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The hippocampus is necessary for the formation and storage of episodic memory, however, the
computations within and between hippocampal subregions (CA1, CA3, and dentate gyrus) that
mediate these memory processing functions are not completely understood. We investigate by
recording in the hippocampal subregions as rats execute an augmented linear track task. From
these recordings, we construct ensemble rate representations using a point process adaptive filter
to characterize single-unit activity from each subregion. We compared the dynamics of these
rate representations by computing average max rate and average rate modulation during different
experimental epochs and on different segments of the track. We found that the representations in
CA3 were modulated most when compared to CAl and DG during the first 5 minutes of
experience. With more experience, we found the average rate modulation decreased gradually
across all areas and converged to values that were not statistically different. These results
suggest a specialized role for CA3 during initial context acquisition, and suggest that rate
modulation becomes coherent across HPC subregions after familiarization.

Information transfer between the hippocampus and neocortex is important for the consolidation
of spatial and episodic memory. This process of information transfer is referred to as memory
consolidation and may be mediated by a phenomena called "replay." We know that the process
of replay is associated with a rise in multi-unit activity and the presence of ripples (100-250 Hz
oscillations lasting from 75ms to 100ms) in CAl. Because ripples result from the same circuits
as replay activity, the features of the ripple may allow us to deduce the mechanisms for replay
induction and the nature of information transmitted during replay events. Because ripples are
relatively short events, analytical methods with limited temporal-spectral resolution are unable to
fully characterize all the structure of ripples. In the thesis, we develop a framework for
characterizing, classifying, and detecting ripples based on instantaneous frequency and
instantaneous frequency modulation. The framework uses an autoregressive model for spectral-
temporal analysis in combination with a Kalman filter for sample-to-sample estimates of
frequency parameters. We show that the filter is flexible in the degree of smoothing as well as
robust in the estimation of frequency. We demonstrate that under the proposed framework
ripples can be classified based on high or low frequency, and positive or negative frequency
modulation; can combine amplitude and frequency information for selective detection of ripple
events; and can be used to determine the number of ripples participating in "long ripple" events.
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Chapter 1 : INTRODUCTION



Introduction

The hippocampus is essential to the function of spatial memory encoding and

consolidation. Without it, we lack the ability to store episodes of where we have been,

whom we have spoken with, and the stories that define us. Such abilities are as central to

the human condition as the hunger of curiosity, which compels us to understand the nature

of our own existence.

This thesis explores the hippocampus from the perspectives of the electrophysiologist and

biomedical engineer. Experimentally, we recorded ensemble single neurons from three

sub-circuits of the hippocampus (CAl, CA3, and dentate gyrus) during a spatial task. On

the signal processing side, we developed and applied analytical tools for measuring

millisecond timescale activity in the brain. The combination of the two allowed us to state

with better certainty the respective rate dynamics of each hippocampal sub-circuit, and to

more accurately measure the structure of extracellular oscillations.

For the remainder of the introduction, we discuss a view of hippocampal function using

previously published results, clearly state the questions addressed in the thesis, and provide

an overview of the thesis.
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BACKGROUND

The role of the hippocampus (HPC) is to aid in the maintenance of memories through the

processes of information encoding and memory consolidation. These capacities of the

HPC were first realized when the post-hoc analysis of a human brain lesion of the HPC led

to graded retrograde amnesia [memories that were more distant in time from the surgery

were more completely recalled] (Scoville & Milner, 1957). Later, in the rodent, place cells

were found in the CAl subregion of the HPC. The cells were termed "place cells" for their

activity was highly correlated with the location of rat (O'Keefe, 1976). Since the discovery

of place cells, there has been an exponential increase in the number of studies that examine

the role of the HPC in spatial learning. Furthermore, interest in the HPC is now well

represented in every concentration of neuroscience. This, in large part, is due to the

observation of spatial memory related activity such as place fields, long term potentiation

(LTP), and replay. In the thesis, we specifically ask what are the respective roles in the

hippocampal sub-circuits in the encoding of spatial memory, and how can we better

understand the nature of ripple associated replay events?

Anatomy

Examining the cross-section of the hippocampus (HPC) will reveal a three layered

structure with four anatomically distinct subregions called CA1, CA3, dentate gyrus (DG),

and subiculum (Witter & Wouterlood, 2002). These layers of the HPC are striking in the

coronal brain slice of rats and humans, and can easily be recognized in the brains of many

vertebrates - even the enchidna (spiny anteater), which evolved from a line that diverged

from the human line 200 millions years ago (Manns & Eichenbaum, 2006).

Each subregion contains a simple putative excitatory cell layer containing only one type of

projection (output) cell type; in CAl and CA3 the cell type is the pyramidal cell, while in

the DG it is the granule cell. Pyramidal cells have somas that are shaped like pyramids
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which range from 20 to 30 microns in diameter. Granule cells have compact cylindrical

somas and have an average diameter of 10 microns. In one hippocampi, the counts for the

CAl pyramidal cells are 3.0x105
, CA3 pyramidal cells are 2.5x105

, and DG granule cells

are 1.2xI06
.

Polymodal sensory
information

Hippocampus

Schaffer collaterals

Modulatory input

--- Temporoammonic

path

---- Perforant
path

Entominal cortex

Medial

Figure 1.1: The basic anatomy of the rodent hippocampus. A sagittal cross section of the

hippocampus is shown with the respective inputs from the entorhinal cortex. Th neurons shown in the

principal cell layers of the hippocampus are pyramidal neurons for CAl and CA3, and granule cells

for DG. The inputs to the hippocampus originate from the superficial layers of the entorhinal cortex,

while the direct output of the hippocampus to the entorhinal cortex is the projection from CAl to layer

V of the entorhinal cortex. The modulatory input refers to a large number of projections, including

the GABA-ergic input from the medial septum, which is a direct source of theta modulation in the

hippocampus. Reprinted by permission from Macmillan Publishers Ltd: (Neves et aI., 2008).

Interneurons in the HPC are extremely diverse and their classification is based on features

such as spike waveform, average firing rate, presence of parvalbumin, and morphhology

(Han et aI., 1993; Freund & Buzsaki, 1996; Klausberger et aI., 2003). Although

hippocampal function cannot be fully understood without accounting for interneuron

11
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activity, relatively little about interneuron information processing has been published.

This, primarily, is because interneurons are diverse and precise identification of

interneuron cell types from electrophysiological signals alone is not generally reliable.

The primary inputs into the HPC originate from the superficial layers of the EC through a

fiber tract called the perforant path (PP). This tract perforates at the hippocampal fissure

where one branch runs along the stratum lacunosum-moleculare through CAl and ends in

CA3 all the while making synapses onto CAl and CA3 apical dendrites; and the other

branch runs through the molecular layers of the DG making synapses onto inhibitory

neuron and granule cell dendrites. The axons (outputs) of the granule cell are called mossy

fibers; these fibers project exclusively to the apical dendrites of the CA3 pyramidal cells.

The axons of the CA3 pyramidal cells are sent to the dendrites of the CAl pyramidal cells

and, along the way, many of these CA3 axons synapse back onto CA3 pyramidal cell

dendrites. The axons that provide feedback in CA3 are termed recurrent collaterals. The

axons of CAl project mainly to the subiculum and some to the deep layers of entorhinal

cortex, as well as to the neocortex (Figure 1.1).

The perceptual system drives place cell activity

The receptive fields of hippocampal neurons are highly correlated with spatial location

(O'Keefe, 1976; Muller et al., 1987). Therefore, the hippocampal neurons are referred to

as "place cells" and their receptive fields as "place fields" (O'Keefe, 1976). Rotenberg &

Muller (1997) proposed the theory that place cell activity in the rodent hippocampus

reflects a perceptual system (Rotenberg & Muller, 1997). Central to the idea of a

perception is the notion of a context. Based on the perceptual system theory we can define

a stable context to be a set of observable cues with some non-zero valence that continually

elicits stable responses from hippocampal cells as a function of position. In general, it is

the geometric relationship between the position of the cues and the position of the animal

that determine the location, shape, and rate of hippocampal response (Muller et al., 1987;
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Burgess & O'Keefe, 1996; Leutgeb et aI., 2004). The anatomical substrate for this theory

is shown in Figure 1.2, where the coincident firing of neocortical neurons, then

parahippocampal neurons, results in the activation of place cells (Marr, 1971; Squire &

Zola-Morgan, 1991).

Figure 1.2: Schematic relationship between primate neocortex and constituents of the

parahippocampal region. The circuits sketched on the surface of the neocortex are the parietal (PG)

and inferotemporal (TE) cortices. Activity in the parietal is highly correlated with object location

while activity in the inferotemporal area is correlated with object recognition. The abbreviations are

parahippocampal cortex (TF/TH), entorhinal cortex (EC), perirhinal cortex (PR), subiculum (S),

dentate gyrus (DG), cornu ammonis 1 (CAl), cornu ammonis 3 (CA3). This circuit puts into context

the role of the medial temporal lobe in transforming perceptual information into spatial information.

Adapted from (Squire & Lindenlaub, 1990), reprinted with permission from Schattauer Verlag,

Stuttgard, Germany.

13
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Under the perceptual system theory, changes to cues with zero valence will have little

effect on the position of place fields. Likewise, the perceptual system theory predicts that

an alteration of the geometric relationship between animal position and salient cues will

result in a change in place field shape, location, and/or rate. Muller & Kubie (1987) found

that when the walls of rectangular and circular enclosures where altered to double the area

of the enclosure (while the rat was not in the enclosure), one third of the place fields

doubled in size without significant changes to field shape (Muller & Kubie, 1987). In

contrast, when Wilson & McNaughton doubled the area of a square enclosure by lifting up

a divider to allow full access to a rectangular enclosure, they found that the place cells in

the familiar square area did not change dramatically (Wilson & McNaughton, 1993). The

difference between these two experiments was that in the Wilson & McNaughton study the

rat remained in the environment while the divider was being removed. A reasonable

interpretation of this scenario is the rat was able to lower the perceptual valence of the

divider as it was removed, and therefore maintain its current neuronal representation of

context based on other cues. In contrast to Wilson & McNaughton, Leutgeb & Moser

(2007) found that while the rat was either in a circular or square enclosure with high walls,

when the walls of the enclosure were gradually morphed into the other shape, place fields

in the hippocampus were found to change in rate and location (Leutgeb et al., 2007).

Under the perceptual system theory, these changes in rate could be explained by the fact

that the walls used in the Leutgeb & Moser experiment were too high for the rat to orient

itself using distal cues and therefore the responses in the neocortex that were once

coincident, naturally diverged as the geometry of the local cues diverged, leading to

changes in hippocampal receptive fields. Interestingly, the perceptual system which drives

the hippocampal response appears to be modular and robust in nature. For example, when

the light is turned off hippocampal place cells are initially perturbed but become stable

once again with some experience in the dark (Okeefe, 1976; Quirk et al., 1990; Gothard et

al., 2001; Hargreaves et al., 2007). These observations are consistent with the idea that the

rat can shift its perceptual system to increase the valence of vestibular information and still

maintain the same place specific responses in the hippocampus. In particular, the

stabilization of place fields in the dark suggests that pattern completion computations of
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the hippocampal-entorhinal loop may allow for persisting hippocampal receptive fields in

situations where visual cue information is not available.

Mechanisms of spatial memory encoding

The first line of evidence which implicates the hippocampus as part of the spatial memory

consolidation circuit came from the observation of patient H.M., who in 1953 underwent a

bilateral lesion of the medial temporal lobes in a procedure to cure his severe epilepsy.

The lesions left H.M. with the capacity to recall only episodes that occurred 11 years

before or earlier to the surgery, and no ability to recall new episodic experiences (Scoville

& Milner, 1957; Salat et al., 2006). In addition to H.M, another patient R.B. developed

marked anterograde amnesia at the age of 52. After the death of R.B., examination of his

brain revealed total bilateral lesions of the CAl subfield from rostral to caudal end (Zola-

Morgan et al., 1986). The case of R.B. demonstrates that damage to the hippocampus

alone can lead to severe impairment of memory processing. In particular, the fact that the

amnesia was less severe in the case of R.B. than H.M., suggests that the other subregions

of the hippocampus may act in parallel with CAl to process memory (Squire & Zola-

Morgan, 1991).

More detailed investigation of the function of the hippocampus was afforded by rodent in

vivo studies of HPC activity during behavior and sleep. First, place receptive fields where

observed in the hippocampus (O'Keefe, 1976). This was followed by the observation that

the 0 -rhythm strongly modulated the activation of place cells (Okeefe & Recce, 1993).

Close examination of this modulatory activity led to the discovery of phase precession and

spatial sequence compression (Skaggs et al., 1996). With the discovery of the LTP in the

hippocampus (Bliss & Lomo, 1973), and the establishment of the spike-timing dependent

plasticity (STDP) rule for strengthening or weakening synapses (Dan & Poo, 2004), the

timescale of sequenced cell activations imposed by the 0-rhythm led to the idea that the

0-rhythm could act as a mechanism for binding information into a continuous chain of
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place field activations that could serve as a memory trace for episodic information (Skaggs

et al., 1996). The ability to reconstruct spatial episodes from sequential place cell

activations in combination with the observation that pair-wise correlated firing during

behavior and sleep was preserved (Wilson & McNaughton, 1993; Wilson & McNaughton,

1994), provided the scientific foundation for investigating a phenomenon called "replay",

where episodic memory traces stored in the hippocampus would be re-expressed during

sleep as part of the process of memory consolidation. Investigations in the Wilson lab

reported the observation of highly unlikely expression of place cell sequences that matched

those observed during behavior, supporting the view that the HPC is a locus for short term

episodic memory and that the process of memory consolidation involves active

engagement between the HPC and neocortex (Louie & Wilson, 2001; Lee & Wilson,

2002). A recent report by Ji & Wilson (2007) showing sequenced replay in the HPC was

accompanied by sequenced replay in the visual cortex during slow wave sleep, was the

first convincing line of evidence to show a sequence replay specific dialogue between the

HPC and neocortex (Ji & Wilson, 2007). Perhaps the most striking observation of replay

was discovered by Foster & Wilson (2006), where they observed that during awake,

resting states, ripple associated activation of multi-unit place cell activity was highly

structured in reverse order such that neurons fired in the reverse sequence in which they

were activated during behavior. This observation of "reverse replay" is direct evidence

showing that the hippocampus can recapitulate sequence reactivation of place cells without

engaging in exploratory behavior itself. This brief summary ties together basic

observations of hippocampal physiology to frame a larger picture of hippocampal function:

the storage and recapitulation of place cell sequences as episodic memory traces.

The roles of pharmacological and genetic manipulations have made enormous

contributions to the understanding of HPC function in memory encoding and

consolidation. A famous study by Morris & O'keefe (1982) tested the effect of total

bilateral hippocampal lesions on the performance of rats in a task where the rat was given

several trials to learn a platform location that was hidden underwater. This task, termed

the Morris water maze, was designed to probe the function of the hippocampus in the
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processing of spatial memory. Morris & O'keefe found that lesioned rats showed marked

impairment in the recall of platform position even after many trials (Morris et al., 1982).

With the observation of LTP in the hippocampus (Bliss & Lomo, 1973), the Morris water

maze became the standard protocol for studying the role of LTP in memory consolidation

in vivo. In particular, infusion of NMDA receptor antagonists have been observed to block

LTP in vivo and lead to a marked deficit in Morris water maze performance (Davis et al.,

1992). A limitation of pharmacological manipulations is the placement of reagent may be

inconsistent from subject to subject and the spread of the reagent is generally not well

controlled. In order to address these problems, the gene for the NMDA receptor was

knocked-out in a hippocampal subregion specific manner (McHugh et al., 1996; Tsien et

al., 1996; Nakazawa et al., 2003; McHugh et al., 2007). Whether the NMDAR knockout

was in CAl, CA3, or DG, all mice showed a marked deficit in Morris water maze

performance suggesting that LTP in the hippocampus is necessary for normal memory

consolidation.

As we discussed earlier in the introduction, the sequential activation of place cells within a

0-cycle may be crucial for storing the sequence through mechanisms of STDP. The

ability to encode place by 0-phase suggests the spatial-temporal interactions between the

0-rhythm and place cell activity is robust (O'Keefe & Recce, 1993). Therefore, a

manipulation to the HPC which leads to a degradation of the temporal-spatial properties of

place cell activity should theoretically result in the impairment of spatial and episodic

memory encoding and recall. This line of reasoning is supported by experiments where

genetically modified mice lacking the NMDA receptor in area CAl, CA3, or DG, express

large and imprecise CAl spatial receptive fields (McHugh et al., 1996; Tsien et al., 1996;

Nakazawa et al., 2001; McHugh et al., 2007). In these mice, the loss of ability to rapidly

sharpen CAl receptive fields with experience is highly correlated with impaired spatial

learning. These deficits in spatial learning may be explained by the possibility that "less

reliable" place fields in the knock-out mice results in poor repetition of place cell sequence

activation over multiple theta cycles. Moreover, the fact that the CAl place fields are

larger in these mutant mice suggests that the output of CAl will be less sparse due to
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higher probability of overlapping fields. When compared to normal mice, the HPC of

these mutant mice would likely produce fewer unique place cell sequences thereby

diminishing the encoding capacity of the hippocampus. Consequently, the reinforcement

of sequence memory traces by STDP will be severely disrupted. In summary, the

interactions between the 9-rhythm, excitability, and spike timing are important for

inducing STDP mechanisms that underlie the place cell sequence based memory traces.

Subregion specialization A la Marr et al.

Information encoding and memory recall are non-trivial processes that are attributed to the

HPC. The underlying mechanisms for these functions are mediated by combining the

computations of pattern completion and pattern separation (McNaughton & Morris, 1987;

Rolls, 1996). Pattern completion allows for the retrieval of a complete memory trace using

only a partial set of cues from the neocortex. When two or more memory traces are

triggered by cue information downstream of the HPC, a process called "pattern separation"

is initiated so that through a neocortical/HPC conversation only one pattern is selected.

Pattern completion and separation need not be mutually exclusive and most likely co-exist

temporally to make the HPC as robust as possible. David Marr's "collateral effect"

provided the first theoretical framework for understanding how the architecture of the HPC

might support pattern completion (Marr, 1971). Marr's theory predicted how a subset of

neurons that were once part of a memory trace could be used to reactivate all neurons that

constitute that memory trace in its entirety. He applied his theory to the HPC and

hypothesized that the hippocampus-entorhinal loop could serve the function of pattern

completion. Marr's theory was later applied to the autoassociative network of the CA3

recurrent collaterals in a hypothesis which positioned CA3 to be the primary pattern

completion engine of the brain (McNaughton & Morris, 1987; Treves & Rolls, 1991).

Many papers suggest CA3 is truly the autoassociator it is thought to be (Nakazawa et al.,

2002; Moser & Moser, 2003; Lee et al., 2004; Lee et al., 2004; Leutgeb et al., 2004; Gold

& Kesner, 2005; Leutgeb et al., 2006). Pattern separation, on the other hand, is a function

that is attributed to the DG based on computational theory Marr initially proposed for
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cerebellar function (Marr, 1969). The role of the DG would then be to orthogonalize or

accentuate the differences of two competing patterns so that they are sufficiently

transformed into two non-competing representations downstream. Support for

orthogonalization is provided by the few-to-many-to-few projections from the (PP)-to-

(granule cell)-to-(CA3 pyramidal cell) in the HPC, much like the (mossy fiber)-to-(granule

cell)-to-(purkinje cell) circuit in the cerebellum. As information arrives from the EC into

DG through the perforant path, small differences in EC population coding can lead to large

differences in DG population coding. Therefore, memory recall under the conceptual

frameworks of Marr, is a melding of pattern completion and pattern separation in

proportions that are imposed by the availability of cue information, which is highly

dependent on environmental conditions and task demands. Area CAl receives input from

CA3 through the Schaffer collateral projections and from EC through the temporal-

ammonic pathway (Remondes & Schuman, 2003; Remondes & Schuman, 2004). The

convergence of these inputs onto the apical dendrites of CAl pyramidal cells suggests that

CAl is largely a coincidence detector. Although many experiments have sought to

dissociate the functional properties of the HPC subregions within this theoretical

framework, specialization of HPC subregions are still not well understood (Gilbert et al.,

2001; Guzowski et al., 2004; Lee & Kesner, 2004).

Subregion cooperation

Instead of solely viewing the hippocampus as a computational unit with distinct sub-

circuits that perform different functions, one may benefit from considering the possibility

that the function of each sub-circuit may not be as unique as the anatomy. With the

melding of hippocampal sub-circuits, a more fruitful approach might consider what

functional properties are shared between the subregions and infer the function of the

hippocampus as a whole based on the common properties of the hippocampal subregions.

Therefore, in doing so, we are not forced to prescribe to any particular way of thinking in

terms of the functionality of the subregions. We now proceed by examining the
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electrophysiological evidence that is common throughout the HPC and extrapolate from

there in a bottom-up like manner.

The most obvious trait found throughout the HPC, is the theta rhythm. It is a 6-12 Hz

rhythm in the rodent and dominates the frequency spectrum during locomotion,

consumatory behaviors, and REM sleep (Vanderwolf, 1969; Buzsdki, 2006). The theta

rhythm in the HPC is driven by GABA-ergic input from the medial septum and diagonal

band of broca via the fornix fiber tract (Buzsaki et al., 1983; Bland et al., 1999; Buzsaki,

2002). In the HPC, the theta rhythm has been found to be highly coherent between CA1,

DG, and EC, however, detailed studies have shown this coherence to be present but not as

robust in CA3 (Buzsaki, 2002).

