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ABSTRACT

We document a new stylized fact regarding the term-structure of futures volatility. We

show that the relationship between the volatility of futures prices and the slope of the term

structure of prices is non-monotone and has a “V-shape”. This aspect of the data cannot be

generated by basic models that emphasize storage while this fact is consistent with models

that emphasize investment constraints or, more generally, time-varying supply-elasticity.

We develop an equilibrium model in which futures prices are determined endogenously in a

production economy in which investment is both irreversible and is capacity constrained.

Investment constraints affect firms’ investment decisions, which in turn determine the

dynamic properties of their output and consequently imply that the supply-elasticity of
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the commodity changes over time. Since demand shocks must be absorbed either by changes

in prices, or by changes in supply, time-varying supply-elasticity results in time-varying

volatility of futures prices. Estimating this model, we show it is quantitatively consistent

with the aforementioned “V-shape” relationship between the volatility of futures prices and

the slope of the term-structure.



In recent years commodity markets have experienced dramatic growth in trading volume,

the variety of contracts, and the range of underlying commodities. There also has been

a great demand for derivative instruments utilizing operational contingencies embedded in

delivery contracts. For all these reasons there is a widespread interest in models for pricing

and hedging commodity-linked contingent claims. Besides practical interest, commodities

offer a rich variety of empirical properties, which make them strikingly different from stocks,

bonds and other conventional financial assets. Notable properties of futures include, among

others: (i) Commodity futures prices are often “backwardated” in that they decline with

time-to-delivery (Litzenberger and Rabinowitz (1995)), (ii) Spot and futures prices are mean-

reverting for many commodities, (iii) Commodity prices are strongly heteroscedastic (Duffie

and Gray (1995)) and price volatility is correlated with the degree of backwardation (Ng and

Pirrong (1994) and Litzenberger and Rabinowitz (1995)), and (iv) Unlike financial assets,

many commodities have pronounced seasonalities in both price levels and volatilities.

The theory of storage of Kaldor (1939), Working (1948, 1949) and Telser (1958) has been

the foundation of the theoretical explorations of futures/forward prices and convenience

yields (value of the immediate ownership of the physical commodity). Based on this

theory researchers have adopted two approaches to modelling commodity prices. The first

approach is mainly statistical in nature and requires an exogenous specification of the

‘convenience yield’ process for a commodity (e.g., Brennan and Schwartz (1985), Brennan

(1991), and Schwartz (1997)). The second strand of the literature derives the price processes

endogenously in an equilibrium valuation framework with competitive storage (e.g., Williams

and Wright (1991), Deaton and Laroque (1992, 1996), Routledge, Seppi, and Spatt (2000)).

The appealing aspect of this approach is its ability to link the futures prices to the level of
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inventories and hence derive additional testable restrictions on the price processes.

From a theoretical perspective the models based on competitive storage ignore the

production side of the economy, and consequently they suffer from an important limitation.

Inventory dynamics have little if any impact on the long-run properties of commodity prices,

which in such models are driven mostly by the exogenously specified demand process. In

particular, prices in such models tend to mean revert too fast relative to what is observed in

the data (see Routledge et. al. (2000)), and more importantly these models cannot address

the rich dynamics of the term-structure of return volatility.

In this paper we document an important new stylized fact regarding the property of the

term structure of volatility of futures prices. We demonstrate that the relation between the

volatility of futures prices and the slope of the forward curve (the basis) is non-monotone

and convex, i.e., it has a “V-shape”. Specifically, conditional on a negatively sloped term

structure, the relation between the volatility of futures prices and the slope of the forward

curve is negative. On the other hand, conditional on a positively sloped term structure,

the relation between the volatility and the basis is positive. This aspect of the data cannot

be generated by basic models that emphasize storage, since such models imply a monotone

relation between futures price volatility and the slope of the forward curve (see Routledge

et. al. (2000)).

In light of the aforementioned stylized fact, we explore an alternative model characterizing

the mechanism of futures price formation. Futures prices are determined endogenously in

an equilibrium production economy featuring constraints on investment – irreversibility and

a maximum investment rate. These investment constraints lead to investment triggers that

affect firms’ investment decisions, which in turn determine the dynamic properties of their
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output. More specifically, if the capital stock is much higher than its optimal level, given the

current level of demand, firms find it optimal to postpone investment and the irreversibility

constraint binds. On the other hand, when the capital stock is much lower than the optimal

level, firms invest at the maximum possible rate and the investment rate constraint binds.

In either case, the supply of the commodity is relatively inelastic and futures prices are

relatively volatile. Since futures prices of longer-maturity contracts are less sensitive to the

current value of the capital stock than the spot price, the slope of the forward curve tends to

be large in absolute value when the capital stock is far away from its long-run average value.

Thus, the absolute value of the slope of the term structure of futures prices is large exactly

when the investment constraints are binding. Hence, the model predicts that the volatility of

futures prices should exhibit a “V-shape” as a function of the slope of the term structure of

futures prices. Stated differently, because of the binding constraints on investment, supply-

elasticity of the commodity changes over time. Since demand shocks must be absorbed

either by changes in prices, or by changes in supply, time-varying supply-elasticity results in

time-varying volatility of futures prices. In our calibration below we show that the model

can also generate these patterns in a manner that is quantitatively similar to the data.

There exists very little theoretical work investigating the pricing of futures on

commodities using production economy framework. Grenadier (2002) and Novy-Marx (2005)

also consider futures prices in a production economy, and discuss how the proximity of the

state variable to the investment threshold governs the slope of the forward price curve. Both

these papers, which include investment irreversibility, do not include an investment rate

bound and thus cannot generate the price volatility predictions in backwardation. Casassus,

Collin-Dufresne and Routledge (2004) also analyze spot and futures oil prices in a general
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equilibrium production economy but with fixed investment costs and two goods. While also

a production economy, the structure and implications of their model are quite different. A

recent paper by Carlson, Khoker and Titman (2006) also considers an equilibrium model

with production. While we assume that oil reserves are infinite, their model emphasizes

exhaustibility of oil reserves. Their model also gives rise to the non-monotone relation

between the futures price volatility and the slope of the forward curve. This implication is

driven, as in our model, by adjustment costs in the production technology. This provides

further evidence of the theoretical robustness of our finding – the exact structure of the

model is not particularly important, as long as adjustments of production levels are limited

in both directions.

The rest of the paper is organized as follows. In Section 2 we describe our data set and

document empirical properties of future prices. Section 3 develops the theoretical model. In

Section 4, we study quantitative implications of the model. Section 5 provides conclusions.

I. Empirical Analysis

We concentrate our empirical study on crude oil. Kogan, Livdan and Yaron (2005) display

qualitatively similar findings for heating oil and unleaded gasoline. We choose however to

focus on the crude oil contract for several reasons (i) it represents the most basic form of oil

where the investment constraints we highlight seem to be the most relevant, (ii) the other

contracts clearly use crude oil as an input and thus their analysis may require a more specific

’downstream’ industry specification. Our data consists of daily futures prices for NYMEX

light sweet crude oil contract (CL) for the period from 1982 to 2000. Following previous work

by Routledge et. al. (2000), the data is sorted by contract horizon with the ‘one-month’
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contract being the contract with the earliest delivery date, the ‘two-month’ contract having

next earliest delivery date, etc.1. We consider contracts up to 12 months to delivery since

liquidity and data availability is good for these horizons.2 Since we are using daily data,

our dataset is sufficiently large and it ranges from 2500 to 3500 data points across different

maturities.

