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Abstract

3D building models are beneficial to architects, interior designers, and ordinary people
in visualizing indoor space in three dimensions. 3D building models appear to be more
aesthetic to ordinary people than architectural drawings. Architects can benefit from
such models in detecting any inconsistencies in their designs. This thesis describes
the design and implementation of an efficient 3D building model generator (3dGen)
that can automatically create 3D building models from AutoCAD drawings. This
thesis explains how 3dGen takes floor plan data in XML format (generated from
AutoCAD drawings), extrudes the walls and vertical surfaces and adds additional 3D
information to the existing floor plan. In doing so 3dGen aims to satisfy the complete
watertight space and the manifold properties and attempts to minimize the amount
of 3D data by eliminating redundant geometric primitives. This thesis explains the
algorithms that were employed in order to generate correct surfaces with many types
of portals in them and algorithms that detect inconsistencies in the 2D architectural
drawings.

Thesis Supervisor: Seth Teller
Title: Professor of Computer Science and Engineering

3



4



Acknowledgments

I would like to express gratitude to my advisor, Professor Seth Teller, for giving

me the opportunity to work on this exciting and challenging project. Even more, I

would like to thank Yoni Battat for guidance and help throughout the project and his

willingness to lend me a hand and his expertise in rough times. I would also like to

thank Emily Whiting and Yoni Battat for setting up BMG framework and providing

me with XML data input that I used throughout the project. I would also like to

thank Grayson Giovine, Yoni Battat, Seth Teller, and Emily Whiting for providing

me with a great research environment during the early stages of the BMG project.

I also would like to thank David Lambeth for his hand in understanding some of

algorithms. Thanks also go to Ben Charrow for telling me about lab soccer matches.

Lastly, I would like to thank my family and friends for their never-ending support and

love throughout my educational career. I would most of all like to thank my mom for

her devotion in raising me to become who I am today.

5



6



Contents

1 Introduction 17

1.1 Motivation for 3D model generation from floor plans . . . . . . . . . 18

1.2 Terminology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1 Spaces and Portals: overview . . . . . . . . . . . . . . . . . . 20

1.2.2 Vertices and Edges: implementation . . . . . . . . . . . . . . . 22

1.2.3 Surfaces/Faces and Walls . . . . . . . . . . . . . . . . . . . . . 23

1.3 Manifold property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Watertight property . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 System Architecture 29

2.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2 Input Data: DXF and XML . . . . . . . . . . . . . . . . . . . 30

2.1.3 3dGen: Building Model Generation . . . . . . . . . . . . . . . 32

2.1.4 xml2ug: conversion of XML into unigrafix . . . . . . . . . . . 34

2.1.5 Inventor: output data . . . . . . . . . . . . . . . . . . . . . . 34

2.2 3DGen in-depth overview . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 XML to Unigrafix to Inventor . . . . . . . . . . . . . . . . . . . . . . 38

3 Algorithms in 3DGen 41

3.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 2D Vertex Order and Orientation . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Manifold Property requirements revisited . . . . . . . . . . . . 43

7



3.2.2 Vertex Orientation Checker Algorithm . . . . . . . . . . . . . 43

3.3 Portal Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Implicit Portal fixer . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Multiple explicit portals on an edge . . . . . . . . . . . . . . . 46

3.4 Implicit Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Generating 3D Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 Generating walls with no portals . . . . . . . . . . . . . . . . 49

3.5.2 Generating explicit portals . . . . . . . . . . . . . . . . . . . . 51

3.5.3 Generating implicit portals . . . . . . . . . . . . . . . . . . . . 54

3.5.4 Generating floors and ceilings . . . . . . . . . . . . . . . . . . 55

3.5.5 Watertight Property in Horizontal Portals . . . . . . . . . . . 57

3.6 Multiple floors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.1 Stacking floors on top of each other . . . . . . . . . . . . . . . 58

3.6.2 Completing manifold in Vertical Portals . . . . . . . . . . . . 59

3.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Conclusions 61

5 Future Work 63

A Algorithms 65

A.1 Algorithm: generation of explicit portal vertices . . . . . . . . . . . . 65

A.2 Algorithm: detection of overlapping portals and correction . . . . . . 68

A.3 Algorithm: generation of faces with multiple portals in them . . . . . 71

A.4 Algorithm: detecting implicit surfaces . . . . . . . . . . . . . . . . . . 74

A.5 Algorithm: generation of horizontal portal surfaces . . . . . . . . . . 78

A.6 Algorithm: generation of vertical portal surfaces . . . . . . . . . . . . 80

B 3dGen Manual 81

B.1 3dGen Package Overview . . . . . . . . . . . . . . . . . . . . . . . . . 81

B.2 Where to obtain 3dGen . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B.3 Running 3dGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8



B.4 Parameters set in the code . . . . . . . . . . . . . . . . . . . . . . . . 83

B.5 Viewing geometric models in VRML . . . . . . . . . . . . . . . . . . 84

C 3D Geometric models 85

9



10



List of Figures

1-1 Illustration of 2D floor plan of a single floor (as defined in DXF.) . . 19

1-2 The 3D model of the floor generated by 3dGen. . . . . . . . . . . . . 19

1-3 Explicit and Implicit portals on a floorplan. . . . . . . . . . . . . . . 21

1-4 Explicit and Implicit portals, in 3D. . . . . . . . . . . . . . . . . . . . 21

1-5 2D vertices, contour edges, and closed spaces. . . . . . . . . . . . . . 22

1-6 2D edges from adjacent spaces. . . . . . . . . . . . . . . . . . . . . . 23

1-7 Illustration of importance of properly-oriented vertices in drawing sur-

faces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1-8 Illustration of manifold property in the 3D space. . . . . . . . . . . . 25

1-9 Analogy of Watertight Property. . . . . . . . . . . . . . . . . . . . . . 26

2-1 The BMG framework system overview. The yellow boxes are modules

that fall into the scope of this paper. . . . . . . . . . . . . . . . . . . 30

2-2 XML output of DXF Parser and an input to 3DGen. . . . . . . . . . 31

2-3 XML output of 3DGen (with 3D data included.) . . . . . . . . . . . . 33

2-4 Output of xml2ug after XML has been converted to unigrafix. . . . . 34

2-5 The 3D Generator system overview. . . . . . . . . . . . . . . . . . . . 35

2-6 Illustration of vertex redundancy (when each wall has its own set of

vertices). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2-7 Illustration of limited vertex redundancy at portals. . . . . . . . . . . 37

2-8 Visualization of the model building 10 on MIT campus, as seen in ivview. 39

3-1 The Data Structure of the Object Model of 3DGen. . . . . . . . . . . 42

3-2 Illustration of manifold property in the 3D space. . . . . . . . . . . . 44

11



3-3 Illustration of vertex orientation checker. . . . . . . . . . . . . . . . . 44

3-4 Illustration of the sorted portals map. . . . . . . . . . . . . . . . . . . 46

3-5 Illustration of the portal overlap and subsequent fix. . . . . . . . . . . 47

3-6 Example of implicit surfaces. . . . . . . . . . . . . . . . . . . . . . . . 48

3-7 Illustration of intersection of coincident contour edges. . . . . . . . . 49

3-8 Wall extrusion and 3D vertex generation. . . . . . . . . . . . . . . . . 50

3-9 Illustration of break-up of the wall into faces surrounding the explicit

portal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3-10 Adjacent semi-edges are directed in the opposite direction to form a

complete shared edge. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3-11 Nooks and crannies of portal vertex generation. . . . . . . . . . . . . 53

3-12 Generation of faces for multiple explicit portals for an edge. . . . . . 53

3-13 Illustration of break-up of the wall into faces surrounding the implicit

portal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3-14 Illustration of different positions of implicit portal in the wall. . . . . 55

3-15 Wall with portals of different types (implicit portals mixed with explicit

portals.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3-16 Shared edges between floor and the vertical wall: bad and good sce-

narios.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A-1 Location of Portal Vertices. . . . . . . . . . . . . . . . . . . . . . . . 67

A-2 Detecting overlapping portals. . . . . . . . . . . . . . . . . . . . . . . 69

A-3 Three cases of drawing portals. . . . . . . . . . . . . . . . . . . . . . 71

A-4 Four cases for overlapping coincident edges. . . . . . . . . . . . . . . 76

A-5 Coincident Edges: Case 1. . . . . . . . . . . . . . . . . . . . . . . . . 76

A-6 Coincident Edges: Case 2. . . . . . . . . . . . . . . . . . . . . . . . . 76

A-7 Coincident Edges: Case 3. . . . . . . . . . . . . . . . . . . . . . . . . 77

A-8 Coincident Edges: Case 4. . . . . . . . . . . . . . . . . . . . . . . . . 77

A-9 Portal surfaces for explicit horizontal portals . . . . . . . . . . . . . . 79

12



B-1 The example sequence of commands to generate the geometric model

of MIT building 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C-1 Model 1 view 1: Looking into a neighboring space through the implicit

portal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

C-2 Model 1 view 2: An example of the doorframes at portals . . . . . . . 86

C-3 Model 1 view 3: Hallway as seen inside the VRML viewer . . . . . . . 86

13



14



List of Tables

15



16



Chapter 1

Introduction

Many people are accustomed to seeing floor plans of museums, airports, malls, and

other public places. In home purchase, a real estate broker will provide future tenant

with floor plans of his future home, along with pictures of the interior. Architects

create elaborate architectural drawings that may not be readable by ordinary people.

In all these scenarios architects, real estate brokers, and members of the public deal

with two-dimensional plans of buildings. For some people 2D plans may be enough,

but in many cases three-dimensional models are needed for better assessment of the

building interior.

