
18.441 Answers to the final examination 18.441

1. A study compared frequencies of a particular allele in a sample of adult-onset diabetics and a sample
of non-diabetics. Here are the data:

Diabetic Normal
Bb or bb 12 4

BB 39 49

Test the null hypothesis that BB occurs just as frequently among diabetics as among normal persons
in the population from which this sample was taken, at the 5% level.

Answer: We need the marginal totals:

Diabetic Normal
Bb or bb 12 4 16

BB 39 49 88
51 53 104

We take
16

104
to be an estimate of an individual’s probability of being in the first row of the table, and

similarly we take
51

104
to be an estimate of an individual’s probability of being in the first column. The

null hypothesis says the events of being in the first row and being in the first column are independent,

and so an estimate of the probability of being in the first row and the first column is
16

104
· 51

104
. As an

estimate of the expected number of individuals in the first row and first column, we get

104 · 16

104
· 51

104
=

16 · 51

104
.

In the sum
∑ (observed− expected)2

expected
, the term corresponding to the first row and first column is

therefore
(12− (16 · 51/104))2

16 · 51/104
. The test statistic is the sum of the terms similarly corresponding to

the four cells; it is

(12− (16 · 51/104))2

16 · 51/104
+

(4− (16 · 53/104))2

16 · 53/104
+

(39− (88 · 51/104))2

16 · 51/104
+

(49− (88 · 53/104))2

16 · 53/104

= 5.099788 . . .

Under the null hypothesis this test statistic has a χ2
(2−1)(2−1) = χ2

1 distribution. According to the table,

Pr(χ2
1 > 3.841) = 0.95. Since 5.099788 > 3.841, we reject the null hypothesis.
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2. Suppose Y1, . . . , Yn are independent and Yi ∼ N(α0 + α1xi, σ2) for i = 1, . . . , 8. Find the probability
distribution of

∑8
i=1(Yi − (α̂0 + α̂1xi))

2, where α̂0 and α̂1 are the respective least-squares estimates of
α0 and α1.

Answer: I intended to write Y1, . . . , Y8 above, and that is how apparently everyone read it. If the
least-squares estimates α̂0 and α̂1 were based on n observations for some n > 8 then we would have a
more complicated problem.

Let Y =




Y1
...

Y8


, X =




1 x1
...

...
1 x8


, and α =

[
α0

α1

]
. Then we have Y ∼ N8 (Xα, σ2I8). The least-

squares estimators are given by α̂ =

[
α̂0

α̂1

]
= (X ′X)−1X ′Y and the fitted values by

Ŷ =




α̂0 + α̂1x1
...

α̂0 + α̂1x8


 =




1 x1
...

...
1 x8




[
α̂0

α̂1

]
= Xα̂ = X(X ′X)−1X ′Y = HY.

The matrix H = X(X ′X)−1X ′ is a symmetric idempotent matrix whose column space is the same as
that of X, and whose rank is therefore 2 (assuming the xis are not all equal). We want the distribution
of

8∑
i=1

(Yi − (α̂0 + α̂1xi))
2 = ‖Y − Ŷ ‖2 = ‖Y −HY ‖2 = ‖(I −H)Y ‖2.

Observe that

E((I −H)Y ) = (I −H)E(Y ) = (I −H)Xα = Xα−HXα = Xα−Xα = 0.

Since I −H is a symmetric idempotent matrix of rank 8− 2 = 6 whose columns are orthogonal to the
columns of X, we have

I −H = G




0
0

I8−2


 G′

where G = [g1, g2, g3, . . . , g8] ∈ R8 is an orthogonal matrix whose first two columns span the column
space of X. So we have

‖(I −H)Y ‖2 = Y ′(I −H)′(I −H)Y = Y ′(I −H)Y

= Y ′G




0
0

I8−2


 G′Y = W ′




0
0

I8−2


 W = W 2

3 + · · ·+ W 2
8 .

Now
W = G′Y ∼ N8(G

′Xα, σ2G′I8G) = N8(G
′Xα, σ2I8)

The expected value G′Xα is Continued−→
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G′Xα =




g′1Xα
g′2Xα

0
...
0




i.e., the 3rd through 8th entries are 0 because g3, . . . , g8 are orthogonal to the column space of X.
Consequently 


W3
...

W8


 ∼ N8−2(0, σ2I8−2),

or, in other words,
W3, . . . ,W8 ∼ i. i. d. N1(0, σ

2)

and so
8∑

i=1

(Yi − (α̂0 + α̂1xi))
2 = ‖(I −H)Y ‖2 = W 2

3 + · · ·+ W 2
8 ∼ σ2χ2

8−2 = σ2χ2
6.

