
Answers to the 2nd problem set

1. Let P be the proportion of voters who will vote “Yes”. Suppose P ∼ Beta(2, 1). This is
the prior distribution of P ; i.e., the conditional distribution given all prior information.
We regard P as uncertain but not random, so the probabilities are degrees-of-belief in
uncertain propositions rather than relative frequencies of random events, i.e., we rely
on a Bayesian interpretation of probability.

(a) Find a 90% probability interval (a, b) for P , such that Pr(P < a) = 0.05,
Pr(P > b) = 0.05, and so Pr(a < P < b) = 0.9. Do not use the Bayesian Central
Limit Theorem.

Answer: When I wrote “Do the problem numerically rather than algebraically”
I actually had in mind beta distributions with much larger values of α and β;
when α = 2 and β = 1 the problem is easily tractable algebraically. We have:

fP (p) = [constant] · p2−1(1 − p)1−1 = 2p.
a

0.05 = Pr(P < a) =

∫
2p dp = a2, and

0∫ b

0.95 = Pr(P < b) = 2p dp = b2,
0

so a =
√

0.05 ∼= 0.2236068 and b =
√

0.95 = 0.974679.

15 voters are chosen randomly. Let Y be the number of those 15 who will vote “Yes”.

(b) Find Pr(Y = 9 P = 0.7). Find Pr(Y = 9). Find E(Y ).|
Answer: Since Y [P = 0.7] ∼ Bin(15, 0.7) we have|

Pr(Y = 9 | P = 0.7) =

(
15

)
0.790.36 = 0.1472 . . . .
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Next we have

Law of Total Probability ((
15

) )
Pr(Y = 9)

↓
= E(Pr(Y = 9 P )) = E| P 9(1 − P )6

9 ∫ 1 (
15

)
9 

∫ 1 (
15

)
9= p (1 − p)6 fP (p) dp = p (1 − p)6 2p dp

9 0 90 

1 (
15

) ∫
p11−1(1 − p)7−1 dp = 2

15! Γ(11)Γ(7)
= 2

9 0

·
9!6!

·
Γ(18)

15! 10!6! 10 5
= 2 = 2 = 0.0735294 . . . .·

9!6!
·

17!
·
16 17

=
4 17

∼ 
· · 
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(c) Given the observation that Y = 9, find the likelihood function L(p Y = 9).|
Answer:

L(p Y = 9) = Pr(Y = 9 P = p) =

(
15

)
p9(1 − p)6. (That’s all!)| |

9

Several of you made this more complicated than it is, by thinking that what was
asked for was the posterior probability density. That is an error.

(d) Find the posterior probability distribution of P given that Y = 9, i.e., fill in the

�

�.
blank below: 

P [Y = 9] ∼| ?

Answer:

Bayes’ formula
↓

fP |Y =9(p) = [constant] · fP (p) · L(p Y = 9)|

�

�

(
15

)
9= [constant] · 2p ·

9
p (1 − p)6

= [constant] · p11−1(1 − p)7−1.

Therefore P [Y = 9] Beta(11, 7).| ∼
(e) Use the Bayesian Central Limit Theorem to approximate a 90% posterior prob-

ability interval (a, b) such that Pr(P < a Y = 9) = 0.05, Pr(P > b Y = 9) =| |
0.05, and so Pr(a < P < b) = 0.9.

Answer: You were told to use both of the versions of the Bayesian CLT that
were stated in the handout of February 19th. In both versions you need the fact
that Φ(−1.645) = 0.05 and Φ(1.645) = 0.95, where Φ is the standard normal
c.d.f.

First version: Since the posterior distribution is Beta(11, 7), the posterior ex-
11

pectation is = 0.61111 . . . , and the posterior standard deviation is
11 + 7√

11 7·
= 0.111839716 . . .

(11 + 7)2(11 + 7 + 1)

so the endpoints of the desired interval are

11
√

11 7
645

·
= 0.6111111 ± 0.1839763334 . . .

11 + 7
± 1.

(11 + 7)2(11 + 7 + 1)
∼

and so the interval is (0.42713478 . . . , 0.79508744 . . . ).
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Second version: The posterior density is

f(p) = [constant] · p10(1 − p)6 for 0 < p < 1

and = 0 if p < 0 or p > 1, and the posterior mode is the value of p that maximizes
that function. We have

d 10 10 6 −16(p − 5/8)

dp
log

(
p (1 − p)6

)
=

p
−

1 − p
=

p(1 − p)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ 

> 0 if 0 < p < 5/8, 

= 0 if p = 5/8,

< 0 if 5/8 < p < 1. 

Consequently the posterior mode is at p = 5/8 = 0.625 (this is not a maxi-
mum likelihood estimate, since what was being maximized was not the likelihood
function). Next we need d = (−k′′(5/8))−1/2 where k(p) = log f(p). So we have

k(p) = log f(p) = [constant] + 6 log(p) + 10 log(1 − p)

6 10
k′(p) =

p
−

1 − p 

6 10 
k′′(p) = −

p2
−

(1 − p)2

384 640 384 9 + 640 25 19456
k′′(5/8) = =

· ·
= = −86.471111 . . .−

25
−

9
−

25 9
−

225·√
−k′′(5/8) = 0.107538625 . . . .

