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Answers to the 8th problem set 

The likelihood ratio with which we worked in this problem set is: 

f(x θ = θ1) L(θ1)
Λ(x) =  

| 
= . 

f(x θ = θ0) L(θ0)| 
With a lower-case “x”, this defines a function. With a capital “X”, this is a random vari-
able. We assumed X is a continuous random variable whose density, given that θ = θ0, is  
f(x θ = θ0). We used “Eθ0 ( )”,  “varθ0 ( )”,  “covθ0 ( )”, etc., to mean these operators |
are to be evaluated assuming θ = θ0. 

1. Show that Eθ0 (Λ(X)) = 1. 

Answer: ∫ ∞	 ∫ ∞ 

|	 f(x | θ = θ1) |Eθ0 (Λ(X)) = Λ(x) f(x θ = θ0) dx =	 f(x θ = θ0) dx 
−∞	 −∞ f(x | θ = θ0) 

∞ 

=	 f(x θ = θ1) dx = 1.|
−∞ 

2.	 (a) The following may or may not be useful in doing part (b), perhaps depending 
on your tastes: Suppose E(U) =  µ and E(V ) =  ν. Show that cov(U, V ) can  be  
written in any of these forms (the second one is the definition, so there is nothing 
to show): 

E(U(V	 − ν)) = E((U − µ)(V − ν)) = E((U − µ)V ). 

Answer: 

E((U − µ)(V − ν))	 = E(U(V − ν)) − E(µ(V − ν)) 

= E(U(V − ν)) − µE(V − ν) 

= E(U(V − ν)) − µ(E(V ) − ν) 

= E(U(V − ν)) − µ(ν − ν) 

= E(U(V − ν)). 

We could of course say that the other identity is proved by the same method, 
but even that is needlessly complicated, since we can just observe that the other 
identity says the same thing as this one. 
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(b) Suppose T (X) is an unbiased estimator of θ.

Show that covθ0 (T (X), Λ(X)) = θ1 − θ0.


Answer: 

covθ0 (T (X), Λ(X)) =	 Eθ0 (T (X)(Λ(X) − 1)) 

(We have used the results of part #2(a) and of #1.) 

∞ 

= T (x)(Λ(x) − 1) f (x θ  = θ0) dx|
−∞ ∫ ∞ ( 

f (x θ  = θ1) 
= T (x) 

f (x |
| 
θ = θ0) 

− 1 f (x | θ = θ0) dx 
−∞ 

∞ 

= T (x) (f(x θ  = θ1) − f (x θ  = θ0)) dx| |
−∞ ∫ ∞ ∫ ∞ 

= T (x) f (x θ  = θ1) dx − T (x) f (x θ  = θ0) dx|	 |
−∞	 −∞ 

= Eθ1 (T (X)) − Eθ0 (T (X)) 

= θ1 − θ0 because T (X) is an unbiased estimator of θ. 

3. Use the Cauchy-Schwartz inequality in the form |cov(U, V )| ≤ SD(U) SD(V ) and the 
result of #2(b) to show that when θ = θ0 then the mean squared error of T (X) as an  
estimator of θ cannot be less than 

(θ1 − θ0)
2 

. 
varθ0 (Λ(X)) 

Answer: ��Cauchy-Schwartz 
↓	 ↓ 

|θ1 − θ0| = |covθ0 (T (X), Λ(X))| ≤ SDθ0 (T (X)) SDθ0 (Λ(X)). 

Therefore (θ1 − θ0)
2 ≤ varθ0 (T (X)) varθ0 (Λ(X)), 

(θ1 − θ0)
2 

and so ≤	 varθ0 (T (X)) = mean squared error. 

�� ���By #2(b) � 

varθ0 (Λ(X)) ↑��Because T (X) is unbiased. 
� � 
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4. Briefly comment on the justification for, and validity of, each step below. 

