equal to the marginal cost. Thus, the marginal analysis argument can be used to determine the
optimal operating strategy. Once the optimal operating strategy is determined, I use it to obtain
the optimal value of the storage facility in three ways: 1, using directly the net present value
method; 2, solving the partial differential equations governing the value of the storage facility; 3,
using the Monte Carlo method to simulate the decision making process. Issues about parameter
estimations are also considered in the thesis.

Thesis Supervisor: John E. Parsons
Title: Executive Director, MIT Center for Energy and Environmental Policy Research
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LIST OF NOTATIONS

r: the discount rate.

c: the storage cost per unit time in years.

TC: the total cost per unit time (storage cost + financing cost) in dollars.

Po: the initial price.

P: the current price of the inventory (or the spot price of the natural gas).

PL: the lower trigger price.

PH: the upper trigger price.

PL*: the optimal lower trigger price.

PH*: the optimal upper trigger price.

P1*: the lower critical price.

P2 *: the higher critical price.

P* a generic representation of the critical prices, both P* and P2*.

tp: the first hitting time to P, and tpH, tPL, tPH*, tPL*, tp*, tpj*, tp2* are similarly defined.

V: the value of a full storage facility.

W: the value of an empty storage facility.

Z: the value of a storage facility satisfies:

I V - P If the current facilityis Full

W If the current facilityis Empty.

V*: the optimal value of a full storage facility.

W*: the optimal value of a full storage facility.

Z*: the optimal value of a storage facility when V and Win (2.1.4) is changed to V* and W*.
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CHAPTER 1

INTRODUCTION

1.1 Chapter Introduction

In the chapter, I introduce the general storage valuation problem, and its relevance to the current

market situation, where the link between the optimal operating strategy and the value of a storage

facility is discussed. This provides the motivation for the development of the thesis. Next, I

conduct a literature review on the storage valuation problem, and compare the different methods

used in the literature. Then, the major results of the thesis are summarized. Finally, the

organization of the thesis is presented with a brief summary on each of the following chapters.

1.2 Motivation

The US natural gas industry has transformed itself significantly as a result of the deregulation.

The storage service in turn has been offered as an independent, distinct service. This change

means any qualified company can lease, use and transfer those storage facilities for its own

purpose. Therefore, the valuation of a storage facility is becoming a key component for

companies to tap into and benefit from the new deregulated market.

In order to value a storage facility, the first step is to understand the functions of a storage

facility. Traditionally, there are two key functions offered by a natural gas storage facility:

" Ensuring that the demand in winter months is met by storing excess supply in the summer

months.

" Acting as an insurance against unforeseeable accidents or disasters amid other not so

severe discontinuities in supply and demand.
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Therefore, the storage facility traditionally serves as a cushion for the utility or transportation

companies to meet the fluctuating demand.

Because of the deregulation, companies can now benefit from the new structure of the value

chain: they can buy and store the natural gas in a storage facility when the price is low, and sell it

when the price is high. The change is further reinforced by the liquid financial market, such as

the natural gas futures actively traded in New York Mercantile Exchange (NYMEX).

As the new structure of the value chain in the natural gas industry emerges, there is an increasing

need for a method to value a storage facility which incorporates this change. And because of the

change, the value of the storage is closely related to the timing to operate the storage facility.

One approach to find the timing is to answer the questions of when to inject the natural gas, and

when to withdraw the natural gas, based on the spot price. The answers to the above questions

are what I call 'the operating strategy'. In the thesis, my aim is to answer the two questions, and

this is the basic motivation for this thesis.

Mathematically, the problem can be framed in the following way: let Z be the value of a storage

facility, and let P be the current spot price. I want to find the optimal operating strategy PL*

(lower optimal trigger price) and PH* (higher optimal trigger price), such that I can solve the

following optimization problem:

z* (PL,PH) = max Z(PL' PH) (1.1.
L H

1.3 Literature Review

The value of a storage facility is closely related to the demand fluctuations, as explained by

Pilopovic (1998). The fluctuations can be captured by the changes in the underlying natural gas

price. Following this logic, researchers in the area use the natural gas price as the first step to

tackle the valuation problem. Therefore, the modeling of the natural gas price is a key to

accurately value a storage facility.
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In the literature, researchers model the spot price of various commodities in different ways:

Brennan & Schwartz (1985) uses a geometric Brownian motion process to model the spot price

for copper, where the prices grow at a constant rate with the variations grow in proportion to

time. However, Dixit & Pindyck (1994), and Smith & McCardle (1999) argue that a mean

reversion price model is more appropriate for a general commodity valuation problem. The main

argument is: when the price is higher than some fixed level, some higher cost companies will

enter the market which leads to more supply, and the price will decrease; when the price is lower

than the fixed level, some higher cost companies will exit, which leads to less supply, and the

price will increase. For a detailed explanation on the one-factor models, please refer to Baker,

Malcolm, Mayfield and Parsons (1998). Further, Gilbson & Schwartz (1990), and Schwartz &

Smith (2000) propose two-factor models to better model the commodity price, since more

dynamics can be generated by the two sources of uncertainties. Multi-factor models, such as the

three-factor model discussed in Schwartz (1997), and models with jump processes, such as

Thompson, Davison, & Rasmussen (2003), are also suggested to model the spot price. Other

researchers, such as Clewlow & Strickland (2000), argue to use the forward term-structure to

find the spot price, which is essentially a multi-factor spot price model.

The complexity of the above price models increases as the accuracy of the price models

increases. However, one needs to strike a balance between the complexity of a model, and the

manageability of a model. The model that captures the salient features of the natural gas price

with the least complexity should be used in the valuation problem.

Once a price process is chosen, one can value a storage facility using one of the two main

methods: the contingent claim method and the dynamic programming method. The contingent

claim method is inspired by the Black & Scholes (1973) and Merton (1973), which uses a

hedging portfolio to eliminate the uncertainties in the price process, and calculates the value

from the resulting deterministic portfolio. The dynamic programming method employs a

switching concept, where at each time one compares different options, and chooses the option

that gives the best value. The contingent claim method requires more stringent assumptions, but

it is relatively easy to obtain the parameters; while the dynamic programming method has fewer

assumptions, but some parameters are hard to obtain. Sometimes, the two methods are equivalent.
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Please refer to Dixit and Pindyck (1994) for a general discussion, or Insley and Wirjanto (2008)

for a comparison study.

Using the above two methods, researchers have developed different ways to tackle similar

valuation problems: Hodges (2003) and Thompson, Davison, & Rasmussen (2003) use the contingent

claim method to derive partial differential equations for the storage valuation problem. Vollert (2003),
and Dixit & Pindyck (1994) use the dynamic programming method to solve oil investment

related problems. In either case, some differential or partial differential equations are derived,

and the solutions can be found by solving the equations using different methods. For examples,

Dixit (1989) solves analytically the equations for a simple entry-exit model using two trigger

prices - one for entry, and one for exit; Carmona & Ludkovski (2005) uses numerical methods to

solve the equations; Chen & Forsyth (2006) uses a semi-Lagrangian method to solve some partial

differential equations for the natural gas storage valuation problem.

1.4 Contributions

To answer the questions of when to inject and when to withdraw, I use the concept of dividing

the value of the storage facility into the value of an empty storage facility and the value of a full

storage facility, as Hodges (2004) has done. By doing so, I can find the optimal operating

strategy under which one can get the optimal value of a storage facility. The major contribution

of the thesis is as follows:

First, to my best knowledge, this thesis is the first one that discusses the optimal operating

strategy problem under both the logarithm mean reversion price process, and the two-factor

short-term/long-term price process.

The reason to use the logarithm mean reversion model is that it may be more suited to model the

commodity spot price as discussed above, and it is more suitable than the model used in Hodges

(2003), because the model he uses has the problem that the spot price may go negative. Under

the logarithm mean reversion model, I provide a comprehensive investigation of the problem by

16



considering the deterministic model, the stochastic model, and the related seasonal models. Such

a treatment gives readers a good starting point to tackle the optimal operating strategy problem.

However, one-factor price models, which attribute the randomness of the spot price to one source

of uncertainty, may not be a good representation of the complex factors that influence the natural

gas price, as discussed in Gilbson & Schwartz (1990). Therefore, I use a two-factor short-term/long-

term model proposed by Schwartz & Smith (2000). This model is mathematically simple to manipulate

while it preserves the important features in the natural gas spot price: the temporary mean reversion to

some fixed level in the short term, and the permanent change in the fixed level in the long term. I believe

this model is a good example of a model that strikes a balance between complexity and manageability. I

show the similarity of this model to the one-factor logarithm mean reversion model using the

dynamic programming method to derive the optimal operating strategy. This investigation and

comparison can help people better understand the two-factor model so they can make

informative judgment on the price process in their research.

Second, I find a general method to tackle the optimal operating strategy problem using the risk-

neutral expectation of marginal revenue and marginal cost. This method can be used even when

there are transaction costs. Such a method can help the practitioners to find numerically the value

of a storage facility when they face a more complex real-life problem.

Lastly, I have obtained the optimal operating strategy for the seasonal models, where I formally

consider the effects by adding the seasonal factor in different models, and find the functions and

values from the seasonal factor in different models.

1.5 Organization of the Thesis

The thesis consists of six chapters, including this introduction chapter and a conclusion chapter.

In Chapter 2, I find the optimal operating strategy under a one-factor logarithm mean reversion

price model. First, I discuss a related deterministic price model, and derive the optimal strategy

for the model with the corresponding storage value. Then, I use two differential equations to

17



derive the optimal strategy for the mean reversion model. I also find the values under the optimal

strategy by solving the two differential equations. A seasonal factor is added next, and

comparisons are made among different models. This chapter shows that the stochastic and

seasonal components in the mean reversion model can contribute significantly the value of a

storage facility.

In Chapter 3, I find the optimal operation strategy under the geometric Brownian motion (GBM)

price model. I discuss both a related deterministic price mode and the GBM model. The key

conclusion from this chapter is that this model itself is not adequate to tackle our storage problem,
and we need to consider seasonal factor in order to use this model.

In Chapter 4, I present a two-factor short-term/long-term price model, which consists of both a

mean reversion component and a geometric Brownian motion component. I derive the optimal

operation strategy using the marginal analysis argument, and numerically solve the optimal value

of a storage facility using Monte Carlo simulation method. This chapter shows again that both

the stochastic and seasonal components are important in the valuation of the storage facility

problem.

In Chapter 5, an estimation method for the two-factor model is introduced, where I use the

Kalman filter and the forward curve to calibrate the parameters used in the two-factor model.

And a parameter estimation example is presented at the last using the Henry Hub data.

In Chapter 6, I conclude the thesis by mentioning the key results in this thesis, and discussing

some potential improvements. The appendix and reference are presented at the end of the thesis.

18



CHAPTER 2

ONE-FACTOR MEAN REVERSION MODELS

2.1 Chapter Introduction

In this chapter, the optimal operating strategy for the valuation of a storage facility with a one-

factor mean reversion price process is studied in detail. The spot price is modeled as:

ln(P) = ut, where du, = k -(mrea - u) -dt + G-dB, real. (2.1.1)

Ut follows an Ornstein-Uhlenbeck (OU) process with the reversion rate k, the mean mreal,

the volatility y, and the standard Brownian motion Brea.

Solving for u, , I have:

ut=u0 -e-k-t + mrea-(1 - e-k't) + Jo -e-k(it-s) dB,. (2.1.2)

The same process under the risk-neutral measure can be written as:

ln(P) = ut, where dut = k-(m - ud)-dt + o-dB,, m = mreal -U-Vk. (2.1.3)

X is the market price of risk, which I assume is constant and is exogenously determined.

Further, Bt is the Brownian motion under the risk-neutral measure. In the following

sections, I work with (2.1.3) instead of (2.1.1).

In this chapter, I first investigate the deterministic component of (2.1.3) by setting -= 0, and I

call this 'the deterministic case'. Then, I proceed to solve the full model of (2.1.3), in which -is

positive, and I call this 'the stochastic case'. I prove and derive the optimal operating prices, with

the corresponding value of a storage facility. Next, the seasonal factor is considered, and a

discussion on the sources of the storage value is made at last.

In this chapter, I assume V, W, V*, and W are twice differentiable, and there is no storage cost

when the facility is empty. Further, the optimal value Z* must be non-negative in any situation,

since I can always choose to stop operation and obtain zero value for a storage facility.
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2.2 Deterministic Model without Seasonality

In this section, I assume the volatility parameter a = 0 in both (2.1.2) and (2.1.3). Consequently,

the price can be expressed as:

P=eut,where ut-=ug - k-t - M-0 - e k-t (2.2.1 a)

Let the initial value be Po = ln(uo), and assume e' > P > Po > 0. Solve equation (2.2. la) for the

first hitting time tp, which is the first time that reaches the price level P, starting from Po:

S_= in M - In(P) (2.2. ib)
k (m - In(P) )

Further in the following sections, I assume the parameters satisfy the relationship:

C -M + ' _ 102 -M+ - (2.2.2)
>--e 2-k > _e-1, orO > - -e k >-e- 1 whena=0.k k

2.2.1 Scenario One - Independent Cost Rate

In this section, I make the following assumption: the storage cost is at a constant rate c dollars

per year for a full storage facility, and there is neither cost associated with an empty facility nor

any cost related to operating activities (i.e. injections and withdrawals).

Assume 0 < Po 5 PL < PH < em, and c, k, r, m are all positive. Let tpL, tPH be the first hitting times

for PL , PH respectively (the first hitting time passing P in the risk-neutral world is not

necessarily the real time passing P, and I use this name here just for convenience). The profit or

net present value Z from buying at PL and selling at PH is:

-r-t PH -r-t
Z=e PH -f c e -rt _e PL p (2.2.3)

PL

1 (m-nP) ___-_P_where tpH= -in , J and tpL = n - -n n(PL)
PH k (m - nPH) PL k m - InPL)

In the section, I want to find the value of PL* and PH such that:

Z* (P* , P' *) = max Z(PLPH). (2.2.4)
L H

20



Therefore, to find the maximum profit, I first differentiate the profit function Z with respect to PH,

and then equate it to 0:
-r-t

-- PH -r-t

_ Z= re PH

a PH k(m- ln(PH))

-r-t- +e-rt

k(m - ln(P*))

-r-t

c-e
k-(m- ln(PH)) PH

-r-t
(mc-e P* 0.

k -(m - ln(P*))7 =P
To solve equation (2.2.5b) for the critical price P*, I make the following simplifications:

(2.2.5 b) => - r + 1 - C , = 0
k(m - In(P* ) ) k -(m - In(P )-P*

=> -r-P* + k -(m - ln(P* )) -P -c = 0,

==> -L=P*- (M - - ln(P*) .k ~k

Leta= -,'b=m- , rP =eu,andwehave:

=a = e" (b - u),

-a-e-b =eu-b.(u - b).

To solve the above equation, I need to introduce the LambertW function, which is the solution to

the equation of the form (for some constant const): const = eX-x. Please refer to Corless, Gonnet,

Hare, Jeffrey, & Knuth, D.E. (1996) for further information.

2-

LambertW(const)

1-

01 2
const

1-

-2 

4-

Figure 2.2.1: The LambertW function.

(2.2.5a)

(2.2.5b)

- /e

-1 3
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For the storage problem, since all the parameters and solutions are required to be real numbers,

we are only interested in those constants and solutions that are real. Therefore, I only plot the

LambertW function when its value is real in Figure 2.2.1. With the requirement that all the

constants and solutions that are real numbers, the LambertW function has the following

properties:

(a). When const < -I/e: No Real Solution.

(b). When -le 5 const < 0, and LambertW(const) is an increasing function from:

LambertW(const) ;> -1: LambertW(J/e) = -I to LambertW(0)= 0.

(c). When -le 5 const 5 0, and LambertW(const) is a decreasing function from:

LambertW(const) 5 -1: LambertW(J/e) = -1 to LambertW(O)= -oo

Table 2.2.1: LambertW function's properties.