The functional significance of the theta rhythm cannot be overstated. The activity of both

excitatory and inhibitory neurons are highly regulated by the phase of the oscillation

(Skaggs et al., 1996; Harris et al., 2002; Somogyi & Klausberger, 2005; Ego-Stengel &

Wilson, 2007). This regulation is thought to provide three essential functions: 1) global

synchronization between HPC and cortical areas (Siapas & Wilson, 1998; Jones & Wilson,

2005; Jones & Wilson, 2005) as well as structures in the basal ganglia (DeCoteau et al.,

2007), and 2) a temporal compression mechanism for converting rate based representations

into spike-sequence based representations (Skaggs et al., 1996; Mehta et al., 2002), and 3)

a mechanism for constraining the temporal relationship of spikes for induction of LTP

(Huerta & Lisman, 1995; Holscher et al., 1997; Mehta & Wilson, 2000). The continuum

of theta organized activity has recently been shown to extend to grid cells where the theta

rhythm has been known to exist (Buzsaki, 2002; Hafting et al., 2008).

The detailed coordination of firing throughout and beyond the HPC strongly suggests that

the role of the HPC (and possibly the EC) is to convert unreliable, rate based codes from

extra-hippocampal areas into reliable spike-sequence based codes in the HPC. To

investigate this hypothesis on a functional level, the rat is given a stereotypes trajectory to

run on. As the rat experiences this trajectory over and over again, the same sequences of

place cell activations are expressed in the hippocampus. By limiting the experience of the
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rat to a small number of trajectories, theoretically, the number of patterns that are then

stored in the HPC will be small. Amazingly, these patterns of experience have been found

to be "replayed" or "re-expressed" during REM sleep, SWS sleep, and awake-immobility

(Louie & Wilson, 2001; Lee & Wilson, 2002; Foster & Wilson, 2006; Ji & Wilson, 2007).

These observations support the idea that the HPC is a site which is involved in the storage

and recall of short term memory (Morris, 2006), and that continued communication

between the HPC and neocortex is necessary for long-term memory consolidation (Squire

et al., 2004).

Recently, we have observed a shift in the view of hippocampal subregion specialization.

In some respect, it is a return to the model of simple memory proposed by Marr (1971),

where a memory system that contained multiple layers of coincidence detection combined

with recurrent collateral feedback would provide the memory storage and recall functions

expected from the hippocampus. In a report by Leutgeb & Moser (2007), where they

recorded from both CA3 and DG during a morph box experiment, they concluded that the

observed rate changes in the respective areas resulted in a decorrelation in pair-wise place

cell activity within both CA3 and DG. This decorrelation is consistent with the idea that

the subregions of the HPC act as coincidence detectors and as coincident input onto any

one cell changes, so must the receptive field of the cell. If we extrapolate this idea, then

changing the input pattern to the DG or the coincidence detection mechanism in the DG

(by manipulation NMDARs) would affect the input patterns to CAl and CA3. Similarly,

changing the input to CA3 or altering the coincidence detection mechanism would affect

the input pattern to CAl. Therefore, ultimately, changing the coincidence detection

mechanism in any of the hippocampal subregions will affect the timing of action potentials

needed to form sequence memory traces.
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THE SCIENTIFIC QUESTIONS: HIPPOCAMPAL

SUBREGIONS SPECIFIC ROLES IN MEMORY

PROCESSING AND UNDERSTANDING RIPPLE ACTIVITY

Problem Statements

This thesis advances the study of two important aspects in hippocampus mediated episodic

memory consolidation: 1) how is spatial information processed by the HPC, and 2) how

can we better understand the structure of ripple oscillations?

1) Understanding how information is encoded in the HPC is central to understanding its

function in mediating memory consolidation. In particular, there has been an interest in

determining the role of the HPC in novel spatial encoding (Lee et al., 2005). Curiously,

the definition of what is and is not novel can be vague. In some sense, we are always

entering a novel situation if past history is taken into account. Furthermore, because the

HPC is constitutively encoding spatial information, a major question is: what are the

differences in HPC processing during "more novel situations" and "less novel situations"?

Novelty can be defined relative to the animal and relative to the HPC. In the first case,

novelty can be defined by experience. With rats, novelty can be introduced by moving the

experiment to another room or introducing objects that the rat has never seen into the

environment. Novelty can be measured subjectively in rats using the time spent exploring

an object or by the initial velocity of exploration in an environment. On the other hand,

what is novel to the HPC cannot be controlled by the experimentalist and depends on the

perceptions of the animal. There are two confounds related to this particular point. First,

even in a very familiar environment, novelty can be induced by a history effect. For

example, "I'm in the home cage" has no history, but "I'm in the home cage now and just

came from getting chocolate ice cream" has an element of history. Second, even in a novel

observation room, there may be familiar visual cues, objects, sounds, and smells that elicit
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known inputs into the hippocampus. In such a case, inputs into the HPC from EC may not

actually be novel to the HPC.

Taking these confounds of novelty into account, we designed a linear augmentation track

task that allows the animal to become familiar with the context (the room) while

introducing elements of "novelty" during the task. Novelty in this case is allowing the rat

to explore areas of space that were once restricted. During this process of track running,

we record multiple single-units from all three subregions of the HPC. We compare the

representation of the context, within HPC subregions and across subregions, at different

points of the experiment to determine how subregion specific representations of the

context changes over time and with additional spatial exploration. From these

comparisons, we make a statement about the dissociation and cooperation of HPC

subregions in spatial memory encoding.

The process of quantifying the neuronal representations of context is a non-trivial problem.

Representations in the brain are always changing and the HPC is no exception.

Considering the possibility that the variation in HPC place cell firing may be a reflection of

episodic encoding, it is necessary to quantify these variations as accurately as possible.

Given a receptive field for a place cell, the variation that we seek to quantify may simply

be in the rate to place mapping. A major problem with estimating changes in this mapping

is that it requires the rat to move through the space in order to observe the action

potentials. This sampling limitation is costly and, therefore, every spike that we observe is

extremely valuable. In the thesis, we discuss an adaptive filter for incorporating spiking

information that could operate on arbitrarily small timescales and allow the dynamics of

contextual representations in the HPC to be tracked continuously.

2) The observation that episodic replay co-occurs with ripple events suggests that the

ripple signatures may carry information related to the mechanism of replay generation.

What is known is that ripple frequency, ripple power, and ripple duration can vary greatly

(Chrobak & Buzsaki, 1996; Csicsvari et al., 1999; Csicsvari et al., 1999). However, what

is not well understood is how these variations are produced and whether these variations
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are strongly correlated with different computational processes in the HPC. For example,

do ripples of different frequency co-occur with forward replay or reverse replay? (Diba &

Buzsaki, 2007) Discovering such covariates would allow us to better understand the

relationship of replay to behavioral experience and task demands.

In order to make this idea even more concrete, the theta rhythm can be used as an example.

Like the ripple, the hippocampal theta rhythm is also an oscillation that can vary in

frequency, amplitude, and duration. The frequency of the theta rhythm is meaningful

during locomotion because it is highly correlated with the velocity of the animal (Hirase et

al., 1999; Wyble et al., 2004). The amplitude of the theta rhythm can be modulated on a

task-phase dependent manner (Wyble et al., 2004; Sinnamon, 2006), while the duration of

the theta rhythm is highly correlated with the time the rat has been engaged in a particular

behavioral state (Buzsiki, 2006). These correlates may be used to decode the state of the

animal and predict the activity in areas that are anatomically connected to the HPC.

Unlike the theta rhythm, variations in ripple properties are not well-understood. This is

largely due to the use of signal processing algorithms that are restricted in spectral-

temporal resolution (Gillis et al., 2005; O'Neill et al., 2006). One third of this thesis is

devoted to developing adaptive spectral-temporal filters for quantifying fine time-scale

structure of local field potentials. Another third of the thesis is an application of the

derived filter to the problem of ripple characterization and detection.



Introduction

THE ANALYTICAL PROBLEM: QUANTIFYING

PHYSIOLOGICAL PROCESSES ON ARBITRARY

TIMESCALES

Adaptive decoding of spike trains

In a report by Bialek et al, they ask how much information can the spiking of a single

neuron convey (Bialek et al., 1991). To address this question, the authors put forth a

general paradigm called "stimulus reconstruction". The idea is that if the spikes of a

neuron can be used to reconstruct the driving stimulus then it can be said that the spike

train contains information about the stimulus space. In procedural terms, "the problem of

reading the neural code is essentially the problem of building a (generally nonlinear) filter

that operates continuously on the spike to produce a real-time estimate of the unknown

stimulus waveform."

In the analysis of ensemble single-unit data from the rat hippocampus by Zhang et al, the

authors compared Bayesian and population vector methods for position reconstruction

(Zhang et al., 1998). Accurate reconstruction of position involves two aspects. First, if the

spike train concurrently contains information about other physical quantities such as

running velocity of theta phase modulation, then these quantities must be explicitly

modeled in the decoding filter. Second, the spike train must contain position information.

They found that stimulus reconstruction is best accomplished using Bayesian state-space

methods when the assumption of Poisson spiking holds and independent spiking is true.

What is not explicitly discussed by Zhang et al is the process of stimulus reconstruction is

really a two-step process that consists of an encoding stage and then a decoding stage. The

encoding stage can be though of as a model selection and parameter estimation procedure,

while the decoding stage can be thought of as model validation procedure. The model
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which yields the lowest stimulus construction error would be the model that best accounted

for the information contained in the spike train.

Significant advancements in the encoding-decoding framework have been made by the

Brown Lab (Brown et al., 1998; Barbieri et al., 2000; Frank et al., 2000; Barbieri et al.,

2001; Barbieri et al., 2001; Brown et al., 2001; Barbieri et al., 2002; Brown et al., 2002;

Frank et al., 2002; Eden et al., 2004; Ergun et al., 2007). These reports focus on Bayesian

state-space approaches to spike train decoding and model selection, and put forth general

frameworks for modeling and validating time-dependent reconstruction algorithms that

may be non-Poisson in spike timing and non-Gaussian in stimulus space.

For the investigation of HPC subregion dissociation and cooperation during episodic

information encoding, we would like to track HPC representations of context as they

change over time. Using an adaptive point process framework developed in the Brown

Lab (Brown et al., 2001; Frank et al., 2002), in the thesis we track the receptive field of

each cell over time. When the dynamic properties of each cell are pooled together

according to HPC subregion, statements can be then be made about the relative responses

of each subregion to 1) contextual familiarization, 2) novel spatial exploration, 3) and

general time-dependent experience in the same environment. This approach allowed us to

quantify consistent but slow changes in ensemble rate coding of the HPC.

Adaptive filters for characterization of brain rhythms

Whether recorded outside the skull (electroencephalogram, EEG) or inside the brain (local

field potential, LFP), the frequency content of the brains electrical activity in the brain has

been found to be crucial for the assessment of functional states, diseases, and injuries.

Furthermore, many studies have shown that different areas of the brain will exhibit

different patterns of rhythmic activity, and that each rhythm is highly dependent on age,

mental state, stimuli, pharmacological agents, and disturbances to/from the body

(Buzstki, 2006).
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Despite all that we know about brain rhythms from their generation to function, we still

face many complex and unanswered questions. The role of adaptive filters could be used

to help answer these questions by allowing for the fine timescale structure of brain rhythms

to be computed and correlated with the activation of specific neuronal circuits. A general

process for performing these measurements is to 1) select the pieces of data for analyses, 2)

extract the relevant features from the data, and 3) combine the measurements to, for

example, perform some classifications or make some statistical comparisons. The

component that is most relevant to this thesis is step #2, the extraction of relevant features.

The methods used today fall largely into two classes: parametric and nonparametric.

Generally, the difference is parametric methods are model driven, whereas, nonparametric

methods are transform driven (Percival & Walden, 1993). The advantage of using

parametric methods is they offer better resolution and better characterization when the

underlying assumptions of the model are correct. In contrast, the advantage of using non-

parametric methods is very few to zero assumptions are needed. The process of choosing

one method over another largely depends on what measurements are needed for addressing

the scientific question at hand.

On the most basic level, brain rhythms are characterized by modulation in power in the

respective frequency bands. For this purpose, nonparametric FFT and wavelet based

methods for computing power spectra are sufficient. However, in many cases the desired

quantity is not easily derived from the power spectrum. For example, one would have

difficulty measuring the number of peak frequencies, the location of peak frequencies, the

bandwidths of brain rhythms, and relative power of brain rhythms. Moreover, with the

dynamic nature of brain rhythms there is no guarantee that such measurements derived

from the power spectra will be accurate. Furthermore, placing statistical boundaries on the

accuracy of such measurements are extremely difficult. One way to overcome these

limitations is to use parametric methods.

As I discussed earlier, the use of parametric methods requires assumptions to be made in

order to justify the model. First, EEG and LFP can vary in their composition; at some
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times one rhythm may be present and at other times the signal may be a superposition of

multiple rhythms. Second, each rhythm can be bounded by a low and high frequency

boundary. Third, within the frequency boundary, a rhythm may rapidly change in

amplitude, bandwidth, center frequency of oscillation, and phase delay. In other words,

each rhythm may be highly nonstationary over very short timescales (milliseconds).

A parametric method that can quantify data following these assumptions is the

autoregressive (AR) model. We focus on the AR because it has a long and fruitful history

as a flexible tool for spectral and time-series analysis (Zetterberg, 1977; Box et al., 1994;

Oppenheim et al., 1999; Lutkepohl, 2005). Interestingly, for all that it can do, the AR has

a very simple form: the univariate AR, y, = E ay,, + ,, is parameterized by a model

order p, a measurement error variance term oU , and a coefficient vector term

A, = (a,,...,a p ). If the coefficients AP are chosen correctly and e, is a white noise process,

the AR generates a time series y, as a superposition of p/2 oscillations when p is even.

The peak frequency and bandwidth of each of these oscillations is also parameterized

within AP. So, with the proper definition of A, and the ability to generate e,, one could

generate data with similar properties to that of EEG and LFP data. More importantly, there

now exists many methods for solving the inverse problem: to estimate (p,a -, AP) from the

data. From these parameter estimates, we can directly compute the end products of our

spectral analyses: the number of rhythms in the EEG/LFP, the peak frequency of each

rhythm, the bandwidth of each rhythm, and the relative power between rhythms

(Oppenheim et al., 1999). Most importantly, these end products are computed from an AR

model of the oscillation and not extracted from the power spectrum.

Many of the advancements made in EEG analysis, were made in the 1960's and 1970's.

Zetterberg was one of the first to apply AR models to the analysis of EEG data

(Zetterberg, 1969). In his 1969 report, Zetterberg acknowledges that his maximum-

likelihood estimator is only appropriate for stationary parts of EEG signals. Not long after,

Bohlin combined the AR linear model with the Kalman filter for adaptive estimation of
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AR parameters (Kalman, 1960; Bohlin, 1977). Till this day, the same constructs proposed

by Bohlin provide the basis for continued advancements in EEG/LFP analyses. For

example, Foffani et al used partial fraction expansion to decompose each oscillation of the

AR into independent analytical functions (Foffani et al., 2004); in doing so, time-varying

properties of each brain rhythm could be tracked dynamically over time and with fine-

temporal precision. Later, the Kalman smoother was applied to univariate and multivariate

versions of AR models of EEG/LFP signals (Arnold et al., 1998; Tarvainen et al., 2004).

The concept of coherence, which receives much attention today, had been published early

on by Gersch in his consideration of multidimensional EEG/LFP recordings (Gersch,

1970). Gersch used the analytic form of the auto-spectra and cross-spectra, which can

easily be derived from the AR model, to analytically solve for the coherence function

between two LFP signals. In parallel to EEG research, Granger used AR models in his

development of Granger causality to better formulate problems in econometrics (Granger,

1969). Since the introduction of Granger's framework, every manipulation of the

multivariate AR transfer function has been proposed to be a measure of causality or

connectivity in the brain (Rosenberg et al., 1998; Sameshima & Baccala, 1999; Baccala &

Sameshima, 2001; Hesse et al., 2003; Kus et al., 2004; Ivanov & Kilian, 2005; Chen et al.,

2006; Kus et al., 2006; Schelter et al., 2006). Although these proposals do measure

something, it is unclear how they can be used to make scientific inferences. It seems that

more work is required to make clear the proper interpretation of proposed causality

measures.
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THESIS SUMMARY

Chapter 2: We seek to understand the relative contributions of the HPC subregions in the

coding of episodic memory. The chapter presents in vivo single unit place cell data

collected from 4 rats over 10 days of experimentation in an augmented linear track task,

which is designed to examine the differential response of the hippocampus in "more novel"

and "less novel" situations. The experiment, data, and analyses presented here are novel to

the hippocampal field. The augmented linear track task as we have defined it has never

been published (to the best of our knowledge). Moreover, simultaneous recordings of

neurons in CA1, CA3, and DG are rarely seen in the literature. We combine, in a novel

manner, an adaptive filter for measuring place cell plasticity with basic statistical analysis

to the relative contributions of the HPC subregions in spatial and episodic memory

processing.

Chapter 3: We examine the signal processing question of how to accurately quantify the

frequency modulation and amplitude modulation of brain rhythms. We derive, implement,

and characterize a Kalman filter for tracking instantaneous frequency and frequency

modulation of brain rhythms based on an autoregressive model. We consider the practical

aspects of adaptive filtering and ultimately find that minimizing the adaptive filter provides

the most reliable measurement of frequency dynamics. We demonstrate how the filter can

be applied to any brain rhythm of interest, and provide a simple example looking at 0-

rhythm activity on a linear track.

Chapter 4: We apply the filter developed in Chapter 3 to the analysis of hippocampal

ripple events. We demonstrate how to choose filter parameters for analyzing the ripple

signal and how to interpret the frequency modulation signal in the ripple band. We build

on this knowledge to address three problems in the analysis of ripples: the classification of

ripples, the detection of ripples, and the deconvolution of overlapping ripple events. We

propose a framework for ripple classification that is independent of ripple amplitude (a

quantity that is variable with electrode position and electrode properties). We also
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demonstrate how the filter may aid in selective detection of ripple events with particular

frequency and amplitude properties. We feel that this framework is the first of many that

will help to advance our knowledge of ripple-associated, hippocampus mediated,

mechanisms for memory processing.

Chapter 5: We recap the problems faced in the thesis, how we overcame the problems,

and the results.



Chapter 2 : HIPPOCAMPAL SUBREGION DISSOCIATION AND

COOPERATION: AN EXAMINATION OF EXPERIENCE DEPENDENT

RATE DYNAMICS



HPC Subregion Dissociation and Cooperation

INTRODUCTION

An important and unanswered question in the study of spatial memory processing is what

unique processing occurs in the hippocampus to allow for the encoding and consolidation

of spatial experiences. This question can be broken down into two lines of though, one

line asking do the anatomically identified subregions of the hippocampus perform some

unique function which contributes to the role of the hippocampus as a whole, or do the

subregions perform similar functions but are placed in different stages of processing, or a

combination of both?

As we discussed in the introduction, a context is defined by elements in the environment

that can be perceived. Furthermore, the act of perceiving, being aware of oneself with

respect to past history and with respect to the objects in the environment, heavily

influences place cell activity in the hippocampus (Jeffery, 2007). Given a stable

configuration of environmental cues, an open question is how does general experience

affect rate coding of the hippocampus? In particular, how does repetitive spatial

experience modulate the rate, shape, and location of receptive fields in the subregions of

the hippocampus? Are some subregions more sensitive to initial experiences in a context?

Are some regions more sensitive to relative spatial novelty, such as the act of exploring a

once restricted area of space?

In this chapter, we explore these questions using an augmented linear track task while

recording in vivo from the principal cell layers of CA1, CA3, and dentate gyrus in awake,

behaving rats. The data used for analysis were recorded after each rat was exposed to the

same room for at least 4 days, and the cues used for orientation and room identification

were held constant throughout every experimental session (over multiple days). We

address the questions posed above using adaptive filtering techniques for tracking

receptive field plasticity. Our results indicate that when a rat is reintroduced to a familiar

environment, the process of re-familiarization is accompanied by markedly higher rate

modulation in CA3 is over that of CAl and DG. This difference in rate modulation is
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pronounced only at the "home" end of the linear track. In addition, the difference in rate

modulation between the subregions was reduced with experience such that by the end of

the session (-45 minutes), the difference between subregions was no longer significant.

The final rate modulation was non-zero throughout the length of the track apparatus,

suggesting that with many laps back and forth, the hippocampus was still engaged in a

process that alters the rate-to-space representation in the hippocampus. These findings

suggest that CA3 has a unique role in the processing rapid contextual coding and provide

evidence for a constitutively active process of rate modulation that engages all three

subregions.
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MATERIALS AND METHODS

Surgery and Recordings

Surgical procedures: Four male rats between 3 months to 6 months of age were used in

the collection of data for this analysis. Each rat was placed in the sleep box between two

and three hours, every day, for four or five consecutive days. After the rat was

comfortable resting in the sleep box, a 20 tetrode hyperdrive was implanted and affixed to

the head of the rat.

All surgical procedures met NIH guidelines and were approved by the Committee on

Animal Care at MIT. The rat was anesthetized with a mixture of ketamine (0.5 cc,

100mg/ml), xylazine (0.3 cc, 20mg/kg), alchohol (0.3 cc, 200 grade), atropine (0.1 cc,

0.4mg/ml), and saline (1.0 cc). Once the rat was fully induced under anesthesia, the rat

was head fixed to a stereotaxic device and was given 1% isoflurane for the remainder of

the surgery. Bone screws (7 to 9) were inserted around the perimeter of the skull as

anchors. A craniotomy and durotamy of 1.5mm in diameter was centered on the

coordinates -3.5 mm from bregma and 2.5 mm to the right of midline. The multi-electrode

array was held in place over the craniotomy and dental acrylic was used to fix the array to

the skull and bone screws. A ground wire was attached to the ground pin on the connector

board of the drive array and the most posterior bone screw.

Tetrode construction: Tetrodes were constructed according to (Gray et al., 1995).

Polyimide coated nichrome wire (7 micron core diameter, 15 micron total diameter,

Kanthal Precision Wire, Palm Coast, FL) was pulled to 50 cm in length. The wire was

folded twice and twisted under constant force such that the four wires remained taught in a

spiral. The wire was twisted clockwise 70 turns and then counter clockwise for 30 turns.