Instead of directly using futures prices, P (t, T ), we use daily percent changes, R(t, T ) =

P (t,T )
P (t−1,T )

. Percent price changes are not susceptible as much as price levels to seasonalities

and trends, and therefore their volatility is more suitable for empirical analysis. We then

proceed by constructing the term structure of the unconditional and conditional volatilities

of daily percent changes on futures prices. In calculating conditional moments, we condition

observations on whether the forward curve was in backwardation or in contango at the end

of the previous trading day (based on the third shortest and sixth shortest maturity prices

at that time). Figure 1 shows the conditional and unconditional daily volatilities for futures

price percent changes. Unconditionally, the volatility of futures price changes declines with

maturity, consistent with the Samuelson (1965) hypothesis. The behavior of crude oil (CL)

contracts was previously studied by Routledge et. al. (2000). We find, as they did, that

the volatility of futures prices is higher when the forward curve is in backwardation. This

has been interpreted as evidence in favor of the standard storage theories, emphasizing the

effect of inventory stock-outs on price volatility.

[Insert Figure 1 about here]

Next, we study the patterns in volatility of futures prices in more detail. Specifically, we

estimate a functional relation between the futures price volatility and the one-day lagged
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slope of the forward curve. Following the definition of conditional sample moments, the time

series of the slope of the forward curve, SL(t), is constructed as a logarithm of the ratio of

the futures price of the sixth shortest maturity in months available on any day t, P (t, 6), to

the future price of the third shortest maturity, P (t, 3), available on the same day

SL(t) ≡ ln

[
P (t− 1, 6)

P (t− 1, 3)

]
. (1)

We use demeaned slope

S̃L(t) ≡ SL(t)− E [SL(t)] , (2)

in our analysis. We start by using demeaned lagged slope as the only explanatory variable

for realized volatility

|R(t, T )| = αT + βT S̃L(t− 1) + εT (t). (3)

Since we are now estimating a different functional form, note that the relation (3) can

potentially yield different information than that contained in Figure 1 which was obtained

by simply splitting the sample based on the slope of the forward curve. The term structure

of βT as well as the corresponding t-statistics are shown in Figure 2. We also report these

results in Table I for T equal to 1, 5, and 10 months. The negative sign of βT for all times to

maturity is a notable feature of these regressions. This result seems to be at odds with the

relations shown in Figure 1, where volatility conditional on backwardation is for the most

part higher than the unconditional volatility.

[Insert Figure 2 about here]

The apparent inconsistency becomes less puzzling in light of the intuition of the model we

present below. In particular, our theoretical results motivate one to look for a non-monotone
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relation between the volatility of future prices and the slope of their term structure. For that

we decompose the lagged demeaned slope into positive and negative parts and use them as

separate explanatory variables (i.e., use a piece-wise linear regression on the demeaned slope

of the term structure),

|R(t, T )| = αT + β1,T

(
S̃L(t− 1)

)+

+ β2,T

(
S̃L(t− 1)

)−
+ εT (t), (4)

where (X)± denotes the positive (negative) part of X respectively. Figure 2 as well as Table

I illustrate our results. Both β1,T and β2,T are statistically and economically significant for

most maturities. More importantly, β1,T and β2,T differ in sign: β1,T are positive and β2,T

are negative. Therefore, the relation between the volatility of futures prices and the slope

of the term structure of prices is non-monotone and has a “V-shape” : conditional volatility

declines as a function of the slope when the latter is negative, and increases when the latter

is positive.3

[Insert Table I about here]

One potential concern is that the piecewise linear regression may artificially lead our

estimates to highlight the ”V-shape” pattern we report. To allow for a more flexible form

for the relationship between volatility and the slope we use a nonparametric regression (our

specific implementation is based on Atkeson, Moore and Schaal (1997)). Figure 3 shows the

results of the nonparametric regression for horizon T equal to 2, 4, 6, and 8 months. For all

maturities it reveals a clear non-monotone “V-shape” relationship between the volatility of

futures prices and the slope of the term structure of prices.

[Insert Figure 3 about here]
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We perform several additional robustness checks. First we estimate conditional variances

instead of conditional volatility by using the square of daily price changes instead of their

absolute value. We find that the conditional variance leads to very similar conclusions. In

most cases, both β1,T and β2,T remain statistically significant. Next, we fit a GARCH(1,1)

model to the daily returns percentage price changes of maturity T to obtain the fitted

volatility time series σGARCH(t, T ) and use it as a regressand in (4). The results are reported

in Panel 1 of Table II and show that both β1,T and β2,T remain statistically significant. We

use the GARCH(1,1) to construct the predicted time series of volatility, σ̂GARCH(t, T ). It is

obtained by fitting GARCH(1,1) model to the time series of daily returns percentage price

changes of maturity T up to day t − 1 and then using it to predict the volatility on day

t, σ̂GARCH(t, T ). The initial window is set to 300 days. We then use it in the following

regression,

σ̂GARCH(t, T ) = αT +βG,T σ̂GARCH(t−1, T )+β1,T

(
S̃L(t− 1)

)+

+β2,T

(
S̃L(t− 1)

)−
+εT (t).

(5)

The results are reported in Panel 2 of Table II and show that both β1,T and β2,T still remain

statistically significant.

[Insert Table II about here]

As a final robustness check we split our sample into pre- and post-Gulf war sub-samples.

We perform the same analysis as in the case of the full sample on the post-Gulf war sub-

sample. We find the same “V-shape” in the relationship between the volatility of futures

prices and the slope of the term structure of prices.

I. Model
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In this section we present our model for spot prices and derive futures prices.

A. Setup

We consider a continuous-time infinite-horizon economy. We focus on a competitive

industry populated by a large number of identical firms using an identical production

technology. Firms produce a non-storable consumption good by means of a production

function that exhibits constant returns to scale

Qt = XKt, (6)

where Kt is capital and X is the productivity of capital which is assumed to be constant.

Without loss of generality, we will assume below that X = 1. Our results can be easily

adjusted to accommodate the case when X is a stochastic process. We also abstract away

from production costs.

Firms can adjust their capital stock according to

dKt = (It − δKt)dt, (7)

where It is the investment rate and δ is the capital depreciation assumed to be a nonnegative

constant. We assume the unit cost of capital is equal to one.

We assume that investment is irreversible, i.e., It ≥ 0, and the rate of investment is

bounded. Specifically,

It ∈ [0, iKA
t ], (8)

where KA
t is the aggregate capital stock in the industry. This constraint implies that the

higher the aggregate capital stock in the industry (or the higher the aggregate output rate),
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the better the investment opportunities faced by an individual firm. One can think of this

as a learning-by-doing technology. These investment frictions give rise to nontrivial dynamic

properties of futures prices. It is worth noting that one could derive the same functional

form of price dynamics by assuming that investment opportunities depend on the firms’ own

capital stock. However, the above assumption significantly simplifies formal analysis of the

model and leads to fewer restrictions on model parameters.

We do not explicitly model entry and exit in equilibrium. Our assumption of nonnegative

investment rates effectively implies that there is no exit. We are assuming that all investment

is done by existing firms, so there is no entry either. One could equivalently allow for entry

into the industry, as long as the total amount of investment by old and new firms satisfies

the constraint (8).4

Firms sell their output in the spot market at price St. We assume that financial markets

are complete and the firms’ objective is to maximize their market value, which in turn is

given by

V0 = E0

[∫ ∞

0

e−rt(StQt − It)dt

]
. (9)

We assume that the expected value is computed under the risk-neutral measure and the

risk-free rate r is constant.

The consumers in the economy are represented by the demand curve

Qt = YtS
− 1

γ

t , Qt ∈ (0,∞), (10)

where unexpected changes in Yt represent demand shocks. We assume that under the risk-

neutral measure Yt follows a geometric Brownian motion process

dYt

Yt

= µY dt + σY dWt. (11)
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We also assume that γ > 1. Results for the case of γ ≤ 1 are analogous.

