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Abstract

If a micrometeoroid, a piece of space junk, launch debris, or a major system failure impacts the
Crew Exploration Vehicle (CEV), it can cause life-threatening damage. Past International Space
Station (ISS) and Space Shuttle repair missions have shown that inspection of a damaged system
is crucial for planning the EVA to repair it. To assist the CEV team with inspection and
contingency planning, an inspector satellite can be an essential tool. This thesis presents the idea
of using a miniature satellite to inspect the CEV for damage while flying in formation. In this
research, the satellite test bed SPHERES has been used to develop, demonstrate, and flight-test
an inspector-satellite operations design and controller. The design utilizes an autonomous
control algorithm that combines Linear Quadratic Regulator (LQR) and Artificial Potential Field
(APF) control. This controller is designed to navigate through waypoints, follow the contours of
an inspected spacecraft's surface, avoid obstacles, operate in real-time onboard the inspector
satellite, work with or without a-priori knowledge of the inspected spacecraft's geometry,
interface with a computer-vision system, and handle the loss of computer-vision information.
Since the SPHERES camera system is currently under development, computer vision data was
emulated using the current SPHERES global metrology. Results from simulations and
successful flight tests aboard the ISS are discussed.
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1 Introduction

1.1 Motivation

If a micrometeoroid, a piece of space junk, or launch debris impacted a manned spacecraft, it

could cause life-threatening damage. Precious consumables could start spewing into space. Or,

hot atmospheric gases could stream into a hole during reentry, potentially causing the spacecraft

to disintegrate, killing the crew. If damage is suspected, then inspection is needed.

Currently, the inspection methods for manned spacecraft are limited. A spacecraft arm can

search for tile and RCC-panel damage over parts of space shuttle. Also, astronauts in the

International Space Station (ISS) can photograph the space shuttle belly before it comes back to

Earth. If damage is found, an EVA can perform close-up inspection and repair. However, an

arm has limited view, the ISS will not always be the destination, and an EVA is dangerous and

consumes time and resources. Additionally, the new Crew Exploration Vehicle (CEV) will have

extensive missions before coming home, increasing the chances of being significantly damaged

by micrometeoroids. NASA has developed a means of detecting potential micrometeoroid

impact for the CEV. If an acoustic sensor detects a potential impact and its location cannot be

observed from the vehicle, an EVA or another kind of inspection must be performed to

determine the extent of the damage. We are entering a new age of space exploration, voyaging

to the Moon, Mars, and beyond. Robust inspection methods must be developed and carried

along on the journey.

To inspect the CEV for damage, a micro satellite could detach itself from a docking station

on the CEV, fly in formation along the vehicle's outer wall to the location of concern, then

transmit motion video for real-time analysis or photographs for later study. After the satellite

achieved its task, it could return to its station, autonomously dock, and refuel. All the

commodities the satellite would need are onboard the command module. The docking port

would provide power, compressed gas for propulsion, and data transfer. This inspection concept

has received preliminary interest from the Lockheed Martin CEV team.

Studying the damage of spacecraft using a small orbiting satellite would have been very

useful in the past and could be invaluable in the future. The extent of the damage to the Apollo



XIII capsule could have been assessed earlier in the mission. Also, the damage to the Columbia

would have been detected. This inspection could be performed before committing to three major

legs of the upcoming moon missions. The satellite could inspect the Earth Departure Stage (EDS)

prior to leaving Earth orbit, the Lunar Surface Ascent Module (LSAM) prior to committing to

lunar descent, and the CEV prior to reentering Earth's atmosphere.

A satellite test bed called Synchronized Position Hold Engage and Reorient Experimental

Satellites (SPHERES) can be used to develop and test controls algorithms for satellite inspection.

Developed by the MIT Space System Laboratory (SSL), SPHERES has been used to test

formation flight and autonomous docking on a 2-D laboratory platform, in NASA's Reduced

Gravity Airplane, and in the ISS [1-3]. There are currently three SPHERES in the ISS. This

testing in the ISS offers four major benefits for using SPHERES. These satellites are man-rated,

they have already been flown in close proximity to another man-rated spacecraft (ISS), and the

astronauts are comfortable using them. Additionally, the ISS is a risk-tolerant environment for

testing the 3-D maneuvers of a new control algorithm. A problem with a developing algorithm

can be discovered without loss of the satellite. Thus, SPHERES can be used for testing

inspection-control algorithms and potentially as an inspector satellite for the CEV. Figure 1-1

illustrates SPHERE satellites taking images of the CEV surface.

The goal of the research in this thesis is to design, implement, and flight-test a controller for

inspection operations using the SPHERES laboratory. This controller is designed so that it will

expand the inspection operations modes that have been developed in the past by other research

groups.



Figure 1-1: SPHERES inspecting the CEV. for illustration purposes, the SPHERES are
not shown to scale.

1.2 Background

In the last decade, research groups have developed several satellite-inspection operations.

After the Columbia accident, the Orbiter Boom Sensor System (OBSS) was designed to inspect

the space shuttle for launch damage. Looking at the operations and control-system design for

this boom-inspection system is useful for determining which aspects of the operations design

have worked well for NASA. Additionally, a couple of teams have developed operations designs

for inspector satellites. These teams are the NASA Autonomous Extravehicular Robotic Camera

(AerCam) groups and Drs. Roger and McInnes of the University of Glasgow. AerCam Sprint is
a 14-inch-diameter satellite that was flight-tested on the Space Shuttle in 1997 [9]. Later, the
system was redesigned with a 7.5-inch diameter, and renamed the Mini Aercam [10]. The
operations designs of the OBSS, AerCam, and the Roger & McInnes Free-Flyer will now be
discussed.

For the inspection of the space shuttle, the OBSS was developed. The OBSS system consists
of a 50-foot boom that attaches to the end of the space shuttle's arm. This boom extends the
length of the arm so that it can reach the underside of the space shuttle. Also, camera and laser
sensors are located at the tip of the boom to inspect the space shuttle's surfaces. These sensors
are located on a pan-and-tilt mechanism that can adjust their viewpoints. The operations mode

_· ___ __ _ _



for inspecting the space shuttle's under-surface is named the Auto Control Mode [11]. During

inspection operations in this mode, the arm is commanded to maneuver its tip through a series of

user-defined waypoints. The arm automatically adjusts its configuration so that the tip with the

inspection sensors moves along a straight line from one waypoint to another. When a series of

these waypoints are combined and commanded in sequence, they are called a survey trajectory

[12]. Figure 1-2 shows the beginning and ending locations of the OBSS for one survey

trajectory [12]. Note how the waypoints for this survey trajectory are placed at equal distances

away from the space-shuttle surface. When the space shuttle is undocked from the ISS, the

OBSS is commanded to fly along waypoints that are at a height of 5 feet from the space-shuttle

surface. When the space shuttle is docked to the ISS, the waypoints are 2 feet from its surface

[11]. To perform a complete inspection operation, the arm maneuvers through several of these

survey trajectories until its sensors have imaged the entire leading edge of the wing. This

inspection operation has been successfully implemented into the space-shuttle missions [13].

However, this operation will not be useful for the CEV, because the current CEV design does not

have an arm.

Figure 1-2: Beginning and ending waypoints of the OBSS during one survey trajectory
[12].

Inspection operations for an inspector satellite are different from those of an inspection

boom, because a satellite free-flies in formation with the inspected vehicle, while the boom is

attached to the vehicle. The AerCam teams have developed and tested operations modes for

inspecting the ISS. One mode was simulated by the Mini Aercam team in Reference [10]. In

this mode, the satellite flies in straight paths through waypoints. Figure 1-3 shows this mode, in

which the AerCam flies through a series of waypoints in front of the Space Shuttle's wing. To

navigate through these waypoints, the system is designed to use a relative GPS system when in



low earth orbit (LEO), and the AutoTRACK Computer Vision System if the satellite is not in
LEO [10].

Figure 1-3: Simulated path of the AerCam using waypoint algorithm [10]

Also, a semi-autonomous mode for the AerCam was developed by Choset et. all [14]. In this
mode, the user defines a goal point, and the AerCam autonomously navigates to that point. The
AerCam utilizes a generalized-Voronoi-graph (GVG) algorithm that creates a roadmap based on
a known model of the ISS, and it chooses the path that will take the inspector to the goal point

[14]. This original GVG path curves around the ISS. The curved GVG path is then simplified

into a series of straight-line trajectories, defined by waypoints along the GVG path. An
additional algorithm adjusts the waypoints to ensure that the straight-line trajectories stay above

a minimum distance from the ISS surfaces. This algorithm was implemented into a simulation in
Reference [14]. Figure 1-4 shows a trajectory that has been defined by this AerCam path planner.

This is a viable path-planning method for an operation that transfers the inspector to a point of
concern. However, the trajectories that it produces do not provide views that smoothly follow

the surface of the inspected spacecraft, like those currently provided by the OBSS in space

shuttle operations.

Figure 1-4: Simulated path of the AerCam using GVG algorithm [14]



Other inspector-satellite operation modes have been designed by Dr. Roger and Dr. McInnes.

These modes were also developed for inspection of the ISS, and were designed to utilize relative

GPS. The first mode takes the satellite from its docking port to a point close to the location of

concern. This mode is called the Transfer to Observation Point. For this mode, the inspector

follows a trajectory along an Ellipse of Safety [9]. This ellipse is designed so that if the

inspector system fails during the maneuver, the inspector cannot drift into the ISS. According to

Reference [9], the transfer is designed to take the satellite at least 200 meters away from the ISS

so that the satellite can receive accurate GPS information without interference from the ISS.

Figure 1-5 shows this operation mode in which the satellite flies out 200 meters, and then returns

to a position near the location of concern via the Ellipse of Safety.

Figure 1-5: Simulation of the inspector trajectory around the ISS during the Transfer-to-
Observation-Point mode [9].

For the second operation mode, Roger and McInnes developed a path planner that utilizes

Laplace potential functions. This second mode is called Laplace Artificial Potential Guidance.

The Laplace potential fields bend a path around obstacles. In this case, a predefined model of

the ISS is used to create the Laplace potentials. Using the Laplace potentials, the inspector

satellite plans a path around the complex ISS shapes to the location of concern. The velocities

are kept low to avoid damage if the inspector were to malfunction. Figure 1-6 shows a simulated

path using the Laplace potential fields. The satellite only fires its thrusters periodically during

the maneuver to keep fuel usage low, which causes the scalloped shape of the trajectory. One

usual problem with potential-field obstacle avoidance is that the satellite can get stuck in a local



minimum. However, a benefit for using the Laplace potential fields is that they contain no local

minima. Unfortunately, they are very computationally intensive, and are thus difficult to

implement in real-time satellite operations. According to Reference [9], if this path-planner is

implemented on a satellite system, the paths will likely be calculated on ground or ISS computers,
and then uploaded to the inspector.

Start

Figure 1-6: Simulation of the maneuver during the Laplace Artificial Potential Guidance
mode [9]

Lastly, the AerCam teams, Drs. Roger and McInnes, and the OBSS all included a station-

keeping mode in their operations designs. During this mode, the inspector holds its position, and

the operator can adjust its attitude so that it points in the desired direction for inspection.

1.3 Research Approach and Objectives

As an initial implementation of inspection operations and testing using SPHERES, a controls

algorithm that is useful for CEV inspection has been developed, implemented, and flight-tested

on a SPHERE satellite. This algorithm is designed to add another useful inspection operations

mode to those that have been developed in previous research. For the current inspection

operations of the Space Shuttle, the OBSS has the ability to smoothly follow the surface of the

space shuttle at a constant height. This useful aspect of the OBSS operations is not present in the

operations modes for the inspector satellites that have been developed thus far. Thus, an

objective for this research is to develop a satellite controller that provides inspection operations

that are similar to those successfully performed on the Space Shuttle using the OBSS. A satellite

controller is developed that provides smooth-wall-following and autonomous navigation through

waypoints.



For the application of inspecting the CEV, the CEV has a surface with greater curvature than

the underside of the Space Shuttle. Also, it has solar panels and antennas that protrude from its

surface. With obstacle avoidance, the inspector would then be able to navigate around

protrusions that are between waypoints. Thus, another objective for the controller is to provide

obstacle avoidance.

Additionally, the SPHERE satellites and other potential inspector systems have limited

computational ability. The inspection controller that is developed in this research must be

computationally inexpensive enough to be usable on SPHERES.

Also, the SPHERES team is currently developing a computer-vision system for its satellites.

The controller discussed in this research will be designed to interface with this computer-vision

system. Because of this parallel development, and because relative GPS sensors would not be

useful in moon missions, the primary sensor system for this inspection controller will be

computer-vision. The computer-vision information that is used by the control algorithm will be

emulated, because the actual system is still under development.

Finally, to design the control algorithm so that it can be applied to inspection operations of

spacecraft other than the CEV. The controller can be designed so that it can utilize, but does not

require, an a-priori model of the inspected spacecraft. Instead, the controller can adapt its

knowledge of the inspected-spacecraft's shape as it flies.

As a summary, the objectives for this research are:

1. To develop a satellite controller that provides the following operations aspects that have

been successfully used in Space Shuttle inspection:

a. Autonomous navigation through waypoints

b. Smooth wall following

2. To develop this controller so that it avoids obstacles

3. To develop the controller to interface with a computer-vision system

4. To design the controller so that it can use, but does not require, a-priori knowledge of the

inspected-spacecraft's shape, and can update its model of the inspected spacecraft as it

flies.

5. To design the controller such that it is computationally inexpensive enough to be

implemented on SPHERES and can operate in real-time

6. To implement the controller on SPHERES hardware



7. To flight-test the controller on the ISS using the SPHERES laboratory

8. To demonstrate SPHERES as a laboratory for testing new inspection algorithms

9. To demonstrate SPHERES as a micro-satellite tool for inspecting the surface of NASA's

CEV.

In the following sections, a satellite controller design will be discussed that satisfies these

objectives. The basis of the controller is a path planner that can utilize information from a

computer vision system to navigate around obstacles. A computer-vision system can identify

feature points along the surface of the inspected spacecraft. Then, placing exclusion zones

around these feature points, can create a navigation mesh, as shown in Figure 1-7. These

exclusion zones will be referred to as NavZones, and the inspected spacecraft will be called the

target. This mesh can produce a smooth virtual surface that is located a pre-determined distance

above the target spacecraft, along which the spacecraft can maneuver.

Figure 1-7: Illustration of inspector maneuvering around mesh of NavZones.

A path planner can then be utilized to maneuver around this navigation mesh. One path

planner that satisfies the research objectives above is a combination of a Linear Quadratic

Regulator (LQR) and Artificial Potential Functions (APF) developed by Dr. McCamish [4-7].

The LQR controller plans a maneuver so that it minimizes an energy cost function, thus

providing fuel-efficiency for the controller. And the APF provides robust obstacle avoidance.

When the LQR and APF are combined together, they provide smooth trajectories around

obstacles. Additionally, the LQR and APF algorithms can be implemented in a computationally

inexpensive manner. Therefore, they can be implemented on the SPHERE satellites. In this



research, Dr. McCamish's controller was redesigned for inspection operations. This redesigned

controller will be referred to as the NavZ.

1.4 Outline

This thesis discusses the development of the NavZ controller, its implementation on the

SPHERE satellites, and flight-test results. The thesis structure has the following organization:

* Chapter 2 briefly describes the SPHERES testbed, the inspection control architecture, and

several inspection operations modes that can utilize the NavZ.

* Chapter 3 discusses the development of the NavZ controller, beginning with Dr.

McCamish's LQR and APF controller that was implemented on SPHERES as a baseline,

then the redesign for the application of inspection maneuvers. The chapter includes ISS

flight-test results for the baseline and NavZ controllers.

* Chapter 4 discusses the continued improvements to the NavZ controller after its first

flight test. These improvements include a pointing algorithm and the implementation of

waypoints.

* Chapter 5 explains how the computer-vision system was emulated, explores the accuracy

of computer-vision information, and shows simulation results of how the NavZ can adapt

when a feature point is not detected.

* Lastly, Chapter 6 discusses the design for two final ISS tests of the NavZ algorithm, and

shows simulation results of maneuvers around a full-scale CEV.



2 SPHERES Inspector Satellite

Before giving the details of the development of the NavZ controller, the SPHERES testbed

will first be discussed. Also, this chapter gives an overview of the controls and operations

frameworks for an inspector satellite using the NavZ.

2.1 SPHERES Testbed

The MIT Space Systems Laboratory (SSL) has developed a miniature-satellite testbed to

provide researchers with an experimental laboratory for testing formation flight, rendezvous,

docking, and autonomy algorithms. The SPHERES facility [1-3] consists of three 20-centimeter-

diameter miniature satellites. One of these satellites is shown in Figure 2-1. Each SPHERE

satellite can autonomously control its relative positions and orientations in a six degree-of-

freedom (6-DOF) environment. The testbed is primarily designed to operate inside the ISS, but

it can also operate onboard NASA's Reduced Gravity Aircraft and in 2-D environments on flat

floors. The flat floors that have been utilized for SPHERES testing include one at the NASA

Marshall Space Flight Center Flight Robotics Laboratory and the SSL laboratory air table [16-

19]. Figure 2-2 shows the SPHERES test volume inside the ISS, with the coordinates that are

used for ISS testing. By operating inside the ISS, SPHERES tests algorithms in a microgravity

environment while providing direct recovery of the satellite when real or simulated GN&C

failures occur. Therefore, SPHERES provides a fault tolerant environment to test advanced

algorithms and operations.
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Figure 2-1. A SPHERE satellite and its visible components. [15]

Figure 2-2. SPHERES ISS test volume and coordinates.

Each SPHERE satellite is identical, and contains most of the subsystems of a standard

satellite. It has self-contained power, propulsion, computer, communication, and navigation

systems.

* Power: The power system consists of AA batteries.

* Propulsion: SPHERES move in the testing environment by emitting small jets of CO2

gas using pulse-width modulated ON-OFF micro-valve thrusters.

* Computer: The computer has a real-time satellite command structure. A control cycle

is a section of time in the command structure in which the controller code is run by the



satellite computer. The control cycle typically runs at a frequency of one hertz, but this is
adjustable.

* Communication: The satellites use two low-power wireless (RF) links to communicate
with each other and a laptop computer.

* Navigation: For navigation, the SPHERES use ultrasound. In the close distances that
are seen inside the ISS module, ultrasound is useful for triangulating satellite position.
Ultrasonic signals are emitted from beacon transmitters that are mounted at known
locations around the ISS test volume. Figure 2-3 illustrates the locations of the beacons.
Microphone receivers on the satellite detect these signals.

N

Figure 2-3: Beacon locations and ranges measured by a SPHERE [28].

With five beacons mounted on the walls and 24 microphones on each satellite, there is a
potential of 120 measurements per satellite during a control cycle. This data is converted to
range data using the known speed of sound in the ISS. Ultrasound measurements combined with
data from three gyroscopes are processed using the navigation software module to compute a 6-
DOF state solution. The resulting precision of the estimates is two millimeters in position and
approximately two degrees in attitude in most of the testing volume [15]. When using a control
cycle frequency of one hertz, the satellites can maintain a position uncertainty of +2 cm inside of
the testing volume, even when neglecting the orbital dynamics.

D



The onboard guidance, navigation, and control (GN&C) software is written in C. It consists

of a series of modules, each accomplishing a specific task (estimation, control, thruster

management, maneuver sequencing) [19]. Modularity in the software facilitates integration of

algorithms developed by scientists outside MIT. The SPHERES team has developed a Guest

Scientist Program [20]. A Guest Scientist can work with the SPHERES team to implement a test.