3D models would help architects discover inconsistencies in their initial design

(such as leaky corners, improper location of doorways, amongst other things), some-

thing they may have missed on 2D drawings. In addition, architects may find it easier

to communicate with their clients, who may not be well-versed in understanding mul-

tiple architectural symbols on their drawings [1]. Real estate brokers can provide

potential buyers with 3D models to help buyers visualize the property better. An

advanced version of the 3D building model with actual pictures of the interior would

make a great virtual walkthrough for potential buyers and tenants. Most people pre-

fer seeing 3D models instead of flat floor plans in order to feel the interior of any

building. They would prefer to see doorways, peek into neighboring rooms as if they

are inside the building itself. Virtual tours can be created to let members of the

public tour buildings remotely, from their own computers.
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The main purpose of this project is to generate a corpus of many buildings on

MIT campus. The final model contains 3-dimensional representations of every floor,

stacked on top of each other, forming each building as a whole.

This chapter introduces terminology that is used throughout this thesis, as well as

certain properties that have to be satisfied. Chapter two describes the architecture of

the BMG Framework and of 3D Building Model Generator. Chapter three describes

the design of the 3D Building Model Generator as well as any algorithms that were

used in generating the 3D corpus. Chapter four outlines the conclusion made from

the previous three chapters. Chapter five discusses how ideas in this thesis can be

extended to future projects. Appendix A gives technical details behind the algorithms

used in this thesis, and appendix B describes how to set up and run 3dGen.

1.1 Motivation for 3D model generation from floor

plans

There are a lot of tools available for graphics designers, architects, and interior design-

ers to create 3D models by hand. In addition, anyone can use a popular Sketch-Up

application provided by Google [2] to create three-dimensional building models. Game

designers rely on the skill of professional interior designers to design interior of build-

ings in action games. Some even create whole graphics engines for generating visual

representations of buildings. DOOM is an action game which was popular in the mid

1990’s. It used a sophisticated graphic rendering engine that was supposedly easy

to modify in order to create highly customizable floor plans. Around the same time,

a group of MIT students from the Senior House dormitory hacked this engine and

created a personalized virtual tour of their dorm [6]. Our project is different in the

way that it seeks to generate 3D models directly from building floor plans automat-

ically. Moreover, these floor plans are derived from original architectural drawings

in AutoCAD format, not from some other floor plan editors. Architects and interior

designers can use the 3D models of buildings to detect any inconsistencies that they
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might have missed on the 2D floor plans. 3D model generation from 2D floor plans

also helps architects communicate with clients who may not be well-versed enough to

understand architectural symbols on AutoCAD drawings. For example, the symbols

such as doors and dashed lines on the architectural floor plan may be better under-

stood as openings in the walls in the 3D models. Figures 1-1 and 1-2 illustrate the

input and output of 3dGen.

Figure 1-1: Illustration of 2D floor plan of a single floor (as defined in DXF.)

Figure 1-2: The 3D model of the floor generated by 3dGen.
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1.2 Terminology Overview

This section explains each term that is used in this thesis in depth.

1.2.1 Spaces and Portals: overview

Before we dive deeper into the system design certain technical terms need to be

clarified. A building consists of floors. Each floor can be broken down into chunks,

called spaces (or room-sized regions). All spaces on the floor are interconnected to

each other via portals (or openings). Portals can be classified according to two types:

explicit portals and implicit portals. Explicit portals correspond to regular doorways

and are usually defined as openings in the wall. Implicit portals, on the other hand,

represent not doorways, but, rather, the functional interconnections between two

open spaces. Usually implicit portals connect hallways with each other to allow for

the impression that the hallway, such as the Infinite Corridor at MIT, spans multiple

buildings, whereas the hallway is actually not a single space but a collection of multiple

spaces fused together by implicit portals. Figure 1-3 illustrates this distinction. On

the left is the section of a complete floor plan that includes both explicit and implicit

portals. Implicit portals are defined by a dashed line. In the middle of the figure,

only space contour edges are displayed (as seen from DXF file). These are 2D edges

that define the contour of the space. Implicit portal is characterized by a single line

between two spaces, 100CD and 100CC. In the picture on the right, explicit portals

are shown. You can see that explicit portals occur only where the edges from adjacent

spaces are parallel, not coincident, but close to each other. A wall layer (red) in DXF

file specifies explicit portals. In the figure, there is one implicit portal between spaces

100CD and 100CC, and 5 explicit portals (4 that form 2 double doors, and one single

door): one from space 100CC to 110, and four from space 150 to 100CC.

Figure 1-4 shows how different portal types appear in 3D.

Portals are also classified as horizontal and vertical portals. Horizontal portals are

those that connect two spaces on the same floor. Vertical portals connect spaces that

are on top of each other on different floors. Only horizontal portals can be implicit
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Figure 1-3: Explicit and Implicit portals on a floorplan.

Figure 1-4: Explicit and Implicit portals, in 3D.

or explicit. Vertical portals by default span entire floor or the ceiling of the space

that they occupy. Stairways, elevator shafts, rooms that span multiple floors are all

examples where vertical portals are applicable.
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1.2.2 Vertices and Edges: implementation

Each space is defined by 2D coordinates in the cartesian plane. Every space is defined

as a list of vertices. Two vertices form an edge if they connect each other.

Figure 1-5: 2D vertices, contour edges, and closed spaces.

An edge in a geometric sense means a line segment that connects two vertices.

An edge in our framework consists of two semi-edges, each pointing in the opposite

direction. A semi-edge is a line segment connecting two vertices and pointed in

one direction. Two semi-edges share the same two vertices, and therefore overlap.

Direction is what makes them different. An edge pair in our framework consists of

not one, but two contour edges, each pointing in the opposite direction. The reason

behind this definition is that many spaces have walls (contour edges in 2D) that are

adjacent to each other. These 2D edges are parallel, but point in opposite directions.

Contour edge is a variation of the edge which is applicable only to 2D floor plans.

Unlike a regular edge, contour edges are unidirectional. The distinction between

contour edges and edges will become more apparent in the Surfaces/Faces and Walls

subsection below.

An edge should not be confused with an edge pair. An edge is local to a space,

whereas, an edge pair spans two spaces. Every contour edge in an edge pair belongs

to one of the two adjacent spaces. Edge pairs ensure that every wall in a space has a

neighboring wall in another space.
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Figure 1-6: 2D edges from adjacent spaces.

1.2.3 Surfaces/Faces and Walls

A major part of BMG involves extruding surfaces from 2D edges to create walls for

each space. The original floor plan is two-dimensional and does not contain any

three-dimensional information such as vertices in 3D space that would define a face.

A wall, or a surface, is defined by at least four vertices, two at the bottom, and two

at the top. In which order the vertices are defined for the surface is important – it

determines which side of the surface is the ”front” side of the face [7]. If a face is

defined by vertices appearing in a counterclockwise order, it is visible to the viewer.

If a face is defined by vertices appearing in clockwise order, viewer observes the back

face (face that is not visible). In order for all walls to be visible from inside the space,

the vertices that define these walls must appear in the counterclockwise order. A wall

is defined by two contour edges, each from one of the two adjacent spaces (these two

contour edges form an edge pair), in 2D, or two faces in 3D that are visible in the

opposite directions from each other. In fact, the surface normals of these faces point

out of the wall in opposite directions. A face of the wall in one room is oriented in the

opposite direction of the face of the same wall in adjacent room. This would result in

this wall being visible from inside both rooms, but not from inside the wall (between

the rooms). See Figure 1-7 for graphical illustration.

23



Figure 1-7: Illustration of importance of properly-oriented vertices in drawing sur-
faces.

1.3 Manifold property

Drawing programs render each polygon as a standalone entity without considering

the fact that another polygon may share an edge with it. The same edge can be part

of one polygon, and another edge – part of the other polygon, both in the same place.

This leads to redundancy – why do we need to have two edges in the same location

instead of one? It would have been better to have one edge that is shared between

the two polygons. It would be more reasonable to put a single edge where two faces

intersect instead of two edges, one for each face. The elimination of redundancy is

good in cases when network bandwidth is limited and it would be best to send the

least amount of data. The manifold property declares that an edge may only be

used twice – since there are only two directions. A legitimate edge is defined as a

combination of the two directions (e.g. up and down for vertical edge, left and right

for horizontal edge). In this project we ensure that there can only be one edge at

any location, and if there are two surfaces adjacent to each other at that edge, they

have to share this single edge. Figure 1-8 illustrates the Manifold property. The two

semi-edges that form the edge use the same two 3D vertices, but are drawn in the

opposite directions.
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Figure 1-8: Illustration of manifold property in the 3D space.

1.4 Watertight property

The concept of a single shared edge not only removes redundancy, but also ensures

that the space is “watertight”, or, tightly sealed in a way if a water was poured into

a geometric model, it would not be able to leak out of it. If two faces did not share

an edge, and each had its own edge, then there would be a possibility of a leak if the

two edges were not coincident.
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Figure 1-9: Analogy of Watertight Property.

In all cases spaces are connected to each other via portals. Just making an opening

in the wall is not enough; the gaps between the walls at the portals also have to be

sealed. As described earlier, a wall consists of two faces, each in its own space, facing

into each of the respective spaces. There is empty space of some thickness between

the faces of the wall. In order to ensure that the three-dimensional model of a floor is

sealed and watertight, this gap between the faces of the wall has to be covered at the

portal. This is like a doorstep and doorframe. To help you understand the watertight

property, think of spaces as pipes, and portals as interconnections between the pipes.

