8th problem set,

Since you're not all math majors I include this "reminder": If A is a set of real numbers then "sup A" does not quite mean the same thing as "max A". For example, the set $A = [2,3] = \{x : 2 \le x \le 3\}$ has a "max", which is 3, but the set $B = [2,3] = \{x : 2 \le x < 3\}$, although it has no "max", still has a "sup", which is also 3. That is because 3 is the <u>smallest</u> number that <u>no</u> member of B <u>exceeds</u> (even though B has no largest member). And similarly 3 is the <u>smallest</u> number that <u>no</u> member of A <u>exceeds</u> (because 3 is the largest member of A).

In class we have seen likelihood-ratio statistics of the form $\frac{\sup\{f(x \mid \theta) : \theta \in \Omega_0\}}{\sup\{f(x \mid \theta) : \theta \in \Omega_0 \cup \Omega_1\}}$. Here we will work with a simpler kind of likelihood ratio:

$$\Lambda(x) = \frac{f(x \mid \theta = \theta_1)}{f(x \mid \theta = \theta_0)} = \frac{L(\theta_1)}{L(\theta_0)}.$$

With a lower-case "x", this defines a function. With a capital "X", this is a random variable. We will consider how this random variable is distributed when θ_0 rather than θ_1 is the "true" value of θ . Assume X is a continuous random variable whose density, given that $\theta = \theta_0$, is $f(x \mid \theta = \theta_0)$. Use " $\mathbf{E}_{\theta_0}()$ ", " $\mathbf{var}_{\theta_0}()$ ", " $\mathbf{cov}_{\theta_0}()$ ", etc., to mean these operators are to be evaluated assuming $\theta = \theta_0$.

- 1. Show that $\mathbf{E}_{\theta_0}(\Lambda(X)) = 1$.
- 2. (a) The following may or may not be useful in doing part (b), perhaps depending on your tastes: Suppose $\mathbf{E}(U) = \mu$ and $\mathbf{E}(V) = \nu$. Show that $\mathbf{cov}(U, V)$ can be written in any of these forms (the second one is the definition, so there is nothing to show):

$$\mathsf{E}(U(V-\nu)) = \mathsf{E}((U-\mu)(V-\nu)) = \mathsf{E}((U-\mu)V).$$

(b) Suppose T(X) is an unbiased estimator of θ . Show that $\mathbf{cov}_{\theta_0}(T(X), \Lambda(X)) = \theta_1 - \theta_0$.

3. Use the Cauchy-Schwartz inequality in the form $|\mathbf{cov}(U, V)| \leq \mathbf{SD}(U) \mathbf{SD}(V)$ and the result of $\#2(\mathbf{b})$ to show that when $\theta = \theta_0$ then the mean squared error of T(X) as an estimator of θ cannot be less than

$$\frac{(\theta_1 - \theta_0)^2}{\operatorname{var}_{\theta_0}(\Lambda(X))}.$$

 $\operatorname{Continued} \longrightarrow$

4. Briefly comment on the justification for, and validity of, each step below.

$$\begin{aligned} \frac{\operatorname{var}_{\theta_0}(\Lambda(X))}{(\theta_1 - \theta_0)^2} &= \operatorname{var}_{\theta_0}\left(\frac{\Lambda(X) - 1}{\theta_1 - \theta_0}\right) \\ &= \operatorname{var}_{\theta_0}\left(\frac{1}{f(X \mid \theta = \theta_0)} \cdot \frac{f(X \mid \theta = \theta_1) - f(X \mid \theta = \theta_0)}{\theta_1 - \theta_0}\right) \\ &\longrightarrow \operatorname{var}_{\theta_0}\left(\frac{\partial}{\partial \theta} \log f(X \mid \theta)\Big|_{\theta = \theta_0}\right) \quad \text{as } \theta_1 \longrightarrow \theta_0. \end{aligned}$$

- 5. Let $I(\theta) = \operatorname{var}_{\theta} \left(\frac{\partial}{\partial \theta} \log f(X \mid \theta) \right)$. This quantity $I(\theta)$ is called the "Fisher information" in the sample X. It is thought of as a measure of how much information about θ is conveyed by the sample X. If X happens to be a sample of size n, so that $X = (X_1, \ldots, X_n)$, then let us denote this by $I_n(\theta)$, so that, in particular, $I_1(\theta)$ would be the amount of information in a sample of size 1. Show that n times as much information is in a sample of size n than in a sample of size 1, i.e., show that $I_n(\theta) = nI_1(\theta)$.
- 6. Use conclusions from #3 and #4 to show that the mean squared error of an unbiased estimator T(X) of θ cannot be less than $1/I(\theta)$. (This is the "Cramer-Rao inequality" or the "information inequality." The quantity $1/I(\theta)$ is the "Cramer-Rao lower bound.")
- 7. The Fisher information $I(\theta)$ can sometimes be more readily computed by the result you will derive in this problem than by using the definition of it given in #5. In this problem you may assume that

$$\frac{\partial}{\partial \theta} \int_{-\infty}^{\infty} \cdots dx = \int_{-\infty}^{\infty} \frac{\partial}{\partial \theta} \cdots dx.$$

(This is valid if the function being integrated is sufficiently well-behaved.)