In this program, the SPHERES team worked with Dr. McCamish to flight-test his LQR and APF

controller [8]. Additionally, modularity in the software allows flexibility in designing an

experiment through the selection of different combinations of modules. Inheritance between

experiments and reuse of previously validated software modules increases the robustness of the

code and permits engineers to incrementally mature GN&C technologies [1].

In the future, the SPHERES team has two potential contributions for inspector satellite

operations. First, the current SPHERES testbed can be utilized by NASA and CEV engineers to

develop and flight-test inspection algorithms. Second, with its man-rated and flight-qualified

systems, the SPHERE satellites could be adapted for use as inspector satellites. To operate

outside the ISS, several subsystems must be modified and qualified for the space environment.

The ultrasound navigation system must be replaced with other navigation sensors. Since the

ultrasound system is designed to imitate relative GPS data, one potential replacement would be

relative GPS for operations in LEO. Otherwise, the ultrasound navigation information can be

replaced with the computer-vision system that is currently under development. With these

developments, the SPHERE satellites could be used for CEV inspection.

2.2 SPHERES Inspection System and Operations Design

In this section, a high-level design for the inspector satellite system and operations will be

discussed. This framework was kept in mind during the development of the NavZ controller.

Figure 2-4 shows a diagram of a control system for an inspector satellite. The pilot of the

inspector sends waypoint, position, and pointing commands to the satellite through a Human

Interactive Computer Interface (HICI). Those commands are sent to the inspector via an RF link.

If waypoints are commanded, the inspector utilizes a path planner to determine the maneuvers

that are needed to fly between waypoints. A supervisory control computer determines the

thruster firings needed to maneuver along the path, while controlling the other satellite systems.

Navigation sensors provide data for determining inspector position and orientation. Also, a



global map of the shape of the CEV and the location of the inspector is uploaded or created at the

beginning of the operation, and then updated during the operation. The status of the inspector

satellite and operations are displayed for the pilot on the HICI.

Human
Interactive
Computer
Interface

RF
1

Figure 2-4: Block diagram of the inspection control system.

During an inspection operation, the pilot will utilize several inspector-satellite modes. Three

possible inspector operations modes are illustrated in Figure 2-5. First, in the Semi-Autonomous

Waypoint Mode, the satellite navigates around the CEV surface through a series of pre-

determined waypoints, automatically scanning for damage. The camera system points almost

directly at the surface, with its view slightly tilted in the direction of the path to identify feature
points. Then, in the Semi-Manual Waypoint Mode, the pilot specifies a maneuver height and
goal location. The inspector automatically plans a path to the goal. The camera system can be
directed to point at a specific location on the CEV surface. Lastly, in the Manual Mode, the pilot
directly controls 2-DOF of position or attitude while the autonomy holds the other 4-DOF steady.
Automation provides collision avoidance, but the pilot can override it if necessary. The NavZ
controller discussed in the next chapter can be used for either of these waypoint modes.

,

-I RF
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Levels of Autonomy for Operations Modes

A
Manual Mode

- Automation holds attitude while
the pilot controls 2-DOF of
position

- Or, automation holds position
while the pilot controls 2-DOF
of attitude

- Pilot position commands limited
to small steps

- Automation provides collision
avoidance, but can be

rri r rAn r.
UVl

Semi-Manual Waypoint Mode

- Pilot specifies distance from wall
- Pilot commands goal point along

wall
- Automation plans path to goal

point while maintaining
commanded distance

- Automation points camera at
pilot-specified location on the
CEV surface.

Figure 2-5: Three operations modes for an inspector satell ite.

2.3 Summary

In this chapter, a brief description of the SPHERES testbed and satellite systems was given.

Then, an inspector-control-system architecture was discussed. Lastly, several operations modes

were introduced. The NavZ controller was designed within this general design architecture, and

can be used in waypoint modes. The next chapter will discuss the development and flight-test

results of the NavZ.

Fully
Manual

A

Fully
Autonomous

i

Semi-Autonomous Waypoint

- Pilot specifies distance from wall
- Pilot commands series of

waypoints
- Automation plans path to goal

point while maintaining
commanded distance

- Automation points camera
towards the CEV surface,
slightly angled towards the
direction of the path
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3 Inspection Path Planning and Maneuvering

The controller designed for SPHERES inspection maneuvers includes a path-planning
controller, which fits into the simplified controller diagram as shown in Figure 3-1. This path-

planning controller takes the control input from the satellite pilot. Then, it autonomously
determines the forces that will maneuver the satellite along a desirable path. Next, the control
computer regulates the thruster firings to apply those forces to the satellite.

Figure 3-1. Overview of inspector satellite control system, with path planner highlighted

For the operations design introduced in Section 2.2, a path-planning controller has been

developed that has the desired smooth-wall-following behavior discussed in Section 1.3. The
baseline design for the SPHERES inspection controller is the Multiple Spacecraft Close-

Proximity Control Algorithm (MSCPC) developed by Dr. McCamish at the Naval Postgraduate

School (NPS) [4-6]. Section 3.1.1 gives an overview Dr. McCamish's original algorithm.

Through a joint-effort between the SPHERES team and NPS, their algorithm was
implemented on the SPHERE satellites [8]. The contributions for this thesis include

collaboration with Dr. McCamish and Dr. Nolet to implement the MSCPC on the SPHERES

testbed, translate the simulation into flight code, perform verification tests, and analyze flight

results. Sections 3.1.1-3.1.4 describe the implementation of MSCPC on SPHERES, verification

of the code, and ISS flight-test results.

After the MSCPC was successfully implemented, it was redesigned for the application of

inspection operations. Section 3.2 discusses the modifications that evolve the MSCPC into an

inspector-satellite controller. Also, ISS flight-test results of this new algorithm are discussed in

Section 3.2.3.



3.1 Baseline Controller Design Using LQR and APF

Originally, the MSCPC planner was designed to provide the control needed for multiple

satellites to approach from a distance, maneuver around each other without colliding, and then

dock together. Each satellite is treated as an obstacle surrounded by a spherical exclusion zone.

The other satellites avoid maneuvering into that zone. To create these exclusion zones, the

MSCPC algorithm combines two types of controllers: the Linear Quadratic Regulator (LQR) and

Artificial Potential Functions (APF). It incorporates the efficiency of LQR with the robust

obstacle avoidance provided by APF. References [4], [5], and [6] give detailed explanations

about how this algorithm works. Section 3.1.1 gives an overview of the algorithm developed by

Dr. McCamish. Also, it discusses how Dr. McCamish and the SPHERES team adapted MSCPC

to work on SPHERES.

3.1.1 Algorithm of Baseline Controller Design on SPHERES

The MSCPC algorithm combines LQR and APF controllers to plan fuel-efficient paths

around obstacles. In every control cycle, the desired forces are determined by LQR and

modified by APF. The LQR finds the desired forces that will push the satellite towards the goal

point. Then the APF controller decreases the LQR forces that would have pushed the satellite

towards spherical obstacle zones. At the end of the control cycle, the satellite fires its thrusters

to apply those forces.

Another way to view how the LQR and APF controller works is to look at the path. In each

time step, the LQR plans a straight path from the starting point to goal point, with gradual

acceleration and deceleration to minimize fuel usage. Meanwhile, each obstacle has a sphere of

influence. If the satellite enters any the sphere-of-influence of an obstacle, then APF shifts that

path so that it curves around the obstacle. This concept is illustrated in Figure 3-2.

LQR path
er11rirvPA hY APP;

Path with
LQR only

Start
Point

Path with
LQR only

Goal
Point

Figure 3-2. Illustration of how the satellite path is created by LQR and shifted by APF.



If multiple obstacle zones are placed near each other, then they can combine to form a mesh,
as shown in Figure 3-3. Then, the satellite sees APF contributions from nearby obstacles. If
these zones are placed along the surface of a spacecraft, they can define the shape of that surface.
Thus, multiple interconnected obstacle zones can potentially define complex geometries. This
idea is the basis for the NavZ algorithm, which is the main contribution of this thesis.

L OR i ath

Path with
LQR on1'

Starut
Point

Path with
LQR only
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Point

Figure 3-3. Illustration of a path that is shifted by APF from a mesh of obstacles.

In order to implement the MSCPC controller on SPHERES, a state-space model has been
created. The state space model used by Dr. McCamish is based on the Hill-Clohessy Wiltshire
linearized equations of relative motion. This
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state space model is shown in Equation 3.1 [1].
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The position coordinates of the satellite x, y, and z are in the Hill's frame, whose origin is in a

circular orbit around the Earth. The variable w is the orbital velocity of the target point. The

6x6 matrix in Equation 3.1 will be referred to as A, and the 6x3 matrix is B.

Because SPHERES operates in a small test volume that is approximately a cubic meter, the
affects of the orbital velocity on this path planner are negligible. Thus the A and B matrices can
be simplified to

(3.1)
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Using the block-partitioned form, A and B look like the following matrices, where I is a 3x3

identity matrix.

OI
A=( 0 )0 B= ) (3.3)

The A and B matrices in this state space model are inputs into the LQR function. With the

simplifications described above, the inputs to LQR can be simplified to Equations 3.4. This

simplification is useful, because it eases the development of an LQR solver for SPHERES.

Please see Appendix C for more details.

01 1
A= 0 0 B B( =1 (3.4)

LQR is a type of optimal control algorithm that minimizes an energy quadratic cost function.

For this application, the LQR uses the following cost function

S= T(TQ X + uTRu) dt
2 0 (3.5)

in which x is the state error vector, u is the acceleration vector, and J is the cost variable that is

minimized. In Equation 3.5, Q is the state penalty matrix. It penalizes the error in the position

and velocity of the satellite with respect to the desired final state. Equivalently, R is the control

effort penalty matrix. It scales the cost of the energy needed to accelerate or decelerate.

To solve this cost function, the assumption of an infinite time horizon is applied. Thus, the

steady-state Ricatti equation can be used to solve Equation 3.5. Even though this assumption

gives this problem a continuous infinite time, the penalty matrices are altered every control cycle

to discretize the function and recover the finite-stopping nature of Equation 3.5. The values in Q

.~ n n,

A = B =



and R are altered every control cycle using Equations 3.6. This approach was developed by Dr.

McCamish [5], but changed for SPHERES using the same block-partitioned simplification

shown in Equation 3.4.
0aQ 0

rgoal 2  a
, 0 Q2 R = anmx

vnax2 0 ) (3.6)

In this equation, rgoal is the range to the target point, vma, is the maximum maneuver velocity

set by the satellite operator, and am,, is the maximum satellite acceleration. The variables aQl,

aQ2, and 8R are gains that are fine-tuned to give the desired performance based on simulation

results. For SPHERES,

aQ1 = aQ2 = OR = rgoal (3.7)

These Q and R matrices are inputs into the LQR function along with the A and B matrices.

The LQR solver then finds the u that minimizes J in Equation 3.5. This u is the desired

acceleration aLQR, shown in Equation 3.8.

rrmin (J) = (xTQ + u*TRu*) dt
2 0 LQR = u* (3.8)

After this aLQR vector is found, it is modified by APF so that it curves around obstacles. This

modification is applied by adding the vector aAPF to aLQR. Whenever the satellite enters the

sphere of influence of an obstacle, that obstacle adds an aAPF vector. The APF developed by Dr.

McCamish applies Equation 3.9 for aAPF.

VO
aAPF = kv - +a

kt A (3.9)

The vector v, is the component of the satellite's velocity towards the center of the obstacle, and

the vector ao is the component of aLQR towards the obstacle. If the satellite's velocity is away

from the obstacle, then v, = 0. Likewise, if aLQR is away from the obstacle, then ao = 0. The kv is

a potential-field shaping function. Thus, the first term in Equation 3.9 decreases the velocity

towards an obstacle, and the second term decreases the acceleration towards an obstacle.



The kv shaping function was developed by Dr. McCamish to provide a smooth Gaussian

potential function [5].

e-ro2/(2 o-2 ) _ e-Do2 /(2 2 )
kv=

e -1 2 /(2o- 2 ) - e-Do2 /(2 o-2 ) (3.10)

Do

3 (3.11)

In these equations, ro is the distance between the satellite and the obstacle and Do is the

diameter of the obstacle's sphere of influence. The Lo parameter is the minimum distance that

the center of the satellite can be from the obstacle center such that the satellite does not enter the

obstacle zone. The equation for Lo is

Lo = Rs + uncert + Robs (3.12)

in which Rs is the maximum radius of the satellite, 'uncert' is the uncertainty of the satellite's

position, and Robs is the radius of the obstacle zone. In this application for SPHERES, Rs is 0.153

meters, 'uncert' is 0.002 meters, and Robs is 0.316 meters.

If the satellite is outside the sphere of influence (ro > Do), then aAPF = 0. Otherwise, aAPF is

defined by Equation 3.9. For Do, Dr. McCamish uses Equations 3.13 and 3.14.

Do = dol L + do2 stopdist (3.13)

vo2
stopdist =

4arm (3.14)

The variable 'stopdist' is the stopping distance of the satellite if it uses its maximum acceleration.

Also, do1 and do2 are positive stopping distance constants. In this SPHERES application, these

constants were set such that

Vo2

Do = 4Lo + 3
4arnx (3.15)

Plugging these equations into Equation 3.9 gives aAPF, which is found for every obstacle

whose influence zone covers the satellite. These APF accelerations are subtracted from the aLQR

to find the desired satellite acceleration in Equation 3.16.



Z -+ obs
adesired = LQR- a APF

obs-- (3.16)

The desired forces for the SPHERES satellite are Equation 3.17

Fdesired = Ms adesired (3.17)

in which Ms is the mass of the satellite. For this application, Ms was set to 4.3 kg, which is the

SPHERE satellite mass with about half fuel capacity. In the MSCPC development, this force

vector was then rotated to inertial coordinates. For SPHERES, it is rotated to the laboratory

coordinates. Then, the SPHERES mixers are utilized to determine the thruster firings needed to

apply those forces.

With the parameters and modifications discussed in this section, the MSCPC algorithm was

implemented in the SPHERES simulation before it was tested on hardware. The next section

discusses the simulation set up and results.

3.1.2 Simulation of Baseline Controller Design

The experiment that was designed to test the implementation of the MSCPC algorithm on

SPHERES includes three satellites. One is a chaser, another a target, and the third an obstacle.

The chaser was set a meter away from the target, with the obstacle halfway between them and

slightly offset. During the simulation, the chaser would need to maneuver around the obstacle to

approach and dock to the target. The MSCPC algorithm was implemented in the SPHERES

MATLAB simulation introduced in Section 2.1. The position and velocity of the simulated

satellite are shown in Figure 3-4.

These satellite states were animated in Satellite Tool Kit (STK) using the method described

in Reference [7]. Figure 3-5 shows screenshots of the STK animation. In Figure 3-5a, the

satellite on the left is the chaser, middle is the obstacle, and right is the target. The cone on the

chaser shows the docking face, and a faint sphere around the obstacle satellite shows its obstacle-

zone. Commanded forces are illustrated with white plumes. The chaser satellite successfully

navigates around the obstacle in Figure 3-5b, approaches the target in Figure 3-5c, and docks

with the target in Figure 3-5d.
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Figure 3-5. Results of the MSCPC algorithm implemented in the SPHERES MATLAB
simulation [8].
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3.1.3 Ground and In-Flight Verification of Baseline Controller Design

There were several steps that were performed to verify that the MSCPC algorithm was

successfully implemented on the SPHERES facility. As discussed in the previous section, the

algorithm was implemented in the SPHERES simulation, and the behavior of the satellites was

checked to ensure that they were maneuvering correctly. Then, the controller code from the

MATLAB simulation was translated into the C programming language using Microsoft Visual

C++ to run on the satellite [21]. The control code for the SPHERES satellite contains a library

that includes the matrix manipulation functions that are utilized in the NPS controller. Thus, the

only additional function that needed to be developed in C-code was an LQR solver. This LQR

solver needed to be efficient enough to run onboard the SPHERE satellites. Using a combination

of algorithms in Reference [22], a simple LQR solver, adapted to a double integrator system, was

derived for controlling the position of the satellites in all three axes. Please see Appendix C for

the LQR C-code and more details about its development.

The first step to verify that the NPS controller was successfully implemented in C-code was

to compile the C-code translation into a MEX-file accessible by the SPHERES MATLAB

simulator [23]. The resulting trajectories were compared to those of Dr. McCamish's original

MATLAB simulation. They were found to be practically identical to the original ones,

demonstrating the accuracy of the C-code translation of the NPS controller.

The second step was to test the C-code translation through hardware-in-the-loop testing.

When the NPS controller ran on the SPHERES computer, it required -10 ms (±2 ms) per

iteration. Since the algorithm would typically only be called at a frequency of 1 Hz, this

computation delay was judged to be acceptable for the real-time command structure of the

satellite.

The third step was to run the test on the flat table in the SPHERES laboratory. Because the

NPS control algorithm uses very small thrust levels (thruster opening times on the order of 20

ms), the ground satellite had difficulty overcoming the stiction, friction, and slope irregularities

of the table. However, this ground test was helpful to visually verify that the satellite was

thrusting in the correct directions during different moments in the maneuver.

Lastly, because the ground tests could not clearly demonstrate that the thrust-levels were

correct, the telemetry was analyzed after this controller was run briefly on a SPHERE satellite in

the ISS during December 2007. To confirm that the flight controller calculated the correct



outputs, the controller inputs from the telemetry were run through the simulation. The resulting

simulation thrust-levels and flight-telemetry thrust-levels are plotted in Figure 3-6. These plotted

forces are in the X-direction, using the coordinates of the ISS test volume shown in Figure 2-2.

During this initial test of the controller, the chaser and target satellites were deployed too close to

each other. When the test started, they were already touching each other. As a result, the

commanded forces in Figure 3-6 are extraordinarily small and oscillatory. Thus, this flight-test

was not useful for demonstrating the full maneuver, but was useful for validating the controller.

Both flight-telemetry and simulation-results matched very closely, indicating that the onboard

controller behaves very similarly to the MATLAB controller. From the results of these four

verification steps, it was concluded that the controller was successfully implemented on the

SPHERES hardware.
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3.1.4 Flight Results and Evaluation of Baseline Controller Design

On December 2, 2007, December 29, 2007 and January 27, 2008, the NPS test was executed a

total of six times. It was part of the SPHERES Test Sessions 10, 10a, and 11, all performed by

astronaut Dan Tani onboard the International Space Station. During the four tests in Test

Session 10 and the one in Test Session 10a, three SPHERES satellites were used (a chaser, a

target and an obstacle). The satellites did not successfully complete their maneuvers mainly

because of confusion with the deployment instructions sent to the crew. Thus, although valuable

information was collected through the telemetry, the experiments performed during these two

test sessions did not demonstrate the capabilities of the NPS Multiple Spacecraft Close-

Proximity Control Algorithm.

For Test Session 11, the on-orbit supply of SPHERES batteries was low, with a new supply

scheduled to launch in February 2008. To conserve batteries, the test was modified to use a

single satellite, with the location of the target and the obstacle pre-determined and hard-coded in

the software, to simulate a virtual target and a virtual obstacle. Figure 3-7 shows a few frames

taken from an animation of the telemetry collected during the experiment. At the beginning of

the test shown in Figure 3-7a, the chaser is on the right, the virtual target on the left, and the

virtual obstacle in the center. Although not physically present during the experiment, the virtual

target and the virtual obstacle were drawn to better illustrate the trajectory followed by the

chaser. The chaser successfully maneuvered above the virtual obstacle, as shown in Figure 3-7b.