A heated-air gun set to 500 degrees F was used to fuse the polyimide coating of the twisted

wires. On one end, the wires were separated and the insulation was removed by applying a

flame for a brief moment. On the other end, the tetrode wire bundle was carefully cut so

that all four wires remained fused and the exposed metal tips were roughly in the same
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plane. In order to increase the signal detection ability of the electrodes, electrode

impedance was reduced by electroplating gold particles onto the exposed nichrome tips.

The electroplating was performed by dipping the tetrode and a conductive wire into a

conductive gold solution. A current was passed along the conductive wire, the gold

solution, and the length of the electrode such that the conductive wire acted like an anode

while the electrode wire acted like a cathode. The current was set to 3 uA and was applied

in brief pulses, each 1 second long. After each pulse, the impedance of the electrode tip

was measured at IkHz. The current pulses were applied until the impedance fell between

300 and 500 kn. In order to aid the process of histology, each tetrode was coated with a

dialkylcarbocyanine probe (Invitrogen), either DiI (red) or DiO (green), so that cells

around the tetrode would contain fluorophores. The probes were applied by mixing an

alcohol solution containing DiI or DiO and drawing it into a syringe. The syringe is gently

pushed so a bead of solution formed at the tip of the syringe. The bead of alcohol was run

back and forth over the tetrode until the color of the solution could clearly be seen as a

coating over the tetrode. The two die colors were chosen to be spatially alternating (Figure

2.1).
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Figure 2.1 : Tetrode Drive Construction. (A) 3-D model of tetrode drive (B) Actual 20-tetrode drive

(C) Layout of tetrodes on the bottom cannula.

A total of 20 tetrodes were constructed and held in place by a hyperdrive containing 20

linear actuators. The tetrodes are connected to a linear actuator and then piped into a

master cannula that was approximately lmm in diameter. On the non-gold plated end,

each of the four wires in the tetrode were individually connected to pins on a Millmax

connector (14x2 configuration, lmm pitch). The 6 tetrodes that are most medial were

targeted to the granule cell layer of the upper blade of the dentate gyrus, the 6 tetrodes that

are more lateral were targeted to the CA3c pyramidal cell layer, while the 6 tetrodes

remaining were targeted to the CAl pyramidal cell layer. The two reference tetrodes were

targeted to the white matter tract (alveus/cingulum) between the dorsal hippocampus and

cortex.

Data collection: Three types of data were digitally acquired during the experiments: rat

head position, action potential waveforms, and local field potentials (LFPs) by custom data

acquisition software (AD, Wilson and Frank, 1999). Infrared diodes were affixed to the

multi-electrode drive array on the rat's head. The diodes were clustered into two groups:

left and right. Cameras in the ceiling were able to image these infrared diodes moving

37
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through space at a rate 60 frames per second. The left and right diode clusters were

interlaced in time such that only one would be on at any given time. Interlacing the diode

frames allows for straight forward estimation of head direction and head velocity. Each

frame from the camera was fed through a threshold detector, which sent the coordinates of

the threshold-crossing pixels to a computer for storage. Each pixel was time-stamped

using a clock running at 20 kHz. A total of 16 LFP channels were recorded

simultaneously. Each LFP channel could be chosen from any of the 18x4 + 2 = 74

individual electrode channels. Each LFP signal was amplified by a gain of 1000, bandpass

filtered between 1 and 475 Hz, and was digitized at 1 kHz with 12 bit precision. Each

tetrode channel was pre-filtered using a bandpass filter with cutoffs of 300Hz and 6kHz. A

threshold value was assigned to each channel for spike detection. If the peak amplitude of

a spike crossed any of the respective thresholds, the spike waveform was recorded on all

four channels. The spike waveforms were sampled at 32kHz, with 6 samples before the

threshold crossing and 26 samples after the threshold crossing.

Histology: After the protocol was completed, the rat was euthanized using pentobarbital

and perfused with a formalin solution. The brain was dissected, sectioned in the coronal

plane with 50 ýim thickness, and cover slipped. A stereoscopic, fluorescent microscope

was used to visualize the electrode tracks at 10X magnification. Each brain slice was

imaged three times using dark field, red filter, and green filter; the three images were

combined using the Photoshop overlay function (Figure 2.2).

Data obtained over 10 days of recording between 4 animals where used in this analysis

(Table 2.1). In one animal only DG activity was recorded. In another animal only CAl

activity was recorded. In two animals, activity from CAl, CA3, and DG were

simultaneously recorded. The data used in this analysis was collected on days were the

linear augmentation task used all three track segments. By this time, each animal had

experience for at least four days.



HPC Subregion Dissociation and Cooperation

Figure 2.2 : Coronal section of the rat dorsal hippcampus, right hemisphere, -3.5mm from bregma.

The four partial tracks (Dil = orange, DiO = green) were imaged under a fluorescent microscope and

overlaid over a darkfield image (lOx). Above the granule cell layer of the DG, an electrolytic lesion

clearly demarcates the location of the tetrode tip.

Area \ Aardvark Camel Emu Foxxy total

CAl I : 29 0 2: 27 6 : 117 173

CA3 0 0 2:7 6: 34 41

DO 0 1 : 14 2 : 14 6: 36 64

Table 2.1 : Summary of isolated units from all areas of the hippocampus for four subjects including

principal and interneurons. For each table entry with two numbers, the format is "number of

recording days: number of cells over those days". The last column is a sum showing the total number

of cells collected over all the animals and days.
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Experimental Paradigm
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Figure 2.3: (A) Configuration of track augmentation experiment. Every day begins with a single

segment, and depending on the day, the track may be extended up to a full V-shape. The panel in the

top left is a schematic showing the conversion of the track from 2-D to I-D coordinates. (8) A

photograph of the experiment room while the track is fully extended. When the track is not fully

extended, the bins are always present and the unavailable segments are placed on the ground below

their locations in the photo.

After implantation of the hyperdrive, rats were given two days of rest before adjustment of

electrode position. Over the course of one to two weeks, electrodes were slowly lowered

to their respective targets. In the meantime, the rats were placed on a food restricted diet.

After the tetrodes were lowered and showed stable units, experimentation and data

collection commenced.

Behavioral paradigm: The augmented linear track task allows for the observation of

hippocampal activity over conditions of increased familiarity in a room and relatively

novel spatial exploration. On the first day or recording, the rat was completely naIve and

had never experienced the track before. The rats explored the track cautiously for the first

10 to 15 minutes on the first day. Normally within two days of training, the rats were

comfortable running on the track. For the first two days of experimentation, the rat was

exposed to only one out of three track segments (Figure 2.3). Track segments are always

introduced in sequential order on each recording day. The rule of thumb was new track
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segments are introduced only when the rat had at least two days of experience on each

track segment.

We explicitly made certain that all cues and track manipulations were always visible to the

animal. New track segments were added by lifting the new segment from the ground,

removing the food well that was there, connecting the new segment at 90 degree angle, and

adding a new food well to the other end of the new segment. Also, the track was not

immediately surrounded by a curtain, so the room was completely open to the animal. For

orientation, large objects of contrast were placed on each wall of the room. These objects

remained constant throughout all days of experimentation. The track was held 60 cm

above the ground. The track was 2 inches wide with 1 inch high walls. The reward

locations were detachable from the track and were constructed from black foam board.

Over the course of experimentation, we attempted to keep, as consistent as possible, the

cues in the room, the starting location of the rat at the beginning of the experiment, and the

orientation of the maze relative to the room and the cues.

Data Analysis

Clustering: The spike waveforms for each tetrode were reduced to a set of features:

maximum amplitude, and peak-to-trough time. On computers running Linux, manual

clustering software, Xclust2 by Matthew Wilson, was used to isolate individual units using

spike features. The times of spikes for each unit were written to file. Matlab software

(Natick, MA) was used to analyze spike train and position data.

Linearization and segmentation of track: The representation of rat position was

converted from 2-D to 1-D using a simple distance transformation (Figure 2.3). All

locations of the rat during the experiment were orthogonally projected onto a line which

traced the path of the full 3-segment U-shaped track. After projecting the points onto the

line, the position of the animal was represented as the distance from the end of the line

representing the home location. For each day of experimentation, the 1-D representation
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of the track was divided into seven sections. The spatial divisions mark the boundary

between reward/corner locations and straight track segments. The purpose of these

divisions is to allow comparisons to be made over time and space using all the data

collected during the experiment (Figure 2.4).

Adaptive estimation of receptive field plasticity: We track receptive field plasticity

using an adaptive point process filter (Frank et al., 2002; Frank et al., 2006). Briefly, the

filter models the spatial receptive field using the Catmull-Rom spline, which is a simple

cubic spline that is entirely defined by the location (x,,..., xK ) and height (0,,..., OK) of K

control points evenly spread over the linear track (Bartels et al., 1987). The formulation

of the spline-based receptive field is

-0.5 1.5 -1.5 0.5 k1

= 3 1 -2.5 2 -0.5 9O
-0.5 0 0.5 0 oI+1

0 1 0 0 - +2j

where for a given I-D position x, u=(x-xk)/(xk+1 -xk), forxk _X <Xk+1 .  The

objective of the filter is to update 0 given past history and current information. This is

accomplished using a steepest decent maximum likelihood filter (Brown et al., 2001) :

aA B(n | H, Oý x) / 100(n)f 0 t(n-1)-6 A (nlH, ,x) (N(n- 1,n]-A(n H,O,x)A) I-)

L Z(n |H, ,x) = 0(n-1)
xwhere,

where,
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-0.5u' + u2 - 0.5u
NA(n H,O,x) 1.5u -2.5u 2 +1

80 -1.5u 3 + 2u2 +0.5u

0.5u3 -0.5u 2

x - ku - X forxk <--x<xk+l,
xk+l - Xk

the conditional intensity function, A(n H,O,x), is defined to be the receptive field

function, A(n H,O,x) r(x); the discrete time interval is A; and the counting function

N(n-l,n] indicates the number of spikes that occurred in the discrete time

interval(n - 1,n].

The parameters used throughout the analyses were: the first control point was set to 0 cm,

the last control point was set to the distance of the fully extended track, the control points

were equally spaced, the number of control points was 35, the timestep was At = 1/15 sec,

and the learning rate was set to e = 5 which allowed for a maximum rate change of 3

Hz/sec.

For each neuron, the spike train was split into two spike trains based on the direction of

running. Direction information was discarded at the ends of the track, such that action

potentials that occurred in goal locations at the track ends were assigned to both spike

trains. These two spike trains were then divided again based on track configuration, such

that a total of 6 spike trains were obtained. The tracking of spatial receptive field shape

was performed individually on each of these 6 spike trains. An example of the adaptive

filter output can be found in Figure 2.4.
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Figure 2.4 : Measuring rate dynamics over space and time. (A) An example of place cell activity. This

neuron was recorded from the dentate gyrus and only spikes recorded during movement from bottom­

to-top were displayed. (B) Adaptive representation of rate map over space and time for spiking

activity displayed in panel A. (C) The experiment is segmented according to track configuration and

different spatial segments. The spatial segments distinguish between areas of goals/corners and linear

areas. (D) Extraction of rate parameters. The maximum value of the rate map is extracted from the

receptive field surface within the space-time boundaries shown in Panel C at a time interval of 1 sec

per sample. From the maximum rate trajectory, mean maximum rate and maximum rate modulation

values are computed as shown. (E) Formation of rate templates. These two rate measures are

computed for each combination of track configuration and spatial segment. Each layer in Panel E

corresponds to a single cell. For each cell, the activity was divided 30 times: 15 combinations of space

and track configuration x 2 directions of running. The stacking of the layers forms a template or

population vector of activity for each track configuration-spatial segment condition.
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Measurement of mean maximum rate and maximum rate modulation: The dynamics

of receptive fields were summarized by characterizing the temporal evolution of the

maximum rate-to-place mapping. The point process adaptive filter described above was

used to track the receptive field dynamics. Regardless of the number of track segments

available to the rat, the range of the spline spanned the fully extended track length using 35

control points. Next, each adaptive spline was sectioned according to Figure 2.4 and the

maximum rate was extracted within the respective spatial boundaries at the time resolution

of 1 second. A linear regression analysis was then performed on each maximum rate

trajectory and from this a slope was extracted. In addition, the average value of the

maximum rate was also computed. From this point we will refer to the slope of the

maximum rate trajectory as the "rate modulation", the absolute value of the slope of the

maximum rate trajectory as the "absolute rate modulation", and will refer to the average

maximum rate as the "mean rate." These three measures were computed for each neuron

for all combinations of track configuration, spatial segment, and running direction. The

activity of the neurons were then pooled according to recording location (CAl, CA3, or

DG) to produce population vector templates. Statistical measures were used to summarize

the activity described in each population vector. In particular, the average value was

computed for each template. We refer to population statistics as average mean rate,

average rate modulation, and average absolute rate modulation.

Population Vector (Template) Comparisons: The U-shaped track was linearized and

segmented into seven sections (Figure 2.4), such that locations of food reward and corners

were considered separately from linear segments of the track. Either mean rate or absolute

rate modulation for each neuron was computed in each track segment, for both directions

of running, and for each track configuration. If a neuron had a firing rate below 2 Hz for

all conditions, it was not considered for analysis. Interneurons were identified by setting a

threshold of 5 Hz mean firing rate and removed from the pool of cells used for analysis.

Table 2.1 summarizes the data used in the analysis.
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We measure relative differences in average maximum firing rate or average maximum rate

modulation by choosing a reference population vector (R) and another population vector

(T), and performing two analyses: 1) computing Pearson's correlation coefficient, and 2)

hypothesis testing using a bootstrap test on the population mean.

For the correlation analysis, R and T were chosen to represent the same spatial extent on

the track, same direction, same anatomical recording location, but different track

configurations (Figure 2.11). Pearson's correlation coefficient was computed as follows:

cov(R,T) n 1 (R -
PR,T Rl 112 - 1/2

I, I , (Ri -R) I n-- T

The bootstrap analysis tested for significant differences in mean rate and absolute rate

modulation statistics. We performed hypothesis testing where R and T were chosen from

different anatomical regions, but the spatial extent, direction of motion, and tracking

configuration were the same. We also performed hypothesis testing where R and T were

chosen from different track configurations, but the spatial extent, direction of motion, and

anatomical recording location were the same. The bootstrap test used 10,000 iterations

with population sizes of 25. A t-test performed on the sample means were used to either

accept or reject the null hypothesis that R and T are similar.
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RESULTS

We analyzed ensemble spike trains recorded from principal neurons of the CA1, CA3, and

dentate gyrus (DG) subregions of the hippocampus in four male, adolescent rats (3 to 6

months in age) during an augmented linear track task. A total of 10 days of recording

between 4 animals yielding 171, 38, and 62 principal neurons for CA1, CA3, and DG,

respectively, were used in this analysis. In all the days of experimentation used in this

analysis, the rats had at least four days of prior experience on the track..

Population average of mean rate is not different between subregions

Previous studies have reported large changes in the receptive field properties of HPC place

cells in response to manipulations of salient cues (Muller & Kubie, 1987). These changes

in receptive field properties are known as "rate remapping" or "global remapping,"

however, we use the term "rate modulation" to remain agnostic about the meaning of any

changes in rate to place mapping. With the addition of new track segments, we examined

the possibility that an individual HPC subregion might have a heightened response to the

observation of relatively novel spatial experience. If this were true, we might observe a

subregion specific bias in rate modulation resulting in a relatively significant increase or

decrease in overall rate.

In order to explore this possibility, we computed the mean rate for each neuron as a

function of track configuration and location on the track (see Methods). The mean rate for

each neuron was combined according to recording location to create three sets of vectors.

Table 2.3 contains the statistics of these mean rate vectors. In order to aid in the

interpretation of these statistics, the data in the table is plotted in two different ways.

Figure 2.5 displays the relationship between average mean rate between subregions across

track configurations, and across spatial locations. We found differences in average mean

rate between subregions, however, the differences did not generalize. In particular, the
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average mean rate for CA3 was lower than that of CAl and DG in spatial segment D and E

but not F and G. This inconsistency neither helps to prove or disprove a unique role for

CA3 during relatively novel spatial exploration. Overall, the data is consistent with

previous observations that average mean rate will be high in locations of high velocity

(linear segments) versus locations of low velocity (corners and reward locations) (Czurko

et al., 1999).



HPC Subregion Dissociation and Cooperation

Figure 2.5 : Subregion specific dynamics of average mean rate (average of the mean maximum rate

over a cell population). The data used to generate this figure is given in Table 2.3. The yellow labels

mark the average mean rate in the CAl subregion for the given condition. The data is plotted to allow

for visual comparison across track configura.tions and within track configurations. Tl, T2, and T3

mark the different track configurations, while A through G mark the different spatial segments of the

track. Please refer to Figure 2.4 for more clarification.

49



Chapter 2

I r=O 78'

• tilt. ...

C r=O 49'

~. ' .
-- )...
.~:

F r~O 81'
. .

. ' ' .
"t. w.
w \

REF T2:E x DATA T3:E

20

15

10

5

00 5 10 15 20
Rate (spikes/sec)

20

15

10

5

00 5 10 15 20
REF T2:C x DATA T3:C

20

15

10

5

°0 5 10 15 20
REF T2:D x DATA T3:D

5 10 15 20
Rate (spikes/sec)

5 10 15 20
REF T1:A x DATA T3:A

5 10 15 20
REF T1:8 x DATA T3:8

REF T1:C x DATA T3:C

B r=O.20'

" .
1\o'L;' -"

H r=0.61'

;" ' .
.:;,.1··....· .

E r=O 80'

~.''''\o:.;';: .

20

15

10

5

0
0

20

15

10

5

°0

20

15

10

5

0
0

5 10 15 20
Rate (spikes/sec)

5 10 15 20
REF T1:A x DATA T2:A

5 10 15 20
REF T1:8 x DATA T2:8

REF T1:C x DATA T2:C

G r=O 60'

.':~~"... ' ..

D r=O 77'

,>_.- ~ '. .
-'.

A r=O 33'

.. .::~ \. ~: .

~ 20
III

~ 15
~

'0. 10
~
Q) 5
c;
Q: 0

o

~ 20
~

~ 15
~

~ 10

! 5
Q: 0

o

Figure 2.6 : Population vector scatter plots of average maximum rate. Refer to Figure 2.11 for

overview of comparisons. The colors represent subregions: cyan = CAl, magenta = CA3, yellow = DG.

The values of the correlation coefficient are displayed in the top right corner of each panel. The

asterisks mark the correlations that are significantly different from zero.

Dynamics of subregion specific population coding

The function of pattern separation has been attributed to CA3 (Guzowski et aI., 2004;

Leutgeb & Leutgeb, 2007; McHugh et aI., 2007), and more recently, experimental

evidence supports the idea that pattern separation in the HPC is mediated by the

cooperation of CA3 and DG through a process of coincidence detection (Leutgeb et aI.,

2007). Unlike these experiments, in our experiment the salient cues used for orienting in

the room are stable throughout the course of the experiment. Therefore, we hypothesize
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that with the addition of track segments, any changes in the mapping between salient cues,

which define the context, and place field rate and location will most likely be gradual.

In order to examine the nature of the gradual changes in rate to place coding in the HPC,

we compared population vector templates of average mean rate between track

configurations. Figure 2.11 provides a schematic of this comparison and Figure 2.6

summarizes the results. Each analysis compares previous activity in a track section with

later activity in the same track section by computing a correlation coefficient (r-value). All

r-values were significant at reward and non-reward locations (Figure 2.13). For

comparison between subregions, a shuffle analysis was used to determine the variability of

each correlation value given a limited number of neurons (Figure 2.14).

Rate changes in the three subregions were most apparent when a reward location was

converted to a corner on the track (T1:C x T2:C; T2:E x T3:E). This observation is mostly

likely due to a manipulation of task phase and running velocity at the corresponding track

corners (Figure 2.17), (Wyble et al., 2004; Sinnamon, 2006). In track sections where the

behavior of the animal was not altered by additional track segments, changes in ensemble

rate were also observed but to a lesser extent (Figure 2.6). The analysis revealed that the r-

value for each subregion was statistically different in the comparison of Ti:A x T3:A

(Panel H). Furthermore, in the scenario T1:A x T3:A, the correlation analysis revealed that

ensemble coding of the home location was least altered in DG, followed by CA 1, and most

altered in CA3.

It is unlikely that these differences were caused by overall increases/decreases in

excitability in the subregions as a function of track configuration (Figure 2.5). Moreover,

tlhe modulation of population rate coding per subregion was similar over temporal and

spatial experience except for at the home location (section A).
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Figure 2.7: Subregion specific dynamics in average absolute rate modulation as a function of track

configuration and space. The data used to generate this figure is given in Table 2.4. Asterisks mark

significant decreases in rate change from one track configuration to the next (p < 0.05). Tl, T2, and T3

mark the different track configurations, while A through G mark the different spatial sections of the

track. Please refer to Figure 2.11 for more clarification.
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Dynamics of rate modulation as a function of track configuration and

relative spatial experience

In the previous section, we examined the relative dynamics of subregion rate coding by

comparing population vector activity occurring on the order of tens of minutes. With the

adaptive point process filter, we observed that rate modulation is non-zero over time and

the modulation varied in both direction and magnitude as a function of track configuration

(Figure 2.11 and Figure 2.12). Here, we compare subregion specific average absolute rate

modulation across track configurations to assess the relative change in rate dynamics

within and between HPC subregions.

The average absolute rate modulation is summarized in Table 2.4 and displayed in Figure

2.7. In general, the average absolute rate modulation tended to decrease over the course of

the experiment. The only condition where a significant subregion difference could be

statistically confirmed was at the beginning of the experiment and in the home goal

location; there, rate changes in CA3 where 65% greater than in CAl and 175% greater than

in DG.

