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Answers to the 6th problem set

1. Suppose X1, X2 ∼ i. i. d. Uniform(θ − 1/2, θ + 1/2).

(a) Show that (min{X1, X2 }, max{X1, X2 }) is a 50% confidence interval for θ.

Answer: We need to show Pr(min < θ < max θ) = 0.5 regardless of the fixed value|
of θ. We have

Pr(min < θ < max θ) = 1 − Pr([min < θ & max < θ] or [min > θ & max > θ])|
= 1 − Pr(min < θ & max < θ) − Pr(min > θ & max > θ)

= 1 − Pr(X1 < θ & X2 < θ) − Pr(X1 > θ & X2 > θ)

= 1 − Pr(X1 < θ)Pr(X2 < θ) − Pr(X1 > θ)Pr(X2 > θ)

= 1 − (0.5)(0.5) − (0.5)(0.5)

= 0.5.

(b) Suppose you observe that min= 84.03 and max= 84.04. Would you be confident that
θ is within the 50% confidence interval? Suppose you observe that min= 64.52 and
max= 65.48? Then would you be confident that θ is within the 50% confidence interval?
Carefully explain your reasoning.

Answer: If min= 84.03 then θ could be anywhere from 83.53 to 84.53, and if max=
84.04 then θ could be anywhere from 83.54 to 84.54. So θ could be anywhere from 83.54
to 84.53. The interval from the observed minimum to the observed maximum is a very
tiny subinterval, and the data give no reason to suppose θ is more likely to be in that
small subinterval than in any other similarly small subinterval. Thus “50% confidence”
may be misleading.

If min= 64.52 then θ is between 64.02 and 65.02, and if max= 65.48 then θ is between
64.98 and 65.98. Consequently θ must be between 64.98 and 65.02, and so it is certain
that θ is in the much larger interval that is in this case the “50% confidence interval.”

(c) Suppose we assign an improper prior distribution to θ, as follows: fθ(u) = c > 0 for
all u ∈ R. (We fail to notice that

∫ ∞
c du < ∞.) Let A and B be respectively the−∞ �

first and third quartiles of the posterior distribution. Express A and B as functions of
min{X1, X2 } and max{X1, X2 }). Find A and B in particular in case min= 84.03 and
max= 84.04. Find A and B in case min= 64.52 and max= 65.48.

Answer: The likelihood function is L(θ) ⎧⎨⎩ 

⎫⎬⎭ 

1 if θ − 1/2 < x1 < θ + 1/2
and θ − 1/2 < x2 < θ + 1/2

otherwise
= fX1,X2 θ(x1, x1) = fX1|θ(x1) · fX2 θ(x2) =| |

0

=

{
1 
0 

if θ − 1/2 < min < max < θ + 1/2
otherwise

{
1 if max−1/2 < θ < min +1/2

otherwise
= .

0
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∫ 

{
1 if max−1/2 < θ < min +1/2

L(θ) =
otherwise

.
0

Since the prior density of θ is constant, multiplying it by this likelihood function gives
us a function that is constant on the interval from {max−1/2} to {min +1/2}. We
then need to normalize, i.e., to multiply this by a constant such that

min+1/2

[constant] dθ = 1.
max−1/2

We conclude that the constant is the reciprocal of the length of the interval, so that 

fθ X1,X2(θ) =|

⎧⎪⎪
⎩
⎨⎪⎪

1

(min +1/2) − (max−1/2)
if θ ∈ [max−1/2, min +1/2],

0 otherwise.

The posterior distribution can be more efficiently characterized by saying that it is 
uniform on the interval [max−1/2, min +1/2]. 

Since it is uniform on the interval, we just need to put 1/4 of the interval to the left of 
A and 1/4 of the interval to the right of B. If we let C = max−1/2 and D = min +1/2 
then we get

A = (3/4)C + (1/4)D = (3/4)(max−1/2) + (1/4)(min +1/2)

= (3/4) max +(1/4) min−1/4

and B = (1/4)C + (3/4)D = (1/4)(max−1/2) + (3/4)(min +1/2)

= (1/4) max +(3/4) min +1/4.

