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Abstract

This work presents four partitioning strategies, or desgatterns, useful for decomposing a serial application
into multiple concurrently executing parts. These pantithg strategies augment the commonly used task and data
parallel design patterns by recognizing that applicatians spatiotemporal in nature. Therefore, data and instiarct
decomposition are further distinguished by whether thaip@aning is done in the spatial or in temporal dimension.
Thus, this work describes four decomposition strategipatial data partitioning (SDP), temporal data partitiorgn
(TDP), spatial instruction partitioning (SIP), and temabmstruction partitioning (TIP), while cataloging the befits
and drawbacks of each. In addition, the practical use ofé¢rstgategies is demonstrated through a case study in which
they are applied to implement several different paralbgizns of a multicore H.264 encoder for HD video. This case
study illustrates both the application of the patterns ameitt effects on the performance of the encoder.

1 Introduction

Design patterns for parallel computing help to add stricand discipline to the process of concurrent software
development [15, 16, 19, 13, 12, 20]. Two of the most commaefgrenced parallel patterns amesk and data
parallelism. Using the task parallel pattern, a programeisodhposed into concurrent units which execute separate
instructions simultaneously. Using the data parallelgrata program is decomposed into concurrent units which
execute the same instructions on distinct data.

This work extends both the task and data parallel pattermeobgg that applications execute in time and space. If
one assigns spatial and temporal indices to a program’saddtastructions, then it is possible to decompose both data
and instructions in time and space. Thus, this work recagri@aur partitioning strategies for exploiting concurrgnc
in an application: spatial data partitioning (SDP), tengbaata partitioning (TDP), spatial instruction partitiog
(SIP), and temporal instruction partitioning (TIP).

Recognizing patterns that distinguish between tempoikaatial partitioning is important for the following rea-
sons:

e This distinction provides an additional set of options fadfng concurrency in an application.

e Recognizing the difference between spatial and tempornditipaings provides greater descriptive power for
documenting and characterizing a parallel application.

e Perhaps most significantly, temporal and spatial pariitigaffect the performance of an application in separate
ways.

To understand the effect on performance, consider an apiplicthat continuously interacts with the outside world
by processing a sequence of inputs and producing a sequkoatpats. Examples include desktop applications that
interact with a human, embedded applications that intavdbtsensors, and system software that provides quality of
service guarantees to other applications. These inteegptbgrams typically have bothroughputandlatencyre-
quirements. The throughput requirement specifies the tathiah inputs are processed while the latency requirement



specifies the speed with which an individual input must begssed. While both spatial and temporal partitioning
patterns improve throughput, only spatial partitionings anprove latency.

To illustrate the use of these patterns, this paper presentse study in which several different strategies are
applied to create parallel implementations of an H.264 widecoder [24, 9] on a multicore architecture. The case
study demonstrates how the additional options of temparékaatial partitioning can aid programming. In addition,
the effects of different strategies on the throughput atehlzy of the encoder are cataloged.

The rest of this paper is organized as follows. Section 2 defierminology and presents an example application
that is used to illustrate concepts. Section 3 presentsahefdartitioning strategies describing both spatial and
temporal decomposition of data and instructions. Sectigme$ents the case study illustrating the use of these
patterns. Section 5 covers related work and Section 6 cdaslthe paper.

2 Basicsand terminology

This section presents the context and terminology useddorithe the partitioning strategies listed in Section 3. It
begins by introducing an example application: an inteliiggecurity camera. The security camera example is used
to illustrate many of the concepts in the remainder of theepapext, the terminology used to describe spatial and
temporal indexing of a program is presented. Finally, thatise discusses a simple procedure used to prepare an
application for decomposition using the spatiotemporalgtepatterns described in Section 3.

2.1 Exampleapplication: an intelligent security camera

An intelligent security camera processes a sequence dfimages, or frames, from a camera (e.g. [14]). The cam-
era compresses the frames for efficient storage and seahehffames to detect objects of interest. The compressed
video is stored to disk while a human is alerted to the presefiany objects of interest. Both the data (frames) and
the instructions (compression and search) of the cameradpatial and temporal dimensions.

The primary data object manipulated by the camera is thedrdrhe frame consists of pixels where each pixel is
generated by a spatially distinct sensor. The position akel [n a frame represents a spatial index into the camera’s
data. Frames are produced at regular time intervals andcegsed in sequence. Each frame is assigned a unique
identifier corresponding to the order in which it was prodiicEhe sequence of frames represents a temporal index
into the camera’s data. The spatiotemporal dimensionseof¢icurity camera are illustrated in Figure 1.
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Figure 1. Spatiotemporal indexing of data in the security ca mera example. Spatially distributed
sensors produce a sequence of pixels over time. The pixel's | ocation in the frame is the spatial
index while the frame number in the sequence in the temporal i ndex.

The computation in the camera application consists of twmany functions: searching the frame for objects
of interest and compressing the frames for storage. The @ssjen operation is, in turn, made up of two distinct
functions. First a series of image processing operatioasgecuted to find and remove redundancy in the image
stream, and, once the redundancy is eliminated, the rengaddta is entropy encoded. Thus, there are three high-
level functions which constitute the instructions of thenesia: search , eliminate , andencode . As these
functions occupy distinct regions of memory, their names sarve as spatial indices. To determine the temporal



indices of these functions, note that the functions mustdeewded in a particular order to preserve correctness. The
order of function execution represents an index into theptanal dimension of the camera’s instructions. in this case
eliminate  must be executed befoencode , butsearch is entirely independent. The spatiotemporal indexing
of the camera’s instructions is illustrated in Figure 2.
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Figure 2. Spatiotemporal indexing of instructions in the se curity camera. Each frame produced

by the camera is searched and encoded. The encoding process i s further broken down into the
eliminate redundancy and entropy encoding. The function na me provides a spatial index. To
define the temporal index, topological sort is performed on t he dependence graph. The order
of execution determined by the sort provides a temporal inst ruction index.