In order for pipes to be leak-proof, they have to be interconnected with each other.

In order for the building model to be watertight, all spaces have to be connected;

there cannot be a space with a portal that does not have another space on the other

side of the portal. This also satisfies the manifold property by ensuring that every

contour edge (edge in one direction) in edge pair in one space has another contour

edge (in the opposite direction) in adjacent space. If one of the pipes in our analogy

is unpaired, all water would leak out of the system. Figure 1-9 shows an example of

spaces not being connected by interconnections.

3DGen takes care of the manifold property by ensuring that all surfaces are defined

by vertices listed in a counterclockwise order (thus forming edges where any two

surfaces intersect each other). The watertight property is implied by the manifold

property and is satisfied partly by using edges that are shared between surfaces (walls,

26



faces), and partly by generating additional surfaces to connect the spaces at portals.

Chapter 3 will do into more depth on the algorithms that ensure that these two

properties are satisfied.
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Chapter 2

System Architecture

This chapter describes the BMG framework and its modules, especially the 3dGen

module.

2.1 System Overview

This section briefly describes each module of BMG framework.

2.1.1 General Overview

The BMG framework includes many separate steps for data processing. The floor

plans are provided in the AutoCAD DXF format, then converted to XML format by

the DXF Parser/Converter (dxf2xml). The XML format is used because it is easily

readable by human eye, has a convenient tree structure and hence easier to parse with

appropriate XML libraries. XML format may not be most compact format, but it is

a very popular standard that is used across many industries and networks.

As you can see from Figure 2-1, the 3D Building Model Generator (3DGen) is

only a subset of the framework. The principal component of the BMG framework is

to provide spatial indoor information as a text stream in a human-readable format.

This XML data of floor plans can be used by various applications. The XML stores

the physical coordinates of each aspect of the space (room, hallway). The graphical
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Figure 2-1: The BMG framework system overview. The yellow boxes are modules
that fall into the scope of this paper.

rendering is left to outside applications, so there is a greater freedom in determining

how this XML data is to be displayed.

2.1.2 Input Data: DXF and XML

According to figure 2-1, the DXF parser converts DXF from AutoCAD proprietary

format to XML. Details of this parsing/conversions are described in Whiting et al.

[9].

The XML output of the DXF parser contains only two-dimensional data such as

the location of vertices that define a space, the location of the portals (both the edge

on which portal lies and the position on that edge). An example XML space is shown

in the figure below (Figure 2-2).
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<MITquest>

<space name=”10−100” type=”OFF”>

<contour>

<cen t ro i d x=”710109.204664” y=”495618.803866 ”/>

<extent maxx=”710124.926644 ” maxy=”495633.909708 ” minx=”710094.974557 ” miny=” 495604.344736”/>

<point x=”710123.855353” y=”495619.274498”/>

<point x=”710117.185703” y=”495633.909708”/>

<point x=”710115.669101” y=”495633.218553”/>

<point x=”710116.083794” y=”495632.308591”/>

<point x=”710123.855353” y=”495619.274498”/>

</ contour>

<po r ta l c l a s s=” ho r i zo n t a l ” source=” f a l s e ” ta r ge t=”10−100A” type=” e x p l i c i t ”>

<edge index=”11” param=” 0.517804 ”/></ po r ta l>

<po r ta l c l a s s=” ho r i zo n t a l ” source=” true ” t a rg e t=”10−100C” type=” e x p l i c i t ”>

<edge index=”3” param=”0.574324 ”/></ po r t a l>

<po r ta l c l a s s=” ho r i zo n t a l ” source=” true ” t a rg e t=”10−100CA” type=” e x p l i c i t ”>

<edge index=”6” param=”0.674419 ”/></ po r t a l>

<po r ta l c l a s s=” ho r i zo n t a l ” source=” true ” t a rg e t=”10−100D” type=” e x p l i c i t ”>

<edge index=”4” param=”0.750000 ”/></ po r t a l>

<po r ta l c l a s s=” ho r i zo n t a l ” source=” true ” t a rg e t=”10−100D” type=” e x p l i c i t ”>

<edge index=”4” param=”0.434211 ”/></ po r t a l>

<po r ta l c l a s s=” ho r i zo n t a l ” ta r g e t=”10−100F” type=” i mp l i c i t ”>

<edge index=”10” maxparam=”1” minparam=”0”/></ po r t a l>

</ space>

<space name=”10−100A” type=”OFF SV”>

<contour>

<cen t ro i d x=”710091.217248” y=”495600.506820 ”/>

<extent maxx=”710098.368918 ” maxy=”495609.170020 ” minx=”710083.273802 ” miny=” 495595.236079”/>

<point x=”710094.850740” y=”495609.170020”/>

<point x=”710094.893982” y=”495607.266567”/>

<point x=”710094.523516” y=”495605.266157”/>

<point x=”710093.531995” y=”495603.623768”/>

<point x=”710094.850740” y=”495609.170020”/>

</ contour>

<po r ta l c l a s s=” ho r i zo n t a l ” source=” true ” t a rg e t=”10−100” type=” e x p l i c i t ”>

<edge index=”13” param=” 0.461198 ”/></ po r ta l>

</ space>

</MITquest>

Figure 2-2: XML output of DXF Parser and an input to 3DGen.

Each space is defined by a Space Node in XML (<space>). The space contains a

single contour (<contour>) and multiple portals (<portal>), each represented by its

own node (or tag) in XML. A contour stores multiple point nodes (<point>), each of

which has attributes that define x and y coordinates of the point. A portal tag has

the following properties as attributes: classification (horizontal or vertical portal),

source (whether the portal opens up to another space or another space opens up into

the current space), target (the name of the space to which the portal leads), and

type (explicit or implicit). Within the portal node there is an edge node (<edge>)

which specifies the index of the edge the current portal lies on, and the parameter
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(parametric location of portal relative to the endpoints of the edge between 0.0 and

1.0). Implicit and explicit portals have different edge nodes. In implicit portals, there

are two parameters, instead of one – minparam, and maxparam attributes that define

the starting and ending points on the edge. Recall, implicit portals have arbitrary

width, and hence are not classified the same way as explicit portals (most doorways

have similar width). Explicit portals store only one parameter attribute – the center

of the portal along the edge. The width of the portal is determined by the default

door width. The major difference between horizontal and vertical portal nodes is that

there are no type and source attributes, and there is no internal edge node in vertical

portals. Vertical portals have to specify vertical direction (UP or DOWN) that would

specify whether the portal should be on the ceiling or the floor of the room.

2.1.3 3dGen: Building Model Generation

The 3D Generator computes additional vertices, generates appropriate surfaces in the

3D coordinate space and stores the newly generated 3D dataset inside the ThreeD

node. This node stores a type of the space, multiple <Vertex> nodes, and multiple

Face nodes. Each Vertex node stores x, y, and z coordinates, and each face node lists

the IDs of the vertices in the appropriate order. The ThreeD node contains all the

data needed to generate surfaces. 3D Geometry Generator alters the existing input

XML to produce an updated version that includes the ThreeD tag inside each space.

The illustration of XML output is below in Figure 2-3.

32



<MITquest>

<space name=”10−100” type=”OFF”>

<contour>

<cen t ro i d x=”710109.204664” y=”495618.803866 ”/>

<extent maxx=”710124.926644 ” maxy=”495633.909708 ” minx=”710094.974557 ” miny=” 495604.344736”/>

<point x=”710123.855353” y=”495619.274498”/>

<point x=”710117.185703” y=”495633.909708”/>

<point x=”710115.669101” y=”495633.218553”/>

<point x=”710116.083794” y=”495632.308591”/>

<point x=”710123.855353” y=”495619.274498”/>

</ contour>

<po r ta l c l a s s=” ho r i zo n t a l ” source=” f a l s e ” ta r ge t=”10−100A” type=” e x p l i c i t ”>

<edge index=”11” param=” 0.517804 ”/></ po r ta l>

<po r ta l c l a s s=” ho r i zo n t a l ” source=” true ” t a rg e t=”10−100C” type=” e x p l i c i t ”>

<edge index=”3” param=”0.574324 ”/></ po r t a l>

<po r ta l c l a s s=” ho r i zo n t a l ” source=” true ” t a rg e t=”10−100CA” type=” e x p l i c i t ”>

<edge index=”6” param=”0.674419 ”/></ po r t a l>

<po r ta l c l a s s=” ho r i zo n t a l ” source=” true ” t a rg e t=”10−100D” type=” e x p l i c i t ”>

<edge index=”4” param=”0.750000 ”/></ po r t a l>

<po r ta l c l a s s=” ho r i zo n t a l ” source=” true ” t a rg e t=”10−100D” type=” e x p l i c i t ”>

<edge index=”4” param=”0.434211 ”/></ po r t a l>

<po r ta l c l a s s=” ho r i zo n t a l ” ta r g e t=”10−100F” type=” i mp l i c i t ”>

