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Abstract

In this thesis, I describe demonstration of various quantum information processing
tasks using single-photon two-qubit (SPTQ) quantum logic. As an initial state of
those tasks, I used various entangled photon pairs, and I describe development of a
polarization entangled photon pair source based on a collinear spontaneous parametric
down conversion (SPDC) process within a bidirectionally pumped periodically-poled
potassium titanyl phosphate (PPKTP) crystal embedded in a polarization Sagnac in-
terferometer and generation of hyper-entangled photon pairs that are simultaneously
entangled in the polarization and momentum degrees of freedom. I also introduce
deterministic quantum gates based on SPTQ quantum logic where the polarization
and momentum degrees of freedom in a single photon are used as two qubits. By
applying SPTQ quantum logic to different entangled states, I demonstrate several
quantum information tasks such as transferring entanglement from the momentum
qubits to the polarization qubits, SPTQ-based complete polarization Bell state mea-
surements, entanglement distillation (Schmidt projection), and a physical simulation
of the entangling-probe attack on the Bennett-Brassard 1984 (BB84) quantum key
distribution (QKD).
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.Chapter 1

Introduction

In quantum information processing (QIP), information is stored in quantum mechan-

ical systems and processed through the interactions between the quantum systems

following the laws of quantum mechanics. There are several candidates for QIP

systems, including photons, neutral atoms, ions, nuclear spins, quantum dots, and

Josephson junctions, and each quantum system has advantages and disadvantages as

a platform to perform QIP tasks. Among these quantum systems, this thesis presents

demonstration of QIP tasks using a photonic system.

The photon is an ideal candidate for exchanging qubits between remote sites

thanks to its long coherence time, and therefore it has been considered as an essential

quantum system for transferring the quantum state in a quantum network [1], estab-

lishing entanglement over a long distance [2, 3], and quantum key distribution (QKD)

[4]. The photon is also considered as a platform to implement quantum logic, but

deterministic quantum operations between two photons generally require strong non-

linearity [5, 6] or efficient coupling between the photon and atomic systems [7], both of

which are of current research interest. To avoid these difficult requirements, in 2001,

Knill et al. [8] showed that efficient quantum computation can be implemented with

linear optics using single photons and photon detection, and similar schemes have

followed [9, 10, 11]. However, all of these schemes still require ideal single-photon

sources and highly-efficient single-photon detectors, which are currently under devel-

opment by many other groups. Therefore to demonstrate various QIP tasks using



currently available technology, we take a different approach of using the multiple de-

grees of freedom in a single photon as multiple qubits [12, 13, 14]. This multiple-qubit

approach enables us to implement deterministic quantum logic with a relatively sim-

ple setup compared to other optical quantum logic approaches, but it is not scalable

quantum logic due to the increased complexity of the optical setup as the number of

qubits increases. This limitation is acceptable if the photons are entangled in some

degrees of freedom and if only few-qubit operations are of interest in small-scale QIP

tasks.

In our group, in addition to the usual polarization degree of freedom as one type

of qubit (P qubit), we use two separate momentum modes of the same photon (or

two parallel paths after collimation) to represent 10) and 11) of another qubit (M

qubit). This type of identification allows us to develop reliable single-photon two-

qubit (SPTQ) quantum logic such as single-qubit quantum gates and controlled-NOT

(CNOT) gates. Previous implementations of SPTQ quantum logic [12, 13, 14, 15, 16]

separate the two paths of the M qubit into different directions and combine those

two paths whenever the quantum logic operation is necessary. Such implementations

are not robust because the apparatus is essentially a large and complex interferom-

eter. The necessary coherence for these paths implies that they must be stabilized,

and therefore these interferometric methods are less attractive from a practical stand-

point. In contrast, our group collimates two non-parallel momentum vectors into two

parallel paths so that their path lengths are identical as they propagate in space. This

choice of momentum qubit also allows compact experimental setups and it is com-

patible with the phase-stable polarization-controlled NOT (P-CNOT) gate developed

by Fiorentino and Wong [17]. This P-CNOT is essential in building other phase-stable

SPTQ quantum gates used in most of the experiments in this thesis.

To demonstrate interesting QIP tasks with SPTQ quantum logic beyond using

a single photon, I first developed a high-quality high-flux polarization photon pair

source that generates a singlet state

[I-)AB = (lH)AIV)B - (V)A|H)s)/V2, (1.1)



where H (V) represents horizontal (vertical) polarization, and the subscript A (B)

means the photon is located at Alice's (Bob's) side. Entangled state was originally

generated using several different physical systems [18, 19, 201 to test Bell's inequality

[21] that can resolve the Einstein, Podolsky, and Rosen (EPR) paradox [22]. Later

entangled state also turned out to be an important resource in QIP, and many research

groups have tried to find an efficient way to generate the high-quality entangled state.

In 1988, Shih and Alley [23] used photon pairs generated from spontaneous para-

metric downconversion (SPDC) to test Bell's inequality, but the output state was a

product state, and they had to post-select entangled pairs. In 1995, Kwiat et al. [24]

generated truly polarization entangled photon pairs by collecting the photons at the

intersection of two emission cones from SPDC in a single P-barium borate (BBO)

nonlinear crystal with type-II phase-matching and obtained a normalized flux of 0.07

pairs/s per mW of pump power in 1-nm bandwidth with a high degree of entangle-

ment. Even though this method is still being used by some of the groups due to

its relatively simple setup, this method had some limitations in generating high-flux

output mainly due to the non-collinear phase-matching condition of the BBO crystal

and the need to use several types of filtering to make the two terms in Eq. (1.1) indis-

tinguishable in their spatial, spectral, and temporal modes. To avoid some of these

problems, Kwiat et al. [25] combined two orthogonally-polarized output modes from

two cascaded BBO crystals with type-I phase-matching, but the maximum output

flux is still limited by the non-collinear output modes. To overcome these limitations,

our group took a different approach. Kuklewicz et al. [26] used a periodically poled

KTiOPO4 (PPKTP) crystal in a collinear phase-matched configuration that is a well-

known technique in the nonlinear optics to increase the output flux. The collinear

geometry increased the output flux, but this setup required post-selection and the

same types of filtering as the single BBO setup.

In order to make the output indistinguishable in all other modes except the po-

larization, Fiorentino et al. [27] generated the two terms in Eq. (1.1) by coherently

pumping a single PPKTP crystal from two opposite directions and combined the two

output modes with a Mach-Zehnder interferometer (MZI). This setup increased the



output flux by removing the requirements for spatial, spectral, and temporal filtering,

but the fidelity of the output was limited mainly due to the need for phase stabilization

and the large size of the interferometer. To solve these problems, a new phase-stable

configuration was devised. I embedded the bidirectionally pumped PPKTP inside a

polarization Sagnac interferometer (PSI), and its compact size and excellent phase

stability allowed us to obtain a normalized flux of 700 pairs/s/mW/nm with quantum

interference visibility of 99.45% making it one of the best bulk-crystal entanglement

sources. The development of this system is described in Chapter 2 and published in

Ref. [28, 29].

As a first application of SPTQ quantum logic to entangled photon pairs, Marco

Fiorentino and I demonstrated the transfer of entanglement from the momentum

qubits to the polarization qubits of the same photon pair. Momentum entangled

photon pairs were generated by collecting the non-collinear output modes from SPDC

process, which was first demonstrated by Rarity and Tapster [30]. The entanglement

stored in the momentum qubits was transferred to the polarization qubits by using a

quantum SWAP gate constructed by the P-CNOT and momentum-controlled NOT (M-

CNOT) gates. At the output, we verified that the polarization qubits were entangled,

confirming the coherent transfer of the quantum state between two types of qubits.

The experimental results are presented in Chapter 3 and published in Ref. [31].

SPTQ quantum logic is well suited for characterizing hyper-entangled photon

pairs. Hyper-entangled state refers to a pair of photons which are entangled in more

than one degree of freedom simultaneously [32]. In 2005, Cinelli et al. [15, 34] and

Yang et al. [16] generated a hyper-entangled state which is entangled in the po-

larization and momentum degrees of freedom, and Barreiro et al. [33] generated a

hyper-entangled state which is entangled in polarization, spatial mode, and energy-

time. However, all of these hyper-entangled sources are based on single or double

BBO systems with non-collinear output modes and therefore those systems have re-

striction in terms of available output spatial mode. In our experiment, to generate

hyper-entangled photon pairs which are entangled in polarization and momentum si-

multaneously, I utilized the polarization entangled photon pair source introduced in



Chapter 2 and collected non-collinear output modes similar to the momentum entan-

gled photon pair source used in Chapter 3. In our system, I picked two near-collinear

output modes, which is an ideal input mode for the parallel-beam SPTQ quantum

logic gates. To demonstrate that the output photon pairs are hyper-entangled, I per-

formed SPTQ-based complete polarization Bell state measurement that was originally

proposed by Walborn et al. [35] to distinguish four different polarization Bell states

deterministically with the help of momentum entanglement. SPTQ-based complete

polarization Bell state measurement was implemented by Schuck et al. [36] for the

photon pairs that are entangled in polarization and energy-time, and by Barbieri

et al. [37] for the pairs entangled in polarization and momentum. In contrast, our

hyper-entanglement source and SPTQ quantum logic are based on the parallel-beam

geometry that is different from other constructions. Our measurements show a much

higher accuracy in identifying the four different polarization Bell states, suggesting

that we had better entanglement quality in our hyper-entangled state and higher

reliability in our SPTQ quantum logic. The experimental setup and measurement

results are described in Chapter 4.

With SPTQ quantum logic and the hyper-entangled state, I also experimentally

demonstrated Schmidt projection protocol proposed by Bennett et al. [38]. There

are several methods to extract maximally entangled states out of partially entangled

states [39, 40, 41, 42, 43, 44, 45, 46]. Among these methods, Schmidt projection has

an interesting property that its distillation efficiency can approach unity when it is

applied to infinite number of input pairs. Even with such an advantage, Schmidt

projection was avoided in the experimental implementation because it requires a col-

lective measurement on multiple qubits. Implementation of a collective measurement

is generally difficult, but for the case of hyper-entangled state, the measurement is

simple, thus allowing us to implement the Schmidt projection on the hyper-entangled

state using SPTQ quantum logic. In this experiment, one of the interesting challenges

was to control the degree of momentum entanglement, and this problem was partially

addressed by Walborn et al. [59] by moving the double aperture masks at the output

of the SPDC source. However this method is not an efficient solution because it is



necessary to realign the experimental setup whenever the double aperture mask is

moved. Our solution was to fix the location of the double aperture mask at an asym-

metric position, ahd to utilize the fact that the emission angle of SPDC process can

be controlled by the temperature of the PPKTP crystal. In this experiment, I was

able to distill the maximally entangled states independent of the initial state, and the

efficiency of the distillation agreed with the expected value, thus demonstrating the

Schmidt projection protocl for the first time. The details of this experiment and the

measurement results are described in Chapter 5.

Finally, we have physically simulated the entangling-probe attack on Bennett and

Brassard 1984 (BB84) QKD protocol [4] using SPTQ quantum logic and polarization-

entangled photon pair source. The BB84 protocol is the first QKD protocol, and due

to its relatively simple configuration, it has been implemented by many groups in

free-space [47, 48, 49, 50] as well as in fiber [51, 52, 53]. In BB84 protocol, one of the

fundamental question is how much information the eavesdropper (Eve) can gain un-

der ideal BB84 operating conditions, and a series of analyses by Fuchs and Peres [54],

Slutsky et al. [55], and Brandt [56] showed that the most powerful individual-photon

attack can be accomplished with a CNOT gate that entangles the polarization qubit

of the BB84 photon with a probe qubit provided by Eve. Shapiro and Wong [57] pro-

posed that this entangling-probe attack can be implemented in a proof-of-principle

experiment using single-photon two-qubit (SPTQ) quantum logic. Following the sug-

gestion in this proposal, I implemented the entangling-probe attack on BB84 and

confirmed that Eve can obtain nearly the expected amount of information about the

secret key for a given level of induced errors between Alice and Bob. The results

are noteworthy because they include realistic amounts of error from the optical com-

ponents in the setup, suggesting that SPTQ-based physical simulation is a useful

technique. This experiment is described in Chapter 6 and has been published in Ref.

[58].



Organization

This thesis is organized as follows. In Chapter 2, development of polarization en-

tangled photon pair source based on a PSI is described. This chapter starts with a

review of SPDC properties, and describes the main problems of previous polarization

entanglement sources, then explains the main features of the polarization-entangled

photon pair source based on a PSI.

In Chapter 3, I introduce SPTQ quantum logic and demonstrate a two-qubit SWAP

gate application. I then describe the implementation of basic quantum gates and a

SWAP gate, and I present the experiment of transferring the entanglement originally

stored in the momentum qubits to the polarization qubits by using the SWAP gate.

In Chapter 4, generation and verification of a hyper-entangled state is described.

This chapter starts by explaining how to generate hyper-entangled photon pairs and

presents the experimental setup and the results of SPTQ-based complete polarization

Bell state measurements.

In Chapter 5, I describe our physical implementation of Schmidt projection. I

first explain the concept of Schmidt projection and describe how to implement such a

distillation protocol in an experiment using hyper-entangled photon pairs. Then the

experiment setup and results of the Schmidt projection protocol are presented.

In Chapter 6, I describe a physical simulation of the entangling-probe attack on

the BB84 quantum key distribution (QKD) using SPTQ quantum logic. I explain how

the entangling-probe attack works and how to implement it using SPTQ, followed by

the experimental setup and results. Finally I conclude and summarize in Chapter 7.





Chapter 2

Polarization-entangled photon pair

source

Entanglement is a key ingredient in quantum information science. Historically, entan-

glement is the unique quantum property that explains the Einstein-Podolsky-Rosen

(EPR) paradox [22] and it was used to formulate the Bell's inequality [21, 69] to

distinguish quantum mechanics from hidden-variable theories. More recently, entan-

glement is used as an important quantum resource in applications such as quantum

teleportation [60], quantum cryptography [61], quantum computation [8, 62, 63], and

quantum repeater [65]. For efficient quantum operations, these applications generally

require a steady and copious supply of highly-entangled quantum states. Also in this

thesis, we are using the entangled states to demonstrate various quantum informa-

tion processing tasks. Therefore the main focus of this chapter is on an innovative

photonic entanglement source design with significantly higher output flux and higher

entanglement to be used in some of these applications. Our design of a high-flux,

high-quality polarization-entangled photon pair source based on spontaneous para-

metric down conversion (SPDC) takes advantage of many advances in the field of

nonlinear optics to achieve our goal.

In the first section we review some of the important properties of SPDC that

are useful for understanding polarization-entangled photon pair sources presented in

this chapter and utilized in experiments shown in later chapters. The second section
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Figure 2-1: Schematic of SPDC process. We used a 10-mm-long (crystallographic X
axis), 2-mm-wide (Y axis), 2-mm-thick (Z axis) flux-grown PPKTP crystal with a
grating period of A = 10.03 1/m.

presents several types of polarization-entangled sources, and explains the limits of

their performances. In the next section we show that these limitations can be over-

come by combining bidirectionally pumped SPDC with a Sagnac interferometer, and

we present an experimental demonstration of a high flux entangled photon pair source

based on this design. The last section describes how this system can be optimized,

and presents experimental results showing significant improvement in entanglement

quality.

2.1 Theory of spontaneous parametric down con-

version

SPDC is one of the most successful methods to generate high-quality entangled photon

pairs, and therefore it has been used in all the experiments presented in this thesis.

In this section, we provide a brief overview of some of the important properties of

SPDC, which will be used throughout the subsequent chapters.

Spontaneous parametric down conversion is a second-order nonlinear frequency

mixing process in which a pump photon at wp is converted into two lower-frequency

photons called signal (we) and idler (wi). The efficiency of SPDC depends on the

phase matching function that typically depends on various parameters such as crys-

tal orientation, temperature, and custom engineered grating structures. Common

crystals used for SPDC include 3-barium borate (BBO), periodically poled lithium

niobate (PPLN), and periodically poled KTiOPO 4 (PPKTP).



Typically in our experiments, we pump a PPKTP crystal with a 405-nm laser

beam propagating along the x-axis of the crystal, and the pump polarization is ori-

ented along the y-axis as shown in Figure 2-1. For the output, we collect the near-

degenerate downconverted signal and idler beams close to the collinear mode. In a

type-II phase-matched process, the signal is polarized along the crystal's z-axis while

the idler is polarized along the y-axis. The KTP crystal used in our experiment is pe-

riodically poled with a grating period A = 10.03 /Lm for type-II quasi-phase matching

condition for collinear near-degenerate SPDC with a 405-nm pump operating near

room temperature.

Quantum mechanically SPDC can be described by a simplified effective Hamilto-

nian

I', i s ~ ai + H.c., (2.1)

where &, is the annihilation operator for the pump photon and &t , a~ are the creation

operators for the signal and idler photons, respectively. A more complete Hamiltonian

is given in Eq. (A.1) in the Appendix A. Eq. (2.1) simply states that when a pump

photon is annihilated, a pair of signal and idler photons are created, and the reverse

process also happens. In implementing SPDC in the laboratory, there are additional

restrictions that can be derived from a more detailed calculation. When the pump

laser is in TEMoo mode with a beam waist wo and frequency wp = ck/n (k is the

wavenumber and n is the index of refraction inside the crystal), the output state is

proportional to the following state according to Eq. (A.24):

1') ' LAp f dw8  d2k d2kf exp [-f (k 2, + k sinc(AkL./2)&~t9 10),
(2.2)

where L. is the length of the crystal, Ap is proportional to the amplitude of the

pump electric field, f d2 k-L means integration in the transverse plane (yz-plane), the

transverse component of the pump wave vector (k,) is k- = k +k- , the x-component

of the pump wave vector is kp,x = k - Ikl 12/2k, the x-components of the signal and

idler wave vectors (k8, ki) are km = vn 2w2/c2 - k, - k2, Ak = kx,p - kx,. - k-, -

2-r/A, and A is the crystal's grating period. The details of the derivation is given in



Appendix A.

In Eq. (2.2), wi = wp - w8 is implicitly assumed for the integration, which corre-

sponds to the requirement of photon energy conservation. Momentum conservation

is also required in an ideal case, but the finite length of a crystal relaxes this require-

ment. The finite length of the crystal shows up in terms of sinc(AkL,/2), which

means that as long as the longitudinal momentum mismatch is less than order of

1/LX, down conversion is efficient. In contrast, the transverse momentum is con-

served as long as the transverse dimension of crystal is larger than the beam waist of

the pump, which is typically the case.

In the following subsections, I will discuss several important properties such as

the dependence of the momentum correlation on the pump beam waist and the tem-

perature dependence of the spectral distribution and the momentum direction based

on Eq. (2.2).

2.1.1 Transverse momentum correlation of SPDC

The output photons from the SPDC process are generated in multi-spatial modes,

and we need to consider the flux in each mode, which is governed by the probability

amplitude given by Eq. (2.2). Note that Eq. (2.2) is actually a probability amplitude

of pair generation, and in addition to the individual flux in each mode, Eq. (2.2)

provides information about correlation between two different spatial modes. In this

subsection, we will describe how this spatial mode correlation is affected by the pump

beam waist (wo).

The distribution of the transverse momentum of the signal and the idler is mainly

governed by the term

exp [- ((k, + kiy) 2 + (ks,z + kz)2) (2.3)

in Eq. (2.2). This factor comes from the Gaussian distribution of the transverse

momentum of the pump beam as given in Eq. (A.17). According to Eq. (2.3), the

transverse components of the signal and idler wave vectors can have completely differ-



ent correlations under two different pump focusing conditions. For a tightly focused

pump laser (small wo), Eq. (2.3) is non-zero even if kJ- is pointing in the same di-

rection as k-, as long as Ik- + kil is smaller than 1/wo. In other words, for a

tightly focused pump beam, the signal and idler do not have any correlation in their

momentum directions, which is useful for efficient coupling of the SPDC output to

single-mode fibers which mainly accept photons with no transverse momentum [66].

If we use a loosely focused pump beam (wo - oo), the transverse component of the

signal wave vector is anti-correlated with the transverse component of the idler wave

vector (i.e., kL = -k'). In our experiments, we chose the second option because

we were interested in strong momentum correlation. For the pump beam waist, we

used w0o - 160 1 m, and this corresponds to -4 mrad uncertainty in the wave vector

direction inside the crystal.

2.1.2 Spectral distribution of SPDC

In this subsection, we will consider the correlation between the peak output wave-

length and the crystal temperature. The peak output wavelength for a given output

geometry (ks, ki) is mainly determined by the phase-matching sinc(Ak.Lx/2) factor

in Eq. (2.2). The wave vector phase mismatch along the crystal's x-axis

Akx = kx,p - kx,, - kx,i - 27r/A

= k,,(w,, k4 + k-, T) - kx,,(ws, k-, T) - kx,i(wp - w8, k-, T) - 27r/A

= Ak(k, ,4, w w,,T) (2.4)

is a function of the transverse momentum vectors (k-, k4), pump frequency (wp),

signal frequency (w8) and temperature (T). (Akx changes with temperature through

the temperature dependence of the crystal's Sellmeier equation.) Therefore, the spec-

trum of the SPDC output depends on the specific configuration one uses in the ex-

periment. In our experiments, we generally start with a fixed pump frequency (wp)
and a collinear output momentum direction (kL = k4 = 01) that is determined by

the positions of the signal and idler output apertures. Therefore, if we choose to
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Figure 2-2: Plot of calculated (see Appendix B) signal (solid curve) and idler (dashed
curve) peak center wavelength for collinear outputs as a function of crystal tempera-
ture. The pump wavelength is assumed to be 404.775 nm.

maximize the output at some frequency ws, we can find the optimal temperature by

solving the equation

Akx(k- = 0, k = 0, w, ws, T)Ifixedw p = 0. (2.5)

In Figure 2-2, we plot the optimal signal and idler wavelength as a function of the

crystal temperature for the collinear outputs.

