
8th problem set,

Since you’re not all math majors I include this “reminder”: If A is a set of real numbers then
“sup A” does not quite mean the same thing as “max A”. For example, the set A = [2, 3]= {x : 2 ≤ x ≤ 3 }
has a “max”, which is 3, but the set B = [2, 3) = { x : 2 ≤ x < 3 }, although it has no “max”,
still has a “sup”, which is also 3. That is because 3 is the smallest number that no member of B
exceeds (even though B has no largest member). And similarly 3 is the smallest number that no
member of A exceeds (because 3 is the largest member of A).

sup{ f(x θ) : θ ∈ Ω0 }
In class we have seen likelihood-ratio statistics of the form

| 
. Here we

sup{ f(x θ) : θ ∈ Ω0 ∪ Ω1 }
will work with a simpler kind of likelihood ratio:

|

f(x θ = θ1) L(θ1)
Λ(x) =

|
= .

f(x θ = θ0) L(θ0)|
With a lower-case “x”, this defines a function. With a capital “X”, this is a random variable. We
will consider how this random variable is distributed when θ0 rather than θ1 is the “true” value of
θ. Assume X is a continuous random variable whose density, given that θ = θ0, is f(x θ = θ0).|
Use “Eθ0( )”, “varθ0( )”, “covθ0( )”, etc., to mean these operators are to be evaluated assuming
θ = θ0.

1. Show that Eθ0(Λ(X)) = 1.

2. (a) The following may or may not be useful in doing part (b), perhaps depending on your 
tastes: Suppose E(U) = µ and E(V ) = ν. Show that cov(U, V ) can be written in any 
of these forms (the second one is the definition, so there is nothing to show): 

E(U(V − ν)) = E((U − µ)(V − ν)) = E((U − µ)V ).

(b) Suppose T (X) is an unbiased estimator of θ. Show that covθ0(T (X), Λ(X)) = θ1 − θ0.

3. Use the Cauchy-Schwartz inequality in the form cov(U, V ) ≤ SD(U)SD(V ) and the result| |
of #2(b) to show that when θ = θ0 then the mean squared error of T (X) as an estimator of
θ cannot be less than

(θ1 − θ0)
2

.
varθ0(Λ(X))
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4. Briefly comment on the justification for, and validity of, each step below. 

varθ0(Λ(X))
(

Λ(X) − 1
)

= varθ0 (θ1 − θ0)2 θ1 − θ0 (
1 f(X | θ = θ1) − f(X | θ = θ0)

)
= varθ0 f(X θ = θ0)

·
θ1 − θ0|(

∂
∣∣∣∣

)
varθ0 log f(X θ)−→

∂θ
|

θ=θ0

as θ1 −→ θ0.

(
∂

)
5. Let I(θ) = varθ log f(X θ) . This quantity I(θ) is called the “Fisher information” in

∂θ
|

the sample X. It is thought of as a measure of how much information about θ is conveyed
by the sample X. If X happens to be a sample of size n, so that X = (X1, . . . , Xn), then let
us denote this by In(θ), so that, in particular, I1(θ) would be the amount of information in
a sample of size 1. Show that n times as much information is in a sample of size n than in
a sample of size 1, i.e., show that In(θ) = nI1(θ).

6. Use conclusions from #3 and #4 to show that the mean squared error of an unbiased esti-
mator T (X) of θ cannot be less than 1/I(θ). (This is the “Cramer-Rao inequality” or the
“information inequality.” The quantity 1/I(θ) is the “Cramer-Rao lower bound.”)

7. The Fisher information I(θ) can sometimes be more readily computed by the result you will
derive in this problem than by using the definition of it given in #5. In this problem you
may assume that

∂
∫ ∞ ∫ ∞ ∂

dx = dx.
∂θ

· · · · · ·
∂θ

· · · · · ·
−∞ −∞

(This is valid if the function being integrated is sufficiently well-behaved.)

∂
(a) Show that

∫ ∞
f(x | θ) dx = 0.

∂θ−∞

(b) Show that
∫ ∞ ∂2

f(x | θ) dx = 0.
∂θ2−∞

(c) Show that
∂2

∂2 f(x θ) (
∂

∂θ2
log f(x θ) = ∂θ

f

2

(x | θ

|
)

−
∂θ

log f(x θ)

)2

.| |

Then take expected values of all three terms, use the result of part (b) to show that
one of the expected values is 0, and finally draw the conclusion that(

∂2
)

I(θ) = −Eθ
∂θ2

log f(X θ) .|
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∫ ∫

8. Suppose X1, . . . , Xn ∼ i. i. d. N(θ, 12). The result of #6 then says no function of X1, . . . , Xn

that is an unbiased estimator of θ can have smaller variance that something. Find and
simplify what goes in the role of “something” in the previous sentence. You can use the
result of #7(c), but you are not required to do so.

9. Suppose X1, . . . , Xn ∼ i. i. d. Bin(10, θ). Answer the same question as in #8. (The results
you use work just as well if the probability distributions involved are discrete.)

10. Suppose X1, . . . , Xn ∼ i. i. d. Poisson(θ). Answer the same question as in #8.

11. Suppose X1, . . . , Xn ∼ i. i. d. have a “memoryless” (continuous) exponential distribution with
expected value θ, i.e., each Xi is distributed as the (continuous) waiting time in a Poisson
process with intensity 1/θ occurrences per unit time. Answer the same question as in #8.

Now we move on from estimation to hypothesis testing, but Λ(X) is still defined as above.

12. Consider testing the null hypothesis H0 : θ = θ0 against the alternative hypothesis H1 : θ = θ1.

The likelihood-ratio test rejects the null hypothesis if and only if Λ(X) > c (where c = the 
“critical value”). Suppose this test’s probability of Type I error is 3%, i.e., 
Pr(this test rejects H0 H0) = 0.03. The power of the test is Pr(this test rejects H0 H1). | |
Some other test, based on some statistic K(X) different from Λ(X), rejects the null hypoth-
esis if and only if K(X) > d. Suppose this test’s probability of Type I error is also 3%, i.e.,
Pr(this test rejects H0 H0) = 0.03. The power of the test is Pr(this test rejects H0 H1).| |
These are different tests. That means one test could reject H0 while the other does not, with
the same data, and the probability that the two tests disagree on whether to reject H0 is
more than 0.

Let A = [the likelihood-ratio test rejects H0 and the other test does not],

B = [the other test rejects H0 and the likelihood-ratio test does not],

and C = [both tests reject H0].
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(a) Explain and justify each of the seven relations marked by “?” below.

? ? ?
↓ ∫ ↓ ∫ ↓

Pr(A H1) = f(x θ = θ1) dx > c f(x θ = θ0) dx = cPr(A H0)|
A

|
A

| |

= θ0) dx ≥ Pr(B
↑ ↑ ↑ ↑
? ? ? ?

cPr(B H0) = c f(x θ f(x θ = θ1) dx H1).= | | | = |
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(b) By thinking about Pr(A or C H1) and Pr(B or C H1), explain why the conclusion| |
of part (a) can be summarized by saying that the likelihood-ratio test is better than 
the other test. (This is the “Neyman-Pearson lemma.”) 
Hint: The verbal statement 
“[The likelihood-ratio test rejects H0 and the other test does not] or [both tests reject H0]” 
can be enormously simplified! 
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