Using the LambertW function and the assumption (2.2.2), I can write (2.2.5b) as:

=-a-e- b eu-b(u - b) ,

=u - b =LambertW(-a -e-b)

=> U = m - + LamberW - -e .

Therefore, the critical price can be written as:

r c M + (2.2.6)
+ m -+LambertW -c 

2e2.

=> P* = em

With the assumption (2.2.2), the real value requirement, and the property (b) in Table 2.2.1, I

have two solutions to (2.2.6), because the following function has two values:

LambertW - C-e .

Therefore, I have two critical prices from (2.2.6), denoted as P* and P2*, and I assume P, * < P2*.

For example, let m = 2.3, k = 1, r = 0.05, c = 1. The LambertW function has two distinct values:

-0.1187 and -3.5039. Therefore, the solutions to (2.2.5b) are:

P,* =0.2854, and P2* = 8.4260.

Next, we need to check the sign of the second order derivative of the profit function Z with

respect to PH at the critical prices P * and P2*. Let tp* be the first hitting time to P*. The second
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derivative of Z with respect to PH at the critical value P* (here I use P* to be a generic

representation of both P1 * and P 2*) is:

Z * = e-r-t -(-r-P* + c- (m - InP* - 1))
a P? = k lnP*) 2 .(P*)2

H H k (m -

With the assumption m > PH, and the positivity of tpH, r, k, c, to find the sign of the above

function is equivalent to find the sign of:

-r-P* + c- (m - inP 1)

-r-P + c- m - m + - LambertW - -e k_

>-r-P +c- -c- LambertWi - -e k +11,
k ~k }

r- -P + - c - LambertW --- e + IJ.

Using the assumption (2.2.2) and the LambertW value that is within (-1, 0), I have:

m- --1 m- + LambertW ( -e k
=> 0 > - > -em k >-_e k k =p

k P

P2 + < 0,

+ < 0,

=-- + (- c-LambertW - -e + I < 0 ,

= 2 Z .< 0.
H P2 H 2

Because the second order derivative at the critical price P2* is negative, together with the

functional form of Z, I conclude P2* is the value that locally maximizes Z for any given PL*.

Therefore, PH = P 2 *

Next, I argue that P, * is the value that minimizes the function Z, for any given PH*. For a

continuous, differentiable function Z with only two critical values, because the second order

derivatives at the two critical values are non-zero, which can be shown using the assumption

(2.2.2) and the properties of LambertW function, one can conclude that one critical value must

be the local maximum while the other must be the local minimum. Using this argument, since

P 2 * is the local maximum, P1 * must be the local minimum, and I have the following result:
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when PH c [p ,- o], PH = P2- is the maximum value for the function Z.

when PH c [0, P2;, PH = P,' is the minimum value for the function Z.

Similar results can be derived for PL using the same argument. However, observing the function

Z, I can find the first and second derivatives of the function Z with respect to PL are just the

opposite of those with respect to PH.

Szip =P = a ZIP =P
a PH H a P L

a2 Z - 2

H P H L

(2.2.7)

Therefore, the critical value for PL should be the same as P1"* and P2*. However, because the sign

difference in the second derivative with respect to PL comparing to that to PH, the conclusion for

the optimum is different:

when PL c [P,,+ o], PL = P2* is the minimum value for the function Z.

when PL c 0, p ], PL = P1* is the maximum value for the function Z.

I plot the function Z, as a function of PH while setting Po = PL = 0.1 (to satisfy Po = PL <P 1

0.2854) in Figure 2.2.2 (left). Then, I plot the function Z, as a function of PL while setting PH =9

(to satisfy P2* =8.4260 < PH < e' = 9.9742) in Figure 2.2.2 (right).
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Figure 2.2.2: Z changes as P11 and P1 change.
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We can clearly see that the two shapes of Z are just the opposite of each other, and the two

critical prices are the values that achieve the minimum and the maximum respectively. Therefore,

for the problem (2.2.4), with the assumptions of 0 < Po 5 PL5 PH< e and PO P1 *, the function

Z achieve the maximum Zmax when PL* = P,* and PH* = P2 *.

If we allow Po to vary when we keep PL and PH fixed, the partial derivative with respect to Po is:

a Z r 1 z (2.2.8)
a po k PO -(m - In(PO) )

Using the assumptions that 0 < PO PL 5 PH < e', and Z is non-negative, (2.2.8) is positive when

Z is not equal to 0, therefore, to achieve the maximum value, we should take Po = PL. (2.2.8) is

equal to 0 only when Z = 0, one such case when PL = PH.

Combining with the previous result, I have for the function Z, to achieve the maximum value of

the function Zmax (I assume that it is positive), we must have Po = PL = P1 , and PH= P2 *.

If we fix k, r, c, m, a, Po (or uo), and assume 0 < Po:5 PL 5 PH < e', I can use the above analysis

to find the optimal operating strategy when the initial price Po falls in different price ranges. The

result is shown in Table 2.2.2.

When PO < P1 , Wait until the price goes to P, *. Buy at PL = Pj , and sell

at PH* =2

When P 5 Po < P2 , Buy immediately at PL = Po, and sell at PH = P2 *.

When PO > P2 , Do not buy or sell at any time (no operations).

Table 2.2.2: The operating strategy for deterministic case

From the above strategy, I can draw the following conclusions: (1) as long as 0 < Po 5 P2* we

always sell at PH* = P2 . (2) When P1 *< Po < P2* the rate of the price appreciation is bigger than

the rate of total cost changes (more will be discussed next), and this is the reason that we need to

buy immediately at the current initial price P = Po: the earlier we buy, the more profit we can get.

(3) When PO > P2*, the rate of the price appreciation is smaller than the rate of the total cost

changes. Therefore, the profit obtained by buying and holding is less than the total cost incurred
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in the same period, and the best policy is to do nothing. The conclusions (2) and (3) above can be

formalized as follows.

The optimal operating strategy can be thought as a tradeoff between the profit gained by the

price appreciation from holding the inventory, and the total cost incurred during the holding

period. The tradeoff can be examined by the dynamics between the marginal cost (MC), which is

the total cost incurred from holding for one additional time period, and the rate of the price

appreciation (MR), which is the gain from holding for one additional time period. In our model,

the marginal cost consists of the cost of capital and the cost of storage. Let TC denote the total

cost function. Thus, the marginal cost can be defined as:

dTC r-P + c = r-eu + c . (2.2.9)
dt rPceUc

Similarly, the rate of the price appreciation can be written as:

dP I a 2 (2.2.10)
dt=k m+ -u -exp(u)

In Figure 2.2.3, I plot the dynamics of (2.2.9) and (2.2.10) with the storage cost (not the total cost)

set at c = 1. The crossing points are given by:

dTC dP (2.2.11)
dt dt

Solve (2.2.11), and it gives the identical solutions for P* as those in (2.2.6). Equation (2.2.11) is

the same equation as (2.2.5b), where we differentiate the profit function Z with respect to PH (or

PL) and equate it to 0. Essentially, the two approaches are the same.

/ 2

Price P

MR - - MC

Figure 2.2.3: Plots of (2.2.9) and (2.2.10) as a functions of the price P.
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Next, following the strategy in Table 2.2.2, and assuming 0 < Po 5 PL PH< en and setting PH

= p2*, I plot the value of a storage facility when Po taking different values in Figure 2.2.4.

By observing Figure 2.2.4, I summarize the key results:

1. When PO > P2*, the value is 0.

2. When Po = P2, Z = 0. Using (2.2.8), we find the partial derivative cZ/aPo = 0 at the point.

3. When P1 * < P < P2 *, to maximize the profit Z, we buy immediately, and the value is

plotted accordingly.

4. When PO = P*, the maximum possible value Zmax of the function Z is achieved only.

This has been discussed in the paragraphs following (2.2.8). However, at the point PO =

PI * , since Zmax is assumed to be positive, the partial derivative Z/aPo > 0 according to

(2.2.8).

5. When PO < P*, the optimal strategy is to wait till the price reaches P *. The increasing

trend in Figure 2.2.4 is due to the fact that Z is an increasing function of Po from (2.2.8)

when Z is positive. When Po approaches 0, the first hitting time to P, * approaches infinity.

Therefore, the value approaches zero as a result. More will be discussed in Section 2.3.

4-5

4

2-5

P =0.2854 P = 8.4260

0-

0 1 2 3 4 O5 6 7 8

Figure 2.2.4: The optimal value of the facility as a function of initial price Po.
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2.2.2 Scenario Two - Proportionate Cost Rate

In this section, I assume the storage cost is proportional to the current spot price P. That is, at any

time, the cost per unit time is (c -P) for a full storage facility, and there are no cost associated

with either an empty facility or any transactions (i.e. injections and withdrawals).

Assume 0 < Po < PL PH< e'. The net present profit (Z) by buying at PL and selling at PH is:

-rZ PH -r-t (2.2.12)
Z = _f PH- c -Pt-et ert dt - e

PL

Take the derivative of (2.2.12) with respect to PH, and PL, and equate it to 0:
a a z=o. (2.2.13)

a PH L

I can follow the same argument as that in Section 2.2.1 to derive the critical prices PH* and PL*

that maximize the profit function Z. The followings are an outline of the derivations:
-r-t -r-t
-rPH -r-t -r- PH

Z - r-e + e PH _ c -e

a PH k (m - ln(PH)) k -(m - ln(PH)

-r-t -r-t
r-e + p* c-e =0

k(m - ln(P* )) k -(m - ln(P* )

=> k(m - ln(P*)) = r + c,

r + c

P k

Compared to the case in Section 2.2.1, there is only one critical price. The second derivative is:

a2 -r-t
Z =e -.(-r - c)- ttiH a tH

H PH=P HHH pH) *

1 -. e H.(-r-c)
k (m - InPH 2 .PH p=p

H

Therefore:

02
2Z < 0.

H PH=PH
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I conclude that the PH* = P* is where the function Z achieves maximum for an arbitrary fixed

value PL. Similarly, by the same argument:

02 a2

L PL= pgpH PH=

Hence, to maximize the value of Z, we need to buy immediately at PL = Po, and sell at the price

PH = , assuming 0 < Po PL PH< em.

Using the marginal argument as in 2.2.1, the rate of price gain is:

dP 1 G2 u (2.2.14)
dt = m+2 k u-

which is the same as (2.2.10). But the marginal cost now has changed to:

dTC =r-P+c-P=(r + c)eu (2.2.15)
dt= P+c (r+ce

Solve for P* and it is the same as the solution to (2.2.13). The two functions of (2.2.15) and

(2.2.16) are plotted in Figure 2.2.5 (with c=0.1).

Comparing to Figure 2.2.3, we can see that since the MR are the same for both cases, the solid

MR line is identical for both of the two cases. But the MC part is different. Especially, there are

two non-zero crossing points in Figure 2.2.3 while there is only one in Figure 2.2.5. This

difference leads to different operating strategies for the two cases: in the case in Section 2.2.1,

we have to wait till the current price reaches or exceeds the critical buying price P, *, and buy

afterwards, while in this section's case, we buy immediately as long as the current price P

exceeds 0. The difference comes from the way we represent the storage cost: in the constant

storage cost case, MR can drop below the storage cost rate c since MR is a function of P, but not

c, while in the proportional storage cost case, MR decreases as the storage cost rate c-P decreases.

That's the reason why there is a difference in the plots in Figure 2.2.3 and Figure 2.2.5.
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P

Price P

I-MR - -MCI

Figure 2.2.5: Plots of marginal cost and rate of the price gains

2.3 Stochastic Model without Seasonality

In this section, I assume the volatility parameter (Y > 0. As a result, we are dealing with a

stochastic price process. Assume the storage cost is fixed at a constant rate c dollars per year, and

the real price process follows:

In(P) = u,, where du, = k -(m,ea, - ud)- dt + L-dB, ra (2.3.1)

ut follows an Ornstein-Uhlenbeck (OU) process with the reversion rate k, the mean mea,,

the volatility cy, and the standard Brownian motion Breal.

The same process under the risk-neutral measure can be written as:

In(P) = u,, where dut = k -(m - ud)-dt + o-dB,, m = mea, -o,--A / k . (2.3.2)

X is the market price of risk, which I assume is constant and exogenously determine. B, is

the Brownian motion under the risk-neutral measure.

In the following sections, I work with (2.3.2) instead of (2.3. 1). Under (2.3.2), with Ito's Lemma,

the instantaneous changes of P can be expressed as:

dP =k - M+ C2 _ in(P) -P-dt + a-P-dB (2.3.3)

2- I *
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I assume there is no trigger cost when changing between the empty and the full states in the

storage problem, and I also assume the parameters satisfy the assumption (2.2.2). Let PH be the

higher trigger price, and let PL be the lower trigger price, such that when P > PH, we sell the

inventory; when PL <P < PH, we buy the inventory; whenever P < PL, we sell the inventory. I

first derive the value of a storage facility using arbitrary PL and PH. Then, I find the optimal

operating strategy PL and PH* that maximize the function Z, that is:

z* (P*, *)= max Z(PLPH'). (2.3.4)
P , P

L H

2.3.1 Operating Strategies with Infinite Facility Life

In this section, I first derive the equations that determine the values of V and Wunder any

arbitrary operation strategy PL and PH. Then, I derive the optimal operating strategy PL* and PH*,

and find the corresponding values of V* and W* when the facility is operated according to the

optimal operating strategy PL* and PH*.

In this section, I assume the storage facility is in the operation condition for infinite time, and the

storage facility has a storage capacity of one unit. Since the facility has infinite operating life, the

value of the facility is a function of only one parameter P: V = V(P), and the parameter t (time)

has no influence on the value of the facility.

2.3.1.1 Value of a Storage Facility with Arbitrary PL and PH.

Let A represent a small positive price change. I use the following notations:

W1(P) is the function of an empty facility when P <PL + A.

W2(P) is the function of an empty facility when P > PH- A.

GI = V(PH+ A).

G2 = V(PL - 4).

ProH is the probability of hitting PH + A first, rather than hitting PL - A, starting at PH - A.

ProL is the probability of hitting PH + A first, rather than hitting PL - A, starting at PL + A.

ti is the first hitting time from PH + A to PH - A.

t2 is the first hitting time from PH - A to PH + A.

t3 is the first hitting time from PH - A to PL - A.
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t4 is the first hitting time from PL - A to PL + A.

t5 is the first hitting time from PL + A to PH + A.

t6 is the first hitting time from PL + A to PL - A.

Assuming we are buying at either PH - A or PL + A, and selling at either PH + A or PL - A, I can

write the value of G, as (in the followings, all the expectations are take with respect to the risk-

neutral measure):

G =PH + A + W2 (PH+ A)

which means the value of a full facility at PH + A is equal to the selling price PH + A plus

the empty facility at price PH + A, which can be written as:

W 2 (PH + A) =EIe '.(PHA) + V(PH -A

The above equation says that the value of the empty facility at price PH + A is the full facility

value at PH - A minus the buying price of PH - A, discounted by the risk-neutral expected value

of exp(-r-ti).

Expand the full facility value at PH - A:

-t t2 -r-t 3
V(PH -A) =E e 2 G - ert-c dt -ProH + E e 3 G2 - e-.-c dt (1

- ProH),

which says the full storage facility value at PH - A is divided into two cases: the case it hits PH ±

A (where we obtain the value of G, but incurs storage costs for the length of t2); the case it hits

PL - A (where we obtain the value of G2 but incurs storage costs for the length of t3). Substitute

V(PH - A) into W2(PH + A), and in turn, substitute the resulting equation into G1, I have:

e t

G1 =PH + A + Ee ( -(PH -A) + E e 2-G - f 2 e-r-t.c dt -ProH + E e 3.G 21 0
t

- fe--t-c dt-(1 - ProH)j.

Therefore, G, can be expressed as a function of G2, denoted as G, =fun](G2)-

Following the same argument as above, I can write similar equations as:
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G2 :L - A + Wl(PL - A)'

Wl(PL - A) =E e 4 .(_(PL L) V(PL

t t
- 5- 5 -r-t 66

V(PL + A) =E e 5 G - e-r-t-c dt -ProL + E e 6 G2 - f rt-c cdt -(1

- ProL).