B. Equilibrium Investment and Prices

We adopt a standard definition of competitive equilibrium. Firms must choose an

investment policy that maximizes their market value (9), taking the spot price of output

and the dynamics of the aggregate capital stock in the industry as exogenous. The spot

market must clear, i.e., the aggregate output and the spot price must be related by (10).

Finally, the dynamics of the aggregate capital stock in the industry is given by

dKA
t = (IA

t − δKA
t ) dt, (12)

where IA
t is the aggregate investment rate.

We guess what the equilibrium investment policy and associated price processes should

be, and verify formally that firms’ optimality conditions are satisfied and markets clear. The

details of the solution are provided in the Appendix A.

Intuitively, firms would invest only when the net present value of profits generated by

an additional unit of capital is positive. As it turns out, the spot price follows a univariate

Markov process in equilibrium, thus firms invest at the maximum possible rate when the

spot price is above a certain threshold, and do not invest otherwise. Formally, we prove the

following:

PROPOSITION 1: A competitive equilibrium exists and the equilibrium investment policy is

given by

I∗t =

{
iKA

t , St ≥ S∗,
0, St < S∗,

(13)

The investment threshold S∗ is defined in the Appendix A.
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See Appendix A for the proof ¥

To make sure that the equilibrium exists and firm value is finite, we need to impose an

additional non-trivial restriction on parameter values:

σ2
Y γ2

2
− γµ+ − (r + δ) < 0, (14)

where we define µ− = δ + µY − 1
2
σ2

Y and µ+ = i − µ−. When calibrating the model, we

impose the above restriction as a weak inequality and verify that it does not bind at the

calibrated parameter values.

The risk-neutral dynamics of the spot price is of very simple form:

dSt

St

=

(
−γ(i1[St≥S∗] − µ−) +

γ2σ2
Y

2

)
dt + γσY dWt. (15)

where 1[·] is an indicator function. When the spot price is above the critical value S∗, it

follows a geometric Brownian motion with a drift γµ−+
γ2σ2

Y

2
. When it is below S∗, the drift

changes to −γ(i−µ−)+
γ2σ2

Y

2
. As long as 0 < µ− < i, the spot price process has a stationary

long-run distribution with the density function

p(S) =
2µ−(i− µ−)

γiσ2
Y S

(
S

S∗

)− 2

γσ2
Y
(i1[S≥S∗]−µ−)

. (16)

The details of the derivation are provided in the Appendix B.

Before continuing with estimation of the model, it is worth mapping our general

investment constraint model into the features of the oil industry. Oil (Q) is the output

produced using physical capital K (e.g., oil rigs, pipes, tankers). Implicitly we are assuming

there is an infinite supply of underground oil, and production is constrained by the existing

capital stock K. This supply of capital and consequently of oil-output leads to price
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fluctuations in response to demand shocks. Futures prices (volatility) depend on anticipated

future production which depends on the degree to which investment is constrained.

[Insert Figure 4 about here]

While our model is admittedly stark, it does capture many of the essential features of the

investment and supply constraints in the oil industry. Figure 4 displays the relation between

oil supply capacity and volatility as given in a Goldman Sachs (1999) publication. The

essence of this figure is the “V-shape” relation between the volatility of the spot price and

the level of inventories. This pattern is distinct from the one analyzed in our paper: while

inventory levels are clearly important for short-run fluctuations in the spot market, their

affect on futures prices of longer maturities is much weaker. Thus, a different mechanism

must be responsible for the behavior of volatility of longer-maturity futures. However, the

logic of time varying supply elasticity applies to the pattern in Figure 4 as well, wherein

instead of production constraints one must recognize natural physical constraints on storage

levels. Furthermore, market analysts seem to concentrate on two key features of the market:

the long term and seasonal demand patterns; and the supply features of this industry. Our

model clearly focuses on the second of these two issues. In particular, investments in this

industry are concentrated in several key facets of production (i) basic extraction level in

the form of finding new fields, constructing, installing, and maintaining rigs, and (ii) the

expansion and improvements in the delivery process. Both of these types of investment take

time, have capacity constraints, and constrain supply flexibility in this market – the exact

channels which our model focuses on.5

C. Futures Prices
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The futures contract is a claim on the good which is sold on the spot market at prevailing

spot price St. The futures price is computed as the conditional expectation of the spot price

under the risk-neutral measure:

P (t, T ) = Et[St+T ], ∀T ≥ 0. (17)

where P (t, T ) denotes the price of a futures contract at time t with maturity date τ = t+T .

Since no analytical expression exists for the above expectation, we evaluate it numerically

using a Markov chain approximation scheme. Figure 5 illustrates futures prices generated

by the model.

[Insert Figure 5 about here]

II. Estimation and Numerical Simulation

In this section we study how well our model can replicate quantitatively the key features

of the behavior of futures prices reported in Section I. Since our model is formulated under

the risk-neutral probability measure, while the empirical observations are made under the

“physical” probability measure, one has to make an explicit assumption about the relation

between these two measures, i.e., about the risk premium associated with the shock process

dWt. To keep our specification as simple as possible, we assume that the risk premium is

constant, i.e., the drift of the demand shock Yt under the “physical” probability measure is

equal to µY +λ, where λ is an additional parameter of the model. Clearly, one could achieve

greater flexibility and better fit of the data by allowing for a time-varying risk premium

process. This, however, is entirely beyond the scope of our paper: our model has implications

for the spot price dynamics, but not for the price of risk in the aggregate economy. To have
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a meaningful discussion of the price of risk process, one would need a full general equilibrium

model. We first estimate the model’s parameters using a simulated method of moments and

then proceed to analyze and discuss some additional implications of the model.

A. Simulated Moments Parameter Estimation

A.1 Estimation Procedure

Our goal is to estimate a vector of structural parameters, θ ≡ {γ, µY , σY , i, r, δ, λ}. We

do this using a procedure that is similar to those proposed in Lee and Ingram (1991), Duffie

and Singleton (1993), Gourieroux and Monfort (1996), and Gourieroux et. al. (1993). Let xt

be the vector-valued process of historical futures prices and output and consider a function

of the observed sample FT (xt), where T is the sample length. The statistic FT (xt) could

represent a collection of sample moments or even a more complicated estimator, such as the

slope coefficients in a regression of volatility on the term structure as in (3). Assume that

as the sample size T increases, FT (xt) converges in probability to a limit M(θ), which is a

function of the structural parameters. Since many of the useful population moments cannot

be computed analytically, we estimate them using Monte Carlo simulation. In particular,

let mN(θ) = 1
N

∑N
n=1 FT (xn; θ) represent the estimate of M(θ) based on N independent

model based statistics, where xs represents a vector valued process of simulated futures

prices and output of length T based on simulating the model at parameter values, θ.6 Let

GN(x, θ) = mN(θ)−FT (xt), denote the difference between the estimated theoretical mean of

the statistic F and it’s observed (empirical) value. Under appropriate regularity conditions,

it can be shown that as the size of the sample, T , and the number of simulations N increase
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to infinity, the GMM estimate of θ,

θN = arg min
θ

JT = arg min
θ

GN(x, θ)′WT GN(x, θ) (18)

will be a consistent estimator of θ. The matrix WT in the above expression is positive

definite and assumed to converge in probability to a deterministic positive definite matrix

W . The SMM approaches in Lee and Ingram (1991) and Duffie and Singleton (1993), focus

on one long simulation while Gourieroux and Monfort (1996), and Gourieroux et. al. (1993)

also discuss an estimator based on multiple simulations. Our approach simulates samples of

equal length to that in the data, T , and then average across N such simulations. Given our

non-balanced panel data this approach allows for easier mapping from the model to the data

and computation of standard errors which are based on the distribution emanating from the

cross-section of the simulations.