So the endpoints of the desired interval are

0.625 ± 1.645 (0.107538625 . . . ) = 0.44809896 . . . and 0.801901 . . .

(So maybe you would want a larger sample than this before you regard the
Bayesian Central Limit Theorem as giving sufficiently accurate results.)

(f) Find the Bayes estimate E(P Y = 9).|
Answer:

11
Since P [Y = 9] ∼ Beta(11, 7) we must have E(P Y = 9) = = 0.61111 . . . .| |

11 + 7

Continued−→
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Keep choosing voters randomly until you have found 9 who will vote “Yes”; choose as
many as it takes. Let W be the number of voters so chosen.

(g) Given the observation that W = 15, find the likelihood function L(p W = 15).|
Answer: The number W of independent trials until a specified number of suc-
cesses (in this case 9) with probability P of success on each trial, has a negative
binomial distribution, and we write W ∼ Negbin(9, P ). Here’s a very terse
review:

�

�

Pr(W = w)

= Pr(9 − 1 successes on the first w − 1 trials and success on the wth trial)

=

(
w − 1

)
p9−1(1 − p)w−9 · p

9 − 1

9=

(
w − 1

)
p (1 − p)w−9 

9 − 1 

for w ∈ { 9, 10, 11, 12, . . . } (obviously W ≥ 9 with probablity 1).

Back to the problem at hand:

9L(p W = 15) = Pr(W = 15 P = p) =

(
15 − 1

)
p (1 − p)6.| |

9 − 1

(h) Find the posterior probability distribution of P given that W = 15, i.e., fill in the

.
blank below: 

P [W = 15] ∼| ?

Answer: Procede as in part (d):

�

�
Bayes’ formula

↓
fP |Y =9(p) = [constant] · fP (p) · L(p Y = 9)|(

14
)

9= [constant] · 2p ·
8

p (1 − p)6

= [constant] · p11−1(1 − p)7−1.

Therefore P [Y = 9] ∼ Beta(11, 7).|

4

�

�

�

�



(i) Discuss the relationship between the answers to (c) and (g), and the relationship
between the answers to (d) and (h).

Answer: Several students answered that the answers in (c) and (g) are the same.
They are not. We have: (

15
)

9in part (c): L(p Y = 9) = Pr(Y = 9 P = p) = p (1 − p)6,| |
9

9and in part (d): L(p W = 15) = Pr(W = 15 P = p) =

(
15 − 1

)
p (1 − p)6.| |

9 − 1)
/
(
14Since

(
15

)
= 3/5 = 1 the two likelihood functions are not equal. But each is�

9 8

a constant multiple of the other, or in other words, they are proportional.

The answers to (d) and (h) are identical. Proportional likelihood functions that
are not equal are equivalent in the application of Bayes’ formula.

(j) Find the Bayes estimate E(P W = 15).|
Answer: Since P [W = 15] ∼ Beta(11, 7), it follows that E(P W = 15) =| |
11/(11 + 7) = 0.61111 . . . .

(k) Switch from a Bayesian to a frequentist perspective. Find the maximum likelihood
estimates of P given the observations in parts (c) and (g). Discuss the relationship
between the two.

Answer: In each case we have

9L(p) = [constant] · p (1 − p)6.

The constant factor in part (c) differs from that in part (g). Since the constant
factor is positive in both cases the value of p that maximizes L(p) is the same in
both cases. Letting �(p) = log L(p), we have ⎧

> 0 if 0 < p < 3/5,⎪⎪⎪⎪
d 6 9

�′(p) =
dp

(6 log p + 9 log(1 − p)) =
p
−

1 − p
=

−15(p − 3/5) ⎨
= 0 if p = 3/5,

p(1 − p) ⎪⎪⎪⎪⎩
< 0 if 3/5 < p < 1.

So in both cases, the MLE is p̂ = 3/5.

2. Suppose you are uncertain of a man’s height H (in inches). You expressed your state
of uncertainty by saying H ∼ N(71, 2.52) because you know that 71 and 2.5 are
respectively the mean and the standard deviation of a population that includes this
man. A very crude measuring device adds to his height a random error ε ∼ N(0, 1),
so that the height measured with error is M = H + ε, and H and ε are independent.

Continued−→
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)

(a) Write the conditional distribution of M given H in the form

“M [H = h] ∼ N(?, ?)”|
— fill in the blanks. (Don’t use Bayes’ formula! That is wrong. This is an easier
question than that.) Write the likelihood function

L(h) = fM H=h(m)|

in the form 
[constant] · e(−1/2)( ? )2 

— fill in the blank and don’t worry at this point about the value of the “constant.”