Following the template analysis in Figure 2.11, population vectors of average absolute rate

modulation were constructed and compared (Figure 2.8). Statistical analyses were

computed within subregions and across track configurations. Not all correlations from the

template correlation analyses were significant (Figure 2.15). We examined the variability

in the r-value due to sample error by systematically varying the number of neurons used in

the correlation, and randomly choosing which cells to compare (Figure 2.16, no identity

shuffle). The shuffle analysis revealed that r-values were only significantly different

between all three subregions under one condition, TI:A x T2:A. The corresponding r-

values are CA1 = 0.32, CA3 = -0.76, DG = 0.10. Interestingly, the r-value for CA3 is

large and negative, whereas, CAl and DG r-values are low and positive.

We further assessed the tendency for absolute slope to decrease with the addition of track

segments. This was accomplished by comparing the distributions of absolute rate slope
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across subsequent track configurations (Figure 2.7). Right-sided empirical bootstrap tests

of sample mean set to a power of a = 0.05 showed significant decreases between TI and

T2 for spatial bins A, B, and C; and between T2 and T3 for D and E, for CA3 only (p <

0.05). For CAl, decreases in absolute slope from TI to T2 were statistically significant for

spatial bins A, B, and C; and between T2 and T3 significant decrease was observed in

spatial bin C. For DG, significant decreases were only found in the transition from Tl to

T2 for reward-related sites A and C.

-0.01 -0.01

0.01

o

0.01

o

0.01

o

-0.01

REF T1:C x DATA T2:C

A 1010

I

. : :..";- ......
. .'

I ,

-0.01 0 0.01
REF T1:B x DATA T2:Bo 1048'

, : '.~":'"

·0.01 0 0.01
REF T1:A x DATA T2:A

G r 0)2'

...:~:;.' .

0.01

o

-0.01

0.01

o

-0.01

0.01

o

-0,01

REF T1:C x DATA T3:C

B ,-001

, ~ : "'t.'r .

-0.01 0 0.01
REF T1:B x DATA T3:B

E ' \11fJ'

" , ...~•.....

-0.01 0 0.01
REF T1:A x DATA T3:A

H r 004

'.<,;'~.:.... ,..

0.01

o

0.01

o

..0.01

0.01

o

-0.01

REF T2:E x DATA T3:E

c ,0"14'

. .
.0+'.':"

I

I

-0.01 0 0.01
REF T2:0 x DATA T3:0

F I 04')'

....~.....

-0.01 0 0.01
REF T2:C x DATA T3:C

I r 040'

I

. ...~'.

-0.01 o 0.01 -0.01 o 0.01 -0.01 o 0.01

Figure 2.8 : Population vector scatter plots of maximum rate slope. Refer to Figure 2.11 for overview

of comparisons. The colors represent subregions: cyan = CAl, magenta = CA3, yellow = DG.

Subregion coherence in rate modulation

Some features of ensemble rate dynamics were similar across subregions. When

comparing the change in absolute rate slope between the one segment track and two
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segment track configuration, all subregions showed a decrease in the amount of rate

modulation, however, subsequent track manipulations did not elicit a significant and

coherent decrease in absolute rate slope across all subregions (Figure 2.7). Moreover, on

the three segment track configuration the ensemble rate modulation for all track locations

and all subregions where not statistically different (Figure 2.7). In addition, significant

differences were not found in the average firing rate at the goal location for all three track

configurations (Figure 2.5).

DISCUSSION

Rapid contextual learning in CA3

We investigated relative changes in ensemble rate coding and ensemble rate dynamics

between the subregions of the HPC and found unique ensemble rate dynamics in CA3 that

were only present at the beginning of the experiment. In particular, within the first track

configuration (5 to 10 minutes), at the home location on the track, area CA3 showed

significantly greater modulations in maximum firing rate relative to CAl and DG (Figure

2.7). Focusing on the activity in the home location at the beginning of the experiment, we

found that a majority of neurons in CA3 had a preference to increase their firing rate while

CAl and DG had no preference for direction of rate modulation (Figure 2.12). Between

the track configuration with one segment and the configuration with two segments, the

template correlation analysis using average absolute rate modulation showed a significant

negative correlation for the CA3 ensemble (r=-0.76, Figure 2.8), indicating an overall

reversal in the direction of rate modulation. The differences between HPC subfields were

found in the rate dynamics and not overall rate itself (Figure 2.7).

The rate dynamics observed at the goal location were probably not caused by reward

related activity. In our experiments, the amount of reward did not change over the course

of the experiments and the rats maintained a constant desire for reward throughout the
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experiment. This desire was indicated by the constant or increasing running velocity with

each extension of the track (Figure 2.17). It is possible that an internal perceptual shift of

reward valence could induce rate modulations in the HPC. However, a study by Tabuchi

et al (2003) demonstrated that changes in reward valence did not result in changes in the

response of the neurons at the reward locations (Tabuchi et al., 2003). Also, reward related

modulations of rate would likely be present on both ends of the track, however, we only

found pronounced CA3 specific rate modulation at the home location.

In our analyses of CA3 activity, we find the rapid modulation of ensemble rates to be

consistent with previous reports of rapid encoding in the CA3 subregion by NMDA

receptors. Work by Nakazawa et al have shown that NMDA receptors (NR1) in the CA3

area are essential for rapid acquisition of novel spatial learning (Nakazawa et al., 2002;

Moser & Moser, 2003; Nakazawa et al., 2003). Later, Cravens et al showed how the same

CA3-NR1 deficient mice were able to perform contextual discrimination when tested 24

hours after contextual fear conditioning but failed if tested after 3 hours (Cravens et al.,

2006). They conclude that plasticity in CA3 is essential for the rapid encoding and recall

of spatial and contextual memory. Furthermore, in vitro studies have shown that

NMDAR-dependent plasticity in CA3 is mossy fiber independent and recurrent collateral

dependent, as well as perforant path dependent (Zalutsky & Nicoll, 1990; Nakazawa et al.,

2002; Nicoll & Schmitz, 2005). These findings suggest the enhanced modulation of rate

coding in CA3 that we observe in the initial stage of the experiment may reflect the

induction of NMDAR-mediated learning via the perforant path. Furthermore, this

NMDAR-mediated rate modulation may play an active role in the formation and recall of

rapid spatial and non-spatial episodic (one trial) learning.

The distinct enhancement of CA3 rate modulation over CAl and DG may be due, in large

part, to the unique anatomy and physiology of the CA3 area. Recurrent associational and

commissural connections are inputs that provide strong excitatory drive and also have the

ability to induce post-synaptic LTP (Zalutsky & Nicoll, 1990). Another source of input is

the sparse but powerful mossy fiber connections which are the axons of granule cells of the

DG. A single mossy fiber-CA3 synapse contains many post-synaptic densities that are
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completely engulfed by the presynaptic terminal (Nicoll & Schmitz, 2005). Each CA3

pyramidal cell receives input from only 50 granule cells on average, however, the strength

of one mossy fiber synapse is such that one presynaptic spike is enough to elicit a post-

synaptic spike (Jonas et al., 1993; Henze et al., 2002). Another unique physiological

characteristic of CA3 pyramidal cells is marked frequency facilitation in the mossy fiber

pathway; increasing the presynaptic spike frequency from 0.5 Hz to as little as 1 Hz can

cause many-fold increases in synaptic strength (Nicoll & Schmitz, 2005). These

physiological mechanisms for enhancing the integration of sparse inputs may serve to

amplify changes from DG and EC input, and produce relatively larger changes in spatial

rate maps at the beginning of a new experience.

lFunctionally, enhanced CA3 rate modulation during early experience in a context may

allow the HPC to stabilize the hippocampal representation of context specific memory

traces. A key question here is what does it mean to stabilize a response? We can treat

CA3 as a computational unit that transforms an input pattern into an output pattern. The

fact that CA3 is a circuit with powerful feedback connections implies that several cycles of

feedback will be needed before stable output can be reached (Rolls & Kesner, 2006).

However, once the output is stable, we can assume that plasticity in CA3 will allow the

transformation to be retained and therefore allow CA3 to respond more reliably next time

the same input pattern is presented. Now assume the input pattern into CA3 is unique for

every spatial location and head direction. Combined with the plasticity assumption, more

spatial exploration would then lead to better optimization and more robust responses from

CA3 inside the context. One functional consequence of this type of optimization is with

faster and more reliable CA3 output, reinforcement of synapses downstream will be more

consistent. Another functional consequence is once the transformation has been optimized

for input patterns afforded by the present context, CA3 would contain within itself, a

memory trace of the contextual experience that is represented by a set of optimal

transformation functions.

This line of reasoning is supported by several experimental results. In a study where place

fields recorded in light and darkness were compared (Markus et al., 1994), Markus et al.
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found that on a new day of experimentation, after the animal had many days of exposure to

the same maze, the correlation between light and dark ensemble CAl activity was greater

when the animal was allowed to explore the environment before the lights were turned off.

Markus et al. concluded that even with multiple days of exposure, initial exploration

specific to that day was an important factor in stabilizing place field location and reliability

in darkness. A study by McHugh et al found that in contextual fear conditioning of mice,

spatial exploration and not just visual accessibility of a space, was necessary for storage of

the fear memory trace (McHugh & Tonegawa, 2007). In a study by Wilson &

McNaughton (1993), they found that CAl activity became more reliable with continued

exploration in a novel environment (Wilson & McNaughton, 1993). Although this activity

was recorded in CA1, increasing CA3 spike time reliability would cause spiking in CAl to

become more reliable. In addition, Wilson & McNaughton observed that exploration on

the novel portion of the environment did not significantly effect place field representations

on the familiar half of the environment (Wilson & McNaughton, 1993).

Constitutively active pattern separation

The convergence of average absolute rate modulation between the subregions occurs over

the course of the experiment. This observation suggests that initially, CA3 plays a unique

role in information processing (which we have discussed above), but as CA3

transformations become optimized with spatial exploration, rate modulation of place

specific neuronal activity decreases (Figure 2.7 and Figure 2.8). Interestingly, subregion

specific rate modulation converges to a point where rate slopes per subregion are not

statistically different in the home goal location or any other part of the track. Furthermore,

rate modulation in all subregions converges to a similar, non-zero value in all areas of the

track suggesting that a baseline level of plasticity may be present throughout the spatial

extent of the context.



HPC Subregion Dissociation and Cooperation

It is unclear, however, whether this baseline rate modulation in the HPC is 1) due to

changes in input patterns originating outside of the HPC or 2) a result of intrinsic HPC

computations. The first hypothesis suggests that constitutive HPC rate modulation may be

a result of constant neocortical integration of history and continual cognitive processing.

The second hypothesis suggests the synaptic weights which provide a substrate for HPC

state, by virtue of the CA3 autoassociation network or EC-HPC loop, can never be

constant given the same neocortical input. One could reconcile these hypotheses by

extending the time of the experiment past one hour. If the first hypothesis is correct, we

would expect to see the rate of modulation fall to zero as the effect of neuromodulatory

mechanisms eventually turn off and/or as the salience of repetitive episodes on the track

become insignificant. For the second hypothesis, we would expect to see persistent and

coherent rate modulation for a theoretically limitless amount of time provided that spatial

exploration is constant throughout the period.

If the mechanism for baseline rate modulation is intrinsic to the hippocampus, this

mechanism may be an automatic way of incorporating time information into a conjunctive

representation of event sequences. The baseline modulation we observe may reflect an

ongoing process of pattern separation that would provide new neuronal codes for the same

path trajectories that are separated by time. In this way, the HPC may likely serve as

constitutively active "history integrator" that constantly updates current representations

based on structured activity. In cooperation with the cortical "path integrator circuit"

(Taube, 2007), the HPC/neocortical loop may provide a general purpose framework for

efficiently and automatically encoding episodic information.

Conclusion

In conclusion, our results indicate an active role for CA3 in the initial stages of contextual

familiarization. In this scenario, novel input patterns into CA3 are defined to be input

patterns which elicit an unreliable output pattern from CA3. With continued exposure to a
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novel input pattern, CA3 quickly finds a stable transformation and rapidly encodes this

transformation such that on the next exposure the output of CA3 will be precise and

reliable. Because the information storage capacity of CA3 is limited, transformations that

have been learned for one context may be erased or interfered with when the animal has

been in another context for a long time. This constraint on CA3's ability to store

transformations is offset by its ability to rapidly make new associations. With respect to

the present experiment, enhanced CA3 rate modulation is observed during the first 5

minutes of the experiment but steadily declines over the course of the next 30-40 minutes.

The convergence in rate modulation between the three subregions suggests a coherent

super-circuit which engages plasticity mechanisms in CAl, CA3, and DG on a constitutive

basis. Such a role for plasticity is strongly supported by experimental results from the

Tonegawa lab, where NMDAR specific lesions of plasticity in either CAl, CA3, or DG

results in the expression of unreliable and imprecise spatial tuning of CAl place cell

activity (McHugh et al., 1996; Nakazawa et al., 2004; McHugh et al., 2007). We

hypothesize that, in the subregions of the HPC, convergence of rate modulation to a non-

zero value indicates a constitutively active process of pattern separation that may be driven

by intrinsic properties of the HPC; and that the observed baseline rate modulation may also

reflect a process of "temporal integration" so that similar event sequences that are

separated in time are encoded by unique hippocampal activity patterns.
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Figure 2.9 : Population rate statistics. A-C) Maximum rate of neurons during running (head velocity

> 15 cm/sec). D-F) Maximum rate of neurons using all data. The maximum rate was computed by

using a sliding window of 50ms. G-I) Average rate of neuronal activity during running. J-L) Average

rate of neuronal ensemble over the whole experiment. The number of cells used for each subregion is

171 for CA1, 38 for CA3, and 62 for DG; each cell contributed two data points, one rate for each head

direction. The maximum rate was computed by taking the largest rate computed from non-

overlapping time bins of 500 ms.

Max Rate Max Rate Mean Rate Mean Rate
(running) (overall) (running) (overall)

CAI 171 19.9 (15.7) 29.46 (16.1) 1.63 (5.0) 1.28 (4.02)
CA3 38 15.34 (7.8) 25.5 (12.46) 0.69 (0.7) 0.68 (0.60)
DG 62 22.27 (21.6) 34.0 (22.06) 1.58 (6.9) 1.18 (5.43)

Table 2.2 : Rate statistics for each subregion of the hippocampus.
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Figure 2.10 : Ensemble activity of simultaneously recorded neurons (yellow = dentate gyrus, blue =

cal, magenta = ca3). Each cell is given one color and is represented by three rows of activity for each

direction of running. The three rows correspond to the three track configurations (1,2, and 3

segments). The numbers on the left correspond to the maximum firing rate for that cell over all

positions and track configurations.
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III. Measures for Comparison
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Figure 2.11 : Schematic summarizing data analysis. The Template Analysis compares activity earlier

in the experiment with activity later in the experiment. Here, activity is measured in two ways: A)

The maximum rate of a neuron is measured using the point process adaptive filter (see Methods), and

a linear regression is used to summarize the maximum rate dynamics. B) The average of the

maximum firing rate may also serve as a summary of activity in each temporal-spatial bin. These

measurements are made for each neuron and then pooled over days and subjects in order to form

population vectors. Neurons are pooled into different groups based on recording location (CAl, CA3,

or DG). Correlation coefficients are used as a similarity measure between the template and some

spatial-temporal epoch of interest (see Methods).
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Figure 2.12: Subregion specific comparison of percent cell population with increasing maximum rate.

For each condition, the black line represents the 50% mark. The data used to generate this figure is

given in Table 2.5. Asterisks mark significant deviation from the 50% mark (p < 0.05). T1, T2, and T3

mark the different track configurations, while A through G mark the different spatial sections of the

track. Please refer to Figure 2.11 for more clarification.
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Figure 2.13 : Significance testing for correlation values. For each pair of population vector templates

(average maximum rate), the order of one template was shuffled while the order in the other template

remained constant, and the correlation value was computed. The distributions for the correlation

value were obtained using 1000 shuffles. All correlations were significant (p < 0.05). The p-values are

reported in the upper left-hand corner. The colors represent subregions: cyan = CAl, magenta = CA3,

yellow = DG.
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Figure 2.14: Correlation analysis using a partial set of neurons (average maximum rate population

vectors). Cell identities remained constant between population vector templates, however, a random

subset of cells were used to compute the correlation. For each population size, 1000 random samples

were drawn (without replacement) from the neuron pool, and the correlation value was computed.

Each vertical line represents the 25 to 75 percent confidence interval for the correlation value under

each condition. The colors represent subregions: cyan = CAl, magenta = CA3, yellow = DG.
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Figure 2.15 : Significance testing for correlation values. For each pair of population vector templates

(absolute rate modulation), the order of one template was shuffled while the order in the other

template remained constant, and the correlation value was computed. The distributions for the

correlation value were obtained using 1000 shuffles. Not all correlations were significant. The p­

values are reported in the upper left-hand corner. The colors represent subregions: cyan = CAl,

magenta = CA3, yellow = DG.
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Figure 2.16: Correlation analysis using a partial set of neurons (average rate modulation). Cell

identities remained constant between population vector templates, however, a random subset of cells

were used to compute the correlation. For each population size, 1000 random samples were drawn

(without replacement) from the neuron pool, and the correlation value was computed. Each vertical

line represents the 25 to 75 percent confidence interval for the correlation value under each condition.

The colors represent subregions: cyan = CAl, magenta = CA3, yellow = DG.

68



HPC Subregion Dissociation and Cooperation

1007
501

0'

lOOi

100
100-

12345678910
Data Set #

TI

100
50

100

50

100

50

0

100

50

12345678910
Data Set #

T2

100

501

100o100 -- --

0

100

50 po

100r

0 - -
100r--
501

12345678910
Data Set #

T3

G Negative Direction

F

100
E so

0 ,

100.

D soi ,, ,n

100r0 ---------

100 - --- 100 5B 1ole e s 5oj .e.ts . .

0 0
o100 ....... 100 .

A 50 0so

0 0
12345678910 12345678910

Data Set# Data Set #

T1 T2

100

50

100

50
100-

100

0

50

100
50

0

100

12345678910
Data Set#

T3

Figure 2.17 : Statistics of velocity according to

in cm/sec.

spatial location and track configuration. The units are

Positive Direction



Chapter 2

T1 T2 T3
1.26 (1.92)

G 1.07 (1.35)
0.80 (1.40)
2.14 (3.45)

F 1.57(2.23)
1.74 (2.82)

1.12 (1.79) 1.58 (2.78)
E 0.48 (0.75) 0.77 (1.50)

0.79 (1.71) 1.79 (3.32)

1.65 (2.67) 2.00 (3.35)
D 0.63 (1.39) 0.64 (1.44)

1.71 (3.67) 1.94 (3.50)

1.06 (1.77) 1.18 (2.11) 1.30 (2.32)
C 0.52 (1.01) 0.42 (0.75) 0.58 (1.67)

0.72 (1.16) 0.71 (1.47) 0.60 (1.25)
1.87 (2.87) 1.90 (3.39) 1.94 (3.69)

B 1.32 (1.96) 1.33 (2.07) 1.37 (2.61)
0.92 (1.67) 1.44 (4.60) 1.54 (3.60)
0.78 (1.24) 0.93 (1.58) 0.86 (1.45)

A 0.80 (1.14) 0.99 (1.51) 0.89 (1.12)
0.60 (1.16) 0.72 (1.90) 0.75 (1.49)

Table 2.3 : Statistical analysis of average maximum rate. Units are in (spikes/sec). The sample size is

171 for CAI, 38 for CA3, 62 for DG. Each table entry contains the mean and (std) for CAI, CA3, and

DG, respectively. A graphical display of this table can be found in Figure 2.5.
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T1 T2 T3
G 0.50 (0.73)

0.66 (0.86)
0.38 (0.75)

F 0.35 (0.50)
0.32 (0.51)
0.43 (0.73)

E 1.08 (1.87) 0.47 (0.90)
0.44 (0.80) 0.19 (0.28)
0.56 (0.92) 0.46 (0.90)

D 0.71 (1.50) 0.40 (0.79)
0.30 (0.60) 0.15 (0.29)
0.79 (3.13) 0.48 (0.97)

C 1.34 (2.77) 0.57 (1.24) 0.35 (0.72)
0.99 (2.30) 0.27 (0.57) 0.11(0.27)
0.98 (1.65) 0.39 (0.95) 0.27 (0.44)

B 1.40 (2.96) 0.64 (1.30) 0.38 (0.87)
1.21 (1.96) 0.43 (0.62) 0.41 (1.07)
0.76 (1.51) 0.42 (0.79) 0.26 (0.39)

A 1.42 (2.31) 0.95 (2.11) 0.47 (0.88)
2.35 (5.16) 1.25 (2.30) 0.66 (1.24)
0.85 (1.60) 0.48 (1.08) 0.30 (0.55)

Table 2.4 : Statistics analysis of average absolute rate modulation. Units are in (spikes/sec)/(1000 sec).

The sample size is 171 for CA1, 38 for CA3, 62 for DG. Each table entry contains the mean and (std)

for CA1, CA3, and DG, respectively. A graphical display of this table can be found in Figure 2.7.
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TI T2 T3
54.11%

G 51.31 %
49.21%
52.94 %

F 61.84 %
57.81 %

49.41 % 50.29 %
E 60.52 % 53.94 %

49.21 % 57.03 %
53.82 % 56.47 %

D 51.31 % 60.52 %
51.56 % 45.3 %

59.11 % 49.70 % 51.76 %
C 55.26 % 46.05 % 52.63 %

59.37 % 43.75 % 39.84 %
54.11 % 47.35 % 54.41 %

B 61.84 % 51.31 % 55.26 %
39.84 % 50.00 % 47.65 %
52.35% 54.41 % 59.41 %

A 68.42 % 50.00 % 59.21 %
48.43 % 52.34 % 58.59 %

Table 2.5 : Percent of population with positive rate modulation. The numbers are unit-less. The

sample size is 171 for CAl, 38 for CA3, 62 for DG. Each table entry contains the mean and (std) for

CA1, CA3, and DG, respectively. A graphical display of this table can be found in Figure 2.12.