Assume that V is the asymptotic variance-covariance matrix of FT (x; θ). Then, if we use

the efficient choice of the weighting matrix, W = V −1, the estimator θN is asymptotically

normal, with mean θ and covariance matrix (D′V −1D)−1, where D = ∇θM(θ).

We perform estimation in two stages. During the first stage, we use an identity matrix

for the weighting matrix W . During the second stage, the weighting matrix is set equal to

the inverse of the estimated covariance matrix: W = V −1
N , where VN is the sample based

covariance matrix of FT (xn; θ). To compute standard errors, we use as an estimate for D,

DN = ∇θmN(θ).

We estimate the vector of seven model parameters, θ, by matching both the unconditional

and conditional properties of futures prices. The unconditional properties include mean and

volatility of daily percent price changes for futures with maturities equal to 3, 6, and 9
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months, as well as the mean, volatility, and the 30-day autoregressive coefficient of the slope

of the forward curve of crude oil futures prices. In order to see how far we can push our

simple single-factor model, we also fit the relation between the volatility of futures prices

and the slope of the term structure. Specifically, the conditional moments include regression

coefficients β1,T and β2,T from the equation (4) for T equal to 3, 6, and 9 months.

A.2 Identification

Not all of the model parameters can be independently identified from the data we are

considering. In this subsection we discuss the relations between structural parameters and

observable properties of our model economy. These should suggest which of the structural

parameters can be identified and what dimensions of the empirical data are likely to be most

useful for estimation.

First, we calibrate the risk-free rate. The risk-free rate is determined by many factors

outside of the oil industry and consequently it would not be prudent to estimate it solely

based on oil-price data. Also, it is clear by inspection that the risk-free rate is not identified

by our model. It does not affect any of the moments we consider in our estimation and only

appears in the constraint on model parameters in equation (14). Therefore, at best, futures

price data can only impose a lower bound on the level of the risk-free rate, as implied by

(14). Given all of the above considerations, we set the risk free rate at 2%.7 Next, consider

a simple re-normalization of the structural parameters. Futures prices in our model depend

solely on the risk-neutral dynamics of the log of the spot price which evolves according to

d log St = − [
γi1[S≥S∗] − γµ−

]
dt + γσY dWt. (19)
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Since we normalize the productivity parameter in (6) to one, only relative prices are

informative, and therefore we can ignore the dependence of S∗ on structural parameters.

Thus, the risk-neutral dynamics of futures prices is determined by only three combinations

of five structural parameters: γµ−, γi, and γσY . Therefore, we cannot identify all the model

parameters separately from futures data alone.

We obtain an additional identifying condition from the oil consumption data. Cooper

(2003) reports that individual growth rates vary for the twenty three countries in his sample,

typically falling between −3 to 3%. For the US, the reported growth rate averaged −0.7%.

As documented in Cooper (2003), world crude oil consumption increased by 46 per cent per

capita from 1971 to 2000, implying an average growth rate of approximately 1.25% which

we attempt to equate with the expected growth rate of oil consumption, gC , implied by the

model

gC = i Pr(S ≥ S∗)− δ = λ + µY −
1

2
σ2

Y , (20)

where Pr(S ≥ S∗) =
∫ S∗

−∞ p+(S)dS = (i)−1µ− is the unconditional probability that S is

below the investment trigger.

Finally, to estimate the risk premium λ, we use average historical daily returns on fully

collateralized futures positions (we use three-month contracts). We are thus left with five

independent identifying restrictions on six structural parameters. Following Gomes (2001),

we fix the depreciation rate of capital at δ = 0.12 per year and do not infer it from futures

prices and thus estimate the remaining five parameters.

[Insert Table III about here]

A.3 Parameter Estimates
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Our estimated parameter values and the corresponding standard errors are summarized

in Table III. The first parameter value in the table, γ = 3.15, implies that the price elasticity

of demand in our model is −0.32. Cooper (2003) reports estimates of short-run and long-run

demand elasticity for a partial adjustment demand equation based on US data of −0.06

and −0.45 respectively. In our model, there is no distinction between short-run and long-

run demand, as demand adjustments are assumed to be instantaneous. Our estimate falls

half-way between the two numbers reported in Cooper (2003) for the US and is close to the

average of the long-run elasticity estimates reported for all 23 countries considered in that

study, which is −0.2.

Our second parameter is i, the maximum investment rate in the model. This variable

parameterizes the investment technology used by the firms. In order to make relative

empirical comparison we have compared it to the growth rate of the number of operating

oil wells between years 1999 and 2000 for several leading crude producers world wide.8

During this period the number of operating wells has increased by 4.7% in the whole Middle

East region, by 9.3% in Russia, by 22.3% in Venezuela, and by 10.3% in Norway.9 The

corresponding growth rate implied by our model is i− δ = 0.12. These numbers show that

the upper bound of i = 24% would allow for a plausible range of realized annual investment

rates.

The average growth rate of demand is close to zero. For comparison, the average

annualized change in futures prices is approximately 2.8% in the data, which falls within

the 95% confidence interval of the model’s prediction. The volatility of demand shocks is

not directly observable. The estimated value of σY , together with the demand elasticity

parameter γ−1 imply annualized volatility of the spot price of approximately 33%, which is
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close to the observed price volatility of short-maturity futures contracts.

Finally, the market price of risk in our model is equal to 2.47× 10−4. This would imply

that excess expected returns on a fully collateralized futures strategy should be close to zero.

This is consistent with empirical data. While an assumption of constant risk premium is

clearly restrictive, it is made for simplicity: nothing in our model prevents one from assuming

a time-varying price of oil price risk. However, such an assumption would be exogenous to

the model, and hence would not add to our understanding of the underlying economics of

the problem.

B. Results and Discussion

B.1 Quantitative Results

We first illustrate the fit of the model by plotting the term structure of unconditional

futures price volatility (to facilitate comparison with empirical data, we express our results

as daily values, defined as annual values scaled down by
√

252). We chose model parameters,

as summarized in Table III, to match the behavior of crude oil futures. Figure 6 compares

the volatility of prices implied by our choice of parameters to the empirical estimates. Our

model seems capable of reproducing the slow-decaying pattern of futures price volatility. This

feature of the data presents a challenge to simple storage models, as discussed in Routledge

et. al. (2000). To see why it may not be easy to reproduce the slow-decaying pattern

of unconditional volatilities in a simple single-factor model, consider a reduced-form model

in which the logarithm of the spot price process follows a continuous-time AR(1) process
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(Ornstein-Uhlenbeck process). Specifically, assume that the spot price is given by

St = eyt . (21)

and under the risk-neutral probability measure yt follows

dyt = θy(ȳ − yt)dt + σydWt, (22)

where θy is the mean-reversion coefficient and ȳ is the long-run mean of the state variable.

According to this simple model, the unconditional volatility of futures price changes is an

exponential function of maturity τ :

σ2(τ) = σ2
ye
−2θτ . (23)

To compare the term structure of unconditional volatility implied by this model to the one

generate by our model, we calibrate parameters θy and σy so that the simple model exhibits

the same volatility of the spot price and the same 30-day autocorrelation of the basis as

our model. Figure 6 shows that, as expected, unconditional volatility implied by the simple

model above decays too fast relative to our model and data.