And that answers the question.

Why did I mention the fact that E((I − H)Y ) = 0 above? Because you could rely on that as an
alternative to mentioning that all but the first two components of the vector G′Xα are 0, although we
never emphasized that point.

It is amusing, and consequently perhaps useful as an aid to memory, to notice that the practice of
calling the diacritical mark above the “Y ” in “Ŷ ” a “hat”, conjoined with the identity HY = Ŷ , may
be the cause of the convention of using the letter H for that matrix, and sometimes even calling it
“the hat matrix.”

3. Suppose Yij ∼ N(µi, σ2) for i = 1, 2, 3 and j = 1, 2, 3, 4, and all 12 of the Y s are mutually independent.
The entry in the ith column and jth row below is the observed value of Yij. Test the null hypothesis
µ1 = µ2 = µ3 at the 5% level, making it clear what you do and how you do it.

29 20 17
19 19 16
34 26 7
32 31 28

Answer: This is a standard analysis-of-variance problem.
Â

Á

¿

À

Total variability
in the data, with

3 · 4− 1 = 11
degrees of freedom

↓︷ ︸︸ ︷
3∑

i=1

4∑
j=1

(
Yij − Y ••

)2
=

Â

Á

¿

À

Between-group
variability, with

3− 1 = 2
degrees of freedom

↓︷ ︸︸ ︷
3∑

i=1

4∑
j=1

(
Yi• − Y ••

)2
+

Â

Á

¿

À

Within-group
variability, with
3 · (4− 1) = 9

degrees of freedom

↓︷ ︸︸ ︷
3∑

i=1

4∑
j=1

(
Yij − Y i•

)2
.
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Notice that

• The between-group sum of squares is distributed as σ2χ2
2

if the null hypothesis is true, and

• The within-group sum of squares is distributed as σ2χ2
9

(regardless of whether the null hypothesis is true), and

• They are independent, and so

• The former divided by the latter is distributed as F2,9

if the null hypothesis is true.
(The “nuisance parameter” σ2 cancels out when we divide.)

According to the table, Pr(F2,9 > 4.26) = 0.05, so we reject the null hypothesis iff F > 4.26.

From the data above, we get

Y 1• = (29 + 19 + 34 + 32)/4 = 28.5.
Y 2• = (20 + 19 + 26 + 31)/4 = 24.
Y 3• = (17 + 16 + 7 + 28)/4 = 17.
Y •• = 23 + 1/6←− saving

rounding for the last step

4
(
Y 1• − Y ••

)2
+ 4

(
Y 1• − Y ••

)2
+ 4

(
Y 1• − Y ••

)2
= 268 + 2/3
= between-group sum of squares.

(
Y11 − Y 1•

)2
+

(
Y12 − Y 1•

)2
+

(
Y13 − Y 1•

)2
= (29− 28.5)2 + (19− 28.5)2

+(34− 28.5)2 + (32− 28.5)2 = 133.

(
Y21 − Y 2•

)2
+

(
Y22 − Y 2•

)2
+

(
Y23 − Y 2•

)2
= (20− 24)2 + (19− 24)2

+(26− 24)2 + (31− 24)2 = 94.

(
Y31 − Y 3•

)2
+

(
Y32 − Y 3•

)2
+

(
Y33 − Y 3•

)2
= (17− 17)2 + (16− 17)2

+(7− 17)2 + (28− 17)2 = 222.

133 + 94 + 222 = 449
= between-group sum of squares

F =
between-group sum of squares/degrees of freedom

within-group sum of squares/degrees of freedom
=

(268 + 2/3)/2

449/9
= 2.69265 . . . 6> 4.26

so we do not reject the null hypothesis.
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4. Discard the third column of data above. Find a 90% confidence interval for µ1 − µ2.

Answer:

Y 1• =
Y11 + Y12 + Y13 + Y14

4
∼ N

(
µ1,

σ2

4

)

Y 2• =
Y21 + Y22 + Y23 + Y24

4
∼ N

(
µ2,

σ2

4

)

Y 1• − Y 2• ∼ N

(
µ1 − µ2,

σ2

4
+

σ2

4

)
= N

(
µ1 − µ2,

σ2

2

)

(
Y 1• − Y 2•

)− (µ1 − µ2)

σ/
√

2
∼ N(0, 1)

∑4
j=1

(
Y1j − Y 1•

)2
+

∑4
j=1

(
Y2j − Y 2•

)2

σ2
∼ χ2

(4−1)+(4−1) = χ2
6

and the last two random variables above are independent. Therefore

√
2
((

Y 1• − Y 2•
)− (µ1 − µ2)

)
√(∑4

j=1

(
Y1j − Y 1•

)2
+

∑4
j=1

(
Y2j − Y 2•

)2
)

/6

∼ t6. (“σ” has cancelled out.)