(d) Show that (A,B) is a 50% confidence interval for θ, i.e., when the value of θ is fixed,
we have Pr(A < θ < B) = 0.5.

Answer: Notice that it said “. . . when the value of θ is fixed . . . ”. In other words, we
are switching to a frequentist perspective; we should not speak of posterior distributions;
no probability distributions are assigned to θ in part (d). Perhaps one of the simplest
ways to do this problem is to look at the square

{ (x1, x2) : θ − 1/2 < x1 < θ + 1/2 & θ − 1/2 < x2 < θ + 1/2 }
and consider which points in the square correspond to the event

(3/4) max +(1/4) min−1/4 < θ < (1/4) max +(3/4) min +1/4.
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Consider the horizontal axis to be the x1-axis and the vertical axis to be the x2-axis.
The point right in the center of the square is (θ, θ). The region above the dotted line
is the graph of the inequality x2 > x1 and the region below the dotted line is the graph
of the inequality x1 > x2. In other words, above the dotted line we have max = x2 and
min = x1 and below the dotted line we have max = x1 and min = x2. Therefore, above
the dotted line the inequalities

(3/4) max +(1/4) min−1/4 < θ < (1/4) max +(3/4) min +1/4

reduce to
(3/4)x2 + (1/4)x1 − 1/4 < θ < (1/4)x2 + (3/4)x1 + 1/4

and below the dotted line they reduce to

(3/4)x1 + (1/4)x2 − 1/4 < θ < (1/4)x1 + (3/4)x2 + 1/4.
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The graph of this system of inequalities is shaded in the figure. Since the point (X1, X2)
is uniformly distributed in the square, one need only observe that the area of the shaded
region is exactly half that of the whole square, in order to conclude that the probability
of the event that the graph corresponds to, is 1/2.

(e) Briefly discuss ways in which the 50% confidence interval of part (d) is better than the
50% confidence interval of part (a).

Answer: To get full credit for this part, it suffices that you observe that the pathologies
that afflict the answer to part (b) do not evidently happen in this case. The problem
in part (b) is that, although the 50% confidence interval covers θ 50% of the time,
sometimes the data alone make it clear that the particular case is one of those 50% or
probably is not.

2. (a) In the regression problem of the 5th problem set, show that there is an (n − 2)-
dimensional space of vectors c ∈ R

n such that E(c′Y ) = E(c1Y1 + + cnYn) = 0.· · ·
(The random variable c′Y is called a “linear unbiased estimator of zero.”)

Answer: We have

0 = E(c′Y ) = c′ E(Y ) = c′Xβ

regardless of the value of β. In other words

0 = E(c′Y ) = c′ E(Y ) = c′Xβ for all values of β ∈ R
2.[

1
]

If this works for all values of β ∈ R
2, then it works if β = and it works if

0[
0

] [
1

] [
0

] [
1 0

]
β = . If 0 = c′X and 0 = c′X then [0, 0] = c′X , and so we

1 0 1 0 1
get c′X = [0, 0]. Depending on how abstract you want to get in doing linear algebra,
what you say next could be along these lines:

The image of the linear transformation c′ �→ c′X is 2-dimensional.

The domain of this linear transformation is n-dimensional.

Therefore the kernel of this linear transformation is (n − 2)-dimensional.

. . . or it could be along these lines: We have two linear equations in n variables c1, . . . , cn:

c1 + + cn = 0· · ·
c1x1 + + cnxn = 0· · ·

Then if x1 = x2 we can freely determine c3, . . . , cn and that in turn determines c1 and
c2. If x1 = x2 then pick two xs that are not equal. (That not all of them are equal has
been tacitly assumed throughout this problem and #5 of the previous problem set.)
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(b) Suppose we have n = 6 and x1 = 2, x2 = 3, x3 = 5, x4 = 5, x5 = 7, x6 = 9. Find four
linear unbiased estimators of zero that are linearly independent of each other, i.e., four
vectors that can be put in the role of c in part (a), none of which is a linear combination
of the others.