Therefore, G2 can be expressed as:

t
-r- -r- 6 r-

G2 PL -A + e -(PL +A + E e G - e-c dt -ProL + E e

t

-G2 - -r-t.c dt -(I - ProL)J.

Again, G2 can be written as a function of G1, denoted as G2 =fun2(G).

Given the parameters k, m, o, A, PL and PH, I can use the properties of the mean reversion

process (2.3.3) to find the values of ProL, ProH, and all the expected values relate to the first

hitting time ti, i = 1... 6. Since it is hard to obtain the closed form solutions to derive the above

first hitting times and probabilities, one efficient way to find the those values is to use Monte

Carlo simulations, which is what I use for the following numerical examples. Therefore, all the

parameters in the functionsfunlo andfun2O are known except G, and G2: assumingfunlo,

fun2O are independent, we have two independent functionsfun] (, fun2O, and two unknowns.

Hence, we can find the value of G, and G2.

Once we find the value of G1 and G2, we can find the value of a full facility at PH and PL by:

V(PH) = limG1 , V(PL) = limG 2 -

With the above value at V(PH) and V(PL), the value of a storage facility operating according to

strategy PL, PH are:

1. When the current price PL <Po < PH, let Prob be the probability of hitting PH first rather

than hitting PL first, starting from Po, the value can be expressed as:

PH (2.3.5a)E~e V(P
V(PO) = E PH ) PH e c dt -Prob

t
PL

+ E e V(PL) - ertc dt (1 - Prob) .
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2. When the current price Po < PL:

W(P 0) = Ee PL( PL +V(PL))l- (2.3.5b)

3. When the price Po > PH:

W2 (P0 ) =E e--PH. (_pH+ V(PH (2.3.5c)

(2.3.5a) to (2.3.5c) can be easily calculated using the Monte Carlo simulation method, and

examples are given in Section 2.3.3.

2.3.1.2 Optimal Value of a Storage Facility with PL* and PH*.

Assuming we are in a complete market, I use the contingent claim method pioneered by Black &

Scholes (1973) and Merton (1973) to derive the optimal operating strategy together with the

corresponding value of the storage facility.

Assume a storage facility is in the operation condition for infinite time, and we are holding one

full storage facility. Since the facility has infinite operating life, the value of the facility should

be a function of only one parameter P: V = V(P), and the parameter t (time) should have no

influence on the value of the facility.

Under the risk-neutral measure, the expected instantaneous gain by holding the full storage

facility should satisfy the following relationship:

E[dV(P)] - c-dt=r-dt-V(P).

It means in an arbitrage-free market, the expected gain (the gain from holding an asset minus all

the cost incurred during the holding period) should be equal to the risk-free return earned on any

asset with the value V(P). To expand the expectation term using Ito's Lemma, I have:

E[dV(P)] E vdP2+ v,,(dPp )

=E VP (k m + k - InP) -P-dt + a-P-dz + p-Vp02.p2-dt

=k-mM+ - InPP-dt + 0-Vp-02 .P2-dt.
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d2d
where V= V(P), Vpp - V(P), VP- V(P).

dIP2

Therefore, combining the above two equations, and simplifying them, I have:

V.k- m + - ln(P) -P-dt + 1 - .a2 P2-dt - c-dt =r-dt-V

Therefore, for a full storage facility, its value should follow:

1 ~ 2 P2 V+k 0+ 2 (2.3.6)- a 2P2 Vpp+ k M+ 2k In(P) P- VP - r-V =c. .236
2 2-k JPVrc

Similarly, for an empty storage facility, its value should follow:

1 a2 P2 2..7
2a P2Wpp+k m+ 2 -ln(P) P-W-r-W=0. (2.3.7)

Next, I derive the optimal operating prices PL* and PH* that solve the problem (2.3.4). I prove the

optimal trigger prices satisfy PH*- P2* PL P1 P*, such that whenever P > P 2 *, we sell

immediately, and whenever P* < P < P2*, we buy immediately, and when 0 < P < P*, we sell

immediately. First, I prove P2* and P* are single values rather than within a certain range.

Claim 2.3.1:

Let V* and W*be the optimal values for the full and empty facility respectively, and assume:

.n + k 1 .2 (2.3.8)
0 > - -e k 2-k _ -e

k

Then PH*, PL are single values rather than within a certain range for the problem (2.3.4).

Proof

I prove the uniqueness of the upper trigger price (PH*), and the same argument can be

made for the uniqueness of the lower trigger price (PL )-

Assume the upper trigger prices fall in the range (PH], PH2), thenfor any value P (PH],

PH2), it satisfies (2.3.6) and (2.3.7) simultaneously. Therefore, when P in (PH], PH2), we

must have:

P + W*(P) = V*(P) (i)

If not, let's say P + W*(P) > V*(P), then it means V*(P) is not optimal which contradicts

to the optimality assumptions of V*.
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Because of (2.3.8) and P in (PHI, PH2), together with the assumptions of twice

differentiability of V*and W*, I have:

- W*(P)+ 1=- V(P).
dP dP

d2 ,* _2d W * (P)= V* (P) .
d P 2  d P 2

Therefore, subtracting (2.3.6) from (2.3.7) using (i), (ii) and (ii), I have:

k M+ 2-k ln(P) P- r-P=c. (vi)

Clearly, if PHI # PH2, then any P in (PHI, PH2), satisfy (vi). This is not possible given the

positivity of the constants of k, r, c.

The same is true for the lower trigger price.

Therefore, PH , PL are single values. i

Next, I claim the following.

Claim 2.3.2:

Assume (2.3.8). Let V* and W*(W* and W2*) represent the optimal values for the full and

empty facility respectively. I can expand the definition of V* and W* by defining:

W * + P 0 < P * PW 0 < P < P* W

V* W2 + P P > P2 and Wa=. W2 2 -

1 P2 - 1 P2

Then for any value of P, Vau*(P) and Wall*(P) are continuously twice differentiable at P2*.

(This is an alternative proof of higher order smooth pasting property.)

Proof:

I will consider only Val* in the proof, and Wall* can be proved similarly. Since I have

assumed V and W are twice differentiable, to prove the claim, we only need to prove that

Val* is once and twice differentiable at P = P 2*.
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If the first derivative of Vau*(P) at P = P2* is not differentiable, then it is not unique (it

cannot explode due to the assumptions I have made on V and W). Using the definition in (i),

I assume the following relationship:

VP*(P 2 *) > WP*(P 2*) + 1 (VP(P2) < Wp*(P2*) + 1 can be proved similarly). (ii)

If there is a small positive price change AP, I can multiply AP to both sides of (ii):

Vp*(P 2 *)-AP > W*(P2*)-AP + AP. (iii)

It indicates that the changes in the full facility values are bigger than the changes in the

empty facility value plus the changes in price. Adding both sides by V*(P 2*) = W*(P 2*) + P2*,

I have:

Vp*(P 2 *)-AP + V*(P2*) > Wp*(P 2 *)-AP + W*(P 2*) + P 2* + AP, (iv)

As AP goes to zero, (iv) which can be approximated by:

V*(P 2*+AP) > W*(P 2*+AP) + (P2* + AP), (v)

or V*(P 2*+AP) - (P2* + AP) > W*(P 2 *+AP).

This means that we can switch at the price P2* + AP, and in that case, we have a larger

value V*(P 2*+AP) - (P2* + AP)for the value of the empty facility, and this contradicts to

the optimality of W*(P 2*+AP).

Therefore, we must have Vp*(P2) = Wp*(P 2 ) + 1. Since Vp*is twice differentiable, second

order derivative can be proved similarly using Taylor expansion as (iv) and (v), which

gives VPP*(P2*) = WP*(P2*).

Hence, Vall*(P) are continuously twice differentiable at P2*. (Wall*(P) can be proved

similarly). E

Similarly, I can also prove it is true for P, *, the lower trigger price. To find the functional form of

P2*, as proved in Claim 2.3.2, at the optimal switch point P 2*, I have: Vp*(P 2*) = WP*(P 2 *) ± 1,

VPP*(P 2*) = Wpp (P2*), and together with the definition that V*(P2*) = W*(P 2*) + P 2 *. Using the

three equations, I subtract (2.3.7) from (2.3.6), and get:

k m+ -F2 n(P * *- r-,*= (2.3.9a)

S +rP c(2.3.9b)=*k M+ - nPJPrP 2 +C. 2.b
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(2.3.9b) is exactly the equation of the risk-neutral expected rate of the price appreciation (MR)

= the risk-neutral expected rate of the total cost changes (MC). Solving (2.3.9b), I have:

S +.+ rL - I. 2J (2.3.10)
, _ -- j+ c -+ LambertW - -e k 2-k

P =e k 2-

Under the assumption (2.3.8), there are two values for (2.3.10), which I denote them a P * and

P 2 *, and I assume P * P2* . Hence, using the same analysis as what I have made for the

deterministic case, I can conclude that the optimal upper trigger price is where PH* = P2*, and the

optimal lower trigger price is PL P1*. The detailed optimal strategy is shown in Table 2.3.1.

P >P2': Non-positive. Sell the inventory immediately.

P* <P <P 2*: Positive. Buy the inventory immediately, and hold the

inventory.

P 5 P, : Non-positive. Sell the inventory immediately.

Table 2.3.1: The optimal operating strategies for the stochastic mean reversion model.

The above results can be better understood by the plot of MR and MC in Figure 2.3.1.

P, P2

Price P

-- MR - - MC

Figure 2.3.1: The value of the functions MR and MC.

Let's compare the optimal trigger prices for both the deterministic and stochastic cases. In

deterministic model from Section 2.2, I have:

rnc c (2.3.11)
M-- + LambertW11 - -em+

Pdeterministic =
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In the stochastic case in this section, I have:

-m+ k .02 (2.3.12)
,n +-_-+ -a2 + LambertW - -e k 2-k

stochastic

It is clear that the difference is caused by the volatility term in the underlying stochastic process.

In (2.3.12), when -= 0, the two equations coincides which proves the validity of both

approaches (the contingent claim method and the net present value method). Using the results

about LambertW function in Section 2.2 and a little algebra, we can show P*1,stochastic <

P 1,deterministic , and P 2,stochastic > P 2,deterministic- That is to say, the holding price range of the

stochastic case is larger than the deterministic case. The differences can be explained as follows:

in the deterministic model, the value of PH* is price at which the rate of price gain is equal to

marginal cost. The expected value of the price in the deterministic case is:

In the stochastic case, the marginal cost is identical to the deterministic case in each state, but the

rate of the price gain is volatile with the expected value being a function of the volatility:

I a2
_ u+ T kP =e

In the stochastic case, as shown in (2.3.10), where if we use the risk-neutral expected value to

calculate the rate of the price appreciation, and equate it to the risk-neutral expected marginal

cost, I can get exactly (2.3.12). One conclusion from this section is that we can use the risk-

neutral expected price appreciation and the marginal cost to find the optimal trigger prices easily,

and this method gives us a general formula to derive the optimal trigger price: that is, for a

general storage problem, I can always equate the risk-neutral expected rate of the price

appreciation to the risk-neutral expected rate of the overall cost changes, and the resulting

prices are the optimal trigger prices.

Using the optimal trigger prices P, * and P2* next, I present an analytic solution to the

simultaneous differential equations (2.3.6) and (2.3.7) to find the optimal value of the storage

facility. Because both (2.3.6) and (2.3.7) have the same structure, I solve the homogeneous part

first. I first make the following substitutions:

ln(P) = u. (2.3.13)

I have:
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1 2 a2-rV(2.3.14)
2 -Vu, Homo + k M + 2_U Vu, Homo r VHomo =0

2 d-2
VH, d (u),VH VH(U).where Vuomo = VHomo) u, Homo du Homo uu, Homo du2 Homo

Next, I make the following substitution:

( a2 (2.3.15)

x 2k andy(x )=VHomo(u(x)).

Hence, the homogeneous equation (2.3.14) can be written as:

yx - 2-x-y - 2yr =O (2.3.16)

d d2
where y =y(x),yx= d x y(x), andy d x2 y(x)-

Equation (2.3.16) is in the form of the Hermite equation structure, with solutions can be

expressed as a linear combination of the following two components:

y1(x) = H~ r , 1x2

y 2 (x) =x-H r + 3,x

oo [n-1

where H(a, b, q)= I+n 1 ri( +

The general solution to the Hermite equation is:

y(x) =A-y1 (x) + B-y 2 (x). (2.3.17)

Substitute x and y(x) using (2.3.13) and (2.3.15), and the solution for (2.3.14) is:

VHomo =A-Y1(P) + B-Y2(P), (2.3.18)

rT ln(P) -m - ln(P) -m 2

where Y2(P) -y 2 2k

and A, B are constants to be determined.

Given the optimal trigger price P2* and P*, I have, for the optimal value of the full storage

facility:

V*(P) =vI-Yi(P) + v 2 . 2 (P) - rwhen ! P i P2  (2.3.19)

where vj and V2 are constants to be determined.

The optimal value for the empty storage facility is:
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( W,*(P)=n1 1 -Y1 (P)+n 12 Y2 (P) when 0 < P P1 , (2.3.20)
W (P)=

W* (P)=n2 1.Y 1(P) +n 2 2 Y 2 (P) whenP 2  P

where ni, n12, n21, n22 are constants to be determined.

To find the constants in (2.3.19) and (2.3.20), I use the following boundary conditions:

lim W* (P) = 0, (2.3.21)

irn W2* (P) =0, (2.3.22)

V* (P =P +Wi (P ), (2.3.23)

V* (P2 2+ W2 P2, (2.3.24)

V (P =I + W , (2.3.25)

*)=l+W *(2.3.26)
V;(P2 2,P 2

The validity of the boundary conditions (2.3.21) and (2.3.22) have been proved in Appendix A

and B respectively; (2.3.23) and (2.3.24) are the properties for the value of a storage facility at

any price P; (2.3.25) and (2.3.26) are the properties by the definition of the optimal trigger prices

(see Claim 2.3.2). Giving P* and P2 *, and assuming (2.3.21) to (2.3.26) are independent, we can

determine the six unknowns, vi, v2, nl, n12, n2J, n22. Therefore, the solution for V(P), and W(P)

can be found accordingly. Next, I will solve the system of equations (2.3.21) to (2.3.26). From

(2.3.21), it is identical to require:

lin n1 -Y1(P) + n12 ( 2 0,
P-0 11 2o

2 2

ic ln(P) -m- jf ln(P)-m-
= irn n -yk + n12*Y2 2-k =

P 10 G

22 2

r 2 nP m-k k~ In(P) - m -k
=lin n H-H 2k'22 + n 12

P0 2-k' 2' 2Y G
2 2

k ln(P) -m --
.H r+ 2 , 2-k 2

\ __ 1 3 ' 2 k

I can use the asymptotic property of yj (x) and y2(x):

li y (x)x -eX =,
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3

This leads to:

n 12=n I ,r ). ],-(
2k 2.(~

Similarly, for (2.3.22), I have:

re 1 k In(P') -M - G2)

P-r n2 -H 2-k ' G 2 ]+ n22*

2 2

1 3 k ln(P) -m - 2
+ 2'2 2 10'

With similar relationship from the asymptotic property:

n22 21

2 k 2

Therefore, the system of equations can be re-written as:

(I2W kr
(2.3.21) n12

(2.3.22)=n22

=nil*
( r).-(3)

1 - r +
2 2 k 2

=-n2
2k

(2.3.23)=>v -Y (P ) + v2 Y2 (P ) -

v 2 2 (P2

(2.3.25) -

(2.3.26)

d- Y(P)

r + -

- P 2 +n 2 1Y1 (P)

+v =1

+n 12  2(P*)

+n 2 2 2 (P2

+ 12 d 2 1l

d Yl(P 2 )+v 2 dP 2 ( 2 )=±n 2 (12 2 2 d P 2*)

2

2-k

jI ln(P) -m -

G

4) (1)

(2)

(3)

(4)

(5)

(6)
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To solve (1) to (6), I use (1) and (2) to eliminate nl2 and n22. Then, the equations (3) to (6) are

becoming a linear system of equations:

M-v = b,

where

I(*) Y (P) -Y(P*)-Y2(P*).Par 0

20 - + Y2 } Par

M=1 1

b dv2 nP n 2 IandPar =

2(n *)0(2(*))a

Solving the above system of equations, we can obtain the six unknown parameters, Vj, V2, nj, n12,

n21, n22. Once the parameters are found, V* and W* are obtained. (This is one practical problem in

solving the above system of equations. If P* is small, the absolute values of YJ(P*) and Y2(P *)

will be in the order of more than the computer can accurately process. Most numerical simulation

software will truncate such a large number, which make the resulting solutions incorrect. One

way to resolve this problem is to introduce long-bits representation, which is out of the scope of

the thesis.)