The sinc(AkL./2) dependence allows non-zero Ak. when Aks is smaller than

1/L,. Therefore the output will have some frequency components even though

they do not completely make AkX zero. As shown in Figure 2-3, the output spectrum

shows a finite bandwidth around the optimal frequency given by Eq. (2.5). This

output signal bandwidth is a function of the crystal length and the type of phase

matching. Typically, the bandwidth is inversely proportional to the crystal length.

To obtain a narrower bandwidth, a longer crystal should be used. In our setup, the

calculated bandwidth is ' 0.6 nm. In actual experiments, the effective bandwidth can

be slightly larger depending on the size of the collection aperture. In our experiment,

the output bandwidth is set by a 1-nm bandwidth interference filter centered around

810 nm.
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Figure 2-3: Relative pair generation probability along collinear direction (k- = k= =
0) as a function of signal wavelength. Temperature is chosen such that degenerate
output pair (A = 809.55 nm) have the maximum generation probability. In calcula-
tion, we assume 10-mm PPKTP with A=10.03 nm.

2.1.3 Momentum dependence on temperature

In the previous section, we showed that Ak, is a function of the transverse momentum

vectors, the pump frequency, the signal frequency, and the temperature and once

the transverse momentum vectors and the pump frequency are fixed, we can find a

functional relationship between the signal frequency and the temperature. In this

section we consider how the momentum direction changes as we vary the crystal

temperature.

If we fix the signal frequency and allow k4 to vary, we can also find a set of k'

for a given temperature (T), which satisfy the equation

Ak,(kx , k( , w, ws, T)Ifixed wp,ws = 0. (2.6)

For the loosely focused pump case as described in Section 2.1.1, k4 0 -kj- and we

can find an optimal set of k- vectors satisfying Eq. (2.6) for a given temperature. The

optimal set of k4 generally forms a circular distribution, and Figure 2-4 shows the

distribution of measured output flux in the k4 plane. The bright part in this Figure

corresponds to the k4 vectors satisfying Eq. (2.6). The non-zero thickness of the ring



Figure 2-4: Measured spatial distribution of output idler photons (Ai = 810.050 +
0.5nm) at a temperature Tcrystal = 120C, with 5 mW of 404.775-nm pump laser. Mea-
surements were done using a CCD camera with a few-photon sensitivity. Collection
time of this CCD image is 120 seconds.

shows that, even if k- does not make Akm perfectly zero, there is some generation

probability of idler photons with -k- due to the finite width of the sinc function.

The thickness of the ring is reduced as the length of the crystal (Lx) increases.

If we vary the crystal temperature, the optimal set of k' with maximum output

flux changes according to Eq. (2.6). The distribution of the corresponding optimal

set of k± is still in a ring shape, and we plot the radial distribution of the photon flux
in Figure 2-5. The horizontal axis in this plot is the radial distance from the center of
the ring that corresponds to the pump axis. We can use this property to control the
relative flux ratio between two output paths which are asymmetrically located with
respect to collinear output path. More discussion can be found in chapter 5.
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Figure 2-5: Angular distribution of output idler flux at different crystal tempera-
ture. Idler photons are collected with a 1-nm bandpass interference filter centered at
810.050 nm. Horizontal axis is the radial distance in the unit of CCD pixels from the
center of the ring that corresponds to the collinear output location. The CCD camera
is located at 250 mm from the crystal, and each pixel size is 20 pm x 20 pm. In each
plot, theoretical prediction of output flux (dashed curve) is compared with the exper-
imentally measured flux (solid curve). Note that there is a constant offset between
the measured temperature and the temperature used for calculation. Collection time
of each CCD image is 120 seconds.
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Figure 2-6: Two common methods for generating polarization-entangled photon pairs
using BBO.

2.2 Previous polarization entangled photon pair

sources based on SPDC

In quantum information processing, the entangled states are being destroyed whenever

they are used for some quantum operations. For example, to teleport a qubit, we

have to consume an entangled state. Therefore, for efficient quantum information

processing requiring a large number of entangled qubits, we need a high flux source

generating high-quality entangled states. To achieve this goal, several groups have

tried different configurations to increase output flux and entanglement quality. In this

section, I review some of the commonly used methods based on the BBO crystal and

the PPKTP crystal, and discuss their limitations and how we can avoid the common

problems.

Single BBO system

The simplest method that was developed by Kwiat et al. [24] is based on a single thin

BBO crystal under type-II phase matching to generate non-collinearly propagating

photon pairs that are polarization entangled as shown in Figure 2-6 (a). BBO is highly

transparent in the UV and visible regions and angle phase matching allows tunable

I-'

BBO
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wavelength operations. The single-crystal method generates polarization-entangled

photon pairs in a relatively simple setup, but there are several drawbacks. The main

problem is low output flux due to its geometry, because only the output pairs at the

intersections of the two output rings are entangled in polarization, and the rest of the

rings must be discarded using small apertures. The small apertures are also required

in the output paths to increase the field of depth to interfere the pair generation

processes occurring at +x and -x from the center of the crystal in order to eliminate

spatial-mode distinguishability. However, the apertures reduce the flux throughput.

Non-collinear geometry also prevents the use of a long crystal for increasing the flux.

All of these considerations restrict the useful output flux. In addition to the restriction

on flux, this system requires degenerate output wavelengths, because of the need to

erase frequency information to achieve quantum interference between signal and idler

in the same path. With this method, Kwiat et al. generated a normalized flux of

0.07 pairs/s per mW of pump power in 1-nm bandwidth when the measured quantum

interference visibility is 0.978.

Double BBO system

To avoid some of the problems shown in a single BBO system, Kwiat et al. [25] in-

troduced a new system using two BBO crystals operated with type-I phase matching.

The optic axis of two thin BBO crystals are oriented orthogonal to each other and the

output cones from those two crystals overlap as shown in Figure 2-6 (b). Compared

to the single BBO system, the signal polarization at each point of the output cone is

entangled with the idler polarization at the opposite point on the cone and hence we

can expect more entangled pairs from the entire cone. In practice, we cannot collect

the entire cone output efficiently, and it again limits the useful output flux. This

type of arrangement still suffers the problem of spatial distinguishability and small

apertures are required, thus limiting its output flux, and preventing it from using

long crystals. With the better overlap of the signal and idler cones in this configura-

tion, Kwiat et al. achieved 0.24 pairs/s/mW/nm with a visibility of 0.996 for a small

aperture or 28 pairs/s/mW/nm with a lower visibility of 0.9 for a larger aperture[25].



Single PPKTP system

In general, the output flux is proportional to the square of the crystal length (Lx)

as can be seen from Eq. (2.2), and BBO systems in a non-collinear geometry cannot

utilize a long crystal to increase the flux. To mitigate this problem, Kuklewicz et al.

[26] used a collinear configuration to allow a long (1-cm) PPKTP to be used under

quasi-phase matching condition. This experiment yielded a higher spectral brightness

of 300 pairs/s/mW/nm after timing-compensation and postselection with a 50-50

beam splitter, which is an order of magnitude larger than the double BBO system.

However similar to BBO systems, the interference between the signal and idler output

from type-II SPDC system requires timing-compensation due to crystal birefringence,

and this also required a small aperture to avoid spatial-mode distinguishability, and

therefore the effective output flux is limited at high visibility.

Double collinear SPDC system

Considering the problems explained above, it is clear that we need a configuration that

is compatible with collinear outputs, and that can utilize most of the down-converted

output without the restriction of apertures or interference filters. Such requirements

can be satisfied by using two coherently pumped SPDC outputs as shown in Figure

2-7. Shapiro and Wong [67] proposed combining collinear signals and idlers from a

pair of coherently driven optical parametric downconverters, which allows the use of

long crystals for the increased flux, and avoids the needs for timing compensation and

degenerate operation. To drive two SPDCs coherently, we can use the pump from

the same source as shown in Figure 2-7 (a), forming a Mach-Zehnder interferometer

(MZI). Consider a classical pump field at frequency wp, whose polarization is given

by

Ep = EH6H + ei-PEvv , (2.7)

where eH and ýv are the horizontal (H) and vertical (V) polarization unit vectors,

respectively, and ,p is the relative phase between the H and V components.

The H-polarized pump component excites crystal A and generates an (unnor-



A Idler (Bob) A Signal (Alice)

SPBSo

t to. 51
Signal-

•'- Signal ®, ®

,1D HWP O

LA
PBSp

HWP

atsyrC

B 
gyy p

p

Pump Pump

(a) (b)

Figure 2-7: Configurations for coherently combining collinear outputs from two
SPDCs. (a) A modified version of the configuration proposed by Shapiro and Wong
[67], with the pump setup shown explicitly here. (b) Bidirectionally pumped SPDC
implemented by Fiorentino et al. [27], and modified for clarity of explanation. In the
original setup, the pump beam was split by non-polarizing beam splitter instead of
PBSp and HWPp, and dichroic mirrors were used to couple the pump into the crystal
and to separate the outputs. HWP: half-wave plate, PBS: polarizing beam splitter.

malized) output state given by exp(ikpL)EHIV , )IHi), which represents a collinearly

propagating pair of V-polarized signal photon and H-polarized idler photon. As can

be seen from Eq. (2.2), in SPDC the pump phase carried by AP is added to the total

phase of the output and hence the output from the crystal A carries the phase picked

up by the pump as it travels a length L P from the PBS p to the crystal A. This output

undergoes a 7/2 polarization rotation by HWPo and is separated into two paths by

PBS o. Then this state is given by

IH) = ei[kpLAA+(ks+ki)Lo s++ ] ?7 HEHIHs)AIV)B , (2.8)

where the subscripts A and B refer to the Alice and Bob ports labeled in Figure 2-

7 (a). The phases 0, and Oi are unknown but constant over the time, and they are

acquired by the signal and idler outputs when they pass through the HWPo, and r/q

is the generation efficiency including propagation and absorption losses.

The V-polarized pump component drives crystal B after the pump polarization is
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rotated to H by HWPp for proper phase matching in the nonlinear crystal, and the

pump beam acquires an unknown but constant phase Op. The unnormalized output

state at the PBS o0 , which is generated by the V-polarized pump component, is

Tv) = ei[ BkpL+p+(ks+ki)L vEvIV)AIHi)B . (2.9)

Note that the relative pump phase Op originally introduced in Eq. (2.7) now shows

up in 9'v) and the generation efficiency q2 for the lower path is not necessarily equal

to that for the upper path in Eq. (2.8).

Recognizing that in free space kp = k, + ki, the combined MZI output, to the

lowest non-vacuum order, is

|T) oc ei[k (L A+Lo)+±+±i 7HEH|Hs)A Vi)B + ei BBkp( + L±L)±p] lvEvIVs)AIHi)B
(2.10)

One difficulty with this system is the requirement for two identical crystals, and

this requirement can be relaxed if we use a single crystal to generate both outputs.

Fiorentino et al. [27] solved this problem by implementing bidirectional pumping

similar to Figure 2-7 (b) and obtained a detected flux of -12 000 pairs s- 1 mW - 1 in

a 3-nm bandwidth with a quantum-interference visibility of 90%. The polarizations

of output photon pairs are entangled over the entire spatial cone and the spectrum of

the output does not need to be degenerate, thus allowing a much larger fraction of the

output to be collected. However, this type of source still has some problems which

limit the visibility. The main problem comes from the MZI geometry which is sensitive

to environmental perturbation. Any change in path lengths (L , LO, LP, LO) affects

the relative phase between the two terms in Eq. (2.10). Hence it requires active servo

control of the pump interferometer in order to set the phase of the biphoton output

state. Another problem in Fiorentino's implementation is that the apparatus suffered

from spatial-mode clipping in the arms of the MZI, caused by using dichroic mirrors,

not shown in Figure 2-7 (b), that increased the size of the interferometer.



2.3 Bidirectionally-pumped PPKTP in a Sagnac

interferometer

It is clear from the discussion of the bidirectionally pumped MZI configuration that

the need for stabilizing the path lengths is its major drawback. In classical optics, this

problem can be solved by replacing the MZI with a polarization Sagnac interferometer

(PSI) and Figure 2-7 (b) shows that it is actually possible. If we fold the MZI along

the nonlinear crystal axis, the resulting setup becomes a PSI shown in Figure 2-8. In

this section, we describe the construction of our polarization entangled photon pair

source based on the PSI, and present the experimental results.

2.3.1 Design consideration of PSI configuration

In this subsection, we show how the PSI setup can solve the problems discussed in

the previous section, and how we can control the output quantum state. We also

briefly discuss what kind of components are necessary to implement the PSI system.

To generate polarization entangled photon pairs, we use the PSI setup shown in

Figure 2-8. Similar to the double collinear SPDC system explained in the previous

section, the pump beam is separated by a PBS into two directions. The H-polarized

pump traverses the PSI in the counterclockwise direction as shown in Figure 2-8 (a),

and generates a two-photon state at the output of the PBS given by

IH) = ei[kpl±+ (ks+ki)L2+,s+Oi ?7]HEHHs)AI Vi)B , (2.11)

similar to Eq. (2.8) except that LAP (Ln) is replaced by L1 (L2). The V-polarized

pump follows the clockwise path shown in Figure 2-8 (b) and the output state is

IyV) = ei[Op+ kpL2±+ p+(ks+ ki)L1I r1VEvIVs)AIHi)B (2.12)

similar to Eq. (2.9). Using the kp = ks + ki relation, the final state is a superposition
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Figure 2-8: Polarization Sagnac interferometer for type-II down-conversion for (a) H-

polarized pump component (EH) and (b) V-polarized pump components (Ev), with
their counterclockwise and clockwise propagation geometry, respectively. The pump
is directed into the PSI with a dichroic mirror (DM) that is highly reflective for the

pump and highly transmissive for the signal (idler) output at W, (wi). Orthogonally
polarized outputs are separated at the PBS to yield polarization-entangled signal and

idler photon pairs. HWP: half-wave plate, PBS: polarizing beam splitter.

of |IH) and I'v)

T)> oc ei(Ll+L2)kp (Cos OIH,)AVi)B + ei¢ sin 0IVS)AIHi)B), (2.13)

where = Op + p - 08 - Oi, 0 = tan 1  vEv) (2.14)

In Eq. (2.13), all the phases related to propagation lengths (L 1, L2) are factored out

as an unimportant global phase, making the relative phase q insensitive to the change

of path lengths L 1 and L 2 of the PSI. The term Op - 8, - Oi in q is a function of the

HWP's material dispersion and does not vary in time. Therefore the PSI setup solves

the phase stability problem of the MZI setup as expected. The PSI also allows us to

make the entire setup compact, because we do not need any dichroic mirrors inside

the interferometer, thus solving the other problem of the MZI setup. Moreover, 4 is

fully adjustable by varying the pump phase Op. We can also easily control 0 which

determines the ratio of the two terms in Eq. (2.13) by changing the pump polarization

ratio (Ev/EH). For example, a singlet state can be easily generated by setting = 7r

WEbe oEV



and 0 = 7r/4. Therefore, the PSI down-conversion source is robust, phase stable, and

adjustable, and similar to the bidirectionally pumped MZI source explained in the

previous section, it does not require spatial, spectral, or temporal filtering for the

generation of polarization entanglement.

However all of these advantages come at some cost. Compared to the MZI, all

the optical components inside the PSI should be appropriately designed for all three

interacting wavelengths. A technical design challenge is the triple-wavelength PBS

and HWP. In our experimental realization we have chosen to operate near degeneracy,

w, - wi, so that dual-wavelength PBS and HWP can be readily obtained.

2.3.2 Experimental setup

Figure 2-9 shows a schematic of the experimental setup. A continuous-wave (cw)

external-cavity ultraviolet (UV) diode laser at 405 nm was used as the pump source.

The linearly polarized UV pump laser was coupled into a single-mode fiber for spatial

mode filtering and easy transport of the pump light to the PSI. A half-wave plate

(HWP1) and a quarter-wave plate (QWP1) transform the fiber-coupled pump light

into the appropriate elliptically polarized light of Eq. (2.7) to provide the power

balance and phase control of the pump field (0 and k in Eq. (2.13)). We typically

used an input pump power of -3 mW.

We used a 10-mm-long (crystallographic X axis), 2-mm-wide (Y axis), 1-mm-thick

(Z axis) flux-grown PPKTP crystal (Raicol Crystals) with a grating period of 10.03

1pm for frequency-degenerate type-II quasi-phase-matched collinear parametric down-

conversion. The crystal was antireflection coated at 405 and 810 nm and temperature

controlled using a thermoelectric cooler to within ±0.01°C. The pump at ~405 nm

was weakly focused to a beam waist of -160 /pm at the center of the crystal. To

fine tune the crystal temperature and pump wavelength combination, we measured

the single-beam quantum interference in a setup similar to that reported in Ref. [26],

obtaining a visibility of 98.9% with a small aperture at the operating temperature of

28.87 ± 0.01°C and a pump wavelength of 404.96 nm.

The PSI consisted of two flat mirrors that were highly reflecting at both wave-



Figure 2-9: Experimental setup for polarization Sagnac interferometer type-II down-
conversion. HWP1 and QWP1 are used for adjusting the relative amplitude balance
of the two counter-propagating down-conversion paths and the phase of the output
biphoton state. HWP: half-wave plate, QWP: quarter-wave plate, DM: dichroic mir-
ror, PBS: polarization beam splitter, IF: 1-nm interference filter centered at 810 nm.

lengths, a dual-wavelength half-wave plate (HWP2), and a dual-wavelength PBS that

served as the input/output coupling element. HWP2 (Red Optronics) was antireflec-

tion coated at the pump and output wavelengths and HWP2 was designed to work

as a half-wave plate at both pump and output wavelengths. For the dual-wavelength

PBS, we used a PBS (CVI PBS-800) which was originally designed and coated for

only the output wavelength (800 nm), but this worked reasonably well at the pump

wavelength. At the pump wavelength, it transmitted 73% of the H component and

3% of the H component leaked into the wrong output port. For the V component

of the pump, 80% was reflected into the correct output of the PBS and 5% was

transmitted into the unwanted output port. For both polarizations, the rest of the

pump power was either back reflected or absorbed by the PBS. The 10% difference

between the transmitted H-polarized component and the reflected V-polarized com-

ponent was compensated for by adjusting the ratio EH/Ev using HWP1 and QWP1.

The unwanted pump components (transmitted V-polarized and reflected H-polarized

components) do not contribute to down-conversion because they do not satisfy the



phase-matching condition.

At the PSI output, the polarization states of the signal and idler photons were ana-

lyzed with a combination of a HWP and a polarizer before detection by single-photon

Si detectors (Perkin-Elmer SPCM-AQR-13). We imposed a spectral bandwidth of 1

nm using an interference filter (IF) centered at 810 nm with a maximum transmission

of 75% at the center wavelength. Two irises were used to control the acceptance angle

of the detection system. The outputs of the two single-photon detectors were counted

and their coincidences were measured using a home-made coincidence detector [68]

with a 1-ns coincidence window.

2.3.3 Measurement of polarization-entangled state

To characterize the polarization-entangled photon pairs generated from the PSI setup,

we made measurements of the two-photon quantum interference visibility, the CHSH

form of Bell's inequality, and quantum state tomography. In this section, we explain

the three methods and show that the measurement results are consistent with the

expected output from the PSI.

Visibility

A commonly used method for characterizing the entanglement quality is the mea-

surement of two-photon quantum interference visibility. For example, if we generate

a singlet state (I'F-)AB = (!H)AIV)B - IV)AIH)B) /v2) by controlling the HWP1

and the QWP1 in Figure 2-9 to set 0 = 450 and 0 = 7r in Eq. (2.13), the polar-

izations measured by Alice and Bob will always be anti-correlated independent of

the polarization measurement bases. In other words, if Alice fixes her polarization

analyzer (PA) to detect only vertically polarized photons, the coincident photons on

Bob's side should always be horizontally polarized. As Bob changes his PA angle,

his single photon counts remain constant, but the coincidence counts between Alice

and Bob will have a minimum when Bob's PA is set to detect vertically polarized

photons (01 = 900) and a maximum when Bob's PA measures only horizontally po-
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larized photons (01 = 0°), as shown in Figure 2-10 with open squares. However this

sinusoidal curve doesn't necessary mean that we have a singlet state. In fact, the

same sinusoidal curve with the same singles count can also be reproduced by a mixed

state such as p = |jH)A|V)BA(HIB(VI + IV)AIH)BA(V|B(H|. To distinguish these

two possibilities, it is necessary to measure the two-photon quantum interference in

an incompatible polarization basis, such as the anti-diagonal/diagonal (A/D) basis.

