
The Bayesian Central Limit Theorem, 

with some intructions on #1(e) of the second problem set 

We have seen Bayes formula:

posterior probability density = constant prior probability density likelihood function.· ·
The “Bayesian Central Limit Theorem” says that under certain circumstances, the posterior
probability distribution is approximately a normal distribution. Actually more than one
proposition is called “the Bayesian Central Limit Theorem,” and we will look at two of
them.

First version: Suppose Θ is distributed according to the probability density function fΘ(θ),
and

X1, X2, X3, . . . . . . [Θ = θ] ∼ i. i. d. fX1 [Θ=θ](x)| |

i.e., X1, X2, X3, . . . are conditionally independent given that Θ = θ, and fX1 [Θ=θ](x), as a|
function of x with θ fixed, is the conditional probability density function of X1 given that
Θ = θ. Suppose the posterior probability density function fΘ [X1=x1,...,Xn=xn] is everywhere|
twice-differentiable, for all n.

Let c = the posterior expected value = E(Θ X1 = x1, . . . , Xn = xn), and|

let d = the posterior standard deviation =
√

Var(Θ | X1 = x1, . . . , Xn = xn).

Then if the distribution of U is the posterior distribution, then the distribution of
U − c

is
d

approximately standard normal; more precisely: that distribution approaches the standard
normal distribution as n approaches infinity. �

More tersely: The posterior distribution approaches a normal distribution as the sample-size
n grows.

How big a value of n is needed to get a good approximation? For a partial answer to that,
consider #1(e) on the second problem set. A 90% posterior probability interval found without
using the Bayesian Central Limit Theorem is (0.419705351626, 0.788091845180). These are
correct to 12 digits after the decimal point if I can trust my software. The endpoints of this
interval differ from the approximations given by the above version of the Bayesian Central
Limit Theorem by slightly less than 0.01.

In the case of beta distributions, finding the expected value and the standard deviation
is trivial: Just use what is says on page 306 of Schervish & DeGroot. For some other
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distributions, finding the expected value and the standard deviation may require laborious
integrals, and hence we might use the next version of the Bayesian Central Limit Theorem:

Second version: Start with the same assumptions as in the first version.

Let c = the posterior mode
= the value of θ that maximizes the posterior density function fΘ [X1=x1,...,Xn=xn](θ).|

Let k(θ) = log fΘ [X1=x1,...,Xn=xn](θ).|

Let d = (−k′′(c)))−1/2.

Then if the distribution of U is the posterior distribution, then the distribution of
U − c

is
d

approximately standard normal; more precisely: that distribution approaches the standard
normal distribution as n approaches infinity. �

Important: In #1(e) on the second problem set, try both versions of the Bayesian
Central Limit Theorem. Compare the result of each with the result alleged to
be correct in the second-to-last paragraph on the first page of this handout.

Here is a rough sketch of a proof of the second version. Denote fΘ X1=x1,...,Xn=xn(θ) by f(θ),|
and let k(θ) = log f(θ). Then

f(θ) = elog f(θ) k(θ) k(c)+k′(c)(θ−c)+k′′(c)(θ−c)2/2+k′′′(c)(θ−c)3/6+= e = e ·········

k(c)+k′(c)(θ−c)+k′′(c)(θ−c)2/2= e∼

k(c)+0+k′′(c)(θ−c)2/2= e

= [constant] · ek′′(c)(θ−c)2/2

(We must have k′(c) = 0 and k′′(c) < 0

since there is a maximum at c.)

= [constant] · e−(θ−c)2/(2σ2)

provided −1/σ2 = k′′(c), i.e., σ = (−1/k′′(c))−1/2, which is the same thing that followed the
words “Let d =” above.

Why do the 3rd- and higher-degree terms evaporate as n → ∞ above? To answer that you
need to know how they depend on n. Those interested in such theoretical questions can
work out the details.

2


