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Abstract

Different experiments on strongly correlated materials have shown phenomena which
are not consistent with our conventional understandings. We still do not have a
general framework to explain these properties. Developing such a general framework
is much beyond the scope of this thesis, but here we try to address some of challenges
in simpler models that are more tractable.

In correlated metals it appears as strong correlations have different effect on dif-
ferent parts of fermi surface. Perhaps most striking example of this is normal state
of optimally doped cuprates; the quasiparticle peaks on the nominal fermi surface do
not appear uniformly. We try to track such phenomena in heavy fermion systems,
which are correlated fermi liquids. In these systems, a lattice of localized electrons in
f or d orbitals is coupled to the conduction electrons through an antiferromagnetic
coupling. Singlets are formed between localized and conduction electrons. This sin-
glet naturally have non-zero internal angular momentum. This nontrivial structure
leads to anisotropic effect of strong correlations. Internal structure of Kondo singlet
can also lead to quantum Hall effect in Kondo insulator, and formation of isolated
points on the fermi surface with fractionalized quasiparticles.

In the second part we study a phase transition in Heisenberg model between two
insulating phases, Neel ordered and certain spin liquid state, popular in theories of the
cuprates. The existence of such a transition has a number of interesting implications
for spin liquid based approaches to the underdoped cuprates and clarifies existing
ideas for incorporating antiferromagnetic long range order into such a spin liquid based
approach. This transition might also be enlightening, despite fundamental differences,
for the heavy fermion critical points where a second order transition between the
heavy fermion phase and a metallic phase with magnetic antiferromagnetic order is
observed.

Thesis Supervisor: Senthil Todadri
Title: Associate Professor
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Chapter 1

Introduction

Principle of reductionism, that is all the matter around us is governed

by the same fundamental laws, is widely accepted among physicists. In

high energy physics people try to find the elementary particles form-

ing the matter and discover the fundamental laws governing them. It

might seems then, based on reductionism hypothesis, that this is all

the fundamental knowledge we need to describe the nature. But the

ability to reduce everything to the fundamental laws governing the el-

ementary particles does not imply the ability to start from those laws

and reconstruct the universe[5]!

In macroscopic systems consisting of large number of particles, col-

lective behaviors emerge which could not be extracted solely by under-

standing the physics of their individual elements. To understand the

macroscopic properties of materials we need to study these collective

behaviors and so we need more than single particle physics.

Thermodynamics and later statistical mechanics were developed to

explain macroscopic phenomenas without detail knowledge of the mi-
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croscopic properties. With development of quantum mechanics it was

also incorporated in describing the properties of matter. Interestingly

quantum fluctuations, like thermal fluctuations, can also drive the sys-

tem through a phase transition[6, 7]. These quantum phase transitions

correspond to the change of ground state of the macroscopic system

and could have dramatic effects on the properties even at finite (but

low) temperatures[3].

Much of our modern understandings of quantum many-body systems

are based on two paradigms, both mainly developed by Landau[8]. The

first one classifies different phases of matter using the concept of order

parameter which is a measure of their broken symmetries. Phase transi-

tions are then described by partial break down of some the symmetries

of one phase. In this Landau paradigm, second order phase transitions

could happen between two phases where the symmetries of one phase

is the subgroup of the symmetries of the other. The other paradigm,

fermi liquid theory[9], describes the excitations out of the electronic

ground state (i.e. fermi sea) in terms of quasi-particles which retain

the electronic integrity, despite their interactions.

Recent experiments have shown that both of these paradigms might

break down in systems where there are strong interaction between the

particles. A few examples are fractional quantum hall effect, high tem-

perature superconductivity, and heavy fermion phase transitions.

In fractional quantum hall effect, quasi-particles lose their electron

integrity and appear as fractional particles which carry only part of

24



electron quantum numbers[10]. In other systems second order phase

transitions are observed which does not seem to fit in Landau theory

of phase transitions[3]. Despite wide theoretical investigations, and

some developments[11, 12], a general unified theory which explains the

behaviors out of Landau paradigms is still lacking.

Developing such a general frame work needs efforts much beyond

this thesis; here we try to address some of challenging observations

but in simpler models where physics is better understood. We ad-

dress anisotropic effect of strong correlation which is observed in metal-

lic phase of underdoped high temperature superconductors, in heavy

fermions which are strongly correlated fermi liquids and thus more an-

alytically tractable. Also we present a second order phase transition

between two insulating phases of a strongly correlated model. This

is indeed motivated by observed phases and phase transitions, which

are not entirely insulating; but since the actual phase transition is not

clearly understood yet, a good strategy might be to address these fea-

tures in models which are only as close as possible to the real system

and can capture some of the essential physics.

Two important classes of unconventional materials are cuprate su-

perconductors and heavy fermion compounds. In this introduction we

start by briefly reviewing physics of cuprates particularly in underdoped

side. Next we present basic physics of heavy fermions and review the

slave particle mean-field theory[13, 14]. This introduction will be fin-

ished by an overview of the thesis.



1.1 High temperature superconductivity

High temperature superconductivity was first discovered in 1986[15].

Critical temperature raised fast to well above nitrogen melting point[16].

It was observed in a pretty unexpected material, a transition metal ox-

ide, which made it clear that the mechanism is pretty unconventional[17].

Since then cuprates have been under vast experimental and theoretical

investigations. After more than 20 years many of the physical prop-

erties of cuprates, particularly in metallic state above superconducting

dome, are not understood. There is yet no consensus for mechanism

of high T, superconductivity. But it seems that the basic physics of

cuprates is well understood. They all share the layered structure which

contains one or more copper oxygen planes. The low energy physics is

described by the square lattice Hubbard model[18, 19]:

H = - tijcjcja + H.c. + U niTni (1.1)

In the above Hamiltonian first term corresponds to hopping between

sites and the second term is the on-site Columb repulsion which does

not like double occupancy. It is well established that in cuprates, strong

correlation plays an important role in forming different phases[17]. At

zero doping, for large enough U this describes a Mott insulator and have

long range antiferromagnetic order. Upon doping with holes antiferro-

magnetic order disappears quickly (Fig. 1-1). A variety of experiments

now support the notion that the underdoped cuprates are usefully re-
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garded as doped Mott insulators - in other words proximity to the

Mott insulator strongly influences the properties of the underdoped

materials[20]. Indeed antiferromagnetic order increases the kinetic en-

ergy of the holes. The competition between the kinetic energy of the

holes and spin exchange energy forms the phase at small doping, which

is known as pseudogap phase.

For spin one half with antiferromagnetic exchange one proposed com-

peting state with Neel ordered phase is known as RVB state, which is a

superposition of singlet pairs between different spins[18]. In this config-

uration the holes can move freely in a background of spin singlet pairs,

which does not break any symmetry, and decrease their kinetic energy.

This picture is consistent with the important features of the pseudogap

phase[21]. Singlet formation explains the decrease of uniform spin sus-

ceptibility and reduction of specific heat. In plane conductivity spectral

weight scales with number of holes. As will be explained in more de-

tails later, photoemission experiments show pull back of leading edge

spectral peak which signals the formation of the gap to break a singlet

pair. This gap is not uniform over the fermi surface and it is where

pseudogap phase got its name.

With more doping at low enough temperature, superconductivity ap-

pears which seems to have d-wave structure. Superconducting critical

temperature increases with more doping until it reaches its maximum

and then decreases to form the superconducting dome. Neutron scat-

tering experiments reveal the existence of a sharp magnetic resonance
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Figure 1-1: Phase diagram of cuprate superconductors

at (r, 7) in the doped superconductor [22, 23, 24]. An appealing inter-

pretation of this resonance is as a gapped version of the familiar magnon

of a proximate antiferromagnetic state[25, 26, 27]. Interestingly as the

doping is reduced, the resonance frequency goes down proportionately

to Tc[28, 29]. This suggests that if the doped state is to be viewed

as a doped paramagnet, then the latter may at least be connected to

the Neel state by a second order transition (see Fig 4-1). Thus we are

lead to search for quantum paramagnetic states of spin-1/2 moments

on a square lattice that are accessible from the collinear Neel state by

a second order transition.

Motivated by these observations in chapter 4 we present a model for

the transition from Neel ordered phases to an insulating paramagnetic

phase (a spin liquid). Even though the transition in cuprates takes

another path (i.e. through doping which takes them out of insulating

phase), this model could be enlightening for the nature of the pseudogap

28
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phase.

In the underdoped regime, transport is through holes, but with

renormalized hoping parameter. To apply the Luttinger theorem[30]

and get the right fermi area, we should consider the fact that anti-

ferromagnetic order folds the Brilloun zone in half. The fermi surface

consists of ellipses centered at (i+, +~)1. At larger doping, a fermi

liquid metallic phase with a large electron fermi surface develops. We

have good understanding of fermi surface in overdoped regime and some

theoretical understanding in underdoped regime[17], but what happens

in between? Interesting behavior is observed in the normal state of

optimally doped cuprates between fermi holes and large fermi surface

regimes. This is one of our motivations for the studies in chapter 2.

In cuprates it is known that antiferromagnetic order disappears be-

yond x P 0.03 and there is no signature of unit cell doubling. In absence

of unit cell doubling, Luttinger theory only gives the right volume for

large electron fermi surface. But transport properties seem to be given

by the number of the holes. At zero temperature (i.e. ground state) an-

tiferromagnetic phase transform into the superconducting phase where

Luttinger theorem does not apply. But at finite temperature in the

normal state, on the nominal fermi surface that could be derived from

band theory, a true sharp electronic quasiparticle peak does not seem

to exist. The electron spectrum - measured through photoemission ex-

1Although there are well developed theories for few holes in an antiferromagnetic background
[31, 32, 33], there is yet no experimental realization of antiferromagnetic metallic phase with fermi
pockets.



periments - shows significant anisotropy on moving around the fermi

surface[34, 35, 1](Fig. 1-2).

Figure 1-2: Nodal-Antinodal dichotomy from [1]

ARPES measures the spectrum of occupied electron states which

could be emptied by the photon. In fermi liquids spectrum consists

of sharp quasiparticle peaks at energies Ck = Ef. So as we move the

momentum toward the fermi surface a peak appears and disappears as

we cross the fermi surface. In the normal state of underdoped side,

when we move toward the nominal fermi surface away from diagonal

direction quasiparticle peaks which unlike fermi liquids are very broad

approach the fermi energy but stop before crossing it. One might think

this is what you expect when we have a fermi pocket since you may

miss the pocket moving away from diagonal direction; the problem is

that when we move along nodal direction, we cross the presumed fermi

surface just once, i.e. no back side of the fermi surface is observed. Non

existing well defined quasiparticle peaks also signal the fact that this
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normal state is not a fermi liquid.

The general message from these results on the cuprates for the study

of correlated metals is that correlation effects may not uniformly affect

all parts of the fermi surface. Some portions of the fermi surface may

be more susceptible to correlation effects than others. This will lead to

strong correlation induced anisotropy in physical properties around the

fermi surface. Theoretically study of such effects is difficult because

electron correlations are typically most easily handled in real space

which does not readily distinguish between different parts of the fermi

surface. Interesting recent numerical calculations[36] based on clus-

ter extensions of dynamical mean field theory on single band Hubbard

models in two dimensions have found such momentum space differenti-

ation in the electronic properties; here we take a different approach. In

this thesis, we study the anisotropic effect of correlations in correlated

metals which fit in the Landau theory, specifically heavy fermions. This

gives us more quantitative handle to study the correlation effects.

1.2 Other correlated metals: heavy fermions

As mentioned before, normal state of optimally doped cuprates does

not fit in the Landau fermi paradigm; hence the fermi liquid tools are

not fully applicable to study this phase. But cuprates are not the only

example of strongly correlated metals. Metals near Mott transition

(e.g. K(BEDT-TTF)2Cu[N(CN) 2]C1 [37]) and heavy fermions [2] are

other examples. The later is indeed a strongly correlated fermi liquid.
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In the first two chapters of this thesis we focus on the metallic phase

of heavy fermions. We show that in this fermi liquid phase, strong cor-

relation could have dramatically anisotropic effect on the fermi surface

which is captured through quasiparticles residue (Z) [38].

Heavy fermion compounds present unconventional phases and phase

transitions (see table 1.1) as well. Heavy fermion physics was first ob-

served in a Cerium based alloy CeAl3[2]. In these rare earth alloys, a pe-

riodic lattice of localized spin-1/2 magnetic moments is coupled through

Kondo exchange[39] to a separate band of conduction electrons[40]. An

interesting low temperature metallic phase often develops at low tem-

perature where the local moments are absorbed into the fermi sea by

a lattice analog of the Kondo effect. The resulting metallic phase is

a fermi liquid albeit with strongly renormalized parameters the most

dramatic of which is two to three order of magnitude quasiparticle mass

enhancement (Fig. 1-3(a) and 1-3(b)), leading to the name 'heavy fermi

liquid'.

I.:

0.9

0.6

0.7
T(mKI) 0 2 4 I .0 -I

I

TZ (K0)
FIG. 1. Speciflo heat of CeAlI at very low tempera-

tures in zero field (,&A) and in 10 kOe i). FIG... Electrtcal resistivity of CeAI; below 100 mK,
loted against TI

2.

(a) (b)

Figure 1-3: Heat Capacity and Resistivit of CeAla[2]
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Concomitantly the quasiparticle residue at the fermi surface is very

small (though non-zero). Perhaps most strikingly the fermi surface is

large in the sense that its volume satisfies Luttinger's theorem[30] only

if the local moments are included in the count of the electron density.

This and other universal properties of this fermi liquid are usefully

understood in a strong Kondo coupling picture where each conduction

electron is trapped into a spin singlet state with a local moment - see

Ref. [41].

Theoretically many of the physical properties of heavy fermion com-

pounds, including formation of Kondo singlets, can be captured by the

slave particle mean field theory[14, 13]. We will review this method in

1.2.1. Important point to note here is that although the Kondo phase

is a fermi liquid, it emerges as a result of large correlations (i.e. large

Columb repulsion between two electrons in the same local moment or-

bital). This could be also noted in original Anderson model for single

impurity[42].

Out of this Kondo phase, local moments and conduction sea decou-

ple. Local moments could have antiferromagnetic order (mediated by

direct RKKY interactions[43]) and conduction electrons form a small

fermi surface. The antiferromagnetic ordering temperature can be

driven continuously to zero with pressure, chemical doping or mag-

netic field[44]. Interestingly behavior above this quantum critical point

between magnetic and non-magnetic metallic phases is dramatically

different from fermi liquid behaviors [45, 3](see figure 1-4) . Although
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scenarios for transition between a heavy fermion phase with large fermi

surface and a phase with small fermi surface and local moments in a

spin liquid state have been presented[46], the mechanism through which

antiferromagnetism transforms into Kondo phase is not understood yet.

Superconductivity also develops in some heavy fermion compounds

at low temperatures. UPt3 [47] is one example. By doping UPt3 with

Pd superconductivity disappears quickly and antiferromagnetic order

appears through a second order phase transition (within the accuracy

of the experiments). This presents a transition contradicting Landau

paradigm i.e. direct transition between two phases with different sym-

metries.

Material
CeCu6

CeCU2Si2
CeCoIn5

CeCu6-_Aux
YbRh 2Si 2

UPd2Al3

Properties
HF Metal

HF SC
Quasi 2D HF SC

Chemically tuned QCP
Field tuned QCP

AFM+ HF SC

Resistivity
T2

T2

T
T
T
T2

yn (mJmol - 1K - 2)
1600

800-1250
750

In ( -
11n ( To-)

210

Table 1.1: Heavy fermion compounds and their proporties (HF: Heavy fermion
Metal, SC: Superconductivity, AFM: Antiferromagnetic Order, QCP: Quantum Crit-
ical Point [4]

In this thesis our main focus is on the heavy fermion metallic phase

(chapters 2 and 3). We use tools available in fermi liquid theory to

quantify the anisotropic effects of strong correlations which form this

phase.
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Figure 1-4: Colored plot of resistivity (dln(p)/dln(T)) close to heavy fermion critical
point from[3]

1.2.1 Slave particle mean field theory

As mentioned before, Kondo lattice model describes a lattice of spin-

1/2 local moments Si and conduction electrons ci (ar =T, 1) coupled

through Kondo exchange[39].

H = -tJK .caci (1.2)

(ij) i

The total number of conduction electrons per site is taken to be

some fixed value nc. A useful mean field treatment is obtained using a

fermionic representation of the local moment spin:

Si= f- (1.3)

together with the constraint ftfi = 1 at each site. After some algebra

the interaction term (JK) reduces to:
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Sficici fi + constant

In the corresponding imaginary time path integral for the partition

function, this takes the form

efdrr  • ci;f  (1.4)

Using a Hubbard-Stratonovich transformation, this can be decoupled

as

DV exp(i, + (V(i, 7)fic + V*(i, T)ci f) (1.5)

Exact integration over V(i, T) will produce the original interaction

term. But in mean-field approximation, we do the integral using saddle-

point method. In addition the constraint ftfi = 1 will be implemented

on average. We will choose the mean-field solution with V(i, 7) = V

which leads to the following mean-field Hamiltonian and self consistency

equation for V:

H = -t cZcj+h.c
(ij)

+ E lfftis V E(Sfci + cfi) (1.6)
i i

V = Z ((ftci + h.c.) (1.7)

(fifi) = 1 (1.8)



We have introduced a chemical potential term for the f-fermions

which serves to set their average number per site to be one. In addition

the fermi energy EF of the hybridized quasiparticle must be determined

by requiring that there are a total of 1 + n, fermions per site. Only

states with energy less than EF are filled in the ground state.

This mean-field Hamiltonian is quadratic and can be diagonalized.