2.3.2 Optimal Operating Strategies with Finite Facility Life

For a finite time horizon, the value for the full and empty storage facilities are functions of both

the current spot price P and the current time t, denoted as V = V(P, t) and W = W(P, t)

respectively. Further, I assume both V and Ware continuously twice differentiable with respect

to P, and once differentiable with respect to t.

By the contingent claim method, the value functions have to satisfy the following two equations

for both the full and the empty storage facilities:

1 2 +kM+a2 _n(P)JPVprV+V~c, (2.3.27)
- 2 Vpk + 2-k ?--+tc
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where V= V(P, t), Vp,= d V(P, t), VP= -A- V(P, t), V= -V(P, t).

2 2 M 2 (2.3.28)
2 2-k

d2 d d
where W= W(P, t), W - W(P, t), W - W(P, t), Wt = (P, t).

(The above equations are derived using the same argument as in Section 2.3.1.2, The only

difference is that now the V and W are functions of both the current time t and current price P.

Thus, by Ito's lemma, an extra term V,-dt is added. All the other steps follow exactly the same as

those in Section 2.3.1.)

In order to solve for the optimal trigger prices, I first prove the following claim.

Claim 2.3.3:

Under the assumption (2.3.8), assume that the life of the storage facility is T.

Then, in the finite facility life case, PL* and PH* are single values rather than within a

certain range for our valuation problem (2.3.4).

Proof

I prove the uniqueness of the upper trigger price (PH*), and the same argument can be

made for the uniqueness of the lower trigger price (PL*).

Let's say I have two arbitrary time instants t1 and t2, satisfying:

t2 = tj + 6, where T- t1 > t
5> 0.

Assume the upper trigger prices fall in the range (PH], PH2), then for any value P (PH],

PH2), it satisfies (2.3.27) and (2.3.8) simultaneously. Therefore, when P in (PH], PH2), we

must have:

P + W*(P) = V*(P) (i)

If not, let's say P + W*(P) > V*(P), then it means V*(P) is not optimal which contradicts

to the optimality assumptions of V*.

For any value P in (PH,, PH2), with the assumptions of twice differentiability of V*and W*,

I have:
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V (P, t1) = W *(P, tj) + P,

V*(P, t2) = W(P, t2) + P.

(iii) - (ii) gives:

V*(P, t) - V*(P, t2) = W*(P, ti) - W*(P, t2).

Divide both side of (iii) by t2 - ti, I have:

[V*(P, t) - V*(P, t 2) I / (t2 - t)= [W*(P, ti) - W*(P, t2)] / (t2 - t).

With the assumption that V* and W* are continuous functions of t and P, I have:

dV *(P, t) =lim
d t 8-0

= r-

V* (P, ti + 8) - V* (P, ti)

d W* (P, t).
d t

Since t1 is chosen arbitrarily, I have for any t:

d V*(Pt) dW* (Pt).

Sum up the results:

dW* (P, t) = 1 + A.V* (P, t).
dP dP

W * (P,1 t ) = V* (P, t).
d P2  d P2

dW * (P, t) ,= V* (P, t)
d t s dbt.d

Therefore, subtracting (2.3.2 7) from (2.3.28) and using (vii), (viii) and (xi), I have:

k(
2

+ a- ln(P) P- r-P=c.2-k

Clearly, if PH] # PH2, then any P in (PHI, PH2), satisfy (x). This is not possible given the

positivity of the constants k, r, c.

The same is true for the lower trigger price.

Therefore, PA' and P2* are single values. L

Next, I need to prove a result similar to Claim 2.3.2.
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Claim 2.3.4:

In the finite facility life case, assume (2.3.8), and let V* and W represent the optimal values

for the full and empty facility. Again define:

* P2 1 -2 (i2
Vy=, W2 +P P P2 and W= 2 -all 2 all P

W, +P O<P P 1  W O<P Pl

Then for any value of P, Vau*(P) and Wau*(P) are continuously twice differentiable with

respect to P, and once differentiable with respect to t

Proof

I will consider only Val* in the proof and Wall* can be proved similarly.

Because I have assumed V and Ware continuously twice differentiable with respect to P,

and once differentiable with respect to t, to prove the claim, we only need to prove that Vau*

is once and twice differentiable with respect to P at P = P 2*for all t, and it is once

differentiable with respect to tfor all values of P.

Fix a fixed value of t, as proved in Claim 2.3.2, we must have V*(P2*) = W*(P 2*) + P2,

Vp*(P 2*) = Wp*(P 2*) + 1, and Vpp*(P2*) = Wpp*(P2*), because of the optimality condition.

Now, for a fixed P = P 2 *", using the argument in the proof of Claim 2.3.3 (v), I have:

d * * *P, ti + 8) - v*(P2, ti)
-- V (P 2 , t)=limd t 2 8-0

=i.W' (P2, t + 8) -W' (P2, t,) =d W 0
8-0 d dt (P

Therefore,

dV* ( p, t ) =- W * ( P, t ).

Using the definition of Val* and Wall*, because of (iii), I conclude Val* and Wall* are twice

differentiable with respect to P, and once differentiable with respect to t. 0

To find the optimal trigger prices, using the results from Claim 2.3.3 and Claim 2.3.4, I have:

W* (P,t) =P + V* (P, t) .
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d P d P

d W* (P,t)=+ V* (P,t).

d P 2  d P 2

d W * (P, t ) = dV * ( p, 0

Therefore, we can subtract (2.3.27) from (2.3.28) using the above equations. I have:

M+ r
, Mr- + oL + LambertW--e + -k

P =e

The result shows that the optimal trigger price for the finite facility life is the same as that for the

infinite facility life. This can also be derived by the marginal analysis argument, since the rate of

the price appreciation and the rate of the total cost changes do not change as we change from the

infinite case to the finite case. This conclusion leads to an important result: the life of storage

facility does not change the optimal operating strategy we would make if we maximize the

value of a storage facility.

2.3.3 A Numerical Example to Find the Value of a Storage Facility

Once we know the trigger prices, different methods can be employed to solve the storage

valuation problem: we can solve the problem using the method outlined in (2.3.1.1); we can

solve the differential equations analytically (i.e., the analytic solutions from solving the Hermite

equation in Section 2.3.1); we can use the numerical methods such as the finite difference

method, and Monte Carlo simulation to solve the equation (2.3.6), (2.3.7), (2.3.27) and (2.3.28).

For simplicity and flexibility, I use the Monte Carlo Method together with the optimal trigger

prices to calculate the optimal value of a storage facility Z*. I first simulate the risk-neutral price

price paths according to the following price dynamics:

Pn+ I=exp { Pn -k-At+m-(1-e-k-A1)+ a. e 2 k- z+j.

where At is the time step, zn+i is the standard Gaussian random variable with the mean zero,

and the variable one.

Use the values: m = 2.3, k = 1, r = 0.05, c = 1, a = 0.3, At = 1/24. I solve (2.3.10) numerically

using Matlab, and obtain the optimal trigger prices P, * = 0.2804 and P2 * = 8.8659 in the
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simulation. I generate 0.1 million price paths to value the facility Z* (with 20 years life) using the

optimal operating strategy shown in Table 2.3.1. The optimal value as a function of the current

price P is plotted as the dotted line in Figure 2.3.2. To compare the optimal operating strategy to

the non-optimal strategies, I change P2 * to different values, and find the corresponding values of

the facility Z. The results are also plotted in Figure 2.3.2.

8

6

4 0

SOptimaP*8-86.59

nhe P f e I -ea sArbitrary P = 7

0 pein P, -ArbitraryP 10

-2 - ~ -Arb-itraryP*= 11

-4.20 P2 = 8.8659

-6

Current Pree

Figure 2.3.2: The value of the storage facility Z for different trigger prices.

Figure 2.3.2 also indicates that for a fixed upper trigger price Pj'*, the value of the facility

increases when the current price P goes towards P, from left. It reaches the maximum at the

point P1 *~, then it decreases monotonically.

Comparing the optimal strategy (the dotted line in Figure 2.3.2) to Figure 2.2.4 plotted in Section

2.2.1 (the deterministic case), we can find several differences:

1. The overall value of the storage facility increases in the stochastic case, comparing to the

deterministic case, when all the parameters take the same values in the two cases, except

the volatility term a. It means the volatility can add value to the value of a storage

facility (here I assume the same value of m for the two cases. However, we need to adjust

m for the increasing risk as cy increases, and the explicit adjustment is discussed later in

Section 2.7).
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2. When the current price P > P2*, the value is positive in the stochastic case, while in the

deterministic case, it is zero. This again indicates the price uncertainty does provide

values even the deterministic counterpart shows zero value.

In the above, I have not discussed the situations where the current price goes to some extreme

values. Now I explore what happens when the current price is extremely low (P approaches 0) or

extremely high (P approaches infinity). As explained and proved in Appendix A, when the

current price approaches 0, the value of a full facility approaches 0. Hence, at the left end (where

the current price approaches 0), the pure facility value is 0. For the right end (where the current

price approaches positive infinity), I prove in Appendix B that the value is also 0. Combining the

two results, I plot the value of the facility by the following steps:

" First solve for the optimal trigger price P* (both P* and P 2*);

* Use either analytic solution or numerical methods (i.e., Monte Carlo Simulation) to get

the value of the facility when the current price is at either P* or P2 *.

" Find the first hitting time tj and t2, and the corresponding discounted factor, and Prob

value in (2.3.5a) in Section 2.3.1.1, by either analytic solution or numerical methods (i.e.,

Monte Carlo Simulation), given the current price P;

" Use equation (2.3.5a), (2.3.5b) and (2.3.5c) to numerically find the value of the storage

facility as a function of the current price P.

Following the above procedure, I plot the value of the facility as a function of P in Figure 2.3.3.
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- Value ot the tacility Current Price log(P)

Figure 2.3.3: Value of a storage facility as a function of current price in log scale.
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Some observations can be made from Figure 2.3.3.

1. In the initial phase, as the current price goes from 0 to P*, the hitting time to P2*

becomes shorter, and the discount factor e~'r is becoming bigger. The increase in the

discount factor leads to the increase in the value of a storage facility.

2. From P = P,* to the point P = P2*, the effect from the increase in the discount factor

becomes less prominent, and now it is the difference between the current price P and P2*

dominates the value of a storage facility. As the difference decreases, the profit from

buying low and selling high reduces. Therefore, it leads to decreasing value of a storage

facility.

3. After the current price goes beyond P2*, we are in the range of an empty facility. Now the

only dominant factor is the discount factor e"'. Therefore, as the current price grows

bigger, the first hitting time from current price to P2* becomes longer, and thus, the

discount factor becomes smaller. Using (2.3.5c), it is clearly that both the value of the

facility and the discount factor go to 0, as the first hitting time to P2* goes to infinity (the

detailed proof is given in Appendix B). However, the rate of the value of the storage

facility approaching to zero is very slow, which can be seen from the log plot in the

Figure 2.3.3.

Further, the optimal value Z* obtained from (2.3.5a), (2.3.5b) and (2.3.5c) should be the same as

those values obtained by solving the differential equations (2.3.6) and (2.3.7) for V* and W*. But

the two approaches tackle the problem from different perspectives: in the differential equations

case, we stipulate how V* and W* should move individually, and then find the connections

between the two by different boundary conditions. While in Section 2.3.1.1, we obtain V* and

W* by looking at how the two interact with each others, and by using the probability properties

of the underlying price process directly.

2.4 Seasonal Factors

To account for the seasonal factor in the mean reversion model, I choose to add a functionf(t)

into the price process in the following way:
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ln(P) = ut + f (t), (2.4.1)

where dut = k-(m - u)-dt + --dB, andf(t) is a periodic, once differentiable function.

By Ito's Lemma, the instantaneous change dP can be expressed as:

dP= k -(m - In(P) +f(t)) + 2 + df (t) P-dt + P-a-dBt (2.4.2)
2 dt It

Using the marginal analysis argument, I equate the risk-neutral expected rate of price

appreciation (MR) to the risk-neutral expected total cost (MC):

E[MR]=E[MC] (2.4.3)

E- I =EI dl
dt ] [ dt

=> {k. (m - ln(P) +f(t)) + 2 + df (t) P=r-P+c.

Solve (2.4.3) for the critical price which makes the MR = MC for a fixed t:

( -m + ' - -. 02 _, _t) (2.4.4)
+ -. +f(t) + + LambertW -e k 2-k k-dt

P =ek&

Let F(P,t) be the function:

F(P, t) =E[MR ] - E[MC ] = k (m - InP +f(t)) + _G2 + df t) P - (r-P + c). (2.4.5)

One property of (2.4.5) is that whenf(t) satisfies certain conditions, we have F < 0 regardless the

value of P, and I prove this conclusion formally in the Claim 2.4.1.

Claim 2.4.1:

Under the assumptions:f(t) is a periodic, once differentiable function; k, m, a, c are positive

constants; F(P) is the function defined by (2.4.5).

Iff(t) satisfies:

min k -f (t) + dt)< P + a , where a = r - k -m - 0.5-, . = k - (1+n - + 1) . G)
t d

Then, there exists a set Q of values of t such that for every t in set Q, the function F < 0.

Proof

To prove F < 0, we need to prove:
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k -f(t) + dfkt) < k-In(P) + + a, where a=r- k-m- 0.5-0.

Now let us examine the function:

Y(P) = k -n(P) + .
p

To find the minimum value, I use the first order condition:

dY(P) =0 => k C = 0 => P = C
dP P p 2  k

Take the second derivative of Y(P), I have:

d2Y(P) k +- substituteP d2 Y.

dP2  p 2  p 3 ' k dP2  c2

Since Y(P) is a continuous function, with the positive second order derivative, I have:

min Y (P) = k- In() + 1 , where equality is taken when P=

Therefore, using the given condition (i), I have:

min k-f(t)+ 4f M < +a=nin Y(P) + a k-in(P) + + a for anyP> 0.

Therefore, we prove the (ii), which in turn proves the claim: under (i), there exists some t,

such that F < Ofor all P>0. 0

Claim 2.4.1 essentially expresses the idea that for certain time periods of some periodic function

f(t), even though the current price P is very low, the rate of the price appreciation is always

smaller than the total cost.

We can also derive the Claim 2.4.1 from the LambertW function, which has real solution only

when c > -l/e. Using this criteria in (2.4.4), we can obtain the same result as that in Claim 2.4.1.

From (2.4.4) and Claim 2.4.1., it is clear that in the seasonal case, the trigger prices are functions

of the calendar time t.

Let X(t) denote the term inside the LambertW function in (2.4.4), and X(t) is negative since we

require k, m, o, c are positive. I use the following strategy to maximize the value of the facility:

(a). When X(t) < -le: There is no solution to (2.4.4). Use the result from Claim
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2.4.1, F(P, t) < 0. We will empty the inventory immediately.

(b). When -1/e 5X(t) 50 There are two solutions P', P2* to (2.4.4). Assuming P *

P2*, I can compare the current price Po with P"* and P2* and

use the strategies outlined in Table 2.2.2.