Answer: 

varθ0 (Λ(X)) Λ(X) − 1 
(θ1 − θ0)2 

= varθ0 
1 − θ0' 

θ $ 
var(Λ(X)) = var(Λ(X) − 1) since adding a constant to a random 
variable does not alter its variance. 

var(Λ(X) − 1) Λ(X) − 1 
= var 

(θ1 − θ0)2 θ1 − θ0 

2Y ) if  c is constant. %because c

1 f(X | θ = θ1) − f(X | θ = θ0) 
= varθ0 · 

f(X θ = θ0) θ1 − θ0|� � 
f(X θ = θ1)

This is just the definition of Λ, which says Λ(X) =  
| 

,
f(X θ = θ0)|

followed by a bit of algebra. � 

& ( 

� 

var(Y ) =  var(c


∂
−→ (X θ
∂θ 

|log f ) as θ1 −→ θvarθ0 0. 
θ=θ0 

This last step involves some subtlety, but the conjunction of the words “briefly com
-
ment” with the prerequisites for this course entails that you don’t need to go into

that in order to get credit for this problem. Most of what you need to do is to observe

that


as θ

f(X θ = θ1) − f(X θ = θ0) ∂| | −→ f(X θ

θ1 − θ0 ∂θ 
| )
 1 −→ θ0 

θ=θ0 

because that is how derivatives are defined. The subtlety resides in the following step, 
which the notation we used above camouflages, and the notation on the displayed line 
below this line makes explicit: 

lim var · · · · · · · · · · · ·  = var lim · · · · · · · · · · · ·  . 
θ1 −→ θ0 θ1−→ θ0 

The variance is an integral, so the question is: When is the following true: 

∞ ∞ 

lim · · · · · · · · · · · ·  = lim · · · · · · · · · · · ·  ? 
θ1 −→ θ0 −∞ −∞ θ1 −→ θ0 

Answers to questions of this sort may be found in Walter Rudin’s book Principles of 
Mathematical Analysis. 
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∂ 
5. Let I(θ) =  varθ log f(X θ) . This quantity I(θ) is called the “Fisher infor-

∂θ 
| 

mation” in the sample X. It is thought of as a measure of how much information 
about θ is conveyed by the sample X. If  X happens to be a sample of size n, so that 
X = (X1, . . . , Xn), then let us denote this by In(θ), so that, in particular, I1(θ) would 
be the amount of information in a sample of size 1. Show that n times as much infor-
mation is in a sample of size n than in a sample of size 1, i.e., show that In(θ) =  nI1(θ). 

Answer: 

∂ 
In(θ) =  varθ 

∂θ 
log fX1,...,Xn (X1, . . . , Xn | θ) 

n
∂ 

= varθ 
∂θ 

log fXi (Xi | θ) because of independence, 
i=1 

n
∂ 

= varθ 
∂θ 

log fXi (Xi | θ) 
i=1 

n ∑ ∂

= varθ 

∂θ 
log fXi (Xi | θ)


i=1 

n ( ∑ ∂ 
= varθ 

∂θ 
log fXi (Xi | θ) because of independence, 

i=1 

n ( ∑ ∂ 
= varθ 

∂θ 
log fX1 (X1 | θ) because of identity of distributions, 

i=1 

∂ 
= n varθ 

∂θ 
log fX1 (X1 | θ) because all n terms are the same, 

= nI1(θ). 

6. Use conclusions from #3 and #4 to show that the mean squared error of an unbiased 
estimator T (X) of  θ cannot be less than 1/I(θ). (This is the “Cramer-Rao inequal-
ity” or the “information inequality.” The quantity 1/I(θ) is the “Cramer-Rao lower 
bound.”) 

Answer: According to #4 we have 

varθ0 (Λ(X)) −→ I(θ0) as  θ1 → θ0. 
(θ1 − θ0)2 

Since the reciprocal function is continuous (except at 0) we can infer that 

(θ1 − θ0)
2 1 −→ as θ1 → θ0. 

varθ0 (Λ(X)) I(θ0) 

Then Continued−→Then Continued−→Then Continued−→Then Continued−→
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bring in the result of #3: 

(θ1 − θ0)
2 1 

mean squared error ≥ −→ as θ1 → θ0. 
varθ0 (Λ(X)) I(θ0) 

Since the mean squared error does not depend on θ1, it does not change as θ1 is 
approaching θ0, and so if it is ≥ something that depends on θ1, then it is ≥ the limit 
of that “something,” as θ1 approaches θ0, and we conclude 

1 
mean squared error ≥ . 