<edge index=”10” maxparam=”1” minparam=”0”/></ po r t a l>

<ThreeD>

<Type name=”OFF”/>

<Vertex edgeindex=”0” name=”0” x=”710123.88 ” y=”495619.28 ” z=”0.00 ”/>

<Vertex edgeindex=”0” name=”1” x=”710123.88 ” y=”495619.28 ” z=”15.00 ”/>

<Vertex edgeindex=”1” name=”2” x=”710117.19 ” y=”495633.91 ” z=”0.00 ”/>

<Vertex edgeindex=”1” name=”3” x=”710117.19 ” y=”495633.91 ” z=”15.00 ”/>

<Vertex edgeindex=”2” name=”4” x=”710115.69 ” y=”495633.22 ” z=”0.00 ”/>

<Vertex edgeindex=”2” name=”5” x=”710115.69 ” y=”495633.22 ” z=”15.00 ”/>

<Vertex edgeindex=”3” name=”6” x=”710116.06 ” y=”495632.31 ” z=”0.00 ”/>

<Vertex edgeindex=”3” name=”7” x=”710116.06 ” y=”495632.31 ” z=”15.00 ”/>

<Vertex edgeindex=”3” name=”8” x=”710114.25 ” y=”495631.47 ” z=”0.00 ”/>

<Vertex edgeindex=”3” name=”9” x=”710114.25 ” y=”495631.47 ” z=”10.00 ”/>

<Vertex edgeindex=”3” name=”10” x=”710114.25 ” y=”495631.47 ” z=” 15.00 ”/>

<Vertex edgeindex=”4” name=”14” x=”710110.50 ” y=”495629.75 ” z=” 0.00 ”/>

<Vertex edgeindex=”4” name=”15” x=”710110.50 ” y=”495629.75 ” z=” 15.00 ”/>

<Face v e r t i c e s=” 0 , 1 , 3 , 2 , 0 ”/>

<Face v e r t i c e s=” 2 , 3 , 5 , 4 , 2 ”/>

<Face v e r t i c e s=” 4 , 5 , 7 , 6 , 4 ”/>

<Face v e r t i c e s=” 6 , 7 , 10 , 9 , 8 , 6 ”/>

<Face v e r t i c e s=” 9 ,10 ,13 ,12 ,9 ”/>

<Face v e r t i c e s=” 11 ,12 ,13 ,15 ,14 ,11 ”/>

<Face v e r t i c e s=” 14 ,15 ,1 ,0 ,14 ”/>

<Floor v e r t i c e s=” 0 , 2 , 4 , 6 , 8 , 11 , 14 , 0 ”/>

</ThreeD>

</ space>

</MITquest>

Figure 2-3: XML output of 3DGen (with 3D data included.)
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2.1.4 xml2ug: conversion of XML into unigrafix

The next step is to convert the XML dataset into a format that is readable by graph-

ical tools. For this project, Unigrafix [7] was used because it is easy to read to the

human eye (and debug). Notice that the structure of the unigrafix format closely

follows the structure of ThreeD node in XML. The following Figure 2-4 shows what

UG output looks like.

c rgb s o l e l a y e r 1.000000 0.000000 0.000000 ; { c o l o r 1 }

c rgb s t a i r l a y e r 0.000000 1.000000 0.000000 ; { c o l o r 1 }

c rgb f l o o r l a y e r 204.000000 153.000000 0.000000 ; { c o l o r 1 }

c rgb f l o o r c on tou r 253.000000 245.000000 230.000000 ; { c o l o r 1 }

v 10−100 0 710123.88 495619.28 0.00 ;

v 10−100 1 710123.88 495619.28 15.00 ;

v 10−100 2 710117.19 495633.91 0.00 ;

v 10−100 3 710117.19 495633.91 15.00 ;

v 10−100 4 710115.69 495633.22 0.00 ;

v 10−100 5 710115.69 495633.22 15.00 ;

v 10−100 6 710116.06 495632.31 0.00 ;

v 10−100 7 710116.06 495632.31 15.00 ;

v 10−100 8 710114.25 495631.47 0.00 ;

v 10−100 9 710114.25 495631.47 10.00 ;

v 10−100 10 710114.25 495631.47 15.00 ;

f f ace41 ( 10−100 0 10−100 1 10−100 3 10−100 2 10−100 0 ) s o l e l a y e r ;

f f ace42 ( 10−100 2 10−100 3 10−100 5 10−100 4 10−100 2 ) s o l e l a y e r ;

f f ace43 ( 10−100 4 10−100 5 10−100 7 10−100 6 10−100 4 ) s o l e l a y e r ;

f f ace44 ( 10−100 6 10−100 7 10−100 10 10−100 9 10−100 8 10−100 6 ) s o l e l a y e r ;

Figure 2-4: Output of xml2ug after XML has been converted to unigrafix.

In unigrafix format only vertices and faces are defined. All faces and vertices have

been generated by the prior step – 3DGen. Vertices are defined on lines starting with

a v, while faces are defined on lines starting with an f .

2.1.5 Inventor: output data

The final step converts Unigrafix into Inventor format that is used by many graphical

viewers. Inventor is the open source 3D vector graphics format to describe graphical

objects in the 3-dimensional space. Inventor (IV) format is identical to VRML97

format, which is used to render graphical objects specifically for the World Wide

Web environment. The decision to use IV format came from the fact that the 3D
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Building Model Generator was originally conceived to generate building models for

online virtual tours. The viewer from the Open Inventor Project [5], ivview, was used

in displaying the generated 3D models.

2.2 3DGen in-depth overview

Figure 2-5: The 3D Generator system overview.

Figure 2-5 illustrates all important modules of 3DGen – a tool that generates three

dimensional geospatial data for modeling of buildings. The XML input to 3DGen is

the output of the DXF parser and can be seen in Figure 2-2. This XML data contains

all 2D spatial data necessary for the building model generation, including spaces

and portals, and their respective location information. Before any wall extrusion is

done, all data is loaded into the object model which resides in the memory. The
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reason for using object model instead of processing on the XML data directly is that

all spaces are linked to each other, and in order for 3D data to be consistent and

void of redundancy, 3DGen needs to look at the entire building in order to generate

3D information. Another advantage of object model is the speed of computation.

Operations on memory are generally faster than operations disk file.

XML Parser reads the input XML file and passes this data into the Object Loader.

Object Loader creates Space, Portal, and VPortal (Vertical Portal) objects, as well

as Vertex objects. Vertices are stored locally with each space. Storing vertices with a

space, as opposed to storing with each wall/face helps eliminate redundancy. There is

only one vertex at each vertex location. If vertices were stored inside each wall, then

there would be many cases where two walls in the same space intersect each other in

the corner of the room; there would be two vertices at a single point location at the

intersection of these two walls. See Figure 2-6 below.

Figure 2-6: Illustration of vertex redundancy (when each wall has its own set of
vertices).

A0 and A1 are in the same location, and so are B0 and B1, which is redundant. It

makes much more sense if there was a single vertex A0 that would be shared by walls

A and B. Same applies to vertices A1 and B1. This was the main reason vertices

were incorporated into space objects rather than into wall objects. One would argue

why not keep all vertices in a central location that would span across all spaces

and floors of a building (as in UNIGRAFIX)? Doing so would make it very hard to
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debug any potential issues. Storing vertices inside spaces offers a compromise between

storing vertices for every graphical object and storing vertices in a central repository.

The redundancy is somewhat broken when two spaces join each other at portals.

In this case, where a doorstep meets the portal of some space, there are redundant

vertices (each belonging to each of the two spaces). However, such occurrences are

rare, relative to the total number of vertices in the floor. Figure 2-7 illustrates what

happens when the portal doorstep meets the wall of the space.

Figure 2-7: Illustration of limited vertex redundancy at portals.

At the portal, the doorstep extends from space B into space A. Since vertices are

stored locally for each space, there is no easy way to share vertices across spaces.

This is why redundancy is allowed here to a certain extent. There are more vertices

that are not redundant in the object model than there are redundant vertices (for

space A, it is 2 redundant vertices out of 8 vertices total for space A. For space B, 2

out of 6 vertices are redundant). The doorstep in this example belongs to space B.

How the ownership of the doorstep was determined will be described later.

Once all spaces and portals have been initialized in the object model, several tools

operate on the 2D data to fix any inconsistencies the data might have. Examples of

inconsistencies are: (1) improper sequence (order) of vertices defining a space contour;

(2) parameters in implicit portals that extend beyond the 0.0-1.0 range; (3) portals

that are too close to each other. These tools are all part of genUtils package that was

created for this project.
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Once all these inconsistencies are corrected, the actual 3D Geometry generation

begins. The 3D Geometry generator adds additional vertices to the object model

and generates faces for each wall. It also takes horizontal portals (both implicit and

explicit) into consideration in generating surfaces for the faces. The details of how

such face generation occurs are outlined in chapter 3. In case of a model that spans

multiple floors, the z-coordinates for each vertex are calculated based on the position

of the floor relative to the bottom-most floor.

After all faces have been generated, the Manifold Completer is run to insert inter-

connections between spaces due to portals. This is necessary to ensure that the entire

floor is watertight – that there would be no leak if water was poured into the model

of the floor. These interconnections consist of four additional surfaces per portal to

fill in gaps between the adjacent spaces inside each portal. This fix ensures that if an

observer was put inside the portal, he would not be able to peek outside of the portal

into the region between the walls of adjacent spaces.

Once the floor becomes watertight, the Floor Linker stacks floors on top of each

other to produce a complete model of the building. It calls the Manifold Completer

to create interconnections between floors at vertical portals.

Lastly, the XML parser is run on the entire object model and updates the input

XML with a new ThreeD node for each space that contains all the geospatial informa-

tion needed to generate three-dimensional surfaces, as seen in Figure 2-3. This node

lists vertices and faces in the same way as unigrafix or inventor would. The output

XML contains all data from the input XML plus the 3D data. It is later converted

by xml2ug into Unigrafix format.

2.3 XML to Unigrafix to Inventor

The xml2ug tool reads in output XML from the 3DGen, parses it and uses only

information from ThreeD in each space. It ignores everything else. Since all geospatial

data has been generated by 3DGen, no additional processing is required from xml2ug.