Note that the camera is typical of many interactive applicein that it has both latency and throughput require-
ments. The camera’s throughput must keep up with the ratdiatwvthe sensor can produce frames. In addition, the
camera must report objects of interest to the user with ad@nky so that timely action can be taken.

2.2 Terminology

In this paper, the termrogramor applicationis used to refer to the problem to be decomposed into conturre
parts. Aprocessis the basic unit of program execution, and a parallel pnogisaone that has multiple processes
actively performing computation at one time. A parallelgnam is created bpartitioningor decomposing program
into multiple processes. A partitioning strategy représarcommon pattern for performing this decomposition.

Programs operate by executimgtructionsto manipulatedata Both the data and instructions of a program have
spatial and temporal components of execution. In order tbtjpa a program, one must first define the spatial and
temporal dimensions of the program’s execution.

2.3 Preparingto partition a program
The following procedure determines the dimensionality pf@gram'’s instructions and data to prepare it for parti-
tioning:

1. Determine what constitutes a single input to define thepteal dimension of the program’s data. For some
programs an input might be a single reading from a sensorthier cases an input might be a file, data from a
keyboard or a value internally generated by the program.

2. Determine the distinct components of an input to definesgfagial dimension of the program’s data.

3. Determine the distinct functions required to processnauitito define the spatial dimension of the program’s
instructions.

4. Determine the partial ordering of functions using togidal sort to define the temporal dimension of the pro-
gram’s instructions.



To illustrate the process, it is applied to the security canexample:
1. A single frame is an input, so the sequence of frames reptethe temporal dimension of the camera data.

2. Aframe is composed of individual pixels arranged in a tlumensional array. The coordinates of pixels in the
array represent the spatial dimension of the camera data.

3. The three major functions in the camera a®arch , eliminate , andencode . These functions define the
spatial dimension of the camera’s instructions.

4. For a given frame, there is a dependence betweeelithéhate ~ andencode functions while thesearch
function is independent. These dependences determinertipotal dimension of the camera’s instructions.

Applying this procedure defines the dimensionality of a paogs data and instructions. Once this dimensionality
is defined, it is possible to explore different spatiotenappartitioning strategies.

3 A taxonomy of spatiotemporal partitioning strategies

The procedure described in Section 2.3 defines the spatldeamporal dimensionality of a program’s instructions
and data. Given this definition it is possible to apply onehaf tollowing four partitioning strategies: spatial data
partitioning, temporal data partitioning, spatial instian partitioning, and temporal instruction partitioginThis
section presents the following for each of the four straegi

o A brief description of the strategy.
e The context in which the strategy should be applied.

e The forces that influence the application of the strategy.

An example showing how to apply the strategy to the secustyeara.

Other example uses of the strategy.

Related strategy patterns.
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Figure 3. Parallelization strategies.

3.1 Spatial data partitioning (SDP)

Description. Using the spatial data partitioning (SDP) strategy, datdiveled among processes according to
spatial index. Following this pattern, processes perfoomgutation on spatially distinct data with the same temipora
index. Typically, each process will perform all instruetgoon its assigned data. Additional instructions are uguall
added to SDP programs to enable communication and syndatmri. This partitioning strategy is illustrated in
Figure 3(a).



Context. SDP generally increases throughput and decreases lasenitys useful when a single processor cannot
meet either of these requirements for a given applicatidre gerformance of an SDP application will be best if the
spatial data dimension is large and has few dependences.

Forces. The driving force behind the use of the SDP strategy is thadwgment of both throughput and latency
for the partitioned application. However, when applyinig titrategy one must consider the opposing forces of com-
munication and load-balancing.

Communication can oppose the performance gains of the SBRegy if the time spent transferring data is large
enough to negate the performance benefit of parallelizatiofortunately, communication in an SDP implementation
is always application specific and, thus, there are no gégeidelines for analyzing communication using this strat-
egy. However, if a particular application is found to reguarperformance limiting amount of communication, spatial
instruction partitioning may be considered, as SIP caniaipoove throughput and latency.

Load-balancing is another force limiting the potentialfpemance gains of SDP. Since each process is responsi-
ble for executing all instructions on its assigned data talibalance of an SDP application is determined by the
relationship between the instructions and data. If the sasteuctions are executed regardless of the value of data,
then an SDP implementation will be easy to load-balancehdfinstructions executed are conditional on the value
of data then an SDP implementation may be very difficult tallbalance as some data may cause one process to
do more work than others. This difficulty can offset some &f prerformance gains of an SDP implementation. Im-
plementation strategy patterns like the task-queue, okygaeue, and the master-worker pattern can help address
load-imbalance [12].

Example in security camera. To implement the SDP strategy in the security camera exanspigarate pro-
cesses work simultaneously on pixels from the same frameh Bebcess is responsible for executing search ,
eliminate , andencode functions on its assigned pixels. Processes communicttettier processes responsible
for neighboring spatial indices.

Other examples of SDP. This pattern is common in many parallel linear algebra impatations like ScalLA-
PACK [1] and PLAPACK [23]. The high performance Fortran laage is designed to express and manipulate SDP at
a high-level [6]. Single-instruction, multiple-data (SINlarchitectures are designed to exploit SDP [4]

Related Strategy Patterns. The DataDecomposition [16] and Data Parallelism [12] pat@re both used to take
a data-centric approach to partitioning an applicatioa ettncurrent units. In order to perform this decomposition a
index set is defined over the program’s data. The spatialgtatéioning strategy is a sub-strategy of DataDecompo-
sition and Data Parallelism in which the index set is retgddo spatial indices.