Then, it approached the virtual target following a trajectory that would have led to docking,

given a real target at that location. The approach is shown in Figure 3-7c and docking in Figure

3-7d.
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c) Chaser approaches target d) Chaser docks with target

Figure 3-7. On-orbit Experimental Results: Animation of the telemetry collected during
the single-satellite docking experiment in the ISS.

The telemetry provided the position and velocity of the chaser, which are plotted in Figure

3-8. The origin of the coordinate system is located in the center of the test volume, and also

corresponds to the geometric center of the obstacle for this experiment. During the first 47

seconds, the onboard navigation system converged to a solution, and the satellite moved to a

proper initial position given the constraints of the test volume. The MSCPC algorithm controlled

the chaser from 47 seconds to the end of the experiment. Throughout the experiment, the

trajectory was very smooth. The apparent noise on the velocity estimates was caused by noise in

the ultrasonic range measurements. Docking would have occurred at 230 seconds. At that time,

the velocities along all three axes were estimated to be less than 1 mm/s. This experiment was

very successful, as it would likely have resulted in docking if an actual satellite were physically

present at the location of the virtual target.
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Figure 3-8. On-orbit Experimental Results: Position and velocity of the chaser during the
single-satellite docking test in the ISS.

Now that the real-time, hardware-in-the-loop implementation and performance of the

MSCPC algorithm has been validated for obstacle avoidance and docking, the next section will

extend this work to create an algorithm that can interface with a computer-vision system and be

used to navigate around complex obstacle shapes for inspection operations.
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3.2 Inspection Controller Design using Mesh of Navigation Zones (NavZ)

For the NavZ inspection controller, the MSCPC algorithm has been modified so that it works

with one miniature satellite navigating around a larger spacecraft body. As introduced in Section

1.3 and shown in Figure 3-9, exclusion zones can be placed around the feature points detected by

a computer-vision system, thus forming a mesh of NavZones. Also, the exclusion zones can be

ellipsoidal instead of spherical so that they closely follow the contours of the spacecraft body.

This section describes developments that extend the MSCPC algorithm for navigation around

obstacle meshes. Also, it discusses how the APF functions are changed to create ellipsoidal

NavZones instead of spherical ones. Lastly, this section discusses flight-test results of the new

algorithm aboard the ISS.

Figure 3-9: Illustration of inspector maneuvering around mesh of NavZones.

3.2.1 Algorithm for Inspection Controller using NavZone Mesh

The first change that was made to the MSCPC was the navigation coordinate frame. For the

MSCPC, the body coordinates of the target spacecraft were used for navigation. For inspection

operations, the coordinates of the inspected-spacecraft body will be used. This coordinate

system is useful as the frame of reference, because the smaller inspector navigates around this

larger body. For inspecting the CEV, the XCEV coordinate could be in the direction of the

inspector's docking port, and the ZCEV coordinate could be along the length of the vehicle. Figure

3-10 illustrates how these coordinates could be oriented on the CEV. The origin is in the center



of the CEV and aligned with the docking station. In the case of SPHERES testing on the ISS,
these navigation coordinates were set to the ISS test-volume coordinates shown in Figure 2-2.

7 _. _ _

1TEV

Figure 3-10: Example of a coordinate system that could be used by an inspector satellite
for the CEV

Also, the algorithm has been adapted so that the exclusion zones surround feature points

along the surface of the inspected spacecraft. The locations of these feature points are

determined each control cycle by emulating the information that would be received from a

camera system. For the initial implementation of this controller, the feature points have

predetermined locations. With an actual camera system, the computer vision would determine

the satellite's distance from feature points. In this emulated case, the satellite determines its

distance from these feature points by extracting the information from the SPHERES global

metrology system. This initial emulated computer vision and further improvements to the

emulation are discussed in Chapter 5.

When the NavZones are placed at feature points, they create a mesh that outlines the shape of

the target spacecraft. With LQR and APF controllers, an inspector maneuvers in paths that

outline the mesh of NavZones. Thus, the inspector navigates at a specified distance above the

target's surface, determined by the width of these NavZones. Because of the method described in

Section 3.1.1, that gradually combines the APF with the LQR as the SPHERE approaches a

NavZone, the path does not dip between NavZones, but smoothly follows the outline. Each

NavZone that has the inspector inside its influence zone contributes an APF to Equation 3.16,



rewritten below. These APF contributions of the nearby NavZones are summed for every

control cycle, thus creating the effect of a mesh of NavZones. Figure 3-11 illustrates this

concept. The spherical NavZones are placed to outline a complex shape, and the snapshots of

the SPHERE show that it smoothly maneuvers along that surface.

-> -+ n -+ obs
adesired = aLQR - a APF

obs-= (3.16)
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Figure 3-11 Snapshots of a satellite maneuvering around navigation zones in simulation

In the case of complex protrusions from the spacecraft body, such as solar arrays or antennas,

other potential functions could be used to outline the surface in greater detail. The spherical

potentials used for the MSCPC are beneficial, because they are not computationally expensive,

as described in Section 3.1.1. The calculations are fairly simple compared to other potential

functions. For each control cycle, the main information that is needed is the distance from each

obstacle that is in view. To provide greater detail to the surface mesh of NavZones, yet maintain

much of the computational simplicity of the original MSCPC algorithm, an ellipsoidal potential

function has been implemented. When the model of the inspected spacecraft is already known,

............ ............. ..............



ellipsoids could be placed strategically to give greater definition to the shape. Or, the ellipsoid

zones could be stretched so that they provide more overlap than the spheres, and thus a smoother

surface model, as shown in Figure 3-12. The ellipsoid NavZones on the right of the figure have

the same separation distance as the spheroid NavZones on the left, but they provide a smoother

surface. Note how the dips between the ellipsoids are smaller than those between the spheroids.

Spheroid NavZones Ellipsoi d NavZones

Figure 3-12: Spheroid and ellipsoid NavZones

Each ellipsoid has its own coordinate frame with an origin at the center of the ellipse, labeled

Xobs, Yobs, and Zobs. An ellipsoid is then defined by the orientation of its coordinate frame and its

three radii: a, b, and c. These radii are illustrated in Figure 3-13. The location of the spacecraft

along the edge of the ellipsoid is defined using the angles k and 03, as shown in Figure 3-13.

obs

Xobs

Figure 3-13. Ellipsoid coordinates

From the view of the inspector satellite, changing the potential functions from spherical to
elliptical causes the width of a NavZone to change as the inspector flies around it. So for each
time step, the width of the NavZone in the direction of the inspector satellite must be computed
to determine how close the inspector is to its surface. First, the position vector from the origin of

Z^I,'



the ellipse to the inspector satellite is found in the ellipse's frame of reference, robs. The width of

the NavZone along robs is determined by finding X and 13 in Equations 3.18 and 3.19, and then

finding the magnitude of Equation 3.20.

A= tan'- a ryobbs

Sb rxobs) (3.18)

8 = tan-1( b rz obs sinA
kc ryobs ) (3.19)

(acos/IcosA

Obs= bcosf sinL
k csinf ) (3.20)

The width of the NavZone along robs is the magnitude of Equation 3.20, lObsl. This

magnitude is then included in Equation 3.21, which is used in the controller instead of the

original Equation 3.12.

Lo= Rs + uncert + lObsI (3.21)

This revised Lo is then used in Equation 3.15 to determine Do. This change to Do affects the APF

acceleration adjustment aAPF, via Equation 3.9, causing the path to wrap around the ellipsoidal

shape. Thus, whenever the inspector enters the influence zone around an ellipsoid, the APF uses

the method in Section 3.1.1 to calculate aAPF with the NavZone radius defined by the ellipsoid.

The path is shifted around that ellipsoid using aAPF-

These NavZone meshes and ellipsoidal potential functions were incorporated into the

algorithm and simulated in the SPHERES MATLAB simulator. The simulation results will be

discussed in the next section.

3.2.2 Simulation of Controller Design using Mesh of Navigation Zones

In the first implementation of this NavZ controller, only spherical NavZones were used. The

target-spacecraft body coordinate system is set to the ISS test-volume coordinate system in

Figure 2-2. Also, the NavZones are placed at [0 0 0.1], [0 -0.275 -0.103], [0 -0.416 -0.36], and

[0 0.275 -0.103] meters using ISS test-volume coordinates. The radius of each NavZone is set to



0.153 meters. Additionally, v,,, from Equation 3.6 is set to 0.02 m/s. Thus, the simulation is

designed to be a slow-moving first implementation.

When the inspector begins near the edge of a NavZone's sphere-of-influence at [0 -0.8 -0.1]

meters, its path follows that shown in Figure 3-14. Each inspector-satellite image is a snapshot

of the location of the SPHERE at evenly spaced intervals of 40 seconds during the simulation.

The inspector appears to smoothly maneuver around the spheres-of-influence of the NavZones.
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Figure 3-14. Snapshots of satellite maneuvering navigation zones

The simulated telemetry is shown in Figure 3-15. With the maximum velocity set as 0.02

m/s, the total time needed for the maneuver is around 350 seconds. Also, the change in velocity

is gradual, as is expected when using LQR.
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Simulated Position and Velocity of Satellite
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Figure 3-15. Simulated telemetry of the SPHERE maneuvering around NavZones

While the desired behavior is for the satellite to maneuver closely around the NavZones, in

this implementation the satellite maneuvers at about twice the width of the NavZones. This

behavior is cause by the influence zones around the NavZones, illustrated in Figure 3-16.

According to Equation 3.15, the width of the influence zone is more than twice that of the

NavZone. A conclusion from this simulation is that the width of the influence zones could

potentially be altered to adjust how close the inspector flies to the NavZones. In Section 4.1,

Equation 3.15, which defines the width of the influence zones, is altered so that the satellite

maneuvers closely along the surfaces of the NavZones.
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Figure 3-16: Size of influence zones affects how close the inspector flies to the NavZones.

For the first implementation of the ellipsoid potential function, one ellipsoidal NavZone is
placed at the center of the ISS test volume with its axes aligned with those of the test volume.
The radii of the ellipsoid are set to a = 0.6 meters, b = 0.6 meters, and c = 0.3 meters. The
changes to the influence zone introduced above and detailed in Section 4.1 were implemented for
this simulation. Thus, the satellite closely followed the edge of the NavZone. Figure 3-17 shows
the results of this simulation and gives a three-dimensional view of the simulation trajectory.

These ellipsoid potential functions were fully integrated into the rest of the control code after the
first ISS test, and this integration is discussed in Chapter 6.
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Figure 3-17. Plot and 3-D visualization of a satellite maneuver around an ellipsoid using
the SPHERES MATLAB simulation.



3.2.3 Flight Results and Evaluation of NavZ Controller

The maneuver simulated in Section 3.2.2 was tested aboard the ISS during SPHERES Test

Session 11 on January 27, 2008. The results are shown in Figure 3-18a. These results look very

different than the simulated results shown in Figure 3-14, because the satellite had a different

starting point. During the ISS test, the satellite started at [0 -0.45 -0.1] meters, which was

partially inside a NavZone. Because the repulsion force grows exponentially towards the

NavZone center, the satellite pushed out of the navigation zone with large forces. This caused

the satellite to move quickly towards the wall. Once it touched the wall, it recalculated its LQR

and APF forces, and began moving towards the goal point. The start and goal points from the

test results were then put into the simulation, and the trajectory is plotted in Figure 3-18b. The

gap in between trajectories is due to the satellite touching and moving along the wall of the ISS.

Since the wall is not included in the MATLAB simulation, the simulation trajectory was plotted

to the point that it reached the wall. Then, another simulation trajectory was started at the point

that the satellite left the wall in the flight test. This shows that when the satellite begins inside

the navigation zone, the simulation results closely match the ISS Test results if the wall stops the

satellite.

Telemetry of SPHERE Trajectory from ISS Flight Test Satellite Trajectory in MATLAB Simulation
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Figure 3-18: On-orbit experimental results and corresponding simulation.
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The cause of this change in starting point was poor configuration control management.

During development of this controller, the satellite starting position was set at [0 -0.8 -0.1]

meters. Then during Test Session 10, the SPHERES team discovered that a white box had been

installed that encroached into the test volume. Now the negative y limit of the test volume was

tighter. The satellite could not go farther than ypos = -0.45 meters in the test volume. Because of

this change, the starting point in the flight code was changed. However, the corresponding

change to the simulation starting point was forgotten. Thus, the configuration of the simulation

was older than that of the flight code, and the test was not executed as it was originally simulated.

Two important lessons: Configuration Control and Test as You Fly. The configuration control

management processes were improved for the continued development of the NavZ controller

after the first flight test.

3.3 Summary

A unique path planner was designed for inspection operations. Its strength lies in its ability

to control the satellite in an optimal energy maneuver that smoothly follows the surface curvature

of another spacecraft. The baseline algorithm was the MSCPC developed by Dr. McCamish at

the NPS. This controller was modified to run on the SPHERE satellites and adapted to control

maneuvers around meshes of NavZones at feature points on a target spacecraft's surface. These

feature points are analogous to feature points that could be detected by a computer-vision system.

Furthermore, the spherical-based APF was changed to an ellipsoidal-based APF. These ellipsoid

potential functions allow for a better-defined model of the inspected spacecraft, while still

maintaining much of the simplicity of the original MSCPC algorithm.

Both the MSCPC and the NavZ algorithms were flight tested with the SPHERES hardware

aboard the ISS. The algorithms successfully performed like the simulations. Also, several

potential improvements for NavZ were discovered. These continued developments are discussed

in Chapter 4.



4 Inspection Operations Development After First
Flight Test

After the first test on the ISS, the NavZ algorithm was improved through several other

developments. The ability for a pilot to change the height of the maneuvers above the target's

surface was implemented and simulated. Also, a pointing algorithm was developed that is

unique for this NavZ path planning. Each section below describes the algorithm and simulation

of a NavZ development. Also, fully integrated simulations that combine all of these

improvements are discussed in Chapter 6.

4.1 Changing Influence Zone

As discussed in Section 3.2.3, the influence zone width needed to be changed so that the

satellite would follow the NavZones closely. To make this change, the Equation 3.15 for the

width of the influence zone was adjusted to Equation 4.1. This change makes the influence zone

width approximately 50% smaller than before.

Do= 2(4 l v 2

k 4ar (4.1)

Because of this change, the satellite now maneuvers closely along the edge of the navigation

zones. This behavior is evident in the simulation results shown in Figure 4-1. Figure 4-1b

shows snap-shots of the satellite position as dark-colored disks, and the NavZones are shown as

wire-frame white spheres. Figure 4-1b shows a three dimensional view of the maneuver. In

these graphs, the satellite maneuvers up and around the back of the mesh, while closely

following the NavZones surfaces. Note how the trajectory closely follows the edge of the zones.



Maneuver that Smoothly Follows NavZone Surfaces
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Figure 4-1: Simulation results with new influence-zone equation.

This is an improvement to the controller simulated and tested in Chapter 3. For an inspection

operation, the pilot of the inspector can command it to maneuver at a specified distance above

the target's surface. This specified distance sets the size of the NavZones (Lo). For the controller

in Section 3, the satellite moves outward to about twice L, away from the target's surface, then

completes the maneuver needed to get to the goal point. Now, with the new Equation 4.1, the

satellite's trajectory is consistently at Lo above the target's surface. Thus, the satellite maneuvers

at the specified distance above the target's surface.
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4.2 Controlling Height Above the Target's Surface

With the development described in Section 4.1, the inspector pilot can now control the height

above the target's surface at which the inspector maneuvers. Changing the variable that defines

the size of the NavZones, Lo, changes the height of the maneuver. When the pilot inputs a new

desired height, the variable Lo is reset to this value. This is a useful aspect for the NavZ

controller. An inspector pilot may need to have it maneuver closer to the target surface in order

to see particular features. Or, the inspector pilot may need to fly farther away for quicker

maneuvers or broader situational views.

Simulations were performed implementing commands for maneuvering different heights

above the target surface. In the operations modes discussed in Section 2.2, when a pilot specifies

a new height, the satellite first flies to that height. Then, the NavZones are sized to that height,

and the maneuver begins. To imitate this operations mode, in these simulations the start point is

set at the surface of a NavZone. Thus, that start point shifts if the NavZone increases or

decreases in size.

Graphs from two of these simulations are shown in Figure 4-2. Both of the start points are

set so that they are located on the edge of far-left NavZone. Also, both have the same goal point.

Figure 4-2a shows a simulation with the height Lo set to 0.153 meters. Figure 4-2b shows a

simulation in which the height Lo was changed to 0.3 meters, and the start point was offset by

this new height to remain on the NavZone edge. These results show that a pilot can change the

value of Lo in order to inspect closer or farther away from the vehicle.



a) Front view of low maneuver b) Front view of high maneuver

End
d

c) Top view of low maneuver d) Top view of high maneuver

Figure 4-2. Inspector satellite maneuvers at two different heights above the vehicle hull.

4.3 Controlling Maneuver Speed

In addition to controlling the height of the maneuver, an inspector pilot will want to control

the speed of the maneuver. When there are other important CEV operations as well, an

inspection operation will have a specified time schedule. In this case, a maneuver's time could

be limited, and the speed adjusted accordingly.

The variable vax can be utilized to control the time it takes to perform a maneuver. This

variable adjusts the speed of the whole maneuver by affecting the LQR accelerations through

Equation 3.6. If vmax is increased, the accelerations calculated by LQR increase, thus increases

the maneuver velocities. Because of the design of the combined LQR and APF controller, the

APF also adjusts to handle these increased velocities. Looking at Equation 3.9, if v,,ax is



increased, then the velocity towards an obstacle v, increases, and the corresponding APF

accelerations increase. Thus with an increase in vmx, the values of aLQR and aAPF adjust and

balance to create a quicker maneuver that still successfully avoids the navigation zones.

Several simulations were performed with different values for vmax. The maneuver that was

used for these simulations is graphed in Figure 4-3. The following figures show the results of

changing vma,. The maneuver in Figure 4-4 implemented a vmax of 0.05 m/s, and shows that the

maneuver finished in 100 seconds. For Figure 4-5, vma, was 0.5 m/s, and the maneuver finished

in 80 seconds. Thus, changing the variable vma successfully changes the maneuver speed.

Manrt

a) Front View b) 3-D View

Figure 4-3: Maneuver performed for the simulations testing changes in vmax.
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4.4 Pointing

For most inspection operations, an imaging system needs to point at the surface of the target.

One of the useful aspects of the NavZ algorithm is that the inspector's velocity and path are

mostly parallel to the surface of the target. This aspect is useful when it comes to the automated

pointing control that is introduced in Section 2.2. Knowledge of the location of the target surface

is limited by knowing only the location of feature points. Because these feature points are

discontinuous, this could make a smooth automated pointing algorithm difficult to implement.

However, if one face of the inspector is controlled to always point along the parallel path, then

an adjoining face to that one can be controlled to always point towards the target's surface. Thus,

the smooth paths of the combined LQR and APF can aid automated pointing.

As a first implementation of this automated pointing, the inspector's +y face was controlled

to point in the direction of the velocity vector, and the -z face was controlled to face the target

surface. The -z face contains the tank, which will emulate the camera. First, the velocity of the

inspector is determined in laboratory coordinates from the SPHERES sensors. Then, the

quaternions needed to point the satellite in the direction of that velocity are found using the

method in Reference [24]. The Euler angle rotations that would point the +y face to the velocity

vector are found using Equations 4.2-4.4.