For each vertex and face, xml2ug creates a line in the unigrafix output file. It can
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differentiate between a floor/ceiling and a face tag and assigns different colors to the

floor and ceiling than for other faces (walls). Also, xml2ug can easily be modified to

assign different colors to different space types (stair, halls, offices, etc.).

A tool created by BMG group [4] converts unigrafix to inventor format. The result

inventor (iv) file can be loaded into the ivvew application to visualize the complete

model of the building. See Figure 2-8 for a graphic visualization of the building model.

Figure 2-8: Visualization of the model building 10 on MIT campus, as seen in ivview.

There can be issues with the light model inside ivview. The iv file that has been

generated by ug2iv uses the default phong light model with a point light source. This

results in some rooms seeming darker than others. A small fix was applied to the

inventor file to make all walls ambient, or to make all walls show up, regardless of

their position relative to the light source. The result is shown in Figure 2-8 above.
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Chapter 3

Algorithms in 3DGen

3.1 Data Structures

According to Figure 3-1, there are 5 main data structures. Objects of type Space

store all data about each room (space), including the list of 2D vertices that define

the space contour, the list of portals, and the list of walls. 3D Generator creates more

vertices and puts all vertices in the vertices3D list of the space. Objects of type

Vertex store the x, y, and z coordinates of the points that they represent in the 3D

space. Objects of type Wall store the list of indices of 3D vertices (the location of

these vertices in the Space’s vertices3D. Objects of type Portal store name, type

(Office, Hallway, Stair, etc...), name of the target space (space this portal connects

current space to). Portals also store the index of the edge of the space contour on

which they are located, and the parametric value that defines where on that edge the

portal lies. For explicit portals only center parameter is stored (center parameter is a

measure of the center of the portal relative to the endpoints of the edge, and can take

values anywhere between 0.0 and 1.0 only. Portal’s width is computed from default

width). For implicit portals minParam and maxParam values are stored that define

the edges of the portal (left and right side). These parameters define the width of the

implicit portals. Often, an implicit portal would occupy the entire edge; in this case

minParam would be 0.0 and maxParam would be 1.0. Portal objects also store the

array of Vertex pointers that define the contours of the portal (normally 6 vertices
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Figure 3-1: The Data Structure of the Object Model of 3DGen.

for explicit portal). Portal class is used to define only the horizontal portals; vertical

portals have their own class, VPortal. Objects of this class (VPortal) store only

name, type, name of the target space, and the direction (UP or DOWN, meaning

connecting the space above or below). For every physical portal in the floor, there

are two portal objects, one in each of the two spaces it is connected to.

Instead of replicating vertex objects for space, for walls, and for portals, ver-

tex indices were used. These indices point to the location of the 3D vertex in the

vertices3D list inside each Space. The reason is that we wanted to have as few data

objects as possible and use pointers as often as possible since integers (the type of

indices) are much smaller than Vertex data objects. This way, all 3D vertices are

stored in only one place – inside the Space object for each space.
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3.2 2D Vertex Order and Orientation

Before any 3D Geometry Generation occurs, certain irregularities have to be fixed.

In Computer Graphics, the order in which vertices of the surface are defined is im-

portant. For instance, if 4 vertices defining the contour of a rectangle were listed in

a counterclockwise order, then the surface drawn would have a normal pointing out

of it, and the surface would be visible to the viewer. If the vertices, instead, were

placed in the clockwise order, then the surface normal of the retangle would point

into the surface, which means that the rectangle would be visible only from behind it,

not from the front. See Figure 1-7. In this project the orientation of vertices for each

wall depend on the orientation of 2D vertices of the space. This orientation closely

follows the floor normal. The floor normal has to point up, and this means that for

the bird-eye view of the floor, vertices defining the floor have to be oriented counter-

clockwise. The vertices defining the wall surface rely on the proper floor vertices (2D

vertices) orientation.

3.2.1 Manifold Property requirements revisited

Figure 3-2 shows that for the manifold property to be satisfied, an edge needs to

be bi-directional – meaning there have to be two segments, the so-called semi-edges,

pointing in the opposite direction, one in each of the two adjacent spaces.

3.2.2 Vertex Orientation Checker Algorithm

Drawing a wall surface can be a challenge since the 2D vertices in the input XML file

may not be listed in the correct order (counterclockwise). For each 2D edge, a wall

at that edge can face in one of the two directions, into the wall, or out of the wall.

Instead of trying to guess the proper orientation of the surface normal, we used the

floor as a reference point. While wall normals can point in any direction, the normal

of the floor in any space should always point up. It is much easier to check if the floor

normal is pointing up or down (only two choices) as opposed to nearly infinite choices

for the wall normal orientation. A special checker was implemented to verify that all
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Figure 3-2: Illustration of manifold property in the 3D space.

floor vertices are defined in the counterclockwise order and that the floor normal is

always pointing up. This would ensure that all walls in the space have normals that

point toward the center of the space, as opposed to out of the space. This is why

floor surface is generated before any other surfaces are generated.

Figure 3-3: Illustration of vertex orientation checker.
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Figure 3-3 illustrates the checking of the vertex orientation. The Cross Product

was used to compute the curvature of the space contour. If the vertices were listed

in counterclockwise order, then the cross product of two adjacent edges would be

pointing up. The cross product algorithm was applied to every two adjacent edges

formed by connecting 2D vertices (the last edge in the list was formed by connecting

last vertex with the first vertex in the list). The result was normalized for every edge

pair and the z-coordinates of all results were summed up. If the sum turns out to be

a positive number, then the order of the vertices is the correct one – counterclockwise

order. The floor would be pointing up. In this case, the ordering of the 2D vertices

in the space is left intact. If z-sum is a negative number, then the floor would be

pointing down and, and this would mean that 2D vertices are listed in the clockwise

order. In this case, the order of 2D vertices for that space is reversed. In Figure 3-3

edges 0 and 1 together create a counterclockwise-oriented polygon. Thaking th ecross

product of edges 0 and 1 results in the vector that points up.

Reversing the list of vertices is only one step. Another step involves changing the

edge index in all portals that belong to the current space. Edge indices are set to

vertexList.size() − currentEdge − 1. For example, if a space has 8 vertices, then

it should have 8 edges. If the space’s list of vertices was reversed, then the portal

on original edge 3 gets 4 as the new edge index. The reversal of vertex order and

portal edges is done before the geometry generation to avoid any complications in

generating 3D geometry due to the improper vertex orientation (invisible floors, floor

normals pointing down, wall surfaces pointing into the region between walls).

3.3 Portal Operations

3.3.1 Implicit Portal fixer

The input XML often has incorrect parameter values for implicit portals (minParam

and maxParam. These two params could be outside the range they are allowed to

occupy (0.0 to 1.0). If minParam is less than zero, it is clipped to zero, and if maxparam
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is greater than one, it is clipped to 1.0. Also, sometimes, minParam could be greater

than maxParam; in this case the values of minParam and maxParam are swapped.

3.3.2 Multiple explicit portals on an edge

How portals are represented on the wall is important. Since portal width for explicit

portals is not captured by the DXF parser and hence is absent in the input XML,

a default portal width is used. This presents a challenge of dealing with scenarios

where two narrow portals are close to each other (as in double doors). In this case it is

possible that the default width would be greater than the actual width of the portals.

This would lead to two portals overlapping each other. This would complicate drawing

walls with portals in them because in some cases there could be a chunk of the wall

inside the portal. This is why we implemented the overlapping portal checker.

A special map data structure is created for each space. This map links edge index

to the vector of portal pointers. This way, every edge that has multiple portals would

contain an unordered list of portals. Before the overlapping portal checker is run,

all portals are sorted for each edge based on the parameter as a key. If the portal

is implicit, then an average parameter value between minParam and maxParam is

computed. In the end, every edge has a sorted list of portals (Figure 3-4).

Figure 3-4: Illustration of the sorted portals map.

After all portals are sorted, the overlapping portal checker looks at every two
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adjacent portals and determines whether they overlap. The formula used is:

portal1.portalWidth

dist
+ portal1.param < portal2.param (3.1)

, where dist is length of the edge that the portal occupies. Notice that parameters,

rather than actual distances are compared. If the equation 3.1 holds true then there

is no portal overlap. Otherwise, the portals overlap and need to be corrected. In the

portal correction phase, one of the portals is removed, and the other is modified. The

modifications are made to center parameter and to portalWidth. The result portal

is often wider than either of the original portals and spans the length of the edge

occupied by both portals (Figure 3-5). Only explicit portals are checked for overlap.

It is assumed that implicit portals do not overlap with other implicit or explicit

portals, as such cases are extremely rare. If there is an overlap between implicit and

explicit portal on an edge, then there is a bug in the input XML file. In this case the

overlappting portal checker removes the explicit portal, leaving the implicit portal

intact.

Figure 3-5: Illustration of the portal overlap and subsequent fix.

3.4 Implicit Surfaces

The input XML data is not without its faults. Very often inside the space contour

there are lines that are coincident. For example, Figure 3-6 illustrates the case where
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in order to draw a pillar in the middle of the room, the floor plan designers extend

the space contour to the pillar by drawing the shortest line from the closest wall to

the pillar. This is done to keep the space contour as a whole, in one piece without

separating it into two contours. There can be only one contour for each space. This

can result in a phenomenon called “Implicit Surfaces”, which means that there are two

surfaces at exactly the same location, with normals pointing in opposite directions.

Inside inventor viewer, these would appear as flickering surfaces. This is itself an

inconsistency in the 3D geometry and has to be eliminated.

Figure 3-6: Example of implicit surfaces.