I(θ0) 

7. The Fisher information I(θ) can sometimes be more readily computed by the result 
you will derive in this problem than by using the definition of it given in #5. In this 
problem you may assume that 

∞∂ ∞ ∫ 
∂ · · · · · ·  dx = · · · · · ·  dx. 

∂θ −∞ ∂θ−∞ 

(This is valid if the function being integrated is sufficiently well-behaved.) 

∫ ∞ ∂ 
(a) Show that −∞ ∂θ

f(x | θ) dx = 0.  

Answer: ∫ ∞ ∫ ∞∂ ∂ ∂ |
∂θ

f(x θ) dx = 
∂θ −∞ 

f(x | θ) dx = 1 = 0. 
∂θ−∞ ∫ ∞ ∂2 

(b) Show that −∞ ∂θ2 
f(x | θ) dx = 0.  

Answer: ∫ ∞ ∂2 ∫ ∞∂ ∂ ∂ |
−∞ ∂θ2 

f(x θ) dx = 
∂θ −∞ ∂θ

f(x | θ) dx = 0 = 0. 
∂θ 

(c) Show that 

∂2 

|∂2
2 

( )2 

∂θ2 
log f(x θ) =  ∂θ 

f(x θ) 
− 

∂ 
log f(x θ) .|| 

f(x | θ) ∂θ 

Then take expected values of all three terms, use the result of part (b) to show 
that one of the expected values is 0, and finally draw the conclusion that 

∂2 

I(θ) =  −Eθ 
∂θ2 

log f(X θ) .| 
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Answer:


Chain rule 
�� 

�� 

∂2	 ∂ ∂  ↓ ∂ (∂/∂θ)f(x θ) 
∂θ2 

log f(x | θ) = 	
∂θ ∂θ 

log f(x | θ)) = 
∂θ f(x | θ)

| 

f(x θ)(∂2/∂θ2)f(x θ) − ((∂/∂θ)f(x θ))2| |	 |
= 

f(x θ)2|� �
 

↑


Quotient 

� 
rule 

∂2 ( )2 
∂θ2 

f(x θ) (∂/∂θ)f(x θ) 
= 

|
− 

|
f(x | θ) f(x θ)| 

∂2 ( )2f(x θ) ∂ 
= ∂θ2 

|
− log f(x θ) . 

f(x | θ) ∂θ 
| 

In order that it make sense to take expected values, we need “X” rather than 
“x”: 

∂2 ( )2
∂2 f(X θ) ∂ | − log f(X θ) .|
∂θ2 

log f(X θ) =  ∂θ
f

2 

(X | θ
| 
) ∂θ
⎛ 

∂2 ⎞
( 
∂2 ) f(X θ) ⎟ ( 

∂ 
)2 ⎜ ∂θ2 

|
Eθ 

∂θ2 
log f(X θ) = Eθ ⎝ 

f(X | θ) ⎠ − Eθ log f(X θ) .| 
∂θ 

| 

��We will see that this term = 0. 

The term immediately to the right of “=” is ⎛ 
∂2 ⎞ 

∂2 

f(X θ) ∫ ∞ f(x θ)	 ∞ ∂2 ⎜ ∂θ2 
| ⎟

Eθ ⎝ 
f(X | θ) ⎠ = 

−∞ 

∂θ
f

2 

(x θ

| 
) 

f(x | θ) dx = f(x θ) dx |	 ∂θ2 
|

−∞ 

and we showed in (b) that that is 0. Using the identity E(V 2) =  var(V )+(E(V ))2 

we see that ( )2 ( ) ( (  ))2
∂	 ∂ ∂ − Eθ log f(X θ) = − varθ log f(X θ) − Eθ log f(X θ) . 
∂θ 

|	
∂θ 

| 
∂θ 

| 

�� 

↑
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The second term above is −I(θ), so it suffices to show that the last term is 0. We 
have 

∂ | 
∞ (∂/∂θ)f(x | θ)

Eθ log f(X θ) = 	 f(x θ) dx = 0 by part (a). 
∂θ	 −∞ f(x θ) 

|| 

8. Suppose	 X1, . . . , Xn ∼ i. i. d. N(θ, 12). The result of #6 then says no function of 
X1, . . . , Xn that is an unbiased estimator of θ can have smaller variance that something. 
Find and simplify what goes in the role of “something” in the previous sentence. You 
can use the result of #7(c), but you are not required to do so. 