0=tan-lFvY +lr, Vz<o
SV ) (4.2)

0= tan-1 VZ-r, Vz>0
LVY (4.3)

=- + tan- 1
2 Vy2 + V2 1 (4.4)

where Vx, Vy, and Vz are the coordinates of the velocity vector in the ISS test-volume coordinate

system. Equations 4.2 and 4.3 find the angle 0 that will rotate the SPHERE about its x-axis so

that its -z face points towards the velocity vector. Next, Equation 4.4 finds the angle 0 that will

rotate the SPHERE about its z-axis so that its +y face points towards the velocity vector. After 0



and 0 are calculated, then the rotation matrix A is found using Equations 4.5- 4.7. Lastly, the

quaternions that would give these rotations are found using Equations 4.8-4.11.

1 0 0
Ax= 0 cos0 sine

~0 -sinO cos) (4.5)

cos@ sinF 0
Az= -sin4 cosF 0

0 0 1) (4.6)

A = AzAx (4.7)

1
q1 - 1+ All- A22 -A 332 (4.8)

1
q2 (A12 + A21)

4ql (4.9)

1
q3 - (A13 + A31)4ql (4.10)

1
q4 - (A23 - A32 )

4q, (4.11)

This pointing algorithm was implemented in the SPHERES MATLAB simulation. The

quaternions were commanded and controlled using a SPHERES PD attitude controller. Figure

4-6 shows the results of one maneuver. Note how one face points towards the velocity vector,

which is parallel to the navigation-zone surfaces. Also, the tank face points towards the vehicle.



RE

Figure 4-6: Simulation of maneuver with the pointing algorithm.

One of the weaknesses in this pointing algorithm is that when velocities become very small,

the noise in the velocity measurements is larger than the commanded velocity. When this is the

case, then the velocity magnitude is no longer parallel to the target surface. To handle this aspect

of the pointing algorithm, whenever the inspector comes within 15 cm of the target point, its

quaternions are set to a default value with the tank face pointing downward in the ISS test

volume.

4.5 Waypoints and Active Handling of Local Minima

During an inspection operation, the pilot of the satellite will need the ability to actively set

waypoints for the satellite to follow. An algorithm for waypoint following was designed,

simulated, implemented on SPHERES, and tested. For a series of maneuvers, the locations of

waypoints are commanded. Then the NavZ algorithm plans the path and controls the satellite to

maneuver through those waypoints.

Initially, an on-board counter is set to zero and the first waypoint is set as the goal point.

LQR plans a path to that waypoint with APF modifying that path to go around the NavZones.

During each one-second control cycle, the variable rgoal that is used in Equation 3.6 is checked.

If rgoal is less than 6.0 cm, then the body of the SPHERE is touching the waypoint. During the

control cycle, if rgoat is less than 6.0 cm, then the counter is increased by a value of one. A

second later, the control cycle is run again. If the counter increases to two, then the SPHERE has

been touching the waypoint for more than one second. At this moment, the counter is reset to



zero, and the next waypoint is set as the goal point. Each waypoint is set as the goal point in
turn, until the inspector has maneuvered through all of the waypoints.

This waypoint algorithm was implemented in the MATLAB simulation, and Figure 4-7
shows a maneuver that includes two waypoints. The satellite first flies to the waypoint at the
bottom of the test volume, then flies up to a second waypoint on the right side of the test volume.

#2

Figure 4-7. Snapshots of a satellite performing two maneuvers to two different
waypoints in simulation.

After simulating this algorithm, it was tested on the SPHERES table. Because the forces of
the NavZ controller are very small, the commanded thruster firings are not large enough to
overcome the friction of the table. However, the objective of this test was to check that the
counter incremented properly, and that the goal point switched when the SPHERE reached a
waypoint. Thus, the movement of the satellite was assisted by gently pushing it in the directions

that the thrusters were firing. When the satellite reached a waypoint, the telemetry showed that

the counter increased until it reached two. Then the waypoint was changed and the counter reset

as expected. The satellite successfully went through five waypoints during this test.

This waypoint algorithm can also be used to handle local minima within the NavZ controller.

One of the weaknesses of some APF path planners is that there are local minima. A local

minimum occurs when the LQR commanded accelerations are canceled by the APF accelerations.

If the remaining LQR forces are smaller than the minimum thruster firing force, then the satellite

cannot implement those forces and will remain stationary. In the NavZ controller, this only



happens if the satellite is inside a concave surface shaped by the navigation zones, or if it is on

the exact opposite side of a navigation zone from the target point. The pilot of the inspector

satellite can actively handle these local minima by setting an additional waypoint. This approach

is similar to the wall-following algorithm in Reference [25], in that the satellite follows the wall

until it gets out of the local minimum. The robot in Reference [25] remains completely

autonomous by choosing a semi-random direction to leave the local minimum. On the other

hand, the NavZ utilizes the knowledge of the human pilot to add a waypoint. Thus a human who

is in-the-loop chooses the direction that the satellite leaves the local minimum.

4.6 Getting Out of a Navigation Zone

In the first ISS test of the NavZ algorithm, the SPHERE began its maneuver inside a

NavZone. Because the strength of the APF forces increase exponentially as the satellite gets

closer to the NavZone, the satellite was pushed very rapidly away from the NavZone. The

algorithm's original design was for a mission in which satellites approach each other from a

distance, and it was not designed to handle the case when a satellite begins inside the NavZone.

However, in inspection operations it is possible to accidentally set the navigation zones such that

the satellite is inside of them.

For example, an inspector could be located at four meters away from the target surface, and

then it is commanded to fly a maneuver at 5 meters above the target surface. In this instance, the

inspector is inside the NavZones. The correct procedure would be to relocate the inspector to

five meters, then begin the NavZ maneuver. However, the algorithm should be designed to

automatically handle a situation in which the satellite is inside a NavZone.

To improve the NavZ algorithm for handling this case, the values of the APF forces are

modified if the inspector is inside a zone. Instead of continuing to increase exponentially inside

the zone, the APF forces remain constant, set to their level on the edge of the zone. Also, the

LQR forces are set to zero until the inspector has successfully cleared the NavZone. With this

design, APF forces moderately push it out of the NavZone, and then the LQR & APF control

comes online once it has escaped the zone.

To alter the APF forces, Equation 3.10 was modified so that the force factor kv levels off and

remains constant when the satellite is inside a NavZone. Figure 4-8a shows the original kv over a

range of distances outside and inside the NavZone. Figure 4-8b shows the new kv that levels off



inside the NavZone. For these graphs, the stopping distance in Equation 3.10 has been set to 5.0

cm, and the NavZone size has been set to 0.3 m.
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Figure 4-8. APF force factor, kv, over a range of distances from the edge of a NavZone.

This APF algorithm revision was implemented in the MATLAB simulation. The inspector

starting position and NavZones were set to the same locations as the ISS test discussed in Section

3.1.4. As shown in Figure 4-9, the satellite is pushed out of the navigation zone in a slower and

better-controlled fashion than the maneuver seen in the first ISS test.

Goal0

Figure 4-9. Snapshots of a simulation in which the satellite maneuvers out of a NavZone
using the new force factor distribution.

62

Original

New------- -------- ~

-""

1r· Iv iff l V V I vk i

" "..". ..'.......i

.. ... ... ... ...

............

................

............. .............



4.7 Replanning Path Due to Previously Unknown Obstacles

One useful quality of the NavZ path planner is that it can handle navigation without a-priori

knowledge of the target spacecraft's geometry or with the emergence of unexpected obstacles.

As discussed in Chapter 3, the inspector satellite does not have APF accelerations from a

NavZone until it is within its influence zone. Thus, it adjusts its path online once it "sees" a new

feature point.

Figure 4-10 shows a simulation in which there is an obstacle (OBS) that sticks out from the

rest of the navigation zones. When the satellite approaches the top of the vehicle, it enters the

influence zone of this protruding obstacle. At this point, it "sees" the obstacle, and the APF

alters the path around the obstacle.

f_ C'

Start

Figure 4-10. Simulation of an inspector satellite maneuvering around an unexpected
obstacle.

There are several situations in which this aspect of NavZ is useful. For example, mission

control could suspect that a CEV solar panel has not deployed correctly. As long as the

computer-vision algorithm notices the new locations of the feature points, the NavZ algorithm

places NavZones at those new locations. Another example is the inspection of an unknown

satellite. An inspector approaches a satellite with an unknown configuration, the computer-

vision system determines feature points, then the NavZ places NavZones around those feature

points. Thus, NavZ can handle unknown spacecraft shapes or unknown obstacles. Navigation in



these situations is not limited by NavZ, but is limited by the ability of the computer-vision to

accurately identify feature point locations. The next chapter will discuss emulating computer-

vision and some of its weaknesses.

4.8 Summary

After the first flight test of the NavZ algorithm aboard the ISS, several improvements were

incorporated into NavZ. First, the size of the influence zones was adjusted so that the satellite

would closely follow the edge of the NavZones. With this improvement, the pilot of the

inspector satellite can now expect the satellite to fly approximately at a height equal to the

NavZone size. Another issue discovered during the first flight test was that the satellite moves

out of a NavZone too rapidly. Thus the forces inside NavZones were adjusted so that the

satellite leaves the zone in a slower manner.

Later, several user choices were added to the satellite operation. The ability for the pilot to

change a maneuver's speed and height was implemented and simulated. Additionally, waypoint

commands were incorporated into the algorithm. With these improvements to NavZ, the

inspector satellite pilot now has more control over the flight.

Lastly, the ability for the algorithm to adapt to previously unknown obstacles was simulated.

This situation may be useful if the target spacecraft has an unknown shape, or if its shape has

changed unexpectedly. For example, the CEV's expected shape could be distorted if one of the

solar panels did not deploy properly.

With these new developments for NavZ, the algorithm is now more capable for use in

inspection operations. After these developments were completed, some improvements to the

emulation of the computer-vision information were incorporated into the NavZ simulations.

These emulation improvements are discussed in Chapter 5. Also, several of these developments

were integrated together into flight-tests for the ISS. These tests are discussed in Chapter 6.



5 Emulating Vision Based Navigation (VBN)

For the NavZ algorithm, one of the key sensors is a camera system used for computer vision.

The block diagram in Figure 5-1 shows how these sensors fit into the simplified inspector system

model. For vision-based navigation (VBN), the camera system would locate the feature points

on the inspected vehicle. As discussed in Section 1.3, these feature points are then the locations

of the navigation zones. While the NavZ algorithm was designed and implemented, other

members of the SPHERES team were developing a computer-vision system for the satellites.

The goal was to develop the camera and control system designs in parallel, so that they would

interface with each other. To ease the integration of the NavZ with the evolving computer vision

system, the information received from the cameras was emulated. Section 5.2 discusses the

initial VBN-data emulation that was used for NavZ. This emulation was used for the simulations

and tests in Chapters 3 and 4. Then Section 5.3 discusses an improvement to this emulation in

which the SPHERES navigation beacons are placed at the locations of the feature points in

simulation. Section 5.3 also discusses the position uncertainties that are introduced because of

this beacon placement. Section 5.4 discusses another improvement to the VBN emulation, in

which a position uncertainty of 0.02 meters is incorporated into the NavZ algorithm. Lastly,

Section 5.5 shows how the NavZ algorithm can adjust and still work when the computer-vision

loses track of a feature point.

Figure 5-1. The camera system used for VBN is a part of the Sensors block in this
inspector satellite system model.
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5.1 Navigation Requirements for the Computer Vision System

The NavZ algorithm was developed with some assumptions about the information received

from the computer-vision system. These assumptions were defined after several iterations of

exchanging information and discussions with the team working on the computer-vision system.

Based on these assumptions, the following requirements were established for the computer

vision system so that the NavZ would interface with it:

0. The computer vision system will identify feature points on the target spacecraft's surface.

1. The computer vision system will determine the distance of the inspector satellite from

feature points.

2. The computer vision system will determine the location of the inspector satellite with

respect to feature points using a reference coordinate system defined below.

3. The computer vision system will determine the orientation of the inspector satellite with

respect to feature points.

For testing inspection algorithms on the ISS, the laboratory coordinate system would be the

reference. And for an inspector satellite, the reference coordinate system would be that of the

target spacecraft.

5.2 Initial Computer Vision Emulation Using SPHERES Ultrasound

During the first implementation of NavZ with SPHERES, the computer-vision information

was emulated using the SPHERES ultrasound system. The locations of the feature points were

predetermined and coded into the controller. Using the ultrasound system, the satellite location

was estimated in the ISS laboratory frame. Then, the information for computer-vision

requirements 1-3 was extracted from the ultrasound information. First, for the position of the

inspector satellite with respect to the feature points, the ultrasound location of the inspector

satellite was subtracted from the location of each feature point. An illustration of this feature-

point vector extraction is shown in Figure 5-2. Second, the distance to each feature point was

determined by finding the magnitude of each of those vectors.
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Figure 5-2. Satellite position vectors determined by the ultrasound beacons. The vectors
from the satellite to the feature points are then extracted from this data.

All of the results in the previous sections of this document utilized this method. The

performance of the satellite maneuvers has shown a position error of less than 2.0 mm. This

small error is due to the 2.0-millimeter position uncertainty of the SPHERES ultrasound

estimators. However, most computer-vision algorithms have different levels of position and

attitude uncertainties than ultrasound systems. To introduce some of the position uncertainty that

computer-vision exhibits, the emulation was improved by placing the SPHERES navigation

beacons at the feature points in simulation. This development is discussed in Section 5.3

5.3 Placement of Beacons at Feature Points

The next step towards improving the emulation was placing beacons at the feature points in

the simulation. VBN measures the locations of the feature points relative to the body frame of

the inspector satellite. This aspect of VBN can be mapped into the ultrasound system by placing

0



the beacons at feature point locations. Then the satellite only receives position information from
those points.

In the SPHERES simulation, a surface was designed as shown in Figure 5-3. Three beacons
were placed in the center of the NavZones, to emulate feature points. Also, two additional
beacons were placed in front of and behind the NavZones as shown in the figure. All of the
beacons were rotated in the simulation so that they faced downwards.

Bottom View

0

000
0

Figure 5-3. Simulation design, with beacons located inside the NavZones. The bottom
view illustrates the additional two beacons in front of and behind the NavZones.

This simulation was run first using the SPHERES global estimator with the beacons located

at the edges of the test volume. Then, the simulation was run with the beacons at the feature

points. Figure 5-4 shows the path of the inspector satellite. The simulated telemetry results in

Figure 5-5 and Figure 5-6 show that performance of the satellite in both simulations is very

similar. In these graphs, the dashed lines are the x, y, and z positions estimated by the satellite in

the simulation, and the solid lines are the actual positions of the satellite in the simulation. The

estimator converged and the satellite was able to navigation around the zones. Note how the

errors between estimated and actual position of the satellite are slightly larger when the beacons

are placed at the feature points than when they are placed at the edges of the test volume.
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Figure 5-4. Path of satellite maneuver for simulation of emulated VBN.
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Figure 5-5. Simulated position of the satellite as it maneuvered using the SPHERES
global metrology in simulation.
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Position of Satellite Using Emulated VBN

Test Time (s)

Figure 5-6. Simulated position of the satellite as it maneuvered with the beacons at the
feature points.

Looking at the geometry of this new beacon set-up can help explain why the estimation
errors are slightly larger in Figure 5-6 than in Figure 5-5. Because the beacons are placed on a
flattened surface when they are at the feature points, error in the estimation of shear translation is
introduced. Shear translation is the movement of the inspector satellite parallel to the target
spacecraft's surface.

With the ultrasound system, any movement in shear translation must be measured through
changes in the ranges from the beacons. Because the ultrasound beacon has a position
uncertainty of 2 mm, this uncertainty introduces a shear translation uncertainty. The purpose of
the following calculations is to find the minimum change in shear-translation position that can be
detected by the SPHERES ultrasound system.
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In Figure 5-7, LI is the range from the satellite to a feature point. When the satellite moves

A6, its new range to the feature point is the variable L2. During this maneuver, the range changes

by AL. Equation 5.1 shows the relationship between L1, L2, and AL. Rearranging the equation

and taking the Taylor Expansion gives Equation 5.2. Then, rearranging the terms gives Equation

5.3 for AL, which is the change in the range due to the shear-translational movement. Finally,

the Equation 5.4 gives AS. If AL is the set to equal the 2.0-mm minimum detectable range

change, then A6 is the minimum detectable shear-translation change.

Feature
Point

Beginning
Satellite
Location

Ending
Satellite
Location

Figure 5-7. Diagram of the geometry
using SPHERES ultrasound system.

used for calculations of the shear translational error

L22 = L12 + A (5.1)

L2  A,1( 2 1 A6 2

L L1 ) 2 2
(5.2)

1 A62
AL = L2 - L1

2 L1 (5.3)

(5.4)A6s 2 AL L1

Using Equation 5.4, if AL is set to the range uncertainty of 2.0 millimeters and L1 is set to 0.5

meters, the shear translation uncertainty A6 is approximately 4.5 centimeters. Table 5.1 shows a

few ranges, and their corresponding shear translation uncertainties.



Table 5.1. Shear translation uncertainty due to range error at several ranges from a
feature point

Range from Ultrasound Range Shear Translation
Beacon Uncertainty Uncertainty
L1 (mm) AL (mm) 6 (mm)

100 2 10
500 2 45
1000 2 63

Next, the relationship between the range resolution and the attitude resolution will be

discussed. A SPHERE has four ultrasound sensors on each face located 50 mm apart from each

other. An assumption in the following calculations is that whenever a sensor has moved so that

its change of range to a beacon is over 2.0 millimeters, then the system detects that change. In

Figure 5-8, the satellite changes its pitch by an angle of (P. The angle P is related to AL in

Equation 5.5. If AL is set to 2.0 millimeters, then (p is the angular resolution of the satellite

during pitch and yaw maneuvers. The satellite must rotate by at least p degrees before its

estimator can determine that it is rotating. Thus, the angular resolution of pitch and yaw

rotations is approximately 2.3 degrees. Pitch and yaw rotations are along axes that do not point

towards the beacon or feature point.

Feature
Point

L

Sensor 1 Initial4
aL

lq

Sensor 2TiV
Sensor 1 Fimal U0 9'j

Figure 5-8. Diagram of the geometry used for calculations of the pitch and yaw
rotational resolution using the SPHERES ultrasound system.
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w 50rn (5.5)

For roll around the axis which runs between the satellite and the feature point, no change in

the roll angle will give a AL change in the range of the sensors. Thus, the angular resolution for

this pure roll situation is undefined.

TPron = 00 (5.6)

As a shown from the calculations in this section, placing the beacons at the feature points in

the simulation introduces a new set of position and rotational uncertainties other than the original

2.0-millimeter uncertainty. These range, pitch, yaw, roll, and shear-translation resolutions

developed in this section will be used in the next section to improve the emulation of VBN. Also,

because the estimator still worked with this beacon modification, this simulation was then

modified further to emulate VBN errors.

5.4 Incorporating VBN Errors into Emulation

When a computer-vision system is used, it has different position and attitude uncertainties

than those of an ultrasound system. These uncertainties are affected by how the VBN system

works. Figure 5-9 illustrates a basic computer-vision algorithm, in which a tetrahedral feature

point is mapped onto a camera-image plane to determine the movement of the satellite. The

points are shown as only filling one pixel for illustrative purposes, but would fill multiple pixels

in reality. As the satellite moves to a closer range, the images spread out, and the motion is

determined when the points enter the adjoining pixels. Likewise, during rotation maneuvers, the

points move along the camera image plane as shown in Figure 5-9 (d) and (e).
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Figure 5-9. Illustration of how rotational and translational satellite movement maps into
a camera image.