The TaskDecomposition and Task Parallelism patterns lag#ha task-centric approach to application decomposi-
tion. These patterns allow individual tasks to be compog$dkdeosame set of instructions. The case where each task
is the same function applied to different spatial indicesqgaivalent to the SDP strategy.

3.2 Temporal data partitioning (TDP)

Description. Using the temporal data partitioning (TDP) strategy, datadivided among processes according to
temporal index. Following this pattern, each process peréocomputation on all spatial indices associated with its
assigned temporal index as illustrated in Figure 3(b). Igpacal TDP implementation each process executes all
instructions on the data from its assigned temporal indefterQ communication and synchronization instructions
need to be added to allow processes to handle temporal da¢adiences.

Context. TDP can increase throughput but will not decrease latenbysTthis strategy is useful when a single
processor can meet the application’s latency requirenbeitjot the throughput requirement. The performance of a
TDP application will be best when the temporal dimensiomigé and has few dependences.

Forces. The driving force behind the use of the TDP pattern in the oupment in throughput. Opposing this force
is the possible overhead of communication and load-balgnci

Communication overhead can counter the throughput gaiapplf/ing the TDP strategy. In addition, it is possible
that the added communication can increase the applicatia®@ncy compared to a single processor implementation.
Communication in this pattern occurs when data producedet@mporal index is needed to process data at another
temporal index. If the amount of communication requireddarfd to limit performance, any of the other three
spatiotemporal partitioning strategies can be tried ag dfiéemprove throughput.

Load-balancing in a TDP application tends to be easy. If #feeswork is done for each temporal data index then
achieving good load-balance is trivial. If the computatibload varies per temporal data index it can be more diffi-
cult to achieve an efficient load-balance; however, the Tibdtegy naturally lends itself to implementation through



patterns such as the work-queue and master-worker thatecasdd to address a load-imbalance.

Examplein security camera. To implement TDP in the security camera example, each fraragsigned to a sepa-
rate process and multiple frames are encoded simultanedugtocess is responsible for executing glieninate
encode , andsearch functions on its assigned frame. Processes receive dategpftracesses working on earlier tem-
poral indices and send data to processes working on lat@aietindices.

Other examples of TDP. Packet processing applications like SNORT are commonlgligdized using the TDP
pattern [8]. This application processes a sequence of pmafrken a network, possibly searching them for viruses. As
packets arrive they are assigned to a process which perthenequired computation on that packet.

Related Strategy Patterns. The DataDecomposition [16] and Data Parallelism [12] pat@re both used to take
a data-centric approach to partitioning an applicatioo ettncurrent units. In order to perform this decomposition a
index set is defined over the program’s data. The temporalghatitioning strategy is a sub-strategy of DataDecom-
position and Data Parallelism in which the index set is ieteil to temporal indices.

Using the Pipeline strategy pattern, an application isifi@ned into stages and data flows from one stage to the
next [12]. If each stage is assighed the same instructiodpeocesses data from different temporal indices concur-
rently then this instance of the pipeline strategy is edaivieto TDP.

The TaskDecomposition [16] and Task Parallelism [12] patédoth take a task-centric approach to partitioning
an application. These patterns do not necessarily rechatetie tasks represent distinct functions or instructide
specific case where each task represents the same set adfisregiplied to distinct temporal data indices is equivalen
to TDP.

3.3 Spatial instruction partitioning (SIP)

Description. Using the spatial instruction partitioning (SIP) stratemstructions are divided among processes
according to spatial index. Following this pattern, eaabcpss performs a distinct computation using the same data.
Often no communication is needed between processes. Tatisgt is illustrated in Figure 3(c).

Context. The SIP strategy can increase application throughput acekdse latency, so it is useful when a single
processor cannot meet the application’s throughput on¢gteequirements. In addition, the SIP strategy divides and
application into several separate functional modulesitt®yg a large, complicated application into several sienpl
pieces aids modular design and allows multiple engineergottx on an application independently. Furthermore,
splitting the instructions of the application may simpldata dependences as the single set of dependences for the
entire application is divided into several smaller setsefgehdences for each module.

Forces. The performance gain and increase in modularity offerechy3IP strategy is opposed by the forces of
communication overhead and load-balance.

Communication in SIP implementations is generally rareegithe definition of the temporal and spatial dimen-
sions of instructions. Communication in SIP applicatioyydally involves making the same data available to all
processes. In some instances processes might need to cacateumhile executing their assigned instructions. In
both cases it is important to ensure that the cost of comratinitdoes not negate any performance gains from apply-
ing SIP. If communication is found to limit performance, trepatial data partitioning should be investigated as it can
also increase throughput while decreasing latency.

Load-balance is often an issue in SIP applications. Ingstms are assigned to processes based because they
represent logically coherent units. Unfortunately it iserthat these units represent the same amount of computation
and, thus, itis often the case that one process is assignedwook than another. The work-queue and master-worker
patterns can be used to implement the SIP strategy and hdlessdoad-balance, but their applicability can be limited
by the amount of parallelism that exists in the spatial inctton dimension.