[Insert Figure 6 about here]

The main qualitative distinction between the properties of our model and those of basic

storage models is in the conditional behavior of futures volatility. As we demonstrate in

Section I, the empirical relation between the volatility of futures prices and the slope of the

term structure of prices is non-monotone and has a pronounced “V-shape”. Intuitively, we

would expect our model to exhibit this pattern. When the spot price St is far away from

the investment trigger S∗, one of the investment constraints is binding and can be expected
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to remain binding for some time. If the capital stock Kt is much higher than its optimal

level, given the current level of demand, firms find it optimal to postpone investment and

the irreversibility constraint binds. On the other hand, when Kt is much lower than the

optimal level, firms invest at the maximum possible rate and the investment rate constraint

binds. In either case, the supply of the commodity is relatively inelastic and futures prices

are relatively volatile. The further St travels away from the investment trigger, the larger

the effect on volatility of long-maturity futures. At the same time, it is precisely when St is

relatively far away from the investment trigger S∗, when the absolute value of the slope of

the term structure of futures prices is large, as illustrated in Figure 5. This is to be expected.

All prices in our model are driven by a single mean-reverting stationary spot price, and since

futures prices of longer-maturity contracts are less sensitive to the current value of the spot

price, the slope of the forward curve tends to be large when the spot price is far away from

its long-run average value. The latter, in turn, is not far from S∗, given that St reverts to

S∗. Thus, our model predicts that the volatility of futures prices should exhibit a “V-shape”

as a function of the slope of the term structure of futures prices.

It should be clear from the above discussion that the critical feature of the model is not

the precise definition of the production function, but rather the variable-elasticity property

of the supply side of the economy. The “V-shape” pattern in volatilities is due to the fact

that supply can adjust relatively easily in response to demand shocks when output is close

to the optimal level, but supply is relatively inelastic when the output level is far from the

optimum.

[Insert Table IV about here]
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We now report the quantitative properties of the model. All data moments used to

estimate the model are reported in the first column of Table 5. The expected growth rate of

oil consumption implied by the model is equal to 0.9% and is close to an average world-wide

growth rate of 1.25%. The long-run average of the slope of the forward curve, ln
[

P (t−1,6)
P (t−1,3)

]
, is

0.0065 in the model, compared to the empirical value of−0.0125. Both values are statistically

indistinguishable from zero. The long-run standard deviation of the slope in the model, which

equals 0.0285, is almost identical to the empirical value of 0.0287. The 30-day autocorrelation

coefficient of the slope implied by the model is equal to 0.83, as compared to the value of

0.77 in the data. Overall, our model fits the basic behavior of the slope of the forward curve

quite well. The Table IV shows the estimates of linear and piece-wise linear specifications of

conditional variance of futures price changes (4) implied by the model for one-, five-, and ten-

month futures. The coefficients of the linear regressions are negative and close in magnitude

to their empirical counterparts. Such a negative relation between conditional volatility of

futures prices and the basis would typically be interpreted as supportive of simple storage

models. Note, however, that our model without storage can reproduce the same kind of

relation. Our model, however, has a further important implication: the linear model is

badly misspecified, since the theoretically predicted relation is non-monotone. Our piece-

wise linear specification produces coefficients β1,T and β2,T that agree well their empirical

counterparts for longer maturities (3 to 12 months), but the fit worsens for shorter maturities

(1 and 2 months). Given the extremely streamlined nature of our model (e.g., the slope of the

forward curve is a sufficient statistic for conditional volatility), this should not be surprising.

In order to capture the properties of the short end of the term structure, one must take into

account storage, which we do not allow in our model. The entire distribution of regression
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coefficients across maturities of the futures contracts is shown in Figure 7. Finally, Figure 3

helps visualize the “V-shape” pattern.

[Insert Figure 7 about here]

B.2 Sensitivity Analysis

In order to understand the sensitivity of our results to the baseline parameters

summarized in Table III, we compute elasticities of basic statistics of the model output

with respect to these parameters. Each elasticity is calculated by simulating the model

twice: with a value of the parameter of interest ten percent of one standard deviation below

(above) its baseline value. Next, the change in the moment is calculated as the difference

between the results from the two simulations. This difference is then divided by the change

in the underlying structural parameter between the two simulations. Finally, the result is

then multiplied by the ratio of the baseline structural parameter to the baseline moment.

The elasticities are reported in Table V.

An increase in the demand volatility, σY , or in the elasticity of the inverse demand curve,

γ, leads to an increase in the volatility of the spot price, which equals γ2σ2
Y . As one would

expect, volatility of futures prices of various maturities increases as well. Qualitatively, both

of the parameters σY and γ affect the level of the unconditional volatility curve plotted in

Figure 6. However, the demand volatility has strong positive effect on the expected growth

rate of oil consumption since it increases the long-run growth rate of the level of the demand

curve, Yt. γ has no such effect.

The constraint on the investment rate i has no effect on the volatility of the spot price.

However, it affects volatility of futures prices. A higher value of i allows capital stock to
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adjust more rapidly in response to positive demand shocks, thus reducing the impact of

demand shocks on the future value of the spot price and therefore lowering the volatility

of futures prices. We thus see that i effectively controls the slope of the term structure of

volatility, higher values of i imply a steeper term structure. i has no effect on the expected

growth rate of oil consumption, in agreement with equation (20).

[Insert Table V about here]

An increase in the unconditional mean of the demand shock, µY , has little affect on the

level of futures price volatility. This is not surprising given the role µY plays in the evolution

of the spot price St. An increase in µY raises the drift of St uniformly. The impact of this

on the volatility of futures price is ambiguous and depends on the relative magnitude of the

drift of St above, µ−, and below, µ+ ≡ i − µ−, the investment threshold S∗. By symmetry

considerations, if µ+ = µ−, an infinitesimal change in µY has no impact on the volatility of

futures prices. Under the calibrated parameter values, µ− = 0.1289 and µ+ = 0.1083 and

futures volatility is not very sensitive to µY . The same is true for the risk premium, λ. Both

µY and λ have strong positive effect on gC in agreement with equation (20).

In general, the affect of model parameters on the slope of the forward curve is difficult to

interpret intuitively and depends on the chosen parameter values. However, the fact that the

moments of the slope have different sensitivities to various model parameters makes them

useful in estimating these parameters.

III. Conclusions

This paper contributes along two dimensions. First, we show that volatility of future

prices has a “V-shape” relationship with respect to the slope of the term structure of
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futures prices. Second, we show that such volatility patterns arise naturally in models

that emphasize investment constraints and, consequently, time-varying supply-elasticity as a

key mechanism for price dynamics. Our empirical findings seem beyond the scope of simple

storage models, which are currently the main focus of the literature, and point towards

investigating alternative economic mechanisms, such as the one analyzed in this paper.

Adding finite storage capacity to this economy would likely affect the very short end of

the forward curve. It is likely then that the volatility of spot prices would be related to the

level of inventories. However, adding storage is not likely to have material affect on the long

end of the forward curve, since in practice the total storage capacity is rather small relative

to annual consumption. What is difficult to predict, however, is how storage would interact

with production constraints at intermediate maturities. This requires formal modeling and

future work will entail a model that nests both storage and investment in an attempt to

isolate their quantitative effects.

Appendix A. Proof of Proposition 1

We conjecture that the equilibrium investment policy I∗t is given by (13). Then, market

clearing in the spot market implies that the spot price process St satisfies (15).

A competitive firm chooses an investment policy It to maximize the firm value, i.e., the

present value of future output net of investment costs:

max
It

E0

[∫ ∞

0

e−rt (KtSt − It) dt

]
, (A1)

subject to the capital accumulation rule

dKt = (It − δKt)dt, (A2)
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It ≥ 0, (A3)

It ≤ ı̄KA
t . (A4)

From (A2), we obtain

Kt =

∫ t

0

e−δ(t−s)Isds + K0e
−δt. (A5)

Using this expression for the capital stock, and relaxing the constraint (A4), we re-write the

above optimization problems as

max E0

[∫ ∞

0

e−rt (Vt − 1) Itdt

]
+ K0V0, (A6)

subject to (A3, A4), where

Vt = Et

[∫ ∞

t

e−(r+δ)(u−t)Sudu

]
. (A7)

Assuming that the process Vt is well defined (we prove that next), the optimal solution of

the firm’s problem is

I∗t =





ı̄KA
t , Vt − 1 > 0,[

0, ı̄KA
t

]
, Vt − 1 = 0,

0, Vt − 1 < 0.
(A8)

The above policy will coincide with (13), as long as Vt = 1 whenever St = S∗. Let V (S, S∗)

denote the value of Vt when St = S and the optimal investment threshold is S∗. Note that

the conjectured form of the equilibrium spot price process implies that

Vt = V (St, S
∗) = S∗V

(
St

S∗
, 1

)
(A9)

Thus, the equilibrium value of S∗ can be found as S∗ = V (1, 1)−1.