Chapter 3 : INSTANTANEOUS ESTIMATION OF AMPLITUDE AND

FREQUENCY MODULATION OF LOCAL FIELD POTENTIALS



Instantaneous Frequency Estimation

Abbreviations: AM = amplitude modulation, FM = frequency modulation, EEG =

electroencephalogram, LFP = local field potential, AR = autoregressive model, KF = Kalman filter,
AD-KF = amplitude demodulated Kalman filter, AIC = Akaike Information Criterion, OIC =

Frequency based Information Criterion, PSD = Power Spectral Density

INTRODUCTION

The cellular matrix of the brain is inhomogeneous and complex, yet emerging patterns of

regular oscillatory activity are reliably observed; each of these brain rhythms, occurring at

frequencies between 0.02 Hz to 500 Hz, reflect the activation of unique neural circuits. It

is known that each rhythm can be activated independently or in combination with other

brain rhythms depending on behavioral or cognitive state. Brain rhythms can be found in

both electroencephalograms (EEG) and local field potentials (LFPs). Each rhythm is

specified by a frequency band and denoted by letters from the Greek

alphabet(6,9,a,fl,y) or referenced by names such as slow oscillations and ultra fast

oscillations. One approach to understanding the functional significance of brain rhythms is

through the correlation of brain rhythms with behavioral state, cognitive state,

experimental variables, and neurophysiology; these correlations combined provide

evidence for the role of neural assemblies in brain function (Buzsiki, 2006).

The a -rhythm (8-14 Hz, in humans) is a prominent rhythm that has been associated with

higher cognitive processes. Increases in a -amplitude during cognitively demanding tasks

engage mental calculations, mental imagery, working memory, and visual attention. The

presence of the a -rhythm may signify the long range, horizontal synchronization between

cortical areas for the purpose of binding sensory information (Palva & Palva, 2007). The

0 -rhythm in rats (6-12 Hz), is clearly dominant and regular in the hippocampus during

locomotion and REM sleep, but is absent during other behavioral states such as immobility

and slow-wave sleep (Buzsaki, 2002); one possible function for the 0 -rhythm is to provide

a temporal mechanism for coordinating information transfer, information encoding, and
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memory consolidation by the hippocampus (Skaggs et al., 1996; Louie & Wilson, 2001;

Harris et al., 2002). The y -rhythm (30-90 Hz) is prominent in both neocortical and limbic

areas, and arises from tight coupling between interneurons and excitatory neurons; the

rhythm is most likely multi-functional and is currently believed to support temporal

encoding and sensory binding (Bartos et al., 2007). The "ripple" event is a short, fast

oscillatory event (50-100ms in duration) that is found in the hippocampus and human

cortex (Chrobak & Buzsaki, 1996; Bragin et al., 1999; Clemens et al., 2007). Recently,

ripple events have been implicated in memory consolidation as preserved temporal order of

hippocampal place cell activity has been shown to occur on a compressed timescale within

ripple events (Foster & Wilson, 2006).

Rhythmic activity is modulated in both amplitude and frequency on very fine timescales

(Buzsiki, 2006). With the understanding that the brain is dynamic and that traces of

important information processing can be observed in intervals as small as 10 msec

(Axmacher et al., 2006; Foster & Wilson, 2006), our overall goal here is to develop a

robust method for extracting neurophysiologically meaningful structure on a millisecond

time basis from EEG and LFP data in order to understand the functional role of specific

neural circuits. Since brain rhythms are a manifestation of ensemble neuronal activity,

modulations of neural circuits should directly result in modulations in amplitude (AM) and

frequency (FM) of oscillatory field potentials. The investigation of AM and FM activity in

LFP's is relatively novel and nontrivial, as robust estimators for examining both AM and

FM activity have not been developed. Therefore, the focus of this chapter is to

characterize brain rhythms through the measurement of instantaneous amplitude,

instantaneous frequency, and frequency modulation and consider these signals as a utility

for investigating neural circuit function.

We derived and applied an adaptive algorithm for accurately tracking instantaneous

frequency in EEG/LFP data. The filter models brain rhythms with an autoregressive (AR)

model and estimates the AR coefficients using an adaptive Kalman filter framework

together with observations of neural activity (Arnold et al., 1998; Tarvainen et al., 2004).
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We show that for simple simulated sinusoids, the basic Kalman filter yields a biased

estimate of instantaneous frequency. With a simple procedure for amplitude

demodulation, we show that this bias can be corrected to obtain accurate estimates of

frequency dynamics. The performance of the unbiased filter is demonstrated using

simulated data. We also demonstrate how AR models with order greater than 2 can give

erroneous results and that the accuracy of the frequency tracking can be improved by first

band-pass filtering the LFP before estimation with the Kalman filter (KF). We developed

and applied a frequency based information criterion for semi-automatic KF parameter

selection called the o-information criterion (OIC). Having outlined a recipe for accurately

estimating the instantaneous frequency of brain rhythms, we analyze LFP data recorded

from the CA1 subfield of the hippocampus of a rat during a reward foraging task on linear

track. We show that the prominent 0-rhythm (6-12 Hz) is frequency modulated on sub-

second timescales and report behavioral, task dependent structure in the amplitude and

frequency modulation of the 0-rhythm.

MODELING OF A RHYTHMIC PROCESS WITH NON-

STATIONARY AMPLITUDE AND FREQUENCY

A sinusoid that is modulated in both amplitude and frequency may be written in discrete

time as

y(n)= m(n)sin(0(n)), (3.1)

where m(n) is the amplitude modulation (AM) signal and (n) is the time-varying phase

on the unit circle. From simple principles of angular geometry, we know that the

relationship between phase, angular velocity w(t), and frequency f (t) is
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'(t) = o(t) = 2, f (t),

J1'(t) = W(t) = 2r f (t), (3.2)
(t) = 2z f (t).

The phase can be approximated in discrete time by

0(n)- 2rx( n=f (u)A)+q (n= 0). (3.3)

Equations (3.1) and (3.3) provide the most flexible description of an evolving sinusoid. In

the upcoming discussion, we will show how to estimate the AM and FM components of

(3.1) from observed data.

TIME-VARYING AMPLITUDE OF A SINUSOIDAL

PROCESS

The definition of AM used here is the departure of the peaks of the sine wave away from 1

beyond any effects that inadequate sampling and noise may produce. The amplitude

modulation signal, m(n), is commonly defined using two forms: coherent or incoherent

demodulation. Coherent demodulation is defined by a carrier amplitude and time-varying

deviation from the carrier, m (n) = mo + m (n). Incoherent demodulation is defined by a

time varying amplitude envelope. In the brain, a physiological interpretation for a carrier

amplitude signal has not been established; therefore we incoherent demodulation as the

physiological interpretation is more straightforward.

Estimation of the amplitude envelope is a fairly straightforward process with the use of the

Hilbert transform (Oppenheim et al., 1999). The discrete-time Hilbert transform has

impulse response function
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0, for n even,
h(n) = r(3.4)h(n) , for n odd,

and frequency response function,

H = (co) e 0 <_o < 0, (3.5)
e-ie/2, 0 !_o< <

The function H (co) can be interpreted as a +90 degree shift in the power spectrum of the

input signal, Y(co), for negative frequency components and -90 degree shift for positive

frequency components. In essence, this transformation preserves magnitude information in

y(n) but shifts the phase of the information 90 degrees. In the simplest case, the Hilbert

transform turns a pure sine wave into a pure cosine wave. Taking the Hilbert transform

twice results in a 180 degree shift, yielding -y(n) or the negative of the signal of the

original signal.

A Hilbert transformer combines y (n) with H y (n)} to yield an analytic or complex

signal, ý(n) = y(n)+ i H {y(n)}, which satisfies the property

4(n) = m(n) e ("), (3.6)

for

ip(n)= arctan img (n) (3.7)
Z real (n) )

"

Since the absolute value of e (") is always 1, the amplitude envelope of y(n) is the

absolute value of the output of the Hilbert transformer:
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m(n)= ((n)l = ly(n) +i H( y(n). (3.8)

Last, the measurement of amplitude modulation can be made by taking the sample-based

derivative of the amplitude envelope

m(n)-m(n-1) (3.9)
am(n) A (3.9)

TIME-VARYING FREQUENCY OF A SINUSOIDAL

PROCESS

The estimation of FM requires the estimation of instantaneous frequency. Methods for

frequency tracking have been proposed based on a time-varying AR model, but have not

clearly demonstrated accurate measurement of frequency (Ko & Li, 1994; Mainardi et al.,

1995; Arnold et al., 1998; Bencheqroune et al., 1999; Foffani et al., 2004; Tarvainen et al.,

2004) . Moreover, for the analysis of LFP and EEG data, there has been little discussion

on the practical aspects of applying time-varying AR models. A filter that can estimate the

instantaneous frequency of brain rhythms without bias or artifacts would be invaluable to

the process of understanding dynamic information processing in the brain.

In the following sections, we develop a practical, robust estimator for instantaneous

frequency of a band-limited signal in the form of (3.1). The algorithm is constructed in the

same fashion as (Arnold et al., 1998), using an AR process to model the EEG/LFP time

series, with the addition of a Kalman smoother to estimate the AR coefficients on a

sample-by-sample basis. We reiterate a KF for univariate AR models and show the filter

can lead to erroneous instantaneous frequency estimates when applied naively. One source

of bias is based on the construction of the KF, whereas the other source is based on the

properties of the AR model. We propose modifications to the adaptive estimation

procedure to address both sources of bias.
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THE AUTOREGRESSIVE PROCESS

In the observation interval t (0, T], let time be discretized such that the discrete time

index is n = t/A, f, = 1/A is the sampling frequency, and J = T/A is the largest discrete

time index. Let y(n) denote the measured LFP signal, v(n) denote the zero-mean

Gaussian measurement noise with variance all, and p be the order of the autoregressive

(AR) process. Then the AR(p) model is

y(n)= E, aky(n-k)+v(n), (3.10)

with z-transform and power spectral density (PSD) functions, respectively,

Y(z)=V(z)/ (1- ak-k ), (3.11)

S(z) = e/[(1-IP akz-k )(EP lazk)]. (3.12)

The denominator of (3.11) is referred to as the characteristic polynomial; the magnitude of

the roots must be less than 1 for stability; and the roots are referred to as a poles. The PSD

of an AR(p) process, S(z), is a multi-modal function that resembles a summation of peaks.

The relative height, shape, and location of the peaks are entirely determined by the poles of

the transfer function in (3.11), and therefore, by the AR coefficients ak. The phase of the

pole determines where the center of the peak is positioned on the frequency axis, while the

height and width of the peak are determined by the magnitude of the pole; the sharpness of

the peak is determined by the distance of the pole from the unit circle. Detailed properties

of AR processes can be found in standard text books (Box et al., 1994; Oppenheim et al.,

1999). Since the ak 's parameterize the shape of the PSD, estimation of the ak 's from the
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observed data, y(n), would allow for the computation of the AR poles, and, therefore, the

frequencies of oscillatory activity in the data.

THE FIXED INTERVAL KALMAN SMOOTHER FOR AR

MODELS

Some methods of estimation assume that ak is fixed over time (Oppenheim et al., 1999),

but the analysis of notoriously nonstationary brain rhythms requires an approach that

assumes a dynamic AR process, ak, ak (n). The KF for univariate AR models has

previously been described and is restated here in a concise manner (Arnold et al., 1998).

The state-space representation for the AR process is

x(n) = x(n -1)+ w(n), (3.13)

y(n) = C(n)x(n)+ v(n), (3.14)

where x(n)=[a1 (n),...,a, (n)]T is the hidden or state variable corresponding the AR

coefficients at discrete time n, C(n)= [y(n- 1),...,y(n- p)] is the observation

transformation vector, w(n) is the state transition noise with covariance 1w, v(n) is the

observation noise with covariance E .

The state estimate, x(n J), is derived from all the observations, y(n), in some

observation interval, n [1, J], is obtained with the fixed-interval Kalman smoother. The

estimation begins by performing a forward pass, where x(n n) is computed over for

n = 1 to n = J, see (3.20)-(3.22)). Then a backward pass is performed to propagate future

information into state estimates at past times ((3.26)-(3.28)). The backward pass reduces
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delays associated with adaptive filtering which use non-optimal learning parameters and

decreases the variance of the state estimates.

The KF can be described as a sequential Bayesian estimator, therefore, we outline the

algorithm using conditional notation to emphasize the history dependence in each step of

the estimation process (Haykin, 1996). Eqs. (3.15) to (3.18) are conditional estimators of

state of observation statistics,

x(n I j)= E[x(n)l y(),...,y (j), (3.15)

Ex (n I j)= cov[x(n) I y(1),..., y(j), (3.16)

y(n I j)= E[y(n) y(1),..., y(j)] , (3.17)

E, (n | j)= cov[y(n) I y(1),..., y(j)W , (3.18)

where n need not be less than, equal to, or greater than j.

The one-step prediction equations use the state space equations, (3.13) and (3.14), to

predict the state variables and their statistics.

x(n In-1)= x(n-l In-1) (3.19)

Ex (n n-1)= Ex (n n -1)+ ,w (3.20)

y(n in-1)= C(n)x(nlIn-1) (3.21)

1, (n In -1) = C(n)l x (n I n-1)C(n)
T + , (3.22)

The fact that Ew and Ev are non-zero implies that the one-step prediction will contain

errors. The following correction equations incorporate new observations with a-priori

knowledge of the statistics of the state evolution to correct those errors. The Kalman gain,

(3.23), scales the innovation term, y(n)-y(nln-1), such that x(n In) is the MMSE

estimate of x(n):
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K(n)= Ex (n I n-1)C(n) EY,, (n In-1)-', (3.23)

x(n n)= x(n In-1)+K(n) (y(n)y ()- y(n n-1)), (3.24)

Ex (n n)= Ex (n n-1)- K(n)E1, (n I n-1)K (n)T . (3.25)

In contrast to x (n I n), x (n -1 J) is an estimate which incorporates past as well as future

information. The following backward, smoothing equations are applied after x(J I J) has

been evaluated.

x(n I J)= E[x(n) Iy(1),...,y(J)] (3.26)

x(n-l I J)= x(n-l n-1)+ A(n-1)(x(n J)-x(n n-1)) (3.27)

A(n -1) = Ex (n-1I n -1)E ' (n n-1) (3.28)

From the smoothed AR coefficient estimates, x(n I J)= [a (n I J),...,ap (n I J)]T, we can

easily obtain estimates of dominant frequencies in the signal at time index n, fk (n I J) for

l k p/2.

(1- = a, (n J)zk)= I(1 -bk (n J)z -') (3.29)

bk (n I J) = rk (n I J)e -i ( "I) (3.30)

fk (n J) = ko(n J)I (3.31)

In condition where p is even and the poles are complex conjugates, bi (n I J) = b (n I J)

for i # k and 1 < i,k < p, there KF estimator has found p / 2 oscillations in the data. The

complex phase of the poles are proportional to the dominant oscillation frequency

according to (3.31). Here, r(n I J) is the magnitude of the pole, co(n I J) is the phase of

the pole on the complex plane, and f, is the sampling frequency of the observed signal. If
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p is odd, then at least one pole is guaranteed to be real; real positive poles act as dampers

or low pass filters, while real negative pole act as high pass filters. All poles must be less

than 1 in magnitude for the AR model to be stable.

Frequency modulation (FM) is defined as the derivative of the instantaneous frequency and

is computed by taking the approximated derivative of f (n I J),

f(n I J)- f(n-1 IJ) (3.32)fm(nlJ) (3.32)

Depending on the parameter values for a, and o, the estimate of fm (n I J) may need

additional smoothing; a Hanning window corresponding to 100ms in length is suitable for

this purpose.

For an AR(P) process, the KF parameters are initialized as follows no = p +l,

C(no)= [y(p),...,y(2),y(1)], F, = o-21Px, Ev = o- , where Ipx, is the PxP identity

matrix. The initial state and state covariance matrix, x(n o In) and Ex (noln o), are

initialized using the Yule-Walker equations. The selection of ao and oa will be discussed

later in the chapter.
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UNBIASED ESTIMATION OF FREQUENCY

Simulated Data: amplitude scaled chirps surrounded by white noise

Figure 3.1 Biased instantaneous frequency estimation. (A) Simulated data was created by combining

a fast, frequency and amplitude modulated signal with background noise. The signal was sampled at

800 Hz. The first chirp had an amplitude of 5 and the last chirp has an amplitude of 0.25. The

background noise is white with variance 0.25. The chirps were not added to noise, but surrounded by

noise in time. (B) Kalman based estimates using the biased method with parameters

p = 2, oa = 0.1, -, = 0.0001. (C) Kalman based estimates using the amplitude demodulated method

with parameters p = 2, r = 0.1, c = 0.0001.

The basic KF assumes the observation matrix C is constant over time; thus the steady state

Kalman gain in (3.23) is guaranteed to converge to a steady state value as n - oo. On the

other hand, if C is allowed to vary over time as in (3.14), the amplitude of the

instantaneous Kalman gain will be a function of the amplitude of the past observation,

300 ms Chirp . . A
time staggered,

amplitude scaled,
white noise added

- 25
160 Hz20 Hz 0 Time (sec) 281

Unbiased Estimator
Instantaneous Frequency (Hz) Frequency Modulation (Hz/sec) Pole Magnitude C I

0.97

0.78
10 sec

Ihpe

I
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[y(n-1),...,y(n -p)]. A critical consequence is the state estimates and ultimately the

pole phases will be more variable when [y(n-1),...,y(n-p)] is large relative to when

[y(n-1),...,y(n-p)] is small. Ignoring this condition will still allow the KF to track

oscillations in the data over time, but in a consistently biased manner (Figure 3.1, Panel B).

Since our goal is to hone in on small time-scale changes in instantaneous frequency,

artificial structure produced by biased filtering will ultimately lead to erroneous inferences.

The bias discussed here can be ameliorated by amplitude demodulating the input signal

y(n) using (3.8),

YAD (n) = y(n)/ m (n). (3.33)

With YAD (n) the variation in peak-amplitude is extremely predictable and well modeled

by the KF. This process of amplitude demodulation combined with Kalman filtering will

be referred to as the amplitude demodulated-Kalman filter (AD-KF). In tracking sinusoids

in noise, this manipulation drastically decreases the systematic scaling of the Kalman gain

with amplitude. The tradeoff here, as can clearly be seen from Figure 3.1-C, is the

variance of the estimate may also increase. These variations can be systematically reduced

by either increasing the value of a,' or decreasing the value of a 2 . Each manipulation will

lead to smoother AR parameter estimates but with different qualities (Figure 3.6).
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Two sinusoids in noise
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~-- ...._--
100Hzo 50

10

50Hz

Simulated Component 2

40Hz f 2(n)
20Hz

Simulated Component 1

~(n)

o

·--................~.1--

~y
50

+

¢
c

100Hz

Estimated F(t): comp 1

~40~ D
i20--
u.. 0 5 10 sec

Estimated F(t): camp 260_ .. .E
501::= i i

o S 10 sec

Error in F(t): camp 2

:~~lIJiii:_!!5!IiiI ..:
00 5 10 sec

Compare Estimation before and after Estimated F(t) wI Bandpass: comp 2

_ 75~Bandpass Filtering (~80] Hz G
5505

1# H
:£ 0~ :!erBP ill

0..-75 _---';;;;;=~=~S=::;o SO 100 Hz 450 S 10 sec

Error in F(t) wi Bandpass: comp 2

5~;r;;::;I':!••ls.__I~r
00 5 10 sec

Figure 3.2 Autoregressive pole interactions. The six top-most panels illustrate how the data was

simulated. The first sinusoidal component was both amplitude and frequency modulated; the

frequency modulation, shown at the top, caused the instantaneous frequency to range between 20 Hz

and 40 Hz; the amplitude modulation is clear from the realization of the time series. The second

simulated sinusoidal component was constant in amplitude and frequency. The two components were

summed and white noise (0'2 = 0.04 ) was added. (A,B,C) Time-staggered AR PSD's estimated from

the simulated data. The gray line is the full PSD while the dark lines represent the contribution of

each pole to the PSD. The asterisks show how the representation of the 50 Hz component changes in

the estimate even though it does not change in theory. (D and E) The gray lines are the true frequency

while the black lines are the estimated frequencies. The estimates are shown with 1 std intervals. (F)

The error in the frequency estimate of component #2, shown with 1 std intervals. (G) The original

simulated signal is bandpass filtered between 40 and 80 Hz. (H and I) Bandpass filtering before

estimation decreases error in the estimate. In panels A-F, the KF parameters were p = 4, a; = 0.1 ,

o'~, =0.01. In panels G-I, the AD-KF parameters were p =2, a; =0.1, a: =0.01.
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INTERACTIONS BETWEEN MULTIPLE POLES

AR models are advantageous in time-frequency analysis because they represent a flexible

class of PSD functions that are best described as a linear summation of peaks, where the

location, height, and width of each peak is dictated by the poles of the AR model. The

overlap between side lobes of the peaks consequently means that the power at any given

frequency is based on the interaction between multiple poles (Figure 3.2 (A-C)). The 1/ f

rule, which is well known in the analysis of brain rhythms, states that the expected power

of an oscillation is inversely proportional to the frequency of the oscillation (Buzsiki,

2006). This has strong implications for frequency estimation where the sidelobes of poles

at lower frequencies may dominate poles at higher frequencies; higher frequency poles can

therefore vary as a function of activity at lower frequencies. For example, if the KF

(p 2 4) reveals changes in frequency in the y -rhythm, these changes may be due to actual

y -rhythm modulation or may be a side effect of activity in 0, a, or / -rhythms. Figure

3.2 (A-F) illustrates the interaction between poles in the process of frequency estimation

and how the interaction is amplified by the l/fphenomena.