Example in the security camera. To implement SIP in the security camera, t#l@anminate  and encode
functions are coalesced into onempress function. This function is assigned to one process whilestrch
function is assigned to a separate process. These two pesce®rk on the same input frame at the same time. In
this example, the two processes need not communicate. How@we can envision a camera that alters the quality
of the compressed video based on the presence of an objedendst. In this scenario, tleearch function sends
messages to theompress function to indicate when the quality should change.

Other examples of SIP. This pattern is sometimes used in image processing applisatvhen two filters are
applied to the same input image to extract different seteafures. In such an application each of the two filters
represents a separate function and therefore a separéitd Bysruction index. This application can be paralletiz
according the SIP strategy by assigning each filter to a atpg@rocess. Compilers that exploit instruction level



parallelism often make use of this pattern as Butts and Sahid that35 % of dynamically created values are used
multiple times. Some speculative execution systems, uBg8&ititioning to execute multiple paths through a series
of conditional instructions [22]. Additionally, this isrategy is the basis of multiple-instruction single-datd $i2)
architectures [4].

Related Strategy Patterns. The TaskDecomposition [16] and Task Parallelism [12] pattdoth take a task-
centric view of an application. The SIP strategy corresgdndnstances of these patterns where the tasks represent
distinct functions and all tasks can execute concurrently.

3.4 Temporal instruction partitioning (TIP)

Description. Using the temporal instruction partitioning (TIP) stratemstructions are divided among processes
according to temporal index as illustrated in Figure 3(dj. al TIP application each process executes a distinct
function and data flows from one process to another as defindelilependence graph. This flow of data means that
TIP applications always require communication instrutdiso that the output of one process can be used as input to
another process. To achieve performance, this patteasreti a long sequence of input data and each process executes
a function on data that is associated with a different inpaémporal data index.

Context. The TIP strategy can increase throughput but does not inepletency. Therefore, this strategy is
most useful when a single processor cannot meet the applitathroughput requirement, but can meet the latency
requirement. Like the SIP strategy, TIP can also be usefusiditting a large application into smaller functional
modules, which can simplify application development arghsate a complicated set of data dependences into smaller
units that are each individually easier to handle.

Forces. Countering the driving forces of throughput increase artddased modularity are the opposing forces of
increased communication and inefficient load-balance.

The TIP strategy is guaranteed to require communicatioaurme the temporal instruction indices are defined
according to their dependences. Therefore, every pronesd IP application can be expected to communicate with
at least one other process. In addition to negating a thimutgain, this communication will also increase latency
unless it is completely overlapped with computation. If toenmunication in a TIP application proves too deleterious
to performance, any of the other three strategies can bemxphs they all increase throughput. The SIP strategy is a
useful alternative for modularity.

Load-balancing in TIP applications is often difficult. AstwiSIP applications, it is rare that the functions repre-
sented by different temporal instruction indices requieedame computation. Thus, some processes may be assigned
more work than others. Again, both the work-queue and magteker patterns may be used to implement TIP and
address the load-balancing issue; however, in practicetpatterns are often conceptually difficult to reconcildawi
the TIP strategy.

Examplein the security camera. To implement TIP in the security camera, #laminate  function is assigned
to one process while thencode function is assigned to another. Teearch function can be assigned to a third
process or it can be coalesced with one of the other funct@mhslp with load balancing. In this implementation, one
process executes tldiminate  function for frameN while a second process executes ¢éimeode function for
frameN — 1.

Other examples of TIP. This pattern is often used to implement digital signal pssaey applications as they are
easily expressed as a chain of dependent functions. Iniaddihis pattern forms the basis of streaming languages
like Streamlt [5] and Brook [2]. The Pipeline construct irtdf's Threading Building Blocks also exploits the TIP
strategy [7].

Related Parallel Patterns. The TaskDecomposition [16] and Task Parallelism [12] patieboth take a task-
centric view of an application. The TIP strategy corresmatiodnstances of these patterns where the tasks are distinct
functions connected through a chain of dependences. Siynilae TIP pattern is equivalent to the Pipeline strategy
pattern if all stages of the pipeline represent distinctfioms.

3.5 Combining multiple strategiesin a single program

It can often be helpful to combine partitioning strategigthim an application to provide the benefit of multiple
strategies, or to provide an increased degree of paratieli€he application of multiple strategies is viewed as a
sequence of choices. The first choice creates multiple pseseand these processes can then be further partitioned as
if they were serial applications themselves.



Combining multiple choices in sequence allows the devebprof arbitrarily complex parallel programs and the
security camera example demonstrates the benefits of carglimultiple strategies. As illustrated above it is possibl
to use SIP partitioning to split the camera application twto processes. One process is responsible fos¢laech
function while another is responsible for teéminate = andencode functions. This SIP partitioning is useful
because the searching computation and the compressiorutatiop have very different dependences and splitting
them creates two simpler modules. Each of these simple rasdsikeasier to understand and parallelize. While this
partitioning improves throughput and latency, it suffem a load-imbalance, because the searching and compgessin
functions do not have the same computational demand.

To address the load-imbalance and latency issues, one npdy afurther partitioning strategy. For example,
applying the SDP strategy to the process executing the asajon will split that computationally intensive function
into smaller parts. This additional partitioning helps ioprove load-balance and application latency. (For a more
detailed discussion of using SIP and SDP together in the Beee [14].)

The case study presented in Section 4 includes other examgiley multiple strategies to partition an application.

4 Case study

This section presents a case study using the partitioniategies presented in Section 3 to create multicore imple-
mentations of an H.264 encoder for HD video. This study shwovsthe use of different strategies can affect both the
development and performance of the parallelized apptinati

To begin, an overview of H.264 encoding covers the aspedteadpplication relevant to the partitioning. Next the
hardware and software used in the study is briefly describé@n various partitioning strategies are described and
the performance of each is presented.