To make a measurement in A/D basis, we set Alice's PA along 450 (D) and measure

the coincidences at different angles of Bob's PA. If the state is a singlet state, we

will see another sinusoidal curve shifted by -45' because Bob's coincident photons

are polarized along -45' (A), whereas, if the input were a mixed state, we would

expect a flat horizontal line because Bob's coincident photon can be either H or V.

Therefore the quality of this quantum interference fringe pattern in the A/D basis

reflects the interference quality between the two terms in a singlet state. When Alice's

PA measures along 450 (D), the coincidence counts are denoted by solid triangles in

Figure 2-12. To compare the quality of the fringe pattern, we obtain the quantum-

interference visibility V defined as (Cmax - Cmin)/(Cmax + Cmin), where Cmax is the

maximum coincidence counts and Cmin is the minimum coincidence counts. The data

shown in Figure 2-10 were taken with an input pump power of 3.28 mW (measured

before DM), 1-nm IF, and a full divergence collection angle of 12.5 mrad, and we mea-

sured a flux of polarization-entangled photon pairs of - 5000 detected pairs/s/mW.

Measured visibilities are Vo = 99.09 ± 0.07, V46 = 96.85 ± 0.12, V90.5 = 99.32 ± 0.04,

and V135 = 97.18 ± 0.09.

We have also examined the characteristics of the PSI down-conversion source at

different collection divergence angles. Figure 2-11 shows the visibility and flux of the

generated polarization-entangled photon pairs as we varied the size of the collection

irises, showing reduced flux but higher visibility for smaller divergence angles. We

attribute the dependence of the visibility on the iris size to wavefront distortion of

the PBS used in the PSI. The commercially available PBS was made from two

coated prisms that were cemented together at the hypotenuse side with a wavefront

distortion of a quarter of a wavelength at 633 nm. This specification is worse than
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angle when Alice's PA is along 450. Inset: measured flux of polarization-entangled
photon pairs versus full divergence angle.



intracavity optics that are typically specified at a tenth of a wavelength at 633 nm.

The wavefront distortion is less when the collection divergence angle is small, thus

resulting in higher visibilities for smaller apertures, as observed in Figure 2-11.

Clauser-Horne-Shimony-Holt (CHSH) measurement

Another way to characterize an entangled state is to measure the S parameter in

Clauser-Horne-Shimony-Holt (CHSH) form of Bell's inequality [69]. To calculate the

S parameter, we need to measure four expectation values E(OA, OB). Let us assume

that Alice's polarization analyzer (PA) generates +1 when PA measures a photon in

OA basis and -1 when PA measures a photon in 0 A + 7/2 basis, and similarly Bob's

PA also generates +1 and -1 for 0 B and OB + r/2, respectively. Then E(OA, OB) is an

expectation value of the product of Alice's measurement and Bob's measurement. In

other words, the measured product yields +1 if the two polarization measurements

correspond to (OA, OB) or (OA+r/2,O B+r/2) and -1 if they are equal to (OA+r/2, OB)

or (OA, OB + 7r/2), and E(OA, OB) is an average of all the measured products for a given

(OA, OB). Ideally, we would use 4 single-photon detectors and simultaneously count

the four coincidences for every generated pair. However due to limitations in our

setup, we could measure only one type of coincidences at one time. Therefore, we

construct E from 4 types of coincidences using

SC(OA, OB) - C(OA + 7/2, OB) - C(OA, 0 B + 7T/2) + C(OA + 7/2, OB + r/2)E(OA C(OA, OB) + C(OA+ /2,O) + C(OA, 8B + /2) + C(A + 7/2, OB+ ±7/2)
(2.15)

where C(OA, OB) is the coincidence count when Alice measures OA and Bob measures

OB.

The parameter S is defined in terms of E(OA, 8B) as follows:

77 7 7x 7 57 E( 5x
S = |E(O, ) )+ E(- 4' ) + E( 4' 8 - E(08 ). (2.16)

Quantum mechanics predicts that we can obtain 2V2- for an ideal singlet state,
whereas classical theory predicts a maximum S of 2. Therefore a measurement of



S larger than 2 indicates that the generated state is non-classical. In our experiment,

we obtained S = 2.7645 ± 0.0013, which corresponds to the violation of the classical

limit of 2 by more than 500 standard deviations.

Quantum state tomography

In general, a given quantum state is not a pure state, but a probabilistic mixture

of many pure states, which can be represented by a density matrix. Quantum state

tomography is a technique to measure the entire density matrix using a finite num-

ber of measurements [70]. To include all the potential problems such as intensity

drift, beam splitter crosstalk, wave plate errors etc., we have to use the maximum

likelihood technique to estimate the density matrix (p), but in our case, we simplify

the calculation by assuming that the errors in the optical components used in our

measurements are negligible. Then we can find linear relations between each real and

imaginary component of p and the coincidence measurements (M) of Alice and Bob.

For example, if both Alice and Bob measure horizontal (H) polarizations, the mea-

sured coincidence counts MHH is proportional to (HHIp HH), and we can get all the

diagonal components of p by measuring only in the H-V basis. To find off-diagonal

components of p, we need to measure the diagonal polarization and circular polar-

ization. When Alice measures H polarization and Bob measures D = (H + V)/±v2

polarization, the measured coincidences MHD is proportional to

(HDIpIHD) = (HI' ((HI + (VI) pIH) (IH) + IV))
= ((HHIpIHH) + (HHIpIHV) + (HV pIHH) + (HVIplHV)) (2.17)

= ((HH pIHH) + 2Re((HHIpIHV)) + (HVIpIHV))

where we can find the real part of the off-diagonal component ((HHIp HV)) from

MHD. To find the imaginary part of the off-diagonal component, we need to measure

in a circularly polarized basis (R = (H - iV)/ 2). For example, if Alice measures

H polarization and Bob measures R polarization, the measured coincidences MHR is



proportional to

(HRJp|HR) = (HI- ((HI + i(VI) p|H)- (|H) - iIV))

= I((HH pHH) - i(HH p HV) + i(HV p HH) + (HVIpIHV)) (2.18)

'= ((HH p|HH) + 21m((HHIpIHV)) + (HV p HV))

If we consider all possible coincidence measurements where Alice and Bob can

independently choose one of four measurement bases (H, V, D, A), we can deduce the

entire p in terms of 16 coincidence measurements (MpApB) as shown in Appendix C.

An example of quantum state tomography is given in the next section, where the

output state of an improved version of the PSI source is characterized.

2.4 Fine tuning of the PSI

The experimental results in the previous section show that the PSI setup can gener-

ate entangled photon pairs with much higher visibility than the MZI setup without

reducing the flux or losing any benefits of the double SPDC configuration. How-

ever the maximum visibility (97%) measured in the previous experiment was still less

than expected. In this section, we show additional improvements of the experimental

system to achieve a higher level of quantum-interference visibility. These improve-

ments include the fine tuning of the pump laser and optimization of the alignment

procedure.

The major problem came from the unstable wavelength of the pump laser. If

the pump wavelength changes by 0.01 nm, the phase of the output state can be

changed by 0.007 radian due to the HWP's material dispersion. In addition, the

pump light is reflected directly back toward the pump source because of the PSI

design of Figure 2-8, thus potentially causing instability of the pump laser due to

the feedback. To eliminate these two pump problems, we optimized the pump laser

operating condition to select the most stable mode, and increased the pump isolation

to prevent the feedback into the pump laser.

We also completely redesigned the alignment procedure. In order to collect most of



the degenerate output pairs, we previously aligned the interference filters with respect

to the reference output wavelength, thereby making an implicit assumption that the

outputs are degenerate. However, since the PSI configuration allows nondegenerate

outputs as well, the degenerate output assumption may not be suitable. Instead we

varied the center wavelength of the IF by changing the incident angle at IF and bal-

anced the singles counts while maximizing the conditional probability of coincidence

counts compared to the singles counts in each arm. Also we changed the way to opti-

mize the pump polarization. In an ideal PSI configuration, to create a singlet output

state, the polarization of the pump laser should have the equal amplitudes for the H

and V components, and we should be able to control the relative phase between those

two components without changing the amplitudes of H and V. In the ideal case, this

can be easily done with the setup in Figure 2-9 by fixing the pump polarization af-

ter HPW1 to a diagonal polarization. Then the angle of the QWP1 determines the

relative phase while maintaining the balance between the V and H components. In

our PSI system, we used a non-ideal PBS that has unbalanced transmissivity and re-

flectivity at the pump wavelength, and this imbalance should be compensated for by

the unbalanced pump polarizations (i.e. an elliptical polarization). Therefore, even

when we want to change only the relative phase, we always have to change HWP1

and QWP1 simultaneously. This generally makes the fine alignment very difficult,

especially when HWP1 and QWP1 are not perfect. Therefore we used a different

approach. We first used HWP1 and QWP1 only to balance the pair generation prob-

abilities of the two terms in the output state (0 = 7/4) of Eq. (2.13). Then the control

of the output phase ¢ of Eq. (2.13) was done separately by using an extra quarter

wave plate in one of the output paths during the fine alignment of PSI. This allows

us to change the output phase independently because during the alignment of PSI

we generally measure the polarization along A-D basis, which means the rotation of

output QWP will change only the relative phase. Once alignment of PSI was done,

we removed the extra quarter wave plate, and we can easily find the optimal pump

polarization to generate the singlet state.

With all these efforts to maintain indistinguishability between the two counter-
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Figure 2-12: Two-photon quantum-interference visibility measurements of the im-
proved PSI source. Coincidence counts as a function of Bob's polarization analyzer
angle OB for different settings of Alice's polarization analyzer angle OA: 450 (solid cir-
cle), 900(solid square). The biphoton output was set to be a singlet state. Solid lines
are best sinusoidal fits to data. Each data point was averaged over 40 s and the pump
power was 4.7 mW. Measured visibilities without background subtraction are 99.45%
for OA = 450 and 99.76% for OA = 900.

propagating beams and extra optimization steps for the crystal temperature, the

location and size of the iris, and the orientation of the crystal, we could significantly

improve the visibility while maintaining the same flux level of previous experiments.

Figure 2-12 shows the new visibility measurement results where we achieved V450 =

99.45 + 0.18% and V900 = 99.76 ± 0.12% without any background count subtraction.

This set of data was taken with a pump power of 4.7 mW and the full divergence

collection angle was 4.85 mrad. At this setting, we measured a flux of '700 pairs/s

per mW of the pump power with 1-nm IF. Figure 2-13 shows the measured visibility

and the flux as a function of the full divergence angle of the output. Compared to

Figure 2-11, we obtained much higher visibilities with the improved PSI source. We

also measured the S parameter for CHSH with the divergence angle of 4.85 mrad

and obtained 2.8253 ± 0.015 ± 0.0035, which is very close to the ideal quantum limit

of 2v/ r 2.8284. The first standard deviation of S is that due to systematic errors

(such as wave plate angle settings), while the second standard deviation is due to

statistical errors. Finally we performed quantum state tomography on this quantum
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Figure 2-13: Plot of quantum-interference visibility as a function of full divergence
angle for 02 = 450. Inset: measured flux of polarization-entangled photon pairs versus

full divergence angle.

state as described in the previous section, and the resulting density matrix is plotted

in Figure 2-14.

From the measured density matrix, we calculated the fidelity to the singlet state

( 1-) - (IH)IV) - IV)IH)) /v / ) which is defined as (0-|plk-) and obtained 0.994.

2.5 Summary

In this chapter, we described how to design, construct, and align a high flux source

of polarization-entangled photon pairs in a polarization Sagnac interferometer con-

figuration. The two-photon quantum-interference visibility of this source is one of

the highest values measured with polarization entangled photon pairs. Figure 2-15

shows the measurement result compared to other types of the polarization entangled

photon pair sources. Compared to initial BBO experiments, we have increased the

flux by five orders of magnitude in pairs/(s mW nm), and also improved entanglement

quality. The main increase of flux comes from the use of PPKTP which allows the

collinear output mode, and the higher entanglement quality comes from the use of

_ __
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Figure 2-16: Design of polarization entangled photon pair source based on PP-
KTP with type-I nondegenerate phase-matching condition. The output state is
ca H),|H)i + pei¢IV),|V)i. PBS and HWP are designed for triple wavelengths. HWP
is tilted by 450 . DM: dichroic mirror reflecting idler wavelength and transmitting
signal wavelength.

the phase-stable Sagnac interferometer and the double SPDC configuration.

The collinear output modes allow this source to be easily coupled into a single

mode optical fiber [66] and it is suitable for a monolithic design using integrated pho-

tonics and photonic crystal stucture [71]. The collinear SPDC geometry implies that

it can incorporate a cavity structure [73] to generate narrowband outputs to enhance

the spectral brightness. The Sagnac configuration can also be used, with minimal

modification, in a pulsed-pumping system for free space quantum key distribution

[72]. A similar type of PSI configuration can also be applied to type-I nondegenerate

phase-matched PPKTP crystal to take advantage of the higher nonlinear coefficient

d33 to further increase the flux and efficiency as shown in Figure 2-16. In this case,

the challenging part is the design of triple wavelength components. In this thesis, the

PSI-based source is used to generate hyper-entangled states which will be described

in Chapter 4 and 5.



Chapter 3

Deterministic gates for

single-photon two-qubit quantum

logic

A photon is an ideal candidate to represent a qubit because of its weak interaction

with the environment, which allows for a long coherence time for exchanging qubits

between remote sites. However, weak interactions between photons prevent their use

in quantum information processing in an efficient way, partly because simple linear op-

tical components cannot implement deterministic quantum logic [75, 76]. In a major

discovery, Knill, Lafiamme, and Milburn [8] showed that scalable quantum compu-

tation is still possible with a linear optical system if one introduces measurement as

the nonlinearity by incorporating single-photon sources and single-photon detectors.

Another approach to linear optical quantum computation is to encode multiple

qubits in several degrees of freedom of a single photon [12, 13, 14]. This multiple-qubit

approach can implement deterministic quantum logic with a relatively simple setup

compared to other optical quantum logic approaches, but it is not scalable quantum

logic due to the complexity of the optical setup as the number of qubits increases.

This limitation is acceptable if the photons are entangled in some degrees of freedom

and if only few-qubit operations are of interest in small-scale QIP tasks. The sim-

plest implementation of this multiple-qubit approach is the single-photon two-qubit



(SPTQ) quantum logic in which the polarization degree of freedom (called P qubit)

and momentum degree of freedom (called M qubit) of a single photon are utilized. By

combining SPTQ quantum logic with entangled photon pairs, one can demonstrate

several quantum information protocols including a one-shot demonstration of nonlo-

cality with two observers [77], a complete measurement of Bell's states [35], quantum

games [78], a physical simulation of entangling-probe attack on the BB84 protocol

[57], entanglement distillation [381, and entanglement purification [79]. To implement

these protocols, we need to realize a number of basic quantum gates to form a uni-

versal gate set for quantum logical operations. Previous implementation of SPTQ

quantum logic involved two separate paths for the momentum qubits and hence a

logic circuit based on their different paths is essentially a large and complex interfer-

ometer [12, 13, 14, 15, 16]. The necessary coherence for these paths implies that they

must be stabilized, and therefore these interferometric methods are less attractive

from a practical standpoint. In contrast, we utilize a Sagnac-type interferometric

arrangement to implement these SPTQ logic gates such that they are phase-stable

and stabilization is not necessary [17].

In our implementation we collimate two non-parallel momentum vectors into two

parallel paths as shown in Figure 3-1, so that their path lengths are identical as they

propagate in space. Together with the phase-stable SPTQ quantum logic gates, we

can build complex SPTQ systems without the need for path length stabilization.

In SPTQ, the quantum state of each photon can be represented as a vector in

4-dimensional Hilbert space, whose orthogonal basis vectors are aH,T|0), a,Bl0O),

atyTO), aty,BO), corresponding to each of the four modes shown in Figure 3-1. H

(V) means horizontal (vertical) polarization for the P qubit, and T (B) means top

(bottom) path for the M qubit. We can also rewrite each basis vector as the tensor

product of two 2-dimensional Hilbert space vectors, such as IH) p0IT)M, IH)pOIB)M,

IV)p 0 IT)M, jV)p 0 IB)M, or just IHT), IHB), IVT), IVB) for simplicity. In this

chapter, we identify IH), IT) with the logical 10) qubit, and IV), |B) with the logical

(1) qubit.

In this chapter, we first describe the implementation of SPTQ quantum gates such
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Figure 3-1: Four orthogonal bases used in SPTQ and conversion of momentum qubit
to parallel path qubit.

as single qubit operations, controlled-NOT gates, and a SWAP gate. Then as an appli-

cation of the SWAP gate, we present the experimental setup to demonstrate coherent

transfer of the entanglement stored in P qubits to M qubits and the experimental

results.

3.1 Basic gates for SPTQ

It is well known that any arbitrary unitary operation can be implemented by using

controlled-NOT (CNOT) gates and single-qubit operations. Therefore to show that

SPTQ quantum logic is universal, at least within the same photon, we should be able

to implement single qubit operations and CNOT gates between the polarization qubit

and the momentum qubit. Single P-qubit operation and a momentum-controlled NOT

gate can be easily implemented by properly designed wave plates. However, a phase-

stable polarization-controlled NOT gate and phase-stable single M-qubit operation

require more careful design consideration. For example, Figure 3-2 (b) shows one

possible implementation of single M-qubit operation which is composed of a non-

polarizing beam splitter, and a right angle prism to control the phase between the

two paths. Unfortunately, this type of implementation is undesirable because the

relative phase depends on the path length difference which must be stabilized. The

reflectivity of a beam splitter must also be controlled depending on the rotation angle
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Figure 3-2: Realization of two types of single qubit operation. (a) Single P-qubit
operation using a wave plate. (b) Single M-qubit operation using an adjustable
beam splitter. a 2 and 32 is the reflectivity and transmittivity of a non-polarizing
beam splitter. Right angle prism changes the relative phase between two paths.

of the qubit, which is unrealistic. In this section, we discuss how we can implement

phase stable SPTQ quantum gates based on a polarization Sagnac interferometer

geometry. We also show how a quantum SWAP between the P and M qubits can be

realized.

3.1.1 Single qubit operation

There are two types of qubits, P and M, in SPTQ quantum logic, and therefore two

types of single-qubit operations are necessary. When the M qubit is encoded in two

parallel paths as in our laboratory implementation, single qubit operations on the P

qubit can be easily implemented by standard wave plates that are inserted in the two

parallel paths, as shown in Figure 3-2 (a). This setup guarantees that the two paths

acquire the same amount of phase as they propagate through the HWP (or any other

type of wave plates).

As discussed in the introduction of this section, single qubit operation on the M

qubit is more complicated. Phase-stable single M-qubit operation can be built by

wave plates sandwiched by two SWAP gates which swap the quantum information

stored in the P and M qubits. This design will be described in Section 3.1.3.
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Figure 3-3: Implementation of a CNOT gate between P and M qubits. (a) Momentum
controlled NOT gate. M is the control qubit and P is the target qubit. (b) Interfero-
metric version of a polarization-controlled NOT gate, in which P is the control qubit
and M is the target qubit.

3.1.2 Controlled-NOT operation between P qubit and M qubit

In SPTQ, two types of controlled-NOT (CNOT) gates are needed. A momentum-

controlled NOT (M-CNOT) gate uses momentum as the control qubit and polarization

as the target qubit. The M-CNOT gate can be realized with a half wave plate (HWP1)

cut in a half-circular D shape with the fast axis forming a 450 angle with the H

direction, which is aligned so that it only affects the beam in the bottom path (IB) =

I1)), as shown in Figure 3-3 (a). Another half wave plate (HWP2), identical to the

HWP1 except for the fact that its axis is parallel to the H axis, is in the path of the

top part of the beam to compensate for the time delay introduced by HWP1.

Another type of CNOT gate, polarization-controlled NOT (P-CNOT), requires more

attention. In principle, it can be implemented as shown in Figure 3-3 (b), but this

type of setup has the phase instability problem which is intrinsic to a Mach-Zehnder

interferometer. To avoid this problem, Fiorentino and Wong [17] used a polarization

Sagnac interferometer (PSI) containing a dove prism whose base is oriented at a 450
angle relative to the horizontal plane, as shown in Figure 3-4. The input polarizing

beam splitter (PBS) directs horizontally (vertically) polarized input light to travel in
a clockwise (counterclockwise) direction. As viewed by each beam, the dove prism

~r~~
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Figure 3-4: Polarization-controlled NOT (P-CNOT) using a phase-stable polarization

Sagnac interferometer and an embedded dove prism. (a) Schematic of P-CNOT seen

from above. (b) Change of input image to the output image by the P-CNOT gate.

The beams are propagating into the paper and the images are viewed from behind.

orientation is different for the two counter-propagating beams such that the trans-

formation of the input spatial image differs for the horizontal (H) and vertical (V)

polarizations. Specifically, the top-bottom (T - B) sections of the input beam are

mapped onto the right-left (R - L) sections of the output beam for H-polarized light

but onto the L - R sections for V-polarized light. If we identify IH), IT), and IR) as

logical 10), and IV), IB), and IL) as logical I1), this setup implements a P-CNOT gate

in which the polarization is the control qubit and the momentum (or spatial) mode

is the target qubit.

Fiorentino and Wong [17] utilized this setup to demonstrate the logic table of a

CNOT gate in the 10) and I1) basis with - 1% error. In addition, They experimentally

generated an entangled state between the polarization and momentum qubits of a

single photon using the same apparatus as an entangling gate.