To do so, first we write the Hamiltonian in the Fourier space:

H = EkCkCk f ffk + V (fkCk + Ckfk) (1.9)
k k k

with Ek = -2t (cos(kx) + cos(ky) + cos(kz)). Now it is easy to derive

quasi-particle dispersion relation for two bands (fig. 1-5(b)):

E± Ilk + 2f (Ek - )2 + V2 (1.10)2 2

With this in hand, we can solve the self consistency conditions and

calculate physical properties. We first solve the self consistency equa-

tion for V:

Jk &E9
2N aV

A Jk I d (1.12),S(27)d 2) + V2
= -JkVp(p)log(V/t) (1.13)

= V oc e- 1/Jkp() (1.14)
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Figure 1-5: a- Mean-field dispersion before Kondo singlets condense b- Mean-field
dispersion in Kondo phase c- Electron occupation number



So the hybridization amplitude is exponentially small in 1/JKp(#).

We can also calculate the density of states:

p(E) =J dc 6 Ek k +V2

= dEp, (c)6 E p + V2 - E
( 2 2V2 ( )E(1.15)

V2

= p(E) cx e2/JkP(I)

Here we used the fact (as shown in appendix A) that Ek < I. Pc(E) is

conduction electrons density of states. Here we got a density of states

which is exponentially large in 1/Jk. This gives the large effective mass

and hence the name of heavy fermions.

In figure 1.2.1 we present the important features of heavy fermions

captured by slave particle mean-field theory in a one dimensional sys-

tem. In 1-5(a) we present the two bands (free electrons band and lo-

calized moments flat band) which are decoupled for V = 0. As we turn

on V the two bands hybridize and give the dispersions in figure 1-5(b).

Only the lower band will be partially filled. The fermi point is at nearly

flat part of the band and signals the large effective mass. Another im-

portant feature to note here is that the volume of fermi surface is large,

compared to fermi surface when V = 0 which only contains conduction



electrons, and accommodates both conduction and local electrons. In

figure 1-5(c) we present electron occupation number as a function of

k. As we pass the momentum corresponding to small fermi surface,

there is a large but continues drop corresponding to the drop of elec-

tron quasiparticle residue Z. As we pass over large fermi surface, there

is a small but discontinues jump which corresponds to the fermi surface

and small quasiparticle residue at the fermi surface.

1.3 Overview of the thesis

In this thesis we try to take steps toward clarification of some of strange

properties in phases of correlated electronic matter and their phase

transitions. In heavy fermion compounds since the Kondo singlet is

build of a local moment in say f orbital and a conduction electron, it

naturally have non-trivial internal structure[48]. To be more specific,

we consider a cerium based heavy fermion compound. Although we

simplify the model, we see that correlation induced anisotropies could

be seen particularly around the directions that Kondo singlet amplitude

vanishes. We present some of observable effects of this model, partic-

ularly in ARPES experiments which might be done in near future[35].

Partially motivated by observations in cuprates (see 1.1) we also con-

sider a two dimensional model for heavy fermions (section 1.2) where

non-trivial internal structure of Kondo singlet could be studied and

leads to dramatically anisotropic effect of interactions in momentum

space[49]. We also note that such internal structure could lead to ex-
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otic effects. We have quantized Hall effect in Kondo insulators, when

internal structure breaks time reversal and in Kondo-Heisenberg model,

four isolated points on the fermi surface with vanishing quasiparticle

residue, in an otherwise fermi liquid phase!

In first two chapters we consider the fermi liquid metallic phases. As

mentioned before although transition between this phase and a spin liq-

uid with small fermi surface have been explored[46] a big challenge is the

apparently second order phase transition between this metallic phase

with large fermi surface and antiferromagnetic phase with small fermi

surface. In chapter 4 we study a phase transition between insulating

Neel ordered phase and a paramagnetic phase[50). Since the scenario

for heavy fermion phase transition discuss transition to a paramagnetic

phase, along with these developments, our study might be enlightening

for the full transition from heavy fermion phase to the antiferromag-

netically ordered phase. The transition studied in chapter 4 is more

directly relevant to the pseudogap phase in cuprates which should be

connected to the Neel phase through a second order phase transition.

Here it is important to mention that fundamental models for cuprates

and heavy fermions are quite different. Nevertheless studies in each of

the two could open paths to study the correlated systems in general.

Concluding remarks and directions for future research are presented in

the last chapter.





Chapter 2

Higher angular momentum Kondo

liquids

As discussed in section 1.2, formation of Kondo singlet leads to many

properties of heavy fermions in Kondo phase[41]. The singlet 'molecule'

formed out of the local moment and conduction electron is usually taken

to be in an s-wave state with zero internal angular momentum. In this

chapter we explore metallic states where this singlet has non-zero inter-

nal angular momentum. We show that this results in fermi liquid states

that have many unusual and interesting properties. For instance such

states naturally have large anisotropies in the effective mass, quasipar-

ticle residue and other properties on moving around the fermi surface.

Under certain conditions it is even possible for the quasiparticle residue

to vanish at isolated points of the fermi surface. The excitations at such

points do not have electron quantum numbers but can be understood

as a neutral fermionic spin-1/2 'spinon'. Remarkably such a spinon ex-

citation emerges without any associated gauge interaction (unlike the
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other many familiar examples[51, 52, 53]). In the special case where

the conduction band is half-filled the usual s-wave Kondo singlet forma-

tion leads to an insulating state (dubbed the Kondo insulator). If the

internal angular momentum is non-zero, interesting varieties of Kondo

insulators become possible. For instance we show that in two dimen-

sions with a d,2_y2 + idy, singlet, the Kondo insulator has a non-trivial

quantized electrical Hall conductivity.

Theoretically higher angular momentum Kondo liquids are conve-

niently accessed through the slave boson mean field review theory[14,

13] in 1.2.1 developed to describe the usual heavy fermi liquid state. In

that section we considered the case where the singlet is formed between

local moment and conduction electron at the same site. This naturally

leads to singlet with s-wave internal structure.

This immediately suggests that Kondo singlets of higher angular

momentum can be described by hybridization amplitudes between fr

at site r and Cr, at a different site r'. Specifically

brrr = (Ctfr,) (2.1)

may be viewed as the wave function of the Kondo singlet. Thus by

choosing the internal angular momentum associated with rotations of

the relative coordinate - ' - F appropriately Kondo liquids with higher

angular momentum may be constructed. In this chapter we will ex-

ploit this strategy to construct mean field descriptions of various such

Kondo liquid states. Within the mean field description, higher angular
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momentum Kondo liquids correspond to a particular form of momen-

tum dependence of the Kondo hybridization amplitude. Momentum

dependent hybridization amplitudes have been previously considered

in Ref. [54, 55]. Recent optical transport experiments on the 1-1-5

materials have also been interpreted in terms of momentum dependent

hybridization amplitudes[56].

2.1 d-wave Kondo liquid

Previously we explained the Physics of Kondo phase by formation of

singlets local moments and conduction electrons, which have zero inter-

nal angular momentum(i.e. (ftci + h.c.) is constant). When we assume

that the singlet is formed between the local moments and conduction

electron at the same site (i.e. singlet is local), the s-wave is the only

possibility for internal state of the singlet. In this section we consider

modifying the Kondo lattice Hamiltonian so that Kondo singlets with

non-zero angular momentum are favored. To that end we consider a

generalized Kondo Hamiltonian:

H=- tc c, + 1:ii (2.2)
(ij) ij

where the Kondo exchange term is not limited to the local moments

and conduction electrons at the same site. The simplest case is for Jij
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to be non-zero only when i and j denote the nearest neighbor sites:

Jij = JK (i, j) nearest neighbor (2.3)

Jij = 0 otherwise (2.4)

With this choice and after some algebra, similar to what we did in the

last section, the Hamiltonian reduces to the following form:

H = - tc cy + Ji ftcjc ~fi (2.5)
(ij) (ij)

Now proceed as before by decoupling the interacting part of the action

using an auxiliary field, which this time lives on the bonds of the lattice,

instead of the sites:

I [DV]
2(2.6)

e-(f &d*E(,j) 4Jk + (V(V~ijr7)iC3 +I*(i jj7O~? f

As before, to get the mean-field Hamiltonian, we'll do the integra-

tion over V using saddle point approximation (in addition to imposing

(f fi) = 1 on average). There are different saddle point solutions (they

are basically different local minima in functional space). We will con-

sider two solutions named as s-wave and d-wave (the reason for choosing

these names will become clear later). In s-wave solution we consider

V(i, j, T) = V on all bonds and in d-wave, we consider V(i, j, 7) = V



on x bonds and V(i, j, 7) = -V on y bonds:

S)
d

= E
-(ij)

t4c + E ,lfftfi+

(2.7)

E V[(fitci+x + cl±xfi) + (fici+, + ci+y
i,xy

It is obvious from this form that these correspond to s-wave and

d-wave internal state for the singlet. In momentum space s-wave and

d-wave Hamiltonian have the following forms:

H,(k) = Z'kCkCk + Lff fk
(2.8)

+ v Z (cos(kx) + cos(ky))(f/ck + tCfk)

Hd(k)= ZcEtk + k P f fk

(2.9)
+ V Z(cos(kx) - cos(k,))(ff•Ck + ckfk)

With this quadratic mean-field Hamiltonian, we can also derive the

spectrum and the mean-field parameter V self-consistently:

/(k )2 + V2(cos(k,) + cos(ky)) 2

2

(2.10)

E (k) =Ek +  f•
2

(Ek 2 2
(2.11)

+ V2(cos(k.) - cos(kJ)) 2



The ground state is obtained by filling all states upto the fermi level.

As before the fermi energy is fixed by requiring that there are 1 + n,

fermions in the ground state per site. Note that in both s and d

wave cases the + band lies entirely above the - band (i.e min(E+) >

max(E_)). Therefore in the ground state only the E_ levels are occu-

pied. The ground state energy is

E'dd = O(E - ES'd(k))ESd(k) (2.12)
k

The self-consistency equations that determine V and p f are now readily

obtained. For instance we have

1 = 0•(E, - Ed(k)) x
k

(cos(kx) ± cos(k ))2  (2.13)
S )2 + V2(cos(kx) ± cos(ky))2

In equation 4-4, +(-) corresponds to s-wave(d-wave). In addition we

need to impose the condition (fjfi) = 1 and (cý c) = n,.

Let us first specialize to the half-filled case n, = 1. In this case the

microscopic model has a particle-hole symmetry under which

ci+ --iEU Yct (2.14)

where E, = (-1)(x+y) = ±1 on the A and B sublattices of the two

dimensional square lattice. As the total number of fermions per site

1 + nc = 2 in this case, all the E_ levels are filled. At the level of the
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approximate mean field Hamiltonians Eqn. 2.7, under the particle-hole

transformation

fia -- -iErca f (2.15)

/If f -• (2.16)

V -V (2.17)

Thus a particle-hole symmetric mean field state (which we assume)

requires pf = 0.

With this in hand we proceed to compare the ground state energy

of the s-wave and d-wave mean field Hamiltonians in half-filled case.

First consider self-consistency equation for s-wave case:

1 _ 1 (cos(kx) + cos(ky)) 2

Jk 2N V/(2 + V 2(cos(kx) + cos(ky)) 2
k 21

It is obvious that the right hand side of equation 2.18 is monotonically

decreasing function of IVI. So it has its maximum value for V = 0:

1 11 2N E I cos(k,) + cos(ky) (2.19)
A 2N k

The right hand-site of the above equation is finite. So there is a maxi-

mum value of 1/Jk for which we can find a solution for V in equation

2.18. On the other hand the self consistency equation for d-wave at

pI = 0 takes the form:

1 1 (cos(kx) - cos(ky)) 2

Jk 2N /(L)2 + V2(cos(k.) - cos(k,)) 2
k 2
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Figure 2-1: V versus J for s-wave and d-wave self consistency equation

Like s-wave, the right hand site of equation is maximum for V = 0. But

in this case the right hand side of equation 2.20 is divergent as V -- 0.

So for d-wave, the self-consistency solution exist for any value of Jk.

A schematic graph of V versus Jk for s-wave and d-wave is plotted in

figure 2-1.

As it is also clear from the figure, there is at least a region of small Jk

for which V for d-wave is larger than V for s-wave (in fact we can have

a region with finite V for d-wave but s-wave V as small as we want).

Now if we look at the lower band spectrum (eqn. 2.10 and 2.11) this

proves that there is at least a region for small Jk where d-wave ground

state energy is lower than s-wave.

Upon moving away from half-filling, we expect that the value of

ground state energy starts changing continuously; so we still have at

least a region of small Jk and small doping, for which d-wave mean-field

Hamiltonian is a better approximation than s-wave. We have confirmed

this by a direct numerical solution of the self-consistency equations.
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2.2 Properties of d-wave Kondo liquid

We now study the properties of the d-wave mean-field state away from

half-filling. We will see that d-wave singlet formation provides a natural

route toward very anisotropic properties over the fermi surface. Before

getting into the details of these properties, we will examine some aspects

of d-wave dispersion in equation 2.11. A schematic graph of fermi

surface for finite doping in the first Brillouin zone, as well as dispersion

along a specific path, are given in figures 2-2 and 2-3 respectively. One

important feature of the spectrum in figure 2-3 (which is also easily

proved analytically in appendix A) is that the maximum value of energy

in the Brillouin zone is pf, that is the energy of the points along diagonal

direction, where pf < Ek. This shows that fermi surface crosses the

diagonal direction at a point where Ed < ~i (since Ef has to be less

than /f). In diagonal direction the spectrum is Ed = kIlf -k-;f

which can be written as:

Ed =ck for Ek<If

E d = pf forEk > Pf

combining this with the condition Ed < pIU shows that fermi surface

should cross the diagonal direction at a point where the quasiparticles

energy is equal to Ek. This result is in fact the basic foundation for the

interesting properties that will be studied in the next sections i.e. over

the fermi surface, in diagonal direction, quasi-particles are c-electron

type; the f-electron properties appear, as we go away from the diagonal
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Figure 2-2: fermi surface in the first Brillouin zone. Occupied region is plotted in

gray.

direction. In the following section we will present the result of numerical

calculation of properties over fermi surface.

The self consistency equation for parameter V could also be studied

analytically (appendix B). We see that for d-wave Kondo model, similar
C

to the on site s-wave Kondo, we have V oc e k . Density of states at

fermi energy is also studied analytically (appendix C), it again shows

exponential dependence on coupling constant:

2C

p(Ef) o V -2 OC e6k (2.21)

These results were also checked and confirmed numerically.

E

'If

F W K F

Figure 2-3: Spectrum along the lines (0, 0) -- (r, 7) -÷ (0, 7) --+ (0, 0)
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In the following sections we present the effective mass and quasi-

particle residue on fermi surface, as a function of angle (from the center

of Brillouin zone). We will see that these properties are very anisotropic

as we move along the fermi surface.

2.2.1 Effective mass

The effective mass of quasi-particles is defined through second deriva-

tive of energy with respect to k1 which is the momentum in direction

perpendicular to fermi surface:

1 2 Ed= - k (2.22)
m 02k1

A closed form for the effective mass could be derived. In figure 2-4 we

have plotted the inverse effective mass over fermi surface near diagonal

direction. As we expected, along diagonal direction the effective mass

matches the electron effective mass. As we go far away from the diago-

nal direction, effective mass becomes very large. This is because away

from the diagonal direction, the quasiparticle is essentially an f-fermion

with some weak admixture with the c-electron. Between these two lim-

its we see the strange anisotropic behavior where second derivative of

energy goes from electron type, positive value to large negative value.

A comparison with quasi-particle residue plot (figure 2-6) shows that

this behavior occurs where the quasi-particles are a complete mixture

of c-electron and f-fermion.

This weird behavior could be traced by looking closer at the spec-
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Figure 2-4: Second derivative of energy respect to k± in direction perpendicular to
fermi surface.

trum in the Brillouin zone. First consider diagonal direction (figure

2-5). We see that moving along this line we go from region where

Ek = Ek to region where Ek  = If (see figure 2-3). So if we plot first

derivative of energy with respect to k1 (which is diagonal direction for

points along diagonal direction), as seen in figure 2-5, there is a jump

from a finite value to zero at the point where Ck = /f. In this direc-

tion, as shown before, at the fermi surface Ek = Ek so there is a finite

value for second derivative. As we move away from diagonal direction,

the jump softens slightly (because Vk moves slightly from zero). But

still first derivative have a large decrease in a small interval and so the

second derivative is large negative number; interestingly, fermi surface

does cross this region at some points. This behavior is very strange. In

fact we see points at which the effective mass is much smaller than free

electron mass.

L
'
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k

Figure 2-5: First derivative of the energy with respect to k1 . Vertical axis, in each

plot, is and k1 is the momentum in direction perpendicular to the fermi surface
at the point defined by the angle on the top. Vertical line shows the position of the
fermi surface

2.2.2 Quasi-particle residue

The electron-electron green function is given by[38]:

G(k, iw,) =

Suppose ky~ and 7k

0
dTeiw••(Tc(k, T)ct(k, 0)) (2.23)

are annihilation operators for quasi-particles in

upper and lower bands respectively, in terms of which the Hamiltonian

is diagonal. The c-electron annihilation operators could be written as:

+ 2

k (E - 6k)2 + Vk2
(2.24)

2 k
Uk (E- Ek)2 + Vk2

Vk k

kUk
Ek+ - Ek

Using this form (and the fact that Hamiltonian is diagonal in terms

C

44.86 degree
--

44.72 degree
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Figure 2-6: Quasi-particle residue on the fermi surface

of -yi operators):

(c(k, 7) c(k, 0)) =U0 (Tk + )t (0)) + v (Y (T)t (0))

Rewriting the Hamiltonian in term of y operators (H = Ek(Ek+TkT•+ +

-EtEk ktek)) we get:

Putting these into equation 2.23 e ks:

Putting these into equation 2.23 gives:

2

G(k, iwu) = Uk
Ek -iw

2
+ k

Ek -'w

By analytically continuing this to real frequencies and taking the imag-

inary part we get the spectral function[38]:

A(k, w) = U26(w - Ek) + v 6(w - Ek) (2.26)

This consists of two peaks and the weight under the low energy

peak will give us the quasiparticle residue (Z). We have plotted Z for

(2.25)



the points near diagonal direction in figure 2-6. Again as we expect, the

quasiparticle residue near diagonal direction is of order one (electron

type excitations) and gets very small away from diagonal direction.