First, the TDP strategy is used and is found to increase ¢fimout, but to be detrimental to latency. Next SDP
partitioning is used and demonstrates both throughputateddty improvements but requires some application specific
sacrifice. TIP partitioning helps to simplify the design lscdmposing a complicated set of dependences into simpler
modules, but this simplification comes with a performanasloNext a combination of TIP and SDP is found to
provide a compromise between latency, throughput, andagioin specific concerns. Finally, the combination of
TDP, TIP, and SDP is found to provide the maximum flexibilibdallow the developer to tune latency and throughput
requirements as desired.

41 H.264 overview

This section presents a brief overview of the aspects of He2@oding relevant to understanding the parallelization
of the application. For a complete description of H.264 €4, 17].

H.264 is a standard for video compression. In fact, the H&éddard could be used to implement the video
compression discussed in the security camera example. idilbe gonsists of a stream of frames. H.264 each frame
consists of one or morgices A slice consists ofmacroblocksvhich arel6 x 16 regions of pixels. These concepts
are illustrated in Figure 4(a).

An H.264 encoder compresses video by finding temporal antiaspadundancy in a video stream. Temporal
redundancy refers to similarities that persist from framgame, while spatial redundancy refers to similaritiethimi
the same frame. Once this redundancy is found and elimintite@ncoder may remove some additional information
which is often unnoticeable to the human eye. (This loss fifrmation is why H.264 is described as a "lossy”
encoder.) Finally, the encoder performs entropy encodintipe transformed data for further compression.

Figure 4(b) shows the block diagram representing H.264qssing. The functions shown in the block diagram
are used to process every macroblock in a frame. The analgdisnotion estimation block is used to find temporal
redundancy by searching for a similar region in a previoasigoded frame and determining the best encoding modes
for the macroblock. The frequency transform function isdugefind temporal redundancy. Quantization removes
low-frequency data to which the human eye is less sensifibe. inverse quantization and inverse transform blocks
are used to reconstruct the frame as the decoder will seehig. dEblocking filter removes artifacts inserted by the
frequency transform. Finally, the frame store saves thengitucted frame to serve as a reference for subsequently
encoded frames. These functions represent the image pioge®rtion of the encoding application and are analogous
to theeliminate  function in the security encoder example.

The remaining block in the diagram performs entropy enapdimthe transformed data. H.264 supports two sepa-
rate entropy encoding modes: CAVLC and CABAC. CAVLC staratcbntext adaptive variable length coding, while
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Figure 4. Data and instructions for H.264.

CABAC stands for context adaptive binary arithmetic codi@ABAC encoding is more computationally intensive
but results in greater compression.

During the image processing phase, H.264 observes thevioljodata dependences. Frames are dependent on
reference frames (except for specially designated franméshvare encoded without a reference and allow the process
to begin). Slices are completely independent as defineddgtémdard, but this independence comes at the cost of
reduced ability to find spatial redundancy. Within a slitere is a dependence between macroblocks. A macroblock
depends on four neighboring macroblocks: above and to thealeove, above and to the right, and to the left. This
dependence among macroblocks in a slice is illustrated gurEib.

1]1]1]
1]2

Figure 5. Macroblock dependence in image processing sectio n of H.264. A macroblock is de-
pendent on neighboring macroblocks above-left, above, abo ve-right, and to the left. All mac-
roblocks labeled “1" must be processed before the macrobloc k labeled “2."

During the entropy encoding phase each, H.264 observeslibeiing dependences. The entropy encoding of a
frame is dependent on previous frames, but this can be iklimxea small overhead in the encoded bitstream. The
entropy encoding of slices is independent, but this inddpeoe also adds extra bits to the encoding. Within a slice,
macroblocks must be written to the output in raster ordeusJlthe entropy phase as defined here is serial within a
slice.

Having described the salient features of H.264, the expariai methodology used to evaluate the partitioning
strategies is discussed.

4.2 Experimental methodology

This section discusses the software and hardware used @asieestudy.

The open source x264 software code base is used as a basisdéolee development [25]. X264 is implemented in
C with assembly to take advantage of SIMD instructions amdware specific features. x264 is currently parallelized
using the pthreads libratyo implement the TDP strategy, while earlier versions ofdheoder implemented a limited

1Although the case study uses the pthreads library, the tesoeps will continue to be used to describe units of progreeaigion.



form of the SDP strategy (which is no longer supporteg264 is highly configurable via the command line. For this
study x264 is configured with a computationally aggressaameter set to enable H.264 Main profile encoding of
1080p high-definition videb

All partitionings of the x264 code base are tested on an k&élsystem. This system consists of four 2.4 GHz
quad-core x86 processors communicating through sharenyefor this study, the hardware platform is treated as
a sixteen-core multicore.

Each of the partitionings is implemented by modifying thé42ode and running the partitioned version on 2, 4, 8,
and 16 cores with the number of processes equal to the nurhberes. For each implementation and process count,
the throughput (in frames/second) and latency (in millisets) are measured. In addition, as discussed above, some
features of H.264 allow programmers to relax data deperegestcthe cost of lost quality and decreased compression.
For this reason, the quality of each partitioning is also snead by recording the peak signal to noise ratio (PSNR
measured in decibels) and the achieved compression in wfrmstput bitrate (measured in kilobits/second). For
reference Table 1 shows these measurements for a singlesgmc

|| Single Threaded x264

Throughput (frames/s) 1.24
Average frame latency (ms) 642
Image Quality (Average PSN 39.654
Encoded Bitrate (Kb/s) 11167.78

Table 1. Performance of single-threaded x264.