We used the phase-stable P-CNOT gate in all of the SPTQ experiments described

in this thesis. In using the P-CNOT gate in various experiments, we found that

the P-CNOT gate adds a relative phase between the two polarization components.

In other words, for an input state (calH) + !IV)) 0 IL), the output state becomes

T, B -
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Figure 3-5: Quantum circuit to swap quantum states stored in polarization qubit and
momentum qubit and an equivalent symbol for this circuit.

a H) 0 IT) + pe |IV) 0 IB) up to a global phase and 4 is sensitive to the angle

between the input beam and the normal vector of the input surface of PBS inside

the P-CNOT gate. This phase shift comes from the differential phase shift seen by the

two polarizations at total internal reflection [80] in the dove prism. The amount of

this phase shift can be easily measured with a laser beam, and in the experiments,

we compensated for this phase shift by adding -¢ phase to the vertical component

of the input quantum state at the input of P-CNOT gate.

3.1.3 SWAP gate

In our experiments, we occasionally need to swap the quantum states stored in the

P qubit and M qubit, and it can be achieved by using three CNOT gates as shown

in Figure 3-5 [81]. This circuit is composed of one P-CNOT gate sandwiched by two

M-CNOT gates that were discussed in the previous subsection.

We can find an immediate application of the SWAP gate. At the introduction of

this Section, we showed that single M-qubit operation based on a beam splitter and

path delay cannot guarantee the phase stability, and this problem can be easily solved

by using two SWAP gates. Instead of operating directly on the momentum qubit, we

can first swap the P and M qubits, then operate on the P qubit (M-qubit before

the SWAP) using wave plates, and finally swap P and M qubits back as shown in

Figure 3-6. The result is exactly the same as performing single qubit operation on

the M qubit directly, and the entire process is completely phase stable because of the

phase-stable implementation of P-CNOT gate.
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Figure 3-6: Equivalent quantum circuits for single M qubit operation.

Therefore with P-CNOT gates and SWAP gates, we can implement, in principle, any

arbitrary unitary operation within a Hilbert space composed of polarization qubit and

momentum qubit of the same photon. The only limitation is the gate fidelity of the

SWAP gates.

3.2 Entanglement transfer from momentum qubit

pair to polarization qubit pair

In this section, we demonstrate one of the interesting applications of the SWAP gate.

We will first describe that momentum entangled photon pairs can be generated by

SPDC, then show that these momentum entangled photon pairs can be converted into

polarization entangled photon pairs by a SWAP gate, and the experimental setups and

the measurement results will follow.

3.2.1 Generation of momentum entangled photon pairs

Compared to polarization entanglement which requires extra configurations like timing-

compensation or double SPDC, the output from SPDC is naturally entangled in their

transverse momentum for the following reason. With the assumption of w0o oo,

Eq. (2.2) can be simplified to

|4) c J dw, dk4 sinc(AkL,/2) aty(k, ws) &,(-k- w, - ws)10), (3.1)

where f dw, dk- is a triple integral that extends to the whole plane spanned by the

transverse (yz-plane) component of the signal wave vector k, and over the range of



positive frequencies spanned by the signal frequency w,. The creation operators tfv

and ait refer to the vertically (V) and horizontally (H) polarized signal and idler,

respectively, and wJ is the pump frequency. Equation (3.1) clearly shows the correla-

tion in momentum between signal and idler photons. We now restrict our attention

to two propagation directions: one on the top (kT) and its conjugate at the bottom

(kB) and their transverse momentum are correlated by kJ = -k . We take the

signal frequency to be w, = wp/2 and assume the phase mismatch Ak. to be zero.

In the experimental setup the two conjugate transverse momentum directions can be

defined by a two-hole aperture mask, as shown in Figure 3-7 and the degenerate out-

put frequency condition is enforced by the phase matching condition and interference

filters. The state then becomes

(R)IN f (tv, kT, w/2) a (tH, kB, wp/2) + 4a (tv, kB, p/2) H (tH, wk, /2)) k0).

(3.2)

This state can also be rewritten, following the convention introduced at the beginning

of this chapter, as

WI')IN -(IVT),IHB)i + IVB)JIHT)i)

= JIVHi) 0 (ITBi) + JIBT>))

1
-- IOp, ,pP) 0 (10,Mli,M) + 118,MO,,M)). (3.3)

From Eq. (3.2)-(3.3) it is clear that the photons emitted by the type-II crystal are not

polarization entangled in general, unless signal and idler photons are indistinguishable

spectrally (frequency degenerate) and temporally (timing compensated), in which

case the T and B beams are polarization entangled, as demonstrated by Fiorentino,

Kuklewicz, and Wong [82]. In the present experiment we ensure that initially the

photons are not polarization entangled by not compensating the birefringence-induced

time delay.
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Figure 3-7: Generation of momentum entangled photon pairs from a type-II phase
matched nonlinear crystal.

3.2.2 Application of SWAP gate to momentum entangled pho-

ton pairs

In this experiment, we start with a momentum entangled photon pair in I'I')IN, ob-

tained in the manner of Figure 3-7. We apply a SWAP gate to each of the two photons,

so that the quantum state stored in P qubit and M qubit of the same photon can be

swapped. That is, the P qubit of the signal (idler) photon is swapped with the M

qubit of the signal (idler) photon as follows:

1
IT)IN = lOpslp,i) 0 ( OM,slM,i) + 1M,sOM,i))

1
= / (IOP, OM,s) 1P,ilM,) + IOp,slM,s) I p,iOM,i))

SWAP 1

I) = -(UTps1p,s) + I1p,Pi1M,i) + 1pOM,)lOgi1Mi))

1

-= (lHV>) + IVHi)) ® ILRi) (3.4)

Eq. (3.4) clearly shows that the signal and idler polarizations of the output state

are entangled. In principle, we require two SWAP gates, one for the signal and the

other for the idler photon. However, Figure 3-7 shows that the signal and idler beams

from SPDC share the same paths, and they eventually exit the SWAP gate in separate

paths (L and R) according to Eq. (3.4). Therefore, we can use a single SWAP gate

to swap both signal and idler photons, and separate them after the SWAP gate with
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Figure 3-8: Schematic of experimental setup.

a mirror that reflects one part of the beam and not the other as shown in Figure 3-8.

Also observe that if we omit the last M-CNOT gate of the SWAP gate, the output state

is
1

I ')OUT = (IHHi) + V,Vi)) 0 IL,Ri) (3.5)

which is still polarization entangled, and the signal and idler photons occupy different

paths so that they can still be separated with a mirror.

3.2.3 Experimental setup

Figure 3-8 shows our experimental setup for demonstrating the conversion of a momentum-

entangled photon pair into a polarization-entangled pair using the quantum SWAP

gate. We used pairs of down-converted photons from a 10 mm-long PPKTP crystal

that was continuous-wave pumped at 398.5 nm for type-II phase-matched frequency-

degenerate parametric down-conversion. The crystal temperature was adjusted so

that the signal and idler photons were emitted in two overlapping cones with an ex-

~------·



ternal full divergence of -13 mrad. The momentum modes were chosen with two

single apertures after the SWAP gates, instead of placing the two-hole aperture mask

right after the crystal as shown in Figure 3-7. We observed a higher gate fidelity

with the separate apertures after the gates, probably due to a slight size mismatch of

the two-hole mask. To implement the SWAP gate, we used the M-CNOT gate and the

P-CNOT gate described in Section 3.1.2. In this experiment, the compensating wave

plate in the M-CNOT gate was slightly tilted to change the length of the top beam

path, thus allowing one to correct for path mismatch and compensate for the intrinsic

phase shift of the P-CNOT gate. After the P-CNOT gate the state of the photon pair

is described by Eq. (3.5); we separated the signal and idler photons using the mirror

M shown in Figure 3-8 that reflected only the right section of the beam. Signal and

idler beams were then separately sent through a 2.2-mm iris, a polarization analyzer

formed by a HWP and a polarizer, and a 1-nm interference filter centered at 797 nm.

Besides being used for polarization analysis, wave plate HWP2 in Figure 3-8 assumed

the role of the second M-CNOT gate, thus completing the SWAP circuit. The photons

were detected with single-photon counting modules (PerkinElmer SPCM-AQR-14)

and we measured signal-idler coincidences through a fast AND gate with a 1-ns co-

incidence window [68]. Given the short coincidence window and the observed count

rates (singles rates < 100, 000 counts/s), accidental coincidences were negligible.

3.2.4 Measurement results

To test the performance of the SWAP gate we analyzed the resultant polarization

entanglement. Figure 3-9 shows the coincidence rates versus the polarization analysis

angle 82 in arm 2 of Fig. 3-8 when the analyzer in arm 1 was set at 0O (solid squares)

and 450 (open circles). The visibility of the sinusoidal fits is Vo = 97 ± 2% for 00

data and V 5 = 88 ± 2% for the 450 data. The difference in visibility is due to the

fact that V45 is more sensitive than Vo to the imperfections of the source and the gate

interferometer. A measurement of the S parameter for the Clauser-Horne-Shimony-

Holt form of the Bell's inequality gives a value of 2.653 ± 0.004 that violates the

classical limit of 2 by more than 150 standard deviations. These results clearly show
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Figure 3-9: Coincidence rates as a function of the polarization analysis angle 92 in
arm 2 when the analyzer in arm 1 was set at an angle 81 = 0' (solid squares) and 450
(open circles). The lines are sinusoidal fits to the data. Each data point is the result
of an average over 10 s.

that our SWAP gate had a good fidelity and that the down-converted photons were

indeed initially momentum entangled.

Analysis of error

The V45 results in Fig. 3-9 include errors due to imperfect interference at the gate

(gate fidelity) and incomplete momentum entanglement of the source (source fidelity).

To determine how well our setup approximates the ideal SWAP gate it is useful to sep-

arate the two contributions. As a test we sent an attenuated laser beam (filtered

through a single-mode fiber and collimated with an aspheric lens) through the gate,

with the laser frequency being the same as that of the down-converted photons. By

injecting the laser with a linear polarization oriented at 450 relative to the H direc-

tion we measured the classical visibility of the SWAP gate. This test measurement

gave a visibility Vc, of -93% for the gate. We also verified that the M-CNOT gate

did not affect the classical visibility in a measurable way. The classical measurement

was repeated without the dove prism in the polarization Sagnac interferometer (of

the P-CNOT gate) that yielded a visibility Vc2 of -95%. The 2% difference in the

classical visibility (Vcl - Vc2) can be attributed to either imperfections in the dove

prism or asymmetries in the injected laser beam. To further evaluate the cause, we
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Figure 3-10: Triangular polarization Sagnac interferometer. (a) This geometry is
tested with and without a dove prism. (b) Image transformation with the dove prism

in PSI. (c) Image transformation without the dove prism in PSI. The beams are

propagating into the paper and the images are viewed from behind.

repeated the test experiment with a polarization Sagnac interferometer in a triangular

configuration that was insensitive to input beam asymmetry as shown in Figure 3-10.

In this configuration the interference at the T position at the output originated from

the same spot of the injected beam for both polarizations, with or without the dove

prism (and similarly for the B position at the output). For the triangular configura-

tion we obtained a difference in classical visibility with and without the dove prism

of -2.5% that is comparable to that of the non-triangular configuration, indicating

that the dove prism was responsible for a loss of -2% in the visibility of the P-CNOT

gate. The remaining -_5% loss of classical visibility Vct can be attributed to wave-

front distortions introduced by the beam splitter cube. Given our quantum visibility

V45 of 88% and the classical test measurement results of the P-CNOT interferometer

we conclude that the source fidelity was 95% that was limited by imperfections in the

momentum entanglement of the down-conversion source (probable causes: defects in

PPKTP crystal poling and wavefront distortions of the downconverted beams). We

therefore estimate that the SWAP gate fidelity was 93% and was limited by less than

ideal components (polarizing beam splitter and dove prism).



3.3 Summary

In this chapter, I have shown that we can build reliable SPTQ quantum logics by us-

ing linear optical components. Single qubit gates on polarization qubits and M-CNOT

gates can be simply implemented by wave plates. However, single qubit gates on

momentum qubits and P-CNOT gates generally need an interferometric design that

is phase sensitive, and I introduced a phase-stable robust P-CNOT using a Sagnac

interferometer with an embedded dove prism which was developed by Fiorentino and

Wong [17]. I also showed that we can realize a quantum SWAP gate which can swap

the P and M qubits of the same photon using M-CNOT and P-CNOT gates, and how it

can be used for building reliable single M-qubit gates. As a concrete demonstration

of the utility of the SWAP gate, we applied the SWAP gate to momentum-entangled

photon pairs, thereby transferring the entanglement from the momentum to the po-

larization degree of freedom of two photons. Our experiment opens the way to the

demonstration of more complex SPTQ manipulation of entanglement including the

manipulation of 3- and 4-photon states. This type of few-qubit quantum information

processing combined with the entangled photon pairs is at the core of applications

presented in this thesis.





Chapter 4

Generation of hyper-entangled

state and complete Bell state

measurement

A hyper-entangled photon pair refers to two photons entangled in more than one

degree of freedom simultaneously. For example, Cinelli et al. [15, 34] and Yang et

al. [16] generated a hyper-entangled state which is entangled in the polarization and

momentum degrees of freedom, and Barreiro et al. [33] generated a hyper-entangled

state which is entangled in polarization, spatial mode, and energy-time. Generation of

the hyp.er-entangled state is usually done by spontaneous parametric downconversion

(SPDC). The strong correlation due to the conservation of energy and the conser-

vation of momentum, together with a superposition of all possible output states,

automatically creates entanglement in the energy-time mode and the spatial mode,

respectively [33, 34]. The hyper-entangled state has recently received attention in

combination with single-photon two-qubit (SPTQ) quantum logic, because SPTQ

gates can be utilized to manipulate and connect different types of entanglement con-

tained in a single pair of photons. The hyper-entangled state with SPTQ quantum

logic is potentially useful for a number of applications including a demonstration of

All-Versus-Nothing violation of local reality [77, 15, 16], complete Bell state measure-

ments [35, 85, 36, 86, 37], a stronger cryptographic scheme [87], and a demonstration



of entanglement distillation and purification.

In this chapter, we present our development of a hyper-entangled photon pair

source. The starting point is the polarization entangled photon pair source presented

in Chapter 2, which is compatible with both collinear and non-collinear output modes

from the PPKTP crystal. We then collect a two-path output for each photon, similar

to what we did to implement and test the SWAP gate in Chapter 3. The resulting

output is then entangled in both polarization and momentum (or path) between the

two photons. We then proceed to verify that the generated state is indeed hyper-

entangled by applying it to a demonstration of SPTQ-based complete polarization

Bell state measurements which normally are neither complete nor deterministic for

polarization-entangled photons. An interesting property of hyper-entanglement is the

ability to perform the Bell state measurements analysis deterministically for all four

polarization Bell states, thus suggesting its potential utility in quantum information

processing.

4.1 Generation of hyper-entangled photon pairs

In this section, we will show how we can generate the hyper-entangled state using the

polarization entangled photon pair source introduced in Chapter 2.

In Chapter 2, we showed that the polarization-entangled photon pair can be gen-

erated from a bidirectionally pumped PPKTP crystal within a polarization-Sagnac

interferometer. In Section 3.2.1, we also showed that the output photons in non-

collinear spatial modes are automatically entangled in their momentum because of

the conservation of the transverse momentum. In this chapter, we combine these

two properties to generate a hyper-entangled photon pairs, whose quantum state

can be represented as a tensor product of a polarization-entangled qubit state and a

momentum-entangled qubit state:

Ijp(I&j) MM) = (cos pIH)AIV)B + sin PIV)AIH)B)®(cos 8MIL)AIL)B + sin OMIR)AIR)B)

(4.1)



where subscript P (M) refers to polarization (momentum), subscript A (B) indicates

that the corresponding qubit is sent to Alice (Bob) side, H (V) represents horizontal

(vertical) polarization, and L (R) is the left (right) path. Op is completely determined

by the pump polarization as discussed in Section 2.3.1, and OM can be easily controlled

by the location of a double aperture mask and the temperature of the crystal, as will

be discussed in Chapter 5. In this chapter, we are only interested in the Op = OM = 450

case and we will show how we can generate such a state.

Assuming Op = OM = 450, Eq. (4.1) can be expanded into the four terms

OC (IH)AIV)B + IH)AIV)B) IL)AIL)B + (IV)AIH)B + IV)AIH)B) IR)AIR)B (4.2)

= IHL)AIVL)B + IVL)AIHL)B + IHR)AIVR)B + IVR)AIHR)B
at bt tt t t  t b (4.3)

= cHLAbVL0) + &,LA H,LBo0) + aH,RA V,RB 10) + RA)AR HBRO), (4.3)H,LA V, LBI O ) +  , LA H, V, A

where Mpa (A ,MB) is the creation operator for a photon with polarization P and

momentum M on Alice (Bob) side. Figure 4-1 shows the four possible photon pair

modes we are interested in, and (a)-(d) correspond to the terms in Eq. (4.3), in the

same order.

Note that left paths (LA, LB) and right paths (RA, RB) defined by two double

aperture masks in Figure 4-1 are intentionally drawn asymmetrically with respect

to the pump axis to emphasize that they do not have to be symmetric to create a

generalized hyper-entangled state in Eq. (4.1). This might be a little counter-intuitive

compared to Figure 3-7, where the double aperture mask has to be located symmetric

with respect to the pump axis. The difference here is that the conjugate path of LA is

LB, and not RB, as is clear from (a) and (b) of Figure 4-1. In other words, according to

Eq. (4.2), the hyper-entangled state is a superposition of two polarization-entangled

states: the first polarization-entangled term ((IH)AIV)B + IV)AIH)B)IL)AIL)B) in

Eq. (4.2) can be obtained by collecting the output propagating in LA-LB paths,

corresponding to (a) and (b) of Figure 4-1, while the second polarization-entangled

term ((IH)AIV)B + IV)AJH)B)IR)AIR)B) can be obtained by collecting the output
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Figure 4-1: Four possible polarization-momentum combinations from bidirectionally
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propagating in RA-RB paths, corresponding to (c) and (d). Therefore, to create a

hyper-entangled state, in principle, we can choose RA and RB independent of LA and

Ls, and this freedom is used in Chapter 5. For the experiment in this chapter, we

choose symmetric L and R paths to generate the state in Eq. (4.3) because the output

from the symmetric paths is more convenient for generating a hyper-entangled state

with OM = 450

4.2 Verification of hyper-entanglement

Incomplete quantum teleportation based on SPTQ quantum logic

In this section, we show that we can verify a hyper-entangled state given in Eq. (4.2)

by using incomplete quantum teleportation [60]. Consider first a simpler problem. If

we are given one of the four Bell states encoded in two qubits, the most direct way

to confirm it is to apply a controlled-NOT (CNOT) gate between those two qubits and

a Hadamard gate to the control qubit in sequence, and measure those two qubits as

shown in Figure 4-2. The Hadamard gate is a single qubit operation which transforms

10) into (10) + I1))/V' and I1) into (10) - I1))/xv.

W+ 01

+ o00
10

Figure 4-2: Bell basis analyzer. IT' ) = (101) ± I10))/v2, I+D) = (100) ± 11))/VI
and H is a Hadamard gate [81].

Unfortunately this scheme does not work for the case of two entangled photons,

because we do not have a deterministic CNOT gate between two photons (see intro-

duction of Chapter 3). However, we have already confirmed that the output from

SPDC is entangled in the momentum qubit in Section 3.2, and we can use this

momentum entanglement to show that the polarization degree of freedom is also



entangled simultaneously. Consider that hyper-entangled photon pairs are shared

Bell state Alice's Bob's Bell state
analyzer analyzer

photon photon A

JIEtHH
-rE-

Figure 4-3: Polarization Bell state analyzer with the help of momentum entanglement.

between Alice and Bob as shown in Figure 4-3, and the polarization qubits are en-

tangled in IF+)AB = (IH)A|V)B + IV)AIH)B)/V/2) and the momentum qubits are

entangled in I|')AB =_ (IL)AIL)B + IR)AIR)B)/V2). We can use the entangled mo-

mentum qubit pair as a quantum channel to teleport Alice's polarization qubit to

Bob's momentum qubit. Then we project the P qubit and M qubit of Alice's pho-

ton into one of the four Bell bases defined as 4') - (IH)IL) + IV)IR)) /v-2 and

I +) (IH)IR) ± IV)IL)) /-\/. Generally the Bell basis projection can be accom-

plished by a Bell state analyzer similar to Figure 4-2. In this case, we can build a Bell

state analyzer for Alice's photon by using a polarization-controlled NOT (P-CNOT)

gate and a Hadamard gate on the polarization qubit as shown on the left-hand side

of Figure 4-3. This Hadamard gate is just a half wave plate (HWP) tilted at 22.50

to rotate the polarization by 7r/4. Then depending on the measurement result of

Alice's Bell state analyzer, the hyper-entangled state will be projected into one of the

following four terms:

1'-)AB )AB = I')A B - AI + IB - I )A B. (4.4)

If we identify I H) and IR) as 10) and identify IV) and IL) as 11), the polarization Bell
state IW)mAB = (IOA1B)+ I1AOB))/\V corresponds to 1'+)B = (Op1M) + I1p0m))/IV

and we expect that |0+)B will be the final state of Bob's photon after a complete

quantum teleportation procedure. If we rewrite Eq. (4.4) into the following expression

+ -



I')AB 90 'MI')AB = {Ik+)A(IP ,M)B - I)A(IP ,M)B

+1+k)A(IP 0 IM)B - lb-)A(IP 0 9z,M)B}I 'I)B , (4.5)

it is clear that complete quantum teleportation can be achieved by applying one of

the four single qubit operators (IM, Ux,M, oy,M, o'z,M) to Bob's momentum qubit

depending on Alice's projection result, due to the property of a ,M = Oy,M = Z,M =

IM. In our scheme, this post-measurement step is omitted and we call it incomplete

quantum teleportation. However, we can certainly distinguish Bob's final four Bell

states using another Bell basis analyzer on his side as shown in Figure 4-3. This means

that if the initial state is hyper-entangled, the results of Bob's Bell basis analyzer and

Alice's Bell basis analyzer should be strongly correlated according to Eq. (4.4). This

type of relation was also used in an entanglement swapping experiment [88], where

only one of the four terms in Eq. (4.4) was measured.