The table then tells us that

Pr


−1.943 <

√
2
√

6
((

Y 1• − Y 2•
)− (µ1 − µ2)

)
√∑4

j=1

(
Y1j − Y 1•

)2
+

∑4
j=1

(
Y2j − Y 2•

)2
< 1.943


 = 0.9.

Solving the system of two inequalities that appear within the expression “Pr(· · · · · · )” above, we find
that the endpoints of the 90% confidence interval are:

Y 1• − Y 2• ± 1.943

√∑4
j=1

(
Y1j − Y 1•

)2
+

∑4
j=1

(
Y2j − Y 2•

)2

12
.

Then we can plug in the numbers, which are among those on page 4 of these answers:

28.5− 24± 1.943

√
133 + 94

12
,

and so the 90% confidence interval is the interval from −3.95 . . . to 12.95 . . . .
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5. Suppose x1 = 200, x2 = 220 and x3 = 222, and logitPr(Yi = 1) = (1/7)(xi − 221) for i = 1, 2, 3, and
Y1, Y2, Y3 are mutually independent. Find Pr(Y1 = 0 & Y2 = 1 & Y3 = 0).

Answer: If v = logit(p) = log
p

1− p
= log

(
−1 +

1

1− p

)
then p =

1

1 + e−v
and 1− p =

1

1 + e+v
. So

Pr(Y1 = 0 & Y2 = 1 & Y3 = 0)

¨
§

¥
¦By independence

↓
= Pr(Y1 = 0)Pr(Y2 = 1)Pr(Y3 = 0)

= (1− Pr(Y1 = 1))Pr(Y2 = 1)(1− Pr(Y3 = 1))

=
1

1 + e+(1/7)(200−221)
· 1

1 + e−(1/7)(220−221)
· 1

1 + e+(1/7)(222−221)

=
1

1 + e−3
· 1

1 + e1/7
· 1

1 + e1/7
= 0.20539 . . . .

6. Suppose X1, . . . , Xn ∼ i. i. d. N(µ, 12).

(a) Show that the likelihood-ratio test of the null hypothesis µ = 3 against the alternative hypothesis
µ = 5 rejects the null hypothesis if and only if X = (X1 + · · ·+ Xn)/n > c for some number c.

Answer: The likelihood function is

L(µ) = L(µ | X1 = x1, . . . , Xn = xn) =
n∏

i=1

(
1√
2π

exp

(
− (xi − µ)2

2

))

= (2π)−n/2 exp

(−∑n
i=1(xi − µ)2

2

)
= (2π)−n/2 exp

(−n(x− µ)2 −∑n
i=1(xi − x)2

2

)
.

Therefore the likelihood ratio for this particular pair of hypotheses is:

L(3 | X)

L(5 | X)
=

exp

(−n(X − 3)2 −∑n
i=1(Xi −X)2

2

)

exp

(−n(X − 5)2 −∑n
i=1(Xi −X)2

2

) = exp
(n

2

{
(X − 5)2 + (X − 3)2

})

= exp
(n

2

(
34− 16X

))
, and this is a decreasing function of X.

We reject the null hypothesis iff this likelihood ratio is too small. Since this likelihood ratio is a
decreasing function of X, we reject the null hypothesis iff X is too big.
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(b) Find the value of c if n = 6 and the probability of Type I error is 0.05.

Answer: We have X | [µ = 3] ∼ N(3, 12/6), so

0.05 = Pr
(
X > c | µ = 3

)
= Pr

(
X − 3

1/
√

6
>

c− 3

1/
√

6

∣∣∣∣ µ = 3

)
= Pr(Z >

√
6(c−3)) = 1−Φ(

√
6(c−3)).

Φ(
√

6(c− 3)) = 0.95.

√
6(c− 3) = Φ−1(0.95) = 1.645 (from the table).

c = 3 +
1.645√

6
= 3.67 . . . .

7. The frequency P with which a possibly biased coin turns up heads is distributed as Beta(3, 3). Let
X be the number of times the coin must be tossed in order to get heads once. Describe the posterior
distribution of P given the observation that X = 3.