2.3 d-wave Kondo liquid in a Kondo-Heisenberg

model: fermi liquid with spinons

We now study the properties of the d-wave Kondo liquid state in a

model which allows for explicit Heisenberg exchange interactions be-

tween the local moments. Remarkably we will show that the quasipar-

ticle residue vanishes at isolated points of the fermi surface in such a

state. The excitation at such points is a free neutral fermionic spinon.

In a subsequent Section, we show that this spinon survives even when

fluctuations beyond the mean field are included. Thus this d-wave

Kondo liquid is a fermi liquid state that supports spinons at isolated

fermi points. Specifically we consider the model

= i + + J, Z .S. (2.27)

(ij) (ij) (ij)

We proceed as before using the d-wave mean-field approximation to

treat Si.s' term; but here, we have another interacting term, which is

the direct Heisenberg exchange between the local moments. Expressing

this in terms of the f-fermions gives rise to a four fermion term. We

treat this in mean field theory as well. While a number of different mean

field decouplings are possible, we focus here on one in the particle-hole
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channel which endows the f-fermions with a uniform non-zero hopping

X. This is in turn determined self-consistently through the equation

x = JH(ffj,) (2.28)

Using this, we get the following mean-field Hamiltonian:

HH(k) = ZEkCCk + E fkfkfk
k k (2.29)

+ V E(cos(kx) - cos(ky))(f (Ck + Ctkfk)
k

where Cfk = Lf - X (cos(k,) + cos(ky)). With this quadratic Hamilto-

nian, we can again get the spectrum:

EH (k) = k + Efk±
(2.30)

(Ek2 fk2+ V2(cos(k ) - cos(ky)) 2

Now let us have a closer look at this Hamiltonian and spectrum.

When V = 0, local moments and conduction electrons are not hy-

bridized and we have two separated fermi surfaces. The electron fermi

surface is identified by spectrum sk and is small. Spinon fermi surface,

contains one moment per site and covers half the Brillouin zone[46].

Now assume turning on non-zero V. If V is small enough, both bands

intersect the fermi energy. The resulting fermi surface then consists of

two sheets (each identified with one of the bands). Consider the quasi-

particle residue on each band. From Eqn. 2.26, it is clear that on the
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fermi surface of the EH band, quasi-particle residue is given by v2 while

on the other sheet (associated with E H ) it is given by 2 . Vk and Uk

are defined in Eqn. 2.24 and satisfy

V(cos(k ) - cos(k,))
Uk E (k ) - Ek

U + = 1 (2.31)

Using this we see that the fermi surface of the - band has large

quasiparticle residue and thus has essentially c-electron character (with

weak admixture to f-fermions). On the other hand the + fermi surface

has small quasiparticle residue and has essentially f-fermion character

with weak admixture to c-electrons. Following reference [[46]] we name

the - and + fermi surfaces as cold and hot surface respectively. Re-

markably the quasiparticle residue on the hot fermi surface vanishes at

four isolated points (which are along the diagonal directions). At these

four points the excitation is a pure f-fermion with no admixture to

the c-electron. Thus at these isolated points the excitation is a neutral

fermionic spinon even though spinons do not exist elsewhere on the

fermi surface.

2.4 Quantum Hall Kondo insulators

In this Section we describe an interesting Kondo insulating state that is

possible if the Kondo singlet has nontrivial internal angular momentum.

Consider the generalized Kondo Hamiltonian again (2.2) and assume
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Figure 2-7: fermi surface of the d-wave Kondo liquid in the Kondo-Heisenberg model

Jjj is non-zero for nearest (J1 ) and next nearest neighbors (J2). Now,

as before, we decouple the interacting term using an auxiliary field

and consider the saddle point solution with nearest neighbor V(T, i, j)

the same as d-wave, and next nearest neighbor equal to iV2 along one

diagonal direction and -iV 2 along the other. Clearly this coresponds

to a Kondo singlet with internal angular momentum dz2_ 2 + idy,, and

describes a mean field state that spontaneously breaks time reversal

symmetry. This leads to the following mean-field Hamiltonian:

Hd+id(k) = ECkCtCk + E Pf fk
k k

+ Vi E(cos(k,) - cos(k,)) (fktck + ckfk) (2.32)
k

+ V2  i sin(kz) sin(ky) (ctfk - fkCk)
k

We now specialize to a half-filled conduction band nc = 1. Diagonaliz-

ing this Hamiltonian, we readily see that the ground state in this case is

a Kondo insulator with a gap. However we now show that the broken

time reversal symmetry leads to a non-vanishing quantized electrical
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Hall conductivity. Thus this state provides an interesting example of a

quantum Hall effect in a local moment system driven by the Kondo ef-

fect. To expose this physics it is convenient to rewrite the Hamiltonian

in terms of a two-component fermion operator bk:

(k ;k
We have

H= l Ik ± + M (k). >k (2.33)
k

Here F are Pauli matrices operating on the two components of /k and

rnk is a 3-dimensional vector defined in the two dimensional Brillouin

zone:

Mnk = Vi(cos(k,) - cos(ky))

+ V2 sin(kx) sin(k y) (2.34)

Ek - I-If
+ z

2

Note that if IMi I 0 over the Brillouin zone, Mi/| i4 is topologically a

mapping from a torus (Brillouin zone) to the unite sphere. To calculate

the Hail conductivity, we need the current operator. Note that in this

mean field Hamiltonian, charge conservation symmetry is realized as

invariance under 4 'k --+ eia k. Thus though the f-fermions start off

as neutral, the mean field condensation of V has endowed them with



physical charge. This observation then leads to the current operator:

J,(k) = H (2.35)

We can now calculate ay using the Kubo formula[57]. The details of

the calculation are in Appendix D. We get

2 ' '
a = d2k (x (2.36)

S41h j I |
The value of uxy is then invariant under smooth change of mi. It is thus a

topological invariant of the kind considered previously by Volovik[58].

We can now change iA smoothly to a mapping for which integration

2.36 could be calculated easily and gives twice the surface area of a

unit sphere so that
2e 2

Uxy h (2.37)

This is also confirmed with direct numerical integration. The essential

physics is also simply illustrated by the following argument. As the

relevant integral is a topological invariant we first imagine a smooth

deformation to make V2 infinitesimally small. In the limit when V2 = 0

the gap closes and Irm(k)l has four zeroes in the Brillouin zone on the

diagonal directions where Ck = pf. At low energies, the physics will be

dominated by modes near these nodes. On turning on a small value

of V2, we expect that the universal physics is still correctly captured,

in an approximation that is legitimate for modes near the nodes. So

we expand Mi(k) near these nodes and take the integral over kX and ky



from -oo to oo. After the expansion, we get (for the node at (kp, kp)

in the first quadrant of the Brilloun zone):

q = V sin(kp) 2

+ V2 sin2 (kp) (2.38)

q. + qy+ t sin(kp) z2

Here qi = ki - kp and cos(kp) = !. After renaming qx - qy as kx, qx + qy

as ky, V1 sin(kp) as vx, t sin kp/2 as vy and V2 sin(kp) 2 as A, along with

900 rotation of M' around x axis, we get the following simple form:

i(k) = vkx + vk^ + A (2.39)

From this we trivially see that mi(k) = M-(k)I points along 2 at kx = ky =

0 and points along radial direction in kx, ky plane as kg + k• 0 so.

So this vector covers half the sphere and contributes 27 to the integral

in Eqn. 2.36. Exactly the same contribution arises from the other

nodes and so we get 4 x 27 = 87. Putting this in 2.36 gives the result

quoted above for the electrical Hall conductivity.

Thus the dX_2Y2 +idy Kondo insulator has a quantized electrical Hall

conductivity. A similar result - a spin and thermal quantum Hall effect

- was established for two dimensional d2-Y_2 + idxy superconductors in

Ref. [59].





Chapter 3

Anisotropic quasiparticle weight in

Cerium based Heavy fermions

The main purpose of this chapter is to discuss the variation in the quasi-

particle weight Z on moving around the fermi surface, in a more realistic

model relevant to heavy fermion alloys. Indeed Z is a convenient mea-

sure of the extent to which fermi liquid theory works in a fermi liquid.

The theoretical approach we use is the standard hybridization mean

field theory for Kondo lattice models of the rare earth alloy. The vari-

ation of Z may be linked to the internal orbital structure of the Kondo

singlet that forms between the local moments and the conduction elec-

trons. This internal orbital structure derives from the symmetries of

the atomic orbital occupied by the local moment and the conduction

electron band it is coupled to. In the hybridization mean field theory

this leads to angle dependence of the hybridization on going around the

fermi surface. The most dramatic variation occurs when the hybridiza-

tion vanishes along some directions. Along such hybridization nodes



Z r o(1) but can become very close to zero along other directions. We

demonstrate the possibility of such hybridization nodes in a simplified

model appropriate for a Ce-based cubic system. Recent angle resolved

photoemission experiments[35, 34] have begun to probe the structure

of the electronic excitations of the heavy fermi liquid. We expect that

the physics described here may be probed in the near future.

Very recently experiments on CeCoIn5 have reported a striking

anisotropic violation of the Wiedemann-Franz law at the critical point [60].

Ref. [60] suggested that this might be caused by Z vanishing on some

extended portions of the fermi surface but not on others. The state we

study in this chapter is a fermi liquid state and hence does not violate

the Wiedemann-Franz law. Nevertheless the strongly angle dependent

Z that we find might provide some hints on the fundamental question

of whether Z can at all vanish on some but not all portions of the fermi

surface.

Inspired by these calculations appropriate to heavy electron systems,

we consider the possibility that the pseudogap regime of the underdoped

cuprates may actually have a large band-structure fermi surface but

with strongly angle dependent Z. Several experimental results on the

underdoped cuprates are examined in this light. Such a pseudogap state

has some attractive phenomenological features - in particular it provides

one possible reconciliation between recent high field quantum oscillation

experiments[61, 62, 63] and older ARPES reports of gapless 'fermi arcs'.

However such a large fermi surface fermi liquid state also has a number
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of problems with other experiments making it unappealing as a serious

theory of the underdoped cuprates. A non-fermi liquid version of such

a large fermi surface state might perhaps resolve these difficulties but

theoretical description of such a state remains out of reach.

3.1 Kondo singlets with internal orbital structure

As we saw before, the heavy fermion materials are conveniently modeled

as Kondo lattices, i.e. a periodic lattice of local moments coupled by

magnetic exchange to a separate band of conduction electrons[40]. At

low temperatures the local moments are absorbed into the fermi sea of

the metal through Kondo singlet formation. In a typical heavy electron

metal the local moments occupy atomic f-orbitals. The conduction

electrons derive from bands with different symmetry (s, p or d). The

Kondo singlet that forms between a local moment and a conduction

electron will therefore have nontrivial internal orbital structure. In the

low temperature heavy fermi liquid phase this orbital structure leads

to pronounced anisotropies between various parts of the fermi surface.

A close analogy is with the physics of unconventional superconductors

where Cooper pairs with non-trivial internal orbital structure condense

leading to anisotropic superconductivity. In the heavy fermi liquid case

such anisotropic effective masses are known to occur and have been

discussed theoretically using a renormalized band theory approach[64].

In the present chapter we will mainly focus on the quasiparticle spec-

tral weight Z which is a measure of the extent to which fermi liquid
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theory works. To illustrate our point we focus specifically on Ce based

heavy electron materials with the Ce ion in a f state[65]. We also

assume cubic symmetry. Such a Ce ion has, after considering the effect

of spin-orbit coupling and crystal field splitting, a low energy Kramers

doublet that couples to a separate conduction band. Again we treat the

corresponding Kondo lattice model within the slave boson mean field

approach (review in 1.2.1) [14, 13]. We show that Kondo singlet ampli-

tude has strong momentum dependence coming from the symmetry of

the f-orbital. Thus the true quasiparticles at the fermi surface are angle

dependent admixtures of the f-fermions and the conduction electrons.

Most remarkably we show that our simplified model naturally has di-

rections where the hybridization vanishes. These hybridization nodes

have a number of consequences. Most importantly it leads to a fermi

surface structure where along the hybridization nodes the true (large)

fermi surface is contained within the original small fermi surface of the

conduction electrons. Thus along these directions the true quasipar-

ticle mostly has c-character with weak admixture to f. Along other

directions the situation is reversed. Now the physical electron spec-

tral weight depends on the extent to which the conduction electron

contributes to the quasiparticle state of the true large fermi surface.

This then leads to the dramatic variation of the quasiparticle weight

discussed before.



3.2 Anderson Model for a Cerium ion

We begin by briefly reviewing the Anderson model describing a Cerium

fl impurity in a metallic host. The f states have orbital angular mo-

mentum I = 3 so that on including the spin there are 2 (2 x 3+ 1) = 14

quantum states in this orbital. Spin-orbit coupling breaks the degen-

eracy of this orbital into two sets of states with J = 7/2 and J = 5/2

where J is the total angular momentum (J = s + 1). The J = 5/2

states have lower energy and so we will concentrate on them. In a cu-

bic environment crystal fields will further split the J = 5/2 states into

a doublet (lower energy) and a quadruplet (higher energy) states. We

will concentrate on the lower energy Kramer's doublet, described by

IM = 1), where [65]:

(1 1/2 5 5 1/2 3

+ >= - z = ) - - IJz = -)6) 2 (6 2
(1 1 / 2  55 5 ) 1/ 2  3

>=- (|• Jz - -- z = ). (3.1)6) 6 2

Now consider coupling this doublet to a band of conduction electrons

ck,. We assume that the f-electron in a state M can hybridize with the

appropriate partial wave of the c-electron also in the partial-wave state

M. The coupling may therefore be modeled by the Anderson impurity
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Hamiltonian[42]:

H = EkCtkCk p+ f M ftMfM + U E nMnM,
k,M M,M'

k+ CkMM + VkMCkM
k,M

with the electron partial wave operator Ck,M, corresponding to repre-

sentation in total angular momentum and magnitude k bases. The

transformation between this bases and usual spin a and vector momen-

tum k bases is given through:

C
ckM zJ

0*

Sck ,(k, lk,M), (3.3)

where the integral is taken over all directions of the vector ^k. For

simplicity we assume further that Vk = V independent of k.

Focussing now on the strong correlation limit of large U we restrict

the f-occupation to be one, imposing the constraint

EffM = 1. (3.4)

The standard Schrieffer-Wolf transformation[66, 67] then gives the "Kondo"

effective Hamiltonian with an interaction

(3.5)MCk,MCk',M'fM
k,k',M,M'

with J = V 2U/[pf(pf + U)]. This is a Kondo type[39] interaction and

describes the coupling of the fluctuating M state at the Ce site to the

(3.2)



conduction band. Alternately we may write

HI = -J
k,k',a,oa',M,M'

< k'oa'k'M' >< kMIka >
(3.6)

x C fckC , fM',

3.3 Kondo lattice model

We now generalize the description of a single Ce impurity ion of the

previous section to a lattice of Ce ions. We first introduce operators

fM,R for the local moments at site R of the lattice. The generalization

of the Kondo interaction HI is clearly

HK = -J S(k', a'lIk', M', R) (k, M, RIk, a)
R k,u,k',a',M,M'

Xt
x fR,MCk,oCk,, afR,Mh

where Ik, M, R) is a c-electron partial wave centered at site R. We have

Jk, M, R) = eiP"RIk, M), (3.8)

where P is the momentum operator (generator of translation) and

Ik, M) is a partial wave centered at the origin. Thus we get:

(k, alk, M, R) = (k, aleiPRIk, M) = eik-R(k, alk, M),

(3.7)

(3.9)



since (k, a I is momentum eigen state. With Fourier transforming the

Ck electrons back to real space (ck, = r e ik-rcr,a ) we get:

HK = -J (kM,R k, M Ik, )eeik-(r-R)Cr O
R r,r',M,M' k,ofit, LZ~~ Mk, aeik~R -c

(3.10)

fM',R

It is convenient now to define real space operators

IFr,R,M = (k, MIk, a)eik'(r-R)Cr,o, (3.11)

which are a mixture of spin up and down electrons. In terms of these

real-space operators, the Kondo interaction assumes simple form:

HK = -J (3.12)ZYE YE f M,RFr,R,MFr,,R,M' fM',R/
R r,r' M,M'

The full Kondo lattice model then takes the form

H = Hc+HK

He = tE kCtkuCk,a,
k,o

(3.13)

(3.14)

together with the constraints

(3.15)E ftM,tRfM,R = 1,

at each site R. Note that due to this constraint it is no longer ap-

E(k', I' k', M')e-ik'-(r'-R) t'

W'~',a, •l',-o ,,,



propriate to think of the f-operators as describing physical electrons.

Rather at this stage they should be viewed as neutral fermions that

carry spin alone. As is well known this representation is redundant and

introduces an extra U(1) gauge structure associated with the freedom

to change the phase of f independently at each site.

3.4 Slave boson mean field theory

We now discuss the fermi liquid phases described by this Kondo lattice

model within the slave boson mean field approximation. In simpler

Kondo lattice models this technique correctly captures the essential

physics of the fermi liquid state[13, 14]. In the mean field we impose

the constraint of Eqn. 3.15 on average with a chemical potential Ap for

the f-fermions and replace the Kondo interaction by a self-consistently

determined hybridization between the c and f operators. The mean

field Hamiltonian reads

HMF ekCCkak f JM,RfM,R
ka MR

+ b fMtR rRM + hC (3.16)
MR r



The mean field parameters pf, b must be determined self-consistently

through the equations

1 = Z(f ,RfM,R), (3.17)
M

b = J( f'MR I FrRM) (3.18)
M r

Note that we have chosen b to be real in this mean field. Parenthetically

we note that a non-zero mean field hybridization parameter b should

really be viewed as a Higgs condensate for the U(1) gauge structure

introduced when we represent the spins in terms of the f-fields. In this

Higgs phase the internal gauge charge of the f-fermions is screened

by the condensate and the resulting screened gauge neutral object has

the same quantum numbers as the electron. This structure of the low

energy electrons manifests itself as a small electron quasiparticle weight

at the heavy electron fermi surface.