To prepare x264 for partitioning the procedure describeSiation 2.3 is applied:
1. Aninputis a frame and the sequence of frames representsiiporal data index.

2. Each frame is optionally made up of slices and these sticesomposed of macroblocks. Both the slice and
the macroblock represent spatial data indices.

3. Theimage processing functions (implemented in x264@&4 _macroblock _analyse andx264 macroblock _encode )
and the entropy encoding functions (implemented in x26423lxavlcwrite and the x264abac family of
functions) represent the spatial instruction indices.

4. The dependence between the image processing and entropgieg functions represents the temporal data
index.

At this point, x264 is prepared to be partitioned.
4.3 H.264 with TDP

The first strategy studied is temporal data partitioning. i¢ghe security camera, this strategy is implemented
by assigning frames, or temporal data indices, to procesash process is responsible for executing the image
processing and entropy encoding instructions on all pix@isspatial data indices, of its assigned frames and the
processes work on separate frames concurrently. (As nbiaeeathis form of parallelism is supported in the x264
distribution.)

As described above, frames encoded later in the sequengaeadeusly encoded frames for reference and may
themselves be used as reference frames for subsequentigezshframes. Thus, a process is both a consumer and
producer of reference frames. For the parameters usedsrcésie study, a process may use up to five reference
frames. To increase parallelism, processes make rowserergfe frame pixels available as they are produced. This
scheme comes at a cost of reducing the parallelized ensoaleitity to find temporal redundancy in some video
streams.

2The TDP implementation of the case study uses x264 as is. DReirSplementation recreated the earlier version of x26/héndurrent code
base. The other three partitionings in the study represégihal work.

3Specifically, x264 is invoked with the following commanddiparameters:-qp 25 --partitions all --bframes 3 --ref 5
--direct auto --b-pyramid --weightb --bime --mixed-refs - -no-fast-pskip --me umh --subme 5 . The input
video is a 1080p sequence of a tractor plowing a field.
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Load-balancing the parallel encoder using this stratefpiily easy. Processes are only assigned new frames after
completing previously assigned work. This way, a procedsinis assigned a particularly difficult frame can work on
it without becoming a bottleneck. Even if the slow procegg@lucing reference frame data, the fact that the encoder
is limited to five reference frames minimizes the impact of slow frame in a system with sixteen processes.

Table 2 shows the performance of the serial implementatichthe TDP encoder for 2, 4, 8, and 16 processes.
As expected, the TDP strategy helps to improve throughphigtwsteadily increases with increasing numbers of
processes. Unfortunately, the latency of encoding an iddal frame actually gets worse. There is a constant amount
of overhead to pay for the communication and synchroninat&sociated with communicating the reference frames.
The encoder quality remains the same for a very modest iselieautput bitrate.

Serial x264 TDP x264
Processes 1 2 4 8 16
Throughput (frames/s) 1.24 2.06 4.07 7.93 14.03
Average frame latency (ms) 642 910 899 893 916
Image Quality (Average PSNR|)  39.654 39.654 39.654 39.654 39.654
Encoded Bitrate (Kb/s) 11167.78 || 11167.74| 11175.38| 11179.15| 11210.06

Table 2. Performance of parallel x264 decomposed with the TD P strategy.

The TDP strategy is excellent for improving throughput, a@ady to load-balance; however, it actually increases
the latency of encoding a single frame.

4.4 H.264 with SDP

In an attempt to decrease the latency of the encoder, sgatepartitioning is employed. Following this strategy, a
frame is divided into multiple slices and each slice is assito a separate process. Each process executes the image
processing and entropy encoding functions on its assiglies] and all processes wait until the current frame is en-
coded before moving on to a new frame. Thus, processes esepdeate portions of the same frame concurrently. (As
mentioned above, previous distributions of X264 impleradithis strategy; for the case study SDP is re-implemented
in the current x264 code base.)

As described above, slices provide independence in bothrthge processing and entropy encoding functions.
This independence is especially important during entrefmpding which requires all macroblocks to be processed in
order. However, the independence comes at the cost of ré@idiity to find temporal redundancy and a decrease in
the compression of the entropy encoding process.

Although load-balancing SDP programs is generally easydifficult in the case of the H.264 encoder. The time
taken to decode a macroblock is data dependent making sogrelnhacks easier to encode than others. Generally,
regions of the frame with high motion take longer to encotlantlow-motion regions. Thus some slices may take
longer than others and become a bottleneck.

Table 3 shows the performance of the serial implementatidrtlae SDP encoder for 2, 4, 8, and 16 processes. As
expected, both the latency and throughput of the SDP phrelieencoder improve compared to the serial version.
Unlike the TDP encoder, however, the performance of the Sd®der appears to be reaching an asymptote as
16 processes provide little added benefit over 8 procesdais. Kiiee in the performance curve is due to the load-
imbalance described above. Additionally, the quality & émcoder decreases while the encoded bit rate increases as
more processes are used. This is because each additiooasprequires splitting the frame into additional sliced an
each slice reduces quality and adds overhead to the outptrelim.

Part of the difficulty implementing the SDP encoder comesiftbe dependence requiring each macroblock within
a slice to be written in raster order. Although the entropgosling is a small fraction of the total compute time, this
concern dominates the design of the SDP encoder.