We now characterize V (S; 1), and show that Vt is finite. Let S∗ = 1 and define

ωt = −(1/γ) ln St. Then

dωt =
(
i1[ωt≤0] − µ−

)
dt− σY dWt. (A10)

27



Let B be an arbitrary positive number and define a stopping time τB = inf{t : ωt ≤ −B}.

Let

FB
t = Et

[∫ ∞

t

1[s≤τB ]e
−(r+δ)(s−t)−γωsds

]
. (A11)

We look for FB
t = FB(ωt). We start by heuristically characterizing FB(ω) as a unique

solution of the Feynman-Kac equation

σ2
Y

2

d2FB(ω)

dω2
+

[
i1[ω≤0] − µ−

] dFB(ω)

dω
− (r + δ)FB(ω) + e−γω = 0 (A12)

with the boundary condition

FB(−B) = 0. (A13)

We look for a solution of (A12) of the form

FB(ω) =





Aeκ−ω + e−γω

r−γµ−− γ2

2
σ2

Y

, ω ≥ 0,

C1e
κ+ω + C2e

κ−ω + e−γω

r+γµ+− γ2

2
σ2

Y

, ω < 0.
(A14)

Substituting these solutions into ODE (A12) yields quadratic equations on κ± and κ±

σ2
Y

2
κ2
± − µ−κ± − (r + δ) = 0, (A15)

σ2
Y

2
κ̄2
± + µ+κ̄± − (r + δ) = 0. (A16)

κ± and κ± denote, respectively, positive and negative roots of the above equations. Define

M =
γı̄(

r + δ − γµ− − γ2

2
σ2

Y

)(
r + δ + γµ+ − γ2

2
σ2

Y

) . (A17)

Using the boundary condition (A13) and imposing continuity of the function FB and its first

derivative across 0 (to verify that the solution of the differential equation (A12) characterizes

the expected value FB
t , we only need the first derivative to be continuous at 0 ), we obtain

the following system of equations on coefficients C1, C2, and A:



C1 + C2 = A + M,

κ+C1 + κ̄−C2 =
(

2ı̄
σ2

Y
+ κ−

)
A + 2

r+δ+γµ+−γ2σ2
Y

γσ2
Y

M,

C1e
−κ+B + C2e

−κ−B =
r+δ−γµ−− γ2

2
σ2

Y

γı̄
MeγB.

(A18)

28



Solving this system yields the following expression for C2:

C2 = M

r+δ−γµ−− γ2

2
σ2

Y

γı̄

(
κ+ − 2ı̄

σ2
Y
− κ−

)
e(κ−+γ)B −

(
2

r+δ+γµ+−γ2σ2
Y

γσ2
Y

− κ−
)

e(κ−−κ+)B

κ+ − 2ı̄
σ2

Y
− κ− −

(
κ− − 2ı̄

σ2
Y
− κ−

)
e(κ−−κ+)B

.

(A19)

Next, we show that indeed FB
t = FB(ωt). To see this, note that the process Xt =

e−(r+δ)tFB(ωt) +
∫ t

0
e−(r+δ)s−γωs ds is a local martingale. This follows from the fact that, by

Ito’s lemma, the drift of the process is equal to zero (due to (A12)). Next, since the diffusion

coefficient of Xt, σ dFB(ω)/dω, is bounded on the domain ω ≥ −B, the stopped process

Xt∧τB
is a martingale. Thus,

X0 = FB(ω0) = E0 [XT ] = E0

[
1[T≤τB ]e

−(r+δ)T FB(ωT ) +

∫ T

0

1[s≤τB ]e
−(r+δ)s−γωs ds

]
.

Since the function FB(ω) is bounded on the domain {ωt ≥ −B}, we know that

limT→∞ E0

[
1[T≤τB ]e

−(r+δ)T FB(ωT )
]

= 0. Thus, as we take T → ∞, by monotone

convergence theorem, FB(ω0) = FB
0 .

Having found FB
t , we now take a limit of B → ∞. The limB→∞ FB

t is well defined.

Because
σ2

Y γ2

2
−γµ+− (r + δ) < 0, it follows that κ−+γ < 0 and, therefore, limB→∞ C2 = 0.

Also, constants C1 and A converge to finite limits as B →∞.

To show that limB→∞ FB
t = Vt, we use the monotone convergence theorem, combined

with an observation that limB→∞ τB = ∞. The latter follows from the fact that ωt ≤

ω0 + µ−t + σ(Wt − W0), which is an arithmetic Brownian motion and for which the

corresponding stopping time converges to infinity as B →∞.

Thus, V (S, 1) is well defined, it is a function of the state variable ω,

V (e−γω, 1)V (e−γω, 1) = F (ω), which satisfies the equation

σ2
Y

2

d2F (ω)

dω2
+

[
i1[ω≤ω∗] − µ−

] dF (ω)

dω
− (r + δ)F (ω) + e−γω = 0 (A20)
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and is given explicitly by

F (ω) =





Aeκ−ω + e−γω

r−γµ−− γ2

2
σ2

Y

, ω ≥ 0,

Ceκ+ω + e−γω

r+γµ+− γ2

2
σ2

Y

, ω < 0.
(A21)

where

A =
2

r+δ+γµ+−γ2σ2
Y

γσ2
Y

−κ+

κ+− 2ı̄

σ2
Y

−κ− M,

C =


1 +

2
r+δ+γµ+−γ2σ2

Y
γσ2

Y

−κ+

κ+− 2ı̄

σ2
Y

−κ−


 M.

This completes our proof.

Appendix B. Stationary long-run distribution of St

Define ω = −(1/γ) ln St. Then

dωt =
(
i1[ωt≤ω∗] − µ−

)
dt− σY dWt, ω∗ ≡ −1

γ
ln S∗. (B1)

It is enough to calculate the stationary long-run distribution of the ω,

p(ω) =

{
p+(ω) ω ≤ ω∗

p−(ω) ω > ω∗
. (B2)

It exists if 0 < µ− < i and it satisfies the forward Kolmogorov ODE

d2p(ω)

dω2
− 2

[
µ+1[ω≤ω∗] − µ−1[ω>ω∗]

]

σ2
Y

dp(ω)

dω
= 0. (B3)

p(ω) also satisfies the normalization condition

∫ ω∗

−∞
p+(ω)dω +

∫ ∞

ω∗
p−(ω)dω = 1. (B4)

Condition (B4) eliminates a constant as a trivial solution of the ODE (B3). We solve the

ODE (B3) separately for p+(ω) and p−(ω):

p+(ω) = A+e
2µ+

σ2
Y

ω
, (B5)

p−(ω) = A−e
− 2µ−

σ2
Y

ω
,
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and paste the solutions together so that p(ω) is continuous at ω∗. Thus, A± can be found

from the boundary condition at ω∗ and the normalization condition:

A+e
2µ+

σ2
Y

ω∗
= A−e

− 2µ−
σ2

Y

ω∗
, (B6)

σ2
Y

2µ+
A+e

2µ+

σ2
Y

ω∗
+

σ2
Y

2µ−
A−e

− 2µ−
σ2

Y

ω∗
= 1. (B7)

Solving equations (B6), (B7) for A+ and A−, and changing variables according to ω =

− 1
γ

ln S, we obtain (16).