To diagonalize this mean field Hamiltonian we go to momentum

space. We write fM,R = Zq e-iqRfM,q and put in original form of I
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operators in terms of c. The hybridization term then becomes

HMF= b eiqRf tq
R,r q

E (k, MIk, -)eik' (r- R)Cr,a

k,a

+ h.c.

=b
q,k,o

(k, Ik, Mk, ) (3.19)

x e ikrcr,c + h.c.
r

b Z(k, MIk, a) fM,k Ck,a + h.c.
k

Thus the momentum dependence of the hybridization is captured through

the (k, aok, M) matrix element, which we calculate in the Appendix.

We define the four component field Tk

CkT

Ckl

fk,1

fk, 2

in terms of which, the Hamiltonian becomes

HMF = bk
k b

EkI b M(k) 1
Mt(k) pf I

(3.20)

i k = 7

R:ei(q-k)R)R Ml/1,,q



Here M(k) is a 2 x 2 matrix given by

M(k)= B(k) A*(k)

A(k) -B*(k)
(3.21)

The functions A(k), B(k) are defined in the Appendix.

Now we look for operators yi (k) that satisfy [HMF, 'Y (k)] = Ai(k)Y (k),

in term of which HMF is diagonal:

HMF = E Ai(k)y-(k)yi(k).

xpress /yi(k) as:

yi1(k) = u2(k)ckT + U (k)ckj + u (k)fkl + u (k)fk2,

(3.22)

(3.23)

where the coefficients u? (k) are determined through the eigenvalue

equation:

zu(k)

u (k)

Uz (k)

uZ(k)

= Ai(k)

ui(k)

au(k)

uZ (k)

(3.24)

From this we get the four eigenstates and the corresponding dispersion

If we e

IkI b M(k) 1
b Mt(k) I.Lf I



of four bands:

Al(k) = A2(k) = 2k + f2
k 2 f + b2(IA(Qk) 2+IB(Qk) l2)

A 3(k) A4(k) = +k + f
2

+ k- 2 f b2(IA(k) 2 IB(Qk) 2)

At each k obviously we have A, (k) = A2(k) < A3 (k) = A4 (k), so we have

two sets of doubly-degenerate bands. The degeneracy is a consequence

of time reversal and inversion symmetries which have been assumed in

the original model.

Let us assume that there are n, conduction electrons per unit cell

with n, < 1. Once combined with single f-fermion per unit cell, we

then need to fill these bands up to the fermi energy to give a total

particle number of 1 + n, per unit cell. Only only states in the lower

bands A1 and A2 are e filled, and the fermi surface always lives in these

two bands. Clearly the fermi surface is large in that its volume counts

both the conduction electrons and the f-fermions. The shape of the

fermi surface corresponding to our simple model is shown shown in Fig.

3-1.

We note that the hybridization matrix bM(k) vanishes along the

(100) and symmetry related directions (see Appendix). These hy-

bridization nodes lead to striking fermi surface anisotropies as discussed
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x
Figure 3-1: Z on fermi surface. Red denotes larger Z close to one and blue denotes
Z close to zero. Red points are along (0,0,1),(0,1,0) and (0,0,1) directions.

in detail below. For now we note that along these 'nodal' directions the

fermi surface coincides within the original small conduction electron

fermi surface. To see this consider the spectrum of the partially occu-

pied band. It is obvious that A(k) = Al(k) < 2 -_ k1kf 1. On the

other hand lk+f - jCk-•_fl = min{Ek, Pf} so that for all k, A(k) <

pf (equality only holds for the points where b(k) = b2(IA(Qk) 2 +

IB(Qk) 2) = 0). So for n, < 1, Ef < [if. Now if we consider points

on the fermi surface where b(k) vanishes, again for such points A(k) is

equal to either pj for points where 6 k > pf and Ek for points where

Ek < Pif. Since Ef < pf for such points we have A(k) = Ek; so the

fermi surface coincides with the small fermi sea of conduction elec-

trons at the points where b(k) = 0. Thus along the nodal directions

of the hybridization the quasiparticles at the fermi surface are almost

entirely composed of conduction-electrons. However, on moving away

from these nodal directions the quasiparticles quickly acquire an almost

complete f-character with a weak conduction electron admixture.
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3.5 Implications for photoemission experiments

The anisotropic hybridization leads, as discussed below, to anisotropic

quasiparticle spectral weight. This can be probed by angle resolved

photoemission spectroscopy (ARPES). We begin with a general discus-

sion of the physical electron Green function in Kondo lattice systems.

Let us start with Anderson model given in equation 3.2. In ARPES

by interaction with a light beam electrons are extracted from the sam-

ple. These electrons in principle could be extracted form any of the two

bands (see Equation 3.2). However processes where the f-occupation is

changed cost large energy in the strong correlation limit. On the other

hand, processes where the removed f-electron is replaced by tunneling

of a c-electron into the unoccupied f-site can occur at order(V/U) and

will have matrix elements in the low energy "Kondo" subspace. To

discuss this physics let us start from a single Anderson impurity and

consider the operator 'k,' that corresponds to extracting a electron

with momentum k and spin o out of the sample:

=k,a = Ck,a + (k, aIM) fM. (3.25)
M

In the strong correlation limit we need to perform the Schrieffer-Wolff

transformation for this operator. Below we use an equivalent alternate

procedure. We first consider the ground state. In the limit of infinite

U it consists of half filled f orbital coexisting with a conductino band

filled up to the fermi energy: we name this state Ig0). In the limit of
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large but finite U to first order in V/U the ground state becomes:

(nIV ( ftck,, + cfM) I90)
Igi) = Igo0)+ I) U (3.26)

n,M,k,a

where, for simplicity we have assumed that the energy to add, or re-

move an f-electron is U. Here In) denote the first excited states. To

a good approximation, the state-vector in the second term is given by

(ftick,a + ck,M) Igo). Now when we annihilate an electron by acting

with 0 on Igl) state, only final states which lie within the manifold of

states with single f-occupancy at the impurity, site will contribute to

the photoemission intensity at low energy. There are two such states,

one corresponding to the action of c on the Igo) component of the ground

state, and the other corresponding to the action of f on the second term

in Igi) (i.e on the ftc go) term). The net action of 'k,, on Igo) is then:

k,6 ~ Ck,a + (V/U) E (k', M'lk', a')
k',a',M',M (3.27)

x (k, ulk, M) ftck',q'fM.

The first term corresponds to the knocking off an electron from the

c band and second term corresponds to the first order process where an

electron from an f orbital is knocked off and an electron from c band

replaces it. Now for a lattice of impurities, we should consider processes

where f electrons from different sites are knocked out:
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k,a ' Ck, + (V/U) ZM
R k',a',M',M

x (k, alk,

(k', M ', Rik', a')

(3.28)
M, R) f tM,R Ck',a fM,R.

It is convenient to reexpress this in real space. The procedure is the

same we did in section 3.4:

(k', M', Rik', a') (k, ak, M, R)f ,RCk',a' fM,R
R k',a',M'

= (k', M'k', a')eik'(rR) fM',RCr,'
R k',a',M'

(k, ajk, M)eikRf M,R

(3.29)

R EfM t ',R
R M'

E (k', M'I|k'
k',Y

, a')

CE ik.RfM,R
M

=- Efi t'F,R, R M' 5(k, alk, M)fM,R.
R M' M

Within the slave boson mean field approximation we replace the prod-

uct ftc (or equivalently ftf) term in the second term by its average to

get:

#kd " Ck,a + (b/V) J(k, alk, M) fM.
M

The ARPES intensity may now be calculated from the Greens func-

(3.30)



tion of this 0 operator. Its trace is given by

Tr [Go, o,(k, iw,)] = dTeiw r

o (3.31)

where the expectation value is taken in the ground state. From equation

3.30 it is obvious that this Green function consists four different terms.

For this calculation, we need to have c, and fM operators, in term of

y operators. To make this calculation more transparent, it is useful to

introduce the unitary matrix U as:

U =

where:

U 1  U1  U1  U1

1 2 3 4

U3  U•  U3  U3
1 2 3 4

U4 U4 U4 U4

CT

C1

fi

f2

7 1

43
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(3.33)= U



Here k index is suppressed for notational convenience. Inverting we get

t 1 t 1 t 1 t 1 t (3.34)
T U171  U27 2  U33 3 + U474,

C•t- 2 t 2 t 2 t 2 t (3.35)
U1Y 1 +- U27Y + u3 7Y + U4Y4 ,
3f = u 3 f 3 t 3 + (3.36)

SU171 -U272 + U37i - U4+7N ,

f2t = t 4 t 4 t 4 t (3.37)
2 171 - U272 37 U33 .U4+4"

Using this result, we can expand imaginary part of the trace of the

Green function to obtain the zero temperature spectral function. This

has four terms corresponding to the operator combinations cct,fft, fct

and cft. Let us calculate them one by one. The cct term is:

Acc(k, w) = (u(k)12 + Iu2(k)12) 6(Al(k) - w)
(3.38)

+ (luM(k)12 + lu (k) j2) (A2(k) - w).

We then get the following form for the quasi-particle residue on the

fermi surface:

Zec(kIA 2(k) = Ef) = jul(k) 2 + Iu2(k) 2 =

b(k)2  (3.39)

b(k)2 + e(k)- /((k)-Mf )2 + b(k)2)



Now for ff term (noting u3 = u4 = 0) we have:

Aff (k, w) -

(b(k)) 2 (
+

1Al(k) - w)

6(2 (k) - w).

This gives the residue:

Zff(k A2(k) = Ef) =

e(k)-py +
2 j(e(k)-•) 2 + b(k)2)

b(k)2 + (E(k)-pf2 ((k)-1 )2 + b(k)2)

The last contribution will be:

Zc (klA 2(k) = Ef)

2(b 2/V) E(k)-pf2

b(k)2 + e((k)-pf
2 ( 2(k) f)2 +±

x R (A2( k)+ B2( k)) ,

where b(k) = bv/IA(Qk) 2 + IB(Qk) 2 . In Fig. 3-1 we have also indi-

cated the total residue Ztotal which is the sum of these three contribu-

tions.

Using the fact that Ib(k) I is small, we can investigate the behavior of

Ztotal at least for the points where Ib(k) I < Ie(k) - pf 1. For such points

we see that whenever Ck > pf the dominant term (of order b2/V 2) is

(3.40)

(b(k) 22
2

(3.41)

2

b(k)2)
(3.42)· ,

/(k)2-Pf)2 + b(k)24-



Zff and it varies since b(k) is angle dependent. On the other hand,

when Ek < ( f, the dominant contribution is Zc which is of order one.

This information could be summarized in the following form:

Z(klA2(k) = Ef) =
b2 h(k) (3.43)

b2) 2e (e(k) - p f) + e (/ f - e(k)).
(E(k) -f)

where h(k) is given by:

h(k) = (IA2 (k)l + IB2 (k) ) (1 + (E(k) - i) 2/V 2)
(3.44)

- 2R (A2(S k)+ B 2(Q k)) (e(k) - p)/V

A key result of this calculation is that for the points where e(k) >

pf, Z is small and of order b(k) •; this quantity varies by about

20% due to the angle dependent b(k). But for the points where p/Z >

E(k), the quasi-particle residue will be of order one and will exhibit no

strong variations. The small region in the middle of fermi surface in

Fig. 3-1 with Z r 1 corresponds to these points. These regions are

centered along (100) and symmetry related directions. As discussed

in the previous section the hybridization matrix has nodes in these

special directions and the corresponding quasiparticles are essentially

conduction electrons with Z - 1. On the other hand further away

from these nodal directions the quasiparticles develop f-character and

Z ,,, o(b2) along these other directions.

There is thus a dramatic anisotropy in Z on moving around the

fermi surface. We note that ARPES experiments will naturally be able
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Figure 3-2: Large closed fermi surface. Red large ARPES intensity Blue small ARPES
intensity

Figure 3-3: fermi patches as might appear in ARPES without large enough intensity.
Red large ARPES intensity Blue small ARPES intensity

to resolve the quasiparticle peak along high-Z directions. However a

low resolution ARPES study may well not be able to resolve the small-

Z quasiparticles at all and may incorrectly conclude that the fermi

surface consists only of finite open ended pieces??

3.6 Momentum dependent effective mass

It is well known that the effective mass m* in a heavy fermion system

can be very anisotropic on the fermi surface. How do these anisotropies
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correlate with the anisotropic Z? It is precisely the combination Z x m*

that determines the tunneling density of states. It is therefore also inter-

esting to look at m*(k) variations over the fermi surface. The effective

mass can be calculated by taking the second derivative of energy with

respect to momentum in direction perpendicular to the fermi surface

i.e. 2()

Ek--f

1/(m*(k)) = 1/2m* 1 - 2
(Ek ) 2 +f Ib(k) 12

b2(Ek - pf)f(k) 3/2 (3.45)
(Ek2Pf )2 + Ib(k) 12

S1/m* [ (PE E(k)) + (k b2  (k)

where m* is the free electron effective mass (1/m* = ), and in

the last step we used the approximation IEk - f I > Ib(k) . f(k)

and g(k) are dimensionless functions of k where g(k) = 2 sign(ek -

pf) (4f(k) + IA(Qk)12  IB(Ak) 2) (numerical calculations show no k

point where g(k) vanishes). Inverting this we get:

m*(k) m* [E (p - (k)) + E (e(k) - p) (Ek - f)2 (3.46)

We see a similar behavior with Z(k). Again for points with Ek > f we

have quasiparticles with large effective mass, but for Ek < Lf quasipar-

ticles are free electron types and have effective mass corresponding to



small, conduction electrons effective mass. We see that we have large

effective mass in the points where Z is small. So indeed variations of

effective mass are correlated with variations of 1/Z. The approximate

invariance of the product Z(k)m*(k) is a momentum-space variant of

Langreth theorem, which states that the single particle density of states

in the Anderson impurity model is an adiabatic invariant, independent

of the strength of the interaction[68, 69].

This is interesting since it shows us that the strong angle dependent

anisotropy does not apparently have large observable consequence on

ordinary tunneling measurements. However it may possibly show up in

the amplitude of the Friedel oscillations of the tunneling conductance

around an impurity, and may therefore be accessible through Fourier

transform scanning tunneling spectroscopy.

3.7 Underdoped cuprates: Pseudogaps and fermi

arcs in a large fermi surface metal?

We now compare the phenomena described with observations on the

normal state of the cuprate materials. As discussed above in the heavy

fermion context there are portions of the fermi surface where Z ~

o(1), and ARPES experiments may conclude that the fermi surface

consists of open ended pieces. This is strongly reminiscent of the fermi

arc phenomena reported by ARPES in the pseudogap regime of the

underdoped cuprates. It is tempting therefore to imagine that a similar
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mechanism is operational in the cuprates. More specifically is it possible

that the underdoped cuprates actually have a large band-structure-like

fermi surface but the Z is o(1) only along the observed fermi arcs and

becomes very small away from it so that those portions are not easily

observed? The antinodal pseudogap itself must then be associated with

a gap in the incoherent part of the electron spectrum with the gapless

coherent part not resolved due to the smallness of Z.

In considering this question we first observe that in the heavy fermion

system the smallness of Z goes hand-in-hand with the largeness of ef-

fective mass. More generally the effective mass is not directly related

to Z (it is only in cases where the electron self energy is momentum

independent that Z determines the mass renormalization). So phe-

nomenologically we need to first suppose that the small Z antinodal

regions do not have mass enhancement. Such a fermi liquid state for

the pseudogap regime has some attractive features. Consider first the

gapless fermi arcs. Several popular theories attempt to view the arcs as

part of a true fermi surface which consists of small closed hole pockets

whose back portions are not observed in ARPES due to a small Z. How-

ever, the observed fermi arc coincides with band structure fermi surface

and shows no tendency to bend away into a closed hole pocket. In con-

trast in the state discussed above the true fermi surface is simply the

band structure one but the antinodal sections would be unobservable

due to a small Z.

Consider next recent observations of quantum oscillations at high
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fields and low temperatures in some underdoped cuprates[61, 62]. The

oscillation frequency seems consistent with a small fermi pocket. A key

issue is to reconcile this with the fermi arcs reported in photoemission,

and a few different ideas have been proposed[70, 17]. An interesting

feature of the high field experiments is a negative Hall constant which

has been interpreted as evidence for an electron pocket[71]. Recently

Millis and Norman[72] have proposed that the oscillations and negative

Hall constant should be with a 1/8th filling antiphase stripe order,

which folds the band structure fermi surface to create a pocket. One

issue with the proposal is that the electron pocket is near the edges

of the full Brillouin zone - precisely the region where a big pseudogap

is seen by ARPES in zero field in the normal state above T,. For

the theory of Ref. [72] to apply it is apparently necessary that the

60T fields used in the quantum oscillation experiment wipe out the

pseudogap'. This may seem unnatural but is not prohibited. This

difficulty is overcome in the large fermi surface pseudogap envisaged in

this section. A low temperature 1/8 antiphase stripe instability arising

from that state will retain all the same transport properties as that in

the theory of Ref. [72]. This is because the smallness of Z does not

affect transport phenomena. On the other hand the ARPES pseudogap

(which in this state is the gap of the incoherent part of the spectrum)

will survive intact. Thus this kind of large fermi surface state provides

a possible route to a reconciliation between the quantum oscillation and

1This issue was raised by Patrick Lee.



ARPES experiments.

However a number of difficulties exist with the idea that the pseudo-

gap state has a large fermi surface state with strong angle dependent Z.

First, the density of states as measured by thermodynamic measure-

ments actually decreases on entering the pseudogap state by cooling.

This requires that the effective mass at the antinodal regions is sup-

pressed (rather than enhanced) in the pseudogap state which is rather

unnatural. Besides such behavior should signal an increase in the Drude

weight in optical transport in the pseudogap state which is not seen.

Finally this is also inconsistent with the scaling of the superfluid density

with the density of doped holes.