Answer: Since P ∼ Beta(3, 3), the prior density is

fP (p) = [constant] · p3−1(1− p)3−1.

The likelihood function is

L(p) = Pr(X = 3 | P = p) = Pr(tails on 1st & 2nd trials & heads on 3rd | P = p) = (1− p)2p.

The posterior density is therefore

[constant] · p3−1(1− p)3−1 · (1− p)2p = [constant] · p4−1(1− p)5−1.

In short, P | [X = 3] ∼ Beta(4, 5).

8. Recall that the Fisher information is I(θ) = varθ ((d/dθ) log f(X | θ)). Suppose X ∼ Bin(3, θ). Use
the Fisher information to find a lower bound on the mean squared error of unbiased estimators of θ.

Answer: The Cramér-Rao lower bound is 1/I(θ). First, we find I(θ):

I(θ) = varθ ((d/dθ) log f(X | θ)) = varθ

(
d

dθ
log

{(
3

X

)
θX(1− θ)3−X

})

= varθ

(
d

dθ

{
log

(
3

X

)
+ X log θ + (3−X) log(1− θ)

})
= varθ

(
X

θ
− 3−X

1− θ

)

= varθ

(
X − 3θ

θ(1− θ)

)
=

varθ(X − 3θ)

θ2(1− θ)2
=

varθ(X)

θ2(1− θ)2
=

3θ(1− θ)

θ2(1− θ)2
=

3

θ(1− θ)
.

So the lower bound is
θ(1− θ)

3
. In other words, no unbiased estimator of θ based on the observed

value of this random variable X can have a mean squared error smaller than
θ(1− θ)

3
.
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9. Suppose X1, X2 ∼ i. i. d. and X1 =

{
1 with probability θ
0 with probability 1− θ

}
.

(a) Show that X1 is an unbiased estimator of θ.

Answer: Eθ(X1) = 0 · Prθ(X1 = 0) + 1 · Prθ(X1 = 1) = Pr(X1 = 1) = θ.

(b) Show that X1 + X2 is sufficient for θ.

Answer: One way to do this is by finding a Fisher factorization. Notice that

Prθ(X1 = x1) =

{
θ if x1 = 1

1− θ if x1 = 0

}
= θx1(1− θ)1−x1 .

Consequently

fX1,X2(x1, x2 | θ) = Prθ(X1 = x1 & X2 = x2) = Prθ(X1 = x1)Prθ(X2 = x2)

= θx1(1− θ)1−x1θx2(1− θ)1−x2 = θx1+x2(1− θ)2−(x1+x2)

︸ ︷︷ ︸
↑²

±

¯

°

This is
g(x1 + x2)

· 1
↑²

±

¯

°

This is
h(x1, x2).

(Sometimes h is not just 1; for example, that happens with independent observations from a
Poisson distribution.)

Another way relies on the definition of sufficiency and the fact that X1 + X2 | θ ∼ Bin(2, θ):

Prθ(X1 = x1 & X2 = x2 | X1 + X2 = x1 + x2)

=
Prθ(X1 = x1 & X2 = x2 & X1 + X2 = x1 + x2)

Prθ(X1 + X2 = x1 + x2)
=

Prθ(X1 = x1 & X2 = x2)

Prθ(X1 + X2 = x1 + x2)

=
θx1+x2(1− θ)2−(x1+x2)

(
2

x1 + x2

)
θx1+x2(1− θ)2−(x1+x2)

=
1(
2

x1 + x2

)

and this does not depend on θ.
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(c) Rely on the Rao-Blackwell theorem to find a better unbiased estimator of θ than the one considered
above.

Answer: The better estimator is E(X1 | X1 + X2). We have:

E(X1 | X1 + X2 = x) = Pr(X1 = 1 | X1 + X2 = x) =
Pr(X1 = 1 & X1 + X2 = x)

Pr(X1 + X2 = x)

=
Pr(X1 = 1 & X2 = x− 1)

Pr(X1 + X2 = x)
=

Pr(X1 = 1)Pr(X2 = x− 1)

Pr(X1 + X2 = x)
=

θ · Pr(X2 = x− 1)(
2

x

)
θx(1− θ)2−x

=

θ ·




0 if x = 0
1− θ if x = 1

θ if x = 2





(
2

x

)
θx(1− θ)2−x

=





0 if x = 0

1/2 if x = 1

1 if x = 2





=





0/2 if x = 0

1/2 if x = 1

2/2 if x = 2





=
x

2
.

Therefore the estimator that we seek is

E(X1 | X1 + X2) =
X1 + X2

2
.
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