45 H.264 with TIP
In order to separate the image processing and entropy engciodo two separate and individually simpler modules,

the temporal instruction partitioning is applied. Followithis strategy, the image processing and entropy encoding
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Serial x264 SDP x264
Processes 1 2 4 8 16
Throughput (frames/s) 1.24 25 4.31 6.77 7.04
Average frame latency (ms) 642 347 179 96 89
Image Quality (Average PSNR)  39.654 39.443 39.439 39.423 39.407
Encoded Bitrate (Kb/s) 11167.78 || 11690.43| 11746.12| 11852.75| 12407.42

Table 3. Performance of parallel x264 decomposed with the SD P strategy.

functions are each assigned to separate processes. The pmagssing thread works on fradvewhile the entropy
encoding thread works on frandé — 1. (As noted above, this and subsequent partitionings aginatiwork.)

The image process finds and removes redundancy from the stdeam. Having removed the redundancy, the
remaining data is forwarded to the entropy encoding threaddditional compression. The entropy encoding process
sends data on the output bitrate back to the image threadasdt ttan adjust its own computation to meet a target
bitrate.

Load-balancing the TIP encoder is extremely difficult. Thage processing functions are much more computa-
tionally intensive than those performing entropy encodingaddition, a large amount of communication is required
to forward the result of image processing to the entropy deco

Table 4 shows the performance of the serial implementatishthe TIP encoder for 2 processes. As only two
temporal instruction indices were identified for the H.28&ler, that serves as a limit for the number of processes
in a TIP implementation. While the throughput shows a verylesh improvement, the latency of the TIP encoder is
considerably worse than the serial case. This performarssai$ due to the added communication of the paralleliza-
tion. This strategy results in a small gain in image quatitthough this is too small to be significant and likely just a
lucky consequence of the test input. This slight increasmage quality also comes with a slight increase in the size
of the encoded video.

Serial x264 || TIP x264
Processes 1 2
Throughput (frames/s) 1.24 1.35
Average frame latency (ms) 642 1435
Image Quality (Average PSNR)  39.654 39.659
Encoded Bitrate (Kb/s) 11167.78 || 11288.25

Table 4. Performance of parallel x264 decomposed with the TI P strategy.

The TIP strategy has several drawbacks when applied to xR@4:difficult to load-balance, it increased the
latency, and it decreased the quality. However, it doesvahe instructions to be split into two modules. Now, instead
of having to handle the dependences of image processingwirghg encoding simultaneously, they can be addressed
separately.

4.6 H.264 with TIP and SDP

In order to take advantage of the separation of the imageepsirng and entropy encoding functions provided by
the TIP implementation, SDP parallelism is applied to thageprocess. However, in this case, the frame is not split
into slices, but rather rows of macroblocks. Because imagegssing and entropy encoding are how independent,
the SDP partitioning of the image process only has to respealata dependence of Figure 5. Thus, pro¢esan
work on macroblock row while P 4 1 can work oni + 1 as long as the processes synchronize sofhatl does not
read data from row until it has been produced. Following this scheme, multpplecesses work simultaneously on
the image processing for fran? while a single process performs the entropy encoding fonér&y — 1.

As described above, each image process must send its resthis entropy process. In addition to this commu-
nication, processes responsible for image processing consmunicate and synchronize to observe the dependence
illustrated in Figure 5.
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Load-balancing in this implementation is somewhat difticdEven when the image processing is parallelized
among as many as 15 processes, the entropy process stiteelpss communication. In addition, as described above
for the SDP partitioning, some macroblocks require moregenarocessing work than others, so even balancing the
image processes is difficult.

Table 5 shows the performance of the serial implementatidrttze parallel encoder implemented with a combina-
tion of TIP and SDP. Results are shown for 2, 4, 8, 12, and 16qases with one process always allocated to entropy
encoding and the others allocated for image processing.ofléee SDP strategy in combination with TIP increases
throughput and decreases latency using up to twelve presesgdter that point, increasing the number of processes
reduces performance due to the overhead of communicatlvad imbalance. However, the use of the TIP strategy
to separate the image processing and entropy encodingsall@\SDP pattern to be applied without resorting to the
use of slices. This is reflected in the results as, unlikeérptlrely SDP pattern, the quality of the encoded video does
not change as more processes are added.

Serial x264 TIP+SDP x264
Processes 1 2 4 8 12 16
Throughput (frames/s) 1.24 1.35 3.30 5.94 7.06 5.21
Average frame latency (ms) 642 1435 553 284 229 330
Image Quality (Average PSNR)  39.654 39.659 39.659 | 39.659 | 39.659 39.659
Encoded Bitrate (Kb/s) 11167.78 || 11288.25| 11288.25| 11288.2| 11288.25| 11288.25

Table 5. Performance of parallel x264 decomposed with a comb ination of the TIP and SDP
strategies.

Comparing the hybrid approach using TIP and SDP represesumaromise parallelization. It does not achieve
the high throughput of the pure TDP strategy, nor does itaaehthe low latency of the pure SDP strategy. At the same
time, the hybrid approach achieves improved throughputlaigshcy without sacrificing the quality of the encoded
image.

4.7 H.264 with TDP, TIP, and SDP

The final partitioning in the case study combines TDP, Tlig, 8BP in a effort to produce a single code base that
can be tuned to meet differing throughput and latency nekedthis implementation, the TDP strategy is applied to
allow multiple frames to be encoded in parallel. Each framericoded by one or more processes. If one process is
assigned to a frame, this implementation acts like the pl@ @pproach. If two processes are assigned to a frame,
each frame is parallelized using the TIP strategy. If threenore processes are assigned to a frame, each frame
is parallelized using the combination of SDP and TIP disedssbove. By applying these three strategies in one
application, a variable number of frames can be encodedrallpbusing a variable number of processes to encode
each frame.

