Clarification of part of the 4th problem set ## Redo the problem with this in mind, and turn it in on Monday, Session #18. 7. Suppose X₁, X₂, X₃ ~ i. i. d. Uniform(0, θ). By using a Fisher factorization, we showed in class that max{ X₁, X₂, X₃ } is a sufficient statistic for θ. I have decided to hand you the following fact free of charge rather than have you work out the details: The conditional distribution of X₁, X₂ given that X₃ = max{ X₁, X₂, X₃ } is given by $$X_1, X_2 \mid [X_3 = \max\{X_1, X_2, X_3\}] \sim \underbrace{\mathrm{i.\,i.\,d.\,Uniform}(0, X_3)}_{\text{\uparrow No "$\theta" appears here.}}.$$ **CLARIFICATION:** I originally intended the conditional distribution of X_1, X_2 given, not just the event that $X_3 = \max$, but also the actual value of X_3 . Therefore I should have said: $$X_1, X_2 \mid [X_3 = \max, \max] \sim \overbrace{\text{i. i. d. Uniform}(0, \max)}^{\text{No "θ" appears here.}}$$ $$= \text{i. i. d. Uniform}(0, \max\{X_1, X_2, X_3\})$$ $$= \text{i. i. d. Uniform}(0, X_3).$$ (The absence of " θ " from this distribution is what sufficiency is.) We also observed that $$2\overline{X} = 2 \cdot \frac{X_1 + X_2 + X_3}{3}$$ is an unbiased estimator of θ . - (a) Use the case X₁ = 2, X₂ = 1, X₃ = 12 to explain why 2X̄ is a flawed estimator of θ. (This is no different from what we did in class on March 4th, so don't work too hard on this part.) - (b) Find Pr(X₃ = max{X₁, X₂, X₃}). - (c) Use what is given above to find E(2X | X₃ = max{X₁, X₂, X₃}) - (d) Finally, find the Rao-Blackwell estimator E(2\overline{X} | max{ X₁, X₂, X₃}).