Complete polarization Bell state measurement

The incomplete teleportation discussed in the previous section can be considered in

a different context. It is well known that it is impossible to use only linear optical

components to completely distinguish the four polarization Bell states stored in a pair

of photons [75, 76]. However, if those two photons are also entangled in a different

degree of freedom such as momentum [35, 85, 37] or energy-time [36, 86], we can

circumvent the problem, and this method is called a SPTQ-based complete Bell state

measurement.

Now I will show how incomplete quantum teleportation helps us distinguish four

different polarization Bell states. We define four polarization Bell states as ITp) -

(IH)AIV)B ± IV)AIH)B)/V2 ) and Ip4) - (IH)AIH)B ± IV)AIV)B)/Vf2), and if we

insert I|D) or ITp) instead of IT') on the left-hand side of Eq. (4.5), I'0+)B on

the right-hand side of Eq. (4.5) will also change to JOI)B or [i/-)B, respectively.

Therefore, even if Alice measures the same I)+)A, Bob will measure different Bell



states depending on the initial polarization Bell states, and this correlation between

Alice's Bell state and Bob's Bell state can be used to completely identify the four

polarization Bell states. If we explicitly expand all the possible combinations for the

four different polarization Bell states, we obtain

I'D)>AB 1 IA=>A )AB =+ Ik-)AI-)B + BI+)AIk+)B + I'-)AI->)B

)•>)AB 0 Ikj1)AB = -I¢+)AIk-)B --I-)AI¢+)B - I'+)AIO-)B - I¢->AI +)B

I4) AB 0 IkDI)AB = I0+)AIk+ )B --b-)AIC-)B + I¢+)AIP+)B - I0-)AIP-)B

I') AB 9 IVM)AB = --I)+qAI- )B + I"-r)Ak+)B - I0+$AI )B + I-)AI+)B,
(4.6)

showing all 16 distinct combinations of Alice's Bell state and Bob's Bell state. This

type of complete Bell state measurement was demonstrated by Barbieri et al. [37]

using hyper-entanglement embedded in the polarization and momentum degrees of

freedom and by Schuck et al. [36] using hyper-entanglement in polarization and

time-energy degrees of freedom, and we will use our results of the complete Bell state

measurement to compare the quality of our hyper-entangled state with those from

other groups.

4.3 Experimental setup

Figure 4-4 shows our experimental setup. As a hyper-entangled photon pair source,

we used the bidirectionally pumped type-II SPDC within a polarization Sagnac inter-

ferometer (PSI), which is similar to the polarization entanglement source described in

Section 2.4. For hyper-entanglement in polarization and momentum we utilized the

non-collinear output modes. PPKTP was pumped by a 404.775-nm diode laser with

-5 mW, and, to avoid water condensation at low crystal temperatures, we collected

slightly non-degenerate output wavelengths at 809.55±0.5 nm through a 1-nm inter-

ference filter (IF) on each side. To generate all four polarization Bell states ( l '),

1I4D)), we used the first HWP in Alice's path to switch between Ipp) and j4p). To

switch between I| + ) (I~m4)) and ITp-) (I+)) we changed the pump polarization using

HWPp and QWPp.



P-CNOT Bob

Figure 4-4: Experimental setup for complete Bell state measurements. All the beam
splitters shown in this figure are polarizing beam splitter (PBS). RPBS: removable
PBS, RM: removable mirror, DM: dichroic mirror, IF: interference filter, DA: dual
aperture mask, DP: dove prism, UV-LD: UV-laser diode, IR-LD: IR-laser diode,
1/2HWP: a half-cut HWP that flips the polarization only in the up (U) path.
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In Figure 4-4, the removable mirror (RM) in each output path was used to check

the quality of the polarization entanglement independent of the momentum entangle-

ment. The removable polarizing beam splitter (RPBS) was mainly used to couple a

near-IR laser into the PSI to align the opposite arm. To implement the Bell state an-

alyzer shown in Figure 4-3, each arm had one polarization-controlled NOT (P-CNOT)

gate followed by a half wave plate (HWPH) whose fast axis was tilted by ±22.50.

In this setup, the HWPH was used for two purposes: it implemented a Hadamard

gate, and also, by switching the fast axis of the HWPH between ±22.50, it selectively

transmitted only H or V polarization output from the Hadamard gate through PBSp

to measure the polarization qubit. To measure the momentum qubit, a half-cut HWP

(1/2HWP) followed by another PBS was used. The 1/2HWP changed the polariza-

tion from H to V only in the up (U) path, so that the photons in the U path and

the down (D) path could be spatially separated by the subsequent PBS. On Alice's

(Bob's) side, the photons in the U path was measured by the AU (BU) detector and

the photons in the D path is measured by the AD (BD) detector. At the input of

each P-CNOT gate, we placed one half-wave plate sandwiched by two quarter-wave

plates (QWP) whose fast axes were tilted by 450 with respect to the horizontal axis to

compensate for the phase shifts intrinsic to the P-CNOT gate, as discussed in Section

3.1.2. This combination of the wave plates added only a relative phase shift to the

vertically polarized component without changing the amplitudes of both polarization

components, for any arbitrary polarization input.

To align the P-CNOT gate on Alice's or Bob's side with respect to the output spatial

mode of the hyper-entangled photon pairs, we used a near-IR laser diode (NIR-LD)

which we fiber-coupled and injected into the main system through the RPBS. The

NIR-laser coupled from Bob's arm was used to align the P-CNOT gate on Alice's arm

after going through the PSI, and vice versa. To align the NIR laser to overlap with

the collinear output of SPDC, we constrained the spatial mode of the collinear SPDC

output with an iris near the source shown in the setup of Figure 4-4, and recorded

the location of this collinear output on a CCD camera (not show in the setup). We

then aligned the NIR laser to coincide with the same position on the CCD camera



after going through the same iris.

Another method we tried to overlap the NIR laser with the collinear SPDC out-

put was to use one fiber as a SPDC output coupler. For example, to overlap the

NIR laser from Bob's side with the collinear output propagating to Alice, we first

aligned the fiber coupler on Alice's side so that the output for Alice was maximally

coupled into Alice's fiber coupler. This guaranteed that Alice's fiber coupler was

almost perfectly aligned with the collinear output propagating towards Alice. Then

we would couple the NIR laser injected from Bob's side into the fiber at Alice's side.

When the coupling was maximized, the NIR laser from Bob should be overlapping

with the collinear SPDC output propagating toward Alice. Even though these two

methods were good enough for aligning each P-CNOT gate individually to observe a

high visibility with the classical interference measurement, they were not optimal for

aligning with respect to the hyper-entangled photon pairs. Therefore, for the fine

alignment, we used the polarization-entangled collinear output pairs combined with

the coincidence measurement. Once the alignment with the collinear output mode

is done, we opened up the irises, and inserted dual aperture masks in both arms to

collect non-collinear output pairs for the hyper-entanglement.

We also tried different sizes of dual aperture masks (DA) at different locations, and

the best result was obtained when we placed the DA before the CNOT gate, and also

placed the single apertures with the same diameter directly in front of the detectors.

The optimal diameter of each aperture was 1 mm, and the distance between the

centers of two apertures was 2 mm.

4.4 Measurement result

To demonstrate the complete Bell state measurement, we measured the coincidence

counts (1.6 ns coincidence window [68]) between Alice's Bell state analyzer and Bob's

Bell state analyzer. Figure 4-5 shows the coincidence counts per second between

Alice's measurements and Bob's measurements. For example, if the polarizations of

the two photons shared by Alice and Bob are entangled in ITX')AB state, according
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Figure 4-5: Coincidence counts between Alice's Bell state measurement and Bob's
Bell state measurement. The unit of z-axis is coincidence counts per second, and
each point is averaged over 60 seconds. Pump power was -5mW, and the output
bandwidth was restricted to 1 nm by interference filters.

to Eq. (4.1), we expect to see the same number of coincidences for kb+)Ak¢+)B,

[?-)AI-)B, IB+)Aj)+ )B, Iq-)AIl-)B, and no coincidences for other 12 combinations.

The distribution for I| )AB in Figure 4-5 agrees with this prediction. The coincidence

distributions in Figure 4-5 clearly show that we can determine the polarization Bell

state based on the coincidence signature between Alice and Bob.

We calculate the accuracy of our complete Bell state measurement for different Bell

state inputs. For example, if the input Bell state was |Ih)AB, we have probabilities

of {0.9527, 0.0363, 0.0040, 0.0069} to identify this state as I) AB, fP)AB I)AB,

ITp)AB}. We plot these identification probabilities in Figure 4-6. From this plot, we

I+p)
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see that the major error (05%) comes from the wrong identification between ID)AB

and |p)AB or between I|T)AB and I|F)AB. Those states are different only in their

phases, and we believe these incorrect phases are due to the limited accuracy of the

phase correction in the P-CNOT gates. Our probabilities of four correct identifications

are 94.2%-95.3%, which is higher than 87.7%-89.9% obtained by Barbieri et al. [37]

or 81.1%-88.8% obtained by Schuck et al. [36].

4.5 Summary

In this chapter, we have developed a hyper-entangled photon pair source and demon-

strated a method to verify the hyper-entanglement. To generate a pair of photons

entangled in the polarization degree of freedom and the momentum degree of free-

dom simultaneously, we extended the collinear polarization entangled photon pair

source to operate in the non-collinear mode. To verify the hyper-entangled state,

we used incomplete quantum teleportation which teleports the polarization qubit of

Alice to the momentum qubit of Bob through a quantum channel established by the

o.o0,
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Figure 4-7: Momentum output modes. (a) Possible momentum modes based on a
non-collinear polarization source. (b) Possible momentum modes based on a collinear
polarization source.

known momentum entanglement, and therefore allows the SPTQ-based complete po-
larization Bell state measurement. The result of our SPTQ-based complete Bell state
measurement shows much higher accuracy in identifying the input polarization Bell
states compared to other group's approaches, suggesting the better quality of our

hyper-entangled state and the higher reliability of our SPTQ quantum logic.

Our hyper-entanglement source has a unique feature compared to other types of

hyper-entanglement sources [15, 34, 16, 33]. Other types of hyper-entangled photon

pair sources are generally based on the non-collinear polarization entangled photon

pair sources, and therefore the output spatial modes for Alice and Bob are picked

from the same ring as shown in Figure 4-7 (a). However the output modes for Alice

and Bob in our source are already separated by a PBS so that we can pick any of

the output spatial modes in the entire cone including the collinear mode. This gives

us more freedom in generating a hyper-entangled state. For example, we can use

the entanglement in higher-dimensional momentum qudit [83, 841 or even continuous

momentum entanglement.



Chapter 5

Entanglement distillation using

Schmidt projection

A shared entangled state is essential in many quantum information processing applica-

tions such as quantum teleportation [60], quantum computation [8, 62, 63], quantum

cryptography [61], and quantum repeaters [65]. These protocols generally assume

that maximally entangled states, such as the Bell states, are available between two

remote parties. In reality, these states become non-maximally entangled or partially

mixed because of dissipation and decoherence through interactions with the envi-

ronment. To overcome these problems, several ways to improve the quality of the

entanglement have been suggested [38, 79, 89, 39, 40, 41, 42, 90, 45, 46, 91]. Among

these methods, Schmidt projection [38] has an interesting property that it can be

applied to more than two pairs of entangled qubits at the same time and the distilla-

tion efficiency can approach unity when applied to a large number of pairs. Despite

these advantages, Schmidt projection is considered difficult to implement because it

requires simultaneous collective measurements on multiple qubits.

In this chapter, we present our implementation of Schmidt projection on four

qubits using hyper-entangled photon pairs and single-photon two-qubit (SPTQ) quan-

tum logic. We first describe how the Schmidt projection protocol works, and how this

protocol can be implemented with hyper-entangled photon pairs. Then we show that

we can control the degree of entanglement in polarization and momentum by changing



the pump polarization and the temperature of the crystal, respectively. We also show

that the output of Schmidt projection can be converted into polarization entangled

state, and the experimental results follow.

5.1 Theoretical background

In this section, we first explain the advantage of Schmidt projection over other meth-

ods, and how to extract a maximally entangled state from the partially entangled

state with simple examples. Based on these ideas, we also discuss how to implement

the Schmidt projection method in the experiment.

If we are given one or more pairs of entangled qubits and we can extract from

them a smaller number of pairs with a higher degree of entanglement using local op-

erations and classical communication, this process is called entanglement distillation.

In the literature, this process is also called entanglement purification or entanglement

concentration, but we are following the convention given by Ref. [39], where entan-

glement purification refers to the enhanced purity of a mixed state by extracting a

number of purer entangled states from a larger number of less pure entangled pairs,

and entanglement concentration increases both the degree of entanglement and the

purity of a given state.

As a measure of the degree of entanglement, we are using the following definitions.

For a partially entangled pure state 10) shared by Alice (A) and Bob (B), the von

Neumann entropy of the partial density matrix gives a measure of the entanglement

E(O) [38]:

E(O) = -Tr(pAlog 2 PA) = -Tr(pBlog 2PB), (5.1)

where PA(PB) is the partial trace of 14)(4' over subsystem B (A). In general, 0 <

E(V)) 5 log 2 d for a bipartite qudit system in a 2d-dimensional Hilbert space. A

natural extension for a mixed state with a density matrix p is the entanglement

of formation E(p), which is the smallest expectation value of entanglement E of any

ensemble of pure states realizing p [92]. In other words, to calculate the entanglement

of formation (EOF), we need to consider all possible decompositions of p, that is,



all ensembles of states IJ') with probabilities pi satisfying p = Eipil- ) (Pil. Then

EOF is defined as E(p) = minEipiE(Qi). In general this quantity is difficult to

calculate. However, for a bipartite qubit system, an explicit formula for entanglement

of formation exists [93].

Most of the protocols for enhancing E can only be applied to one [39, 42] or

two pairs of entangled qubits at a time [45, 46, 40, 41] and therefore have a fixed

distillation efficiency independent of the number of initial pairs. In contrast, Bennett

et al. showed that Schmidt projection (SP) can be applied to n pairs of partially

entangled pure state with E( ) to extract n -E(0) pairs of maximally entangled Bell

state in the limit of large n [38], and this property is used to justify the definition of

E in Eq. (5.1) as a measure of the degree of entanglement. Entanglement, and hence

the SP technique, forms the basis of or is related to other common measures such

as EOF, concurrence, and tangle [94]. Despite its role in the theoretical foundation

of quantum information science, SP has been avoided in the experiments due to the

difficulty of collective measurements.

To understand how Schmidt projection works, consider two pairs of identically

entangled state, I1) AB = cos 0I0)A 0 0)B + sin 011)A 0 I1)B, which can be described

by

[I)A 1B 1 ® Ik)A 2B 2

= cos2 010)A IO)A2 O1)B) 1O) s 2 + COsOsin 9 0)A1 1)A2 0O)BJl1)B 2

+sinOcos9l1)A0IO)A 2 11)BJIO)B 2 + sin2 1)AuI1)A 2 1)B1 1Y)B2  (5.2)

= cos 2 0I0)AIO)B + sin 2 0t3)AI3)B + cos 0 sin O(11)AI1B + I2)AI2)B), (5.3)

where in Eq. (5.3) we replace the binary representation of Alice's qubits and Bob's

qubits by qudit notation (decimal number). For two entangled pairs, it is only nec-

essary to project terms with the same coefficient (cos 0 sin 0) whose form is that of a

maximally entangled state. Eq. (5.3) shows that each term is locally orthogonal to

each other, and therefore the result of Alice's local projection is perfectly correlated

to that of Bob's local projection, thus making even classical communication unnec-



essary. In contrast, the non-SP methods used in ref. [45, 46] require that Alice and

Bob compare their measurement results over a classical channel and change the phase

based on their measurements.

When Schmidt projection is applied to n > 2 pairs of I|)AB:

= (cosI10)A1,10)B , + sin 811)A lIB,) ... 0 (COS0IO>)An, O)B + sin 1)An ll)Bn)

= cos"n 0)A, ... IO)A10I)i ... 10),
+cos"-' 0sin(10)A,- ... 10)A._1 1)A•o0)B ... IO)•__, I1)s, +...

+I1)A,10>)A 2 ... 1IO)AI1)BIO)B ... 10)BS)

+ -- + sin" n 1)A1 ... I1)An 1)B1 ... I1)Bn. (5.4)

In Eq. (5.4), among 2n terms, there are n + 1 distinct Schmidt coefficients ( cos" 9,

cos"- 1 0 sin 8, ..., sin" 9), and each group with the same coefficient cosn - k 8 sink 0 has

(2) terms that are maximally entangled, for n > k > 0 [38]. Alice and Bob project

this state into one of n - 1 orthogonal subspaces to extract the maximally-entangled

states. Such a state can be directly used for faithful teleportation in a (n)-dimensional

or smaller Hilbert space, or we can convert this state into a tensor product of Bell

states, as described by Bennett et al. [38]. Consider a projected state

IT)AB = (10)AIO)B + I1)AI1)B + I2)AI2)B)/V3. (5.5)

The easiest but inefficient way to extract a Bell state from Eq. (5.5) is to project this

state into a subspace made of {10), I1)}. Then this projection extracts a Bell state

with a success probability of 2/3. However, if we have two identical IT)AB states, we

can extract the Bell state with a much higher success probability. If we combine the

two identical states, the entire state becomes

IT)AB 0 IT)AB

= 1/3(I0)AIO)B + I1)AI1)B + 12)AI2)B + 13)AI3)B + 14)AI4)B + 15)AI5)B



+16)A16)B + 17)A17)B + 18)A18)B) (5.6)
S2 A B + )A8)AI8)B , (5.7)

where we use the qudit notation in Eq. (5.6) and the qubit notation for the tensor

product in Eq. (5.7). Eq. (5.7) clearly shows that we can extract the Bell states more

efficiently (8/9 of success probability) by combining two copies of IT)AB than a single

IT)AB. It is also proven that if this type of combining procedure is applied to many

higher-dimensional maximally-entangled states, the efficiency of the conversion to a

tensor product of Bell states approaches unity [38]. This step is not necessary in our

experiment because, when Schmidt projection is applied to two pairs, the successful

output is already a Bell state.

In the experiment, we demonstrate a proof-of-principle implementation of Schmidt

projection by applying the SP protocol to two pairs of entangled qubits such as those

given by Eq. (5.3). In our implementation, as an initial state, we use partially

hyper-entangled photon pairs given by

I)p)0 ICM) = (COSOpV)AIV)B + sinOplH)AIH)B)

® (cosOMIL)AIL)B + sin OMIR)AIR)B) , (5.8)

where subscript P (M) refers to polarization (momentum), H (V) represents hori-

zontal (vertical) polarization, and L (R) is the left (right) path shown in figure 5-1.

Schmidt projection requires that the two input pairs are identically entangled, and

we set Op = Om = 0 by the method described in the next section. With this setting,

Eq. (5.8) can be expanded into

Cos 2 OIVL)AIVL)B + sin 2 GIHR)AIHR)B + cos 0 sin 9 ( VR)AIVR)B + IHL)AIHL)B) .

(5.9)
Eq. (5.9) shows that we can realize SP protocol by transmitting the V-polarized

photon in the R path and the H-polarized photon in the L path, which can be

implemented with the SPTQ quantum logic introduced in Chapter 3. In the next



section, we will describe how to implement these ideas in the experiment.

5.2 Experimental setup

In the previous section, we showed that we can demonstrate Schmidt projection by

combining the hyper-entangled photon pairs and SPTQ quantum logic. In this sec-

tion, we first show how to generate a partially hyper-entangled photon pair. Then

we proceed to describe the methods for performing the Schmidt projection on the

hyper-entangled state using SPTQ quantum logic and for verifying the input and

output of the distillation.