The detection of implicit surfaces is based on parametric algebra. Once two con-

tour edges are determined to be collinear, another check is made to verify that they

overlap. If the overlap is detected, an implicit portal from the space to itself is created

with parameters being the endpoints of the overlap region between these two contour

edges. Figure 3-7 shows that the red line is an intersection of two coincident edges,

a and b. An implicit portal is created that would span this red line, thus giving an

illusion that there is an opening between two regions of the space (as it should have

been in real life). The space itself remains intact and is not split into two spaces.
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Figure 3-7: Illustration of intersection of coincident contour edges.

3.5 Generating 3D Geometry

This section describes how walls are extruded and covers cases of walls with no portals,

walls with implicit portals, walls with explicit portals, and walls that have both

implicit and explicit portals.

3.5.1 Generating walls with no portals

The ordering of 3D wall vertices that define the wall surface relies on the proper

orientation of the 2D vertices of the space. All walls are drawn by (1) generating two

extra vertices above the edge, one for each endpoint of the edge, (2) adding these two

vertices, as well as two original floor vertices to the vertices3D list, and (3) creating

a Wall object that would contain indices of these four vertices (2 new, 2 original) in

the proper order. This order is determined by the direction of the bottom edge of

the wall (clockwise or counterclockwise relative to the space contour). As illustrated
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in Figure 3-2, the bottom edge of the wall is always pointed in the opposite direction

than that of the adjacent floor edge. This satisfies the manifold property. Figure 3-8

illustrates how walls are generated.

Figure 3-8: Wall extrusion and 3D vertex generation.

For each edge, two 3D vertices are generated, one from 2D vertex of the 2nd

endpoint of the the edge (such as vertex 4 of wall 1 from 2D floor vertex 2 in figure

3-8), and another at the same 2D location, but with a z-coordinate set to that of

the fixed floor height defined before the 3D geometry generation. If the 2D vertex

is at (5,5,0), the two new 3D vertices would be (5,5,0) and (5,5,15), assuming that

the floor height is 15. Then the 3D Geometry generator lists these new 3D vertices,

along with the previous two vertices in the appropriate order, based on the order of

floor vertices. There is an exception in drawing first and last walls for the space. In

generating the first wall, four 3D vertices are generated, instead of the usual two.

The other two vertices have indices 0 and 1. In generating the last wall, no new 3D

vertices are generated, rather, the last two vertices that define that wall have indices
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0 and 1 (back at the start, and the loop is therefore complete).

The height of the wall is not specified on the initial floor plan, or in the DXF

input, and hence, not available in the XML input. For the purposes of this project,

the wall height was set to a fixed number (the default is 15 pixels in the geospatial

space), for every floor, every building, before the 3D Geometry Generator kicks in.

3.5.2 Generating explicit portals

There are two cases for generating explicit portals: (1) when there is only one explicit

portal on an edge, and (2) when there are multiple explicit portals on an edge. These

two cases are treated separately. For the first case, when there is only one portal in

the wall, the wall is broken into three quadrilaterals (faces). Each face is treated as

a wall object. The three faces are (1) right-of-portal (RoP) face, (2) above-of-portal

(AoP) face, and (3) left-of-portal (LoP) face, as seen in Figure 3-9.

Figure 3-9: Illustration of break-up of the wall into faces surrounding the explicit
portal.

In Figure 3-9 the indices are listed in the order they are generated. (1) First, the

wall indices are generated as if there is no portal in the wall [indices 0,1,2,3]. (2) Portal

vertices are generated based on edge, portal center, and portal height (specified at

the start of 3D Geometry Generation. See Appendix B.4 on where the portal height

is defined). (3) Then the wall is broken up into three faces, and each face is drawn
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separately. The Manifold Property still holds because the two adjacent faces are both

defined by vertices in the counterclockwise order and the adjacent edges are pointed

in the opposite direction as in Figure 3-10 below.

Figure 3-10: Adjacent semi-edges are directed in the opposite direction to form a
complete shared edge.

The Portal Vertices Generator follows the algorithm outlined in Appendix A.1.

Portal width is determined by a fixed portalWidth parameter, and any explicit portal

should have a width equal to portalWidth unless it overlaps another explicit portal,

or is partially outside the 2D contour edge. The coordinates for portal vertices are

computed based on the center of the explicit portal, and half of portal width on either

side of the center. There are only two locations of all portal vertices in the 2D contour

space (for each portal), and three 3D vertices at each of these two locations. For each

location, one vertex is on the floor level, another at the portal height distance along

the z-axis away from the floor, and third one at the ceiling level. See Figure 3-11.

Sometimes, portals with default width may extend beyond the endpoint of the 2D

edge; in this case, the portal is clipped and narrowed up to the endpoint of the 2D

edge. This is checked for by Portal Vertices Generator.

According to Figure 3-9, the faces surrounding the portal are sometimes defined

by more than four vertices. If RoP (Right of Portal) face were to be defined by

four corner vertices instead (0-1-6-4-0), as opposed to five vertices (0-1-7-6-5-0), then

the semi-edge that AoP (Above of Portal) face ’shares’ with RoP face would not be
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Figure 3-11: Nooks and crannies of portal vertex generation.

considered a complete shared edge. A complete shared edge is one that has two semi-

edges that share the whole segment of the edge, and the two endpoints. Therefore,

RoP and LoP (Left of Portal) faces are defined by 5 vertices instead of four.

There are some exceptions to the above guideline – when a space contour edge

contains more than one portal. In this case, faces are drawn differently, especially

faces between any two adjacent portals. Such faces are defined by six 3D vertices,

three vertices for each portal on each side of the face. The algorithm for generating

walls with portals in them is described in the appendix A.3. Figure 3-12 shows how

a wall is broken down in case of multiple explicit portals on an edge.

Figure 3-12: Generation of faces for multiple explicit portals for an edge.
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3.5.3 Generating implicit portals

When there is an implicit portal in the wall, there are two possibilities: (1) The

implicit portal covers the entire wall (portal with minParam=0.0 and maxParam=1.0,

or (2) the implicit portal covers part of the wall. In the first case, no wall is generated

for a 2D edge, and in 2nd case, only LoP (Left of Portal) face, RoP (Right of Portal)

face or both faces are generated.

Implicit portals are different from explicit portals in the way that they do not look

like physical portals. Instead, they are simply continuations of one space into another.

There is no doorway visible at implicit portal. This is why no AoP (Above of Portal)

face is generated for implicit portals. Figure 3-13 gives a graphical illustration of the

implicit portal generation.

Figure 3-13: Illustration of break-up of the wall into faces surrounding the implicit
portal.

It is very possible that either minParam or maxParam of the implicit portal are

equal to 0.0 or 1.0, respectively. In this case, caution is exercised in detecting such

boundaries. If minParam is set to 0.0, then no vertices 4-5 are generated and no RoP

face is generated (compare Figures 3-13 and 3-14). Likewise, no vertices 5-6 and no

LoP face are generated if maxParam of the implicit portal is at 1.0.

For implicit portals, the same Portal Vertices Generator was used as for explicit

portal generation, except, in the implicit portal case, only four out of 6 vertices are
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Figure 3-14: Illustration of different positions of implicit portal in the wall.

used. If Portal Vertices Generator generates 6 new 3D vertices, for the implicit portal

that is not anywhere near the endpoints of the 2D contour edge, only vertices 0,2,3,5

are used, and vertices 1 and 4 (middle vertices) are ignored (for reference, look at

Figure 3-11).

For 2D contour edges that have both implicit and explicit portals, the algorithm

is more complicated. It is described more in detail in Appendix A.3. Some of the

faces may have 4, 5, or 6 vertices. In such case, it is appropriate to remember the

previous portal type and generate the face based on the current portal type and the

previous portal type. See Figure 3-15.

3.5.4 Generating floors and ceilings

Floor and ceilings in absence of vertical portals are very easy to generate. Each space

has one face that is considered a floor, and one face that is considered a ceiling.

Whenever portal vertices are generated, their indices have to be added to the list of

vertex indices that define the floor or the ceiling for the space. This way, anywhere

where a face of the wall is adjacent to the floor or the ceiling, they share a complete

edge. The scenario on the right in Figure 3-16 is desirable, while the scenario on the

left is not. The scenario on the left breaks the manifold property because the red
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Figure 3-15: Wall with portals of different types (implicit portals mixed with explicit
portals.)

semi-edge of the wall shares only portion of the blue semi-edge of the floor.

Figure 3-16: Shared edges between floor and the vertical wall: bad and good scenar-
ios.)

Floor vertices are always listed in the counterclockwise order, so the surface gen-

erated for the floor is visible from inside the space by looking down. For ceiling, the

vertices are listed in the counterclockwise order, so the ceiling surface is visible from

inside the space by looking up.
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3.5.5 Watertight Property in Horizontal Portals

In order for the finished model to be watertight, all spaces have to be watertight and

have to be connected to each other via sealed portals. The watertight property of

spaces is ensured by the manifold property (every semi-edge of any surface has its

opposite semi-edge of another surface. These two semi-edges form a complete edge,

sealing the two adjacent surfaces to each other. For portals to be sealed, however,

more surfaces have to be generated that would wrap around the portal and fill out

the region between spaces at the portal. This is analogous to the doorframe – every

door has a doorframe, so it is not possible to peek into the area between the opposite

walls.

There is a challenge, however. All vertices are stored locally within the space.

If surfaces have to be generated between spaces, the question arises – where should

these new surfaces be stored? Which space should they belong to? It was decided to

place such surfaces into one of the spaces. Which space stores these surfaces depends

on whether the source flag inside the portal is set to true or false. If the portal object

has a source flag that is set to True, the space to which this portal object belongs

to claims the ownership of the surfaces connecting this space to its neighbor. That

is, for two portals, both belonging to adjacent spaces, and representing one physical

portal, only one of these two portals has the source flag set to True. The other portal

must have the source flag set to false.