In light of these difficulties it seems unlikely that a fermi liquid

state with a large fermi surface of the kind discussed here is a serious

candidate for the pseudogap state. These difficulties may perhaps be

overcome by a non-fermi liquid version which retains the large fermi

surface and the strong variation of the low energy spectral density.

However a description of such a state does not currently exist.

3.8 Discussion

The most interesting aspect of our work is the possibility of large varia-

tions in the quasiparticle weight (and concomitantly the effective mass)

on moving around the fermi surface. This anisotropy is linked to the

internal orbital structure of the Kondo resonance, derived from the

f-symmetry of the orbitals occupied by the local moments. In the hy-
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bridization mean field theory the most dramatic variation occurs when

there are 'hybridization nodes', i. e directions along which the hybridiza-

tion vanishes. We have demonstrated the possibility of these nodes in a

simple model of a Ce-based cubic heavy fermion system with cubic sym-

metry. Hybridization nodes lead to the possibility that some portions

of the large fermi surface are actually contained within the original

small fermi surface of the conduction electrons. In those regions the

quasiparticles essentially have c-electron character with very little ad-

mixture to the f-fermions. The quasiparticle weight is correspondingly

large (of order 1). The opposite is true in other portions where the

quasiparticles mostly have f-character and have small Z. This then

leads to a strong angle dependence of the quasiparticle weight.

Real heavy electron materials have much more complicated band

structures than in the simplified model considered here. Neverthe-

less there exists in general the possibility of hybridization nodes which

will greatly affect their low temperature physics. Consider for instance

heavy electron superconductivity. At least in some cases the supercon-

ductivity may be driven by formation of singlet bonds between neigh-

bouring local moments due to RKKY interactions. In combination

with Kondo hybridization this leads to superconductivity. Formally

the singlet formation may be described as < ff > pairing while the

Kondo hybridization has non-zero < ctf >. This then leads to non-

zero < cc >, i.e superconducting order[73, 74]. If the hybridization has

nodes then this will lead to extra nodes in the physical superconducting
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order parameter over and above any nodes inherited from the singlet

bond < ff > amplitude[75].

The large variation of the Z also has potential implications for cur-

rent thinking on the nature of the quantum critical point between the

heavy fermi liquid and the antiferromagnetic metal. It has been sug-

gested that this transition is accompanied by the loss of Kondo screen-

ing resulting in a reconstruction of the fermi surface[44, 46, 76]. Such a

reconstruction presumably requires Z to vanish through out the large

fermi surface on approaching the transition from the paramagnetic side.

For a discussion on Z vanishing at the heavy fermion quantum critical

points see [77]. The variation of Z described in this chapter raises the

question of whether the manner in which Z vanishes also varies around

the fermi surface.





Chapter 4

Neel order, spin liquids and

quantum criticality in two

dimensions

In this chapter, we change gear and study a strongly correlated model

in insulating phase. As mentioned before although there are scenarios

for direct transition between heavy fermion phase and a spin liquid with

small fermi surface([46]), full direct transition to Neel ordered phase is

not explained yet. The model in this section, although is in insulating

phase of one band Hubbard model, describe the other halfway from

spin liquid to Neel state. We emphasis here that although this model

is not directly relevant to heavy fermions, it might open some roats for

future investigations in this system.

This chapter is more directly relevant to cuprates in underdoped side.

Despite many theoretical and experimental developments[17], questions

remain on connection between the paramagnetic phase and occurrence
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Figure 4-1: Zero temperature phase diagram showing the route from Mott insulating
antiferromagnet to d-wave superconductor (dashed-dot line). Horizontal axis refers
to doping and vertical axis refers to frustrating spin interactions that destabilize
the Neel state. The thesis of the spin liquid approach is that the intermediate and
long scale physics of the doped system may be fruitfully viewed as those of a doped
spin liquid Mott insulator. Doping the spin-liquid phase naturally leads to d-wave
superconducting state. (dashed lines).

of antiferromagnetic long range order.

Early work[18, 78] suggested that the undoped magnetically ordered

Mott insulator is close to being disordered by quantum fluctuations into

a paramagnetic featureless "spin liquid" phase. Such a spin liquid state

was postulated to have neutral spin-1/2 spinon excitations and preserve

all the symmetries of the underlying microscopic spin Hamiltonian (in-

cluding spin rotation). Further it was argued that doping a spin liquid

could possibly lead to high temperature superconductivity[18, 78].

Despite its original appeal, this scenario was subsequently questioned

by a number of significant theoretical developments. Calculations in

a controlled large-N expansion of quantum Heisenberg spin models

concluded that the natural result of destruction of collinear Neel or-

der was not a featureless spin liquid but (for spin-1/2) a valence bond

solid (VBS), which breaks various lattice symmetries[79]. (Here natu-
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ral refers to the possibility that the quantum paramagnet in question is

potentially separated from the Neel state by a second order transition.)

The VBS state also does not support fractionalized spinon excitations.

This was supported by a number of other indirect arguments - for in-

stance by studies of quantum dimer models on the square lattice[80]. It

was shown however that destruction of non-collinear Neel order could

indeed lead to a fractionalized spin liquid state that preserves all lattice

symmetries[51].

These calculations lead to the following folk wisdom (for a review see

Ref. [81]): "In two spatial dimensions collinear ordered magnets natu-

rally give way to confined VBS paramagnets when disordered by quan-

tum fluctuations while non-collinear magnets naturally lead to spin liq-

uids". As the magnetic ordering is undoubtedly collinear in the cuprates

this folk wisdom apparently spells doom for the view of the cuprates as

doped spin liquid paramagnetic Mott states.

In this chapter we revisit these issues. We will first argue that, if at

all a spin liquid based approach is to be pursued, experiments suggest

a certain kind of paramagnetic spin liquid state as natural candidate

'parent' states of the doped cuprates. Next we argue that the exist-

ing theoretical work does not rule out a direct second order transition

between the Neel state and this particular kind of spin liquid state.

Finally we outline in some detail a theory for just such a direct sec-

ond order transition. Thus our work calls into question the folklore

described above and potentially frees the spin liquid based approach to
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the cuprates from one of its theoretical criticisms.

Based on these results we will develop a qualitative picture of the

neutron resonance mode seen in experiments in the doped system and

its relationship with other aspects of the observed spin physics. Our

description will naturally unify two popular views of the resonance

mode - one as a soft mode associated with antiferromagnetic long range

order[25, 26, 27], and the other as a spin exciton formed as a triplet

particle-hole collective mode of fermionic quasiparticles[82, 83, 84, 85,

86].

We begin with experiments. It is by now quite clearly established

that the cuprate superconductors are d-wave paired and furthermore

have nodal BCS-like quasiparticles. The existence of the nodal quasi-

particles is theoretically significant. Indeed the possibility of d-wave

paired superconductors without nodal quasiparticles has been much

emphasized by Kivelson and coworkers (for a review see Ref. [87]). It

is therefore of some interest to ask whether there exist paramagnetic

Mott states that already have gapless nodal excitations. Such a state

then builds-in enough of the spin physics seen in the experiments at

finite doping that it would be an attractive 'parent' Mott insulator as

a basis for a theory of the underdoped cuprates.

Remarkably such states are known to exist as stable quantum phases[53,

88] of quantum antiferromagnets magnets on a two dimensional square

lattice, at least within an appropriate large-N expansion. Here we will

focus on one such state that has played a central role in some previous
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theoretical work[89, 90, 91, 92, 93, 94] on the cuprate problem. This

state - dubbed the d-wave RVB or staggered flux (sF) spin liquid - is

a quantum paramagnet that nevertheless has gapless spin carrying ex-

citations. Recent theoretical work[88] has established the stability of

such a state (in a suitable large-N expansion). A low energy description

of the physics is usefully provided in terms of a theory of gapless nodal

fermionic spinons coupled minimally to a fluctuating U(1) gauge field.

Despite this however there really is no true quasiparticle description of

the low energy spectrum[93, 95].

4.1 Mean field theory

Consider a generic SU(2) symmetric spin-1/2 model on a square lattice

with predominantly antiferromagnetic short ranged interactions:

7i = J S Sr +"" (4.1)
<rr' >

Here J > 0 (antiferromagnetic exchange), and the ellipsis represent

frustrating interactions that can be used to tune quantum phase tran-

sitions. We will require that the full Hamiltonian be invariant under

SU(2) spin rotations, time-reversal, and the full space group of the

square lattice. It is well known that the nearest neighbour model has

a Neel ordered ground state. Various paramagnetic ground states can

be accessed (in principle) by appropriate frustrating interactions. As

explained in the introduction, here we will focus on a particular para-
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magnetic state that is known as the dRVB algebraic spin liquid (also

often referred to as the staggered flux spin liquid). A mean field the-

ory for this state has been described several times in the literature and

is well-known[891. First the spin is formally rewritten as a bilinear of

fermionic "spinon" operators

Sr = if a frp. (4.2)

Here a = 1, 2, corresponding to spin up/spin down fermions. This is an

exact rewriting when combined with the local constraint f fa = 1. In

the mean field approximation the exact Hamiltonian is replaced by one

quadratic in the spinon operators but with self-consistently determined

parameters. For the dRVB state, the mean field Hamiltonian takes the

form

HF = - ((Xrr' + iArr')ftfr' + h.c) (4.3)
<rr >

Here we take r to belong to one sublattice of the square lattice. So

that r' belongs to the opposite sublattice. The constants Arf = +A on

horizontal bonds, and -A on vertical bonds while Xrr' = t on all bonds.

This describes fermionic spin-1/2 spinons on the square lattice with

complex hopping amplitudes such that there is a non-zero flux that is

staggered from plaquette to plaquette. Despite appearances, this saddle

point possesses the full symmetry of the microscopic model including all

lattice symmetries. (The apparent breaking of translational symmetry

is a gauge artifact). Recent work has clarified the nature of fluctuations
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about this mean field state. But in this present section, we will stick to

the mean field description and see how a transition to a Neel ordered

state may be described.

To access a Neel state we modify the dRVB mean field Hamiltonian

by adding a nearest neighbour antiferromagnetic interaction between

the spinons. Such an interaction will anyway be induced once fluctu-

ations beyond the mean field theory are considered. By including it

explicitly, we can induce a spin density wave ordering of the fermionic

spinons. We therefore consider

H = (Trf-fr + Tr, f-) + T S.fr)r, (4.4)
(rr') (rr')

Here Try, = T = t + iA on bonds as shown in Fig. 4-2 and equals

T* = t - iA on other bonds as also shown in Fig 4-2. We now treat the

1 term in a mean field approximation. We look for a solution where
9

< Sr >= ErN is non-zero (In mean field theory, N = (cSrr) is constant.

So we can choose it's direction as z direction). Here ,r = (- 1 )x+y is

+1 on the A sublattice and -1 on the B sublattice. The mean field

Hamiltonian reads

HMF = -- (Tffri + T* ft, fr) 4 N Erfrt fr (4.5)

The value of N is to be determined self-consistently. We can diagonalize

this Hamiltonian using a two site unit cell as plotted in figure 4-2. This
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Figure 4-2: Two-site unit cells
field Hamiltonian.

T*
T* 2 T %•

T

T

(indicated by dashed lines) used to diagonalize mean

gives the following equation for energy eigenvalues and eigenstates:

g 2

6(k) + iA(k)

E(k) - iA(k)
N [f2

Ek
fi
f2

Heres, fi belongs to one sublattice and f2 to the other one.

decomposed T as t - iA. e(k) and A(k) are then defined as:

e(k) = -2t(cos(ky) + cos(kx))

A(k) = 2A(cos(k,) - cos(ky))

This gives spectrum of the two bands:

Ek 2 + e(k)2 + A(k)2

E =i (7- +

(4.6)

We have

(4.7)

Now with this in hand we can derive the self-consistency equation for

N:

- Z t6rf fr) = L2N (4.8)

Where L is the linear system size. Using the spectral function of the
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lower band (we consider T = 0) this gives:

N 1
g N = (4.9)

L/(k)2 + e(k)2 + A(k)2

This equation has a trivial solution N = 0, but it is obvious from (4.7)

that non-zero solution, if it exists, has lower energy. So the system has

two phases, achieved by tuning the value of g. The critical value, g, is

given by:

gc (4.10)
k &E(k)2 + A(k) 2

for g > gc there is no non-zero solution and so N = 0. But for g < gc

we have N $ 0. From (4.9) we can also derive the behavior of N at

critical point within mean-field:

N oc 0 for g>gc (4.11)
gc - g for g < gc

Note that in the magnetic phase the non-zero N induces a gap to the

spinons.

To study low energy properties, we will set up a continuum effective

theory. In the next section we will include fluctuations in this con-

tinuum field theory. In the spin liquid state, the spectrum consists of

two fermi points, located at k. = ! ! and k = - - (at

these points E(k) = A(k) = 0), in the reduced Brillouin zone. There

are gapless spinon excitations near these nodes with a Dirac-like linear

dispersion. A low energy description of the spin liquid is then possible
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in terms of a continuum field theory of massless Dirac spinons (a brief

review that helps fix notation is in appendix F). To study the magnetic

transition described above within this continuum field theory, we need

to introduce a 'mean field' that couples to the' (-, 7r) component of the

physical spin density. The resulting action takes the form

Sm = d2xdT(-i", + iA IzN. 2-) (4.12)

In this representation, 0 consists of four two-component Dirac fields.

The four Dirac fields arise from the presence of two physical spin species

together with two pairs of nodes. The Pauli matrices a act on the spin

index while the ji are Pauli matrices acting on the node index. It is

readily seem that the combination !tpz/'O is precisely the continuum

form of the physical spin density near (7r, 7). In the mean field theory N

is to be determined self-consistently. The coupling A is proportional to

coupling 1 and from now on the momenta are considered with respect

to the nodes. As expected a non-zero N gaps out the Dirac spinons.

This gap vanishes upon approaching the phase transition to the spin

liquid. The inverse of this gap determines a diverging length scale -

within the mean field theory this length scale describes the decay of

the connected part of the spin correlations near (7, 7r). This may be

seen by a direct calculation (described in appendix G.1) which gives:

S r
e '(Si(O)Sj(r))c c (1 + J) 5j (4.13)
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So the connected correlation for r << is a power-law decaying function

with fourth power of r. For r »> it is a exponential decaying function,

with correlation length ( and a pre-factor which decays as the third

power of r. The correlation length at critical point diverges as:

1 1
1 oc 1 (4.14)JA - Acl Ig - gcl

4.2 Beyond mean field theory

In this Section we consider the effects of fluctuations beyond the mean

field theory described above. In the spin liquid phase far from the

magnetic transition the crucial fluctuations are those associated with

the phase of the spinon hopping parameter. These are to be thought

of as gauge fluctuations associated with a (compact) U(1) gauge field

that is coupled minimally to the spinons. Recent work has shown that

the dRVB spin liquid is stable to such gauge fluctuations[88] (at least

within a systematic large-N expansion where N is the number of Dirac

spinons). We will assume that this stability persists to the physically

relevant case N = 4. The low energy theory of the resulting phase is

described by massless QED in three space-time dimensions:

S = d2xdT {- [i'y"(, + i e a1,)]' + (,c),s aa) 2 } (4.15)

Here a, is a fluctuating U(1) gauge field which may be taken to be

non-compact at the low energies. This theory flows to a conformally

invariant fixed point. Various physical quantities have non-trivial power
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law correlations at the resultant spin liquid fixed point [96]. In particular

the (w, rx) spin correlator decays as a power law:

eiQ.r(S(O).(r) (4.16)

The exponent A is not known - a rough estimate from projected wavefunctions[97,

98] gives A • 0.75. The dynamical spin correlations at (rx, -r) in the

scaling limit follow straighforwardly from the relativistic invariance of

the field theory above. For the full zero temperature dynamical spin

susceptibility, we have

xSL (q, 2) ~ F (4.17)

Here q'is the deviation of the wavevector from Q = (ir, 7r), F is a univer-

sal scaling function, and v is a non-universal spinon velocity associated

with the nodal Dirac dispersion. The exponent 77 is the anamolous di-

mension of the staggered spin and is related to A through 2A = 1 + rj.

Due to the power law spin correlations, this spin liquid phase has been

dubbed as "algebraic spin liquid" (ASL) [96]. Note that the spinons are

not good quasiparticles at low energies in the spin liquid phase. In-

deed there presumably is no quasiparticle description of the spectrum

(rather like at interacting quantum critical points). Nevertheless the

field theory above in terms of spinons provides a useful description of

the system.

A remarkable feature of the dRVB algebraic spin liquid phase is
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the emergence of a huge global symmetry group characterizing the low

energy fixed point. The low energy theory has an SU(4) symmetry

corresponding to free unitary rotations between the four Dirac species.

In addition the irrelevance of space-time monopoles at low energies

implies a non-trivial global U(1) symmetry associated physically with

the conservation of internal magnetic flux. Ref. [95] studied a num-

ber of consequences of the SU(4) symmetry. In particular it showed

that several other competing order parameters had the same power

law correlators as the Neel vector - these include the order parameter

associated with the columnar/plaquette VBS orders.

Near the transition to the antiferromagnetic state, we must treat the

Neel field introduced in the previous section as a fluctuating vector N.

Further upon integrating out high energy spinons (i.e. ones far away

from the nodes), this N field will develop some dynamics of its own.

The resulting action takes the form

S = d2xdTr {-V[i74Y(o + ie a_,)]z + iA0 (Mz N. -)+
) () 2  (4.18)

2 2 4!

In writing this action we have ignored anisotropies in the spinon

velocities at the Dirac node and any difference between the velocities

of spinon and N fields. Later we will show that all of these velocity

anisotropies are irrelevant (if small) at the critical fixed point between

the dRVB ASL and Neel states (see H.0.4).