Answer:

By the result of # 5. 
�	� 

�	� ↓ ∂	 ∂ 
In(θ) =  nI1(θ) =  n varθ 

∂θ 
log fX1 (X1 | θ) = n varθ 

∂θ 
log  fX1 (X1 | θ) 

∂ { ( )} 
= n varθ log [constant] · exp −1(X1 − θ)2/2 

∂θ 

∂	 1 
= n varθ [constant] − (X1 − θ)2 

∂θ 2 

= n varθ (X1 − θ) =  n · 12 = n. 

Consequently the lower bound on the variance of unbiased estimators of θ that are 
functions of X1, . . . , Xn given by the result of #6 is 

1 1 1 1 
= = = . 

In(θ) nI1(θ) n · 12 n


If we had used the result of #7, we would have done this:


∂2 ∂2 { ( )} 

∂θ2 
log fX1 (X1 | θ) =  

∂θ2 
log [constant] · exp −1(X1 − θ)2/2 

∂2	 1 
= [constant] − (X1 − θ)2 

∂θ2 2 

= −1. 

Then I1(θ) =  −Eθ(−1) = 1, and so In(θ) =  nI1(θ) =  n · 1 =  n. 

9. Suppose	 X1, . . . , Xn ∼ i. i. d. Bin(10, θ). Answer the same question as in #8. (The 
results you use work just as well if the probability distributions involved are discrete.) 
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Answer: (	 ) ( ( ) ) 
∂2	 ∂2 10 

In(θ) =  nI1(θ) =  −n Eθ 
∂θ2 

log fX1 (X1 | θ) =  −n Eθ 
∂θ2 

log θX1 (1 − θ)10−X1 

X1 

X1 10 − X1 Eθ (X1)  10  − Eθ(X1) 10θ 10 − 10θ 
=	 −n Eθ − − = n + = n + 

θ2 (1 − θ)2 θ2 (1 − θ)2 θ2 (1 − θ)2 

1 1 10n	 θ(1 − θ)
= 10n + = . So the lower bound is . 

θ	 1 − θ θ(1 − θ)  10n 

No unbiased estimator of θ can have a mean squared error smaller than that. 

10. Suppose X1, . . . , Xn ∼ i. i. d. Poisson(θ). Answer the same question as in #8. 

Answer: Again we are working with a discrete distribution. 

∂2	 ∂2 e−θθX1 

In(θ) =  nI1(θ) =  −n Eθ 
∂θ2 

log fX1 (X1 | θ) =  −n Eθ 
∂θ2 

log 
X1! 

−X1 n Eθ (X1) nθ n 
=	 −n Eθ = = = . 

θ2 θ2 θ2 θ 

θ 
Therefore no unbiased estimator of θ can have a smaller mean squared error than . 

n 

11. Suppose X1, . . . , Xn ∼ i. i. d. have a “memoryless” (continuous) exponential distribu-
tion with expected value θ, i.e., each Xi is distributed as the (continuous) waiting time 
in a Poisson process with intensity 1/θ occurrences per unit time. Answer the same 
question as in #8. 

Answer: We’re back to continuous distributions. (	 ) ( ( )) 
∂2 ∂2 

In(θ) =  nI1(θ) =  −n Eθ 
∂θ2 

log fX1 (X1 | θ) =  −n Eθ 
∂θ2 

log 
1 
e −X1 /θ 

θ ( ( )) ( ) (	 ) 
∂2 X1 −1 2X1 −1 2 Eθ(X1) 

=	 −n Eθ − log θ − = n Eθ + = n + 
∂θ2 θ2	 θ2 θ3 θ2 θ3 

−1 2θ n 
=	 n + = . 