Another issue arises from the fact that since 3D vertices are stored locally within

each space, the vertices that connect the portal surfaces with the space that they do

not belong to, cannot be shared with vertices of that space. In Figure 2-7, vertices

A3 and B6 belong to two separate spaces, despite the fact that they have the same

geospatial location. This is the only case when redundancy is allowed, due to the

design of 3DGen. Vertices B6 and B7 are needed for portal surfaces generation,

while vertices A3 and A2 are needed to ensure that the manifold property is satisfied.

The two semi-edges formed by B6−B7 and by A3−A2 create a complete edge.

The portal surfaces are generated after all space surfaces have been generated in all
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spaces in the floor because, in order for the portal surface generation to work, portal

vertices should exist in both spaces. Then, every portal in every space is examined

and additional inter-space faces are generated. For explicit portals, four faces are

generated, one for each side of the “doorframe”. For implicit portals, no faces are

generated since it is assumed that All implicit portals have no gaps between spaces.

For every explicit portal, portal vertices are obtained from each of the two semi-portals

of adjacent spaces, and faces are generated based on these vertices. The algorithm is

written out in more detail in Appendix A.5.

3.6 Multiple floors

All material above applies to 3D geometry generation for a single floor. The whole

model is not complete until after all floors are bound together to create the whole

building.

3.6.1 Stacking floors on top of each other

The input XML file contains data about a single floor only, so, in order to get data

about all the floors (entire building), multiple XML files need to be parsed. Originally

3DGen was intended to be applied on single floors; and the best way to extend it to

multiple floors is to run the 3D Geometry Generator on each floor separately. The

command line input of 3DGen was altered to allow inputting multiple filenames as

arguments. For each floor XML file, a special internal floor ID is passed to the 3D

Geometry Generator to specify the floor of the building. The ground level of every

floor is computed based on this floor ID. The floor level, the portal height level and

the ceiling level are all determined by this floor ID. Suppose, 3DGen is run with the

following files: 10-1.xml, 10-2.xml, 10-3.xml, in that order, each signifying the first

three floors of MIT Building 10. XML file 10-1.xml gets a floor ID of 1, since it is the

first file in the list. 10-2.xml gets floor ID of 2, and so on. Floor ID determines the

reference ground for each floor from which to generate surfaces. In our case, the first

floor model would lie on the z=0 plane. The floor model of floors above would lie at
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z = floorID ∗ (floorHeight + 0.4) plane. This means that the third floor would lie

at z = 3 ∗ (floorHeight + 0.4) plane.

3.6.2 Completing manifold in Vertical Portals

Floors are connected to each other via vertical portals. These are stairs, elevator

shafts, and open multi-floor spaces. Whenever a space has a vertical portal, there

is an opening either in the floor or in the ceiling, depending on whether the vertical

portal has UP or DOWN direction. There can be only one portal in the UP direction

for each space. Likewise, there can be only one portal in the DOWN direction for

each space.

Floor models are not placed right on top of each other – rather they are separated

by 0.4 units (in geospatial coordinates). This introduces gaps between the floors

at vertical portals. Stairs, elevator shafts, or multi-floor spaces all have these gaps

that have to be patched if the entire building model is to remain watertight. One

idea to connect floors included removing the whole floor from each space with the

“DOWN” vertical portal and removing the whole ceiling from each space with the

“UP” vertical portal. However, this does not work in practice, since the two spaces

on different floors that are connected to each other via the vertical portal may not

have the same space contour. This means that it is very possible for the above space

to have fewer or more floor vertices than the ceiling vertices in the space below. This

complicates the process of connecting the two spaces on top of each other. This is

why it is necessary to create rectangular openings in the floor instead of dropping the

whole floor. This would ensure that both the opening in the floor of the above space

and the opening in the ceiling of the below space have the same number of portal

vertices (4 in case of a rectangular opening).

For vertical portals, portal surfaces are stored in the space of the floor that is on

the top of the portal (the space with the “DOWN” portal). The reason for that is

that both spaces need to be generated first, before they are connected by the portal

surfaces. The floor model generation happens from botom up, so the bottom space

needs to be generated first, followed by the top space, and then by the vertical portal
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surface generation.

The algorithm for generating vertical portal surfaces is more complex than the

one for generating horizontal portal surfaces and is outlined in Appendix A.6

3.7 Limitations

There are several limitations to the 3D building model generation. One is 3DGen is

heavily reliant on the input XML. If this input XML is incorrect, then the resulting

model will also be incorrect. Currently there is no checking for cases where implicit

portals overlap with explicit portals or other implicit portals, since these cases are

rare and would require more code. Only the overlap of explicit portals is checked for.

Another limitation is that all implicit portals have to be accounted for in the floor

plans. If there is no implicit portal where there should be one, an implicit surface

could spring up and result in a flickering model. Implicit portals occur where the

contour edges from the adjacent spaces are coincident with each other, as opposed to

the edges from the adjacent spaces being not coincident but parallel and very close

to each other. Implicit surfaces are detected only inside the space realm, and not in

the inter-space realm, since that is the responsibility of the DXF to XML converter.

Also, windows are not present in the end building model because the input XML

does not contain any data pertaining to the windows. The generation of the windows

should be parallel to the generation of portals and will be covered in the Future Work

section below.
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Chapter 4

Conclusions

This thesis culminates a 2-year long project in 3D Building Model Generation from

2D floor plans, where the input is the XML file. There was a similar effort prior to

my arrival to the group, by Sean Markan [4]. He generated 3D models right from

AutoCAD, while this project generates 3D models from XML data, after some pre-

processing. The advantage of having XML as the middleman between the 3DGen and

the DXF Parser lies in the fact that additional preprocessing can be done on XML

data, such as creation of implicit portals and the detection of inconsistencies in the

AutoCAD floor plans.

The major goal of this project is not to just generate 3D building models from

floor plans, but also to do so as efficiently as possible. This means generating the

fewer number of 3D vertices as possible and sharing as many of these vertices and

edges as possible. 3DGen creates almost no redundant vertices (the only exception is

where portal surfaces meet one of the spaces). This is by no means an easy endeavor

since all shared vertices need to be tracked continuously. This is accomplished by

storing the 3D vertex data locally in each space and generating faces/walls for each

space independently. During the generation of vertices and surfaces, 3DGen carefully

makes sure that the manifold property is satisfied (every edge should have two co-

incident semi-edges pointing in the opposite directions) and that everything in the

building model is watertight. The Manifold Property helps maintain the watertight

nature of the building models.
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Chapter 5

Future Work

All work up to now concentrated on generating geometric models of whole buildings;

of the floors stacked up on each other. The end building models look monotonous

in color and texture. Although there are openings between rooms at portals, the

rooms still feel like jail cells, mainly because of the absence of the windows. Adding

windows should be fairly straightforward and similar to the algorithm for generating

portals (in Appendix A.3). In addition to AoP (Above of Portal face, a BoP (Below

of Portal) face could be generated to form the window (assuming that windows have

similar attributes as portals, such as the default width, height and center parameter).

Another good feature to add to the geometric model is the texture for stairs and

ramps. Currently stairwells are openings in the floor and ceilings (vertical portals),

and there are no steps generated. An observer would not be able to detemine whether

a room with vertical portals is an elevator shaft or a stairwell (although most elevator

shafts are square). Adding steps would make the model more aesthetically accurrate.

Lastly, 3D models that have walls of the same color are relatively boring to view.

It would be nice to add texture to the walls, perhaps photographic images of the

same walls in the real life, and slap them into the virtual walls. These pictures would

have to be warped to fit the walls. They would have to be re-warped every time the

viewer changes his/her viewpoint. Warping itself is a very expensive operation and

complicated, hence would be best implemented as part of a separate major project.

There is a similar project in the area of mapping real-life images to the 3-dimensional
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models. This project is called PhotoSynth and it is spearheaded by Microsoft Labs.

[3], [8]

The original goal for this project was to create a virtual tour web service that

would let anyone tour buildings remotely. However, due to the time constraints

and many bugs, this ambitious idea had to be scaled down to just the 3D model

generation. This project could be extended in the future, along with real-life images,

to create 3-dimensional virtual tour guides that would be generated from 2D floor

plans automatically, instead of being sketched by hand by special designers.
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Appendix A

Algorithms

A.1 Algorithm: generation of explicit portal ver-

tices

Every floor contains an unique floor ID. This floor ID is used in determining the

ground level, the portal and ceiling levels along the z-coordinate. For every portal,

six 3D vertices are generated, 3 for each vertical edge of the portal. Each vertex in

such triplets has same x and y coordinates in 2D plane, but a different z-coordinate.

Figure 3-11 shows this in greater detail.

For every floor static portalHeight, height, and portalWidth are set to their

default values (in our case it was 10, 15, and 3, respectively.