The most effective way to address this interaction is to isolate and analyze each rhythm

individually. Bandpass filtering the observation signal prior to Kalman filtering helps to

ensure changes in pole amplitude and location within a frequency band of interest is truly a

result of activity in that band. Moreover, an AR(2) model can be assumed with reasonable

certainty and model identification would no longer be necessary. In Figure 3.2, (G-I), the

example demonstrates how bandpass filtering, even over a large frequency range, can help

to remove artificial structure in the frequency estimates. In practice, the cutoff frequencies

for bandpass filtering can be determined by visual inspection of a spectrogram.
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Figure 3.3 (left): Tracking a-rhythm dynamics. (A) The PSD of the LFP estimated from 45 minutes of data.

(B) The PSD of the LFP after downsampling by a ratio of 1/5 and bandpass filtering between 6 and 12 Hz

using a 20 point FIR filter. The histogram that is shown on the same axis, prob(f) , is the histogram of the

instantaneous frequency estimated from a-rhythm using the AD-KF (p = 2, a; = 0.1, a: = 0.07). (C) AR

transfer function profiles at times 0.5, 1.5, 2.5, and 3.5 seconds from panel-Eo The darker lines correspond to

earlier time points. (D-E) A 4 second example of the -rhythm and it's respective frequency estimate.

Figure 3.4 (right): State dependent a-rhythm dynamics. An example of real data recorded from CAl of the

rat hippocampus during a linear track task. (A) The track is 1 meter in length and in these 30 seconds the rat

runs from one end to the other. (B) LFP Data sampled and 200 Hz. (C) a-rhythm signal sampled at 40 Hz.

(D) The amplitude envelope of the a-rhythm which is computed by taking the absolute value of the Hilbert

transform. (E) The instantaneous frequency estimate. (F) The frequency modulation estimate. The gray

vertical lines mark the interval when the rat is running.

In general, the parameters for bandpass filtering will affect the quality of the instantaneous

frequency estimate. Choosing a pass band that is too large may result in the presence of

more than one oscillation. In this case, the frequency represented by the AR(2) parameter

estimates will be an amplitude-weighted average of all the oscillations that are present in
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the pass band. This limitation is of importance when each individual oscillation represents

a distinct neurophysiological process; by bandpass filtering and assuming an AR(2)

process, a model-data mismatch has occurred, and individual neural processes will

erroneously be lumped into one process. The consequences of this limitation cannot be

stated absolutely, and will ultimately depend on the scientific question being asked and the

interpretation of the adaptive filter output.

When the cutoff frequencies for the bandpass filter are known from inspection of the data,

the next order of business is resampling the data to create a symmetric power distribution

in the frequency domain about the point at r / 2 radians. This geometry is necessary

because AR components become more asymmetric in shape as their center frequency

moves closer to either 0 or ir radians. Therefore, the interplay between data and AR

model is not uniform over all boundaries. Furthermore, bandpass filtering the data creates

to sharp edges in power which add to the complexity of the data-model interactions. Since

uniformity cannot be achieved the next step is to impose symmetry: the interaction

between data and model will be the same at the lower and higher edges of the pass band.

A simple recipe can be used for conditioning the signal to obtain an approximately

symmetric power distribution about ir/ 2 radians. First, define the frequency range for the

brain rhythm of interest (,f A), and then evaluate a central frequency parameter

fc= 0.5(7 + p2). Second define the Nyquist and sampling frequencies to be f = 27 and

7 2f . Resampling the signal to approximately f• and then bandpass filtering between

f, and f 2 will provide the largest symmetric range of motion for the pole in the frequency

band of interest.
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MODEL AND PARAMETER SELECTION

A prerequisite problem when using AR models is determining the order of the model. In

this case, we have shown that the prerequisite problem is trivial since it is always possible

to band limit the input signal and assume an AR(2) process. The AR(2) process in

combination with the band limited signal is preferred because there are no pole-pole

interactions, the tracking of instantaneous frequency is trivial since there is only one pole,

and the use of frequency estimates are better defined for scientific inference.

We are then left with the problem of parameter selection. The algorithm requires four

parameters to be defined f and f2 for bandpass filtering, and a2 and U2 for the KF. The

parameters for bandpass filtering can be determined in two ways: bootstrapping from

published physiology studies or by inspection of a spectrogram. In practice, the best

scenario is when both methods are in agreement. If they are not in agreement, then the

original scientific question should be revisited and the parameter set that best addresses the

question should be chosen. In a systematic manner, the limits for bandpass filtering should

be systematically varied to test if the results hold in a robust or predictable manner.

The selection of KF parameters ao and a-2 can be addressed more systematically. A

multitude of parameter selection methods have been developed, each using different

information criteria or different cost functions based on residuals or estimation errors of

the time domain signal (Djuric & Kay, 1992; de Waele & Broersen, 2003). In relation to

the task at hand, time domain optimizers are inadequate since minimizing the error in the

time domain does not necessary lead to minimizing the error in instantaneous frequency

estimation. In order to address this concern, we have developed a criteria based on

frequency information. We call this measure OIC as the Greek letter "omega" is the roman

equivalent of the letter "o".
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The first step in determining the values for ()~ and ()~ is constraining the possible set of

values. By either normalizing the data such that 2 x std (y) = 1, where

Y( n) =y(n)/ constant, or using the amplitude demodulation procedure In (3.8),

y(n ) = y ( n) / m (n), we can guarantee that suitable values for both ()~ and ()~ lie in the

range of 0.1 and 0.001. This way, once a set of parameters have been found, they can be

used over and over again for the same type of data, regardless of the amplitude of the

measurements. The value for ()~ tends to more sensitive to sampling frequency than ()\~ ,

and as the sampling frequency changes, ()~ should be reduced accordingly to reflect the

timescale of the relevant activity in the EEG/LFP (Figure 3.5).

(12 = 10.00,52 = 0.01, SNR=5.26
v w (12 = 1.00,52 = 0.01, SNR=5.26

v w
(12 = 0.10, 52 = 0.01, SNR=5.26

v w

2 3 4 o 2 3 4

Figure 3.5 : Interactions between KF noise variance parameters and signal-to-noise ratio. (First row)

Decreasing ()~ improves the ability to track frequency on a sample-by-sample basis. (Second row)

Increasing ()~ smooths the estimate over longer timescales than increasing

Frequency estimates are robust up to a SNR of approximately 2.

(third row)
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The OIC uses local estimates of frequency over time based on the peaks in the signal. The

OIC works best when the input signal to the KF is bandlimited and one oscillation clearly

dominates at each point in time. After normalizing the input signal, the next step is to find

all the peaks in the data that are atleast 0.5 in magnitude larger than either adjacent trough

(this removes spurious noise from the estimate). Let the times of the peaks be r1,..., rM for

M peaks and the times between the peaks be v.m = (rm + rm+i )/2 for m = 1,..., M -1. The

estimate of time-varying frequency is computed as,

S(Vm) = 1/(vm+. - Tm), (3.34)

where the location of the frequency estimate in time is placed between the peaks used to

compute the estimate. Given this purely empirical estimate of frequency, one could then

compute the following residual based on the output of the instantaneous frequency filter in

(3.31):

,wic = '1(f(Vm)- jKF(V)) 2 . (3.35)

An example of the FIC parameter selection procedure is show in Figure 3.6. For this

example, the first minima is located at o2 = 0.1 and oa = 0.0196. Panel (E) reveals that

the most optimal parameter set yields a frequency estimate that contains abrupt jumps

consistent with overfitting a noisy signal. Since noise affects the frequency estimate on a

local timescale, it is best to lower the value of oa- to be between 0.005 and 0.01. The

reasoning for this can be seen in Figure 3.5 where increasing oF2 smoothes the estimate

over long timescales, whereas decreasing o- increasing the ability to track on small

timescales.

Noisy time series will result in noisy empirical estimates of frequency. If we assume the

signal is a pure sinusoidal then the power of the noise is the power in the band that does

not correspond to the sinusoid. With this definition, it may be possible to compute the
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SNR from PSD estimates using the multitaper wavelet method or any other PSD estimator

(Percival & Walden, 1993). Having the SNR will help to determine if the optimal values

under the OIC will lead to noise fitting. If the SNR is too low ( < 2 ), the frequency

estimates may not be valid at all. If the SNR is midrange, (2 < SNR < 6 ), then it may be

sufficient to increase CT; by an order of magnitude. For large SNR, the optimal value

given by the OIC is most likely sufficient for estimation.
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Figure 3.6: Kalman filter parameter selection. (A) 1 second trace of a ripple recorded from stratum

oriens of the dorsal rat hippocampus. (B) The estimation error in frequency associated with

CT; =0.1 and CT~ varying according to the x-axis. (C) The amplitude demodulated ripple signal

from panel (A). The identified peaks are marked with square boxes. (D-F) Circles mark the time and

value of the empirical frequency estimates. The solid line is the estimate of frequency given by the AD­

KF.
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TESTING GOODNESS-OF-FIT

One issue with band-pass filtering the data is that multiple sinusoids may be present in that

band. Our assumption of an AR(2) model is incompatible with such scenarios. Therefore,

post hoc analyses to determine were the single sinusoid assumption has been violated will

be needed to verify our estimated of instantaneous frequency.

As we discussed earlier, one output of our Kalman filter is the residual time-series which

contains the component of the input signal that is not captured by the adaptive AR(2)

process. Ideally, if the filter captures all the rhythmic structure in the data, the residual

should be uncorrelated with itself and the autocorrelation of the residual should be flat,

which corresponds to a white process. It has been shown that the Ljung-Box-Pierce

statistic (Box et al., 1994),

K

Q(K) = N,(N,, + 2) (N, -k)-' yv (9), (1.36)
k=1

(where N, is the length of the data segment used to compute the autocorrelation, Vi is the

residual output of the Kalman filter, yk is the value of the autocorrelation at lag k, and K

is the number of lags in the autocorrelation used to compute the statistic), is distributed

according to X2 (K - 2) for an AR(2) process when yk is the autocorrelation of 9 and 9 is

a white noise process. When V9 contains autocorrelated values, the distribution of Yk

should be inflated such that Q(K) will outside the right-sided 95% confidence interval of

the X2 (K -2) distribution. In Figure 3.7, an example is shown where the pass-band of

the pre-filter is expanded to gradually include another oscillation. As more of the second

oscillation is included, the AR(2) model attempts to capture both oscillations but fails.

This inability is apparent in Figure 3.7(F,G), where the autocorrelation clearly shows

oscillatory structure and the Q(20) statistic is clearly outside of the expected range.
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Figure 3.7 : Ljung-Box-Pierce test for lack-of-fit. (A) As the pass band becomes larger 40-60Hz, 35­

60Hz, and then 30-60Hz, more of the low frequency component is included in the input to the AR(2)

Kalman filter. (B,D,F) The right-half of the autocorrelation of the fLIter residuals. The solid

horizontal line is the theoretical 95% confidence interval of the autocorrelation of a white noise

process. (C,E,G) The output of the Ljung-Box-Pierce Test for lack of fit. In practice, if the dashed line

is below the solid line at lag 20, this supports a good-fit of the data.
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ANALYSIS OF LFP FROM THE RAT HIPPOCAMPUS

A rat implanted with a tetrode array targeted to the hippocampus was trained to run back

and forth on a U-shaped track for a food reward. At the beginning of the experiment, only

one out of three arms of the U-track was exposed to the rat. After 10 minutes, a second

arm was exposed and so the length of the track doubled and the track resembled an L-

shape. After another 15 minutes, a third track arm was exposed and the rat was allowed to

run a full U-trajectory. LFP data was recorded from stratum pyramidal of the dorsal CAl

region at a rate of 1 kHz and bandpass filtered between 1 and 475 Hz. The total

observation time was approximately 48 minutes. The 0-rhythm was isolated by first

bandpass filtering to prevent aliasing, downsampling the LFP to a 40 Hz sampling rate,

and finally bandpass filtering between 6 and 12 Hz ().

In the hippocampus, 0 -oscillations are tightly bound to dominant information processing

and coordination mechanisms as well as to different behaviors (Vanderwolf, 1969; Wyble

et al., 2004). The goal here is to determine if there is any systematic, fine timescale

structure in the amplitude and frequency modulation of 9 -band activity as a function of

behavioral state. Previously, reports have shown that 0-oscillations are modulated in

amplitude but not frequency during running (Czurko et al., 1999; Wyble et al., 2004).

During immobility, an attention related form of 9 -oscillation has been reported but has not

been well characterized (Vanderwolf, 1969).

We extracted instantaneous amplitude information using the magnitude of the Hilbert

transform on the 0-signal. We extracted instantaneous frequency information using the

AD-KF for AR(2) models with parameters p =2, oC =0.1, a2 =0.07. The process of

analyzing 0-activity is outlined in Figure 3.3. Figure 3.4 is a typical example of 9-

activity during running and non-running behaviors. First, the dynamics of 0 -band activity

is visibly dependent on the behavioral state of the animal. Second, when comparing

amplitude and frequency dynamics, it is interesting to note that amplitude and frequency

modulation can occur independent of one another. Third, while the rat is running, the
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frequency of the () -oscillation is held constant while the amplitude can vary significantly.

Fourth, modulations in () -rhythm frequency can occur at rates with an upper bound of 5

Hz/sec.
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Figure 3.8: a-rhythm dynamics are consistent on a trial-by-trial basis. The point of this figure is to

show consistent and dynamic changes in a-rhythm dynamics as a function of behavior, therefore,

average responses are not shown. Here, the track is approximately 3 meters in length and is V-shaped.

The distance is measured along the path of the track. Each line represents a single pass in one

direction Or the other and each plot contains 7 passes. In E and F, changes in velocity help to

determine the location of the turns in the V-track and the track ends. (A-B) Instantaneous frequency

estimates using the AD-KF (p =2, CJ; =0.1, CJ: =0.07). (C-D) a-rhythm amplitude envelope

computed from the absolute value of the Hilbert transform. (E-F) The velocity of the rat as a function

of position. The average time it took to run from one end to the other was 9.5 sec with a std of 2.5 sec.
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Since it is hard to see the fine-timescale dynamics of 0-activity in Figure 3.4, we isolated

7 successive laps while the rat was running on the full U-shaped track. In order to make

the lap-by-lap comparisons easier to visualize, we plotted each parameter as a function of

position and made separate plots for each direction of running, Figure 3.8. Inspection of

9-frequency, 0-amplitude, and running velocity reveals several interesting points about

0 -rhythm dynamics during locomotion. First, 0 -amplitude is best predicted by distance

from the most recent track end and direction may play a role as well. Second, the

instantaneous frequency during run hovers around 8 Hz which is consistent with previous

reports (Slawinska & Kasicki, 1998; Czurko et al., 1999; Wyble et al., 2004; Sinnamon,

2006). Third, for only the left-> right trajectory, there appears to be a systematic ramping

of frequency as the rat first starts to run. Fourth, at the corners of the U-track, the change

in 0 -amplitude is highly consistent but the change in 0 -frequency is highly variable.

In general, rats will be distracted or lose motivation to run during an experiment; having

the rat on the linear portion of the track does not guarantee movement. In order to

investigate systematic variations in 0 -dynamics as a function of locomotion behavior, we

dissected the observation interval into epochs of locomotion (high velocity) and stopping

(low velocity) by setting a 10 cm/sec velocity threshold. Using 48 minutes of data, some

of which are shown in Figure 3.4 and Figure 3.8, we compared the distributions of 9-

amplitude, O-frequency, 0-frequency modulation, and time differences between positive

peaks in 0 -frequency modulation during low and high velocity epochs. Figure 3.9 shows

box plots of the different parameters. For each individual epoch, the mean of each

parameter was computed, and the means over all epochs were compared using a 1-way

Anova. The only parameters that did not show a difference in distribution were the

standard deviation of 9 -amplitude, the mean of the AP-to-P parameters, and the standard

deviation of the AP-to-P parameter (Figure 3.9). In general, the average -amplitude

was higher during running although the variation was statistically the same in both

conditions. The average instantaneous frequency and variation was lower during the high

velocity state, which is expected (Czurko et al., 1999). The peak-to-peak time delay in
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frequency modulation averaged around 0.55 sec, but was much more variable during the

high velocity state.
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Figure 3.9. Statistical differences in the a-rhythm dynamics between low and high velocity behaviors.

The 48 minute observation interval was divided into epochs of high and low velocity (threshold 10

cm/sec). For each epoch (N=89 high vel, N=88 low vel), the mean and standard deviation of each

parameter was computed. The box plots display the mean value (A-D) and standard deviation (E-H).

The columns from left to right represent the amplitude, frequency, absolute value of frequency

modulation, and positive-peak to positive-peak interval in frequency modulation. A visual description

of B-fm ~P-to-P can be found Figure 3.4(F). Comparisons between high and low velocity statistics

were performed using a one way anova. The resulting p-values for rejecting the null hypothesis are

(A) p<1.16e-ll (b) p<3.27e-8 (c) 3.33e-16 (d) p<0.52 (e) p<0.018 (I)

p < 2.58e - 6 (g) 3.35e -10 (h) P < 0.49.

These analyses demonstrate the utility of instantaneous frequency estimation In the

characterization of real LFP data. We provide evidence for independent modulation of

both amplitude and frequency during high and low velocity behaviors. Furthermore, using

frequency modulation we were able to characterize a systematic B -frequency modulation

during high and low velocity. Overall, the adaptive filter allowed for temporally precise

characterization of frequency content and was able to reveal systematic differences in B­

activity as a function of behavioral state.
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DISCUSSION

We discuss three important issues when using the KF to estimate univariate autoregressive

models for the purpose of estimating oscillation frequencies of multiple sinusoids with 1/f

behavior. The first issue we discussed was the amplitude-induced bias in the estimation of

instantaneous frequency. More specifically, we noted that, for the observation equation in

(3.14) the Kalman gain becomes a function of the observations. This dependence prevents

the Kalman gain from ever converging to steady state and, more importantly, scales the

Kalman gain proportionally to the amplitude of the observations. We addressed this bias

by amplitude demodulating the signal so only frequency modulation was left in the signal

before Kalman filtering. The second issue of importance was the fact that interactions

between poles can have undesired effects on instantaneous frequency estimates (Figure

3.2). We showed that first bandpass filtering the observation signal in some band of

interest was a viable, pragmatic compromise with two advantages: reducing estimation

bias due to cross-talk between oscillations and avoiding the prerequisite problem of AR

model identification. Third, we developed a novel frequency based information criterion

(OIC) for determining the best parameters for instantaneous frequency estimation. We

applied the resulting algorithm to real data recorded from the rat hippocampus during a

linear track task and found novel structure in the dynamic modulation of 0 -band activity.

The frequency estimation algorithm is a relatively simple, slim-downed version of adaptive

filters that have previously described (Arnold et al., 1998; Tarvainen et al., 2004). In

designing the algorithm, we had two purposes in mind: unbiased instantaneous frequency

estimation of brain rhythms and ease of use. We showed that bandpass filtering and

modeling with an AR(2) process provides more reliable frequency estimates, and relieves

the user from solving the prerequisite model identification problem. Here we have clearly

shown that the increase in estimation accuracy outweighs the cost of sequentially analyzing

each brain rhythm. Furthermore, because the AR(2) model is simpler, the process of

determining the KF variance parameters is also more straightforward for the user. In
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addition, diagnostics such as the Ljung-Box-Pierce test are readily available for

verification of frequency estimates. For these reasons, software could be designed to make

instantaneous frequency estimation available to the average neuroscientist.

The analysis of 9 -activity in CA1 during a linear track experiment revealed interesting

observations of fine time scale structure of frequency dynamics and its relation to

amplitude dynamics. Briefly, those observations were instantaneous 0-frequency during

locomotion was very steady at around 8Hz; during non-running behaviors 0 -activity could

range between 6 Hz and 11 Hz; and during both running and non-running behaviors 8-

frequency was modulated at an average interval of 0.6 sec although there was less variance

in this interval during non-locomotion. These results demonstrate the presence of

systematic, fine-time scale structure in LFP data. These findings motivate further analyses

such as investigating the activity of principal neurons and interneurons during periods of

9-frequency and/or 0-amplitude modulation in order to understand the computational

significance of these modulatory events.

In summary, we developed an adaptive filter for tracking frequency of brain rhythms and

clearly demonstrated how to apply this filter in order to obtain robust and interpretable

measurements. The procedure is relatively simple to use with four intuitive parameters to

define (frequency limits of the brain rhythm and KF variances). The OIC is highly

informative to the task of choosing KF variances as makes direct use of the frequency

content in the data. The output of the estimation algorithm can be interpreted directly in a

physiological framework. Future directions would look into developing reliable measures

of connectivity between locations in the brain using instantaneous frequency or frequency

modulation; and mixed filtering that could integrate point process models of spiking

activity with Kalman filtering of EEG/LFP activity.
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Chapter 4 : RIPPLE DETECTION AND CHARACTERIZATION USING

INSTANTANEOUS AMPLITUDE AND FREQUENCY CONTENT



Ripple Detection and Characterization

Abbreviations: LFP = local field potential, MUA = multi-unit activity, SPW = sharp wave, SWS = slow

wave sleep, EC = entorhinal cortex, KF = Kalman filter, AD-KF = Amplitude demodulated Kalman filter,

AR = autoregressive, PSD = power spectral density, IFQ = instantaneous frequency, Al = amplitude

information, AFI = amplitude and frequency information.

INTRODUCTION

In the local field potential of the rat hippocampus, high frequency (100-250Hz) and short

duration (30-100ms) events, termed "ripples", can be found in slow wave sleep, awake

immobility, and awake exploration (Ylinen et al., 1995; O'Neill et al., 2006). Ripples in

CAl tend to co-occur with sharp wave depolarizations that are initiated by synchronous

activity in CA3 (Csicsvari et al., 2000). In thel990's, ripples were known to correlate with

an increase in multi-unit activity (MUA) of principal and interneuron types (Ylirlen et al.,

1995). Another decade of research revealed the MUA associated with ripples contained

highly structured and compressed re-expression of temporal patterns found in ensemble

activity during running on a track (Lee & Wilson, 2002; Foster & Wilson, 2006; Diba &

Buzsaki, 2007).