In the presence of the coupling to the N field, the action no longer
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has full SU(4) global symmetry. An SU(2) subgroup - corresponding

to physical spin rotations - is still obviously a symmetry. This involves

an SU(2) spin rotation of the 7P field together with an 0(3) rotation of

the N vector. In addition, the global transformation

0- eio, 0 (4.19)

with 0 a constant is also a symmetry. This is a U(1) subgroup of

the full SU(4) symmetry. Thus the action has a global SU(2) x U(1)

symmetry apart from the Ufl,(1) associated with the gauge flux con-

servation. The extra U(1) symmetry that survives from the full SU(4)

has the consequence that fermion bilinears such as 4~tA, Op•y can be

freely rotated into another. In the original spin model, these operators

transform identically to the VBS order parameter. The U(1) symmetry

then implies that the columnar and plaquette order parameters can be

rotated into one another, and hence will have identical correlations.

Let us now study some general aspects of the two phases, near the

phase transition.

4.2.1 Precursor fluctuations in the spin liquid

We will first consider the precursor fluctuations of the magnetic order-

ing in the spin liquid side.

First consider the limit A = 0. Then the N field decouples from

the spinon-gauge sector. It is instructive to think about the spectral

function for the (r, 7i) spin correlations in the spin liquid phase in this
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limit. It is simply a sum of two pieces as shown in Fig. 4-3 - a di-

verging power law coming from the ASL, and a sharp delta function

peak coming from the N fluctuations. Now consider turning on a small

non-zero A. The low frequency divergence of the spin susceptibility will

be unaffected by the coupling to the fluctuating N field (this follows

from the assumed stability of the ASL fixed point). However the delta

function peak coming from the N field will now be broadened due to

decay into two spinons. The broadening may be described within a

simple RPA approximation (for details see appendix G).

2.

1.

0.

Figure 4-3: Dynamical spin susceptibility at (7r,7r) in the spin liquid phase in A=O
limit

In Fig 4-4 we plot the dynamical spin susceptibility at (7r, 7) as the

phase transition is approached (by decreasing r). Note that as expected,

the peak coming from the N fluctuations "softens" on approaching the

transition.

4.2.2 Magnetic state

When the parameter r is sufficiently negative the N field will condense

leading to magnetic long range order. In the continuum field theory

this may be viewed as a spin density wave state that arises out of the
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Figure 4-4: Dynamical spin susceptibility at (7r, 7r) after turning on a nonzero value
for A. The plot shows the change upon approaching the transition from 4-4(a) to
4-4(c). Note the softening of the N peak, as the transition occurs.

dRVB ASL. In this subsection we will argue that contrary to naive

expectations, it is in fact a different state from a conventional Neel

state - rather it is a fractionalized antiferromagnet in the same spirit

as that studied in Refs. [99, 53]. This apparent problem will be cured

once we include the effects of monopole fluctuations (ignored so far).

We will show that this fractionalized antiferromagnet evolves at long

length/time scales into the conventional Neel antiferromagnet.

Consider first the description of the Neel ordered state within the

mean field theory developed in Section 4.1. The mean field spectrum

consists of gapped spin-1/2 spinons'. It is important to realize that

the spinons are merely gapped - they however have not disappeared

from the spectrum. Now consider including fluctuations as in Section

4.2. The important fluctuations are those associated with slow rotation

of the direction of the Neel order parameter NA (spin waves) and those

asociated with the phase of the fermion hopping T (gauge fluctuations).

These are both conveniently discussed within the continuum theory in

'Note that if N = Noi, then S z is a good quantum number and can be used to label the states.
The spinons have S z = ±1/2.
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Eqn. 4.18, that obtains close to the critical point. Integrating out the

gapped spinons, we may obtain an effective action for the spin waves

and the gauge fluctuations. To quadratic order in both the transverse

component of the Neel vector N1 and the gauge field a, we get

Seff x P (aN) + - (E,,, 9 )2 + ....... (4.20)

where the ellipses refer to higher order terms that are unimportant at

low energies. The first term describes the expected gapless spin wave

excitations. The second term describes a gapless linear dispersing "pho-

ton" associated with the gauge fluctuations. This extra gapless mode

provides a sharp low energy distinction between this Neel state (as de-

scribed so far) and the conventional one. The gapless photon mode

is minimally coupled to the gapped spinons - the presence of gapped

spinons serves as another distinction with the conventional Neel state.

Thus the antiferromagnet state is to be characterized as a "fraction-

alized antiferromagnet" with a U(1) gauge structure. Following the

notation of Ref. [99], we will dub it U(1) AF*.

Let us now include monopole fluctuations. In this magneticaly or-

dered phase, the low energy gauge action is that of free Maxwell theory

in 2+1 dimensions. Then standard arguments show that the monopoles

are strongly relevant. Thus the U(1) AF* state (in two dimensions) is

ultimately unstable to monopole proliferation. The result is to gap

out the photon mode and cause confinement of all objects that carry

non-zero gauge charge. In particular it implies that the spinons (which
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survived as gapped excitations when monopoles were ignored) will now

be confined and disappear from the spectrum. The resulting state is

thus simply smoothly connected to the conventional Neel state. Thus

including monopole fluctuations cause an instability of the unconven-

tional U(1) AF* state toward the conventional Neel state.

4.2.3 Projected wavefunctions

Before continuing we digress briefly to make contact with the large

body of work on Gutzwiller projected superconducting wavefunctions

(see Ref. [98] and references therein), as a route to implementing RVB

ideas. Of interest to us, will be studies on projected d-wave BCS states

and their variants. In the slave particle description, a useful guess for

a prototypical wavefunction for a state is obtained by taking the mean

field state and projecting it onto the space of physical states. At half-

filling this is equivalent to doing a Gutzwiller projection on the mean

field state. According to this prescription, a guess for the wavefunction

of the dRVB algebraic spin liquid will simply be

IdRVB >= PGldBCS > (4.21)

where IdBCS > is the mean field ground state of a d-wave supercon-

ductor at half-filling with just nearest neighbour hopping and pairing

on the square lattice. Correspondingly, a guess for the wavefunction of
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the magnetic state, as we have obtained it, would simply be

jAF >= PGIdBCS + SDW > (4.22)

The preprojected state on the right simply has spin density wave order

at (r, -r) coexisting with the d-wave superconductivity. Such wave-

functions have been studied numerically[100] and are known to have

excellent energy for the nearest neighbour Heisenberg model. From

our considerations in the previous section, we would expect that this

wavefunction is a prototype for a confined antiferromagnet with no fi-

nite energy spinons. Some support for this expectation comes from the

work of Ref. [101] which studied the properties of a single hole in that

state. The quasiparticle residue was found to be non-zero consistent

with that expected in a confined antiferromagnet.

4.3 Phase transition: Generalities

Let us now consider the phase transition between the dRVB ASL and

the Neel state. In the limit A = 0, the N vector fluctuations are de-

coupled from the ASL and the magnetic transition is simply in the

universality class of the usual 0(3) fixed point in D = 3 space-time

dimensions. Note that in this limit mean field theory predicts that the

Neel order parameter vanishes with exponent , = 1/2 on approaching

the transition. What is the effect of turning on a weak A at this de-

coupled transition? First note that in the mean field theory of Section
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4.1 we found that the Neel order parameter vanished with exponent

/ = 1 clearly different from the A = 0 limit. Thus a non-zero A already

changes the answers within mean field theory. More generally the ef-

fects of a weak A may be assessed by considering the renormalization

group flow of A at the decoupled fixed point. We have

dA
d= (D - A N - A)A (4.23)

where D = 3 is the space-time dimension, AN is the scaling dimension

of the N field at the D = 3 0(3) fixed point, and A is the scaling

dimension of the spin operator near (7r, w) at the dRVB ASL fixed

point. Here 1 is the usual logarithmic renormalization scale. We have

AN = 1+77N and A= . Thus D- AN - A 2 - 2. With2 2' 2 2

the rough estimate Tq - 0.5, we find that A is strongly relevant at

the decoupled fixed point. Thus the true critical behavior will involve

strong coupling between the N field and the spinons of the ASL. In

Section 4.4, we will study this critical behavior in a controlled 3 - E

dimension. A very similar field theory where a fluctuating 0(3) vector

field was coupled to massless Dirac fermions was studied many years

ago by Balents et al[102] in a different physical context. The main

difference between the theory of Balents et al and the action in Eqn.

4.18 is the presence of the gapless gauge fields in the latter. We will

see that this modifies the universality class of the transition from that

in Ref. [102].

What about monopole fluctuations at this critical point? Let us first
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review the situation in the paramagnetic algebraic spin liquid state.

Recent work has argued[88] that when the number of Dirac species

N is sufficiently large (i.e. bigger than some Nc) the monopoles are

formally irrelevant at the ASL fixed point2 . In the large-N expansion,

the monopole scaling dimension will be o(N) both at the ASL fixed

point and at the critical fixed point - thus at least for large enough N

the monopoles are irrelevant at the critical fixed point as well. Here

we will make the crucial assumption that this irrelevance continues to

hold at N = 4, i.e. for SU(2) spin models (see figure 4-5).

o
0
o

rAF

U(1) AF* gc ASL

(Critical Coupling)

Figure 4-5: Renormalization flow diagram near the critical fixed point. The vertical
axis is the monopole fugacity; the horizontal axis is a coupling g which describes the
strength of the short range part of the spinon interaction.

With this assumption the monopole fugacity is irrelevant at the crit-

ical fixed point (and the paramagnetic ASL fixed point) but relevant

at the ordered fixed point of the continuum field theory in Eqn. 4.18.

In renormalization group language, the monopole fugacity is a danger-

ously irrelevant coupling. The length scale 5m at which the photon gets

2It is at present not known what the value of N, is though existing numerical work suggests the
bound Nc < 8. For the SU(2) magnet we have N = 4 and have simply assumed that N, < 4.
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gapped (which may loosely be dubbed the "confinement scale") in the

magnetic side may be estimated as follows. Let the monopole scaling

dimension at the critical point be Am > 3. Upon scaling out of the

critical region in the ordered state to the correlation length scale ý,

the monopole fugacity will renormalize to zý - (3-Am. It is beyond

this scale ( that the action in Eqn. 4.20 starts applying. In the free

Maxwell theory that obtains beyond ý, the monopole fugacity grows.

A standard matching argument now gives $m ' ý(Am-1)/2. Thus ým

diverges faster than (. The physics on scales <« L «< m is that of

the fractionalized antiferromagnet U(1) AF*. It is only at the longest

scales L > '~ that the conventional Neel behavior is obtained (fig.

4-6).

Critical U(1) AF* AF
I I

Figure 4-6: Crossover length scales in the magnetic state close to the transition to
the spin liquid. The shorter length scale ý describes the crossover from the critical
state to the fractionalized antiferromagnet. The longer scale ým is where this exotic
antiferromagnet crosses over to the conventional Neel state through confinement.
Both scales diverge near the critical point but ým diverges faster than (.

4.4 c expansion for critical properties

In this section we will show how the structure of the critical fixed point

can be studied in a formal expansion near three space dimensions. Some

care is necessary in dealing with the Dirac matrices in arbitrary dimen-
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sion. But here following Ref. [102], we will sidestep this issue. We

will perform calculations in a perturbative expansion of the coupling

constants in d = 2, take the traces over the Dirac matrices and then

finally, in evaluating momentum integrals, set d = 3 - E. As a warm-up

we first describe the ASL fixed point within this E expansion.

4.4.1 ASL in the c expansion

Before starting the c expansion studies for the full theory, we study

ASL phase with this approach. To do that we consider action (4.18)

and assume N = 0. Then it reduces to the usual QED3 action. The

flow equation for this theory is well known[103] (and also calculated in

appendix G.1):
e2 = 6 2  16 e4

2 = (4)2 (4.24)3 (47xr)2
Here E = 3 - d. This flow equation indicates the presence of nontrivial

fixed point of order E at:

e*2 = 37 26 (4.25)

This is the pure ASL fixed point. The microscopic derivation of the con-

tinuum field theory for the spin liquid allows for a velocity anisotropy

between the two spinon nodes. This anisotropy was found to be irrel-

evant in the large-N limit of QED3[104, 105, 95]. Here we examine

its fate within the E expansion. Direct calculation (appendix H.0.4)

shows that 3 = -614 e*2 = 8- E, where 6 measures the velocity

anisotropy (i.e. 6 = 0 corresponds to isotropic QED3). So that it is
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irrelevant at o(E). Combined with the large-N result, this is strong

evidence for its irrelevance at the physically relevant ASL fixed point

for N = 4 in two space dimensions. As noted in previous papers[95]

this irrelevance implies that the N = 4 ASL fixed point has global

SU(4) symmetry corresponding to free unitary rotation between the

four Dirac species.

Finally we can examine the scaling of gauge neutral fermion bilinears

(such as the Neel vector) in the E-expansion. This is conveniently done

by adding a source term that couples to such a bilinear, and calculating

the one loop correction to the corresponding vertex (see appendix G.1).

We find that the (7, rx) component of the spin has scaling dimension

A = 3 - 1.94E. Setting e = 1 gives the estimate A • 1.06. This implies

extremely slow decay of the corresponding correlator. This estimate

may be compared with that from the 1/N expansion directly in d = 2

which gives A • 1.54. Thus both expansions give slow decay for the

Neel correlations that are strongly enhanced compared to the mean

field results.

4.4.2 Critical fixed point

In this section we study the critical point within the E expansion by

including the fluctuating N field. LFrom the action (4.18) we have

three types of vertices and eleven different one loop diagrams. At one

loop level, as derived in appendix G.1, we get the following set of flow
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equations:

e2 = e2  16 e(4.26)
3 (4w) 2

pA2 = E2 4 + 10 e2 \ 2  (4.27)
(47r) 2  (47r) 2

11 u2  A2u A4

oP = Eu - -16( + 9 6  (4.28)
3 (47)2  (47r) 2  (47r) 2

5 u X2
Or = (2 - (4 8 (4))r (4.29)3(47r)2 (4xr)2

Note that flow equation for electric charge is the same as usual quantum

electrodynamics. In fact, gauge invariance dictates this form[106, 103]

(to keep the form e a, invariant under RG flow we need to have

Ze//lZa = 1). From these we can get the following fixed points:

e*2 = 0 (4.30)

A*2 = E (4.31)
5

384n 2

u* 3= (4.32)
55

This fixed point describes the transition in the absence of the gauge

field and was first discussed by Balents et al[102]. Our calculations at

this fixed point matches this previous work which therefore provides

a useful check. As another check at this fixed point, if we consider

our theory, with the three component N field replaced by a scalar field

¢, it represent a Yukawa like theory, which has been studied in Ref.

[103]. Our results then can be partially checked against these previous

calculations. The full flow equations admit another fixed point located
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at:

e 2 = 37-2e (4.33)
23 -2

A*2 = 2E (4.34)
5

127
2

u* = w(-36 + /1r2934)e (4.35)

It is readily checked that the e2 = 0 fixed point is unstable towards this

one. Thus the presence of the gauge field has changed the universality

class of the transition. Here we should also note that the at the one

loop level, calculation in appendix H.0.4 shows that at this fixed point,

the velocity anisotropy is irrelevant at o(c). So this fixed point is also

stable against small velocity anisotropy. Now using the flow equation

for r (Eqn. 4.29), it is easy to extract exponent v for this fixed point:

1
- = 2 - 4.07c (4.36)

Note that simply setting e = 1 gives an unphysical answer. This is

a signal that the leading order E expansion is not quantitatively very

accurate in estimating scaling dimensions in two space dimensions. De-

spite this the E expansion is useful to describe the structure of the fixed

points and the trends of the various exponents.

It is very interesting to ask about the behavior of the staggered spin

correlations (i.e. near (r, ir)) at this critical point. Naively there are

two different physical operators that have the same symmetries as the

staggered spin: the vector N and the fermion bilinear NA = 'z&#
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Thus in writing down an expression for the staggered spin in terms of

the fields of the continuum theory, we must include both contributions:

ei . ( "C) - c + C2N + ... (4.37)

The ellipses refer to other operators with larger scaling dimension that

also have the same symmetries as the staggered spin. The coefficients

C1,2 are non-universal. Now consider the scaling of the staggered spin.

If A = 0, then the fermion bilinear and N scale independently. Near

d = 3, and with the available estimate of the scaling dimension of

the fermion bilinear at the ASL, it is readily checked that N has the

lower scaling dimension. Hence the long distance decay of the staggered

spin correlations will be determined by N in the A = 0 limit. What

happens when A is non-zero as at the non-trivial fixed point above in

the E expansion? It is expected that the true scaling fields will be some

linear combinations of N and NA which will have the form

1 A N + A2NA (4.38)

02 " BIN +B 2Nj (4.39)

These fields will have scaling dimension A1,2 with (by definition) A1 <

A2 so that the long distance decay will be dominated by $1. The

coefficients A 1,2 and B1,2 will be determined by the fixed point theory.

At o(c) we expect A1 ~ o(1), A 2 r o(E), B 1 r o(E), B 2 r o(1). Thus to

obtain the scaling dimensions A1,2 to o(c) we can ignore the 'mixing'
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terms A 2, B 1, and simply calculate the anamolous dimension of N and

The exponent 7 for N field (which determines the scaling dimension)

is easily calculated from the field renormalization coefficient ZN:

8 A2
ZN = 1- (4.40)

(4)2 6

q is then given by coefficient of . in ZN:

S= 2.3E (4.41)

so that A1 = 1 + 0.65E. The dimension A2 is readily calculated as in

our discussion of the ASL above. We find A2 =3 - 1.65E.

It is straightforward to determine the scaling dimension of all the

fermion bilinears related to NA by SU(4) rotations. These are listed in

Table 4.1; the corresponding Feynman diagrams are in Appendix G.1.

The absence of SU(4) symmetry at the critical fixed point implies that

these bilinears mostly all have different scaling dimensions. Some weak

constraints follows from the U(1) subgroup of the SU(4) that remains

unbroken. For instance it implies that NA, NA have the same scaling

dimension. As emphasized before physically this implies identical scal-

ing of the plaquette and columnar VBS order parameters at this critical

point.
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Field
theory

N' , 5T
A ' A

NB

Spin Model

(-1)r,+1S. x S.+9, (-1)r,•r x lSr+:

(-1)r + r" [(-1 + S3 )(S2 " S4)

+(S2 + S4) (S - )
(_l)rYSr .S+ , (--1)rxS. Sr+.