5.2.1 Generation of partially hyper-entangled photon pairs

To generate the hyper-entangled state that are entangled in both polarization and

momentum degrees of freedom, we utilize spontaneous parametric down-conversion

(SPDC) in a type-II phase-matched periodically poled KTiOPO4 (PPKTP) crystal

pumped by -5 mW, similar to that described in Chapter 4. Efficient SPDC generation

was accomplished using a polarization Sagnac interferometer (PSI) with bidirectional

pumping at a wavelength of 404.775 nm and a crystal temperature of - 190 C. The

nondegenerate outputs at 809.55 ± 0.5 nm were detected through 1-nm interference

filters (IF) to restrict the SPDC output bandwidth, thus obtaining high quality po-

larization entanglement. Compared to Chapter 4, the setup in this chapter has one

important difference. In Chapter 4, to generate the maximally hyper-entangled state,

we align the double aperture (DA) mask at a symmetric location with respect to the

pump axis, whereas in this chapter, we aligned the right aperture to coincide with

the pump axis as shown in Figure 5-1. The diameter of each aperture was 1 mm, and

the distance between the centers of two apertures was 2 mm. This asymmetric choice

of the two output paths allows us to control OM in Eq. (5.8) as follows.

Consider only the output in the collinear mode (RA-RB), corresponding to (a)

and (b) of Figure 5-1, we showed in Chapter 2 that the output state is proportional
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I>)aARR - (COS OBpRA•t R + e sin Op,R b)It 0), (5.10)

where iRA (bHi,R,) is a V (H) polarized photon creation operator for Alice's RA

(Bob's RB) path, and similarly for SyR and btRA. The relative amplitude (Op) and

phase (q) of the output state are determined by the adjustable relative amplitude

and phase between the H and V polarization components of the pump. Similarly, if

we focus only on the LA-LB output, corresponding to (c) and (d) of Figure 5-1, the

output state is proportional to

)LALB (COp ,LAL + e'O sin Hp&V,LA H,L)I0)>, (5.11)

where Op and q are the same as those in Eq. (5.10), because they are generated by

the same pump laser. Now we consider the outputs in all four paths, then we have

a superposition of Eq. (5.10) and Eq. (5.11). In general, the collinear output modes

(A, bRB) and the non-collinear output modes ( LA' bL) are excited with different

probability amplitudes depending on the phase-matching condition, as explained in

Section 2.1.3. Therefore, the four-path output state is an unbalanced superposition

given by

COsOMI|)LALB + sin OMIO)RARB

= cos M(cos OpIHRA) IVRB) + ei sin Op I VRA) IHRB))

+ sin OM(cosOpIHLA) IVLB) + e~ sin OpIVLA)IHLB))

= (cosOpIHA)IVB) + e' sinOpIVA)IHB)) (cos OMILA) ILB) + sin OMIRA) IRB))

Figure 2-5 in Chapter 2 shows that we can change the flux ratio between the collinear

output mode and the non-collinear output mode by adjusting the crystal phase-

matching temperature, thereby allowing us to control OM. In the experimental setup,

we have a half-wave plate placed in Alice's path, which flips Alice's polarization, and

the final state is a partially hyper-entangled state given by Eq. (5.8). As an input

state for Schmidt projection, we set Op = Om = 0 except when we characterize the



input state as described in Section 5.3.1.

5.2.2 Implementation of Schmidt projection

To realize Schmidt projection on the hyper-entangled state, we use the SPTQ quan-

tum logic introduced in Chapter 3. Schmidt projection can be implemented by com-

bining a polarization beam splitter and half-wave plates which selectively change

the polarizations in two paths (L, R). The output state of the Schmidt projection

operation is converted by P-CNOT gates into a form of the polarization-entangled

state so that we can analyze the output state in terms of the polarization correlation

measurement.

Polarization
analyzer

(b)
U, D

L HWP PBS

R QWP DP

I - I

Figure 5-2: Entanglement distillation scheme for hyper-entangled photons. Both
Alice and Bob have the same setup. (a) Schmidt projection transmits only two terms
(IVR), IHL)) of the initial state given in Eq. (5.8). P-CNOT gate combines two paths
(R, L) into a common path for polarization state analysis. (b) P-CNOT with the phase
compensation.

Figure 5-2 (a) shows the apparatus for implementing the Schmidt projection

method. The key step is to project the initial state given by Eq. (5.9) into a subspace

composed of JVR) and IHL) for both Alice and Bob without destroying any qubits.

In principle, this can be accomplished by using one PBS in the L path transmitting

the H-polarized photon in the L path and another PBS rotated by 900 around R

axis transmitting the V-polarized photon in the R path. Then the other two cases

will be reflected. To simplify the setup, we used HWP 1 to flip the polarization in the

R path before using PBS, to transmit the desired subspace components. Instead of

recovering the polarization state in the R path after PBS1, we flipped the polariza-

(a) Schmidt
projection

P-CNOT -L-

R-



tion state in the L path with HWP 2, so that the output after Schmidt projection was

cos 0 sin 9(IHR)AIHR)B + IVL)AIVL)B). Note that HWP 1 and HWP2 are essentially

M-CNOT gates described in Section 3.1.1, where we showed that each M-CNOT gate

needs a dummy HWP to compensate for the path length difference. However, in this

setup, we eliminated the need for path-length compensation between the two paths

by arranging HWP 1 to be R and HWP 2 to be L.

For analysis of the projected state (IHR)AIHR)B + IVL)AIVL)B), we first folded

the L-path output and the R-path output into a common path (D) by use of a P-

CNOT gate in Figure 5-2 (a), which transformed the output of Schmidt-projection

into (IH)AIH)B + IV)AIV)B)JD)AID)B, where D was one of the two output paths

from the P-CNOT gate. The P-CNOT gate was made of a dove prism (DP) embedded

in a polarization Sagnac interferometer to rotate the incoming image (two parallel

beams) by +900 depending on the beam polarization as shown in Figure 5-2 (b). The

P-CNOT gate has the following mapping: IHL) --+ IHU), IHR) --+ IHD), IVL) -*

IVD), IVR) -- IVU), where U (D) means up (down). Our P-CNOT implementation

introduced a certain amount of fixed phase shifts depending on the input polarization

that we compensated by adding two QWPs and a HWP at the input, as described

in Section 4.3. This phase compensator was also utilized to add the necessary 7r/2

phase shift in our quantum state tomography measurements.

To verify that we had a maximally-entangled final state (10+) - (IH)AIH)B +

IV)AIV)B)/v/2) at the output, we recorded the coincidence counts between the mea-

surement from Alice's polarization analyzer and Bob's polarization analyzer. Each

polarization analyzer was composed of HWP 3, PBS2 , and detectors (D) as shown in

Figure 5-2 (a), and the measurement basis for the polarization analyzer was set by

HWP 3 .

5.3 Experimental results

To show that our implementation of the SP method works, we provide various mea-

surement results characterizing the initial state before and the output state after
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Figure 5-3: Characterization of the initial state. (a) Measured coincidences per second

of IL),IL)i and IR),IR)i terms for the input state Om = 35.90 (Op = 450). (b) IV),IV)i
and IH),IH)i terms for the input state Op = 35.90 (On = 450). (c) Initial state of

polarization qubits (C(H, H)/C(V, V)) as a function of initial state of momentum

qubits (C(R,R)/C(L,L)). Open square shows the measurement results, and the

ideal case is shown with a straight line. Photon pairs were generated by 5 mW UV

pump, and the bandwidths of the detected output photons were limited to 1 nm by

interference filters.

distillation. For the input state characterization, we compare the degree of entangle-

ment in the polarization qubits (Op) and the momentum qubits (OM). For the output

state, we check how close the output state is to I0+) independent of the input states.

In the experiment, we used four different input states (0 = 44 , 41.90,39.30, 35.90),

and the measurement results for these input states are summarized in this section.

5.3.1 Characterization of input state

To characterize the input hyper-entangled state, we utilized our capability to control

0M and Op independently. To measure the distribution of IL)AIL)B and IR)AIR)B,

we set Op = 45' in Eq. (5.8), and applied Schmidt projection and P-CNOT operations

using the same setup in Figure 5-2 (a). This produced

(sin OMIH)AIH)B + cosOMIV)AIV)B)ID)AID)B/V.'i (5.12)
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In Eq. (5.12), the polarization qubits now carry the coefficients related to OM which

originates from the distribution of the momentum qubits. By measuring coincidences

C(H, H) and C(V, V), we obtained the relative size of sin 2 9 M and cos 2 9M. C(X, Y)
denotes the number of detected coincidences per second between X-qubit measure-

ment by Alice and Y-qubit measurement by Bob. Figure 5-3 (a) shows the measured

distribution of the momentum qubits for 9 = 35.90 . Similarly, to obtain the distribu-

tion of IH)AIH)B and IV)AIV)B, we set OM = 450 by choosing an appropriate PPKTP

temperature. After Schmidt projection and the P-CNOT gate, this state became

(cos OPIH)AIH)B + sin OpIV)AIV)B)ID)AID)B/V/2, (5.13)

and we measured the polarization distribution. Figure 5-3 (b) shows the distribu-

tion of the polarization qubits for the case of 0 = 35.90. Note that Figure 5-3 (a)

and (b) have the different scales, because the two measurements were taken at two

different temperatures resulting in different output fluxes. We are only interested in

the ratios C(R, R)/C(L, L) and C(H, H)/C(V, V) that are functions of OM and Op,

respectively, and Figure 5-3 (a) and (b) show that both ratios are nearly identical,

C(R, R)/C(L, L) ý C(H, H)/C(V, V) - 0.5, as required by the SP protocol. We also

measured the momentum qubit distribution and the polarization qubit distribution in

the same way for different settings of 0, and plotted C(H, H)/C(V, V) (open squares)

as a function of C(R, R)/C(L, L) in Figure 5-3 (c), where we see that the initial

polarization states are well matched to the initial momentum states (Om ,• Op). The

ideal distribution ratio is also shown in Figure 5-3 (c) as a straight line.

5.3.2 Characterization of the output state after Schmidt pro-

jection

After the distillation, we expect the resulting state is a maximally entangled state

10¢) = (IH)AIH)B + IV)ALV)B)/V2, (5.14)
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Figure 5-4: Characterization of the output state. (a) Measured coincidences per
second of the four terms in Eq. (5.14) for the input state with 0 = 35.90. (b)
Plot of C(H, H)/C(V, V) of the output state as a function of C(R, R)/C(L, L) of
initial momentum qubits. Photon pairs were generated by 5 mW UV pump, and
the bandwidths of the detected output photons were limited to 1 nm by interference
filters.

which has the same probability of detecting IH)AIH)B and IV)AIV)B terms, but zero

probability of detecting IH)AIV)B and IV)AIH)B terms. Figure 5-4 (a) shows the co-

incidence measurement results of the output from Schmidt projection when the input

state is Op - OM = 35.90. This result shows that the output state has nearly balanced

IH)AIH)B and IV)AIV)B terms and negligible IH)AIV)B and IV)AIH)B terms. For

other input states, the coincidence counts for IH)AIV)B and |V)AIH)B terms were

still negligible, and in Figure 5-4 (b), we plot C(H, H)/C(V, V) of the output state

(solid triangles) as a function of the input states, and all the measured ratios lie close

to the ideal value of unity with less than 5% error.

To show that the distilled output is indeed entangled as a coherent superposition,
not as a classical mixture, of IH)AIH)B and IV)AIV)B, we need to make other types of

measurements. We performed quantum state tomography on the output state based

on 16 coincidence measurements, and the real and imaginary parts of the output

density matrix p are displayed in Figure 5-5 (a) and (b), showing clearly that the
state is I0+ ) with a fidelity, (O+IplIO), of 0.952.

Another useful indicator of its coherence is two-photon quantum interference vis-
ibility measured in the diagonal basis (IH) + IV)). Figure 5-6 plots the measured
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Figure 5-5: Measured density matrix of the output state after Schmidt projection is
applied to the initial state with 0 = 35.90. (a) Real part. (b) Imaginary part.
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Figure 5-6: Measured quantum interference visibility in the diagonal basis (IH) ± I V)).

visibilities for different input states, all showing -90% visibility except one lower-

visibility point that was caused by a slight misalignment of the apparatus. Part of

the visibility loss comes from the imperfect P-CNOT gate that has a classical visibility

of -93% as discussed in Section 3.2.4. Another possible source of the visibility loss

is the slight spectral mismatch of the output photons from the asymmetric output

spatial modes. The output spectrum of the output photons was mainly governed by

the IF, but due to the different spectral distribution depending on the emission angle,

the output spectrum after the IF could be slightly different.

From the various measurement results shown in Figure 5-4, 5-5, and 5-6, we
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Figure 5-7: Measured efficiency of our Schmidt projection implementation. Success
probability of obtaining a maximally entangled pair after Schmidt projection is ap-
plied to a pair of hyper-entangled state (or the amount of entanglement remaining in
the final state) is plotted as a function of entanglement in the initial state (E('i)).
Open circle is the measured probability and the solid curve is the theoretical pre-
diction when Schmidt projection is applied to a hyper-entangled state. The dashed
curve shows the maximum amount of entanglement obtainable with Schmidt projec-
tion when it is applied to infinite number of pairs.

conclude that our distillation outputs were in the 1(+) state independent of the input

states.

One of the key advantages of the Schmidt-projection protocol is its high distilla-

tion efficiency, especially for a large number of initial pairs. We have measured the

efficiency of our Schmidt projection implementation in terms of the success probabil-

ity of obtaining distilled pairs from each hyper-entangled photon pair. The measured

success probability is plotted in Figure 5-7 as open circles, which agrees well with the

theoretically calculated values (solid curve). In comparison, the dashed line shows the

maximum efficiency obtainable by the Schmidt projection protocol when it is applied

to infinite number of input pairs. In general, Schmidt projection shows a lower yield

than Procrustean methods [38, 421 when it is applied to less than 5 pairs, as in our

case. However, Schmidt projection still has the advantage that it is unnecessary to

adjust the distillation setup as a function of the input states.
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5.4 Summary

In this chapter, we have experimentally demonstrated the Schmidt projection method

which is one of the most powerful distillation protocols. To generate pairs of partially-

entangled states, we used the hyper-entangled state generated by the SPCD process.

We have also developed a technique to control the polarization entanglement and

the momentum entanglement of the hyper-entangled photon pairs individually and

used this capability to prepare the identical pairs for the initial state and also to

characterize the initial state. Schmidt projection on the hyper-entangled photon

pairs was realized by a PBS and two M-CNOT gates, and a P-CNOT gate was used

to convert the output of SP into a polarization Bell state. Our experimental results

show that Schmidt projection can distill maximally entangled states independent of

the degree of entanglement in the initial state, and our distillation efficiencies agree

with the theoretical prediction.

If classical communication is utilized to compare the projection results, then

Schmidt projection can also be used to perform purification of certain types of mixed

states, such as p = Ep i)(¢1+(1-p)O01) (011, as well as a mixture of two identically de-

cohered pairs [45]. It is also important to recognize that the key to our SP implementa-

tion is that distinct tensor products of local qubits (10)110)2, 10)111)2 11)110)2, 11)111)2)

can be encoded in physically distinguishable states (IVL), IVR), IHL), IHR)). There-

fore the same concept can be applied to other qubit systems such as cavity quantum

electrodynamics (cQED) [95, 2] or trapped ion [96] systems, where multiple qubit

states can be mapped into multiple internal states within the same atom. Further

studies of Schmidt-projection implementations in atoms and ions and for mixed states

should enhance our expanding collection of tools in quantum information science.
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Chapter 6

Complete physical simulation of

the entangling-probe attack on

BB84 QKD

Quantum key distribution (QKD) has been an active research area of quantum in-

formation science, since Bennett and Brassard [4] proposed their QKD protocol in

1984 (BB84), whose security is protected by the no-cloning theorem [97]. Due to its

relatively simple configuration, BB84 has been implemented by many groups in free-

space [47, 48, 49, 50] as well as in fiber [51, 52, 53]. Security of BB84 also has been the

subject of many analyses [98, 99, 47, 100], particularly for configurations that involve

non-ideal operating conditions [101, 102, 103], such as the use of weak laser pulses in

lieu of single photons. However, a more fundamental question is how much informa-

tion the eavesdropper (Eve) can gain under ideal BB84 operating conditions. A series

of work by Fuchs and Peres [54], Slutsky et al. [55], and Brandt [56] show that the

most powerful individual-photon attack can be accomplished with a controlled-NOT

(CNOT) gate. In this scheme, Eve supplies the probe qubit to the CNOT gate, which

entangles this probe qubit with the BB84 qubit that Alice is sending to Bob. Eve

then makes her measurement of the probe qubit to obtain information on the shared

key bit at the expense of imposing detectable errors between Alice and Bob.

Shapiro and Wong [57] showed that this Fuchs-Peres-Brandt (FPB) entangling
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Figure 6-1: Illustration of BB84 QKD protocol. Alice randomly chooses one of the
four angles (OA) of HWPA for each photon. Bob also randomly chooses one of the
two angles for HWPB before he measures the single photon.

probe can be implemented in a proof-of-principle experiment, using single-photon

two-qubit (SPTQ) quantum logic.

In this chapter, we present our experiment implementing the FPB entangling

probe attack as a complete physical simulation including physical errors. This exper-

iment is only a physical simulation because the two qubits of a single photon carrier

must be measured jointly, so that Eve needs access to Bob's receiver, but not his mea-

surement. The SPTQ probe could become a true attack if quantum non-demolition

measurements in Section 6.4 were available to Eve [57].

6.1 Theoretical background

BB84 QKD protocol

In BB84 protocol, in each time interval allotted for a bit, Alice transmits a single

photon in a randomly selected polarization, chosen from horizontal (H), vertical

(V), +45' diagonal (D), and -45' antidiagonal (A), while Bob randomly chooses to

detect photons in either the H-V or D-A bases, as shown in Figure 6-1. After the

transmission is over, Alice and Bob compares their choices of polarization bases for

each transmitted photon over a classical channel, and keeps the case when both used

the same bases. These are the sift events, i.e., bit intervals in which Bob's count has

occurred in the same basis that Alice used. An error event is a sift event in which Bob
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Figure 6-2: Block diagram of the Fuchs-Peres-Brandt probe for attacking BB84 QKD.

decodes the incorrect bit value. Alice and Bob employ a prescribed set of operations

to identify errors in their sifted bits, correct these errors, and apply sufficient privacy

amplification to deny useful key information to any potential Eve [47, 100]. At the

end of the full QKD procedure, Alice and Bob have a shared one-time pad with which

they can communicate in complete security.

FPB entangling-probe attack on BB84

In an individual attack on single-photon BB84 QKD, Eve probes Alice's photons

one at a time. Fuchs and Peres [54] described the most general way in which an

individual attack could be performed. Eve supplies a probe particle which can be any

quantum object and lets it interact with Alice's photon in a unitary manner. Eve then

sends Alice's photon to Bob, and performs a positive operator-valued measurement

(POVM) on the probe particle she has retained. Slutsky et al. [55] demonstrated

that the Fuchs-Peres construct, with the appropriate choice of probe state, interaction,

and measurement, affords Eve the maximum amount of Renyi information about the

error-free sifted bits that Bob receives for a given level of disturbance, i.e., for a

given probability that a sifted bit will be received in error. Brandt [56] extended

the treatment of Slutsky et al. by showing that the optimal probe could be realized

with a single CNOT gate. Figure 6-2 shows an abstract diagram of the resulting FPB

entangling probe. In the following discussion, the photon sent from Alice to Bob will

be simply called the BB84 qubit, and Eve's particle or quantum object will be called

the probe qubit.
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Figure 6-3: Relations between different bases. (a) Control qubit basis for Eve's CNOT
gate referenced to the BB84 polarization states. (b) ITo) and IT1) relative to the
target qubit basis for some PE $ 0.

To obtain information about the BB84 qubit, Eve needs to set up a CNOT gate

whose control-qubit computational basis ({I0)c, I1)c}) is tilted by 7r/8 rotation from

the BB84 H-V basis, as shown in Figure 6-3 (a),

IO)c = cos(r/8)IH) + sin(ir/8)jV) ,

I1)c = - sin(7r/8)IH) + cos(r/8)tV) . (6.1)

This can be easily implemented by a H-V basis CNOT gate with basis transformation

operation (R±,/8) before and after the CNOT gate, as shown in Figure 6-2.

Having selected the error probability, PE, that she is willing to create, Eve prepares

her probe qubit (CNOT's target) in the initial state

ITin> = {(C + S)IO)T + (C - S)I1)TI}/V, (6.2)

where C = /1 - 2 PE, S = V , and {IO)T, I1)T} is the computational basis of the

CNOT gate's target qubit. After the CNOT operation-with inputs from the BB84

qubit and the probe qubit-the two qubits become entangled. For each of Alice's

four possible inputs, |H), IV), ID), and IA), the output of the CNOT gate is

IH)ITin) | IHout) I|H)ITo) + IV)ITE), (6.3)

IV)lTin) -+ IVout) IV)IT|) + IH)ITE) , (6.4)

ID)ITO n) - IDout) ID)ITo) - IA)ITE), (6.5)
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IA) ITin) -* IAout) IA)ITI) - ID)ITE),

where the kets on the left-hand side denote the Alice 0 Eve state of the control and

target qubits at the CNOT gate's input and the kets on the right-hand side denote

the Bob 0 Eve state of the control and target qubits at the CNOT gate's output.