Table 2.4.1: Optimal strategy for the seasonal models.

Because in the seasonal case the trigger prices are functions of time, in the following sections,

unless indicated otherwise, I will not directly use the trigger prices as the decision variables.

Instead, I will use the sign of the function F(Pt) to make the buying or selling decision. There

should be no confusion about the changes, since the trigger prices are derived by setting F(P,t) =

0, and there are just the two ways to express the same information.

2.5 Deterministic Model with Seasonality

In this section, I assumef(t) = b-sin(2n-w-t + p), and the price process is:

ln(P) =u, + b-sin(2 n-w-t + (p), (2.5.1)

where dut = k-(m - u-dt.

In (2.5.1), the seasonality is expressed as a sine function, where b is the amplitude, w is the

frequency, and p is the variable to account for the time shift. By default, I assume that when t =

0, the sine function achieves the minimum - 1, and hence p = - 0. 57r.

In Figure 2.5.1, I plot the spot price process together with reversion value m, the pure ut term,

and pure sine term (assuming initial value is smaller than the reversion value m). Figure 2.5.1

shows that although the pure sinusoidal term (seasonal term, denoted as '----' in Figure 2.5.1)

varies mildly, the effect on the spot price is very prominent. This is due to the way I add the

seasonal factor into the price process.
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Figure 2.5.1: One realization of a seasonal price process

Next, I derive the optimal operating strategies for the deterministic seasonal price model.

Using the concept of the marginal analysis (let MR be the rate of the price appreciation, and let

MC be the rate of the total cost changes), and the F(P,t) function defined as (2.4.5), I have:

F(Pt)= k(m-InP +b-sin(27rwt+ 9)) +_ a2+b-2mw-cos(2 nt+<p)}P- (rP+c) (2.5.2)

To characterize function F(P, t) graphically, I substitute P using relation (2.5.1) and change it into

a function of time t, written as F(t). I plot it in Figure 2.5.2.

20

i-s15

2 10

-20
-25

Figure 2.5.2: The value of F as a function of time t.

In Figure 2.5.2, the points where the F crosses the zero axis are where MC = MR. All those

points are the trigger points, and we use the following operating strategy to maximize our profit:
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* The regions where F(P, t) > 0 is where MR > MC, and we will buy and hold the

inventory because we will gain by holding for an extra period.

* The regions where F(P, t) < 0 indicate MR < MC, and we will sell any inventory because

the cost of holding exceed the revenue in the regions.

In Figure 2.5.1 and 2.5.2, I use the following set of parameters:

k m UO b w P

0.3 2.3 1.5 0.4 1 - 0.5a.

2.6 Stochastic Model with Seasonality

In this section, I explore the stochastic model under the seasonal mean reversion model

developed in Section 2.4. The risk-adjusted spot price with seasonality is modeled as:

ln(P) = ut +f(t), (2.6.1)

where dut = k-(m - u)-dt + a-dB, andf(t) is a periodic, once differentiable function.

And I list again the equations in 2.4 for convenience:

dP= k (m - ln(P) +f(t)) + 12 + df t) -P-dt + P-a-dBt (2.6.2)
2 dt

E[MR] =E[MC] (2.6.3)

=>E- ']=E[']
dt ] [dt

=> k-(m - In(P) +f(t)) + 2 + df t) P=r-P+c.

-* + ' 1 .2 - - (t) (t) (2.6.4)
P=eM- + -2c +f(t) + dt)+ LambertW( - - e k 2-k k-dt

P~ edt- kd

F(P,t) = E[MR] - E[MC] = k-(m - lnP +f(t)) + -LO2 + df t) P - (r-P + c). (2.6.5)

First, I illustrate the decision variable F(Pt) using an example. Letf(t) = b-sin(2-7-co-t + (P), and I

plot (2.6.5) in Figure 2.6.1.
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Figure 2.6.1: Plot of F as a function of t and P.

Figure 2.6.1 shows, for certain value of time t, F(Pt) is always negative regardless of the value

of P. Hence, no matter what the current price is, we will not buy or hold any inventory during the

time. This is the result because of the assumptions made on the structure of the model (2.6.1),

and I have proved the result formally in the Claim 2.4.1, which expresses the idea for certain

time period, even though the current price P is very low, the rate of price gain by holding is

always smaller than loss due to both the holding cost and the cost of money (at a risk-free rate).

Let P1 * and P2* be the solutions to F(P, t) = 0, We can find the optimal trigger prices at time t

with the optimal strategy listed in Table 2.6.1.

P,' 1>2: Non-positive. Sell the inventory immediately.

P* <P, <P2*: Positive. Buy the inventory immediately, and hold

the inventory.

P,< pl: Non-positive. Sell the inventory immediately.

Any P, Non-positive. Sell the inventory immediately.

Table 2.6.1: Optimal trading strategy for the seasonal case.
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The above strategy can be seen from the Figure 2.6.2, where the regions between the dotted line

and the dashed line are the places we hold the inventory; otherwise, we sell it immediately.

10-

101 -

100 1

0 1 2 3
t

-- P -- PE[P].............................. IP

Figure 2.6.2: The optimal trigger prices.

2.7 Value Decomposition

The value of the storage facility can be divided into three components: the value from the

reversion components shown as the drift term in (2.3.2), the value from the volatility term, and

the value from the seasonality term. To examine each of the components, I do the followings:

A. Set the volatility a in (2.6.1) to 0 in order to examine the value from the drift term.

B. Set a some positive value in (2.6.1) to examine the volatility term.

C. Let the price follow P, = exp(f(t)+m), wheref(t) = b-sin(2-r-CO-t + (P) to examine the value

from the pure seasonal factors.

D. Let the price follow the model (2.3.1) - the stochastic mean reversion model. This is the

case when we remove the seasonal factorf(t) in case B.

In Case B, because the volatility term a changes, we need to just the drift term under the risk-

neutral price process. Since under the risk-neutral measure m = mrea - A-a-/k, I adjust the above

term m as a changes in the followings: in Case A and Case C, let mA = mc = mreal, and in Case B
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and D, I let m = mrea - )-/k. Using Monte Carlo simulation, I generate the price paths in the

following way:

(2.7.1)
U 1 =Un + k- (m - u) -At + a- T -zn + 1'

b-sin(2-x-w- (n + 1)-At) + u
P ~ + I -

Pn +1=

where At is the time step and z,+, is the standard Gaussian random variable.

I follow the strategy outlined in Table 2.6.1 to find the optimal values of the storage facility in

Case A, B, and C, and use the strategies in Section 2.3.2 to find the value for Case D. The values

are plotted in Figure 2.7.1.

The observation of Figure 2.7.1 can lead to the conclusion: both the seasonal factor and the

stochastic factor in the mean reversion model play an important role in the valuation of a storage

facility. By considering both of the factors, we can significantly increase the value of a storage

facility, and substantial reduction in the storage value can happen if either of the two are ignored.

10

Valuation Period in Years

is 20

- CaseA: a=0

- -Case B: a =0.5

....... Case B: a=1

- - Case C: Pure Seasonal
Model

- -CaseD: a = 0.5 (Non-
Seasonal)

--.-- Case D: a = 1 (Non-
Seasonal)

Figure 2.7.1: Comparisons of the effects from the seasonal and stochastic components.

In the simulation, the values of the parameters are:

k r mreal uO b w Da 

0.3 0.05 2.3 2.2 0.4 1 0 1 0.1
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CHAPTER 3

ONE-FACTOR GEOMETRIC BROWNIAN MOTION MODELS

3.1 Chapter Introduction

I derive the optimal operating strategy for the valuation of a storage facility with the one-factor

geometric Brownian motion (GBM) price process where the spot price is modeled as:

dP m,.f 6 dt + CYdB~ 1=mreal-d + dt, real

where mreal is a real constant, T is a non-negative real constant, and B,, real represents the

standard Brownian Motion.

The stochastic differential equation (3.1.1) has the solution:

1 2 -- t + a-B(3.1.2)
(=1071real 2P=Po-e

In this chapter, as what I have done in Chapter 2, I investigate separately the deterministic case

by setting a = 0 in (3.1.1), and the stochastic case by considering the whole model of (3.1.1).

This separation can better illustrate how the different components contribute to the overall value

of a storage facility. Then, a seasonal factor is added into the model, and the models in Chapter 2

and in Chapter 3 are compared and their differences are discussed at the end of the chapter.

In this chapter, I make the following assumptions:

* 0 < Po PL : PH < co, where Po, PL, PH are the initial spot price, the buying price, and the

selling price respectively.

* The risk-neutral expected appreciation rate is: m = mreal -- a!k, where A is the market

price of risk, and hence the risk-neutral price process can be written as:

(m - -.o2).t + a-B (3.1.3)
P=Poe i 2 m u

where B, is the standard Brownian motion under the risk-neutral measure.
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* The fixed storage cost c > 0, and it is only incurred when the facility is full.

* We buy at time tPL with price PL, and sell at time tPH (tpH - tL) at price PH.

With the above assumption, the objective of this chapter is to solve to the optimal valuation

problem:

Z*( *, = max Z(PL' H) (3.1.4)

L H

The key conclusion from the chapter is that the pure GBM model is not adequate to the natural

gas storage valuation problem. Only when we add the seasonal factor into the GBM model, we

can have a realistic model that tackles the storage valuation problem effectively.

3.2 Deterministic Model without Seasonality

In this section, assuming a = 0 in (3.1.3), I have:

P=P0 'e . (3.2.1)

The net present value by buying at price PL and selling at PH, starting at Po, is:

-rt -rt PH -rt -r-t (322)
Z=e PH. PHe PL - c-er-tdt =e PH_ P PL P +

PL

To maximize the net present value Z, I first differentiate Z with respect to PH:

-rtH-r-t -r-tH -- 0a r PH r-1 H c PH(3.2.3)
-Z=- e + e P

arm PH m PH

Equate (3.2.3) to 0, and solve for the critical price. I have:

P _ (3.2.4)
m - r

Together with the second derivative:

2 _C -r-t_ _ (3.2.5)
__Z(P C= e >0.

Therefore, PH = P* is the price that minimizes the profit function Z, given 0 < Po PL PH < 00.
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Similarly, the critical price for PL can be derived by first finding:
r-t -r-t

--PL -r-t r-PL
Z= r e _ PL + c F

a PL m mPL

Then, equate (3.2.6) to 0, and solve for the critical price. I have:

P* C
m - r

(3.2.6)

(3.2.7)

(3.2.8)

The second derivative with respect to PL is:

-2 -t_ __c -PL
- C F-L < 0.

Therefore, PL* = P* is the price that maximizes the profit function Z, given 0 < Po :5 PL : PH < 00.

With the above information, in order to maximize Z, PH* must take the boundary values given

the form of Z, which is either PL or ±oo. If PL = PL, the value Z = 0. Therefore, we need to

compare the value of Z at PH = ±oo to 0, so to decide the optimal value of PH*.

Thus, the optimal operating strategy is:

I If0 < PO:5 P*: I

If Po > P*:

The optimal strategy is to buy at PL = c / (m- r), and sell at

PH = +oo. This strategy violates the assumption 0 < Po 5 PL

< PH < . The m - r > 0 case may also be problematic for a

deterministic case since it assumes that the convenient yield

is negative.

The optimal strategy is to buy at PL = Po, and sell at PH =

+±c. This strategy violates the assumption 0 < Po 5 PL : PH

< 00.

2. When m P* does not The optimal strategy is to buy at PL = +oo and sell it

- r = 0 exist: immediately, with Z* = 0.

This is because the first derivative of Z with respect to PL is

positive by observing (3.2.6), which indicates Z is an

increasing function. The first derivative of Z with respect to
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- r > 0:



PH is negative by observing (3.2.3), which indicates Z is a

decreasing function. Therefore, we should buy as late as

possible, and sell as early as possible. That is PL = +oo and

sell it immediately. This strategy violates our assumptions.

3. When m P* is negative. The optimal strategy is either to buy at PL = +oo, and sell it

- r < 0 immediately, or to do nothing. The optimal value is Z* = 0.

This is because when m - r < 0, (3.2.6) increases as PL

increases, while (3.2.3) decreases as PH increases.

This strategy violates our assumptions.

Table 3.2.1: Optimal strategy to maximize the value of a storage facility.

Table 3.2.1 shows, using this price model, the optimal operating strategy either violate our

assumption 0 < Po PL < PH < oo, or it gives a storage value of 0. Hence, I conclude this

particular deterministic model is not adequate for the storage valuation problem.

3.3 Stochastic Model without Seasonality

Assume both a > 0 and the facility can operate for infinite life. I follow the contingent claim

method introduced in Section 2.3, and obtain the following two differential equations for a full

and an empty storage facility respectively:

2 P2-VP2 + m-P-Vp- r -V=c,

±2 P2WPP + m-P-Wp - r -W=O0.

(3.3.1)

(3.3.2)

Further, assuming 0 < PL 5 P < PH < +oo, in this section, I am going to find the optimal

operating strategies PL* and PH* that solves the optimal valuation problem (3.1.4). The optimal

values V* and W must satisfy (refer to Claim 2.3.1 for a proof):

W*(P*) = P* + V*(P*), where P* is the optimal trigger price. (3.3.4)
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Next, I show that as in the deterministic case, this stochastic model (3.1.3) is not adequate so

model the optimal valuation problem.

Claim 3.3:

Assume that V* and W* are twice differentiable functions, and 0 < PL P 5 PH < +oo, then

the optimal pair of trigger prices that satisfy (3.3.1), (3.3.2) and (3.3.3) does not exist.

Proof

Assume there exists at least one solution P* satisfying 0 < PL PL< P<PH < PH < ,

to the optimal operating problem (3.1.4). I can follow the argument in Claim 2.3.1 and

Claim 2.3.2 to find the following relationships:

W*(P* =P* + V*(P*). (i)

d W*(P) + v(P*) . (ii)
d P d P

d22dW * (P*) &A~V * (P*) i
dP2  dP2

Using (i), (ii), (iii), and subtracting (3.3.2) from (3.3.1), I have:

m-P* =r-P* + c. (iv)

(iv) is again, exactly the equation of E[MC] = E[MR] discussed in the Chapter 2. I can use

a similar argument as those in Table 3.2.1 to argue that in order to maximize the profit Z,

when m - r > 0, one has to sell at PH = +oo; when m - r = 0, one has to buy at PL = 0

when m - r < 0, one has to buy at PL = 0.

The above strategy that maximizes the value of the facility violate the assumption 0 < PL

P -<PH< +c00.

Therefore, under our assumption, there does not exist the optimal trigger prices that

maximize the value of a storage facility o

From Claim 3.3.1, I can conclude that (3.1.3) is not a good model to solve our optimal valuation

problem.
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3.4 Deterministic Model with Seasonality

Once we add the seasonal factor into the model (3.1.3), there are some new properties. Let the

seasonal deterministic price process follows:

P=Po-exp(f(t) + m-t) , (3.4.1)

wheref(t) is a periodic, once-differentiable function.

Using the marginal analysis argument, I define the function F(P,t) as:

F(P, t) =MR - MC = - =P df(t) + M r-P - c. (3.4.2)

To find the optimal operating strategies, similar to Table 2.4.1, one can operate the storage

facility according to the rules: buying and holding the inventory when F(P, t) > 0; sell the

inventory immediately when F(P , t) < 0.

3.5 Stochastic Model with Seasonality

In this section, I use both the contingent claim argument and the marginal analysis argument to

find the optimal trigger prices with the corresponding optimal value of a storage facility.

In this section, the stochastic risk-neutral price process with seasonality is modeled as:

P P'f(t) + (M - 0 2 t+aBt 
(3.5.1)

wheref(t) is periodic, once differentiable function.

The stochastic equation for the instantaneous return is:

dP f(t) + m) dt + a-dBt. (3.5.2)

Using the contingent claim argument, I have:

I a2 p2 - VP + f()+ M P - Vp+ Vt -r V(P, t) = c, (3.5.3)

where VP= V P, 0), V,,= V(P't 0, Vt = dV(P, t).d P d W- d t

-02 PP w+Lf(t)+JMP-Wp +Wt-r W(P,) (3.5.4
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d 2 d
where W d= d W(P, t), ), W= d W(Pt).