The algorithms have a greater challenge detecting shear translation, because it looks very

similar to pitch/yaw rotation, except that there is image distortion. Partially because of this
ambiguity between pitch/yaw rotation and shear translation, these measurements in satellite

movement are not as accurate as those of range and roll. Figure 5-10 illustrates how the
accuracies of position and attitude measurements compare between ultrasound and VBN. In
general, the VBN range errors are larger than the two-millimeter ultrasound accuracy [26].
Meanwhile, the changes in attitude using VBN (particularly roll) are easier to detect than those
using ultrasound. Looking at Figure 5-9, very small changes in attitude will move the pixel-
locations of features, thus making rotation easy to detect.

Overall, the computer vision is strong at determining attitude, because of the way that
attitude-change maps into the pixels. Its weakness is distance, because it has to extrapolate
distance information from the pixel mapping. However, the ultrasound system's strength is in
determining position, because this is what it initially measures with its sensors. Its weakness is
attitude, because it has to extrapolate attitude information based upon the distance measurements.

Feature Pixel
Point

(a) Initial projection
on camera plane

(d) Pitch/Yaw (e) Roll
rotation rotation
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Figure 5-10. Ranking the strengths and weaknesses of detecting changes in position and
rotational movement using ultrasound or computer vision.

To improve the emulation of VBN data while still using the SPHERES ultrasound system,

the uncertainty in the VBN distance measurements can be artificially inserted into the

positioning algorithm. Fortunately, one can take very accurate position data and add uncertainty.

Thus, adding position uncertainties similar to those seen using computer vision can improve the

emulation of the VBN.

In the VBN emulation for the NavZ controller, position uncertainties were incorporated. The

values of these uncertainties were determined empirically. An algorithm was chosen that was

similar to one that could be used for CEV inspection operations. For inspecting the CEV, two-

dimensional feature-point markers may be preferred over three-dimensional markers. In such a

case, the markers would not stick out from the vehicle's body. An algorithm developed by

Coelho, Campos, and Kumar uses 2-D markers shown in Figure 5-11 [27].

Figure 5-11. Two-dimensional marker for computer-vision navigation designed and
tested by Coelho, Campos, and Kumar at 0.5-meter distances [27]

Coelho, Campos, and Kumar measured the accuracy of the algorithm in hardware through

nine tests. Three orientations of the marker were tested. During each test, the camera system



was placed at a distance between 0.45 and 0.66 meters from the marker. The range errors that

were measured were between -2 cm and 2 cm [27].

Because this algorithm uses 2-D markers and was tested at distances similar to those used by

inspection operations, the data about its position uncertainties has the order of magnitude that

will probably be seen when SPHERES uses an actual computer vision system. Thus, these

position uncertainties of 2 cm were incorporated into the NavZ emulation.

First, the variable 'uncert' that goes into Equation 3.12 was changed from 0.002 to 0.02

meters. Then, a random uncertainty that ranges between -2 cm and 2 cm was added to the

measurement of ro, which is then used in Equation 3.10 to determine the affect of the APF. The

same maneuver was performed as in Figure 5-4. Figure 5-12 shows the simulated position

telemetry of this satellite maneuver with this emulated VBN uncertainty. The dashed lines in

Figure 5-12 are the states graphed in Figure 5-6 for comparison. These simulation results show

that this new emulation does introduce a greater position error, but the inspector still successfully

maneuvers to the desired location.

Position of Satellite Using Emulated VBN With Uncertainty of +/- 2 cm
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Figure 5-12. Simulated maneuver of satellite with an emulated VBN uncertainty of 2.0
centimeters.
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5.5 Actively Handling Failure of Feature-Point Detection

Another aspect of VBN that was not initially emulated is that feature points are not always

detected. Based on the information in Reference [26], a computer-vision system can miss or

loose track of a feature point. This aspect of computer-vision is one of its weaknesses. Because

the NavZ determines the path in real-time for every control cycle, it can adapt if a feature point

cannot be detected. Especially in the case of the CEV, with which the shape of the vehicle is

known, a parallel computer process can be used to determine if a feature point is missing. Then

a NavZone can be added where a feature point should be located. Or, the NavZones surrounding

the missing feature point could be stretched into ellipses and connect together to cover the hole

in the mesh. Also, in the case of a satellite that does not have a shape known a-priori, a parallel

process could be used to detect holes in the mesh. Then, the surrounding NavZones can be

stretched so that they connect together.

This idea of stretching the NavZones to cover missing feature points was implemented in

simulation. Figure 5-13 shows the beginning of the satellite maneuver, in which all of the

adjacent feature points are detected. Forty seconds into the maneuver, a feature point in the

middle of the mesh disappears, and the other NavZones are stretched so that they connect to each

other. Figure 5-14 shows that the satellite completes the maneuver with the re-shaped NavZones.

Start

T = 40 sec.

Figure 5-13. Simulation results in which satellite sees three feature points through first
40 seconds of maneuver.
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Figure 5-14. Simulation results after 40 seconds of the maneuver, in which the satellite
has lost the detection of the center feature point.

5.6 Summary

In the future, the NavZ algorithm will interface with a computer-vision system. In order to

facilitate this integration, the emulation of the computer-vision data was improved. In all the

previous development of NavZ, the ranges to feature points were extracted from the surrounding

ultrasound system. For the first improvement to this emulation, the beacons were placed at the

location of the feature points in simulation. This adaptation was one step closer to emulating

VBN, because the position information was received directly from the location of the feature

points, and a shear translation uncertainty of 4 cm was introduced. Second, a position

uncertainty of 2 cm was added to the range-to-feature-point measurements in simulation. This

uncertainty was based empirically on the computer-vision tests done by Coelho, Campos, and

Kumar [27]. These first two emulation improvements were simulated in the SPHERES

MATLAB simulation, and the NavZ algorithm performed well with the satellite navigating along

a mesh of NavZones.

Lastly, a simulation was performed of an operations situation in which the camera does not

detect a critical feature point. In this situation, the NavZones of the adjacent feature points were

adjusted into ellipses to cover the hole in the surface mesh. This simulation showed the

adaptability of the NavZ algorithm, and one possible approach towards improving this feature-

point-detection weakness in computer-vision navigation.



6 Integrated Tests and 3-D Navigation Around CEV

After the developments discussed in Chapter 4 were simulated, they were integrated onto the

SPHERES hardware for two final ISS tests. These tests were designed to perform two complete

scenarios of operations inspecting the CEV. Sections 6.1 and 6.2 discuss the design of these

tests. Then Section 6.4 shows a simulation of one of the operations in Satellite Tool Kit,

including a scale-model of the CEV.

6.1 Integrated Test One

This test is designed to incorporate NavZ maneuvers, waypoints, ellipsoid potential functions,

speed change, and height change. Also, this single test demonstrates two different mission

scenarios.

Mission 1: The astronauts and mission-control team suspect a problem at a specific location

on the CEV surface. The communications antenna has potentially deployed improperly.

Inspection will give valuable information for planning an EVA to repair the antenna. An

inspector satellite is deployed for this mission. The flight team sends pre-planned waypoints that

the inspector follows to the location of concern. Then, the flight team sends a series of real-time

commands that will obtain different images of that location. To support this scenario, the

NavZones in Integrated Test One are placed in a mesh that has a 5.0-meter-diameter curvature,

similar to the CEV hull. One NavZone is placed so that it protrudes from the mesh curvature.

This NavZone imitates the location of an antenna.

Mission 2: The MIT students and researchers on the SPHERES team suspect that during the

last few months of ISS construction, a new object has been installed that encroaches into the test

volume. This object is a large white box. During the previous test session, a SPHERE bumped

into it, which notified the team of its existence. The team needs to know the location of this box

so that they can avoid collisions with it in the future. One student designs a test in which the

SPHERE performs inspection maneuvers along the inside wall of the ISS, and moves in closer to

fly around the trespassing box. Figure 6-1 shows a picture of this object. To support both of

these mission scenarios with the same test, the mesh described for Mission 1 is placed along the



port wall of the ISS test volume. The NavZone that protrudes from the mesh curvature is placed

at the location of the white box. Thus, this protruding NavZone represents both the location of

the white box and the location of the CEV antenna.

•hlite Box
inside Test

Volune

Pol Stawboard

Figure 6-1: The ISS test volume with the encroaching white box located on its port side.

6.1.1 Design and Simulation

For this test, the satellite does three maneuvers that are sequentially closer to the box/antenna.

During the first maneuver, the satellite does an inspection fly-by at a height of 0.43 meters and a

vm of 0.5 m/s. This v,,m is larger than it was in Section 3.2.3, so the satellite will maneuver

faster than it did in the first ISS flight test. The maneuver starts near the deck of the ISS, and it

ends at the first waypoint located near the overhead. In Figure 6-2, the results are shown from

the simulation of this maneuver. A snapshot of the position and orientation of the SPHERE is

shown for every 10-second interval of test-time. Figure 6-2a shows a front view of the maneuver,

from the same viewpoint as the ISS picture in Figure 6-1. In Figure 6-2b, the image has been

rotated 450 to give a 3-D viewpoint of the maneuver. As discussed before, this NavZone mesh

outlines the surface of a cylinder with a 5-meter diameter, to imitate the surface of the CEV. The

NavZone that covers the box is the one that protrudes from the others in the figure. The

simulation images in Figure 6-2 show how the first maneuver also curves with the surface.
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Figure 6-2: Simulation of the satellite flying the first maneuver.

While the satellite did this first pass, its pilots have noticed the box/antenna that they want to

inspect more closely. A new height of 0.27 meters is set, so that the satellite flies closer to the

surface. Then, the next waypoint is placed close to the box. The SPHERES PD controller is

used to reposition the inspector satellite to the new 0.27-meter height, and then the NavZ is used

for maneuvering to waypoint two. The images in Figure 6-3 show a simulation of the second

maneuver. Note how the NavZones in Figure 6-3 are smaller than those in Figure 6-2.

After reaching the second waypoint, the pilots want to fly the inspector even closer to the

surface and to pass directly over the box/antenna. A new height of 0.08 meters is set. The

NavZones shapes are changed to ellipsoids to provide the smaller height but still cover the wall.

Again, the SPHERES PD controller is used to reposition to the new 0.08-meter height above the

surface. Then, the NavZ is used for maneuvering to waypoint three. Figure 6-4 shows this final

maneuver. Note how this final maneuver requires the NavZ to plan a path that avoids the box's

NavZone. Additional viewpoints are provided for this maneuver to show how the path wraps

around the box.

NavZone over
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Figure 6-3: Simulation of the satellite flying the second maneuver.
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Figure 6-4: Simulation of the satellite flying the third maneuver.
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The simulated position and velocity telemetry of the satellite are graphed in Figure 6-5. The

graphed position and velocity data are results from the SPHERES MATLAB simulation.

Waypoint markers were added to the graph to show the beginning and end of different

maneuvers. Also, the approximate lower-limit of Py due to the NavZones is shown in Figure 6-5.

This limit was determined by calculating the width of the NavZones in ten locations, and placing

the limit markers in the graph by hand. The entire operation required about four minutes to

execute. During the first maneuver, the satellite swings wide of the limit by approximately 0.15

meters. This behavior happens because the satellite flies close to the protruding NavZone, thus

entering the edge of its influence zone and seeing an extra APF contribution. Based on this

telemetry and the 3-D visualizations, the satellite successfully performs the desired maneuvers in

this simulation without entering a NavZone.

Position and Velocity of Satellite During Simulation of Integrated Test One
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Figure 6-5: Simulated position and velocity telemetry for Integrated Test One.
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6.2 Integrated Test Two

This second test is designed to incorporate NavZ maneuvers, waypoints, and pointing. The

mission scenario is an automated operation for inspecting the CEV.

Mission: An inspector satellite is commanded to do an automated inspection of the CEV.

Flying at a constant height above the CEV hull, the satellite maneuvers from its docking location,

around a solar panel, and around the crew module. During all of these maneuvers, the satellite

automatically points its camera face towards the CEV hull. The NavZones are placed to form

the outline of a 1/10 scale model of the CEV, as shown in Figure 6-6.

CEV NavZone Mesh of CEV Model
for Integrated Test 2

S ervice
Service
Tf, .,1,,1• \'

B egnrang of Module
Solar Panel

Figure 6-6: Comparison of CEV and the 1/10 scale model of the CEV used for Integrated
Test 2.

6.2.1 Design and Simulation

For the first maneuver, the satellite navigates from one side of the CEV model to the other

side. In the middle of the flight, it approaches the virtual solar panel and must fly around it.

Figure 6-7 shows the simulation results of the first maneuver. Snapshots of the position and

orientation of the satellite are shown for intervals of 20 seconds. Based on these images, the

satellite successfully maneuvers around the NavZones while pointing one face towards the mesh

surface.
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Figure 6-7: Simulation of the satellite flying the first maneuver.

After reaching the first waypoint, the satellite maneuvers to a second waypoint near the solar

panel using the SPHERES PD controller. Then, it navigates to a third waypoint on another side
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This third maneuver takes it around the virtual

crew module. Figure 6-8 shows the simulation results of the second and third maneuvers.

Snapshots of the position and orientation of the satellite are shown for intervals of 10 seconds.
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Figure 6-9 shows the simulated position and velocity telemetry of the satellite. Based on this

telemetry and the above graphs of the maneuvers, the simulated satellite successfully navigated

through the waypoints without entering any NavZones, and pointed its camera face towards the

virtual CEV surface.
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Solar Panel Maneuver i CrewModule Maneuvers!

, 0 ........................... . ........ ................ ...... ..... . ............... .... ...
.... . ......... ... .....-...D ~ i lax~lt·.ll···--1-1,··?1·n C..t.'... *ll~-----··a-Px

........................ . .. ......... J ............ ................ , ....

-0 .i-os 50 100 i i 200 250

__Vz
00I ---. .. ....'....... .......... ............ ----- ...... 1.!: c,,-- .-- ·...

II I"'" C~··
zl ,IICt~l·~rs~rl4jr~%PF 

... 

..........

-0 02. ... .... ......... --. 1~-
4,03 . - - .

tI II

0 60 100 1 i 200 260
Test Time (s) i

Start WP #1 WP #2 WP #3

Figure 6-9. Simulated position and velocity telemetry from Integrated Test Two

6.3 Flight Results for Integrated Tests One and Two

These tests were implemented on the SPHERES hardware. The SPHERES team has

scheduled for these tests to be conducted in the next ISS test-session. Unfortunately, NASA was

unable to schedule the test-session in time for this thesis. The tests will still be performed, and

the results will be included in a conference paper. Because the simulation was successful at

predicting the behavior of the SPHERE for the flight test discussed Section 3.1.4, and the

simulation successfully recreated the behavior of the flight test in Section 3.2.3, it is expected

that these tests will also perform like their simulations.

87



6.4 Simulation of 3-D Inspection of CEV

The final development of NavZ for this research was to implement Integrated Test One into a

3-D simulation of CEV inspection. For this simulation, the STK interface developed by the NPS

and introduced in Section 3.1.2 was utilized. Figure 6-10 shows snapshots of the first maneuver

of the mission. Then Figure 6-11 shows the third maneuver of Integrated Test 1. In this case,

the satellite is inspecting the thruster system.

Figure 6-10. First maneuver around the CEV from Integrated Test One, visualized
in STK.

Figure 6-11. Third maneuver trom Integrated Test Une, visualized in STK.



In the launch vehicle industry, STK is utilized to simulate the launch for NASA TV. This

resource could also be used for inspection operations. Before the inspection, an STK interface

could show maneuvers before they are implemented. During the operation, STK could display

the location of the inspector satellite for its pilot. Thus, a visualization similar to this STK

simulation could be used as a display tool for an inspector pilot. This display fits into the

inspection system design shown in Figure 6-12.

Figure 6-12. Block diagram of inspector control system.

6.5 Summary

As a final development of the research for this thesis, several of the improvements of the

NavZ algorithm introduced in Chapter 4 were combined into two integrated tests. These tests

were designed to simulate two CEV inspection scenarios. From the results of the simulations,

the adaptability of the NavZ algorithm and the capability of the SPHERE satellite are apparent.

The NavZ algorithm was successfully adapted to operate with waypoints, ellipsoid potential

functions, speed change, height change, and an autonomous inspection-pointing algorithm. Then,

in the simulation of the first integrated test, the SPHERE satellite is able to navigate around a

full-scale virtual model of a portion of the CEV wall. In the second simulation, the SPHERE

satellite navigates around a 1/10-scale virtual model of the CEV.

In the near future, these two tests will be performed inside the ISS. They are scheduled in the

next SPHERES flight-test session. Because the simulation was successful at predicting the

behavior of the SPHERE for the flight test discussed Section 3.1.4, and the simulation

successfully recreated the behavior of the flight test in Section 3.2.3, the flight test results are

expected to look like the simulation results. The results of these tests will be discussed in

another paper.

Finally, one of the integrated tests was implemented in an STK simulation to visualize a CEV

inspection operation. This kind of visualization is potentially helpful for operations planning and

real-time situational awareness.



7 Conclusions

As the CEV approaches its defining moment in history, as it gets ever closer to flying

humans back to the Moon, its need for portable inspection techniques becomes ever more

pressing. In the CEV's current design, it can only support contingency EVA's for inspection and

repair. But past ISS and Space Shuttle repair missions have shown that inspection of a damaged

system is crucial for planning the EVA to repair it. To assist the CEV team with inspection and

contingency planning, an inspector satellite can be an essential tool.

Chapter 1 of this thesis presents the idea of using a miniature satellite to inspect the CEV for

damage while flying in formation. Two of the main objectives of this thesis research are to

develop a new inspector-satellite controller and flight-test it on the SPHERE satellites. The

baseline LQR and APF controller designed by Dr. McCamish was implemented on SPHERES,

and then it was redesigned to plan maneuvers around meshes of NavZones using emulated

computer-vision. Named the NavZ, this controller provides the smooth-wall-following behavior

that has been useful with Space Shuttle OBSS inspections, but has not been exhibited in previous

inspector-satellite designs.

The initial development of the NavZ algorithm is discussed in Chapter 3, crowned by

successful flight tests of both the baseline and NavZ algorithms. The flight test results show that

these algorithms can be successfully implemented on a satellite for obstacle avoidance. Also, the

NavZ results revealed potential improvements to the NavZ algorithm that were then

implemented in Chapter 4. The developments in this chapter satisfied objectives lb, 2, 5, 6, 7,

and 8 from Section 1.3.

Throughout Chapter 4, the NavZ algorithm underwent several improvements. The

developments in this chapter satisfied objectives la, ib, 2, 4, 5, 6, and 8 from Section 1.3. The

influence zones of the NavZ were adjusted so that the satellite would closely follow the NavZone

edges. Also, the APF was adjusted so that the satellite exited NavZones in a controlled manner.

The capabilities for waypoint handling, speed adjustment, and height adjustment were

incorporated into NavZ and simulated. Lastly, the ability of the NavZ to adapt and navigate

around a previously unknown obstacle was simulated. All these developments after the first



flight test strengthened the NavZ algorithm, evolving and maturing it towards becoming a flight-

worthy algorithm for real inspection operations.

During this development, the information that would be received from a computer-vision

system was emulated. To pave the way towards interfacing the NavZ with actual computer-

vision hardware, Chapter 5 explored the uncertainties of computer-vision information and

improved the emulation. The developments in this chapter satisfied objective 3 from Section 1.3.

The simulation results in Chapter 5 show that the NavZ can potentially adapt to uncertainties of

position and losses of feature points.