Reports from the Buzsaki Lab support the idea that synchronous activity in CA3 pyramidal

cells propagates to CA1, then to subiculum, and on to entorhinal cortex; along the way

strong synchrony can be observed in the LFP as ripple events (Ylinen et al., 1995; Chrobak

& Buzsaki, 1996; Csicsvari et al., 2000). Csicsvari et al. (2000) recorded simultaneously

from CAl and CA3 subfields, and showed that CAl ripples were highly correlated with

the firing of individual units in CA3 and that synchrony of CA3 units were a strong

predictor for SPW-Ripple complexes within a 100ms time window. Chrobak et al. (1996)

showed that ripples that were simultaneously recorded from CAl and entorhinal cortex

(EC) were either synchronous or delayed by up to 30ms (CA1 preceding in time); and that

cells in layer V of EC fired more regularly with the negative peaks of EC relative to cells

in the superficial layers of EC. Therefore, using CAl ripples as a reference point, this
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evidence established the cause of ripple events in CAl to be CA3 activity and the effect to

be synchronous activation of parahippocampal targets.

The story, however, is not so simple. Csicsvari et al. (1999) showed that ripples could be

categorized into two classes: slow ripples (100-130 Hz) and fast ripples (140-200Hz); and

proposed that fast ripples were unlikely a result of CA3 input and more likely a result of

intrinsic CAl activity (Csicsvari et al., 1999). In 2000, Csicsvari et al. showed that small

amplitude CA1 ripples were not coherent across electrodes while large amplitude CAl

ripples were. In the same paper, they also provided evidence for topography in ripple

initiation where CA3b activity can induce ripples in CAlb, and CA3a activity can induce

ripples in CAla, and any other combination was unlikely. Therefore, if CA3 is driven in

synchrony and in wide expanse, the sharp wave-ripple complex will more likely be global

and easier to detect. In contrast, small amplitude ripples may be a result of local synchrony

in the CA3 population, the CAl population, or other input population, such as the EC via

the temporoammonic pathway, for example.

The significance of the ripple event, whether large or small, is seen widely by the

hippocampus community as a temporal window of opportunity for inducing changes in

synaptic reorganization (Buzsaki, 1989). The synchronous nature of ensemble input into

CAl can minimize the difference in pre- and post-synaptic spike timing, and therefore

maximize plasticity under the rules of spike-timing dependent plasticity (Bi & Poo, 1998).

The physical location of the ripple event, on the medial-lateral and septal-temporal axes,

may determine the quality of the information being replayed as dictated by the

topographical projections from the entorhinal cortex (Witter et al., 1989; Hampson et al.,

1999; Hafting et al., 2005; Sargolini et al., 2006; Witter, 2006). The occurrence of ripples

during sleep and waking states supports the idea that the hippocampus is constantly

engaged in the maintenance of memory when demands on the hippocampus are permissive

(Siapas & Wilson, 1998; Sirota et al., 2003; O'Neill et al., 2006; Cheng & Frank, 2008).

Together, these anatomical and physiological findings support the association of ripple

activity with the unique and necessary function of the hippocampus in information

encoding and memory consolidation. In order to better understand the role of ripple
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associated activity as a process for memory maintenance, we have focused on two highly

relevant and understated problems: (1) ripple characterization and (2) ripple detection.

The long standing definition of ripple events are amplitude based; anything above a certain

power in the 100-250 Hz band is a ripple in practice. This definition, although practical,

does not do justice to the richness of the ripple event and all the information that may be

contained. Only two studies have made advancements in the analysis of ripples based on

wavelet methods, but lack the resolution to identify fine timescale structure in individual

ripple events (Sirota et al., 2003; Gillis et al., 2005). Using an adaptive filter for

instantaneous frequency (IFQ) estimation (Chapter 5), we explore the possibility of using

IFQ to enhance the definition of a ripple for more robust ripple detection and more

accurate ripple characterization.

In this chapter, we show that changes in frequency within a ripple event can be on the

order of thousands of Hz per second, the direction of frequency modulation (FM) can be

either positive or negative, and the relative timing of FM can precede and follow the time

of peak amplitude. These variations suggest that there exists more than one

physiologically meaningful class of ripple events. We classified ripples based on average

IFQ and average FM within a ripple (+/- 10ms about ripple peak) and performed statistical

analyses. In terms of ripple detection, we combined ripple amplitude and frequency

information and found that detection based on the combined feature set yields only a

subset of the events compared to the use of amplitude information only. We will discuss

the advantages and limitations of this novel method for ripple detection further. We

considered the underlying structure of long ( > 100 ms) and short ripple events ( < 100ms)

by detecting the number of "ripple units" per event. A linear regression analysis revealed

the average duration of the ripple unit that was shorter than expected at 36ms; this result is

discussed in the text.
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METHODS AND MATERIALS

The data was recorded from the pyramidal cell layer of dorsal CAl during a 60 minute

sleep epoch, where a 4 month old, male, Long-Evans rat was resting on an elevated

platform inside a sleep chamber that was only open to the ceiling. The LFP signal was

recorded to disk, downsampled to 800 Hz, and then bandpass filtered using a 100 point

FIR filter with cutoff frequencies at 100 Hz and 250 Hz. The band-pass filtered signal

containing ripples is referred to as the ripple signal. The data is modeled using an

autoregressive process of order 2 or an AR(2) process. The instantaneous frequency of the

ripple signal was estimated twice, once with the normal KF and once with amplitude

demodulated-KF (AD-KF) as in Chapter 5. Frequency estimates obtained from the KF are

referred to as censored estimates since the tracking of frequency is dependent on ripple

signal amplitude. Frequency estimates from the AD-KF are referred to as uncensored

estimates. The censored frequency estimate can be interpreted as a signal which contains

both amplitude and frequency information.

The Kalman filter parameters were initialized as follows: no = 3, C(no)=[y(2),y(1)],

1,, = 2,I2x2, v = 2 , where o- = 0.005, ,2 = 0.05, and I2x2 is the 2x2 identity matrix

for the normal KF. Two parameters were altered for the AD-KF, ao- = 0.005, 72 = 0.1.

The initial state and state covariance matrix, x(n o ino) and Ex (no Ino ), are initialized

using the Yule-Walker equations and 10 seconds of data. We used the omega information

criterion (OIC) to narrow down the range of 0,2 and U2 by using a double for-loop to

explore a large parameter space (Chapter 5).

Ripple amplitude was measured by taking the largest peak of the ripple-band signal (no

Hilbert transforms used here). Ripple frequency was taken as the average frequency in a

+/- 10ms window centered about the time of the largest peak of the ripple oscillation. The

ripple frequency modulation was taken as the average frequency modulation in a +/- 10ms

window centered about the time of the largest peak of the ripple oscillation.
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Ripple detection based on amplitude information was performed as follows. The absolute

value of the Hilbert transformer was taken as the "ripple envelope". When the envelope

exceeded 0.05mV, this flagged a ripple event. The start and end times of the ripple event

were marked by the first crossing of 0.04mV to the left and right of the ripple peak. These

thresholds correspond to 3 and 2.5 times the standard deviation of the signal. These

thresholds were chosen by visual inspection as average ripple amplitude and SNR will vary

as a function of electrode location.

RESULTS

Adaptive AR Modeling of Ripple Frequency

Sharp wave-ripple ripple complexes were observed in local field potentials (LFPs)

recorded from the CAl subfield of the dorsal hippocampus while the rat was in a state of

immobility or slow wave sleep. An example of LFP from the data set can be found in

Figure 4.1(A). The estimation of instantaneous frequency (IFQ) was performed twice on

the original ripple signal, Figure 4.1, once using the KF and once using the AD-KF. The

resulting estimates of IFQ clearly show that the tracking of frequency is censored when the

KF is used and the ripple signal has low amplitude (Figure 4.1(D), black solid line). In

contrast, the estimate obtained from the AD-KF is dynamic throughout (uncensored) and

is consistent with the estimates from the KF when the amplitude of the ripple signal is

large. In this work, the uncensored FM estimate is used to characterize activity only

during ripple events. The censored FM signal is a biased estimate of frequency dynamics

and practically serves as an indicator of FM during epochs of large amplitude.
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Figure 4.1 : Example of ripples along with censored and uncensored frequency estimates. The

uncensored frequency estimates are derived from the AD-KF, while censored frequency estimates are

derived from the normal KF. (A) 500 ms trace of an LFP recording taken from stratum oriens of the

CA1 region of the dorsal hippocampus. (B) Bandpass filtered signal between 100-250 Hz retains high

frequency oscillations while removing sharp waves. (C) The ripple signal is normalized by its

amplitude envelope to produce a sinusoid that is only modulated in frequency. (D) The censored-

frequency estimate (solid black) given by the normal KF, and the uncensored-frequency estimate

(dashed-gray) given by the AD-KF. (E) The change in frequency or FM derived from the respective

frequency estimates in (D).
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Figure 4.2 : Selection of KF parameters. The grey circles represent empirical estimates of frequency

based on peaks in the ripple signal which has units of mV (top panel). The solid black line is the AD-

KF (non-censored) estimate of frequency based on 0-; = 0.1 and 0-: stated in the respective plots.
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The frequency modulation (FM) signal emphasizes the dynamics in IFQ (Figure 4.1(E)).

One advantage of using FM to characterize ripple activity is that the absolute value of the

IFQ is removed. Thus, FM within ripple events may reveal structure that might otherwise

be obscured by variability in ripple frequency in general. In Figure 4.1 (E), it is easy to see

a pulsatile pattern in the FM signal (gray dashed) given by the AD-KF. Considering the

power in the ripple band is very low relative to the total power of the raw LFP during times

of non-ripple activity, these frequency fluctuations are most likely due to a

"desynchronized state" or measurement noise. Therefore, the FM signal is only used when

it can be referenced to an operating regime that has been identified by physiological

measurements such as the LFP, MUA, and/or behavioral state.

The estimates of IFQ and FM are obtained by using a KF for AR(2) processes. The

parameters of the KF and AD-KF are selected by matching the IFQ estimates with the

empirical frequency estimates. The process is explained in detail in Chapter 5 and can be

clearly seen in Figure 4.2 for the AD-KF. With ca• held fixed at 0.1, the value for o,2 was

altered systematically. The empirical estimates of time-varying frequency are extremely

helpful in terms of guiding the parameter selection process. Large fluctuations in empirical

frequency are mostly likely due to noise and can be disregarded. Sharp changes in the AD-

KF estimates are indications of over-fitting. With these considerations, the most

appropriate values for a , lie between 0.002 and 0.008. We took the best value to be the

midpoint at Ci = 0.005.

The frequency content of the ripple is modeled by an AR(2) process. In Figure 4.3(B), we

can observe how the evolution of the AR process is driven by the ripple signal. Each line

in panel (B) is the shape of the power spectral density (PSD). The pole magnitude in

Figure 4.3(C), directly relates to sharpness of the peak in the PSD. Pole magnitudes near 1

represent oscillations while values near 0.5 represent noisy wideband activity.
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Figure 4.3 : Dynamics of AR parameters over a 1 second interval. (A) A representative snapshot of

activity in the ripple band (100-250Hz). (B) Dynamic PSD based on AD-KF estimates. There are 8

PSD's snapshots per every 10ms. (C) Pole magnitude informs us about the specificity of the

oscillation. Lower magnitude marks larger sidelobes in the PSD, and, therefore, segments of noisy

oscillations.
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Characterization of Ripple Events

Figure 4.4 (A,B,C) are distributions of ripple amplitude, ripple frequency, and ripple

frequency modulation. In panel (A), the amplitude distribution reflects a 0.05 mV cutoff

for ripple detection; the edge on the left is not sharp because ripple detection is based on

the Hilbert transform of the ripple signal while the amplitude is measured in the ripple

signal. In panel (B), the distribution for ripple frequency has short tails due to the band

limited nature of the ripple signal. In general, the range of frequency and FM do not differ

greatly between noise and ripple events. What is markedly different is the correlation

between frequency and FM Figure 4.4 (F,I). In panel (F), ripples clearly show a strong

negative correlation between frequency and FM (p = -0.1442, P < 1e-10).
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Figure 4.4 : Distribution of ripple characteristics. The threshold for ripple detection by amplitude was

set to 0.05 mV (high peaks). Amplitudes were measured as the largest peak in the ripple oscillation

event. The frequency of the ripple is defined to be the average frequency in a +/- lOms window about

the time of the maximum ripple peak. The frequency modulation is defined as the average FM in a +/­

10ms window about the time of the highest ripple peak. (D-F) 2-D histograms show the expected

covariation in amplitude and frequency parameters during ripple events. (G-I) 2-D histograms show

the expected covariation in amplitude and frequency parameters at random times. The correlation

between frequency and FM during ripple events is p = -0.1442 (p < 1e-ll), and during random

times p = 0.0005 (p = 0.96)
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Figure 4.5 : Classification of ripple events based on frequency information. (A) Distribution of ripple

frequency (8) Distribution of frequency modulation during ripple. (C) Classification of ripple events

based on positive and negative FM, and low and high ripple frequency: QH+ represents high

frequency and positive FM, QH- represents high frequency and negative FM, QL- represents low

frequency and negative FM, QL- represents low frequency and positive FM. (D) Number of events for

each class. In total, there are 2301 events. (E-H) Comparison of classes for each parameter

distribution.

5% 150% 195% QH+ QH- QL- QL+

Frequency (Hz) 150.7 1 158.3 1 150.9 1 158.9 1 123.5 I 138.6 I 119.1 1 136.6 1

179.9 179.5 148.8 148.7

FM (Hz/sec) 20.61250.51910.5 -1046 1-455.4 I -54 -816.31 -372.9 1 - 17.3 1226.91854.1

42.8

Amplitude (mV) 0.0510.0810.19 0.05 I0.09 I0.27 0.061 0.11 I0.23 0.05 I0.08 I0.21

Length (ms) 23.7167.4 1229.3 27.5 174.9 1231.0 26.2177.41318.3 25.0 178.6 1289.8

Table 4.1 : Statistics of ripple features for each classes. The values in each cell represent 50/0, 50%,

and 95% of the population
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In our inspection of ripple amplitude and frequency content, we found that ripples vary

greatly in terms of envelope shape, frequency, and frequency modulation. In order to

prevent fine time-scale structure from being averaged out, ripples were first grouped

according to frequency and FM. Figure 4.5 summarizes the procedure for classification

and the results of the clustering. Figure 4.5(A) is the distribution of ripple frequency; the

point of partitioning was chosen to be the mode of the distribution (-150Hz). Although the

distribution for FM is skewed to the left, the cutoff point was chosen to be 0 Hz/sec

because it leads to straightforward interpretation of results, Figure 4.5(B). Out of the 2034

ripple events that were found, -40% of the units fell into the low frequency, negative FM

category (QL-); -25% into the high frequency, negative FM category (QH-); -20% into

the low frequency, positive FM category; and -15% in the high frequency, positive FM

category. The frequency distribution for QH classes was significantly different from QL

classes as expected. The distribution for FM was different for all class pairs except for

QH+ and QL+ (bootstrap, p = 0.52). Amplitude distributions were similar for QL+ and

QH+, QH- and QL-, QH- and QL+. The distributions for ripple length were not

significantly different between any class pairs (Table 4.2).

Frequency FM Amplitude Length

QH- QL- QL+ QH- QL- QL+ QH- QL- QL+ QH- QL- QL+

QH+ 0.6 1E-11 1E-11 IE-11 1E-11 0.52 2.3E- 6E-4 0.3 0.6 0.25 0.25

2

QH- X IE-11 IE-11 X IE-7 1E-11 X 5.6E- 6E-2 X 0.18 0.33

2

QL- X X 4E-2 X X 1E-11 X X 3E-4 X X 0.68

Table 4.2 : Results from pair-wise hypothesis tests (bootstrap of sample mean, two tailed, a = 0.05).

Tests which show a significant difference in the two distributions have the p-value underlined.
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Figure 4.6 : Real data examples from each class. Each segment is 50ms long and is centered about the

largest peak of the ripple. For each ripple event, the ripple, uncensored frequency estimate,

uncensored FM estimate are shown. The number below each ripple trace is the instantaneous

frequency at the beginning of the trace. The horizontal line through the FM estimate is the zero FM

line.
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Figure 4.6 contains raw data examples of ripples from different classes. Inspection of

individual events in each class will reveal that some ripples may be better suited as part of

other classes. In regard to this point, we have investigated different parameters for

partitioning the events and found that no algorithm can use a low dimensional

representation of ripple events and still provide perfect classification. The use of

frequency and FM are best because the partition points are easily defined and the

interpretation is direct.
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Figure 4.7: Ripple triggered averages by class. (A) The average of the ripple signal (B) The average

of the amplitude envelope of the ripple which is measured by taking absolute value of the Hilbert

transformer output for each ripple event. (C) Average uncensored frequency. (D) Average censored

frequency. (E) Average uncensored frequency modulation. (F) Average censored frequency

modulation.
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Ripple triggered averages aligned to the large peak of the ripple oscillations revealed

distinct frequency profiles between classes. On average, FM occurred within a +/- 10ms

window centered around the ripple peak, Figure 4.7(C). At the point of the ripple peak, the

average values of frequency and FM are consistent with how the ripples were partitioned,

Figure 4.7(C).

Censored estimates of ripple frequency are less dynamic, however, as seen in Figure

4.7(D), it is still easy to distinguish between high and low frequency classes. Average

censored FM was clearly negative for the QL- and QH-, but was near zero for QL+ and

QH+, Figure 4.7(F). The differences in average censored and non-censored FM suggest

that the positive FM in QL+ and QH+ is likely to be caused by high frequency, low

amplitude noise at the tail of the ripple. Whether or not the activity at the tail of the ripple

is meaningful is addressed in the discussion.
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Figure 4.8: Real data examples of long ripples. A long ripple is defined here to be a ripple event that

is 100 ms or longer. For each event, the order of the traces from top to bottom are: A) raw LFP, B)

ripple signal (100-250Hz), C) censored frequency estimate, and D) censored FM estimate. The red

outline marks the ripple event and sets it apart from the larger data snapshot.
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Characterization of Long Ripples

Ripples are thought to be the reflection of highly synchronous activity occurring in a

window of 30ms-50ms (Chrobak & Buzsaki, 1996). Often, ripples of greater length can be

found. The distribution of ripple length reveals that 50% of the ripples are less than 75 ms

in duration, Figure 4.9(A). Of the other 50%, what do they really represent? We

considered two possibilities: 1) the long ripple is a unitary event which constitutes a longer

period of synchronous input from CA3 or 2) the long ripple is actually a chaining of

multiple shorter ripples that overlap in time.
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Figure 4.9 : Detection of ripple units in ripple bursts. (A) The distribution of ripple lengths as defined

by a 0.05 mV upper detection threshold and 0.04 mV lower threshold. (B) Distribution of ripple unit

count for all events (n=2034). (C) Correlation of ripple length and number of ripple units. On

average, each unit is 36 ms in duration.

In order to investigate this, we examined by eye ripple events that were found to be greater

than lOOms in duration. Some examples of these events are shown in Figure 4.8 along

with their censored frequency and FM estimates. Censored estimates are used in this

situation because they are less sensitive to noise than the uncensored estimates but still

exhibit consistent structure within ripple classes. In general, longer ripples tend to co­

occurred with multiple sharp waves associated activity in stratum oriens, however, a more

definite statement would use sharp wave activity from stratum radiatum (trace A).

Examples 12, 16, 19 of Figure 4.8 contain a single long SPW event or no SPW event at all.
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Ripple triggered averages in Figure 4.7(D) reveal a unimodal frequency profile and

unimodal FM profile that is consistent with a strong pulse like input (off-on-off) where

during the ON-period, the timing of inter-spike intervals is consistent with spike adaptation

(Dzhala & Staley, 2004).

Based on this observation, sharp changes in frequency during long ripples suggest the

onset of a new ripple unit. Although all the events in Figure 4.8 fall into the long ripple

category, not all of the events show clear multi-modal frequency dynamics. This could be

due to the fact that the censored frequency estimate has slow frequency tracking when the

amplitude of the ripple is low. Another possibility is that unitary ripple events can last for

longer periods than what has been reported.

We used the structure of averaged ripple events to form a heuristic algorithm for estimating

the number of ripple units in a long ripple. The algorithm found the minima (troughs) of

the absolute value of the censored FM signal and required that the absolute value of the

minima be less than 100 Hz/sec. If no trough meeting that criterion was found in the time

segment defining the ripple, a single ripple unit was assumed. Otherwise, the estimated

number of ripple units was equal to the number of troughs. The relationship between

ripple length and number of ripple units is shown as a scatter plot in Figure 4.9(C) for all

ripple events (n=2034). A linear regression analysis revealed that on average, each ripple

unit is 36 ms in duration. This heuristic may not be robust enough to accurately state the

number of units for each ripple event, but may serve well as a tool for characterizing the

relationship between "ripple bursts" and other measures on a population level.
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Ripple Detection using combined amplitude and frequency information

A prerequisite problem in the analysis of ripple activity is deciding when a ripple event

begins and ends. The most common approach is to rectify the 100-250Hz band-limited

LFP and set an upper and lower amplitude threshold. The upper threshold is used to locate

the ripple itself while the lower threshold is used to determine the extent of the ripple in

time. The first difficulty with this approach is there is nd systematic method for

determining the threshold. The second difficulty is a single threshold (upper or lower) can

be optimal in a global sense but may not be optimal for shorter periods.

One way to address these issues is to use "more" information about ripple structure to

detect ripples. In addition to improved detection of ripple boundaries, more information

would allow for better separation of true ripple events from noise events. We investigated

this possibility by using the censored FM signal as an indicator signal for ripple activity.