The communication in this implementation is the union ofringuired communication of the composite strategies.
Processes assigned a frame must communicate referencedeten Within a frame, the processes assigned image
functions communicate results to the process assignedmnéncoding and the image processes coordinate among
themselves.

The load-balancing of this implementation depends on thelrar of frames encoded in parallel and the number
of processes assigned to each frame. If only one processleneosingle frame, the load balance is good like the
pure TDP implementation. If only one frame is encoded at & titine load balance is that of the hybrid TIP and SDP
solution.

Table 6 shows the performance of the final parallelizatiothéncase study. In this table all results are presented
using sixteen processes, but the number of processesedsma single frame is varied. On the left side of the table,
the performance is the same as the sixteen process implatioentf the TIP+SDP strategy. On the left side of the
table, performance is the same as the sixteen process iraptation of the pure TDP strategy. The data in the middle
of the table demonstrates that this approach allows a tfHoketween latency and throughput.

Combing the TDP, TIP, and SDP strategies creates a codelzse tiexible and can be adapted to meet the needs
of a particular user.

13



Serial x264 TDP+TIP+SDP x264
Parallel frames 1 1 2 4 8 16
Processes per frame 1 16 8 4 2 1
Throughput (frames/s) 1.24 5.21 7.74 11.02 12.99 14.03
Average frame latency (ms) 642 330 443 652 1151 916
Image Quality (Average PSNR]}  39.654 39.659 39.652 39.652 39.646 39.654
Encoded Bitrate (Kb/s) 11167.78 || 11288.25| 11169.48| 11205.90| 11224.71| 11210.06

Table 6. Performance of parallel x264 decomposed with a comb ination of the TDP, TIP, and SDP
strategies.

4.8 Summary of case study

This case study demonstrates the application of three dbthrgpartitioning strategies to develop an H.264 encoder
for HD video and it illustrates how the encoder’s throughand latency are affected by the choice of partitioning
strategy. In addition, the study demonstrates how diffiestrategies influence load balance and the ability to dethl wi
data dependences in the parallelized application. Thestagy shows that the pure TDP implementation achieves
the best throughput, while the pure SDP implementationeselsi the best latency although with a loss of quality.
The TIP implementation demonstrates that some paraltedizmamay not help performance but can allow complicated
programs to be split into simpler modules. A hybrid approasmbining TIP and SDP represents a compromise
between throughput, latency, and quality. Figure 6 congidwethroughputand latency of these four implementations.
Finally, a combination of TDP, TIP, and SDP allows maximumifidity in a single code base.
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Figure 6. Performance of various parallelization strategi es applied to H.264 encoder.

5 Redated Work

This section discusses related work in both parallel dgségterns and parallel software implementations of H.264
encoding.

5.1 Related patterns
The use of design patterns for parallel software developremadd rigor and discipline to what is otherwise an

ad hoc and artistic process. A number of parallel desigrepatthave been identified [15, 16, 19, 13, 20, 12]. These
patterns range from very high-level descriptions, suchasbmmonly used task and data parallel patterns which may
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be appropriate for any application, to low-level pattesg;h as a parallel hash table, which may be considered only
for specific applications. Parallel pattern languages [P guide users through the application of both high and low
level patterns.

Two of the most commonly invoked high-level patterns ar& &sd data parallelism. These terms are so common
that they are often used by developers who are not explitithking in terms of design patterns or pattern languages.
The work presented in this paper extends the task and daafigbgatterns by recognizing that the tasks and data in
a program have spatial and temporal components. Furtherrpartitioning in space can have a different effect on
program behavior than partitioning in time. These diffeenare particularly relevant to applications which hawb bo
a latency and throughput requirement, such as the large ofagpplications that interact with the outside world.

In addition to the performance differences associated gyttial and temporal partitionings, noting the difference
is useful for its descriptive power. Describing an applimatas exploiting spatial data parallelism provides more
information than describing the same application as sirdpha parallel. For example, while both the TDP and SDP
implementations of the video encoder are data paralle); tiaee fundamentally different structures, and different
performance. Providing additional information enhanasdeanstanding and collaboration.

5.2 Related video encoders

Liu et al. explore a parallel implementation of a securitneaa which combines multiple partitioning strategies in
the same application [14]. These authors first use the SAReghy to split the search and compression functions of the
camera into separate processes, each of which is furthtgigreed using the SDP strategy.

Rodriquez et al. describe a TDP partitioning of an H.264 dacas well as an implementation that uses both TDP
and SDP through the employment of slices [18]. Several astti@scribe slice-based SDP partitioning strategies [10,
3]. Jung et al. adaptively choose the slice sizes in ordedtvess the load-balancing issue discussed above [11].
Sun et al. describe a pure SDP implementation that does lyodmeslicing, but still respects the data dependences
described above [21].

Park et al. apply TIP partitioning to create their paralleP6#4 encoder, but rather than splitting the image and
entropy functions, they split the motion estimation andlgsia block of Figure 4(b) into one process and place alll
other functions in a second process. This implementatifersufrom the same load imbalance described for the TIP
implementation above. To help address this issue, SDRipaitig is applied to the motion estimation and analysis
process.

6 Conclusion

This paper has presented an extension to the commonly usedrid data parallel design patterns. This extension
is based on the spatiotemporal nature of program executidthee different effects of parallelizing in space and time.
The four strategies discussed are spatial data partitig(8BP), temporal data partitioning (TDP), spatial instiarc
partitioning (SIP), and temporal instruction partitiogi(TIP). A case study has demonstrated how these strategies
can be applied to implement a multicore HD encoder. In aolditiis case study illustrates how multiple partitioning
strategies can be combined to yield the benefits of each.
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