Answers to the 7th problem set exist in hand-written form. If you were not in class on April 26th, you can get a copy from the bulletin board outside room 2-384. Those answers omitted #4(c), which is therefore included here.

4. (c) Now reinstate the assumption that n = 25, but alter the alternative hypothesis, so that we have:

$$H_0: \quad \mu = \mu_0, \\ H_1: \quad \mu > \mu_0.$$

Redo part (a) under these assumptions.

<u>Answer</u>: The null hypothesis $H_0: \mu = \mu_0$ will be rejected if $\overline{X} - \mu_0 > c$, where the value of c is chosen so that $\Pr\left(\overline{X} - \mu_0 > c \mid H_0\right) = 0.05$. Since $\overline{X} \mid H_0 \sim N\left(\mu_0, \frac{1}{5^2}\right)$, we have $\frac{\overline{X} - \mu_0}{1/5} \sim N(0, 1)$, and consequently $\Pr\left(\overline{X} - \mu_0 > c \mid H_0\right) = \Pr\left(\frac{\overline{X} - \mu_0}{1/5} > 5c \mid H_0\right) = \Pr(Z > 5c) = 1 - \Phi(5c).$

So we want

$$1 - \Phi(5c) = 0.05$$

 $c = \Phi^{-1}(0.95)/5 = \frac{1.645}{5} = 0.329$