The (un-normalized) output target qubit states ITo), ITi), and ITE) are defined in the

target qubit's computational basis (see Figure 6-3(b)) as:

ITo) = - + 0) + 1)T, (6.7)22 2
IT1) -- - O + + 1), (6.8)

S
ITE) (10)T - I1)T) . (6.9)2

Consider the case in which Bob measures in the same basis that Alice employed

and his outcome matches what Alice sent. Then, according to Eqs. (6.3)-(6.6), the

target qubit is projected into either ITo) or IT1). After Alice and Bob compare their

basis selections over the classical channel, Eve can learn about their shared bit value

by distinguishing between the ITo) and IT,) output states of her target qubit. To do

so, she employs the minimum error probability receiver for distinguishing between ITo)

and IT,) by performing a projective measurement along I0)T and 11)T. Eve can then

correlate the measurement of I0)T (I1)T) with ITo) (IT1 )). Note that this projective

measurement is not perfect unless ITo) and IT1) are orthogonal and hence coincide

with the target's computational basis, I0)T and I1)T.

Figure 6-4 shows the examples of the initial probe qubit state (ITin)) and possi-

ble final probe qubit states (ITo), IT1), ITE)) with respect to the computational basis

(IO)T, I1)T) of the target qubit. Figure 6-4 (a) corresponds to the case when Eve

causes no error. In this case, ITo) and IT1) become identical and Eve cannot distin-

guish between these two vectors at all, as was expected. Figure 6-4 (b) shows the

general situation (0 < PE < 1/3), and Eve cannot get the perfect information about

Bob's measurement because IT,) and ITo) are not orthogonal. If PE = 1/3 which
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(a) PE =0 (b) 0 < PE< 1/3 (c) PE= 1/3
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target 1
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Figure 6-4: Target qubit state before and after the entangling CNOT gate for different
error rate PE. Computation bases of target qubit (IO)T, I1)T) are shown with dashed
arrows for reference.

corresponds to Figure 6-4 (c), IT1) and ITo) become orthogonal to each other, and

Eve can perfectly correlate her measurement with Bob's measurement whenever there

is no error between Alice and Bob. Note that regardless of the basis that Alice and

Bob choose (H - V or D - A), Eve needs only to distinguish between I0)T and 11)T.

Therefore she can measure her probe qubit immediately, obviating the need for any

quantum memory in the FPB probe attack.

Eve's information gain comes at a cost: Eve has caused an error event whenever

Alice and Bob choose a common basis and Eve's probe output state is ITE). When

Alice sent IH) and Bob measured in the H-V basis, Eq. (6.3) then shows that Alice

and Bob will have an error event if the measured output state is IV)JTE). The

probability that this will occur is (TEITE) = S2 /2 = PE, as shown with different

lengths of ITE) in Figure 6-4. For the other three cases in Eqs. (6.4)-(6.6), the error

event corresponds to the last term in each expression. Therefore the conditional error

probabilities are identical, and hence PE is the unconditional error probability.

We use R6nyi information to quantify Eve's information gain about the sift events

because privacy amplification [100] requires an estimated upper bound for Eve's R~nyi

information about the corrected data [55]. Let B = {0, 1} and E = {0, 1} denote the
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ensembles of possible bit values that Bob and Eve receive on an error-free sift event.

The Renyi information (in bits) that Eve learns about each error-free sift event is

IR -log 2  p2(b) + E P(e) log2  p2(b e) , (6.10)

where {P(b), P(e)} are the a priori probabilities for Bob's and Eve's bit values, and

P(ble) is the conditional probability for Bob's bit value to be b given that Eve's is

e. According to Bayes' rule, P(ble) can be calculated in terms of the P(b, e) which is

the probability of both Bob's bit to be b and Eve's bit to be e:

1
P(ble) = P(b, e)/ E P(b, e), (6.11)

b=O

where P(b = 0, e) = I((VI (9 T(eI)IVout)l 2 and P(b = 1, e) = I((HI T(e)l1Hout)12 in

the case of the H-V basis. For the case of the +45' basis, I + 450) corresponds to

b = 0 and I - 450) to b = 1. With a perfect channel and perfect equipment, this leads

to the theoretical prediction [57]

(log2  
4PE(1 - 2PE) (6.12)

which we plot in Figure 6-5. Under these ideal conditions, Eve's R6nyi information

is the same for both bases, but in actual experiments it may differ, owing to differing

equipment errors in each basis.

Figure 6-5 shows some of the interesting performance points. The IR = O, PE = 0

point in this figure happens when Eve operates her CNOT gate with ITi,) = (10)T + I1)T) /2/2
for its target qubit input, corresponding to Figure 6-4 (a). It is well known that such

an input is unaffected by and does not affect the control qubit. Thus Bob suffers no

errors, as the zero-length of ITE) implies, but Eve gets no R6nyi information because

we cannot discriminate ITo) from IT1). The IR = 1, PE = 1/3 point in Figure 6-5,

which also corresponds to Figure 6-4 (c) case, happens when Eve operates her CNOT

gate with Ti) = {(1 + V) 10)T•+ (1 - /2) I1)T}/V(, which leads to ITo) oc O)T and

IT1) oc 11)T. In this case, Eve can always discriminate ITo) from ITI) with no errors,
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Figure 6-5: Eve's Renyi information about Bob's error-free sifted bits as a function
of the error probability that her eavesdropping creates.

so she obtains the maximum (1 bit) Renyi information about each of Bob's error-free

bits. The IR = 0, PE = 1/2 point corresponds to Eve's operating her CNOT gate with

ITin) = (10)T - I1)T) /v2, which gives ITo) = IT1) = ITE) = (10)T - 11)T) /2. Here

it is clear that Eve gains no information about Bob's error-free bits, but his error

probability is 1/2 because of the action of target qubit ((I0)T - |1)T) /Vi) on the

control qubit.

6.2 Experimental setup

To simulate the entangling-probe attack shown in Figure 6-2, we need deterministic

quantum logic to manipulate the two qubits, and SPTQ is an excellent candidate

for this purpose. In particular, because Alice's BB84 qubit is already encoded in the

polarization and it generally propagates in a single spatial mode in free space or in

an optical fiber, we can immediately use its spatial mode (momentum) as the probe

qubit. Figure 6-6 shows the quantum circuit diagram of our SPTQ implementation

of the entangling-probe attack. One difference from Figure 6-2 is that we are using a

pair of polarization-entangled photons in the singlet state for a practical reason [57].
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Figure 6-6: Quantum circuit diagram for the FPB-probe attack. Photon 1 of a
polarization-entangled singlet-state photon pair heralds photon 2 and sets Eve's probe
qubit (momentum qubit) to its initial state. The SWAP gate allows Alice's BB84 qubit
to be set in the polarization mode of photon 2, whose momentum mode is Eve's probe
qubit. The CNOT gate entangles Alice's qubit with Eve's qubit. R-o, rotation by Eve;
RA, rotation controlled by Alice; RB, rotation controlled by Bob; R±/s8 , rotation by
angle ±+r/8.

Photon 1 of the singlet-state photon pair serves two purposes. It is obvious that it is

used as a trigger to herald photon 2 as a single-photon pulse for the BB84 protocol.

Another purpose is to remotely initialize the momentum qubit in the following way:

A SWAP operation applied to photon 2 exchanges its polarization and momentum

qubits so that the polarization of photon 1 and the momentum of photon 2 are now

entangled in a singlet state. Eve can then encode her probe qubit in the momentum

state of photon 2 by projecting photon 1 along an appropriate polarization state set

by a polarization rotation R-e. The polarization state of photon 2 after the SWAP

gate can be used for Alice's BB84 qubit, which is set by rotation RA, as usual with

the BB84 protocol. Similarly, Bob's polarization analysis of the BB84 qubit is set

by RB. Therefore the quantum circuit in Figure 6-6 produces the same result as

in Figure 6-2. In this configuration, Eve is heralding the photon on which Alice

is encoding polarization. However, an equivalent experiment could be performed

if Alice polarization-encoded a single-photon source, after which Eve imposed her

momentum qubit by a single qubit operation on the momentum qubit using a SWAP

gate, as described in Section 3.1.3.

The CNOT gate that Eve employs in Figure 6-6 is a polarization-controlled NOT
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(P-CNOT) gate that uses the polarization qubit as the control and the momentum

qubit of the same photon as the target (Section 3.1.2). The SWAP gate is composed

of one P-CNOT gate sandwiched by two momentum-controlled NOT (M-CNOT) gates

as described in Section 3.1.3.

(10)10))

Figure 6-7: Experimental configuration for a complete physical simulation of the
FPB attack on BB84. SPDC, spontaneous parametric down-conversion source; H,
half-wave plate; Q, quarter-wave plate; P, polarizing beam splitter; D, single-photon
detector. R, L refer to spatial paths.

Figure 6-7 shows our experimental setup for implementing the quantum circuit

given in Figure 6-6. We used the singlet output state at - 810 nm generated from

the polarization-entangled photon pair source using a periodically poled KTiOPO 4

(PPKTP) crystal, described in Section 2.4. This source was pumped by a continuous-

wave laser with 4.9 mW power and A, = 404.757 nm. The output bandwidth was

limited to 1 nm by interference filters, and the collimated output beam had a beam

waist of wo = 0.53 mm. In a collimated configuration, the momentum state of a

photon is the same as the spatial orientation of the beam, for which we use the

right-left (R-L) basis and we aligned the output path of photon 2 to match the R

input path of the SWAP gate as shown in Figure 6-7. This is equivalent to setting the

momentum qubit to 10) in Figure 6-6 under the mapping of R (L) to 10) (11)). The

centers of the L and R beams were separated by -2 mm.

To align this output with respect to the SWAP gate and the subsequent CNOT gate,

we first overlapped this output with a classical laser with the same wavelength and

the same beam waist at a far distance using a single-photon counter for detection.

Then we used the classical interference to align the SWAP gate and the CNOT gate
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along the center path of those gates. Finally we shifted the classical beam by N1 mm

to the right while the classical interference at the output of CNOT gate was monitored.

For each photon pair, photon 1 is used to herald the arrival of photon 2 and also to

remotely control the momentum qubit of photon 2 by postselection. The R-0 polar-

ization rotation by Eve was implemented using a quarter-wave plate (QWP) Q1 and

a half-wave plate (HWP) H1, followed by a polarizing beam splitter (PBS) P1 and

a single-photon detector (D1). In principle, Eq. (6.2) requires only the polarization

rotation without any phase shift, and therefore we need only H1. However, Q1 was

added to compensate for an intrinsic phase shift ( imposed by the SWAP gate on the

target-qubit basis {10)T, I1)T}, as explained in Section 3.1.3. We have independently

measured ( = 880 during the alignment procedure using classical laser light. There-

fore, the R-e operation prepared the momentum qubit in ITi') with an extra phase

shift (

ITin) cos Oin o)T + esin oin 1)T. (6.13)

The extra but opposite phase shift of the SWAP gate would bring Eve's probe qubit

to be in ITin) of Eq. (6.2).

After the SWAP gate, RA and R,/ 8s were combined in a single operation. The

P-CNOT gate had the same phase shift problem as the SWAP gate, so we used a HWP

(H2) and a QWP (Q2) to compensate for this phase shift and to impose the required

rotation. After H2 and Q2, the BB84 qubit becomes

I1 A) - COSOAI0)c + eiX sin OAI1)c, (6.14)

where X (- 980) is the compensating phase shift and OA, which is the sum of Alice's

angle and -22.5', is -22.50, 22.50, 67.50, or 112.50 for IH), ID), IV) or IA), respec-

tively, as shown in Figure 6-3(a). Similarly we combined R,/s and RB into a single

HWP (H3) in Figure 6-7 and a PBS (P2) was used by Bob to analyze the polarization

of the BB84 qubit.

Eve measured her qubit by a projective measurement along the IO)T-11)T (spa-

tially, R-L) basis. A HWP (H4/H5) was placed in the R or L beam path, as indicated
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Coincidence Estimated
Alice PE 11)10) 11)11) 10)11) 10)10) 11)10) 11)11) 10)11) 10)10)

0 1356 1836 23408 23356 0.027 0.037 0.469 0.468
ID) = 10) 0.1 2840 4220 9664 32592 0.058 0.086 0.196 0.661

0.33 7512 9496 1512 30916 0.152 0.192 0.031 0.625
0 22664 23388 1140 1112 0.469 0.484 0.024 0.023

IA) = I1) 0.1 8480 34492 4088 2052 0.173 0.702 0.083 0.042
0.33 1096 32360 9384 6564 0.022 0.655 0.19 0.133

Expected
Alice PE 11)10) 11)11) 10)11) 10)10)

0 0 0 0.500 0.500
ID) = 10) 0.1 0.050 0.050 0.167 0.733

0.33 0.167 0.167 0 0.667
0 0.500 0.500 0 0

IA) = I1) 0.1 0.167 0.733 0.050 0.050
0.33 0 0.667 0.167 0.167

Table 6.1: Data samples, estimated probabilities, and theoretical values for D and A
inputs with Bob using the same basis as Alice, and for predicted error probabilities
PE = 0, 0.1, and 0.33. 10)11) corresponds to Bob's measuring ID) and Eve's measuring

I1)T. Column 1 shows the state Alice sent and column 2 shows the predicted error
probability PE. "Coincidence" columns show coincidence counts over a 40-s interval.
"Estimated" columns show the measured coincidence counts normalized by the total
counts of all four detectors, and "Expected" shows the theoretical values under ideal
operating conditions.

in Figure 6-7, so that the R and L beams would be distinguished by their orthogo-

nal polarizations. This polarization tagging simplified their measurements by a PBS

(P3/P4) and single-photon detectors. The four detectors uniquely identified the two

qubits of photon 2. D2, D3, D4, D5 correspond to IH)IR), IH)IL), IV)IR), IV)JL)

(ID) IR), ID) IL), IA) IR), A) IL)), respectively, when the H-V (D-A) basis is chosen.

Therefore, in our physical simulation, these joint measurement yield Bob's polariza-

tion information and Eve's momentum information.

6.3 Measurement results

In data collection, we measured coincidences between D1 and one of the detectors for

photon 2. Table 6.1 shows two data sets for Alice's input of D and A polarizations
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and compares with the expected values for the ideal case. The estimated probabilities

are calculated based on the measured coincidence counts, and we can see that these

estimated probabilities are close to the theoretical values. From the raw data, we

calculate the R~nyi information IR based on Eq. (6.10), and Figure 6-8 plots IR as

a function of the error probability PE. The solid curve is the theoretically allowed

maximum IR which is the same curve as that in Figure 6-5. At the beginning of the

experiment, we were not aware of the intrinsic phase shift problem in the SWAP gate

and the CNOT gate. Therefore we took the data without the phase shift compensation,

which is plotted in Figure 6-8 (a). Figure 6-8 (b) shows the data with the proper

compensation. Diamonds (triangles) in Figure 6-8 represent IR for the measured

values with inputs in the H-V (D-A) basis. The comparison of those two plots

immediately shows that the phase shift compensation was very important to obtaining

the correct results. We note that accidental coincidences were negligible and the

coincidence window was -3 ns.

In the ideal case, when PE = 0, Eve gets no information (IR = 0), and Alice

and Bob have no error bits. However, due to experimental errors such as imperfect

gate fidelities, we found that -5% of the sifted bits had errors. For PE = 1/3, Eve

obtains perfect information, IR = 1 under ideal conditions, but in our experiment,

Eve gained a maximum IR = 0.9, corresponding to her having 95% probability of

correctly receiving one of Alice and Bob's error-free sifted bits.

Error analysis

To understand the errors involved in the experiment, we model our experimental

setup with some non-ideal parameters. We assume that estimation of the phases (

in Eq. (6.13) and X in Eq. (6.14) could be inaccurate, and similarly for the setting of

OA in Eq. (6.14) that might be caused by the wave plates. We also model the unitary
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Figure 6-8: Eve's Renyi information IR about Bob's error-free sifted bits versus the
error probability PE that her eavesdropping creates (a) without phase shift compensa-
tion and (b) with phase shift compensation. Solid curve: theoretical result. Diamonds
(triangles): measured values for H-V (D-A) basis. Dashed (dotted) curves are fits to
the data for H-V (D-A) basis.
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P-CNOT gate as

cos a ie-i6 sin a 0 0

ie'6 sin a cos a 0 0
(6.15)

0 0 -iei' sin a cos a

0 0 cos a -ie-i6 sin a

where a = 0 and 5 = 0 for an ideal P-CNOT gate. Finally we assume that Bob's HWP

(H3) setting of OB was imperfect, so that

IH) -* cos OBO)C - sin OBI1)c, (6.16)

IV) -- sin0sI0)c + cosOBIl)c, (6.17)

where OB should equal 22.50 (-22.50) in the H-V (D-A) basis.

We fit the data by minimizing the differences between 96 measurements and the

calculated numbers based on this error model. The fitting results were AL f 30,

AX 21 -11o, AOA(H,D,V,A) = {3.20,0.90,-0.70, -2.30}, a = 12.30, 6 = 3.60,

AOB(H/V, D/A) = {-1.80,00}. As expected, the phase errors are relatively small

and those associated with OA and OB are within the resolution of the rotating mounts

housing the wave plates. The non-zero a also agrees with the measured classical

visibility of 94% for the P-CNOT gate. Figure 6-8 (b) shows the fitted IR based on

this model for the H-V basis (dashed curve) and the D-A basis (dotted curve).

6.4 Real attack with quantum non-demolition mea-

surement

The SPTQ scheme used in this chapter is limited to a physical simulation mainly

due to the requirement of a joint measurement between Eve and Bob. However, this

can be turned into a real attack with quantum non-demolition measurement (QND),

as shown by Shapiro and Wong [57]. As shown in the Appendix of Ref. [57], it is
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Figure 6-9: Deterministic entangling-probe attack on polarization-based BB84 proto-
col that can be realized with polarization-preserving QND measurement and SPTQ
quantum logic.

possible, in principle, to use cross-phase modulation between a strong coherent-state

probe beam and an arbitrarily polarized signal beam to make a QND measurement of

the signal beam's total photon number while preserving its polarization state. Cross-

phase modulation QND measurement of photon number is not currently available,

but once it is developed, we can easily realize a real attack with SPTQ as shown in

Figure 6-9.

Here, Eve imposes a momentum qubit on Alice's polarization-encoded photon

using single momentum-qubit operation made of two SWAP gates and wave plates, as

discussed in Section 3.1.3. Then she can entangle polarization and momentum qubit

using a P-CNOT operation, and measure the momentum qubit with the polarization-

preserving QND measurement device. Depending on the QND measurement result,

we can couple the outgoing photon using an optical switch, and Bob will only see

a photon in a single spatial mode. Therefore the entangling-probe attack will be

completely transparent to Alice and Bob, except for the increased amount of errors

between them.
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6.5 Summary

In this chapter, we have experimentally demonstrated the first complete physical

simulation of the entangling-probe attack using SPTQ quantum logic. This is, to our

knowledge, the first experiment on attacking the BB84 protocol, and the results are

in good agreement with theoretical predictions. Our result shows that Eve can gain

R~nyi information up to 0.9 under realistic operating conditions, including a CNOT

gate that does not have an ultrahigh fidelity. Our results suggest the possible amount

of information gain by Eve with current technology and evaluate the minimum level

of privacy amplification required for a given level of error. Implementation of the

entangling-probe attack using SPTQ quantum logic can be turned into a real attack

once the polarization-preserving QND measurement device becomes available.
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Chapter 7

Conclusion

For the past two decades, quantum information science research has shown that appli-

cation of quantum mechanics to computer science and information theory can provide

us with enormous gains compared to classical computation and classical communica-

tion. However, before we can combine various ideas in quantum information process-

ing (QIP) to build a realistic large-scale system, we need to demonstrate individual

QIP tasks to verify the concepts and identify potential challenges in their practical

implementations. In this thesis, I have used a photonic system combined with single-

photon two-qubit (SPTQ) quantum logic as a platform to demonstrate a number of

QIP tasks, benefiting from the ease of preparation and manipulation of various pho-

tonic states and from the long coherence time associated with photons. With SPTQ

quantum logic, we can implement deterministic quantum operations that are useful

for QIP. However, SPTQ quantum logic is not scalable because of a significant in-

crease in the complexity of the optical setup as the number of qubits increases. This

scalability limitation is acceptable for few-qubit operations and for photons that are

initially entangled in one or more degrees of freedom. Therefore in addition to the

demonstration of QIP tasks using SPTQ quantum logic, this thesis also focuses on

entanglement source development to evaluate its effects on QIP implementations.

For efficient implementation of SPTQ quantum logic, I have developed a high-flux,

high-visibility source of polarization-entangled photons based on spontaneous para-

metric down conversion (SPDC) using a polarization Sagnac interferometer (PSI).
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Polarization entanglement was obtained by coherently combining the collinear out-

puts from the bidirectionally-pumped type-II phase-matched PPKTP crystal, and

the PSI geometry was utilized to generate phase-stable output states and to increase

the entanglement quality. With this polarization-entangled photon pair source, I

have achieved a two-photon quantum-interference visibility of more than 99.4%, with

a measured flux of -700 pairs/s within 1-nm bandwidth per mW of pump power,

which is one of the highest values measured with polarization-entangled photon pairs

[28, 29]. The Sagnac source served as a reliable workhorse for various experiments

performed in this thesis. Since we introduced the PSI-type polarization entangled

photon pair source [28], the same type of systems have also been replicated by several

groups including two recent published results [66, 72]. The collinear SPDC geome-

try of this system implies that it can incorporate a cavity structure [731 to generate

narrowband outputs to enhance the spectral brightness and it can be applied to in-

tegrated optical sources. A similar type of system can also be applied to a type-I

phase-matched PPKTP crystal where we can utilize the higher nonlinear coefficient

d33 to further increase the flux and efficiency.