Lastly, several of the NavZ improvements discussed in Chapter 3 were combined into two

final ISS tests with virtual scale models of the CEV. This development satisfied objectives la,

Ib, 2, 4, 5, 6, 8, and 9 from Section 1.3. The designs and simulation results of these tests are

discussed in Chapter 6. The flight results for these tests have not been received yet, but the tests

are scheduled for the next SPHERES session aboard the ISS. However, simulation shows that

the final algorithms exhibit the desired autonomous waypoint, wall-following, and pointing

behaviors. STK visualizations show these maneuvers around a full-scale CEV.

In conclusion, all of these NavZ developments have compounded into an algorithm that has

the potential to be utilized for future inspection operations. Also, an inspection algorithm was

successfully implemented and flight-tested on a SPHERE satellite, and the SPHERES testbed

has proven very useful for the development of inspector-satellite algorithms.

7.1 Future Work

In the future, there are several potential developments to improve the design of inspection

operations and the design of the NavZ algorithm.

First, the final ISS tests discussed in Chapter 6 will be run in the next test session. The

results from these tests will be analyzed and included in another paper.

Second, a key implementation step will be to integrate NavZ with an actual computer-vision

system. The SPHERES team can complete its development of the camera system and interface it

with the NavZ controller. Then, this integration can be tested on the SPHERES laboratory table.

For useful testing with computer-vision in 2-D, the NavZ controller needs to be adapted so that it

provides forces large enough to overcome the friction of the table. For microgravity testing, the

camera hardware will need to go through the qualification process for operation inside the ISS.



Third, detailed methods for dealing with the loss of feature points could be developed for

NavZ. One method was introduced in Section 5.5 of this thesis, but it is just an initial

demonstration of the adaptability of the NavZ. With the lighting conditions in space, finding

feature points can be difficult, and the computer-vision information may need to be

supplemented with measurements from other sensors. For example, laser range sensors or

relative GPS may provide additional navigation information.

Fourth, there are several analyses that would aid the future design of inspection operations.

One study could develop the best sequence of maneuvers that will inspect the entire surface of

the CEV. This study could determine the maneuver sequence and heights above the CEV

surface that would provide the quickest full-surface inspection. This is an interesting problem,

because a larger height above the CEV could give a wider view, but would require more fuel and

farther maneuvering distances. This study would also provide information about how long a

full-surface inspection would take using an inspector satellite.

Fifth, the SPHERES team can redesign some of the SPHERES systems so that they can

operate in the space environment. An internal preliminary study about what needs to be

redesigned has already been performed. Further development would pave the way towards

utilizing the SPHERES as inspector satellites.

Sixth, the SPHERES payload of inspection sensors can be developed. The type of inspection

sensors for this payload should be determined. Also, the interface between the SPHERES and

the inspection sensor payload can be defined.

Seventh, the inspector systems and operations design could be adapted to provide global

situational awareness of a worksite during an EVA.

Last, but not least, in the future the SPHERE satellites and/or NavZ algorithm could be used

for CEV inspection.



Appendix A SPHERES Controller Code

This code is run every control cycle, and calls the NavZ function.

#include "gspInspection.h"
#include "pads_internal.h"
#include "comm.h"
#include "control.h"
#include "ctrl_position.h"
#include "ctrl_attitude.h"
#include "est_StateProp.h"
#include "prop.h"
#include <string.h>
#include "findstateerror.h"
#include "ctrl_mix.h"
#include "system.h"
#include "gsutil_thr_times.h"
#include "math_matrix.h"
#include "ctrl_NPS_Inspection.h"
#include "std_includes.h"
#include <math.h>

static unsigned char cDocked;
static unsigned int waypoint;
static state_vector ctrlStateTarget;
static float ctrlStateMesh[3][9];
static float initialPosChaseInertial[3];

// Variables used for all satellites' controllers
state_vector ctrlStateChaserNPS, ctrlStateTargetSatNPS, ctrlStateObstacleNPS;
float delTNPS=O.Of;
unsigned int tstampNPS=O, indexNPS=O, min_pulseNPS=10, convTimeNPS=15000;
float duty_cycle_NPS = 20.0f;
float comp_delay_factor = 4.0f; // Twice the percentage of the control period
reserve for computation (need to be twice since mixer outputs pulses centered
in the thrusting window)
float stepsize = 1.0f;
const unsigned int maneuverSequenceNPS[] = {1, 2, 3};
state_vector ctrlStateErrorNPS;
float ctrlControlNPS[6];
prop_time firing_timesNPS;
extern const float KPattitudePID;
extern const float KIattitudePID;
extern const float KDattitudePID;
extern const float KPpositionPID;
extern const float KIpositionPID;
extern const float KDpositionPID;
extern const float KPattitudePD;
extern const float KDattitudePD;



extern const float KPpositionPD;
extern const float KDpositionPD;
dbg_short_packet DebugVecSignedShortNPS;
dbg_ushort_packet DebugVecUnsignedShortNPS;
dbg_ushort_packet DebugVecUnsignedShortNPS2;
dbg_float_packet DebugVecFloatNPS;
comm_payload_soh sohNPS;
float timecheck;

void gspInspection_InitTest(unsigned int test_number)
{
extern state_vector initState;

// Reset PID controllers
ctrlAttitudePIDinit();
ctrlPositionPIDinit();

// Reset static vectors
cDocked = 0;
waypoint = 1;
memset(ctrlStateTarget, 0, sizeof(state_vector));
ctrlStateTarget[QUAT_4] = 1.0f;
memset(initialPosChaseInertial, 0, sizeof(float)*3);
memset(ctrlStateMesh,0,sizeof(float)*3*4);

padsEstimatorInitWaitAndSet(initState, padsInertialBufferCapacity(), 200,
205, PADS_INIT_THRUST_INT_ENABLE, PADS_BEACONS_SET_1TO9);

ctrlPeriodSet(1000);

// Quaternions of the reference frame
memset(ctrlStateTargetSatNPS, 0, sizeof(state_vector));
ctrlStateTargetSatNPS[QUAT_1] = sqrt(2.0f)/2.0f;
ctrlStateTargetSatNPS[QUAT_2] = -sqrt(2.0f)/2.0f;
ctrlStateTargetSatNPS[QUAT_3] = 0.0f;
ctrlStateTargetSatNPS[QUAT_4] = 0.0f;
memset(ctrlStateObstacleNPS, 0, sizeof(state_vector));

switch (test_number)

case 1:
// Mesh feature point
ctrlStateMesh[0][0] =
ctrlStateMesh[l] [0] =
ctrlStateMesh[2] [0] =
ctrlStateMesh[0] [1] =
ctrlStateMesh[l][11 =
ctrlStateMesh[2] [1] =

ctrlStateMesh[0] [2] =
ctrlStateMesh[l] [2] =
ctrlStateMesh[2] [2] =
ctrlStateMesh[0] [3] =
ctrlStateMesh[l] [3] =
ctrlStateMesh[2] [3] =
ctrlStateMesh[0 [41 =
ctrlStateMesh[l] [4] =

locations for Test 1
0.5f;
-0.3585f-0.18f;
0.2776f;
0.5f;
-0.56f+0.15f;
-0.2776f;

0.0f;
-0.56f;
0.0f;
0.0f;
-0.3985f-0.18f;
0.5198f;
0.0f;
-0.56f;



ctrlStateMesh[2] [4]

ctrlStateMesh [0]
ctrlStateMesh [1]
ctrlStateMesh[2]
ctrlStateMesh [0
ctrlStateMesh [1]
ctrlStateMesh[21

ctrlStateMesh[0]
ctrlStateMesh [1]
ctrlStateMesh[2]

ctrlStateMesh[0]
ctrlStateMesh[l]
ctrlStateMesh[2]
break;
case 2:
// Mesh feature
ctrlStateMesh [0]
ctrlStateMesh[1]
ctrlStateMesh[2]
ctrlStateMesh[0]
ctrlStateMesh[1]
ctrlStateMesh[2]
ctrlStateMesh [0]
ctrlStateMesh [1]
ctrlStateMesh[2]

ctrlStateMesh[0]
ctrlStateMesh [1]
ctrlStateMesh[2]
ctrlStateMesh[0]
ctrlStateMesh[1]
ctrlStateMesh[2]

ctrlStateMesh [0]
ctrlStateMesh [l]
ctrlStateMesh[2]
ctrlStateMesh[0]
ctrlStateMesh [l]
ctrlStateMesh[2]
ctrlStateMesh[0]
ctrlStateMesh [1]
ctrlStateMesh[2]

ctrlStateMesh [0]
ctrlStateMesh []
ctrlStateMesh[2]
break;

[5]
[5]
[5]
[6]
[6]
[6]

[7]
[7]
[7]

[8]
[8]
[8]

poin
[0]
[0]
[0]
[1]
[1]
[1]
[2]
[2]
[2]

[3]
[3]
[3]
[4]
[4]
[4]

[5]
[5]
[5]
[6]
[6]
[6]
[7]
[7]
[7]

[8]
[8]
[8]

-0.5198f;

= -0.5f;
= -0.3585f-0.18f;
= 0.2776f;
= -0.5f;
= -0.3585f-0.18f;

-0.2776f;

0.5f;
= -0.56f;
= -0.7889f;

= 0.5f;
-0.56f;

= -0.7889f;

t locations for Ti
= 0.0f;
= -0.125f+0.25f;
= 0.2165f;

0.0f;
0.25f;

= 0.0f;
= 0.0f;
= -0.125f+0.25f;
= -0.2165f;

est 2

-0.26f;
-0.0335f+0.25f;
0.125f;
-0.26f;
-0.0335f+0.25f;
-0.125f;

-0.26f;
-0.0f;
0.25f;
0.0f;
2.0f*0.153f+0.25f;
0.0f;
0.0f;
-0.375f+0.25f;
0.2165f;

-0.4f;
0.0f;
0.0f;

void gspInspectionControl(unsigned int test number, unsigned int test_time,
unsigned int maneuver number, unsigned int maneuver_time)
{



unsigned int i;
unsigned int iobs;
unsigned int waypointnum, LQR=1, ellipsoid=0;
float g2b[3][3], b2g[3][3]; // global to body rotation matrix
float r_to_chaser_inertial[3];
float v_to_chaser_inertial[3];
float r_to_obstacle_inertial[3);
float r_to_obstacle_copy[3][9];
float v_to_obstacle_inertial[31;
float r_to_chaser_bodytemp[31;
float v_to_chaserbody_temp[3];
float r_to_goal body_temp[3];
float v_to_goalbody_temp[3];
float r_to_obstacle_body_temp[3];
float v_to_obstacle_body_temp[3];
float r_rsw[31;
float v_rsw[3];
float r_goal[3];
float r_to_obstacle_rsw[3];
//float v_to_obstacle_rsw[3];
float rnorm;
float v_norm;
float g_norm;
//float r_to_obstacle norm;
//float v_to_obstaclenorm;
float L, Lmax, amax, dim, uncert, OBSDoR, Vmax, range, dock_limit, G;
extern const float VEHICLE_LIN_ACCEL;
int nObs, sats, Chase;
float OBSiRSW[3][9];
float iRSW[3];
float fRSW[3];
float iRSWTempl[3];
float iRSWTemp2[3];
extern const float VEHICLE_MASS;
float a_tot[3];
float a_body[3];
float F_body[3];
float theta, phi, angle;
float Aml[3][3], Am2[3][3], Am3[3][3], Am[3][3], Amtemp[3][3];
float pi = 3.14159f;

// make a zero-offset index
indexNPS = test_number-l;

memset(ctrlControlNPS,0,(sizeof(float))*6);
memset(&firing_timesNPS,0, sizeof(prop_time));
memset(ctrlStateErrorNPS,0,sizeof(state_vector));
ctrlStateErrorNPS[QUAT_4] = 1.0f;
memset(DebugVecSignedShortNPS,0, sizeof(dbgshort_packet));
memset(DebugVecUnsignedShortNPS,0,sizeof(dbg_ushortpacket));
memset(DebugVecUnsignedShortNPS2,0,sizeof (dbg_ushort_packet));
memset(DebugVecFloatNPS,0,sizeof(dbg_floatpacket));

// Timecheck measures how long control code takes to run
timecheck = sysSphereTimeGet();

// Get states from global estimator and propagate them to actual time



delTNPS = (sysSphereTimeGet() - padsStateGet(ctrlStateChaserNPS))*0.001f;
if (delTNPS>0.Of)
statePropDelTPss(delTNPS, ctrlStateChaserNPS);

// Get states of the other Spheres and propagate them to actual time
// Added so that it is one satellite test, hardcoding states of obstacle and
target

if (maneuver_number > 1)
// Turn OFF global metrology
padsGlobalPeriodSet(SYS_FOREVER);

switch (maneuver_number)
{
case 1: // EKF convergence period
if (test_time>=convTimeNPS)
{
// The chaser satellite holds its initial attitude until Man 3 starts
// (until it gets the attitude of the target)
memcpy(&ctrlStateTarget[QUAT_1], &ctrlStateChaserNPS[QUAT_1],
sizeof(float)*4);

// Change maneuver
ctrlManeuverTerminate();
}

// Save debug data
for (i=0;i<13;i++)
DebugVecSignedShortNPS[l+i] = (short) (ctrlStateErrorNPS[i]*10000.0f);

break;

case 2: // Move into position

switch (testnumber)
{
case 1:
// Starting position for Test 1
ctrlStateTarget[POSX] = 0.0f;
ctrlStateTarget[POS_Y] = 0.0f;
ctrlStateTarget[POS_Z] = 0.6f;
break;
case 2:
// Starting position for Test 2
ctrlStateTarget[POS X] = 0.0f;
ctrlStateTarget[POS_Y] = -0.1f;
ctrlStateTarget[POS_Z] = 0.55f;
break;
}
// Set quaternions of satellite to those of the reference frame
ctrlStateTarget[QUAT_1] = ctrlStateTargetSatNPS[QUAT_1];
ctrlStateTarget[QUAT_2] = ctrlStateTargetSatNPS[QUAT_2];
ctrlStateTarget[QUAT_3] = ctrlStateTargetSatNPS[QUAT_3];
ctrlStateTarget[QUAT_4] = ctrlStateTargetSatNPS[QUAT_4];

// Compute state errors
findStateError(ctrlStateErrorNPS, ctrlStateChaserNPS, ctrlStateTarget);



// Attitude controller
ctrlAttitudeNLPIDwie(KPattitudePID, KIattitudePID, KDattitudePID,
KPattitudePID, KIattitudePID, KDattitudePID, KPattitudePID, KIattitudePID,
KDattitudePID, 1.0f, ctrlStateErrorNPS, ctrlControlNPS);

// Run both position and attitude controllers
// Position controller
ctrlPositionPDgains(KPpositionPD, KDpositionPD, KPpositionPD, KDpositionPD,
KPpositionPD, KDpositionPD, ctrlStateErrorNPS, ctrlControlNPS);

if (maneuver_time>=30000)
{
// Store the initial position states
memcpy(&initialPosChaseInertial[POSX], &ctrlStateChaserNPS[POSX],
sizeof(float)*3);

// Change maneuver
ctrlManeuverTerminate();
}

// Save debug data
for (i=0;i<13;i++)
DebugVecSignedShortNPS[l+i] = (short) (ctrlStateErrorNPS[i]*10000.0f);

break;

case 3: // Roll and dock using NPS controller

switch (testnumber)
{
case 1:
// Waypoint locations for Test 1
waypointnum = 5; // Number of waypoints
nObs = 7; // Number of obstacles in mesh
switch (waypoint)
{
case 1:

LQR = 1; // LQR+APF is run for maneuvering to this waypoint
dim = 0.85f; // Dimension of Obstacle (spherical diameter)
ctrlStateTargetSatNPS[POS X] = 0.0f; // Location of waypoint
ctrlStateTargetSatNPS[POSY] = 0.02f;
ctrlStateTargetSatNPS[POSZ] = -0.6f;
break;

case 2:
LQR = 0; // PID is run for maneuvering to this waypoint
ctrlStateTarget[POS_X] = 0.0f;
ctrlStateTarget[POSY] = -0.23f-0.07f+0.153f;
ctrlStateTarget[POS_Z] = -0.6f;
ctrlStateTargetSatNPS[POSX] = 0.0f;
ctrlStateTargetSatNPS[POS_Y] = -0.23f-0.07f+0.153f;
ctrlStateTargetSatNPS[POS_Z] = -0.6f;
break;

case 3:
LQR = 1;
dim = 0.54f;



ctrlStateTargetSatNPS[POSX]) = -0.7f;
ctrlStateTargetSatNPS[POSY] = -0.23f-0.07f+0.153f;
ctrlStateTargetSatNPS[POS_ZJ = 0.0f;
break;

case 4:
LQR = 0;
ctrlStateTarget[POSX] = -0.7f;
ctrlStateTarget[POS_Y] = -0.3585f-0.18f+0.09f+0.153f;
ctrlStateTarget[POS_Z] = 0.0f;
ctrlStateTargetSatNPS[POS_X] = -0.7f;
ctrlStateTargetSatNPS[POSY] = -0.3585f-0.18f+0.09f+0.153f;
ctrlStateTargetSatNPS[POS_Z] = 0.0f;
break;

case 5:
LQR = 1;
dim = 0.08f;
ellipsoid = 1;
ctrlStateTargetSatNPS[POS_X] = 0.5f;
ctrlStateTargetSatNPS[POSY] = -0.56f+0.09f+0.153f+0.15f;
ctrlStateTargetSatNPS[POS_Z] = -0.2776;
break;

}
break;
case 2:
// Waypoint locations for Test 2
waypointnum = 3;
nObs = 9; // Number of obstacles in mesh
dim = 2.0f*0.153f; // Dimension of Obstacle (spherical diameter)
switch (waypoint)
{
case 1:

LQR = 1;
ctrlStateTargetSatNPS[POS_X) = -0.1f;
ctrlStateTargetSatNPS[POSY] = 0.3f;
ctrlStateTargetSatNPS[POS_Z] = -0.48f;
break;

case 2:
LQR = 0;
ctrlStateTarget[POSX] = -0.25f;
ctrlStateTarget[POS_Y] = 0.57f;
ctrlStateTarget[POS_Z] = -0.23f;
ctrlStateTargetSatNPS[POS_X] = -0.25f;
ctrlStateTargetSatNPS[POSY] = 0.57f;
ctrlStateTargetSatNPS[POS_Z] = -0.23f;
break;

case 3:
LQR = 1;
ctrlStateTargetSatNPS[POSX] = -0.55f;
ctrlStateTargetSatNPS[POS_Y] = -0.18f;
ctrlStateTargetSatNPS[POS_Z] = 0.28f;
break;

}
break;
}

quat2matrixIn(g2b, &ctrlStateTargetSatNPS[QUAT 11]);
for (iobs=O; iobs<nObs; iobs++)



{
for (i=0;i<3;i++)
{

ctrlStateObstacleNPS[i] = ctrlStateMesh[i][iobs];