WP =dP W('t P =d P2 WPt d t

The trigger price P*, have to satisfy the following conditions (the proof is similar to the proof of

Claim 2.3.3 and Claim 2.3.4):

W * (P,t)=P+V*(P,t). (3.5.5)

d W*(P,t)=1+ dV(Pt).

d P2 d P2

d W*(Pt= _ _V*(Pt).
d t d t

Subtracting (3.5.4) from (3.5.3), and using the conditions in (3.5.5), I have:

P* = * = *=C .. 6

P * L df(t)/dt +m-r (3.5.6)

From the above equation, I have two scenarios:

df(t) + m > r At those time t, we have an optimal P*that is positive and finite, and
dit

thus it is the optimal value that satisfies (3.5.3) and (3.5.4).

df(t) + m r At those time t, there does not exist positive and finite P*, and thus,
dt

no optimal operating strategy exists. (A similar conclusion is also

made in Section 2.6).

For example, letf(t) = b-sin(2-7r-w-t + qp). I plot the trigger price P* in Figure 3.5.1. The solid line

indicates the regions where m+2-b-7r-w-cos(2-7r-w-t) - r > 0, and where the trigger price exists.
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Figure 3.5.1: The optimal trigger price P* at each time t.

Therefore, the optimal operating strategy can be formulated as (P is the current price):

When (3.5.6) exits, and P > P,, Buy and hold the inventory.

Otherwise, Sell the inventory immediately.

Table 3.5.1: Optimal operating strategy

The above strategy can also be understood by plotting the function F(P, t), which is defined in

Section 3.4) in Figure 3.5.2. The correspondence between F(P, t) and P,* is:

" The regions where F(P, t) > 0 correspond to the solid line regions in Figure 3.5.1.

* The regions where F(P, t) 5 0 correspond to the empty regions in Figure 3.5.1, where the

optimal trigger price does not exist.

With the correspondence between F(P, t) and P,* the optimal strategy can also be expressed in

terms of F(P,, t) which is identical to Table 2.4.1.
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Figure 3.5.2: Function F = MR - MC as a function of both t and price P.

Comparing the result from this section to that from Section 2.6, although the two operating

strategies are the same, there are some fundamental differences about the sources of the storage

values between the two price process: in the mean reversion price model, once the price goes far

from the reversion level (m), the price has a strong tendency to revert to the mean level

regardless of the seasonal factor; in the geometric Brownian motion model, since there is no

price reversion tendency, any reversion is due to the seasonal factor. Therefore, in the two cases,

the underlying driving factors of 'reversion' are fundamentally different.

This difference can be shown more clearly by studying the value from the different components

in the GBM with the seasonal factor model. (A numerical example with this price process is

given in the next section.)

3.6 Value Decomposition

The value of a storage facility can be investigated by comparing the following values:

1. The value from the pure drift component (denoted by Z 1), which is the m- dt in (3.1.1) or

the price follows P = Po- exp(m-t).

2. The value from the pure volatility component (denoted by Z2) , which is the u-dB in

(3.1.1) or the price follows P = Po- exp(f(t)+ -B).

67



3. The value from the pure seasonal factorf(t) (denoted by Z3), which is P = Po- exp(f(t)).

And for simplicity, assumef(t) = b-sin(2-rc-w-t) in this section, and other forms off(t) can

be discussed in a similar manner.

4. The value from the full model (3.5.1) by setting a to different values (denoted by Z4).

To facilitate the above comparisons, I define F(P, t) as:

F(P,t)=E[MR]-E[MC]E E - E m=P- d(t) +m)-r-P-c.
dt ] [dt ]dt )

(3.6.1)

For a numerical example, I use the following values to find the values in the above cases:

k r m uO b w Da

0.3 0.05 0.04 2.2 0.4 1 0 1

In the case 1, since m < r, Z1 = 0. For Case 2 to 4, I use the strategies from Table 3.5.1 to find

the optimal value of the storage facility. I plot Z1 to Z4 in Figure 3.6.1, where I simulation 0.5

million price paths, according to the following equation:

P h =PA i(m - -. 2)-At+ a- -z 
(3.6.2)

where At is the step size, and zn.l is the standard Gaussian random variable.
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Figure 3.6.1: Comparison of seasonal and stochastic components.

From Figure 3.6.1, we can infer the following results:
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1. There is a seasonality value in the storage facility for a GBM price process. Comparing

ZI and Z4, where the only difference is the addition of the seasonal factorf(t), we can see

a significant increase in the value of the storage facility.

2. There is no volatility value in the storage for a GBM price process. Comparing either Z4-

1 to Z4-2, or Z2 to Z3, we cannot find any increase in the value of the storage facility due

to the addition of the stochastic factor.

The first point is easy to understand, while the second point needs some calculations. Let a > 0 to

incorporate the stochastic component. Then the risk-neutral expectation of the price for Z4 is:

E[P] =PO -eb-sin(2n-w-t) +m-t , (3.6.3)

which is not a function of volatility a.

The risk-neutral price process follows the stochastic equation:

=mdt + a-dBt (3.6.4)

Which is also not a function of volatility T.

Because the value of a storage facility is derived under the risk-neutral measure, which will use

only (3.6.3) and (3.6.4), the value for different volatility should give the same result. And that

explains the second observation.

In conclusion, for the price process modeled in (3.5.1), the value of a geometric price process is

derived only from the seasonal effect while the volatility does not contribute to the value of

storage facilities. This result is distinctly different from the mean reversion price process where

the value of the storage is a combination of the two sources - the volatility factor and the

seasonal factor.
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CHAPTER 4

TWO-FACTOR PRICE MODELS

4.1 Chapter Introduction

I derive the optimal operating strategy for the valuation of a storage facility when the underlying

spot price follows a two-factor stochastic process.

In the following sections, I first introduce the two-factor short-term/long-term spot price model

and its mathematical properties. Then, I derive the optimal operating strategy using the dynamics

programming method, where again, two differential equations are derived. The value of a storage

facility is calculated based on the optimal operating strategy by running Monte Carlo simulation.

Next, I add the seasonal factor to the model, and compare this seasonal form to the non-seasonal

model. The sources of the value of a storage facility in the seasonal two-factor model are

discussed at the end of the chapter.

4.2 Introduction to the Two-Factor Price Model

The one-factor price models in the previous chapters, which attribute the randomness of the spot

price to one source of uncertainty, may not be a good representation of the complex underlying

factors that could affect the natural gas spot price in the market. This limitation has been

discussed in Gilbson & Schwartz (1990), and Baker et al. (1998). Thus, a multi-factor model is

better suited to capture the dynamics of the natural gas price, which is influenced by different

market factors.

Schwarts & Smith (2000) proposes a two-factor short-term/long-term model that captures both

the short-term and long-term properties observed from the natural gas spot price. This model
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strikes a good balance between complexity and manageability: it provides richer price dynamics

than the one-factor models, while the problem is still mathematically tractable for practical

purposes.

In this model, the spot price consists of two components: a short-term factor xt which follows an

Ornstein-Uhlenbeck (OU, or mean reversion) process, and a long-term factor Et which follows a

geometric Brownian motion (GBM) process. Mathematically, the model can be represented as:
n(Pt) =xt + E, (4.2.l a)

where dxt =~k -xt-dt + a,-dzx, real, dt =vreal-dt + aEdzEreal, andp =dzE-dzx .

The price process Pt under the risk-neural measure can be expressed as:

n(hPt) =Xt + E(4.2. b)
where dxt =-k.(xt - X)-dt + a,-dz det=vE-dt+ -dzand p=d dz.

In (4.2. 1b), A and v, are the risk adjustment parameters.

It is proved in Schwarts & Smith (2000) that xt and Et are bivariate normally distributed under the

risk-neutral measure with the mean and covariance matrix:

E[(xt ]e-k-t.xO + X. (1 - e-k-t), E + vE-t , (4.2.2)

2

C0x __ e- 2 k-t . X 0 _ e- k-t . Ex, E X

Cov[ (Xt, E)] 2-
P au 2

0 - ~ EX a' E- -t
k

Because xt and c, are bivariate normally distributed, Pt is log-normally distributed with the mean:

E[Pt] = exp(E[log(Pt)] + V[log(Pt) (4.2.3)

2where E[ iog(Pt) e- k -t.0 + 0 ( - e- -k-t ) + E 0 + ve-t ,

Varl o1 0 -*e- 2k-t - + a -'t+ 2-(1 -e-k-t. E,* X
2-k Et 2(e k

The model shown in (4.2.1a, b) reflects two difference natural gas price properties: first, the

natural gas spot price is likely to revert to some fixed level because the production can be

adjusted to bring the price back to the level once the price is relatively low or high; second, the
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fixed level may change due to some permanent changes, such as the decrease in the natural gas

reserve, or the new breakthrough in the related technology.

The variables x, and c, in this model capture the above two properties: the short-term deviations

are captured by x, which reverts to zero and follows an OU process, while the long-term

equilibrium level is captured by E, which is assumed to evolve according to the geometric

Brownian motion. This short-term/long-term division offers an intuitive decomposition of the

complex factors that affect the price, and it provides a more realistic representation of the

underlying spot price process than the one-factor price models.

4.3 Valuation Using the Two-Factor Price Model

In this section, I use the dynamic programming method to derive the optimal operating strategy

in order to find the optimal value of the storage facility.

The reason for the change from the contingent claim method to the dynamic programming

method is to introduce the use of the dynamic programming in the storage valuation problem.

The dynamic programming method can accommodate more complex price models with less

required assumptions than the contingent claim method. However, sometimes, it is hard to find

the values of some parameters using this method. Please refer to Dixit & Pindyck (1994) for a

detailed explanation.

Using the dynamic programming method, I first derive two governing equations: one for the

empty storage facility W, and another for the full storage facility V. As demonstrated in the

previous chapters, the value of the storage facility can be thought as the net present value of the

expected future cash flows (both inflows and outflows) generated by the operations of the

storage facility (i.e., buying, holding, and selling), discounted at an appropriate rate (i.e., under

the risk-neutral measure, the discount rate is the risk-free rate available in the market). By this

argument, the two governing equations can be readily derived using the dynamic programming

method.
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After finding the governing equations, I follow the procedures used in the previous chapters to

find the optimal operating strategy. Then I use the optimal operating strategy to find the value of

the storage facility. Again, the optimal operating strategy is defined as the optimal trigger prices

PL* and PH* that maximizes the value Z of a storage facility, expressed as:

Z* (L'PH) = max Z(PL PH)-
L H

4.3.1 Problem Formulation

Assume the life of the storage facility is infinite. Let V, W represent the values of a full and an

empty storage facility respectively, which are functions of the price P only (since I assume the

facility has infinite life, and thus the time dimension is irrelevant here). The value of a storage

facility in the full state and the empty state can be model as:

V(P) = maxfP + W(P), -c-dt + +1r-dt Ep[V(P + dP)] (4.3.1)

W(P) = max P + V(P), 1+ rd -Ep[ W(P + dP) (4.3.2)

where r is the discount rate, c is the storage cost per time period, and Ep[-] represents the

risk-neutral expectation conditioned on the current spot price P.

We can interpret (4.3.1) as follows: for the value of the full facility V(P), the first term inside the

bracket on the right hand side of (4.3.1) represents the full facility value if we sell inventory

immediately, and the value of the full facility is equal to the proceeds obtained from the selling

price P plus the value of the empty facility W(P); the second term on the right hand side of (4.3.1)

means if we hold the inventory instead of selling, we incur the storage cost c-dt, and get the

discounted expected value of the full storage in the next time period where the price changes

from P to P + dP. One can compare the two options, and choose the option that offers the larger

value. Similar interpretation can be made for (4.3.2).

Using the Ito's Lemma, I have the following relationship derived from (4.2. 1b):
dP k-(x -X) + V,+ p-±l,+ .a + -L dt + a-dz + -dz

Use Ito's Lemma to expand the expectation terms in (4.3.1). With the above relationship, I have:
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=Ep V() + VdP + -. V. (dP)2

= E1 V(P) + P(dp + -- P ( 2 .dt + G -.dt + 2-pa aEdt)

=V(P) + V (-P-kx* +k-X+vE+ -(a + ) + paa dt

+ -- P2-(a + a + 2-p a a ))-dt.
2 ~ X f X E/

where x* = Ep[xtj, it is the conditional risk-neutral expectation given the current price P.

Substituting (4.3.3) into (4.3.1), and assuming we are in the continuation region (the right hand

side of (4.3.1) is the larger of the two), I have the following equation for a full storage facility:

-r-V(P) + V-P- -k-(x -k') + vE+ I + a2 + p.-.a (4.3.4)
-r~ J P \Xt 2 x 2  EPX)

+ -- p2-( 2+2 +2-pa cr C.

Similarly, for (4.3.2), in the continuation region, the equation for an empty facility is:

-r-W(P) + W2P -k-(x* ~)+v + a a + 2+ G p-0 (4.3.5)

W(P)+ W.P \t/ 2 X 2  E X)

+ -W.Fp,-P2. a 2+ a 2+ 2- p a a =0 .
2 pX E X E)

4.3.2 Derivations of the Optimal Operating Strategies

To find the optimal operating strategy, I follow the same logic as that in Section 2.3, and argue

that for the optimal value V* and W*, they must satisfy V*(P) = W*(P) + P for all positive P (the

proof can be derived similar to the proof of Claim 2.3.1). Similar to the proof of Claim 2.3.2, the

optimal trigger price P* must satisfy:

V (P)= 1 + *; (P), (4.3.6)

V* ( P) =W*( P) .

Using the relationships, and subtracting (4.3.4) from (4.3.5), I have:

12 -+ _ + p.a .a =r-P* + c, (4.3.7)
P~~k t 2.JFE+ xG 2 E X)

Where the left hand side of equation (4.3.7) is exactly the risk-neutral expected rate of

price appreciation while the right hand side is the risk-neutral expected marginal cost.
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Thus, marginal analysis argument still applies.

Unlike in the previous chapters, x, * in (4.3.7) is not given even though we know the current price

P (in the one-factor models, x, can be deterministically decided once P is given: i.e. in the one-

factor mean reversion model, InP = x,, and one can find x, deterministically once P is given).

Here, Xt* is the expected value given the current price P. Using the fact that x, and ct are bivariate

normally distributed, I have:

X* = Ep[xt]= E[xt I P]= E[x I xt + Et=ln(P) E[xtI Et=1n(P) - xe . (4.3.8)

In probability, if the random variables y ~ N(u,, a, ) and z ~ N(uz, az ) are bivariate-normally

distributed with correlation coefficient p, they have the properties that the conditional probability

density of z given y = yo is also normally distributed:

f~zy~o)~~Nu~),h(ru0 -~a u ) anir 1 2 
.(4.3.9)

f (z Iy =yO) ~ N(U, 0) , where u = uz + p -Oz' - (Y , and a= az' - P 439

Y

Before continuing, I assume that we are now at time t = 0, and we know accurately the values of

xo and EO (hence we know the current price Po). We want to find that with this information, what

are the optimal switching prices Pt* for t > 0. In the following derivations, I use Pt to replace P in

order to show the time dependence explicitly.

With (4.3.9), I can write the conditional distribution of xt given Et as:

(E - (4.3.10)
f (xt I ~t) N(u, a) , where u = ux, + p'-., ,YX.0GE a= ,,- 1 - (p')

E

where

u ,=e-k-t.XO + - - e-k-t

2

,- e2- kt).i

U,=E +v-t,

T2

C' E

_2 1 - exp(-k-t)
P k-t 1 + exp(-k-t)

With the above properties, (4.3.8) can be written as:

. r + oo(4.3.11)

xt + 0xtf (xj Et = 1n(Pt) - Xt) dx
-00
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+ 1 Pt -xt-u) 2

I 1 2 02 t x' X E,= x -e dxtJh

Manipulating the term in the integral, I have:

+00 + x 2. ' U ,-a, + p'-(x ,(In(Pt -UP 2 2

+ + - -x -

= xd

Now it is in the form of an expectation of another random variable multiplying some constant.