θ2 θ3 θ2 

θ2


Therefore no unbiased estimator of θ can have a smaller mean squared error than .

n 

12. Consider testing the null hypothesis	 H0 : θ = θ0 against the alternative hypothesis 
H1 : θ = θ1. 

The likelihood-ratio test rejects the null hypothesis if and only if Λ(X) > c  (where c =

the “critical value”). Suppose this test’s probability of Type I error is 3%, i.e.,




∫ ∫ 

[ ] 

Pr(this test rejects H0 | H0) = 0.03. The power of the test is Pr(this test rejects H0 |
H1). 

Some other test, based on some statistic K(X) different from Λ(X), rejects the null 
hypothesis if and only if K(X) > d. Suppose this test’s probability of Type I er-
ror is also 3%, i.e., Pr(this test rejects H0 | H0) = 0.03. The power of the test is 
Pr(this test rejects H0 | H1). 

These are different tests. That means one test could reject H0 while the other does 
not, with the same data, and the probability that the two tests disagree on whether to 
reject H0 is more than 0. 

Let A = [the likelihood-ratio test rejects H0 and the other test does not], 

B = [the other test rejects H0 and the likelihood-ratio test does not], 

and C = [both tests reject H0]. 

(a) Explain and justify each of the seven relations marked by “?” below.


�

�� 

�� 

�� 

�

�� 

Answer: I have changed “?” to A, B, C, D, E, F, and G. 

A 

��

B C 
�� 

↓ ∫ ↓ 
Pr Pr(A H ) =  f(x θ θ ) dx > c f(x θ θ ) dx (A H )= = = c1 1 0 0

�

↓ ∫ 

�� 

| | | |
A A 

cPr(B H c f(x θ = θ f(x θ = θ || 
↑ B↑ ↑ B ↑ 

E F G 
�

�� 

0) =  | 0) dx ≥ | 1) dx = Pr(B H1).=
�� 

�����D� ∫ 
A: The symbol “ 

A
” must be taken to mean the integral over the set of all values 

of x for which the event A occurs. The integral of the probability density function 
of a random variable X over any set, is the probability that that random variable 
is within that set. The density is conditional upon the hypothesis that θ = θ1 

because the probability to the left of “=” is conditional upon H1. 

B: The event A is the event that the likelihood-ratio test reject H0 and the other 
test does not. Therefore, if x ∈ A, then the value of the likelihood-ratio test 
statistic is such that that test rejects H0. That means that when x ∈ A then 
f(x | θ = θ1) 

> c, and hence f(x | θ = θ1) > c f(x θ = θ0).
f(x | θ = θ0) 

| 

C: The justification of this equality is the same as in “A” above.  

D: We know that 

Pr(the likelihood-ratio test rejects H0 | H0) =  P (the other test rejects H0 | H0). 

The verbal statement “The likelihood-ratio test rejects H0” is equivalent to 

“ The likelihood-ratio test rejects H0 or [ both tests reject H0]”and the other test does not 



which is to say, it is equivalent to “A or C”. Similarly, the statement “The other 
test rejects H0” is equivalent to “B or C”. Consequently we conclude that 

Pr(A or C H0) =  Pr(B or C H0).| | 

Then, by mutual exclusivity, 

Pr(A H0) +  Pr(C H0) =  Pr(B H0) +  Pr(C H0).| | | | 

Consequently

Pr(A H0) =  Pr(B H0).
| | 

E: Again, the justification is the same as in “A”. 

F: Just as in “B”, except that the test does not reject H0. 

G: Just as in “A”. 

(b) By thinking about Pr(A or C H1) and  Pr(B or C | H1), explain why the con-|
clusion of part (a) can be summarized by saying that the likelihood-ratio test is 
better than the other test. (This is the “Neyman-Pearson lemma.”) 

Answer: We just showed 

Pr(A H1) > Pr(B H1).| | 

It follows that

Pr(A or C H1) > Pr(B or C H1).
| | 

We saw above that “A or C” is equivalent to “The likelihood-ratio test rejects 
H0” and “B or C” is equivalent to “The other test rejects H0.” Consequently we 
conlude: 

Pr(The likelihood-ratio test rejects H0 | H1) > Pr(The other test rejects H0 | H1). 

The two tests have equal probabilities of Type I error, but the likelihood-ratio test 
has a smaller probability of Type II error. In other words, the likelihood-ratio test 
is the most powerful test among all tests with a particular probability of Type I 
error. 