// The following vectors are expressed in the inertial frame
r_to_chaser_inertial[i] = ctrlStateChaserNPS[i] -

ctrlStateTargetSatNPS[i];
v_to_chaser_inertial[i] = ctrlStateChaserNPS [i+3] -

ctrlStateTargetSatNPS[i+3];
r_to_obstacle_inertial[i] = ctrlStateObstacleNPS[i] -

ctrlStateTargetSatNPS[i];
r_to_obstacle_copy[i][iobs] = r_toobstacleinertial[i];
v_to_obstacle_inertial[i] = ctrlStateObstacleNPS[i+3] -

ctrlStateTargetSatNPS[i+3];
}

// The following vectors are expressed in the target's body frame
mathMatVecMult (r_to_chaser_body_temp, (float**)g2b, rtochaserinertial, 3,
3);
mathMatVecMult(v_to_chaserbodytemp, (float**)g2b, vtochaser_inertial, 3,
3);
r_to_goal_body_temp[O] = r_to_chaserbody_temp[O];
r_to_goal_body_temp[l] = r_to_chaser_body_temp[l];
r_togoal_bodytemp[2] = r_to_chaser_body_temp[2];
memcpy(v_togoalbody_temp, v to chaser_bodytemp, sizeof(float)*3);
mathMatVecMult(rto_obstacle_body_temp, (float**)g2b, rto_obstacle_inertial,
3, 3);
mathMatVecMult (v_to_obstaclebodytemp, (float**)g2b, vto_obstacle_inertial,
3, 3);

// The following vectors are expressed in the RSW frame
r_rsw[0] = -r_to_chaser_bodytemp[2];
r_rsw[l] = r_to_chaser_bodytemp[O];
r_rsw[2] = -r_to_chaserbody_temp[l];
v_rsw [] = -v_to_chaser_body_temp[2] ;
v_rsw[l] = v_to_chaser_body_temp[0];
v_rsw[2] = -v_to_chaser_body_temp[l];
r_goal[0] = -r_to_goalbody_temp[2];
r_goal[l] = r_to_goal_body_temp[O];
r_goal[2] = -r_to_goalbody_temp[l];
r_to_obstacle_rsw[O] = -rto_obstaclebody_temp[2];
r_to_obstacle_rsw[l] = r_to_obstacle_body_temp[0];
r_to_obstacle_rsw[2] = -r_to_obstaclebody_temp[l];
//v_to_obstacle_rsw[O] = -v_to_obstacle_body_temp[21;
//v_to_obstacle_rsw[l] = v_to_obstacle_body_temp[0];
//v_to_obstacle_rsw[2] = -v_to_obstacle_body_temp[l];

// The following are the norms to the previous vectors
r_norm = mathVecMagnitude(r_rsw, 3);
v_norm = mathVecMagnitude(vrsw, 3);
g_norm = mathVecMagnitude(r_goal, 3);
//r_to_obstacle_norm = mathVecMagnitude(r_to_obstacle_rsw, 3);
//v_to_obstacle_norm = mathVecMagnitude(v_to_obstacle_rsw, 3);

OBSiRSW[O][iobs] = r_to_obstacle_rsw[0];
OBSiRSW[l][iobs] = r_to_obstacle_rsw[l];
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OBSiRSW[2][iobs] = r_to_obstacle_rsw[2];

////// Plug in Shawn's NPS controller, which should output
////// a three element vector of forces F = [Fx; Fy; Fz]

// Physical parameters:
L = 2.0f*0.107f; // SPHERES dimension along docking port
Lmax = 2.0f*0.153f; // with C02 tank
a_max= (dutycycleNPS-comp_delay_factor)*0.01f*VEHICLE_LINACCEL; // Max
accel over a control period (the -4 accounts for computational time)

// Obstacle:
uncert = 0.02f; //position uncertainty
OBS_DoR = (dim+Lmax+uncert)/2.0f; // Minimum approach range

// Simulation Parameters:
V_max = 0.5f; // Max velocity desired
sats = 2; // number of active SPHERES (Target & Chase)
range = 2.0f; // ISS within 2 meters
dock_limit = 0.002f; // within 2 mm accuracy
G = Lmax;

// Chase spacecraft:
Chase = 1; //only one Chase SPHERES
iRSWTempl[0] = initialPosChaseInertial[0] - ctrlStateTargetSatNPS[0];
iRSWTempl[l] = initialPosChaseInertial[l] - ctrlStateTargetSatNPS[l];
iRSWTempl[2] = initialPosChaseInertial[2] - ctrlStateTargetSatNPS[2];
mathMatVecMult(iRSWTemp2, (float**)g2b, iRSWTempl, 3, 3);
iRSW[0] = -iRSWTemp2[2]; // Convert to RSW frame
iRSW[1] = iRSWTemp2[0]; // Convert to RSW frame
iRSW[2] = -iRSWTemp2[1]; // Convert to RSW frame
fRSW[0] = 0.0f; // Chase final position
fRSW[1] = 0.0f;
fRSW[2] = 0.0f;

if (LQR < 1) // If not doing NPS LQR, do PD position control
{
findStateError(ctrlStateErrorNPS, ctrlStateChaserNPS, ctrlStateTargetSatNPS);
ctrlPositionPDgains(KPpositionPD, KDpositionPD, KPpositionPD, KDpositionPD,
KPpositionPD, KDpositionPD, ctrlStateErrorNPS, ctrlControlNPS);

else // Run modified NPS controller for inspection
{
ctrlNpsSimple_Inspection(a_tot, v_norm, rnorm, v_rsw, rrsw, r_goal, g_norm,
sats, Chase, iRSW, fRSW, range, V_max, a_max, dock_limit, nObs, Lmax, G, L,
OBSiRSW, OBS_DoR, stepsize, ellipsoid, r_to_obstacle_copy);
a_body[0] = a_tot[l];
a_body[l] = -a_tot[2];
a_body[2] = -a_tot[O];
F_body[0] = VEHICLE_MASS*a_body[0];
F_body[l] = VEHICLE_MASS*a_body[l];
F_body[2] = VEHICLE_MASS*a_body[2];

// The forces need to be expressed in the inertial frame
// Use the following to convert from the target body frame to
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// the inertial frame, if needed
quat2matrixOut(b2g, &ctrlStateTargetSatNPS[QUAT_1]);

// The vector ctrlControlNPS must contain the computed forces in
// the inertial frame:
mathMatVecMult(&ctrlControlNPS[FORCEX], (float**)b2g, F_body, 3, 3);

// If doing PD control or at waypoint, set quarternions to reference frame
if (LQR < 1 I g_norm <=75.0f*dock_limit)
{
ctrlStateTarget[QUAT_2] = ctrlStateTargetSatNPS[QUAT_2];
ctrlStateTarget[QUAT_2] = ctrlStateTargetSatNPS[QUAT_2];
ctrlStateTarget[QUAT_3] = ctrlStateTargetSatNPS[QUAT_3];
ctrlStateTarget[QUAT_4] = ctrlStateTargetSatNPS[QUAT_4];
}
else // If doing NPS LQR, then point one satellite face in direction of
velocity
{
// Determine first and second rotation angles (theta and angle)
theta = atan(ctrlStateChaserNPS[VEL_Z]/ctrlStateChaserNPS[VELY]);
switch (testnumber)
{
case 1:

if (ctrlStateChaserNPS[VEL_Y] > 0)
{
if (ctrlStateChaserNPS[VEL_Z] < 0)

theta = theta + pi;
else

theta = theta - pi;
I

if (ctrlStateChaserNPS[VEL_Z] <= 0)
angle = -pi/2.0f;

else
angle = pi/2.0f;

break;
case 2:

if (ctrlStateChaserNPS[VEL_Y] > 0)
{
if (ctrlStateChaserNPS[VEL_Z] < 0)

theta = theta + pi;
else

theta = theta - pi;

angle = -pi/2.0f;
break;

// Determine third rotation angle (phi)
phi = pi/2.0f +
atan(ctrlStateChaserNPS[VEL_X]/sqrt(ctrlStateChaserNPS[VELY]*ctrlStateChaser
NPS[VELY]+ctrlStateChaserNPS[VEL_Z]*ctrlStateChaserNPS[VELZ]));
// Rotation matrices Aml, Am2, Am3
memset(Aml, 0, sizeof(Aml));
Aml[0] [0] = 1.0f;
Aml[l][1] = cos(theta);
Aml[l] [2] = sin(theta);
Aml[2] [1] = -sin(theta);
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Aml[2)[2] = cos(theta);
memset(Am2, 0, sizeof(Am2));
Am2[0][0] = cos(phi);
Am2[0] [1] = sin(phi);
Am2[l] [0] = -sin(phi);
Am2[l][1] = cos(phi);
Am2[2][2] = 1.0f;
memset(Am3, 0, sizeof(Am3));
Am3[0] [0] = cos(angle);
Am3[0][2] = -sin(angle);
Am3[l] [1] = 1.0f;
Am3[2][0] = sin(angle);
Am3[2][2] = cos(angle);
mathMatMatMult((float **)Amtemp, (float **)Am2, (float **)Aml, 3, 3, 3);
mathMatMatMult((float **)Am, (float **)Am3, (float **)Amtemp, 3, 3, 3);
// Find the quaternions
ctrlStateTarget[QUAT_1] = 1.0f/2.0f*sqrt(1.0f+Am[0][0]-Am[l][l]-Am[2][2]);
ctrlStateTarget[QUAT_2] =
l.Of/4.0f*(Am[0][1]+Am[l][0])/ctrlStateTarget[QUAT_1];
ctrlStateTarget[QUAT_3] =
l.0f/4.0f*(Am[0][2]+Am[2][0])/ctrlStateTarget[QUAT_1];
ctrlStateTarget[QUAT_4] = 1.0f/4.0f*(Am[1][2]-
Am[2] [1])/ctrlStateTarget[QUAT_1] ;
}

// Compute state errors
findStateError(ctrlStateErrorNPS, ctrlStateChaserNPS, ctrlStateTarget);

// Attitude controller
ctrlAttitudeNLPIDwie(KPattitudePID, KIattitudePID, KDattitudePID,
KPattitudePID, KIattitudePID, KDattitudePID, KPattitudePID, KIattitudePID,
KDattitudePID, 1.0f, ctrlStateErrorNPS, ctrlControlNPS);

// If at a waypoint, either move to next waypoint or terminate test
if (gnorm<=30.0f*dock_limit)
{
cDocked++;
if (waypoint < waypointnum)
{

if (cDocked>=2)
{

waypoint++; // Move to next waypoint
cDocked = 0;

}

else // Termination condition for satellite

if (cDocked>=5)
ctrlTestTerminate(TEST_RESULT_NORMAL);

}

// Save debug data
DebugVecSignedShortNPS[l] = (short) (r_rsw[O] * 10000.0f);
DebugVecSignedShortNPS[2] = (short) (r_rsw[l] * 10000.0f);
DebugVecSignedShortNPS[3] = (short) (r_rsw[2] * 10000.0f);
DebugVecSignedShortNPS[4] = (short) (v_rsw[0] * 10000.0f);
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DebugVecSignedShortNPS[5]
DebugVecSignedShortNPS[6]
DebugVecSignedShortNPS[7]
DebugVecSignedShortNPS[8]
DebugVecSignedShortNPS[9]
DebugVecSignedShortNPS[10]
DebugVecSignedShortNPS[11
DebugVecSignedShortNPS[121
DebugVecSignedShortNPS[13]
DebugVecSignedShortNPS[14]
DebugVecSignedShortNPS[15]

(short)
(short)
(short)
(short)
(short)
(short)
(short)
(short)
(short)
(short)
(short)

(v_rsw[l ] *
(v_rsw[2] *
(r_goal [O]
(r_goal [1]
(r_goal [2]
(iRSW[O] *
(iRSW[l] *
(iRSW[2] *
(OBSiRSW[0]
(OBSiRSW[l]
(OBSiRSW[2]

10000.0f);
10000.0Of);

* 10000.0f)
* 10000.0f)
* 10000.0f)
10000.0f);
10000.0f);
10000.0f);
[0] * 10000
[0] * 10000
[0] * 10000

break;

default:
break;
}

// Recording the time that the control code took to run
timecheck = sysSphereTimeGet()-timecheck;

// For all maneuvers but the first one
if (maneuver_number>l)
{
// Run attitude and position controllers
// Mixer
ctrlMixWLoc(&firing_timesNPS, ctrlControlNPS, ctrlStateChaserNPS,
min_pulseNPS, duty_cycle_NPS-comp_delay_factor, FORCE_FRAME_INERTIAL);

// Re-enable IR flashes for state estimator
padsGlobalPeriodSetAndWait(200, ((unsigned int) (duty cycle_NPS*l0.Of))+5);

DebugVecUnsignedShortNPS2[8] = 1;

// Actuates the thrusters
propSetThrusterTimes(&firing_timesNPS);
}

// Timeout to terminate test
if (test_time>=330000)
ctrlTestTerminate(TEST_RESULT_TIMEOUT);

DebugVecSignedShortNPS[O] = (short) (testtime * 0.01f);
commSendPacket(COMM_CHANNEL STL,GROUND,sysIdentityGet(),
COMM_CMD_DBG_SHORT_SIGNED, (unsigned char *) DebugVecSignedShortNPS, 0);

DebugVecUnsignedShortNPS[O] = (unsigned short) (test_time * 0.01f);
dbgThrusterTimesPackFull(&DebugVecUnsignedShortNPS[1], firing_timesNPS);
commSendPacket(COMM_CHANNEL_STL,GROUND,sysIdentityGet(), COMM_CMD_THR_TIMES,
(unsigned char *) DebugVecUnsignedShortNPS, 0);

DebugVecUnsignedShortNPS2
DebugVecUnsignedShortNPS2
DebugVecUnsignedShortNPS2
DebugVecUnsignedShortNPS2
DebugVecUnsignedShortNPS2
10000.Of);

[0]
[1]
[2]
[3]
[4]

(unsigned short) (test_time * 0.01f);
waypoint;
cDocked;
(unsigned short) (LQR);
(unsigned short) (ctrlStateTarget[QUAT_2]*
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DebugVecUnsignedShortNPS2[5] = (unsigned short) (ctrlStateTarget[QUAT 3]*
10000.0f);
DebugVecUnsignedShortNPS2[6] = (unsigned short) (ctrlStateTarget[QUAT 4]*
10000.0f);
DebugVecUnsignedShortNPS2[7] = (unsigned short) (gnorm * 100.0f);
commSendPacket(COMM_CHANNELSTL,GROUND,sysIdentityGet(),
COMMCMDDBG_SHORTUNSIGNED, (unsigned char *) DebugVecUnsignedShortNPS2, 0);

DebugVecFloatNPS[O] = (float) test_time * 0.01f;
for (i=0;i<6;i++)
DebugVecFloatNPS[l+i] = ctrlControlNPS[i]*1000.0;
DebugVecFloatNPS[7] = timecheck;
commSendPacket(COMM_CHANNEL_STL,GROUND,sysIdentityGet(), COMM_CMD_DBG_FLOAT,
(unsigned char *) DebugVecFloatNPS, 0);

}
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Appendix B NavZ Code Modified From MSCPC

Below is the NavZ function that is called in the control code in Appendix A. This NavZ

code was modified from the original MSCPC code, which was designed by the NPS and

implemented on SPHERES by Dr. McCamish and the SPHERES team.

/*
* ctrl_NPS_Inspection.c
*

* This file contains a library of position controllers developed by
* Major Shawn B. McCamish, Ph.D. candidate at the Naval PostGraduate
* School. It has been modified by Christine Edwards.

* MIT Space Systems Laboratory
* http://ssl.mit.edu/spheres/
*

* Copyright 2007 Massachusetts Institute of Technology and Naval
* PostGraduate School.
*

* Last modified 2008-04-18
*/

#include "ctrl_NPS_Inspection.h"
#include "ctrl_LQR.h"
#include <string.h>
#include "math_matrix.h"
#include <math.h>

//Arbitrary spacecraft # limitation of 7
#define NUMSCMAX 7

//Arbitrary obstacle # limitation of 14
#define NUMOBS_MAX 14

void ctrlNpsSimple_Inspection(float *a_tot, float v_norm, float rnorm, float
*v_rsw, float *r_rsw_passed, float *r_goal, float g_norm_passed, int sats,
int chase, float *iRSW, float *fRSW, float range, float V_max, float a_max,
float dock_limit, int nObs, float Lmax, float G, float L, float
OBSiRSW[3][9], float OBS_DoR, float stepsize, int ellipsoid, float
r_toobstacleinertial[3][9])
{
//LQR/APF Controller algorithm developed by Shawn McCamish
//from Naval Postgraduate School (NPS) from 2006-2007
//converts RSW pos and velocity of chase into RSW accleration commands

float r_rswt[3], r_rsw[NUMSC_MAX] [3], g_normt, g_norm[NUMSC_MAX], a_rsw[3];
float ofsetg[NUMSCMAX][3], Klqr[3][6], ChatterL;
float A[6][6], B[6][3], Qlqrl, bravo, bravo_den, Qlqr2;
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float
float
float
float
float
float
float
float
float
float
float
int i
float
float
float

Rlqrl, Qlqr[6][6], Rlqr[3][3], Nlqr[6][3], state[6];
posobsat[NUMSC_MAX][3], rsat[NUMSC_MAX], vobsatmag[NUMSC_MAX];
vrepsmag[NUMSC_MAX], aobsatmag[NUMSC_MAX], arepsmag[NUMSC_MAX];
Vreps[NUMSC_MAX], kreps[NUMSCMAX], vdesreps[3], adesreps[3];
areps[3], a_desreps[3], stopdist, OBS_Dsat, OBS_Ds, stdevs, wids;
ksat_vatt, ksat_aatt, v_offsat[NUMOBS_MAX][3];
krepo[NUMOBS_MAX], Vrepo[NUMOBS MAX], vdesrepo[3], adesrepo[3];
a_desrepo[3], vobsmag[NUMOBS_MAX], aobsmag[NUMOBS MAX];
vrepomag[NUMOBS_MAX], arepomag[NUMOBS_MAX], arepo[3];
posobs[NUMOBS_MAX][3], robs[NUMOBS_MAX], stopdisto, OBS_Do;
stdevo, wido, ko_aatt;
iobsat, iso, iobs;
*_Klqr, * r rsw;
OBSiRSW_copy[3];
a, b, c, lambda, beta, OBS_DoRx, OBS_DoR_y, OBS_DoR_z;
float r_to_obstaclemag;
float r_to_obstacle_copy[3], posobsivec[3];

_Klqr = (float *)Klqr;
_r rsw = (float *)r_rsw;

//initialize variables:
memset(r_rswt, 0, sizeof(float)*3);
memset(rrsw, 0, sizeof(r_rsw));
memcpy(r_rsw, r_rswt, sizeof(float)*3);
memcpy(&r_rsw[l] [0], r_rsw_passed, sizeof(float)*3);
g_normt = 0.0f;
memset(g_norm, 0, sizeof(float)*NUMSC_MAX);
memcpy(&g_norm, &g_normt, sizeof(float));
memcpy(&g_norm[l], &g_norm_passed, sizeof(float));
memset(arsw, 0, sizeof(float)*3);
memset(a_tot, 0, sizeof(float)*3);
memset(ofsetg, 0, sizeof(ofsetg));
for (i=0;i<3*6;i++)
_Klqr[i]=l.Of;
ChatterL=0.3f; //chatter limiter and may also improve plum problems
ofsetg[l] [0] = iRSW[O] - fRSW[0];
ofsetg[l][1] = iRSW[1] - fRSW[l];
ofsetg[l][2] = iRSW[2] - fRSW[2];
////Linear Dynamics:
memset(A, 0, sizeof(A));
A[0] [3]=1.0f;
A[] [4]=1.0f;
A[2][5]=1.0f;
memset(B, 0, sizeof(B));
B[3] [0]=1.0f;
B[4] [1]=1.0f;
B[5][2]=1.0f;

//// Attractive LQR for each Chase s/c
if (g_norm[chase]>=dock_limit)
{
//// LQR Parameters
if (g_norm[chase]>=ChatterL) //avoids
{
Qlqrl=l.Of/gnorm[chase]; //norma.
bravo=g_norm[chase];