(a) Show that $\int_{-\infty}^{\infty} \frac{\partial}{\partial \theta} f(x \mid \theta) dx = 0.$

(b) Show that
$$\int_{-\infty}^{\infty} \frac{\partial^2}{\partial \theta^2} f(x \mid \theta) \, dx = 0.$$

(c) Show that

$$\frac{\partial^2}{\partial \theta^2} \log f(x \mid \theta) = \frac{\frac{\partial^2}{\partial \theta^2} f(x \mid \theta)}{f(x \mid \theta)} - \left(\frac{\partial}{\partial \theta} \log f(x \mid \theta)\right)^2.$$

Then take expected values of all three terms, use the result of part (b) to show that one of the expected values is 0, and finally draw the conclusion that

$$I(\theta) = -\mathbf{E}_{\theta} \left(\frac{\partial^2}{\partial \theta^2} \log f(X \mid \theta) \right).$$

 $CONTINUED \longrightarrow$

- 8. Suppose $X_1, \ldots, X_n \sim i.i.d. N(\theta, 1^2)$. The result of #6 then says no function of X_1, \ldots, X_n that is an unbiased estimator of θ can have smaller variance that something. Find and simplify what goes in the role of "something" in the previous sentence. You can use the result of #7(c), but you are not required to do so.
- 9. Suppose $X_1, \ldots, X_n \sim i. i. d. Bin(10, \theta)$. Answer the same question as in #8. (The results you use work just as well if the probability distributions involved are discrete.)
- 10. Suppose $X_1, \ldots, X_n \sim i. i. d. Poisson(\theta)$. Answer the same question as in #8.
- 11. Suppose $X_1, \ldots, X_n \sim i.i.d.$ have a "memoryless" (continuous) exponential distribution with expected value θ , i.e., each X_i is distributed as the (continuous) waiting time in a Poisson process with intensity $1/\theta$ occurrences per unit time. Answer the same question as in #8.

Now we move on from estimation to hypothesis testing, but $\Lambda(X)$ is still defined as above.

12. Consider testing the null hypothesis $H_0: \theta = \theta_0$ against the alternative hypothesis $H_1: \theta = \theta_1$. The likelihood-ratio test rejects the null hypothesis if and only if $\Lambda(X) > c$ (where c = the "critical value"). Suppose this test's probability of Type I error is 3%, i.e., **Pr**(this test rejects $H_0 \mid H_0$) = 0.03. The power of the test is **Pr**(this test rejects $H_0 \mid H_1$).

Some other test, based on some statistic K(X) different from $\Lambda(X)$, rejects the null hypothesis if and only if K(X) > d. Suppose this test's probability of Type I error is also 3%, i.e., **Pr**(this test rejects $H_0 | H_0) = 0.03$. The power of the test is **Pr**(this test rejects $H_0 | H_1$).

These are <u>different</u> tests. That means one test could reject H_0 while the other does not, with the same data, and the probability that the two tests disagree on whether to reject H_0 is more than 0.

Let A = [the likelihood-ratio test rejects H_0 and the other test does not], B = [the other test rejects H_0 and the likelihood-ratio test does not], and C = [both tests reject $H_0].$

(a) Explain and justify each of the seven relations marked by "?" below.

$$\Pr(A \mid H_1) \stackrel{?}{=} \int_A f(x \mid \theta = \theta_1) \, dx \stackrel{?}{>} \int_A c f(x \mid \theta = \theta_0) \, dx \stackrel{?}{=} c \Pr(A \mid H_0)$$

$$= c \Pr(B \mid H_0) = \int_B c f(x \mid \theta = \theta_0) \, dx \stackrel{>}{=} \int_B f(x \mid \theta = \theta_1) \, dx = \Pr(B \mid H_1)$$

$$\stackrel{\uparrow}{:} \stackrel{?}{:} \stackrel{?}{:$$

(b) By thinking about Pr(A or C | H₁) and Pr(B or C | H₁), explain why the conclusion of part (a) can be summarized by saying that the likelihood-ratio test is better than the other test. (This is the "Neyman-Pearson lemma.")
HINT: The verbal statement "[The likelihood-ratio test rejects H₀ and the other test does not] or [both tests reject H₀]" can be enormously simplified!