+I .( x 2) - S4. (S X S3)+~ • x ~,-S•. ( :x S

Scaling
dimension

3-0.5e
3-1.65c

3-1.65E
3-2.8E

3+0.65e

Table 4.1: List of observable in the spin model that are symmetry-equivalent to the
N a and M fermion bilinears. For some of these we label the sites around the plaquette
with lower-left corner at r' by the numbers 1,..., 4. Precisely, S 1 = S,, S2 = S,•,,
S3 = Sr+x+v and S4 = Sr+y.

Here we have defined the observable as:

NA - (4.42)

NB = -i4 & (4.43)

Nc = -i'/ib (4.44)

We see that NA corresponds to Neel vector and iNJ + NY corresponds

to VBS order parameter.

4.4.3 Discussion

Now let us examine the trends shown by the exponents calculated in

table 4.1. Note that the scaling dimension of these gauge invariant

bilinears are the same in ASL phase due to the SU(4) symmetry. So for

all of them we have A = 3-1.946. Remarkably the scaling dimension of

the VBS order parameter (Na, NC) is smaller at the critical point than

it is in the ASL phase. Thus the VBS fluctuations are enhanced by the
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critical N vector fluctuations. All other fermion bilinears decay faster at

the critical point as their scaling dimension is increased. This includes
-,Z

the vector NA which is the contribution from the gapless fermions

to the Neel vector. It is at present not clear whether in d = 2 the

susceptibilities of these other operators (such as NA, etc) will diverge

at the critical point (though they apparently do in the ASL phase). In

contrast the VBS susceptibility will presumably diverge at the critical

point. The divergence will be faster at the critical point (as say a

function of temperature) than in the ASL phase. On the magnetic

side the VBS susceptibility will of course be finite in the ground state.

However it will diverge as the transition is approached and will thus

be large if the antiferromagnet is to be regarded as being close to this

critical point. Thus a qualitative conclusion from our calculations is

that in the limit that the Neel state can be usefully regarded as being

born out of the dRVB spin liquid, it will also have enhanced VBS

susceptibility.

The diverging VBS susceptibility also provides an interesting way to

define the corelation length ( in terms of directly measurable quanti-

ties. Consider the VBS corelations in the magnetic side as a function

of length scale. At scales smaller than ( they will decay as a power

law. However at scales larger a length set by ., they will decay expo-

nentially. Thus ( may be usefully defined as the correlation length for

VBS fluctuations in the ordered antiferromagnet.
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4.5 Implications for cuprate theory

We now discuss some of the implications of our results for theories of

the cuprates. As we emphasized in the introduction, a second order

transition between a collinear Neel state and a gapless spin liquid is

attractive for a number of reasons. Here we explore this in some greater

detail. Our thinking on the cuprates is guided by Fig 4-1. We suppose

that increasing magnetic frustration (the parameter g) at zero doping

can induce a transition out of the collinear Neel state to a spin liquid.

Theoretically the spin liquid is expected to evolve rather naturally into

a superconductor when it is doped. The real material starts off in the

antiferromagnetic state at zero doping. The idea is that doping (apart

from introducing holes) also has the effect of increasing g. Then we can

hope that the intermediate and long scale physics of the resulting doped

superconductor may be fruitfully described as a doped spin liquid. This

is the rationale behind the spin liquid based approach to the cuprates.

With this point of view in mind let us consider the effects of dop-

ing the dRVB algebraic spin liquid. Previous papers (for a review see

Ref. [21]) have shown how a d-wave superconductor with gapless nodal

quasiparticles emerges quite naturally upon doping this spin liquid.

Now consider reducing the doping in the real material. According to

Fig 4-1 this also has the effect of reducing the magnetic frustration g.

This pushes the "parent" spin liquid state closer to the transition to

antiferromagnetism. The magnetic response of the parent spin liquid at

wave vector (w, 7) then evolves in the manner shown in Fig 4-4. Note
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in particular that if the transition to the magnetic state is second order

then the "resonance" due to the N fluctuations softens. How does this

impact the magnetic response in the doped superconductor?

The doping of the spin liquid is incorporated theoretically by the

introduction of two species of charged spinless bosons bl and b2. These

bosons also carry gauge charges +1 and -1 respectively. Superconduc-

tivity is achieved when both bl and b2 condense with equal amplitude.

This route from the dRVB spin liquid to the dSC has two important

features. First the gauge charge carried by the bosons implies that the

gapless gauge fluctuations of the spin liquid are quenched in the su-

perconducting state (by the Anderson Higgs mechanism). The spinons

evolve naturally into the fermionic quasiparticle excitations of the dSC.

The nodal structure of the spinons is retained - however coupling be-

tween the b and f fields moves the nodes of the quasiparticles away

from (7r/2, r/2) by an amount proportional to the doping x.

For the magnetic response this has some crucial implications. First

when compared with Fig 4-4, the diverging low frequency response is

killed as it comes entirely due to the gapless gauge fluctuations of the

spin liquid. The resonance due to the triplon N mode then becomes the

most prominent feature in the (7, 7r) response. Further its frequency

will soften as the doping is reduced. Second as the fermionic quasipar-

ticles no longer have nodes at (r, 7r) they only weakly damp out this

reonance. Finally the fermionic quasiparticles will still contribute some

background magnetic response which can now be usefully addressed in a
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standard RPA calculation. Such calculations have been reported before

in the literature, and give rise to incommensurate continuum scattering

at frequencies below the resonance that appear to be consistent with

experiment.

Since the original discovery of the neutron resonance peak, there

have been two more or less independent interpretations. One view is

to describe it as a soft mode associated with the magnetism of the

undoped Mott insulator. This view has the advantage that it provides

a natural explanation of the softening of the resonance frequency with

underdoping. The other view has been to simply regard it as a S =

1 collective mode of weakly correlated fermionic quasiparticles in the

superconducting state. The description given above unifies these two

different interpretations. Indeed in the parent spin liquid the triplon

N mode may be viewed as a particle-hole triplet exciton made out

of spinons - rather than electrons. This mode appears naturally as

a recognizable peak in the magnetic response upon approaching the

AF state. Doping this spin liquid then leads to a superconductor with

gapless fermionic quasiparticles and a sharp gapped S = 1 triplon.
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Chapter 5

Conclusions

In this thesis I tried to address some of the challenges in correlated

electron systems. Although the title is much broader than what covered

in this thesis, I hope that I could have at least developed new insight

into some interesting phases and phase transitions in strongly correlated

systems during my PhD.

My main focus here was on two important strongly correlated sys-

tems, cuprate superconductors and heavy fermions. But the ideas de-

veloped here might be used in correlated electron systems in general.

The example of the cuprate materials shows that correlation effects

may not uniformly affect all regions of the fermi surface. The result is

strong correlation induced anisotropy along the fermi surface. Theo-

retical approaches to addressing such effects are hampered by the diffi-

culty that correlation effects are easiest to handle in real space and not

in momentum space. In this thesis in the specific case of Kondo lat-

tices, we have shown how to incorporate momentum space information

into the Kondo singlet formation that determines the fate of the local
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moments at low temperature. We explored the properties of metallic

'fermi liquid' states driven by Kondo singlet formation in a channel

with non-zero internal angular momentum. Through out chapter 2.2

we focused on two dimensional systems. We showed that such metal-

lic states naturally have strong anisotropy of the quasiparticle effective

mass and residue on moving around the fermi surface. In some cases

the quasiparticle residue even vanishes at four isolated points on the

fermi surface. The excitations at such points may be thought of as

neutral spin-1/2 spinons that occur without any residual 'gauge' inter-

actions. Thus these states provide interesting examples where strongly

anisotropic quasiparticle residues are naturally built into the symme-

try of the states. We also studied two dimensional Kondo insulators

driven by Kondo singlet formation with complex internal angular mo-

mentum and showed that they have a quantized non-trivial electrical

Hall conductivity. Such Kondo insulators thus present an interesting

situation where a quantum Hall effect occurs due to the Kondo effect.

Exploiting the ideas of this thesis to develop techniques for thinking

about the angle dependence of correlation effects in momentum space

is an interesting challenge for the future.

We also noted that anisotropic hybridization is directly relevant for

real Kondo lattices. In these systems a singlet is formed between con-

duction electrons and local moments which are in d or f orbital. The

singlet then naturally have non-zero angular momentum. We men-

tioned that this might have observable effects in ARPES experiments
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which is starting to be done on heavy fermion compounds[35]. It re-

mains as an open problem to find other experimental methods to ob-

serve this effect. STM experiments to detect the density profile of an

external impurity might be one possibility.

We also explored the possibility that the pseudogap state of the

underdoped cuprates may be a large surface fermi liquid state with

a strongly angle dependent Z. While such a picture has some very

appealing features it has enough difficulties with experiments that it is

unlikely to directly be a relevant theory of the pseudogap state.

In this thesis studies on Kondo lattices were done in heavy fermi

liquid phase. Experiments on heavy fermion compounds have shown,

within the accuracy of experiments, direct transition between this heavy

fermi liquid phase and a phase where local moments have antiferromag-

netic order. Although scenarios for transition between heavy Ferm liq-

uid phase and a phase with local moments in spin liquid state have been

developed (see [46]), the full transition is still a big challenge. In the

last chapter, we examined a transition between two insulating states

of correlated electron systems. This transition between Neel and spin

liquid phases, might be enlightening to describe the full heavy fermions

phase transition transition, although we highlighted the differences be-

tween the two models. But the main motivation for this chapter was

observations in cuprates.

In chapter 4 we have revisited the issue of possible second order

phase transitions out of the collinear Neel state into paramagnetic spin
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liquid states in two dimensional quantum antiferromagnets. The par-

ticular spin liquid we considered is a dRVB state which has gapless

spin excitations. Correspondingly there are non-trivial power law core-

lations in the spin and other quantities. A useful description is provided

in terms of gapless Dirac-like spinons that are coupled to a fluctuating

U(1) gauge field. However there is possibly no true quasiparticle de-

scription of the spectrum. Indeed this state is in a critical phase that is

the two dimensional analog of the one dimensional spin-1/2 chain. In

contrast to other simpler spin liquids which have a spin gap, a direct

second order transition to the collinear Neel state appears to be possi-

ble for such a two dimensional algebraic spin liquid. We developed in

some detail a theory for such a transition. Magnetic long range order

was obtained as a spin density wave transition of spinons.

We argued that gauge fluctuations convert the resulting magnetic

state into a conventional one that is smoothly connected to the usual

Neel state. Thus the spinons disappear from the spectrum in the mag-

netic state. The theory for the transition shares a number of similarities

with the deconfined critical points studied recently [11]. Most impor-

tantly, there are two diverging length/time scales as the transition is

approached from the magnetic side. The shorter of the two scales is as-

sociated with the onset of magnetic order from a critical soup of spinons.

The second longer scale is associated with confinement of the spinons.

It is in the intermediate length/time scale regime (i.e. between the two

diverging lengths) that the magnetic ordering is correctly described as
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a spin density wave formed out of spinons. This intermediate scale

regime may also be characterized as a fractionalized antiferromagnet.

We noted several implications of our results for theories of the cuprates

that regard them as doped spin liquids. First it allows us to develop a

qualitative picture of the resonance mode seen in neutron experiments.

Our picture unifies the existing descriptions as a soft mode associated

with the magnetic ordering in the insulator and as a triplet excition

formed from a particle-hole pair of fermionic BCS quasiparticles. In-

deed in our description the resonance is a soft mode of the magnetic

ordering that is formed as a particle-hole triplet exciton of spinons.

This picture is closest to that in Ref. [86].

We have shown how magnetism may be incorporated into the spin

liquid based approach to the cuprates. Central to this is the descrip-

tion of magnetism as a spin density wave ordering of spinons. Such a

description has been explored before in a number of publications. As

summarized in the first paragraph of this section, our work clarifies

the range of validity of such a description. Indeed should experiments

reveal clear signatures for a fermionic spinon description of the inter-

mediate scale spin physics of the undoped cuprates then we could take

that to be a signature of proximity to the quantum transition to the

dRVB algebraic spin liquid.

The ideas in this thesis were presented in one band and two band

correlated models relevant to theories of cuprates and heavy fermions

respectively. But I hope that the general frame work could be extended
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to other cases and open new research directions in Physics of strongly

correlated systems.
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Appendix A

Maximum energy of d-wave Kondo

in Brillouin zone

As derived before, lower band energy at each point of Brillouin zone

(BZ) is given by

E - CEk + .f
2 (A.1)

where Vk = V(cos(kx) - cos(k,)). So Vk = 0 only along diagonal

directions. From A.1, we see for all points in BZ:

Ejý < Ck +f _

- 2
((k Af )22 (A.2)

Right hand side of the above equation is equal to pf for pf < ek and

Ek for Ek < Pff. Putting these together we get:

SEk- _ •

Eý p fk
for Ek <P f

for Ek > Pf
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You see that all points in BZ, obviously, satisfy one the two conditions

(Ek • iAf or Ek > ttf). So we get for any point in the BZ:

Ek 5 •Uf (A.4)

A closer look at equations A.1 and A.2, shows that equality in equation

A.4, could be only for the points along diagonal direction with 6k > I[f.

Such points cover a region with zero volume in the BZ. So that for any

finite doping Ef < p f (see section 2.2).
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Appendix B

Self consistency equation for

d-wave Kondo

Analytic treatment of self consistency relation is easier and much more

clear at zero doping (pf = 0). So we start with this case and later, we

can argue if our result might be modified at finite, but small, doping.

In continuum limit, self consistency relation (at zero doping) have the

form:

1 1 d2 k (cos(kx) - cos(ky)) 2

(B.1)
Jk 2n (27r) 2  (L)2 + V2 (cos(kx) - cos(ky)) 2

where n is density of lattice sites. We saw before that, this equation for

V has a solution, no matter how small Jk is (see section 2.1). This was

because, the integral is divergent at V = 0. The divergence comes from

the region where Ek is small. So to study the behavior of this integral,

it is enough to look at the points where Ek is small. Because of the

symmetry of BZ with respect to 900 rotation, it is enough to consider

region with k., k7 > 0. The point with Ek = 0 in this region, are points
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with k, = 7r - ky. We want to look around such points so if we change

the variables to ky -+ ky and kx -+ q = ky + k, - 7, we just want to

look at region with small q. Putting these variables in to in to B.1 and

expanding up to first non-zero order in q, we get:

1

Jk

1 dkydq
2n (27-) 2

(B.2)(sin(ky)q + 2 cos(ky)) 2

V/(t sin(k )q)2 + V 2(sin(ky)q + 2 cos(ky)) 2

As discussed before, we like to study the singular behavior around q = 0

so we can ignore the q dependence in non-singular terms. The relation

simplifies to:

Jk 2n
dkydq (2 cos(k,)) 2

(27) 2 V(t sin(ky)q) 2 + V2 (2 cos(ky)) 2

Now we first perform the integral over ky. Note that the limits for this

is q dependent (i.e. 0 + O(q2) and -r + O(q2)) but these also could be

ignored since they have no effect on singular behavior:

Jk 2n
dq "
27 ] 0

dk, (2 cos(kc))2

(2w) (t sin(ky)q) 2 + V 2(2 cos(ky)) 2 (B.4)

Integral over ky could be perform exactly which gives:

2 1 3 V 2

S2F ( ; 2; 1 - q (B.5)

here, 2F 1 is Hypergeometric Function. We are in interested in small q

behavior so 1 - 0 - -. The expression could be simplified usingq2 r 2
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the identity[107]:

z
2F1 (a, b; c; z) = (1 - z)-a 2F1(a, c - b; c; )z-1

Using this for the result of integral we get:

1 1 dq 2 112•I 2  2F1 •( ;2; 1)
AJk 2n 2x Vq2 + v 2 2'2'

V 2

where we used the fact -

we get:

i; 2; 1) is convergent [107]2 , 1 VIV I~~lIL

1 dq

S= A q2 + V2 (B.7)

where A is a finite constant. Integral over q is now trivial and leads to

result mentioned before (see section 2.2):

c
V oc e Jk (B.8)

After dopinping, continuum form of self consistency relation changes:

1

Jk
1 f
2n

d2k
(2-) 2  (Ef - E-k)
(2)2(cos(k) - cos(k

(cos(k,) - cos(k ))2 (B.9)

(k2f )2 + V2(cos(k,) - cos(k,)) 2

Again dominant contribution comes from the region where I k- I f] is

small. Similar expansion could be carried out but this time the points

we look at are close to different curve (defined by cos(kx) + cos(ky) =

which is slightly away from kX = x - k1 for small 1uf). We don't expect
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(and in fact the resulting integral shows) that there is not much change

in singular behavior as V goes to zero. So we expect that behavior seen

in B.8 holds and in fact this is confirmed with numerical studies.
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Appendix C

Density of states of d-wave Kondo

liquid

To get density of states we use the general formula[108]:

d2k
p(Ef) = (2r)2 6(Ef - Ek) (C.1)

Again symmetries in BZ are helpful. First of all we can do the cal-

culation on one patch of Fermi surface (in k, < 0 and k. 5 0 quarter).

Also because of reflection symmetry respect to diagonal, we can do the

calculation for the points on Fermi surface which are above the diagonal

and double the result. Now in this region we can safely (since Ek is one

to one function of (kr, ky)) do the change of variable, and work with ky

and Ek:

p(Ef) k 6(Ef - Ek) (C.2)P(E) (2x)2 2t 21 -(T -cos(k))2

Note that V1- (k - cos(ky)) 2 = sin(k.) is never zero in the part of
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BZ we are integrating over. In terms of new variables:

E Ek + UfEk 2
- If)2 + V2( - 2 cos(k,)) 2 (C.3)

Using this we first do the integration over Ek which leads to:

(E [ dky 1
= (27)2 22tv1 - ( - cos(ky)) 2

1
2

(C.4)
E-'-f + (V2/2t)(` - 2 cos(k,))

(-f)2 + V2(k -
-2- + 2(t 2 cos(ky)

here, E is solution of equation:

Eý = Ef

for Ek, which is a simple second order equation but we avoid presenting

the answer which is not necessary for the rest of calculation. Now to

proceed we need to divide to points in three different regions. The first

region is defined by the points where:

Ek 2- /) 22 V2( -_ 2 cos(k,))2
2t

for these points contribution to C.4 is of order one.

