

Inside the Digital Gate

Review

The Digital Abstraction

- Discretize value 0,1
- Static discipline meet voltage thresholds

Specifies how gates must be designed

Combinational gate abstraction → outputs function of input alone → satisfies static discipline

3 gates here

- A Pentium III class microprocessor is a circuit with over 4 million gates!!
- The RAW chip being built at the Lab for Computer Science at MIT has about 3 million gates.

Use this insight to build an AND gate.

How to build a digital gate

Electrical Analogy

Bulb C is ON if A AND B are ON, else C is off

Key: "switch" device

Electrical Analogy

open circuit between in and out

For mechanical switch, control \longrightarrow mechanical pressure

Consider

6.002 Fall 2000 Le

Lecture 5

What about?

can also build compound gates

3 terminal lumped element behaves like a switch

G : control terminal
D,S : behave in a symmetric
manner (for our needs)

The MOSFET Device

Understand its operation by viewing it

 $V_T \approx 1V$ typically

"Switch" model (S model) of the MOSFET

Check the MOS device on a scope.

6.002 Fall 2000

Lecture 5

Note the power of abstraction.

The abstract inverter gate representation hides the internal details such as power supply connections, R_L , GND, etc.

The T1000 model laptop desires gates that satisfy the static discipline with voltage thresholds. Does out inverter qualify?

Our inverter satisfies this.

E.g.: Does our inverter satisfy the static discipline for these thresholds:

$$V_{OL} = 0.2V \qquad V_{IL} = 0.5V \\ V_{OH} = 4.8V \qquad V_{IH} = 4.5V \end{cases} \text{ yes}$$

$$V_{OL} = 0.5V \qquad V_{IH} = 1.5V \\ V_{OH} = 4.5V \qquad V_{IH} = 3.5V \end{cases} \text{ no}$$

Switch resistor (SR) model of MOSFET

...more accurate MOS model

e.g. $R_{ON} = 5K\Omega$

SR Model of MOSFET

Using the SR model

Lecture 5