I have also developed a hyper-entanglment source which generates pairs of pho-

tons that are entangled in polarization and momentum simultaneously. The hyper-

entangled state is generated by utilizing the intrinsic momentum entanglement in-

cluded in the non-collinear outputs from the PSI-based polarization-entangled photon

pair source. Our hyper-entangled photon pair source has a unique feature that its

polarization entanglement and momentum entanglement can be easily and indepen-

dently controlled by the polarization of the pump beam and the temperature of the

PPKTP crystal, respectively. The generation of the maximally hyper-entangled state

was verified by implementing complete polarization Bell state measurements with

SPTQ quantum logic based on phase-stable polarization-controlled NOT (P-CNOT)

gate developed in our group [17]. Our polarization Bell state measurements had a

.5% error which is less than a half of the errors incurred by other groups in their

Bell state measurements [37, 36], suggesting that our SPTQ quantum logic platform

is well built and robust in operation. The hyper-entangled state can find several

126



applications such as super-dense coding [108], enhanced QKD systems [87], demon-

stration of All-Versus-Nothing violation of local reality [77, 15, 16], and other types

of applications where more than one type of entanglement may be used to improve

performance. It is possible to utilize our hyper-entangled source to use more than two

momentum paths, thus allowing a single photon to carry more than the two qubits we

have used in this thesis and therefore to further increase the dimension of the useful

Hilbert space.

The single-photon two-qubit (SPTQ) quantum logic based on the phase-stable

P-CNOT gate enabled us to demonstrate various QIP tasks. Phase-stable quantum

SWAP gate was constructed by combining two momentum-controlled NOT (M-CNOT)

gates and one P-CNOT gate. As an application, we applied the SWAP gate to transfer

entanglement initially stored in the momentum qubits of two photons to the polar-

ization qubits of the same photon pair, and thus we indirectly confirmed that the

non-collinear SPDC outputs are entangled in their momentum [31]. Because it is so

much easier to perform single-qubit operation in the polarization space, the SWAP

operation can be used to implement phase-stable single-qubit operations in the mo-

mentum space.

SPTQ quantum logic was also applied to partially hyper-entangled photon pairs

to distill the maximally entangled state using the Schmidt projection method. The

resulting polarization-entangled state showed two-photon quantum-interference vis-

ibility of -90% independent of the input degree of entanglement. This is the first

demonstration of the Schmidt projection protocol whose distillation efficiency can

approach unity when applied to a large number of input pairs simultaneously. The

concept of physical mapping used in this demonstration can, in principle, be applied

to other physical systems such as atomic qubits or ionic qubits.

Finally, we have used SPTQ quantum logic and the polarization entangled photon

pair source to implement a physical simulation of the entangling-probe attack on the

BB84 quantum key distribution (QKD) [57]. Fuchs-Peres-Brandt (FPB) entangling-

probe attack is the most powerful individual attack on BB84 QKD and the theoretical

upper-bound on the potential leakage of secret key information under this attack is
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well known. Through this simulation, I demonstrated that, using real quantum de-

vices with realistic fidelity, the eavesdropper can gain nearly the expected amount of

information about the secret key for a given level of induced error between the two

parties involved in the BB84 QKD protocol [58]. This attack can become a real at-

tack once a polarization-preserving QND measurement device becomes available, and

therefore our measurement result provides a realistic upper-bound on the potential

information gained by an eavesdropper.

In summary, I have conducted a number of quantum information processing exper-

iments using single-photon two-qubit quantum logic and a high-flux, high-visibility

entanglement source. The highly stable polarization Sagnac interferometric source

enabled the generation of adjustable hyper-entangled photons that were utilized

throughout the many experiments in this thesis. More significantly, I have shown

convincingly that the phase-stable implementation of single-photon two-qubit quan-

tum logic is robust and can serve as a versatile and flexible platform for studying and

physically simulating few-qubit quantum algorithms and protocols. I believe that fur-

ther development of the single-photon two-qubit platform encompassing additional

qubits would be very useful in the exciting field of quantum information science.
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Appendix A

Quantization of field inside a

nonlinear crystal

Quantization of the electromagnetic (EM) fields inside a nonlinear crystal generally

requires slightly different choice of canonical variables than the regular field quantiza-

tion used in quantum electrodynamics (QED), as pointed out by Hillery and Mlodinow

[104] and many other authors [105, 106]. However for our purpose, traditional field

quantization with the modified wave vector with the refractive index works well, and

I will use this approach [107].

In this appendix, operators are denoted by hat (0) and vectors are shown in the

bold face (k). When an individual component is considered, it is written in normal

face (kr). k- means the transverse components (y, z) of the k vector.

In the interaction picture, the effective Hamiltonian H for the optical parametric

process in a nonlinear crystal is

Ij C co d rijkp, E , + H.c., (A.1)
(2)

where V is the volume of the crystal, Xk is the second-order nonlinear susceptibility

tensor, and H.c. means Hermitian conjugate. The three field operators is
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E ) ('(k) )1/2 i(kp-r-w(kp)t) (A.2)
s (21pr)3/2 P 2epnkps Ekp sp p*)

(-) = z ) 1/2 k e-i(k.-r-w(k,)t) (A.3)

= 2 d3k1/ k:(hk)1/2 &f /2 -i(k- 'r-w(kj)t) (A.4)

]j (2.7-r)3/2i \2conkisi kisi akisie (A.4)

where k is the wave vector of a plane wave, s is an index for two possible polarization

vectors, h is the Planck's constant, co is the permittivity of free space, nk8 is the index

of refraction which is generally a function of k and s, w is the frequency of the plane

wave, Ek, is the polarization vector, and aLks is a creation operator for a photon in the

plane wave with wave vector k and polarization vector sks.

In general, Xi(2) is a tensor, and we have to consider all its non-zero components

and the corresponding polarization components of the E field operators. However in

our experiment, we are pumping a crystal using a narrowband cw laser with a definite

polarization, and therefore it will primarily excite only a limited set of output modes

and the Hamiltonian simplifies to

H = co d rX•(2) p+) ~-) ) + H.c., (A.5)

and vector field operators given in equations (A.2)-(A.4) can be simplified to

) = C(kP,)k ei(kp.r-w(kp)t) (A.6)

E J-) = d3k C(k,)&k e - i(ks. r - w(ks)t) (A.7)

E•-> --= 3/ C(ki)~ e- i(k' r - w(k)t), (A.8)S(27r)3/2

where C(k) is defined to be hLk1/2. Our nonlinear crystal is periodically poled

along the x-axis for quasi-phase matching and this effect can be included in the

Hamiltonian by using periodic square function for X(2)(r) with a period of A. Then
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we can expand X(2) (r) in terms of a Fourier series as

(2)= X2f(r)= X2 E fe -imKAr, (A.9)
m=0

where KA = 2e. is a reciprocal vector of period. Except for the DC term, either

f+± is the largest term, and considering our operating condition, we can approximate

X( 2)(r) by X2fie -iKA' r

The evolution of the quantum state is given by

¢) = exp [ T dtIH(t) 1o) l  1 + dtftI(t)] io), (A.10)

where 1|0o) is the initial state, and T is the interaction time, which effectively becomes

infinite due to the long coherence time of the monochromatic pump.

By inserting the simplified electric field operators (A.6) - (A.8) into the Hamilto-

nian (A.5), the time integral of the Hamiltonian in state evolution Eq. (A.10) can be

simplified to

00 dt-I(t) X2fl f d3k, d3k dk C(kp)C(k,)C(k)a&kak,( a.1
(2r)9/2  ak (A.11)

x • dte-'i(wP-'-W-)t dr e' Ak.r + H.c.,

where Ak = k-k, -k i - KA. The time integral of e- i(wp -w" -~)t leads to 27rS(w, -

w - wi) which implies energy conservation. To calculate the volume integral fv d3r,

we use the Cartesian coordinates ff'-" 2 dx fSL/ 2 dy L 2 dz, where the pump beam

is propagating along the x-axis. Then in paraxial approximation, the size of the beam

in the transverse plane (yz-plane) is generally smaller than the transverse dimension

of the crystal (L,, Lz), and we can extend the transverse domain of integration to oo.

Then

dx dy dz eiz Ak. = (27r)2Lxsinc(AkxLx/2)=(Aky)(Ak.), (A.12)
-L./2 -c0 -co
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and Eq. (A.11) becomes

dtH(t)=
-oo

X2fiLx
(271) 3 / 2 JkL=k +ki

dkp,x d3 ks d3ki C(kp)C(k,)C(k)C(k
(A.13)

xsinc(AkxLx/2)6(w, - ws - wi)dkp kt tki + H.c.,

where k' means the transverse components (y, z) of k.

The initial state 1o0) is a cw pump laser propagating along x-axis with a TEMoo

(Gaussian) spatial mode given by

-ik 1
UG(r, k, b) - exp27 x - ib ik + 2( 2ib)

2(x - ib)

where b is the confocal parameter and related to the beam waist w0o by b = 7rw /A, A is

the wavelength inside the crystal, and k is the magnitude of wave vector propagating

inside the crystal. To represent this coherent state (laser) quantum mechanically, we

need to define a creation operator aG for a single photon in a Gaussian mode by

at (k, b) d3rG(r, k, b) t (r), (A.15)

where at (r) - (23/2 fd 3 eik-r t is an inverse Fourier transform of tk. Then

aG(k, b) = d3kk 3 gr ikruG(r, k, b) f d3kU (k, k, b)tk,

where Uý(k, k, b) is a Fourier transform of UG(r, k, b), and can be calculated from Eq.

(A.14)

U (k, k, b) = (2) 1/2 exp - (k - I)) (A.17)

By using at (k, b), the initial state can be written as

e- AI 2 /2
Ko) = !/2 (AatG (k, b))n 10), (A.18)

n=O

where Ap is proportional to the amplitude of the electric field of the pump laser. From
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the following relations between tG(k, b) and &k',

ak, t(k, b)] = Jdk U(k, k,b) [ak', = U*(k', k,b) (A.19)

ak (Ap fk, b)10) = O nAU(k, k, b) (Ai G(k, b))1 0), (A.20)

we can show that the initial state I4o) is an eigenstate of the annihilation operator

ak with eigenvalue ApU(k, k, b), as follows:

ak 00) = E - nApU(k, k, b) (Apa (k, b)) 10) = ApU(k, k, b) lo).
n=O

(A.21)

Inserting the simplified Hamiltonian (A.13) and the initial state (A.18) into the

state evolution (A.10), and use the relation in Eq. (A.21), the output state [1)

becomes

i 0) = I0o)+ dki(2 )2 d dks C(k, C()C(k)C(k) exp - (k, + k,z

xsinc(AkxL /2)6(wp - w, - wi)at&. 4tf00),
(A.22)

where the pump wave vector kp sets the transverse components (Y, ̂ ) of the signal and

the idler wave vectors (k-, kl) by kL = k- + ký and k,. = k - Ik- k12/2k which are

required by the 6-functions used during the calculation. The first term in Eq. (A.22)

is just the pump laser with no pair generation, but the second term shows that a pair

of photons (signal and idler) is generated by the nonlinear process in addition to the

coherent pump state. In the experiment, the pump beam is separated from the signal

and the idler by dichroic mirrors, so we are mainly interested in the distribution of

k, and ki, which is dictated by the constraint inside the integral.

In the experiment, we select the output based on the frequency rather than the

x-component of the wave vector k, so it is more useful to rewrite Eq. (A.22) in terms

of the integral over frequency rather than k.. Using the relation between k, and w
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(k) = n2w2/C2 - k, - kw), we can convert the integration variable from kx to w:

dk du dw= d 2 T) (A.23)

Replacing kx variables with w using (A.23) and redefining C(ki, w) = (2)2 wC(k),

we can reach the following output state after removing the pump,

= 2 x J dw , d2kI d2k C(k_)C(ki, w,)C(kV _a)
= ih(2"r2 J f8(A.24)

x exp (k.p, ) + k, z sinc(AkxL/2)ai&ak, (2,

where wi = wp- w, from the 5-function, kjl = kJ + kl, kp, = k - IkP 12/2k, kx =

+ n 2w2/c 2 - k2 - k2 for the signal and the idler, Akm = kx,, - kx,, - kx,i - 27r/A,

and wo is the pump beam waist.

In Eq. (A.24), the effective domain of integration is determined by the sinc func-

tion and the Gaussian function, and within this domain, C(kp), C(k-, ws), C(k, ,w )

remain almost constant. In the main chapters, the discussion of the momentum

distribution of the output photons is based on this equation.
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Appendix B

Numerical calculation

In this appendix, we describe how to calculate the numerical results related to spon-

taneous parametric downconversion (SPDC) presented in Figure 2-2 and Figure 2-5.

The relation between the crystal temperature and the peak center wavelength of signal

shown in Figure 2-2 can be easily obtained by solving the longitudinal phase-matching

condition. The angular distribution of output idler flux for a given temperature in

Figure 2-5 can be calculated by integrating the two-photon probability for all possible

signal output modes.

To calculate the longitudinal phase mismatch given by Ak. = k.,p - k.,, - k.,i -

27r/A, we need to know the x-components of the wave vectors which depend on

the refractive index (n) in the propagating direction and the transverse components

of the wave vector by the relation k_ = + n 2w2 /C 2 - k- k2. Sellmeier equation

provides the refractive indices for three fundamental axes (n,n, n, z), and we can

find a formula for. refractive index for a specific propagation direction as given by

Ref. [110]. With this formula and simple dispersion relations, we can express kx in

terms of ky, k_, three refractive indices (nx, ny, nz), and frequency (w) as shown in
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the following formula:

Vl i - V 2  r V3

C -w4 _ W2{k(v + v) + k2(v + v22)} + (ky2 + kZ) (kv2v232 + kIvv22),

k=(B 2A )

where the + (-) sign gives kx for the signal (idler). Note that refractive index depends

on the frequency and the temperature, and we used the temperature dependence of

Sellmeier equation given by Ref. [109]. With Eq. (B.1), we can express Akx as a

function of the transverse momentum vectors (k', kb), pump frequency (w,), signal

frequency (w,) and temperature (T) as shown in Eq. (2.4). Then we can calculate the

relation between the crystal temperature and the peak center wavelength of signal

by solving the equation Akx(k, k, w,, ws, T) = 0 with k- = k- = 0' and the fixed

pump wavelength (A = 404.775 nm), and the result is shown in Figure 2-2.

The calculation for the angular distribution of the idler flux is based on the fol-

lowing two-photon probability amplitude given by Eq. (A.24) with the assumption

of constant C(kp), C(k, ws), and C(kw , w):

), LxAj dw, j d2kk d2k exp - 2(kp , + sinc(AkxLX/2)h aki& 10),
(B.2)

where Lx is the length of the crystal, Ap is proportional to the amplitude of the

pump electric field, f d2k- means integration in the transverse plane (yz-plane),

the transverse component of the pump wave vector (kp) is k =- k' + k±, the x-

component of the pump wave vector is kp, = k - IkL12/2k, the x-components of

the signal and idler wave vectors (ks, ki) are k = + n2 w 2 /c 2 - k- k2, Ak; =

k,,P - kx,s - kx,i - 21r/A, and A is the crystal's grating period. To calculate the

generation probability for some given idler mode, we need to consider all the pos-

sible signal modes with which the given idler mode can have non-zero probability
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amplitude. Therefore for each transverse momentum for idler (k-), we integrated the

two-photon probability Iexp - (k, + kP,2)] sinc(Ak.L,/2) 2 over all the possible
transverse momentum modes of signal (k-). Note that this procedure is equivalent to

calculating a partial trace of a density matrix formed by [I),,i over the signal modes.

For each transverse momentum mode of idler, we calculated this generation probabil-

ity for different idler wavelengths, and summed them up with proper weighting factors

to reflect the interference filter effect. Figure 2-5 shows these computational results

compared to the experimental measurements. We noticed that there is a constant

offset between the calculation and the measurement. This offset mainly comes from

the fact that the temperature dependence we adopted for our calculation [109] was

measured in different wavelength range than ours.
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Appendix C

Quantum state tomography

In Section 2.3.3, we described that we can find a linear relations between each real

and imaginary component of p and the coincidence measurements (M) of Alice and

Bob. In this appendix, we will show that 16 coincidence measurement combinations

between Alice and Bob are enough to find all independent components of p by express-

ing each M in terms of components of p. We assume that Alice and Bob will choose

one of the four polarization measurement bases {IH), IV), ID) = (IH) + IV))/vf,

IR) = (IH) - iIV))/xv2}. Then as shown in Section 2.3.3, when Alice measures H

polarization and Bob measures D polarization, the measured coincidences MHD is

proportional to

(HDIpIHD) = (HI ' ((HI + (VJ) plH)- (IH) + IV))

2 ((HH p HH) + (HHIpIHV) + (HV pIHH) + (HVIpIHV))

2 ((HHIpIHH) + 2Re((HHIplHV)) + (HVjpIHV)).

If we repeat this type of calculation for other combinations, we can find the fol-

lowing relations:

MHH oc Re((HHIpIHH)),

MHV oc Re((HVIplHV)),

MVH ox Re((VHIplVH)),

Mvv oc Re((VVIplVV)),
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MHD oc 1/2(Re((HH plHH)) + 2Re((HHlpIHV)) + Re((HVWp|HV))),

MHR Oc 1/2(2Im((HHlp|HV)) + Re((HHlp|HH)) + Re((HVjplHV))) ,

MVD c 1/2(Re((VHIp|VH)) + 2Re((VHlp|VV)) + Re((VVlp|VV))),

MVR cx 1/2(2Im((VHl plVV)) + Re((VHIpIVH)) + Re((VVIp|VV))),

MDH cx 1/2(Re((HHplIHH)) + 2Re((HHIpIVH)) + Re((VHIpIVH))),

MRH cx 1/2(2Im((HHIplVH)) + Re((HHIp HH)) + Re((VHIpIVH))) ,

MDv oc 1/2(Re((HVIplHV)) + 2Re((HVIplVV)) + Re((VVlplVV))),

MRv oc 1/2(2Im((HVIpIVV)) + Re((HVIjpHV)) + Re((VVlplVV))),

MDR oc 1/4(2Im((HHIpIHV)) + 2Im((HHlpIVV)) - 2Im((HVplIVH)),

+2Im((VHLpIVV)) + Re((HHIplHH)) + 2Re((HHIplVH))

+Re((HVIplHV)) + 2Re((HVIplVV)) + Re((VHIpIVH)) + Re((VVIpIVV))),

MRD oc 1/4(2Im((HHIpIVH)) + 2Im((HHIpIVV)) + 2Im((HVIplVH))

+2Im((HVIplVV)) + Re((HHIjpHH)) + 2Re((HHIplHV))

+Re((HVIpIHV)) + 2Re((VHIplVH)) + Re((VHIjpVV)) + Re((VVIpIVV))),

MRR oc 1/4(2Im((HHIplHV)) + 2Im((HHjplVH)) + 2Im((HVIplVV))

+2Im((VHIpIVV)) + Re((HHIplHH)) - 2Re((HHIpIVV))

+Re((HVIplHV)) + 2Re((HVIplVH)) + Re((VHIpIVH)) + Re((VVIplVV))),

MDD oc 1/4(Re((HHIplHH)) + 2Re((HHIpIHV)) + 2Re((HHIplVH))

+2Re((HHIplVV)) + Re((HV plHV)) + 2Re((HVIpIVH))

+2Re((HVlplVV)) + Re((VHIplVH)) + 2Re((VHIplVV)) + Re((VVIplVV))).

If we solve the above relations in terms of each component of the density matrix

p, then we can get the following relations:

Re((HHIpIHH)) oc MHH ,
Re((HVIplHV)) cc MHV,

Re((VHIplVH)) cx MVH ,

Re((VVIplVV)) oc Mvv ,
Re((HHIplHV)) cN 1/2(2 MHD - MHH - MHV)

Re((HHIplHV)) oc 1/2( 2MHD - MHH - MHV) ,
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Im((HH pIHV))

Re((VHIpIVV))

Im((VHIpIVV))

Re((HHIpIVH))

Im((HHIpJVH))

Re((HVIpIVV))

Im((HVIpIVV))

Re( (HVIJpVH))

Im((HVIp[VH)) oc

Re((HHIpIVV)) oc

Im((HHIpIVV)) oc

1/ 2 (-MHH + 2MHR - MHV) ,

1/2(2MvD - MVH - Mvv),

1/2(-MvH + 2MvR - Mvv) ,

1/2(2MDH - MHH - MVH),

1/ 2 (-MHH + 2 MRH - MVH) ,

1/ 2(2MDv - MHV - Mvv),

1/2(-MHv + 2MRv - Mvv),

1/2 (2 MDD - MDH - MDV - MHD + MHH - MHR

+MHV - MRH + 2MRR - MRV - MVD + MVH - MVR + MVV),

1/ 2 (MDH - 2MDR + MDV - MHD + MHR + 2MRD

- MRH - MRV - MVD + MVR),

1/2 (2 MDD - MDH - MDV - MHD + MHR + MRH

-2MRR + MRV - MVD + MVR) ,

1/2 (-MDH + 2 MDR - MDV - MHD + MHH - MHR

+MHV + 2MRD - MRH - MRV - MVD + MVH - MVR + MVV) .

We used these relations to find the density matrix with normalization condition

of tr(p)=1.
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