Therefore, with the parameters defined in (4.3. 10), I have the following result:

( 1 x' -2  ' + , -,((P ) -] (4.3.12)

e -kt +x + e -kt ± 0x- e-a; kt) "' - E - vEt)

+ - - .- k

From (4.3.12), we have several observations:

* When the correlation coefficient p = 0, Xt = E[xj]. This means that the prediction of xt

given P is the same as that only given PO, and Xt and c are acting independently (property

of the bivariate normal distribution).

N When p> 0, Xt is an increasing function of Pt. This means the best prediction of xt

becomes larger as P, becomes larger, since Xt and E tend to move in the same direction.

When p < 0, Xt is an decreasing function of Pt. This means the best prediction of x

becomes smaller as P, becomes larger.
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* When t goes to infinity, xt goes to A - v-p--x/(a-k), which is a constant (not a function of

P), and it is smaller than the reversion value m, which is the result of both the mean

reversion tendency of xt and the interplay between xt and ct . Figure 4.3.1 presents a

graphic illustration the value xt* = Ep[xtj as a function of t and Pt.

To obtain xt*, we need to know the latest accurate value of xt and et , and set the time at that point

be t = 0. Then we have xo, co. Then using (4.3.12), we can obtain the value of xt*= xt*(P) - as a

function of the given price Pt at each time t > 0.

0.62Z
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Figure 4.3.1: Expected x, conditioned on the price P.

Next, substitute (4.3.12) into (4.3.7):

P( -- k-(x*'-X + v,+ -LO Z -a- =r-Pt + C .Pt t2 2E

Comparing to the mean reversion model where xt* = x* does not change as time changes, we find

in the two-factor model, Xt* changes as time changes. However, for each fixed time t, the above

equation is in the same form of as (2.3.9b) of the mean reversion stochastic model. The

similarities lead to two optimal trigger prices P,* and P2,,*, which act the same role as those

derived in Chapter 2, under the condition that the above equation is solvable. The difference now

is that instead of being constant, they are now a function of both time t, and the current price P.

I can use the F(P, t) function to find the optimal operating strategy, which is defined as the risk-

neutral expected rate of price appreciation minus the corresponding marginal cost:

F(P, t) =P- -k-(x - X) +v, + 1 2+ _2 + p-0_- - (r-P +c) (4.3.13)~,J \X JV 2 x 2 EP ) Xr ,
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F(P, t) indicates that for the price P in certain ranges (depending on the current time t), one can

generate a positive expected return by buying and holding the inventory for an extra period;

while in some other time, one have to sell the inventory immediately to avoid the expected loss

by holding for an extra period. To visualize F(P, t), I plot it in Figure 4.3. The optimal operating

prices at each time are the points where F intersects with the zero plane (blue plane shown in the

graph).

0.4

0.2'

0.0

-0.2

12 t

7 ''1
P 2

Figure 4.3.2: F as a function of t and P.

4.3.3 Valuations from the Optimal Operating Strategies

Once we find the function F(P, t) at each time t (or the corresponding optimal trigger price P*

obtained from either (4.3.7) or F(P, t) = 0), the optimal operation strategy can be derive by

comparing the value of F(P, t) to zero: if F(P, t) > 0, we buy and hold; otherwise, we sell.

Following the above optimal trading strategy, I use the Monte Carlo simulation to estimate the

value of the storage facility for the two-factor model. The price process is simulated as follows:

xn+I=-k-(x-X)-At+z +x,, (4.3.14)

En+l= VE-At + wn+ + E, ,
x + F+

Pn+Ien +1 n +
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where At is the step size, and z,,, and w,,, are correlated Gaussian random variables with

means zero, and the covarance matrix given by:

2
aY .At pXC * ao-(yE-At

2
PXEOXGAt OE A

To generate z,, and w,+,, I use the Cholesky decomposition. Let Jbe equal to the result from the

Cholesky decomposition of 1. The z,+, and wn+ can be found by:

zn + I in +1 (4.3.15)

n +1 [2, n + 1

Where ij, +,± and i2, n+ are independent standard Gaussian random variables.

Using the above strategy, and simulating 0.5 million price paths for each facility life, I find the

values of the storage facility Z* for different facility life, which is plotted in Figure 4.3.3.
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Figure 4.3.3: The value of storage facility Z* when using different strategies.

We can see the value of the storage facility increases monotonically with the length of the

facility life. The shape of this value function is similar to the plot of the value under the pure

mean reversion price process, which is shown as - -- in Figure 2.7.1. The resemblance shows

the important influence the mean-reversion factor x, has on the two factor model.

In plotting Figure 4.3.3, I use the following parameters:

k IX ve Io xo p ax Ge At r c
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1 2.3 0.04 0 1.5 0.5 0.6 0.2 0.01 0.05 1

4.4 Valuation with Seasonality

As argued in the previous chapters, the seasonal variations of spot prices are observed

prominently in the natural gas market, and the seasonal effect could increase the value of a

storage facility if it is managed correctly. To account for such a seasonal effect, in this section, I

modify the two-factor price model by adding an extra deterministic price component. The new

price process is thus written as:

in(P,) =x, + Et+f (t) (4.4.1)

where xt and ct are defined in (4.2. 1b), andf(t) is a periodic, once-differentiable function.

Using the dynamic programming method (similar to the derivations in Section 4.3), I can find

two partial differential equations for the seasonal model (4.4.1):

X -X)+ , 12 1 I 2 + 0 (4.4.2)
-r-V(P) + Vt + -P- (f'(t)-k-(x -2) +v x 2 +X

-r+ W(P) + + + -o - -p4=4..

+ L.FF . Io C +02+a -0pI 0.
2 ~ X E XEP

To find the optimal trigger prices, I make use of the fact that V*(P, t) = W*(P, t) + P as well as

the relations in (4.3.6) for the optimal trigger price. Subtracting (4.4.3) from (4.4.2), I get:

P- (f'(t) -k-(x* - X) +vt + 2 + _ G+p-a =(r-P+c (4.4.4)
t ~2 x 2E XE

In (4.4.4), xt* = Ep[xt], and it can be derived in a similar manner as what I have done in Section

4.3.2. By replacing ln(P) with ln(P) -f(t) in (4.3.12), the result is:

e -k= 0 +X e-kt)+ ( in(P) -f(t)-E 0 -vE.t) (4.4.5)
a I ask-t

' p-G -(1 - e -kt) 2-

a E- k-t

Similarly, I can define function F(P, t) as:
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F(P,t)=P- f'(t)-k- x * -X)+ YI+ a +- a 2+ p-a- - (r-P+c) . (4.4.6)
(t2 x 2 E XE

Given the functional form off(t), I can plot F(P, t) as what I have done in Section (4.3.3), where

the intersections with the zero plane represent the optimal trigger prices at each time t. The

optimal trading strategy can also be derived by determining the sign of F(P, t): when F(P, t) >0,

we buy and hold the inventory; otherwise, we sell immediately.

4.5 Value Decomposition

In this section, I compare the values from the different components in the seasonal two-factor

model. Specifically, I examine the following values:

1. The pure seasonal case: ZI = ef;

2. Z2, the value by the model (4.2.1);

3. Z3, the value by the model (4.4.1) with ax = 0, o, = 0;

4. Z4, the value by the model (4.4.1) with ox = 0.6, o = 0.2;

ZI has been derived in Chapter 3, and Z2 has been derived in Section 4.3. The value for Z3 and

Z4 can be similar determined using the strategy discussed in (4.4.6). I use Monte Carlo

simulation described in Section 4.3.3 with the price path given by:

xn+1=-k- (xn - m)-At + zn + xn, (4.3.14)

En+ I=uE-At + n+1 + En'

xn + 1 + En +I+f((n +1)-At)

where At is the step size, and zn+j and wn.+ are correlated Gaussian random variables with

means zero, and the covarance matrix given by:

2
a-At p-a At
ax At XIE X E*

2
,-Y a--At a .At

I use the following parameters:

k v xO p (Te At r c

0.5 0.2 0.1 1 0.2 0.5 0.6 0.2 0.01 0.05 1
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The plot for different value is plot in Figure 4.5.1.
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Figure 4.4.1: Comparisons of the values of a storage facility due to different processes.

From Figure 4.4.1, I have the following observations:

" Comparing Z2 to ZI, Z3, and Z4, we can see that without considering the seasonal factor,

there are substantial losses on the value of the storage facility. This observation further

demonstrates the assertion that the seasonal factor should be considered in the storage

valuation problem.

" Comparing Z3 and Z4, we can infer that the volatility factors do contribute to the overall

storage value, and this contribution can be substantial.

The observations are similar to those for the one-factor mean reversion models, where both the

seasonal variations and the price uncertainties are crucial to the value of a storage facility.
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CHAPTER 5

ESTIMATIONS FOR TWO-FACTOR MODELS

5.1 Chapter Introduction

Given the seasonal two-factor models discussed in Chapter 4, I have not yet known how to

derive the state variables x, and e from the natural gas price data. Although both of the variables

are not directly observable, the information from the prices of the short-term and long-term

futures contracts can provide information on the true values of the two state variables. In this

chapter, I discuss the techniques to obtain the values of xt and ct from different futures contracts.

In the natural gas market, both the spot prices and the futures prices exhibit some observable

seasonal property. For example, using the NYMEX Henry Hub data for May 31, April 30, March

31, 2008, I plot the futures prices maturing from 1 month to 60 months in Figure 5.1.1. It is very

clear that the seasonal variations are present at a period of 12 months.
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Figure 5.1.1: Futures prices i~rith different maturities.
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Therefore, it is important to estimate the model with seasonal factor included. Hence, I choose to

estimate the seasonal model (4.4.1). To estimate the state variables from the model (4.4.1), which

is a highly non-linear stochastic model, I use the Kalman filter from the control theory. The

Kalman filter updates the estimated data continuously as new information comes. The updates

are conducted in a way such that the new estimated data at time t are the best prediction (in terms

of the maximum probability conditioned upon all the information up to time t). Please refer to

Harvey (1989) for an introduction to the general Kalman filter techniques.

To use the Kalman filter, two steps are needed:

1. One needs to find the relationship between the estimated variables (i.e., x, and E,) and the

observable variables (i.e., the futures prices), and use the following form of equations to

relate them:

Xt= -- Xt -_I + C + W1, (5.1.1)

Yt=H-Xt + D + w2,t

where X is a vector to be estimated, Y is a vector containing the observable

variables, and wj , w2, are independent normal vectors.

2. One needs to run the Kalman filter using an updating mechanism which feeds the filter

with the observable vector Y to estimate Xt at each time t.

In Section 5.2, I outline the steps to find the relationship in the form of (5.1.1) between the state

variables xt, ct, and the observable futures prices in the market. However, in order to find the

state variables xt and ct at each time t, there is an obstacle to use the relationship (5.1.1) directly:

in (5.1.1), we do not know the parameters A, H, d, c (they are functions of the parametersf(t), k,

m5 u, q, , and p). Section 5.3 is devoted to explain how to estimate these parameters.

Equipped with the above methods, in Section 5.4, I use the NYMEX Henry Hub futures data to

estimate both the parameters and the state variables.

In the following sections, St represents the spot price at time t (I do not use Pt for reasons that

will be clear later).
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5.2 Setup of Kalman Filter

To use the Kalman filter, the first step one needs to take is to relate the state variables to the

observable variables in the form of (5.1.1). Therefore, I derive the relationship in the section.

By the fundamental theorem of finance, in a complete financial market, the price of any asset can

be expressed as the risk-neutral expectation of all the future cash flows discounted at the risk-

free rate. By this theorem, and together with the assumptions that all the cash settlements of

futures contracts happen at their maturity dates, I can express the futures prices as the risk-

neutral expected spot prices at their respective maturity dates. Please refer to Duffie (1992) for a

mathematical proof. Formally, the price of the futures contract matures at time T starting at time

0 can be written as:

FT, O = E[ST] (5.2.1)

=exp(E[log(ST)] + Var[og(ST)])

=exp( e -ktx 0 + E0 + )
( 2

where A(T) =f(T) + vET+ (1 - e-kT) + - e2kT) + a T+ 2(1 - e- kT)-Px a '
2 2k k k~

In (5.2.1), I use the properties (4.2.2) and (4.2.3) for the seasonal model (4.4.1) to derive the

price for the futures contract maturing at time T.

The first equation in (5.1.1) can be derived by the following time series relationships between the

state variables xt and E,: from (4.4.1), I solve the two stochastic differential equations for state

variables xt and Et:

xt =O' e-k. + X -- et) + ek-(s t) d(z , ) , Et=EO + VEt + YEZ, (5.2.2)

(5.2.2) is the process under the risk-neutral measure. However, for the real price process, I have:

-k~t C(5.2.3)
xt =X0 'e -k-t + k-(s - t) d(Zrealx, s) Et =E0 + Vreal-t + aEZreal E, t

0

Using the real price process, and letting the time interval to be At, I can discretize (5.2.3) and

write the state variables in the following matrix form:
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e-k-At 0 0
where Xt = [t, ft, and A= ,1C= vr-lAtwherereX

WJ't is a bivariate normally distributed vector with mean of zero, and:
var(w,,t) =W, =cov(x, EA) (5.2.5)

2

- k- .t) . Ox e- x-t .- Px f'

k

Equation (5.2.4) is also called the state equation in the Kalman filter literature.

The second equation in (5.1.1) can be derived by relating the state variables and the futures

prices, maturing at time T1, T2 ... Tn. Using (5.2.1), it can be written as:

Yt=H-Xt + D + w2 t, (5.2.6)

log(FtT) e-kTl 1 A(TJ)

wheeY-log(FtT 2) e-kT2 1 (T2)where Yt .~' ,2 H = e I ,and D = .

log(FTn) ekTn 1 A(Tn)

w2t is a multivariate normally distributed vector with mean of zero, and var(w2,) = W2.

(5.2.6) is called the measurement equation in the literature.

After finding both the state equation and the measurement equation, I can use the following

updating equations at each time t to incorporate the new information given by Y:

X,=A-X,_ I + c, (5.2.7)

P,= A-Pt_ - -A T+ W1
T~A~ AT w1  W

K=P,.HT-(H-Pt-HT+ W) 1 ,

Xt = mt + K-.(Yt - H-Xt - D),

Pt = t - K-H-Pt,,

where I defne P, - I = E[ (Xt - I - Xt - 1, real) - (Xt - I Xt - 1, real )T-
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The Kalman filter can be initialized by supplying an initial estimate of X and PO. As time

changes, I use (5.2.7) to estimate the value of X, for time T > t > 0, where T is the terminal time

of the estimation. (To make the estimation more accurate, generally a Kalman smoother can be

used after we have reached time T. Given the last estimated value XT, the smoother will update

all the previous estimated X, when 0 < t < T, using information up to time T. However, the

detailed updating equations are omitted here and interested readers can refer to Shumway &

Stoffer (2006) for reference).

5.3 Parameter Estimations

To estimate the parameters A, H, D, C (they are functions of the underlying the parameters f(t), k,

m, u, or, o; and p), I use the maximum likelihood method, which is briefly discussed by Shumway

& Stoffer (2006). The maximum likelihood estimation method of the parameter set 0 = {f(t), k, m,

u, a,, o, p} follows the likelihood function:

maxP inovt,,inovt-,inovt- 2 ..., inov (5.3.1)

where inovt =t - H- Xt - D , and cov (inovt) = H. Pt- H W2 .