31



References

Atkeson, Christopher G., Andrew W. Moore and Stefan Schaal, 1997, Locally weighted

learning, Artificial Intelligence Review 11, 11-73.

Brennan, Michael J., 1991, The Price of Convenience and the Valuation of Commodity

Contingent Claims in D. Lund and B. Oksendal (eds.), Stochastic Models and Option

Models (Elsevier Science Publishers, Amsterdam).

Brennan, Michael J. and Eduardo S. Schwartz, 1985, Evaluating Natural Resource

Investments, Journal of Business 58, 135–157.

Carlson, Murray, Zeigham Khoker, and Sheridan Titman, 2006, Equilibrium Exhaustible

Resource Price Dynamics, NBER Working paper.

Casassus, Jaime, Pierre Collin-Dufresne, and Bryan R. Routledge, 2004, Equilibrium

Commodity Prices with Irreversible Investment and Non-Linear Technologies, NBER

Working paper.

Cooper, John C. B., 2003, Price Elasticity of Demand for Crude Oil: Estimates for 23

Countries, OPEC Review 27, 1-8.

Deaton, Angus and Guy Laroque, 1992, On the Behavior of Commodity Prices, The Review

of Financial Studies 59, 1–23.

Deaton, Angus and Guy Laroque, 1996, Competitive Storage and Commodity Price

Dynamics, Journal of Political Economy 104, 896–923.

32



Duffie, Darrell and Stephen Gray, 1995, Volatility in Energy Prices, Robert Jameson, ed.:

Managing Energy Price Risk (Risk Publications, London, U.K.).

Duffie, Darrell and Kenneth J. Singleton, 1993, Simulated moments estimation of Markov

models of asset prices, Econometrica 61, 929-952.

Gourieroux, Christian and Alain Monfort, 1996. Simulation Based Econometric Methods

(Oxford University Press, Oxford, U.K.).

Gourieroux, Christian, Alain Monfort, and E. Renault, 1993, Indirect inference, Journal of

Applied Econometrics 8, S85-S118.

Grenadier, Steven R., 2002, Option Exercise Games: An Application to the Equilibrium

Investment Strategies of Firms, Review of Financial Studies, 15, 691-721.

Fries, Steven, Marcus Miller and William Perraudin, 1997, Debt in industry equilibrium,

Review of Financial Studies 10, 39-67.

Karatzas, Ioannis and Steven E. Shreve, 1991, Brownian Motions and Stochastic Calculus

(Springer-Verlag).

Kogan, Leonid, 1999, Doctoral Dissertation, Sloan School of Management, MIT, Boston,

MA.

Kogan, Leonid, Dmitry Livdan and Amir Yaron, 2005, Futures prices in production

economy with investment constraints, NBER working paper.

Lee, Bong-Soo and Beth F. Ingram, 1991, Simulation estimation of time series models,

Journal of Econometrics 47, 197-205.

33



Litzenberger, Robert H. and Nir Rabinowitz, 1995, Backwardation in Oil Futures Markets:

Theory and Empirical Evidence, Journal of Finance 50, 1517-1545.

Miao, Jianjun, 2005, Optimal Capital Structure and Industry Dynamics, Journal of Finance

60, 2621-2659.

Ng, Victor K. and Craig S. Pirrong, 1994, Fundamentals and Volatility: Storage, Spreads,

and the Dynamics of Metal Prices, Journal of Business 67, 203-230.

Novy-Marx, Robert, 2007, An Equilibrium Model of Investment Under Uncertainty,

Forthcoming, Review of Financial Studies.

Routledge, Bryan R., Duane J. Seppi and Chester S. Spatt, 2000, Equilibrium Forward

Curves for Commodities, Journal of Finance 55, 1297–1338.

Schwartz, Eduardo S., 1997, The Stochastic Behavior of Commodity Prices: Implications

for Valuation and Hedging, Journal of Finance 52, 923–973.

Samuelson, Paul A., 1965. Proof that Properly Anticipated Prices Fluctuate Randomly,

Industrial Management Review, 6, 41-49.

Telser, Lester G., 1958, Futures Trading and the Storage of Cotton and Wheat, Journal of

Political Economy 66, 133–144.

Williams, Jeffrey C. and Brian D. Wright, 1991, Storage and Commodity Markets

(Cambridge University Press, Cambridge, U.K.).

Working, Holbrook, 1948, Theory of the Inverse Carrying Charge in Futures Markets,

Journal of Farm Economics 30, 1–28.

34



Working, Holbrook, 1949, The Theory of the Price of Storage, American Economic Review

39, 1254–1262.

35



Notes

1In our data set on any given calendar day there are several contracts available with different time to

delivery measured in days. The difference in delivery times between these contracts is at least 32 days

or more. We utilize the following procedure for converting delivery times to the monthly scale. For each

contract we divide the number of days it has left to maturity by 30 (the average number of days in a month),

and then round off the resultant. For days when a contract with time to delivery of less than 15 days is

traded, we add one “month” to the contract horizon obtained using the above procedure for all contracts

traded on such days. The data is then sorted into bins based on the contract horizon measured in months.

2We refer to this time to delivery as time to maturity throughout the paper.

3An alternative parametric form would be quadratic. While the quadratic specification does not allow us

to test for the conditional sign of the relationship between the slope of the forward curve and conditional

volatility of futures returns, such specification provides a test for convexity of that relationship. The

estimated relationship (not reported here) shows that the second-order term is highly statistically significant.

4For example, other recent applications in finance using competitive industry equilibrium include Fries,

Miller, and Perraudin (1997) and Miao (2005).

5Analysts often describe the ’cushion’ in this market as spare productive capacity. For example, according

to estimates in Goldman Sachs (1999) publication the spare capacity was about 7-12% around forth quarter

of 2000. The report continues to say that “These fields will require significant investment and drilling to not

only increase production but offset the decline rates. This will take time., ...., even if rig counts rebound

substantially, during the fourth quarter, new supplies would not be available until late second quarter at

the earliest”. While undoubtedly inventories and stock-outs affect capacity constraints they seem to be

measured in days (around 20 days for full coverage of which only a few days are full working inventory as the

rest represents minimum operating requirements). This is consistent with our view that the final inventories

affect the short end of the forward curve but not likely to affect it along the several month horizon we

investigate.

6Specifically, for any given value of θ, we draw N realizations of the spot price St from its long-run

steady-state distribution (which itself depends on model parameters and is given by (16)). Then, for each

set of initial conditions, we simulate a path of the state variable of the same length as the historical sample

and evaluate the function F (x, θ) for each simulated path of the economy.

7Our results regarding the ’V’ shape response in prices are not affected by this choice.

8This data is publicly available from www.WorldOil.com.

9The total worldwide growth in the number of operating oil wells has been around 0.6% for the same
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period. This number is largely driven by the negative two per cent growth in the U.S., where most of

these wells produce relatively small volumes of oil, often on an intermittent and marginally economic basis

(commonly called “stripper” wells). The number of producing “stripper” wells changes depending on how

many wells enter the ranks (by declining in production) and leave the ranks of stripper wells (by increasing

production or being plugged and abandoned) each year. The United States’ stripper oil well population has

been gradually declining over the past decade.
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Figure 1. Term structure of volatility, crude oil futures. The data are daily percentage
price changes on NYMEX crude oil (CL) futures from 1983 to 2000. σ denotes the standard deviation of
daily percentage price changes. The time to maturity is defined as number of months left until the delivery
month. The unconditional standard deviation is constructed using sample’s first and second moments, while
standard deviations conditional on backwardation and contango are conditioned on the shape of the forward
curve one day prior.
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Figure 2. Conditional volatility, crude oil futures The data are daily percentage
price changes on NYMEX crude oil (CL) futures from 1983 to 2000, denoted by R(t, T ). Two different
specifications are used to relate the instantaneous volatility of futures prices to the beginning-of-period slope
of the forward curve defined as

SL(t) = ln
[
P (t, 6)
P (t, 3)

]
.