Answer: Since H and ε are independent, the distribution of ε given H = h is no
different from the marginal distribution of ε; it is N(0, 1). Given the condition
H = h, the random variable H turns into a constant, so we have

ε + H [H = h] ∼ N(h, 12),|
i.e., M [H = h] ∼ N(h, 12).|

The likelihood is

L(h) = fM H=h(m) =
1

exp

(
−1

(
m − h

)2
)

= [constant] · exp

(−1
(m − h)2 .| √

2π 2 1 2

(b) Multiply the prior probability density function by the likelihood function and get
the posterior probability density function in the form

fH M=m(h) = [constant] · e(−1/2)( ? )2|

— fill in the blank with something that looks like this:

h − something

something

where the two “somethings” do not depend on h. (You may need to do some
algebraic massaging of the exponent to make it look like that.)

Answer: The prior density is (
−1

(
h − 71

)2
)

[constant] · exp .
2 2.5

The likelihood is as reported in part (a) above. Multiplying these, we get

2[constant] · exp

(
−1

(
(m − h) +

(
h − 71

)2
))

.
2 2.5

Remembering that “constant” in this context means “not depending on m,” we
simplify the quadratic polynomial in h:
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) ( ) 

) ) 

) ( ) 

) 

( ) 

) 

(
h − 71

)2

(m − h)2 +
2.5

h + 

⎛⎝ 

⎞⎠ 
(

2.52 + 1 terms not 
depending 

71 
h2 − 2 m + =

2.52 2.52
on h

⎛⎝ 

⎞⎠ 
(

2.52 + 1
)( (

2.52 terms not 
depending 

m + 1 71 
h2 · ·− 2 h +=

2.52 2.52 + 1 
on h

+

⎛⎝ 
)2

)(
2.52 + 1 

(
2.52

(
2.52 terms not 

depending 
m + 1 71 m + 1 71 

h2 · · · ·− 2 h + =
2.52 2.52 + 1 2.52 + 1 

on h

+

⎛⎝ 

⎞⎠ 
(

2.52 + 1
)( (

2.52 m + 1 71
))2 terms not 

depending 
· ·

h −=
2.52 2.52 + 1 

on h

(
2.52 ⎞⎟⎟⎠

⎛⎜⎜⎝
2 

m + 1 71 · · ⎛⎝ 

⎞⎠ 
h − terms not 

depending 
2.52 + 1 

+= .
2.5

on h√
2.52 + 1 

Consequently we have (
2.52 m + 1 71 2.52

H [M = m] ∼ N
· ·

,|
2.52 + 1 

.
2.52 + 1 

The posterior expected value is a weighted average of the measured value m and
the prior expected value 71, with weights inversely proportional to 1 and 2.52

— the two variances.
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(c) Use the answer to (b) to find the Bayes estimator

E(H M = m) = a weighted average of the observed measurement m (i.e., the|
height-measured-with-error) and the prior expected value.

Specify the weights in the weighted average. “Use the answer to (b)” means do
it by that method and not by some other method. This can be done very quickly
since you’ve already done part (b).

Answer:

E(H | M = m) =
2.52 · m + 1 · 71

2.52 + 1
=

(
2.52

2.52 + 12

)
m +

(
12

2.52 + 12

)
71

= w1 · m + w2 · 71

where the weights w1 and w2 are the numbers in “(” parentheses “)” on the
previous line. In order that this be a weighted average it is necessary and sufficient
that the weights be nonnegative and that their sum be 1.

Observe that (
2.52

) (
12

)
71 = m + 71w1 · m + w2 ·

2.52 + 12 2.52 + 12

[(
1

) (
1

) ]
= k m + 71

12 2.52

[
1 1

]
= k m + 71

var(ε) var(H)

(you can quickly find the value of k). Thus, the weights assigned to (1) the
measurement, and (2) the prior average, are inversely proportional to (1) the
variance of the measurement error, and (2) the prior variance, respectively.

Continued−→
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(d) Suppose you observe M = 74. Find a 90% posterior probability interval (h1, h2),
so that Pr(H < h1 M = 74) = 0.05, Pr(H > h2 M = 74) = 0.05, and so| |
Pr(h1 < H < h2 M = 74) = 0.9.|
Answer: From part (b) we conclude that(

2.52
) (

12
)

E(H | M = 74) =
2.52 + 12

74 +
2.52 + 12

71 = 73.5862 . . . .

2.52

var(H | M = 74) =
2.52 + 12

= 0.862 . . . .

Since we know that Φ(−1.645) = 0.05 = 1 − Φ(+1.645), we need the interval
whose endpoints are

expectation ± 1.645SD = 73.5862 . . . ± 1.645(2.5)/
√

2.52 + 1

= 73.5862 . . . ± 1.527344

= 72.05886, 75.11355.

Therefore we have

Pr(72.05886 < H < 75.11355 M = 74) = 0.95.|

Pr(H < 72.05886 M = 74) = 0.05.|

Pr(H > 75.11355 M = 74) = 0.05.|
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