The other regions are where:

(k 2- /lf 2 >
2

V2-(E - 2 cos(ky)) 2
2t

This contains most of the points on the Fermi surface, since from B.8
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we know that V is small. Now we expand expression in prentices in

C.4 up to first non-zero order in V 2:

p(Ef) - I d) (1 - Sign(Ek - )) f (, ky) (C.6)
P(E2)r) ( 2(1 - 2t)± yfc

here f(c, ky) is convergent function. We don't need the detailed form of

this function though. The important property of this integral is that for

points with Ek < P/f (which corresponds to points near diagonal as dis-

cussed in A) contribution to integral is of order one. We expected this

since in this region quasi-particles are more free electron like. However

for points with Ck > [If (which are away from diagonal) contribution

is large and proportional to V- 2 . Putting all these together we get a

large density of state:
2C

p(Ef) oc e (C.7)
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Appendix D

Kubo calculation

Using equation 2.35 we can write J, as:

(D.1)Jy (7) = V)t(7)(a a(k) + O,m(k).J)V)(T)

where m(k) is defined in 2.34 and a(k) = k+1 Also a, is the shorthand

for !-. Putting this form in Kubo formula[57] we get:
aklI

LV (w) -

e-iur -1
dT X

(p@ (T)(O,a(k) + p,r~i(k).a)>(Tr)
k,k'

S() (O)(da(k') + a,,(k').5) /(o))

Using the Hamiltonian given in 2.33 we get the green function for /

fields:

G(iw, k) = (D.3)
iw - a(k) - M'(k). a
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With this in hand, the Kubo equation reduces to the following form:

waxy (W) =

tr [(Oxa(k)

(
(i(w + E)

dE
k

+ Oxm(k).)(Oa(k) + &,iM(k).d)
(iE - a(k) - mr(k

1
- a(k) - M1(k).6-) (iE - a(k) - M-(k).U±))]

We are interested in the limit of above equation as w --> 0. In this limit

we get the following expression for Hall conductivity:

S=- d2k dE
xy = - i /(2 -x)2 27

tr [(axa(k) + Oax (k)

(oya(k) + ,y M (k). J)

1
(iE - a(k) - r(k).3)2

1
(iE - a(k)

Expanding out the sums, we have several terms but taking the trace,

cancel some of the terms. After integration over the E and dropping

the terms which are zero under the trace gives:

xy = - I d2k

(D.6)
tr (8rxM(k) [Mi(k). , oa(k) + ,Aiy(k).-])

After doing some algebra on the Pauli matrices and taking the trace,

we get the relation given in 2.36.
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Appendix E

Calculation of matrix element

f-orbitals

To calculate (k, alk, M), we use the known overlap of Ik, a) and k, Jz) [109]

for 1 = 3:

(k, alk, Jz) =

47 [JzY3Jz+2(Qk) J,

1 3 (7) 2_

where Ytm(Qk) are

(E.1)

+/Jz 2k)

associated Legender functions and aj, = [(7 +
2Jz)/14]1/2 and J3z = [(7-2Jz)/14]1 /2 are Clebsh-Gordan coefficients[109].

Now using the forms given in 3.1 we get the following for the two orbital
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states:

1Kk,arl) - I
V-6-

Y~3 (Qk) 6, - 3 3(k) +,

-65y32(Qk) 6o,1 +72
3• (Qk) 6,1

Ya- (Qk) k) ,,_ --2( k) 6,,
7L 7

It is more convenient to work with a simplified version of these relations

as:

1
(k, a•l) =

f4-2

S4Y3--3 (Qk)

(k, a12)
1

+

[Y3-2(k) - 5 Y 2 (k)] 6

-- 1• k1()] ,1

- 10 Yý1( 4 ,)]

Y32 (Qk)-5Y3- 2((k)] ,31

If we introduce new functions A(Qk) and B(Qk):

(k, all) = A(Qk) ,_i + B(Qk) 6 ,

(k, oj2) = -B*(Qk) 6 ,.il + A*(Qk) 6,

where A(Qk) - 4 [Y-2 (Qk) - 5 Y32 (Qk)] and B(Qk)v'/4- 4r [/Y3-3( k)- y 3
1
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Appendix F

Dirac Action

Here we show that low energy effective action is described by a contin-

uum theory of fermionc spinons with Dirac dispersion. As mentioned

before, we need to expand the Hamiltonian close to nodes at (2, 2) and
(- , I). From now on (kx, ky) refer to deviation from (E, ") or (- , E)

points. Here we explicitly derive the Hamiltonian near (2, 2). The

other node is similar:

4 -A
g 2

2t k + 2iAk k

2t k+ - 2iA k_

where k+ = kx + ky and k - k, - ky. This Hamiltonian could be

written in terms of two by two Pauli matrices which are defined as:

0 1
1 0

0 ]-i

S149
149

7
1 0

0 -1
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Using this notation and also adding the contribution from (--, 1) node

we get the following form for low energy Hamiltonian:

t- 4H = c (2t k±Tx + 2A kT_7Y Tz N. 2) ci
k+,k- (F.2)

t4 z 2)
- c2 (2t krx + 2A k+I Y7 + N. c2

Here cl and c2 refer to ( , 2) and (-2, () nodes, respectively. They

are two component fermionic operators, each component representing

one of the sites in the unit cell. The 7i matrices operate in the space

of these two components. Each component has a SU(2) spin index,

where a matrices operates. Now assume t = A (i.e. ignore the velocity

un-isotropy which is irrelevant in renormaliztion group language) and

we rename k+ as ky and k_ as kx. Then introduce the new fermionic

operators:

1 = -iT X c, (F.3)

2 = eiz4 c2  (F.4)

and subsequently:

1,2 ,2 ( z) (F.5)

With these new variables, the Hamiltonian (F.2) takes the following
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simple form:

H =Zbl(kxT + kYTY + JN.-) 2lbkx,ky (F.6)
+ ý 2(kxTx + kg- - JN.-) /2

2

Then using [ matrices that operates in the space, made by presence of

two different nodes, we can put but nodes contribution (V1 and b2) as

a single vector, V). Then the Hamiltonian takes the form:

H = (kxx + kY·' + iJJz N.-2) N (F.7)

This form in continuum limit and in real space leads to action given in

4.12.
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Appendix G

Random Phase Calculation

We start with the partition function with an external magnetic field h

that couples to the Neel vector:

Z = j[DV] [Db] [Da][DN] e-s  (G.1)

S = SN + S,a + Smixing + Sh (G.2)

SN = d2xd{ (O,N)2+ N2} (G.3)

SO,=a = d2xdTV[-iy" (O,9 + iea+,)] (G.4)

Smixing = d2xdv7 i'opoz.( (AN) (G.5)

Sh = Jd2 zdrh.(a iOCIZ'tz + bN) (G.6)

Here a and b are non-universal constants that depend on details of the

microscopic physics.

Now by expanding the the terms which contain ij pzJu (one coming

from Smixing and one from coupling to h field.) up to quadratic order,

and performing the integral over 4 and a fields we get the following
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form for the partition function:

Z = J [DN]e-S'-b fd2 N J dw 2,w) I + ANI 2  (G.7)

Where x(q, w) is the susceptibility of i vu/pzV operator calculated using

the action SV,a. We can rewrite the X(ih) +l AN 2 up to quadratic

order in N as an exponential. Putting this form in G.7 we get the

following for the partition function:

z = [DNje-sf (G.8)

Se SN + J d2qdw{b hq.N-2q x(qw) h +2

Sd2qdw{ XN(w, q)- 1 - 2 + _Nq

(q w)Ih + ANI I2} (G.9)
2

Now to get the quadratic action for h field we should integrate out

N field, which is a simple Gaussian integral now. This leads to the

following value for effective susceptibility:

a2 X +b 2 XN - 2a b X XN(G.10)Xeff = - 2 X(G.10)XN
I - A2X XN

You can see that as one expects, for A = 0, this reduces to some of

susceptibilities for N and ijpl.z O
p fields. Also note that, this is valid

only for the frequencies where A2X XN is not of order one (i.e. it is

not valid for small frequencies). Now by analytic continuation to real

frequencies and taking the imaginary part, we get the spectral functions
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plotted in section 4.2.1.

G.1 Feynman diagrams

G.1.1 Spin-Spin correlation in mean-field theory

For spin-spin correlation we need to calculate the following diagram

which consists of two fermionic propagators. The fermionic propagator

in mean field is derived from the action 4.12:

1
= I(G.11)

P j - iAN.o-

This diagram, in the real space, corresponds to the following integral:

x 0

Figure G-1: Spin-Spin correlation in mean field

(SiS> = - d3p  d3q
(SiS2) j 1J( 2 r)3 (2 7)3

(G.12)

((p + q)2 + A2 N 2)(q 2 + A2N 2)

After integrating over q this gives:

A(SiS) C p dp sin(pr)[4AN+

2 (G.13)
- arctan( )(4A2N2 + p2)]
P 2 AN
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The first term is proportional to 6(r). Since we are interested in the

case where r $ 0, we can ignore that term. The second term gives:

-2ANr + (1 + 2ANr) (G.14)

We already saw that N goes to zero as g approaches g, like g, - g. So if

we define correlation length as ' = 2A we get the equations 4.13 and

4.14.
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Appendix H

Beyond mean field: E-expansion

Now to do the e-expansion we need to study the action given in 4.18.

We can see that there are three different types of vertices present in

the theory and eleven different one loop diagrams which cause field

renormalizations, vertex corrections and mass renormalization. we use

the following diagrammatic representation for the propagators of the

fields, in the theory:

a b jab

P p 2 +r
1

p = 1 (H.1)

P p2

Here we have used Feynman gauge for the gauge field propagator, and

Euclidian metric. Now we start to calculat the one loop diagrams.
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Fermion self energy

There are two, one loop diagrams which will generated fermions self

energy. Diagram H-1(a) represent N field contribution to fermion self

p- k

P k

(a)

p-k

P k
(b)

Figure H-1: fermion self energy

energy:

ddk 3 b

(2w)d k 2 (k + p)2
(H.2)

3 A2

(4r)2 E

Diagram H-1(b) represents gauge field contribution to fermion self en-

ergy:

Se2 ddk J5 P I" I
(27)d k2(k + p)2

1 e2

(4w) 2 E

(H.3)

N Field Self Energy

Since N field is coupled to fermion field only, there is just one diagram

contributing to its self energy.
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P+k

Figure H-2: N field self energy

This has the following contribution:

NNp2ij 2I ddk tr(uiocJ)tr(I(±+ A))
) = (--1)(i) (27r)d k 2(k + p)2 (H.4)

8 A2
= -4 p25ij

(4-x)2 6

Here the minus sign appears because of presence of a fermionic loop in

the diagram [106].

Gauge field self energy

Gauge field is only coupled to fermion field as well, so there is only one

diagram generates gauge field self energy:

P+k

Figure H-3: Gauge Field Self Energy

This diagram has the following contribution:

E -,[a pdpd k tr(p =(-1)e2/ A) ( p))

] 1  (2)d k2(k + p) 2  (H.5)
2  (H.5)16 e2 pI

= p215•. pp•(47r) 2 3E p2

Note that in this relation the term proportional to pp"v dose not con-

tribute to physical observables (S-matrix elements). This is guarantied
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by Ward identity[106].

u((Nj)2)2 vertex correction

There are two diagrams contributing to this vertex renormalization

at one loop level. Note that up to one loop order, it is enough to

k k

k q-

k !

- k /k

j s k ",

Figure H-4: u renormalization

calculate vertex corrections with zero external momentum. Diagram

H-4(a) gives:

AuN(6ijkl ± +ik jl + 6 il6 jk)

U 2

- + 6io 6 iP + 6IpSjo)
6 I dd k 6 oq6 pt

(2)2(k2 + )2

(6 qt6 kl + 6 qk tl + 6 ql6 tk)

=U (6ij6kl + ik 6 jl + 6 il6 jk

(4ir) 2 3E

The contribution of diagram H-4(b) is similarly calculated:

Au (6i6k1 + 6ik6 jl + 6ilJk)

4 ddk tr(X4)= -3(-1)(iA) 4  (2)d k t r ( a a J ka )

96 A4

- (6 j36 k + 6ik6jl ±+ 6ijjk)
(4w) 2 E

(H.6)

(H.7)

Again one minus sign appears because of the fermionic loop [106].
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N-V vertex correction

Again, there are two different diagrams associated with this correction

at one-loop level:

k(a)
k

(a)

k>
k i m .

k

(b)

Figure H-5: A renormalization

As before we set the external momentums to zero. Then the contribu-

tion of diagram H-5(a) is:

A k _  I) 3  ddk dSij uk

(2)d k2 k2 + r
2 A3

(4) 2 i--
(4n)2 E

and diagram H-5(b) gives:

iAa =iA e2 d ddk P
(27)d k21) k2 + r k2(H.9)

(H.9)6 Ae 2

(4i) 2

(4;1)2

a-V vertex correction

Similar to H there are two diagrams:
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(a)
k(b)

(b)

Figure H-6: e renormalization

The first diagram (H-6(a)) gives:

e a 3 ddk Y a6 lv K7"
A (27)d k2 k2  k2

1 e3

(47) 2 E

and H-6(b) gives:

A =a e 2(iA)2 J
3

ddk 2 k~2a6iJ ~
(27r)d k2k2 + rk2

(47)2 I

Note that H.10 is minus the contribution of H.3 and H.11 has the minus

(H.11)

contribution of H.2. This, in fact, should be the case to keep gauge

invariance of the theory.

Mass renormalization

The last one loop diagram, we consider, generates mass renormaliza-

tion:

k\ /1
---- ~A j
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Ar iJ i = -(ik6 j l  il j k

6 (2)dk2 + r
5 u.

(4ir) 2 3c

(H.12)

H.0.2 Renormalization conditions

Now with these in hand, we can proceed using minimal subtraction

scheme. Introducing a mass scale m cc % we can write the following

set of renormalization conditions:

S(z' - (EN + E"))
m -eoz ~ + (Ae + ae)

ZN(p2 + r) + (rAN - EN p 2)

m-0oZp ZN+ (AA + 'A)

p2(Za- _ a)

m-uoZ2 + (Au + Au)

= finite

= finite

= finite

= finite

= finite

= finite

Here eo, A0 and u0 are bare coupling constants and so does not flow

with mass scale. These relations give field renormalization coefficients

directly, since the divergence part of self energy diagrams should cancel

out with these field renormalization coefficients.

ZO
ZN

Za

= 1+ECN

= + E16
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(H.13)

(H.14)

(H.15)

0(2

0(2

0(2

0(2

0(2

0(2

loops)

loops)

loops)

loops)

loops)

loops)



Putting them back in renoemalization condition equations, and let-

ting the mass scale flow [106], we get the equations given in section

4.4.

H.0.3 Renormalization of bilinear operatores

Here we introduce a new term in the Lagrangian with the general form:

v 000, (H.16)

where 0 is the combination of pu and a matrices which are given in table

4.1. There are two new diagrams corresponding to this new vertex (H-

7(a),H-7(b)) Diagram H-7(a) gives:

k v

(a)
(b)

(b)

Figure H-7: bilinear operators scaling dimension

ANO =(iA)2

= - A2

Sddk i ij
(2-r)d k2 k2 k2 +r
2 AoO, AoO = aiAz OIuzoi

(47) 2 E

and diagram H-7(b) gives:

I dd(k -K7- C0 "
(2qr)d k2 k2 k2

z e2  6
(4w) 2 E
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Whit these in hand we can get the scaling dimension of v:

An = 1+ 6= [I + (A+ )A 2V 0 V)L~ S( e 2

A2

(47)2

(H.19)e2

+5 e] v
(47r)2

This gives the scaling dimension of v (1 + 6v). Now to get the scaling

dimension of 0 (Ac), note:

Ao= D-(1 +6)= 3-E - 5 (H.20)

Using the fixed point values for A and e, we get the scaling dimensions

mentioned in table 4.1.

H.0.4 Velocity anisotropy

In this section we assume a small velocity anisotropy and treat it as a

perturbation to our QED3 theory. Following the notation used in Ref.

[95], this anisotropy is presented by:

Ka = -i5 iz' y (, +( ie a,)4i

k

(a)

(H.21)

(b)

Figure H-8: Velocity anisotropy vertexes

Here, 6 is the small perturbation parameter (we are essential inter-
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ested in its behavior under renormalization) and f)2 = 7%6,, - 7YSy,j.

There are two vertexes associated with this perturbation. One is cor-

rection in fermionic kinetic energy presented in figure H-8(a) and cor-

rection to the a - 0 vertex presented in figure H-8(b):

-6pzK (H.22)

-6pz 7  (H.23)

So there are there three different type of one-loop diagrams, in ad-

dition to field renormalization factors calculated before contributing

renormalization of the anisotropy term in fermionic kinetic energy (i.e.

6). Diagram H-9(a) gives:

p-k p-k p-k

k k k

(a) (b) (c)

Figure H-9: Velocity anisotropy one-loop renormalization

SNd )2 d dk i 1^1 Sij

6 A2  (H.24)

(47r)2 6

Diagram H-9(b) similarly gives:

--6 = - e2  ddk 1 1 6_ V"
(2w)d > (p - k)2
e2 (H.25)6 e

3(47)2 3E
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Diagram H-9(c) and the similar one with the correction on the right

vertex give:

2 J  d dk 1 6"V
(27r)d 7 (p - k)2 (H.26)

6 2e2

(47) 2 6

Now with these in and also the field renormalziation coefficients calcu-

lated perviously we can get the RG flow for 6:

Pa = 6(2 Aa+E +E +E O + E)
14 2 2 (H.27)

3(47r)2 (47x) 2

This proves that the small velocity anisotropy is irrelevant.
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