(1 through sats-1):

chatter and divide by zero problems

lize by norm relative range
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}
else
{
Qlqrl=l.0f/ChatterL;
bravo=ChatterL;
}
bravo_den=(mathVecMagnitude(&ofsetgll] [0,3) / (range)) *Vmax;
Qlqr2=bravo/(bravoden*bravoden); //normalize by max relative velocity
memset(Qlqr, 0, sizeof(Qlqr)); //weight control err
Qlqr[0][0] = Qlqrl;
Qlqr[l][1] = Qlqrl;
Qlqr[2][2] = Qlqrl;
Qlqr[3][3] = Qlqr2;
Qlqr[4] [4] = Qlqr2;
Qlqr[5][5] = Qlqr2;
Rlqrl=bravo/(amax*a_max); //normalize by max thruster acceleration
memset(Rlqr, 0, sizeof(Rlqr)); //weight control effort
Rlqr[0][0] = Rlqrl;
Rlqr[l][1] = Rlqrl;
Rlqr[2][2] = Rlqrl;
memset(Nlqr, 0, sizeof(Nlqr));
//// Calculate Gain Matrix for V=(x'Qx)+(u'Ru)+(2x'Nu)
ctrlLQRSimple(Klqr, A, B, Qlqr, Rlqr, Nlqr);
//// Note: Klqr is mostly a constant 3x6 matrix:
state[0] = -l*r_goal[0];
state[l] = -l1*r_goal[l];
state[2] = -l*r_goal[2];
state[3] = -l*v_rsw[0];
state[4] = -l*v_rsw[l];
state[5] = -1*v_rsw[2];
mathMatVecMult(a_rsw, (float **)Klqr, state, 3, 6);
} // Attractive LQR within docking limit

//// Initialize Vectors and Matrix for Repulsive from obstacles:
memset(posobsat,
memset(rsat, 0, s
memset(vobsatmag,
memset(vrepsmag,
memset(aobsatmag,
memset(arepsmag,
memset(Vreps, 0,
memset(kreps, 0,
memset(vdesreps,
memset(adesreps,
memset(areps, 0,
memset(a_desreps,

0, sizeof(posobsat));
izeof(float)*NUMSC_MAX);
0, sizeof(float)*NUMSC_MAX);
0, sizeof(float)*NUMSC_MAX);
0, sizeof(float)*NUMSC_MAX);
0, sizeof(float)*NUMSCMAX);
sizeof(float)*N UMSCMAX);
sizeof(float)*NUMSC MAX);
0, sizeof(float)*3);
0, sizeof(float)*3);
sizeof(float)*3);
0, sizeof(float)*3);

for (iobsat=0;iobsat<sats;iobsat++) //loop through other spacecraft
{
////position vector from obsat toward chase (dir of rep)
iso=3*iobsat;
posobsat[iobsat][0]=_rrsw[chase*3] -_r_rsw[iso];
posobsat[iobsat][l]=_rrsw[chase*3+1]-_r_rsw[iso+l];
posobsat[iobsat][2]=_r_rsw[chase*3+2]-_rrsw[iso+2]; //chase wrt Others
rsat[iobsat]=mathVecMagnitude(&posobsat[iobsat][0],3); //range
from Others
stopdist=(v_norm*v_norm)/(4*a_max);
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OBS_Dsat=(2)*(Lmax+stopdist); //sphere of influence of obstacle
Do>=radius
OBS_Ds=(2)*(G+stopdist); //sphere of influence of Target spacecraft
if (iobsat!=chase) //as long as chase not self
{
if ( (rsat[iobsat]<=OBS_Dsat) && (g_norm[chase]>=(g_norm[iobsat]-Lmax)) &&
(g_norm[chase]>=(rsat[iobsat]-Lmax/2) )
{
vobsatmag[iobsat] = -1.0f/rsat[iobsat]*mathVecInner(&posobsat[iobsat][0],
v_rsw, 3);
if (vobsatmag[iobsat]>0)
vrepsmag[iobsat]=vobsatmag[iobsat];
else
vrepsmag[iobsat]=0;
////attractive acceleration magnitude toward Obstacle:
aobsatmag[iobsat] = -1.0f/rsatiiobsatiobsat*mathVecInner(&posobsatiobsat] [0],
a_rsw, 3);
if (aobsatmag[iobsat]>0)
arepsmag[iobsat]=aobsatmag[iobsat];
else
arepsmag[iobsat]=0;
if (iobsat==0) // if the Target spacecraft

stdevs=(OBS_Ds)/3; //width of meters (numerator)
wids=2*stdevs*stdevs; //2*variance (stdev^2)
Vreps[iobsat]=(float)( (exp(-l.0f*rsat[iobsat]*rsat[iobsat]/wids)-exp(-
1.0f*OBS_Ds*OBS_Ds/wids)) / (exp(-1.0f*Lmax*Lmax/wids)-exp(-
1.0f*OBS_Ds*OBSDs/wids)) );
if (rsat[iobsat]>=((L+L)/2)) //boundry implementation

ksat_vatt=Vreps[iobsat];
ksat_aatt=(float)exp(-fabs(rsat[iobsat]-Lmax));
vdesreps[0]=-1.0f*ksat_vatt*vrsw[0];
vdesreps[l]=-1.0f*ksat_vatt*vrsw[l];
vdesreps[2]=-1.0f*ksat_vatt*vrsw[2];
areps[0]=-.0f *ksat_aatt*arepsmag[iobsat] /rsat [iobsat] *posobsat [iobsat] [0];
areps[l]=-. 0f*ksat_aatt*arepsmag[iobsat]/rsat[iobsat]*posobsat[iobsat] [1];
areps[2]=-1.0f*ksat_aatt*arepsmag[iobsat] /rsat[iobsat]*posobsat[iobsat][2;
}
else
{
ksat_vatt=l;
ksat_aatt=l;
vdesreps[0]=ksat_vatt*vrepsmag[iobsat]/r [iobsat]*posobsat[iobsat] [0];
vdesreps [1] =ksat_vatt*vrepsmag[iobsat]/rsat iobsat]*posobsat iobsat][1];
vdesreps[2]=ksat_vatt*vrepsmag[iobsat]/rsat [iobsat] *posobsat [iobsat][2];
areps[0]=-1.0f*ksat_aatt*arepsmag[iobsat] /rsat [iobsat]*posobsatiobsat][0];
areps[l]=-1.0f*ksat_aatt*arepsmag[iobsat]/rsat[iobsat]*posobsat[iobsat][1];
areps[2]=-1.0f*ksat_aatt*arepsmag[iobsat]/rsat[iobsat] *posobsat[iobsat][2];
} //boundary of Target spacecraft for repulsive gain
adesreps[0]=vdesreps[0]/stepsize-areps[0];
adesreps[l]=vdesreps[l]/stepsize-areps[l];
adesreps[2]=vdesreps[2]/stepsize-areps[2];
//end //if Target is an actual spacecraft/object with repulsion
}
else //if not the Target spacecraft
{
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stdevs=(OBS Dsat)/3; //width in meters (numerator)
wids=2*stdevs*stdevs; //2*variance (stdev^2)
Vreps[iobsatl=(float)( (exp(-l.0f*rsat[iobsat]*rsat[iobsat]/wids)-exp(-
1.0f*OBS_Dsat*OBSDsat/wids)) / (exp(-l.0f*Lmax*Lmax/wids)-exp(-
1.0f*OBSDsat*OBSDsat/wids)) );
if (rsat[iobsat]>=((L+L)/2)) //boundry implementation
{
ksat_vatt=Vreps[iobsat]*(l.0f-(float)exp(-1.0f*g_norm[chase]));
ksat aatt=(l.0f-(float)exp(-1.0f*g_norm[chase]))*(float)exp(-
1.Of*(float)fabs(rsat[iobsat]-Lmax));
vdesreps[0]=ksat_vatt*vrepsmag[iobsat]/rsat[iobsat]*posobsat[iobsat] [0];
vdesreps [] =ksat_vatt*vrepsmag[iobsat]/rsat[iobsat]*posobsat[iobsat][1];
vdesreps[2]=ksatvatt*vrepsmag[iobsat]/rsat[iobsat]*posobsat[iobsat][2];
areps[0]=-l.0f*ksat_aatt*arepsmag[iobsat]/rsat[iobsat]*posobsat[iobsat][0];
areps[l]=-l.0f*ksataatt*arepsmag[iobsat]/rsat[iobsat]*posobsat[iobsat][1];
areps[2]=-l.0f*ksat_aatt*arepsmag[iobsat]/rsat[iobsat]*posobsat[iobsat][2];
}
else
{
ksat_vatt=Vreps[iobsat];
ksat_aatt=Vrepsatiobsat];]/
vdesreps[0]=ksat vatt*vrepsmag[iobsat]/rsat[iobsat]*posobsat[iobsat][0];
vdesreps[1 =ksat_vatt*vrepsmag[iobsatl]/rsat[iobsat] *posobsat[iobsat][1];
vdesreps[2]=ksat_vatt*vrepsmag[iobsat]/rsat[iobsat]*posobsat[iobsat] [2];
areps[0]=-i.0f*ksat_aatt*arepsmag[iobsat]/rsat[iobsat]*posobsat[iobsat] [0];
areps [] =-1.0f*ksat_aatt*arepsmag[iobsat]/rsat[iobsat]*posobsat[iobsat][1];
areps[2]=-l.0f*ksataatt*arepsmag[iobsat]/rsat[iobsat]*posobsat[iobsat][2];
} //boundary of Target spacecraft for repulsive gain
adesreps [0]=vdesreps[O]/stepsize-areps[O];
adesreps [] =vdesreps[l]/stepsize-areps [];
adesreps[2]=vdesreps[2]/stepsize-areps[2];
} //target is different then other spacecraft
}
else //if not in the range of influence for repulsion
{
Vreps[iobsat]=0;
kreps[iobsat]=0;
memset(vdesreps, 0, sizeof(float)*3);
memset(adesreps, 0, sizeof(float)*3);
} //if within region of influence of spacecraft
}
else //if refering to self do nothing

{
Vreps [iobsat] =0;
kreps[iobsat]=0;
memset(vdesreps, 0, sizeof(float)*3);
memset(adesreps, 0, sizeof(float)*3);
} //end of if not self loop
a_desreps[0]=a_desreps [0] +adesreps [0];
a_desreps[ll=a-desreps[l]+adesreps[l];
a_desreps[2]=adesreps[2]+adesreps[2];
} //loop through other spacecraft
//// Repulsive Potential due to obstacles:
//// Initialize Vectors and Matrix for Repulsive from obstacles:
memset(voffsat, 0, sizeof(v_offsat)); //index must be obs+l to ensure
connection
memset(krepo, 0, sizeof(float)*NUMOBSMAX);
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memset(Vrepo, 0, sizeof(float)*NUMOBS_MAX);
memset(vdesrepo, 0, sizeof(float)*3);
memset(adesrepo, 0, sizeof(float)*3);
memset(a_desrepo, 0, sizeof(float)*3);
memset(vobsmag, 0, sizeof(float)*NUMOBSMAX);
memset(aobsmag, 0, sizeof(float)*NUMOBS_MAX);
memset(vrepomag, 0, sizeof(float)*NUMOBS MAX);
memset(arepomag, 0, sizeof(float)*NUMOBSMAX);
memset(arepo, 0, sizeof(float)*3);
if (nObs>=l)

memset(posobs, 0, sizeof(posobs));
memset(robs, 0, sizeof(float)*NUMOBS_MAX);
for (iobs=O;iobs<nObs;iobs++)

posobs[iobs] [0] = _r rsw[chase*3] -OBSiRSW[0] [iobs]; //chase wrt Obs
posobs[iobs][1] = _rrsw[chase*3+1]-OBSiRSW[l][iobs]; //chase wrt Obs
posobs[iobs][2] = _rrsw[chase*3+2]-OBSiRSW[2][iobs]; //chase wrt Obs
OBSiRSW_copy[0] = OBSiRSW[0][iobs];
OBSiRSW_copy[l] = OBSiRSW[l] [iobs];
OBSiRSW_copy[2] = OBSiRSW[2][iobs];
robs[iobs]=mathVecMagnitude(&posobs[iobs][0] , 3); //range from Obs
memcpy(&v_offsat[iobs][0], v_rsw, sizeof(float)*3);
stopdisto=(mathVecMagnitude(&v_offsat[iobs] [0],3)*mathVecMagnitude(&v_offsat[
iobs] [0], 3)) / (4*a_max);

if (ellipsoid>O)
{
a = 0.54f;
b = 0.08f;
c = 0.54f;
lambda =
atan(a/b*rto_obstacle_inertial[i] [iobs]/rto_obstacle_inertial [0] [iobs]);
beta =
atan(b/c*rto_obstacle_inertial[2] [iobs]/r_to_obstacle_inertial[l] [iobs]/sin(
lambda));
OBSDoR_x = a*cos(beta)*cos(lambda);
OBS_DoR_y = b*cos(beta)*sin(lambda);
OBSDoR_z = c*sin(beta);
OBS_DoR =
0.153f+0.1Of+sqrt(OBSDoRx*OBS DoRx+OBS_DoRy*O y+ODoR BS_DoR_z*OBSDoRz

OBS_Do=2*(OBS_DoR+stopdisto); //sphere of influence of obstacle
Do>=radius
if ( (robs[iobs]<=OBSDo) && (r_norm>=(mathVecMagnitude(OBSiRSW_copy,3)-
(3*OBS_DoR))) )

stdevo=(OBS_Do-OBS_DoR)/3; //width of OBS Do meters (numerator)
wido=2*stdevo*stdevo; //2*variance (stdev^2)
vobsmag[iobs] = -
l.Of/robs[iobs]*mathVecInner(&posobs[iobs] [0] ,&voffsat[iobs][0] ,3);
if (vobsmag[iobs]>0)
vrepomag[iobs]=vobsmag[iobs];
else
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vrepomag[iobs]=0;
Vrepo[iobs]=(float)( (exp(-l.0f*robs[iobs]*robs[iobs]/wido)-exp(-
1.0f*OBS_Do*OBSDo/wido)) / (exp(-1.0f*OBS_DoR*OBSDoR/wido)-exp(-
1.0f*OBS_Do*OBSDo/wido)) );
krepo [iobs]=vrepomag[iobs] *Vrepo [iobs];
vdesrepo[0]=krepo[iobs]/robs[iobs]*posobs[iobs][0];
vdesrepo[l]=krepo[iobs]/robs [iobs]*posobs[iobs][1];
vdesrepo[2]=krepo[iobs]/robs[iobs]*posobs[iobs][2];
aobsmag[iobs] = -l.Of/robs[iobs]*mathVecInner(&posobs[iobs][0], a_rsw, 3);
if (aobsmag[iobs]>O)
arepomag[iobs]=aobsmag[iobs];
else
arepomag[iobs]=0;
arepo[0] = -l.Of*arepomag[iobs]/robs[iobs]*posobs[iobs][0];
arepo[l] = -l.0f*arepomag[iobs]/robs[iobs]*posobs[iobs] [1];
arepo[2] = -l.0f*arepomag[iobs]/robs[iobs]*posobs[iobs][2];
ko_aatt=Vrepo[iobs];
adesrepo[0]=vdesrepo[] /stepsize-ko_aatt*arepo[O];
adesrepo[l] =vdesrepo[l]/stepsize-ko_aatt*arepo[l];
adesrepo[2]=vdesrepo[2]/stepsize-ko_aatt*arepo[2];
}
else
{
Vrepo[iobs]=0;
krepo[iobs]=0;
memset(vdesrepo, 0, sizeof(float)*3);
memset(adesrepo, 0, sizeof(float)*3);
} //if within region of influence of obstacle
a_desrepo[0]=adesrepo[0]+adesrepo[0];
a_del=a-epo[l]=a_desrepo[l] +adesrepo[l];
a_de1=a-epo[2]=adesrepo[2]+adesrepo[2];
} //looping through obstacles
} //if obstacles

// These equations used for the original NPS design
// a_tot[0] = a_rsw[0]+adesreps[0]+a_desrepo[0];
// a_tot[l1 = arsw[l]+a_desreps[l]+adesrepo[l];
// a_tot[2] = a_rsw[2]+a_desreps[2]+a_desrepo[2];

// These equations used for the NavZ design
a_tot[0] = arsw[0]+a_desrepo[0];
a_tot[l] = arsw[l]+a_desrepo[l];
a_tot[2] = arsw[2]+a_desrepo[2];
}
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Appendix C LQR Code

Below is the LQR function that is called by the NavZ function.

/*
* ctrl_LQR.c
*

* This file contains a library of LQR solvers. BalanceMatrix, ElmHes, and
HQR functions

* from the "Numerical Recipes in C" 2nd Edition.
*

* MIT Space Systems Laboratory
* http://ssl.mit.edu/spheres/
*

* Copyright 2007 Massachusetts Institute.
*

* Last modified 2007-10-25
*/

#include "ctrl_LQR.h"
#include <string.h>
#include "math_matrix.h"
#include "math_LQR.h"

void ctrlLQRSimple(float Klqr[3] [6], float A[6][6],
Qlqr[6][6], float Rlqr[3][3], float Nlqr[6] [3])

float Rinv[3][3], BinvR[6][3], BinvRBt[6] [6],
float **HH;
float K1,K2;
int i, j;

float B[6][3], float

H[12][12], L[13], wi[13];

memset(Rinv, 0, sizeof(Rinv));

// Calculate the inverse of R (R is diagonal positive definite)
Rinv[0][0] = 1.0f/Rlqr[0][0];
Rinv[ll] [] = 1.Of/Rlqr[l] [1];
Rinv[2][2] = 1.0f/Rlqr[2][2];

// Finding B*inv(R)*B'
mathMatMatMult((float **)BinvR, (float **)B, (float **)Rinv, 6, 3, 3);
mathMatMatTransposeMult((float **)BinvRBt, (float **)BinvR, (float

**)B, 6, 3, 6);

// Create the Hamiltonian matrices
// H = [A -B*Rinv*B';-Q -A']
for (i=0;i<6;i++)
{

for (j=0;j<6;j++)
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H[i] [j]=A[i] [j];
H[i] [j+6]=-BinvRBt[i] [j];
H[i+6] [j]=-Qlqr[i] [j];
H[i+6] [j+6]=-A[j] [i];

// Balance matrix
HH = mathConvertMatrix(&H[0][0],1,2*6,1,2*6);
mathBalanceMatrix(HH,2*6);

// Hessenberg reduction
mathElmHes(HH,2*6);

// Find closed loop pole locations (saved in L)
mathHQR(HH,2*6,(float *)L,(float *)wi);

// Matrices simplified to solve using Ackermann's Formula
// Gains are:
K1 = L[2]*L[4];
K2 = -L[2]-L[4];

Klqr[0] [0] = K1;
Klqr[l] [0] = 0.0;
Klqr[2] [0] = 0.0;

Klqr[O0[1] = 0.0;
Klqr[l] [11] = K1;
Klqr[2] [1] = 0.0;

Klqr[0] [2] = 0.0;
Klqr[l] [2] = 0.0;
Klqr[2] [2] = K1;

Klqr[0] [3] = K2;
Klqr[l] [3] = 0.0;
Klqr[2] [3] = 0.0;

Klqr[0] [4] = 0.0;
Klqr[l] [4] = K2;
Klqr[2] [4] = 0.0;

Klqr[0] [5] = 0.0;
Klqr[l] [5] = 0.0;
Klqr[2] [5] = K2;
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