The first specification is
|R(t, T )| = αT + βT S̃L(t− 1) + εT (t).

The second specification decomposes the slope into positive and negative parts

|R(t, T )| = αT + β1,T

(
S̃L(t− 1)

)+

+ β2,T

(
S̃L(t− 1)

)−
+ εT (t),

where (X)± denotes positive (negative) part of X respectively. The figure shows the estimates of all three
coefficients (exhibit A) and their respective t-statistics (exhibit B) for different times to maturity. All t-
statistics are White-adjusted.
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Panel A: T = 2 months Panel B: T = 4 months
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Panel C: T = 6 months Panel D: T = 8 months
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Figure 3. “V-shape” of volatility of futures prices, data and model output. Futures
volatility is plotted as a function of the slope of the forward curve for different values of time to maturity.
We use Receptive Field Weighted Regression (RFWR) to construct the functional form of volatility implied
by the data. In both case, data and model, volatility exhibits a “V-shape” pattern as a function of the slope.
The slope is demeaned. Volatility is expressed in annual terms. Model parameters are given in Table III.
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Actual WTI Volatility Versus Expected End-of-March Atlantic Basin Inventories 
billions of barrels, horizontal axis; percent volatility, vertical axis 
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Figure 4. Volatility and Supply Capacity Constraints.
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Figure 5. Futures prices, model output. Futures prices are generated by the model using
parameter values reported in Table III. The investment threshold, S∗, is normalized to one.
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Figure 6. Unconditional volatility of futures prices, model output. The unconditional
standard deviation of daily changes in futures prices is constructed based on the output from the model
(model 1). The model is fitted to the data on crude oil futures (CL) using a two-step simulated method
of moments described in Section . Parameter values are reported in Table III. Model 2 corresponds to the
unconditional standard deviation of changes in futures prices implied by Eq. (23). We report average across
2000 simulations.
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Figure 7. Conditional volatility of futures prices, model output. For each time to
maturity, T , we simulate a time series of daily futures prices using parameter values reported in Table III. We
then compute daily percentage changes in futures prices, denoted by R(t, T ). The instantaneous volatility
of futures prices is related to the beginning-of-period slope of the forward curve, defined as

SL(t) = ln
[
P (t, 6)
P (t, 3)

]
,

according to the following specification

|R(t, T )| = αT + β1,T

(
S̃L(t− 1)

)+

+ β2,T

(
S̃L(t− 1)

)−
+ εT (t),

where (X)± denotes positive (negative) part of X respectively. This procedure is repeated 2000 times and
we report the average across simulations. The figure shows β1,T and β2,T for different times to maturity.
See the caption to Figure ?? for further details.
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Table I

Conditional volatility, crude oil futures

This Table reports results for three different regressions. The data are daily percentage price changes on
NYMEX crude oil (CL) futures from 1983 to 2000. The specification in the both panels is the same as in
Figure ??. All results are reported for times to maturity equal to one, five and ten months. All t-statistics
are White-adjusted for conditional heteroscedasticity.

1 Month 5 Months 10 Months

1. |R(t, T )| = αT + βT S̃L(t− 1) + εT (t)

βT

(t-stat)

R2

-0.0743
(−1.37)

0.0122

-0.0462
(−1.77)

0.0111

-0.0419
(−1.89)

0.0117

2. |R(t, T )| = αT + β1,T

(
S̃L(t− 1)

)+

+ β2,T

(
S̃L(t− 1)

)−
+ εT (t)

β1,T

(t-stat)

β2,T

(t-stat)

R2

0.3191
(5.25)

-0.3505
(−5.29)

0.1320

0.1791
(4.42)

-0.2039
(−7.26)

0.1058

0.1308
(3.68)

-0.1632
(−6.17)

0.0790
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Table II

GARCH regressions, crude oil futures

This Table reports results for two different regressions. The data are daily returns percentage price changes
on NYMEX crude oil (CL) futures from 1985 to 2000. See the caption to Table I. The volatility time series
σGARCH(t, T ) is obtained by fitting GARCH(1,1) model to the daily returns percentage price changes of
maturity T. The volatility time series σ̂GARCH is obtained by fitting GARCH(1,1) model to the time series
of daily returns percentage price changes of maturity T up to day t − 1 and then using it to predict the
volatility on day t, σ̂GARCH(t, T ). The initial window is set to 300 days.

1 Month 5 Months 10 Months

1. |R(t, T )| = αT + βG,T σGARCH(t, T ) + β1,T

(
S̃L(t− 1)

)+

+ β2,T

(
S̃L(t− 1)

)−
+ εT (t)

βG,T 0.5323 0.6145 0.6612
(t-stat) (8.85) (9.48) (12.47)

β1,T 0.1610 0.0823 0.0595
(t-stat) (4.32) (4.01) (3.81)

β2,T -0.1605 -0.0796 -0.0599
(t-stat) (−2.84) (−2.92) (−2.91)

R2 0.2601 0.2605 0.2495

2. σ̂GARCH(t, T ) = αT + βG,T σ̂GARCH(t− 1, T ) + β1,T

(
S̃L(t− 1)

)+

+ β2,T

(
S̃L(t− 1)

)−
+ εT (t)

βG,T 0.9403 0.9748 0.9739
(t-stat) (68.82) (155.06) (161.50)

β1,T 0.0269 0.0079 0.0064
(t-stat) (3.06) (3.34) (2.90)

β2,T -0.0228 -0.0060 -0.0053
(t-stat) (−3.04) (−2.23) (−1.83)

R2 0.9108 0.9627 0.9586
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Table III

Parameter estimates, crude oil futures

This table reports our parameter values. We use a two step SMM procedure to estimate a vector of seven
structural parameters θ ≡ {γ, µY , σY , i, r, δ, λ}. Since only five model parameters can be independently
identified from the data (see Section ), we fix δ and r and estimate the remaining five parameters. We
match the unconditional properties of crude oil futures prices, specifically the historic daily return on fully
collateralized three-month futures position, the unconditional volatility of daily percent price changes for
futures of various maturities as well as the mean, volatility, and the 30-day autoregressive coefficient of the
slope of the forward curve. In addition, we match the expected growth rate of crude oil consumption. The
standard errors are reported where applicable.

Parameter Value Std. Error

γ 3.1484 0.2396

i 0.2362 0.0531

r 0.0200 NA

µY 0.01438 0.0048

σY 0.1043 0.0216

δ 0.1200 NA

λ 2.47×10−4 1.4×10−4
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Table IV

Conditional volatility, model output

Conditional variance of crude oil futures prices are compared with the output of the model under two different
econometric specifications. See the caption to Table I.

1 Month 5 Months 10 Months

Data Model Data Model Data Model

1. |R(t, T )| = αT + βT S̃L(t− 1) + εT (t)

βT -0.0743 -0.0030 -0.0462 -0.0100 -0.0419 -0.012

2. |R(t, T )| = αT + β1,T

(
S̃L(t− 1)

)+

+ β2,T

(
S̃L(t− 1)

)−
+ εT (t)

β1,T

β2,T

0.3191

-0.3505

0.0854

-0.0964

0.1791

-0.2039

0.1482

-0.1822

0.1308

-0.1632

0.1246

-0.1651
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