Answer: We need

c1 + c2 + c3 + c4 + c5 + c6 = 0
2c1 + 3c2 + 5c3 + 5c4 + 7c5 + 9c6 = 0

We can set c3 = 1, c4 = c5 = c6 = 0, and we get c1 = 2, c2 = −3. 
We can set c4 = 1, c3 = c5 = c6 = 0, and we get c1 = 2, c2 = −3. 
We can set c5 = 1, c3 = c4 = c6 = 0, and we get c1 = 4, c2 = −5. 
We can set c6 = 1, c3 = c4 = c5 = 0, and we get c1 = 6, c2 = −7. 

The four linearly independent vectors are:

(2,−3, 1, 0, 0, 0)

(2,−3, 0, 1, 0, 0)

(4,−5, 0, 0, 1, 0)

(6,−7, 0, 0, 0, 1)

The four linearly independent linear unbiased estimators of zero are:

2Y1 − 3Y2 + Y3

2Y1 − 3Y2 + Y4

4Y1 − 5Y2 + Y5

6Y1 − 7Y2 + Y6

Other systems of four such vectors, or of four linearly independent linear unbiased
estimators of zero can also be found, by making some of the choices differently.

(c) Let β̂1 = d′Y be the least-squares estimator of of the slope in the regression problem
of the 5th problem set (in #4 on the 5th problem set, you found the value of d). Show

that β̂1 is uncorrelated with every linear unbiased estimator of zero.

Answer: We found that β̂1 = [0, 1](X ′X)−1X ′Y ; in other words d′ = [0, 1](X ′X)−1X ′. 
Suppose c′Y is a linear unbiased estimator of zero. 
Recall that if A ∈ R

m×n and B ∈ R
�×k are constant 

and U ∈ R
n×1 and V ∈ R

k×1 are random 

then cov(AU, BV ) = A( cov(U, V ) )B′. 
So we get [

0
]

cov(c′Y, d′Y ) = c′( cov(Y, Y ) )d = c′(σ2In)d = σ2c′d = σ2c′X(X ′X)−1

1
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and this = 0 because, as we found in part (a), we have c′X = 0 ∈ R
1×2.

(d) Let d and c be as above. Show that (d+ c)′Y is an unbiased estimator of β1. Show that
var((d + c)′Y ) = var(d′Y ) + var(c′Y ) ≥ var(d′Y ). Use the result to show that d′Y is
the best linear unbiased estimator of β1. (“Linear” means linear in Y , i.e., of the form
d′Y for some vector d.) (This is not yet the Gauss-Markov theorem mentioned in the
summary of March 6th, because that theorem has much weaker assumptions (and so,
is a much stronger theorem) than those on which we are relying here.)

Answer:

E(d′Y + c′Y ) = E(d′Y ) + E(c′Y ) = E(d′Y ) + 0 = E(d′Y ) = β1,

so d′Y + c′Y is an unbiased estimator of β1. Its variance is

var(d′Y + c′Y ) = var(d′Y ) + cov(d′Y, c′Y ) + cov(c′Y, d′Y ) + var(c′Y )

and the two terms in the middle are 0, since that was the result of part (c). Since
variances of non-constant random variables are positive we can actually get “>” where
the problem asked for “≥”, unless c = 0.

3. Let X1, . . . , X15 ∼ i. i. d. N(µ, σ2). Use what you know about the probability distribution of∑15
i=1(Xi−X)2 to find a 95% confidence interval for σ2, i.e., find two statistics A and B such

that Pr(A < σ2 < B) = 0.95, and Pr(σ2 < A) = 0.05/2 and Pr(σ2 > B) = 0.05/2.

Answer: We know that ∑15
i=1(Xi − X)2

∼ χ2

σ2 14.

From the table of the χ2 distribution, we conclude that( ∑15
i=1(Xi − X)2

)
Pr 5.629 < < 26.12 = 0.95

σ2

and the probabilities in the left and right tails are each 0.025. Consequently we have

i=1(Xi − X)2
∑15

(∑15
i=1(Xi − X)2

)
Pr < σ2 < = 0.95

26.12 5.629

and we can draw a similar conclusion about the two tails.
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