
How are Rao-Blackwell estimators “better”?

In #7(a) on the fourth problem set we see how a horrible flaw in an estimator is remedied
by the Rao-Blackwell process. That is one respect in which that particular Rao-Blackwell
estimator is better than the flawed estimator in that problem.

Sometimes the goodness of an estimator δ of an unobservable quantity θ is measured by the
smallness of its mean squared error E((δ − θ)2). Another respect in which Rao-Blackwell
estimators are better than the estimators upon which they improve, is that they typically
have smaller mean squared errors, and the never have bigger ones (the M.S.E. in some cases
remains the same rather than getting smaller, however).

To the question
“Which is bigger: E(Y 2) or (E(Y ))2 ?”

recall that the answer follows from the observation that

E(Y 2) − (E(Y ))2 = var(Y )

and var(Y ) necessarily is ≥ 0.

Armed with this observation, let us examine the mean squared error of a Rao-Blackwell
estimator:

The “crude” estimator is δ(X).

The Rao-Blackwell estimator is δ0(X) = E(δ(X) T (X))|

The Rao-Blackwell estimator’s 

mean squared error is 

E((δ0(X) − θ)2) = E((E(δ(X) T (X)) − θ)2) |
= E((E(δ(X) − θ T (X)))2) (since θ is constant)|

E(E((δ(X) − θ)2 T (X))) (since (E(Y ))2 ≤ E(Y 2))≤ |
= E((δ(X) − θ)2) (since E(E(U V )) = E(U))|
= the “crude” estimators mean squared error.

Summary:

The R-B estimator’s M.S.E. ≤ the “crude” estimator’s M.S.E.

This bottom-line summary is the Rao-Blackwell Theorem.

When is a Rao-Blackwell estimator the “best” estimator? The answer to that involves the
concept of “completeness.”
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Completeness

Suppose X1, . . . , Xn ∼ i. i. d. N(µ, 12). Let Xn = (X1 + + Xn)/n. Observe that· · ·

• X1 − Xn depends only on the “data” X1, . . . , Xn and not on the unobservable µ, i.e.,
is a statistic.X1 − Xn

• E(X1−Xn) = 0 regardless of the value of µ. Changing the value of the unobservable
µ does not change the fact that the expectation of this statistic is zero.

In other words X1 − Xn is an “unbiased estimator of zero.”

Suppose W1, . . . , W9 ∼ i. i. d. Uniform(θ, θ+1). Let D = max{W1, . . . , W9 }−min{W1, . . . , W9 }.
It can be shown that E(D) = 0.8 regardless of the value of θ. And the value of D depends
only on the data and not on the unobservable θ, so D is a statistic. This statistic is not
an unbiased estimator of zero, but g(D) = D − 0.8 is an unbiased estimator of zero. And
h(W1) = sin(2πW1) is also an unbiased estimator of zero.

A locution about to be defined allows us to encapsulate the information above in these simple
statements:

• X1 − Xn is not a complete statistic.

• D is not a complete statistic.

• W1 is not a complete statistic.

Definition: A statistic U is complete iff there is no function g such that g(U) is an unbiased
estimator of zero (except, of course, the indentically zero function g ≡ 0).

Lehmann-Scheffe Theorem: If T (X) is a complete sufficient statistic for θ and δ(X)
is an unbiased estimator of θ then δ0(X) = E(δ(X) T (X)) is an unbiased estimator of θ|
that has a smaller mean squared error than any other unbiased estimator of θ.

Proof: Suppose γ(X) is some other unbiased estimator of θ. Let γ0(X) = E(γ(X) T (X)).|
Then γ0(X) − δ0(X) is an unbiased estimator of zero. Because of completeness, we must
therefore have γ0 = δ0, i.e., they are both the same estimator. In other words, the Rao-
Blackwell process, which by the Rao-Blackwell theorem improves any unbiased estimator,
will always yield the same result no matter which estimator we start with.

Example: Suppose X1, . . . , Xn ∼ i. i. d. N(µ, 12). Then there are many functions of X1, . . . , Xn

that are unbiased estimators of µ (e.g., . . . . . . .). But Xn is a complete, sufficient, and unbi-
ased. Therefore Xn is the best unbiased estimator of µ.

Q: How do we know Xn is complete?

A: Think about two-sided Laplace transforms.. . . . . . . 


