
7th problem set,

I had not expected to do linear regression very much this early in the course. I assigned a
problem on it because of our treatment of confidence intervals, and now I find we’re on a roll.
#1 and #2 below are on regression. Later we’ll see some linear regression problems that are
perhaps more concrete than these.

1. Suppose ε1, . . . , εn ∼ i. i. d. N(0, σ2), and for i = 1, . . . , n we have Yi = β0 + β1xi + εi, or,
in other words, Y ∼ Nn(Xβ, σ2In) where⎡
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On the 5th problem set you found that β̂1 = [0, 1](X ′X)−1X ′Y =

∑
i=1(xi − x)(yi − y)

isn∑
i=1(xi − x)2

an unbiased estimator of β1. Then, in #2(c) on the 6th problem set you saw this referred[
β̂0

]
to as “the least-squares estimator of β1.” More generally, β̂ = is called “the least-

β̂1[
β0

]
squares estimator of β = .” That means β̂ is the value of β that minimizes the

β1
nsum of squares

∑
i=1(yi − (β0 +β1xi))

2. You will justify the nomenclature by showing that

β̂ = (X ′X)−1X ′Y does minimize that sum, via the steps outlined below. As before, let
H = X(X ′X)−1X ′.

2 2(a) Show that for any a, b ∈ R
n we have ‖a+ b‖ = 2 +2a′b+ ‖b‖ . (Give a very short‖a‖

answer; don’t prove rules of vector or matrix algebra from scratch.)

(b) Observe that Y − Xβ = (I − H)Y + (HY − Xβ). Then let a = (I − H)Y and
b = HY − Xβ, and apply the result of (a) and simplify. Finally, show that the sum

is less when β = β̂ than when β = anything else.

2. Consider what was done in #2 on the 6th problem set. Weaken the assumptions, as
follows: Do not assume ε1, . . . . . . , εn are normally distributed, nor that they are identically
distributed, nor that they are independent, but assume E(ε) = 0 ∈ R

n and var(ε) = σ2In.
(Although the errors are not assumed to be identically distributed, they still all have
expectations equal to zero and they all have the same variance. Equality of variances
is expressed by saying the errors are homoscedastic (sometimes spelled homoskedastic).
And the assumption of independence has been weakened to uncorrelatedness.) As in that
problem, assume Y = Xβ + ε, and that X is the same known n × 2 matrix and β is an
unknown 2 × 1 column vector.

Show that we can still prove the same conclusion by the same method as in #2 on the 6th
problem set, i.e., that the least-squares estimator of β is the best linear unbiased estimator
of β. (That conclusion under the present assumptions is the Gauss-Markov theorem.)

Continued−→



〈 〉

3. In families with two or more children, let µ and ν be respectively the average scores of first-
born and second-born children on an aptitude test. Suppose these are normally distributed
with variance σ2. A researcher is interested in the difference between the average scores of
first- and second-born children, i.e., in µ − ν.

Warning: Be sure you understand the difference between parts (a) and (b) below.

A Hint is at http://web.mit.edu/18.441/assignments.html .

(a) Let X1, . . . , X12 be the scores of first-born children from 12 families chosen indepen-
dently of each other. Let Y1, . . . , Y12 be the scores of second-born children from 12
families chosen independently of each other and independently of the first 12 families.
Thus we have

X1, . . . , X12 ∼ i. i. d. N(µ, σ2),

and Y1, . . . , Y12 ∼ i. i. d. N(ν, σ2),

and (X1, . . . , X12) is independent of (Y1, . . . , Y12). Let S2 =
∑12 (

Xi − X
)2

and let1 i=1

S2 =
∑12 (

Yi − Y
)2

. Find a pivotal quantity (i.e., a random variable, not necessarilyi=1

a statistic, whose probability distribution does not depend on the unobservables µ,
ν, and σ) whose value depends on X − Y , S1

2, S2
2, and µ − ν, but not on σ, that has

a t-distribution and is suitable for finding a 90% confidence interval for µ − ν. Then
find the confidence interval.

(b) Modify the problem: Instead of picking the second-born children independently of
the first-born children, just pick 12 families independently of each other, and use the
first- and second-born children from all 12 families. Find a 90% confidence interval
for µ − ν under these assumptions.

(c) According to your answers to (a) and (b), which of these two ways of designing the
experiment results in a shorter 90% confidence interval for µ − ν, given the same 24
test scores?

(d) Explain how the answer to (c) could have been anticipated without doing (a) or (b).

4. (a) DeGroot & Schervish p. 461 #4.

(b) Modify part (a): Drop the assumption that n = 25. Suppose we want

Pr(reject H0 H0) 0.02,| ≤
and Pr(reject H0 µ = µ0 + 0.3) ≥ 0.8.|

In other words, the probability of Type I error, i.e., the probability of rejecting the
null hypothesis given that the null hypothesis is true, is no more than 2%, and if
the null hypothesis is false, so that µ = µ0 + 0.3 instead of µ = µ0, then we have at
least an 80% chance of correctly rejecting the null hypothesis. In other words, the
probability of Type II error — of failing to reject the null hypothesis in this case —
is no more than 20%.
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(c) Now reinstate the assumption that n = 25, but alter the alternative hypothesis, so
that we have:

H0 : µ = µ0,

H1 : µ > µ0.

Redo part (a) under these assumptions.