I want to find the 0 such that at that point, (5.3.1) is maximized. Under the assumptions of i.i.d

normal variables of both {wt} and {vt}, the innovation terms {inovt} are independent Gaussian

random variables (please see Shumway & Stoffer (2006) for a proof). Therefore, I can express the

logarithm version of the (5.3.1) as (I omit the constant term for simplicity):

1 ., . n-AT - (5.3.2)
L= max - - 1o0cov(inovtI - - inov(ov inov -1inov

e 2 _= 1 2 1 t\it i/

Therefore, the goal is to find 0 that solves (5.3.2). This can be accomplished using the following

procedures:

Step 1: Choose an initial estimation, O(old).

Step 2: Use equations (5.2.7) to run the Kalman filter from time 0 to time T = n-At to estimate

the value XT. Record all the innovation terms {inovt}, and calculate all the covariance matrix

{cov(inovt)} associated with the innovation terms.
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Step 3: Solve the optimized problem (5.3.2) for 0(new), given the inputs {inovt} and

{cov(inovt)}. Then use the result as a new estimate ®(new) and record the likelihood value L.

Let O(old) - O(new)-

Step4: Repeat Step 1 to 3, until the value of L is stabilized (or it satisfies some predetermined

value).

Following the above procedure, the optimal values of the parameters can be numerically

determined. However, it is noted that the numerically solutions may be unstable due to Step 3,

which solves the highly non-linear optimization problem. Gaussian related methods could be

employed; however, more stable algorithms are needed to tackle this problem.

To reduce the number of the parameters to be estimated, I can estimate the seasonal factorf(t)

independently from the forward curve, and I discuss one approach I adopt next.

From (5.2.1), the futures price maturing at time T can be written in the following form:

FTO = efJ(T) + G(T), where G(T) can be derived from (5.2.1) . (5.3.3)

Therefore, the seasonal factorf(t) is added to the futures price in a multiplicative form. For an

estimate off(t), I assume that G(t) does not change much in any successive 12 months,f(t) is a

periodic function with period = 1 (year), and further, for any consecutive 12 months, I have:

11 (5.3.4)

If -i + t) =0, for any t > 0.

With the above assumptions, I can remove G(t) from (5.3.3) by finding the average value of G(t):

for any non-negative integer n:

' 11 11 11 (5.3.5)
mean(n) i1n(F -f i + n)= I n(Fy,

12i=0 -i+n,0 i=0 21 i=0 - + n, 0

G(t) = mean(n), when t is in the interval [n, n+1) for any non-negative integer n.

Then, I subtract the mean from the logarithm of the futures price. Thus, when t is in the interval

[n, n+]) for any non-negative integer n, I can expressf(t) as:

f(t) = ln(Fro) - mean(n). (5.3.6)

Using (5.3.5) and (5.3.6), for each i = 0, 1,...11, I sumf(t = i/12 + n), for all the non-negative

integer n, and use the average of the summation to representf(t = i/2), for each i = 0, 1,... 11.
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5.4 An Empirical Example

In this section, I use the natural gas futures data to estimate both the parameters and the state

variables x, and e, using the approaches discussed in Section 5.3.

The data I use in this section are the natural gas futures prices traded on the New York

Mercantile Exchange (NYMEX). The price is based on the delivery price at the Henry Hub in

Louisiana, and it is denominated in $/mmBtu (dollars per millions of British Thermal Units). It is

generally considered to be the benchmark of the natural gas futures prices in the United States.

Since some of the long-term futures are only available after 2001, I collect the monthly data for

1-month to 60-month maturity futures prices, from November 2001 to May 2008. Because the

longer time period is preferred for more accurate statistical estimations, the short time span I use

(7 years) may have some stability problems. However, for an illustration of the estimation

techniques, it is sufficient.

The basic statistics for the raw futures contract from November 2001 to May 2008 is:

1 Month 10 Month 30 Month 60 Month Overall

Mean 6.733595 6.987519 6.477734 5.978886 6.484417

Variance 6.116126 5.636126 4.700934 3.031152 4.639233

STD 2.47308 2.374053 2.168164 1.74102 2.153888

The correlations among different maturities futures are:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan 1 1 0.979 0.985 0.984 0.982 0.982 0.981 0.98 0.977 0.973 0.971
Feb 1 0.982 0.983 0.981 0.98 0.979 0.978 0.977 0.974 0.969 0.966
Mar 1 0.991 0.987 0.986 0.985 0.985 0.983 0.973 0.967 0.966
Apr 1 1 0.999 0.998 0.998 0.997 0.992 0.985 0.979
May 1 1 1 0.999 0.998 0.992 0.984 0.978
Jun 1 1 0.999 0.998 0.99 0.977 0.969
Jul 1 1 0.999 0.989 0.975 0.966
Aug 1 1 0.989 0.972 0.962
Sep 1 0.992 0.975 0.965
Oct 1 0.993 0.985
Nov 1 0.998
Dec I
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I first estimate the seasonal parametersf(t). For each month, I use (5.3.5) and (5.3.6) to estimate

f(t) with the data of 1-month to 60-month maturity futures prices traded at that month. I do the

same for all the remaining month from December 2001 to May 2008. After adjusting for the

starting month off(t), I obtain the average of all the f(t) with the values plotted on Figure 5.4.1.
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Figure 5.4.1: Estimated seasonal values from Henry Hub data.

Once I know values of the functionf(t) at each month, I can make seasonal adjustments to the

original futures data by subtractingf(t) from the logarithm of the futures prices. For example, the

deseasonalized forward curve at May 2008 using thef(t) obtained from the May 2008 forward

curve together with the original forward curve is plotted in Figure 5.4.2, where the seasonal

effect (peaks and troughs) has been reduced considerably.
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Figure 5.4.2: Deseasonalized forward curve in May 2008.
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Using the above method, I can deseasonalize all the forward curves for each month from

November 2001 to May 2008.

Before I continue, there is one remaining problem: how many, and what kinds of futures

contracts one should choose to estimate the values of the parameters. Based on the futures

trading volumes obtained from the NYMEX, only those futures contracts with large trading

volumes are selected. For example, the trading volumes on August 6 th, 2008 are plotted in Figure

5.4.3, from which it is clear that some of the long-term maturity contracts are not actively traded.

Based on the trading volumes, I select the following 20 contracts for the parameter estimations:

1-month to 16-month futures contracts, 24-month futures contract, 36-month futures contract,

48-month futures contract, 60-month futures contract.
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Figure 5.4.3: Futures contracts trading volumes on August 7 'h, 2008

With the above information, I use Step 1 to 4 outlined in Section 5.3 to estimate the remaining

parameters. For simplicity, assuming for all t > 0, in (5.2.6), I have:

0.1

0.1

W2, t

0.1

which is a fixed matrix. (This is for simplicity of the estimation. Ideally, one needs to

estimate the matrix as parameters of the model as well).
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I use the following initial values, and follow Step 1 to 4 to get the values of parameters k, m, u, qx,

a, and p with the corresponding state variables x, and E,:

1 0

xo = 0.5, Eo = 0.6, [ 0 1

(I use the Matlab function fminunco to solve the non-linear optimization problem in Step 3)

I estimated the parameters using the maximum likelihood function (5.3.2):
k=1.215 A=0.049 vrea=0.19 3  v,= -0.054 u-=0.123 o=0.119 p= 1

With the parameters, I re-run the Kalman filter from time 0 to T = n-At to estimate the values of

the state variables xt and E, (One can also use the Kalman Smoother after finding XT, starting

from T to 0, and update the estimated X, for 0 < t < T. The step of Kalman smoother is omitted

here, and interested readers can refer to Shumway & Stoffer (2006) for details).

Once the parameters and the state variables have been estimated, I plot the deseasonalized spot

price exp(x, + Eg), with the 5 years predicted price in Figure 5.4.4. From Figure 5.4.4, it is clear to

see that the predicted price in the two-factor model grows almost exponentially as time passes.

This is due to the exponential long term factor c,. However, the speed of growth is different than

the pure exponential model because of the mean reversion factor x,.

45 ----- - ------ Estimated-Spot-Pr..e

30 -----------

-r.~ 5 ------..--.---.- -- Estimated SpotPrice

S 20 ..... ...... .. ..... ......... . ... .... .. 68% Upper Bound

- .- ________6R% L.ower Bound

t% 10

S

0

-Predicted Value

M0 >. -0 > MC >. e-0 > W 0 '

Figure 5.4.4: Estimated natural gas Price Using Kalman Filter
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CHAPTER 6

CONCLUSION

6.1 Thesis Conclusion

In this thesis, I have answered the question of when to inject and when to withdraw natural gas

optimally, when operating a gas storage facility. I have found the optimal operating strategy in

terms of solving the problem (1.1.1) under which one gets the optimal value of a facility.

In the thesis, I have investigated the problem under both the logarithm mean reversion price

process, the geometric Brownian motion price process and the two-factor short-term/long-term

price process. The reason to use the logarithm mean reversion model is that it may be more

suited to model the commodity spot price, and it is more suitable than the model used in Hodges

(2003), because the model he uses has the problem that the spot price may go negative. Under

the logarithm mean reversion model, I have provided a comprehensive investigation of the

problem by considering the deterministic model, the stochastic model, and the related seasonal

model. The same logic is applied to all the other sections of the thesis.

However, one-factor price models may not be adequate to model the real world price process.

Therefore, I use a two-factor short-term/long-term model proposed by Schwartz & Smith (2000). This

model is mathematically simple to manipulate while it preserves the important features in the natural gas

price. I have used the dynamic programming method to derive the optimal operating strategy.

In the thesis, I have found a general method to tackle the optimal operating strategy problem by

the risk-neutral expectation of marginal revenue and marginal cost. This method can be used

even when there are transaction costs. The method can help practitioners find numerically the

value of a storage facility when they face a more complex real-life problem.
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For all the price processes, I have also obtained the optimal operating strategy for the seasonal

models, which are more realistic for natural gas.

In the end, I have conducted the parameter estimations for the two-factor seasonal model for the

completeness of the thesis.

6.2 Limitations and Future Directions

In the thesis, I have assumed that there are no transaction costs, no operating costs, no operating

limitations, and the price follows a continuous stochastic process. All of the above assumptions

can be violated when one faces a real world problem. Especially, all the parameters in the models

can become stochastic, and the stability assumptions for the models can be relaxed. Future

research can be conducted in any of the above areas. Further, although I formulate the optimal

operating problem in terms of the spot price, there are values to exploit directly in the forward

curve, which is another interesting problem.
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APPENDIX

A. Proof of W goes to 0 as P goes to 0 in Section 2.3

Assume the value of a storage facility is finite. To prove that the value W, of an empty facility

goes to zero when the price P goes to 0, I follow a three-step procedure:

Step 1: Given the optimal trigger price PL = P1 , 1 is a function of tL - the first hitting

time from the current price P to PL*. It can be written as:

W(P)=E eH.( P* _P* (Al)

Step 2: tL goes to infinite as P goes to 0.

Step 3: Because V is finite, V goes to 0 as P goes to 0.

Before the formal proof, I make the following assumptions:

" The current price P > 0;

" There exists a pair of the optimal trigger prices PL* and PH (proved in Claim 2.3.1 and

Claim 2.3.2), and I assume they are positive.

" The value of a storage facility is non-negative and finite.

* Assume at time t = 0, with the current price 0 < P < PL* < PH <+00, we are in an empty

facility status.

With the above assumptions, the following is the formal proof.

Proof of Appendix A:

Step 1:

Since the value W, of an empty storage facility is the net present value of all the risk-

neutral expected future cash flows discounted at the risk free rate r, the first time we have

such cash flows starting from P < PL* is when the price first hits PL*. Immediately at that
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time, we have the cash outflow PL*, and we obtain all the future cash flows starting from

PL represented by V(PL*).

Step 2:

Use the definition of P, where ln(P) = u, and u follows du = k-(m-u)-dt + -dB. To prove tL

oo as lim P --+ 0 is equivalently to prove tL --+ oo when lim u -+ - oo, and tL is the same as

the first hitting time going from u = ln(P) to u* = ln(PL*). I use the following Lemma 1 to

prove this assertion.

Lemma 1: For a OU process with the form du = k-(m-u)-dt + --dB, starting from an initial

value u = IxI = oo, the expected first hitting time to a finite value u* is infinite with

probability 1.

Proof of Lemma 1:

For simplicity, let m = 0. The OU process is du = - k-u-dt + u-dB, with the first hitting time

to some value 'a' defined as Ta = inf {t: ut = a} starting from some initial value IxI.

In the following proof, let u, = a = 0, and denote the corresponding expected first hitting

time as t, with the initial value Ixi.

According to G6ing-Jaeschke and Yor (2003), Alili and Pedersen (2005), the probability

density function of the first hitting time t, starting from lxI to u, = 0 is:

2 x-e-t k 2.e- 2 t (L1)

x Fl,,- _ e -2-t) 1.5 2- (1 - e -2 t)

From (L1), I want to calculate the probability of the first hitting time t when t is in the

range of [1/IxI, to]. First assumed 1/Ix < to, the probability equation can be expressed as:

t

2t! o= F . -- x 2. e-2t (L2
1Il I C (I - 2-t) 1 5  2-(1 - e 2 t) (L2)

Next I prove the equation (L2) approach to 0 for any finite to as x goes to infinity. When t >

0, I have increasing functions (since e-2 is increasing):
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1 e2t
S-e 2 t - 2t

Hence, (L2) can be bounded by:

2 [x. e
It 2 f-15

1 - e Nxi)

( 15

- X ) *

-exp

-exp{

-2 t

- 2 02x 2 -e

-2t~C o

-2t
2 0x2- -e

To continue, I make the following claim, when lxi > 20, we have

4
1-
I1

(L3)

8

( 1 - e

This can be derived using the fact that:

h(a) =a 2 + e-a and h'(a) =2 a - e-a < 0 when 0 : a < 0.1

Therefore, h(a) is a non-increasing function for 0 < a < 0.1, hence in this range:

h(a) h(O) = 1

=> a 2 + e -a < > 1 -a 21 - e a

Let a = 1/x, I have, when lxI > 20,

1 4
-e 14

Thus I have (L3). Using (L3), I can further bound (L2) as:

. 8-2 - ex p
-2t2 0

2- 1 - e 0
-2t

F -ex p - 2 . 0 0

n< 2- (1 - e I
to

to
1

[1

I

(L4)

(L5)

(L6)

(L7)

Now let lxI --+ oo, I have:
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-2t

ex p - 2. -0 o

2H (1 -e ) 3
Hence, for any finite to, I have:

8 -exp

-2 t
- 2. * 02 -
2-(1 -e t0)

0 and 10

I to- -+01X

This leads to:

0:! limp P< t to < 0

=>P(0 < t <_ to) =0

=> The probability of finite hitting time to zero is 0 if the starting point lxi -* 0.

=> The probability of infinite hitting time to zero is 1 if the starting point jxi -+ oo.

In addition, the first hitting time from 0 to any finite value is finite with positive probability

(which can be derived using (Li)). Therefore, the expected first hitting time from lx -+ oo,

to any finite value is infinite with probability 1. End of Lemma 1

Step 3:

Using (Al), and use the result from Step 2, I have:

-r-t

(V(* L PL Prob (tL is finite)

-r -t
+ lim e L(Vp) L L- Prob (tL is infinite ) = 0.X-+ - 00 P

0l

lim W, (P) = lim e
P-+0 x-+ - 00

End of Proof.
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B. Proof of W2 goes to 0 as P goes to positive infinity in Section 2.3

Given the proof in Appendix A, I can prove this claim by a similar infinite hitting time argument.

First, the value of an empty facility can be expressed as:

W2 (P) =E e-H. (V( *) _ (B.1)

where PH* is the optimal upper trigger price, and tH is the first hitting time to the optimal upper

trigger price starting from current price P > PH*. The expectation is taken under the risk-neutral

measure. This equation can be argued in the same way as the proof of Step 1 in Appendix A.

Under the assumptions in Appendix A, I can use Lemma 1 in Appendix A to show that tH goes to

infinity as P goes to positive infinity. Therefore, we have:

in W(P)= rim E e -rH. (v(p;) _ p](B.2)
PTeo X-4 + h o

Therefore, we finish the proof. oi
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