The censored FM signal is greatest in absolute value when both the amplitude of the ripple

is highest and the change in frequency during the ripple is highest. Mid-range values of

censored FM would imply large FM in combination with low amplitude or high amplitude

in combination with low FM. Figure 4.10 provides an example of how amplitude

information (AI) alone compares with amplitude+frequency information (AFI).
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Figure 4.10 : Comparison of ripple detection methods: Amplitude information (AI) vs. Amplitude +

Frequency information (AFI). The top-most trace is the raw LFP and the peak of the sharp wave is

marked as 0.76 mV. The ripple signal has been magnified 3X relative to the LFP trace. The ripple

envelope can be used for ripple detection. In this schematic, any event that is above the dashed line

would be considered to be a ripple event. In the bottom-most trace, the absolute value of the censored

FM signal can be used to indicate when a ripple has occurred. What is not shown is the lower

thresholds for determining the length of the ripple; for AI it is 0.4mV and AFI it is 200 Hz/sec.
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Figure 4.11 : Performance of frequency based ripple detection. Events found by amplitude threshold

are considered to be the "true" set of events. The events proposed by FM threshold are tested to see if

they overlap with true events. The lower threshold for determining the start and end of the ripple was

0.4mv for AI and 200 Hz/sec for AFI. (A) The success rate is the number of proposed events that

match true events divided by the total number of events. (B) As the threshold is lowered, the number

of proposed events increases. (C) The match rate is the number of true events accounted for by

proposed events divided by the total number of true events. (D) Distribution of amplitude for ripple

events found by setting an amplitude threshold at 0.05 mV. (E) Distribution of proposed event

amplitudes found by setting a threshold at 350 Hz/second. (F) The amplitude distribution for true

events that were not accounted for by proposed events. (G) The amplitude distribution of proposed

events that did not match any true events.
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Figure 4.12: Examples of ripples from mutually exclusive categories. (Left) Ripple events

corresponding to Panel (F) of Figure 4.11. (Right) Ripple events corresponding to Panel (G) of Figure

4.11. Traces of ripple band activity are magnified 3X relative to raw LFP activity. The order of the

traces for each example is raw LFP, ripple activity in the 100-250 Hz band, and censored FM. The

horizontal line marks the point of zero FM.
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The performance of the AFI over Al was measured by taking the events detected by AI to

be "true" for the purposes of comparison. Events detected by systematically lowering the

threshold for AFI (proposed) were compared against the AI events (true); if a proposed

event overlapped with a true event by at least 50%, the proposed event was considered to

be successful in identifying a true event. Two evaluation metrics were reported from this

analysis: 1) success rate and 2) match rate. The success rate measured the number of

proposed events matching true events divided by the total number of true events. The

match rate was taken to be the number of true events accounted for by proposed events

divided by the total number of true events. Figure 4.11 contains a summary of this

analysis. At a threshold of approximately 650 Hz/sec the success rate begins to drop

dramatically. At a 1500 Hz/sec threshold, the match rate begins to rise in an exponential

fashion and at 650 Hz/sec, approximately 40% of true ripples were detected by using AFI.

The ripple amplitude distribution of AFI detected events was more Gaussian distributed

than Al detected events Figure 4. 11(D,E).

Lets use the results when the AFI threshold was set to 350 Hz/sec as an example for

discussion. Of the small number of AFI events that did not match any true events, what

could they possibly represent? And of the 60% of true events that were not picked by AFI

detection, why were they not detected by AFI? Figure 4.12 contains examples from the

mutually exclusive populations. The ripples of Figure 4.12(G), in AFI and not AI, tended

to be low amplitude events with large frequency modulation that curiously tended to occur

at the onset of ripples but did not encompass the whole ripple itself.

The ripples of Figure 4.12(F), in AF and not AFI, represented medium to high amplitude

ripples with below threshold FM. In Figure 4.13, the FM distribution of only the QH+

class was altered significantly. In contrast, the amplitude distributions for all the classes

were altered except for the QH+ class. The distribution of ripple length is heavily

influenced by the ripple detection signal and threshold. Therefore, the differences in ripple

length are taken to be an artifact of the detection method. In Figure 4.7(F), the ripple-

triggered average of censored-FM for QH+ and QL+ revealed that the censored-FM was

very low in magnitude (Hz/sec) relative to QH- and QL-. Therefore, one would expect that
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the events of QH+ and QL+ would not likely be picked up by AFI detection. Figure

4.13(A,C) reveals a 53.5% and 74.1 % change in QH+ and QL+ population, while the

change in QH- and QL- populations where 49.90/0 and 55.6%, respectively. This is also

consistent with the fact that QH+ and QL+ have lower absolute values of FM relative to

QH- and QL- classes (Table 4.1 and Table 4.2).

These analyses demonstrate that ripple detection based on amplitude and frequency

information preferentially locates events with high amplitude and frequency modulation;

and that a larger percentage of ripple events from the QH+ and QL+ classes are filtered

out.
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Figure 4.13 : Statistical analysis of ripple detection. (A) Classification of amplitude detected ripple

events. (B) Distribution of events per class. (C) Classification of frequency detected ripple events. (D)

Distribution of events per class. (E-H) Box-and-whisker plots for different parameters and both

detection methods. Distribution of frequency was only different for QH+ class (p < 0.005).

Distribution of FM was only different for QH+ class (p < 0.005). Distribution of amplitude was

different for QH- (p < 0.001), QL- (p < le-7), and QL+ (p < 0.001). Distribution of event lengths were

different for all classes (p < le-l0).
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Discussion

Forward and reverse replay during ripples are evidence that the temporal relationship of

behaviorally relevant spike sequences are preserved in the hippocampus with high fidelity

(Foster & Wilson, 2006). The mechanisms for replay are not well understood and are

currently under investigation. This fine timescale analysis of ripple frequency dynamics

provides a foundation for exploring questions that would otherwise be intractable. Before

this technique, ripples were characterized in terms of amplitude and average frequency

(Csicsvari et al., 1999). Based on the analysis in this chapter, it is now clear that frequency

is a dynamic quantity within ripple events; both frequency and frequency modulation can

vary greatly. Nevertheless, ripple frequency dynamics are stereotypic and the population

of ripple events can be accurately described using a small number of ripple definitions or

ripple classes.

As the analyses of ripples become more complex there will be a need for classification

schemes that capture the significance of ripple-related features. Much like the

classification of brain rhythms, having categories in which neural activity can be described

allows for consistent comparisons to be made across different analyses and data sets. After

inspecting thousands of ripples events, we concluded that a sufficiently robust method for

defining ripple classes could use average frequency and average FM information for

separation. Amplitude was not used as a feature for classification because LFP properties

are generally sensitive to position in the hippocampus as well as electrode properties.

Using the two features based on frequency, four ripple classes were defined (Figure 4.5).

Visual inspection of ripple events in each class revealed that the classification scheme

successfully grouped events that were qualitatively similar. These classes may represent

distinct physiological processes and, at the least, are valuable as a framework for

systematically exploring the function of ripples and discussing results.

Ripple classes are most meaningful when they reflect a distinct cellular and/or network

mechanism of brain function. In vitro investigations of epileptiform activity in the

hippocampal slice have revealed important contributions from receptor dynamics and
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population synchrony in the generation of fast ripple oscillations in the hippocampus

(Dzhala & Staley, 2004; Foffani et al., 2007; Spampanato & Mody, 2007). The activation

of K+ channels and ionotropic glutamate receptors were found to be critical for maintaining

accurate spike timing and forming coherent field recorded fast ripples (Dzhala & Staley,

2004). Foffani et. al. (2007) concluded that fast ripple generation (200-600 Hz) is likely

due to the desynchronization of single unit spike timing leading to a weak correlation in

population activity at relatively shorter intervals; this suggests normal (non-epileptic)

ripples are likely the result of summed activity from units that have reliable spike timing.

Spampanato & Mody (2007) examined the activity of oriens lacunosum-moleculare

interneurons (O-LM) and radiatum lacunosum-moleculare (R-LM) interneurons during fast

ripples and found that O-LM interneurons were inhibited during ripples and R-LM

interneurons were inhibited at the center of the ripples but not at the beginning and end.;

their observation of O-LM cell inhibition during ripple events was consistent with in vivo

observations of O-LM cell activity during ripple events (Klausberger et al., 2003).

Klausberger and Somogyi obtained in vivo recordings from different interneuron types in

the CA 1 region of the anesthetized rat and report that during a ripple event, pyramidal and

parvalbumin positive basket cells are most likely to fire at the middle of the ripple event;

axo-axonic cells are most likely to fire during the first half of the ripple but not the second;

bistratisfied cells are likely to fire throughout the ripple but have a preference for the

beginning of the ripple event; and O-LM cells are most likely to fire at the beginning of the

ripple, can fire at the end of the ripple, but have zero probability of firing near the peak of

the ripple (Klausberger et al., 2003; Somogyi & Klausberger, 2005). The diversity of

interneurons in terms of spatial domain and temporal firing patterns suggests that

inhibition in the hippocampus provides structure and synchrony in a ripple-stage dependent

manner. The dynamics of IFQ and FM during ripples may, therefore, be explained using

the relative participation of specific interneuron types and pyramidal cells during the start,

middle, and end of ripple.

The majority of ripple events contained negative FM over positive FM, therefore, most

ripples ended at a lower frequency relative to the frequency at the ripple start. Data from
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in vitro and in vivo recordings confirm that O-LM and axo-axonic cells are most active at

the early stage of each ripple event while pyramidal cells are most active at the center of

the ripple event (Klausberger et al., 2003; Maier et al., 2003; Behrens et al., 2005;

Spampanato & Mody, 2007). Instantaneous frequency at the start of the ripple would

therefore reflect the summed activity of O-LM and other interneurons. Frequency

modulation during the ripple is most likely determined by synchronous spike frequency

adaptation of individual units in response to both intrinsic receptor dynamics and network

properties (Johnston & Wu, 1995). A characteristic of pyramidal cell bursting is with each

successive spike the inter-spike interval is more variable than the first and towards the end

of the burst the desynchronization of population activity emerges. It follows that the tail of

the ripple may likely represent a decrease in synchrony between pyramidal cells and an

increase in activity of axo-axonic and O-LM interneurons. The decrease in frequency

during the middle of the ripple is most likely due to accommodation of single units as a

population (Dzhala & Staley, 2004). Ripple events with positive FM have lower amplitude

than ripple events with negative FM but have the same instantaneous frequency

distribution (Figure 4.5). Examination of FM+ events, Figure 4.6, reveals a wide variety of

possible subclasses. For example, some events resemble short gamma-like oscillations

with steady amplitude and very little FM. Other events with positive FM resemble noise-

like activity with no clear ripple structure. Based on the preceding argument, low or

positive FM may result from input that is strong enough to elicit population synchrony but

not strong enough to engage the same mechanisms for sharp-wave ripple complexes

(Dzhala & Staley, 2004).

The classification scheme presented here is practical and directly interpretable. Other

classification schemes might serve better depending on the question at hand. For example,

the temporal relationship between frequency modulation and amplitude modulation could

reflect the timing of inputs into the hippocampus or reflect when different circuits are

engaged in the 3-stage (start, middle, end) ripple phenomena. In such a scenario, a feature

that could be used to classify events is the difference between time of maximum FM and

time of maximum amplitude. In addition, classification of ripples based on absolute FM
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may serve an important purpose as well. Frequency modulation, whether positive or

negative, may reflect an enhanced level of excitability that is a direct consequence of

glutamatergic inputs to the hippocampus. Partitioning ripple events in this manner, may

allow the investigator to examine only the events that reflect strong input and circuit

dynamics within a particular range of timing.

We will now discuss the characterization of the "long ripple," a phenomena that is highly

relevant to hippocampal circuit dynamics but has not been characterized in the literature.

A long ripple is defined here as an event that is longer than the maximum expected length

of a ripple ( > 100ms). By extrapolating the expected frequency dynamics for short ripple

events, we were able to show that long ripples are most likely caused by the chaining of

individual "ripple units" in time. The censored frequency estimate showed unimodal

frequency dynamics within a ripple event (one positive or negative peak over time). For

long ripples, counting the number of peaks in the censored frequency signal yielded an

estimate of the number of ripple units in the ripple. A linear regression population analysis

of all detected ripple events revealed the expected length of a ripple unit to be

approximately 36 ms which is shorter than the expected length of 50-100ms (Chrobak &

Buzsaki, 1996). This difference may be caused by a combination of factors relating to

ripple detection and ripple unit detection. If the lower threshold which determines the

extent of the ripple in time is too high, the average length of the ripple will be smaller. In

this analysis, a conservative lower threshold of 0.04mV could likely explain the result. In

addition, the ripple unit detection procedure could be detecting false positives, which

would increase the number estimated units per ripple event.

In order to investigate the possibility that IFQ and FM variation during ripple events may

reflect different physiological processes, the process of ripple detection may be more

useful if the process where more selective. By constraining the ripple detection problem

using both amplitude and frequency content of ripples, the measure of success would

therefore be weighted more heavily on characteristics of the event population. The

detection algorithm presented in this chapter makes use of the censored estimate of

instantaneous frequency which inherently contains both ripple amplitude and ripple
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frequency information. The lowest value for threshold that was tested (200 Hz/sec)

accounted for 70% of the events found by amplitude detection alone. The proposed

method of detection was shown to preferentially reject ripples of low frequency and

positive frequency modulation from all classes. Selectivity was non-uniform across

classes. For example, events in the QH+ class were detected based on high FM (Figure

4.13(E-H)). Proposed events based on amplitude and frequency information that did not

always match amplitude detected events tended to occur at the onset of ripple events in a

region of low amplitude and high frequency modulation. At this time, it is unclear whether

or not these events are physiologically meaningful. Therefore, when performing AFI

based ripple detection the most optimal choice for choosing the detection threshold is to

choose it based on a 100% match rate against AI detection (Figure 4.11). A comparison of

amplitude and FM distributions between AI and AFI based ripple classes revealed that AFI

based detection preferentially selected ripples of large amplitude and/or large frequency

modulation (Figure 4.13).

In conclusion, the advancements made in this chapter directly address current challenges in

the analysis of ripple activity. The adaptive frequency estimator(s) offers the opportunity

to see structure in ripples that would otherwise be overlooked with current methodologies

(Csicsvari et al., 1999; Sirota et al., 2003; Gillis et al., 2005). Ripples can now be

classified using information that is independent of ripple amplitude, which can vary

depending on electrode properties and position, to provide a vocabulary for comparing

results between analyses, subjects, and even different studies. The variation in ripple

frequency and frequency modulation suggest that the CA regions of the hippocampus are

flexible in their response to synchronous activity, (Figure 4.4). Whether or not the

variability in ripple properties is directly related to the nature of the CA1 input or a

consequence of some intrinsic state variable is to be determined. The fact that frequency

can shift greatly within a ripple event suggests that the ripple is a unit of activity that may

be parsed even further. On one hand, long ripples may be decomposed into overlapping

ripple units. On the other hand, ripple activity on a cycle-to-cycle basis could be driven on

a cycle-to-cycle basis rather than being driven by a continuous burst. The quality of
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forward and reverse replay demonstrates that the fidelity of information storage is high in

the hippocampus; hence, each ripple could be as rich in information as any other window

in time. These relationships between behavioral experience, spike history, and ripple

generation are complex and not well understood, however, there is now a better analytical

framework for tackling these questions.
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The primary objectives of the thesis was two fold: 1) to better understand the relative

contributions of HPC subregions (CA1, CA3, and dentate gyrus) in the process of

encoding and consolidation of episodic and spatial memory and 2) to develop, implement,

and apply adaptive filtering techniques which have the ability to operate on arbitrary

timescales, in order to characterize the dynamic structure of neural data occurring on the

true timescale of hippocampal memory processing.

We started by obtaining local field potential recordings and ensemble single-unit

recordings from all three subregions of the HPC in vivo during spatial and episodic

experience. We were able to collect ensemble single-units from CAl, CA3, and DG

simultaneously from two rats; and in another two rats, we recorded from either CAl only

or dentate gyrus only. In addition, local field potential recordings were obtained from all

the principal cell layers of the respective subregions, however, only recordings from CAl

were included in the analyses presented in the thesis. These data were recorded during

food reward foraging on a linear track that expanded in length over the course of the

experiment. By comparing activity across old and new track segments, we were able to

make conclusions about hippocampal computations in relatively "new" versus relatively

"old" spatial locations. Moreover, by examining hippocampal activity in a fixed location,

but over time, we were able to make conclusions about hippocampal computations as a

function of general experience.

The first step in performing these comparisons was to isolate spike trains representing

single-unit activity. We then used an adaptive point process filter for tracking the shape

change in place fields over time with sub-second resolution. In contrast to other studies

that use mean rate over a large time window to characterize neuronal activity, we were able

to extract the temporal evolution of maximum rate as a function of track location and use

that to describe the neuron. This allowed for more precise characterization of rate

modulation as a function of experience. After many attempts to utilize the maximum rate

dynamics to find structure in the data, we found that the best way to represent neuron rate

dynamics was to perform linear regressions on the maximum rate signal as a function of
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experiment phase and track section. By pooling the regression slopes according to

hippocampal recording location, location on the track, phase of the experiment, and

running direction, we had essentially computed a compact feature set representing

ensemble hippocampal rate modulation over the whole experiment. We then proceeded by

performing standard statistical comparisons of the ensemble rate modulations to quantify

hippocampal subregion specific differences.

In summary, our main finding in Chapter 2 was that on the initial exposure to a familiar

environment, receptive fields in CA3 exhibited a greater magnitude in rate modulation

over those of CAl and DG in the home location on track, but over time these differences in

rate modulation converged to similar non-zero values for all three subregions. The

pronounced rate modulation in CA3 may be associated to the anatomy of the CA3

recurrent collaterals as well as the converging input from dentate gyrus and entorhinal

cortex, and suggests an important role for CA3 in the rapid encoding of context. The

convergence in subregion specific rate modulation suggests a constitutively active process

of pattern separation that involves all three subregions of HPC. We hypothesize that these

ongoing rate updates may reflect an automatic "time integration" process that may work in

parallel with the path integration process to provide unique hippocampal outputs over time.

In Chapters 3 and 4, we focus on the analysis of local field potentials. At first, we were

interested in using the local field potentials between subregions to make a statement about

causality. In the signal processing literature, much focus is currently given to the

development of analytical tools that can use local field potentials to infer the direction of

information flow. We implemented and applied many of these methods and found that

almost all of the causality measures we computed were too difficult to interpret. In the

end, we concluded that these measures required significantly more time to develop than we

were willing to invest, so we decided to take the work in another direction. Fortunately,

we had focused on dynamic estimation of causality and therefore were left with analytic

tools for tracking the frequency content in local field potentials on arbitrarily small

timescales. Interestingly, when we searched the systems neuroscience literature we found
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that there were virtually no reports on the quantification and interpretation of frequency

modulation of local field potentials.

Chapter 3 of the thesis contains the derivation and some example applications of a Kalman

filter for adaptively estimating the parameters of an AR model. As we developed the

adaptive filter, we found that previously described methods based on autoregressive filters

did not make accurate estimates of instantaneous frequency. Upon investigating the

structure of the autoregressive model, we found two issues that led to erroneous

measurements. First, large fluctuations in the oscillation amplitude can directly alter the

adaptation speed of the Kalman filter, thereby, leading to biased estimates of instantaneous

frequency and frequency modulation. Second, we found that having multiple poles in an

autoregressive model can lead to interference when placing the poles. We addressed both

of these issues by restricting the bandwidth of the signal, limiting the autoregressive model

order to 2, and amplitude demodulating the signal prior to frequency estimation. Another

significant advancement was the introduction of the frequency information criterion (OIC),

which is a data driven criterion for choosing Kalman filter parameters. Together, we have

developed a simple, robust, and semi-automatic approach to fine-timescale characterization

of brain rhythms. We demonstrate the use and effectiveness of the algorithm by analyzing

the theta rhythm during a linear track task. With our algorithm, we found consistent

modulation of theta amplitude and frequency as a function of task phase consistent with

previously published reports.

With the ability to measure instantaneous frequency and with the goal of understanding the

replay phenomena (which tends to co-occur with ripple oscillations), we took the

opportunity to develop a framework for capturing as much frequency information from

each ripple event as possible. We found that ripple frequency and frequency modulation

varied greatly and that ripple events could be classified using their average frequency and

average frequency modulation. With the intent to compare ripple statistics over different

experimental sessions, we developed a ripple classification scheme that would allow for

consistent comparisons to be made across data sets. We also attempted to formalize the

procedure for ripple detection since there is currently no standard procedure. Our attempt
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combined both amplitude and frequency information through the Kalman estimate of

frequency, and resulted in the ability to detect 40%-60% of the ripples found by amplitude

thresholding alone. This marked decrease is not taken to be a negative result, but rather an

indication that our detection mechanism is selective to events with high frequency

modulation and/or high amplitude modulation. In addition, we analyzed "long ripples"

with the goal of understanding there composition. Using the average structure for

individual ripple events, we found that long ripple events were likely a result of multiple

ripples occurring in close temporal proximity.

In summary, our goal to better understand the nature of episodic information encoding and

consolidation in the hippocampus was attained in a number of ways. We successfully

executed behavioral experiments where in vivo recordings of LFP and ensemble single

units from CA1, CA3, and DG were recorded. With our adaptive point process filter, we

were able to measure subregion specific ensemble rate modulation as a function of

experience in time and in space on a continuous basis. We found that even in a very

familiar environment, rate modulation was initially high in all subregions, but especially

high in CA3. Towards the end of the experiment, the rate modulation decreased

significantly from the initial value and the rate modulation between the subregions

converged. These results suggest a unique role for CA3 in the initial stages of context

familiarization and that the subregions of the HPC act coherently during constitutive

episodic encoding in a familiarized environment. We developed a general, easy-to-

operate, filter for estimating instantaneous frequency and frequency modulation of brain

rhythms. We applied this to the problem of understanding mechanisms for memory

consolidation via replay associated events. More specifically, we developed and tested a

framework for quantifying fine timescale frequency structure in ripple events. This

framework is novel and advances our ability to characterize/classify/detect ripple events,

and make comparisons across experiments.
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