In order to generate x, and y coordinates for the portal vertices, two vertices of

edge the portal is on are obtained, along with the portal’s center parameter.

delta =
√

(x2− x1)2 + (y2− y1)2 (A.1)

This is the total length of the edge on which the portal is on. Then the angle of the

edge is computed.

angle = arctan (
y1− y2

x2− x1
) (A.2)

Then deltap1 and deltap2 are computed – these are the parametric distances from
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the first endpoint of the edge to the first and second portal points, respectively.

deltap1 = delta ∗ center −
portalWidth

2
(A.3)

deltap2 = delta ∗ center +
portalWidth

2
(A.4)

The following conditions ensure that the portal does not extend beyond the edge:

If deltap1 < 0, set deltap1 = 0

If deltap2 > delta, set deltap2 = delta

x1 = deltap1 ∗ (cos angle)

y1 = deltap1 ∗ (sin angle)

x2 = deltap2 ∗ (cos angle)

y2 = deltap2 ∗ (sin angle)

Then we have to make sure that if deltas are negative, we have to subtract instead

of adding.

if (x2− x1) < 0 then

x1 ← x1 ∗ −1

x2 ← x2 ∗ −1

end if

if (y2− y1) < 0 then

y1 ← y1 ∗ −1

y2 ← y2 ∗ −1

end if

Then we compute z coordinates for all three levels (floor, portal, and ceiling).

if floorID == 0 then

z1 ← 0.000

z2 ← portalHeight {portalHeight is a static variable defined in genUtils header

file}
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z3 ← height {height is the ceiling level, also defined in a static variable as above}

else

z1 ← (height + gapBetweenF loors) ∗ floorID

z2 ← (height + gapBetweenF loors) ∗ floorID + portalHeight

z3 ← (height + gapBetweenF loors) ∗ floorID + height

end if

Finally, 6 vertices are generated and returned as portal vertices, as in figure A-1

below. (x1, y1, z1), (x1, y1, z2), (x1, y1, z3), (x2, y2, z1), (x2, y2, z2), (x2, y2, z3),

Figure A-1: Location of Portal Vertices.
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A.2 Algorithm: detection of overlapping portals

and correction

In order to detect whether portals overlap, portals have to be ordered for each edge,

with param as the key. This way it is possible to look at adjacent portals on an edge,

instead of looking for any portals that may be adjacent. The algorithm is as follows:

1. Create a map data structure that maps edge index to the vector (list) of portals:

map<edgeIndex, vector<Portal*>>

2. For every edge e, get a list of portals, and populate the vector of portals. Put

this new vector into the map at key e.

3. For every edge, sort the vector of portals (insertion sort was used for this pur-

pose). If a portal is an implicit portal, take the average of its minParam and

maxParam as its center param.

4. for every edge e do

for every ith portal in the vector for that edge e do

Obtain v1 and v2 - endpoint vertices for the edge e, and compute distance

dist between them.

Focus on portals at i and i + 1. If i is the last portal in the list, then

wrap around to the first portal, and focus on ith portal and portal at

index 0.

Make sure that both portals are explicit portals.

if (portalWidth

dist
+ (param of portal i)) ≥ (param of portal i + 1) then

newCenter ←
(param of portal i)+(param of portal i+1)

2

Compute the actual distance between centers of two portals

m← (param of portal i+1 − param of portal i ) ∗ dist

{See Figure A-2 below}

if m == portalWidth then
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{Two portals are directly adjacent to each other.}

newWidth← 2 ∗ portalWidth

else if m < portalWidth then

{Two portals are overlapping}

newWidth← portalWidth + m

else

{Two portals are not overlapping but are very close to each other}

newWidth← portalWidth + m

end if

modify portal i with values of newWidth and newCenter.

Remove portal i + 1.

end if

end for

end for

Figure A-2: Detecting overlapping portals.
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newWidth is computed for each of the new portals based on the following equations

(use Figure A-2 for reference):

for m < portalWidth

m =
1

2
p +

1

2
p− x (A.5)

x = p−m (A.6)

newWidth = p + p− x = 2p− (p−m) = p + m (A.7)

(A.8)

for m > portalWidth

newWidth =
1

2
p +

1

2
p + m = p + m (A.9)
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A.3 Algorithm: generation of faces with multiple

portals in them

The algorithm for 2D contour edges that contain multiple portals involves a lot of

conditional statements. There are three main cases: (1) First portal on edge; (2) the

portal in the middle, flanked by other portals on both sides; and (3) the last portal on

edge. All three cases will be covered below separately. The indices used are derived

from the Figure A-3 below. Each case has its own subfigure.

Figure A-3: Three cases of drawing portals.

CASE 1: First Portal

if portal is explicit then

draw 5 vertices for face Left of Portal: (0,1,4,3,2,0)

draw 4 vertices for face Above of Portal: (3,4,7,6,3)

else if portal is implicit then

if minParam == 0 then

do not draw face Left of Portal

do not draw face Above of Portal

else if minParam != 0 then

draw 4 vertices for face Left of Portal: (0,1,4,3,0)
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do not draw face Above of Portal

end if

end if

CASE 2: Mid Portal

if portal is explicit then

if previous portal is explicit then

draw 6 vertices for face Left of Portal: (5,6,7,10,9,8,5)

draw 4 vertices for face Above of Portal: (9,10,13,12,9)

else if previous portal is implicit then

draw 5 vertices for face Left of Portal: (5,7,10,9,8,5)

draw 4 vertices for face Above of Portal: (9,10,13,12,9)

end if

else if portal is implicit then

if previous portal is explicit then

draw 5 vertices for face Left of Portal: (5,6,7,10,8,5)

do not draw face Above of Portal

else if previous portal is implicit then

draw 4 vertices for face Left of Portal: (5,7,10,8,5)

do not draw face Above of Portal

end if

end if

CASE 3: Last Portal

if portal is explicit then

if previous portal is explicit then

draw 6 vertices for face Left of Portal: (5,6,7,10,9,8,5)

draw 4 vertices for face Above of Portal: (9,10,13,12,9)

draw 5 vertices for face Right of Portal: (11,12,13,15,14,131)

else if previous portal is implicit then

draw 5 vertices for face Left of Portal: (5,7,10,9,8,5)
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draw 4 vertices for face Above of Portal: (9,10,13,12,9)

draw 5 vertices for face Right of Portal: (11,12,13,15,14,11)

end if

else if portal is implicit then

if previous portal is explicit then

draw 5 vertices for face Left of Portal: (5,6,7,10,8,5)

do not draw face Above of Portal

if maxParam == 1.0 then

do not draw face Right of Portal

else if maxparam != 1.0 then

draw 4 vertices for face Right of Portal: (11,13,15,14,11)

end if

else if previous portal is implicit then

draw 4 vertices for face Left of Portal: (5,7,10,8,5)

do not draw face Above of Portal

if maxParam == 1.0 then

do not draw face for Right of Portal

else if maxparam != 1.0 then

draw 4 vertices for face Right of Portal: (11,13,15,14,11)

end if

end if

end if
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A.4 Algorithm: detecting implicit surfaces

There are two steps to detecting implicit surfaces: (1) detect collinear edges, and (2)

determine whether these collinear edges are coincident.

Assume we have 2 segments, A and B. Each segment has two endpoints, (x1, y1)

and (x2, y2). Any point along the segment can be expressed in parametric terms.

There are two equations, one for each of x and y coordinate of any point that lies

along the segment.

x = x1 − (x1 − x2)tx (A.10)

y = y1 − (y1 − y2)ty (A.11)

Note that x, and y have to be computed for a specific segment, either segment A

or segment B. Any single point that lies on the segment should satisfy the following

equation: tx = ty. If this is not the case, then this point does not lie on the line.

We then rewrite equations A.10 and A.11 to get tx and ty.

tx =
x− x1

x2 − x1
(A.12)

ty =
y − y1

y2 − y1
(A.13)

Any 2D points can be plugged in place of x and y in the equations A.12 and A.13.

Now, to determine if the two segments, A and B are collinear, we need to put

coordinates of endpoints of segment B into the segment A’s parametric equations in

place of x and y. Let’s assume that segment A contains endpoints a1 and a2, and

segment B contains endpoints b1 and b2. We need to determine whether both b1 and

b2 lie on the line that goes through segment A (segment A is defined by endpoints a1

and a2).

For every two 2D contour edges (not just two adjacent contour edges) inside the

space, four parameters are computed (ta1, ta2, tb1, tb2). Assume any two contour edges

in the space, A, and B. ta1 and ta2 are parameters of the endpoints of edge A relative
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to endpoints of edge B. tb1 and tb2 are parameters of the endpoints of edge B relative

to the endpoints of edge A.

The following notation: tx,b1,A means tx where x = xb1 (x-coordinate of endpoint

b1) on segment A.

To see if segment B is collinear with segment A, we need the following two con-

ditions to hold:

tx,b1,A = ty,b1,A (A.14)

tx,b2,A = ty,b2,A (A.15)

Actually, we do not need to compute tx,b1,A, ty,b1,A, tx,b2,A, or ty,b2,A. Combining

equations A.12, A.13, A.14 and A.15 and eliminating all the t’s, we get the following

two new conditions to watch for:

(xb1 − xa1)(ya2 − ya1) = (yb1 − ya1)(xa2 − xa1) (A.16)

(xb2 − xa1)(ya2 − ya1) = (yb2 − ya1)(xa2 − xa1) (A.17)

Segments A and B are collinear only and only if both equations A.16 and A.17

hold true.

After two segments are deemed to be collinear, we can proceed with the next step

– which is determining whether these two segments are coincident. In order to do

that, t’s have to be computed. Assume that we want to see if segment B lies on

or overlaps with segment A. In this case, we would want to compute tx,b1,A, ty,b1,A,

tx,b2,A, and ty,b2,A. For now, we can assume that we can pick either tx or ty, but which

one will be important in a special case, when segments are horizontal or vertical. This

case will be explained a little bit later. If we consider the scenario above (finding the

location of points b1 and b2), then we can (for now) focus on tx,b1,A and tx,b2,A, the t’s

based on x-coordinate.

The conditions below are illustrated in Figure A-4.

Now we will explore all four cases in greater detail.
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Figure A-4: Four cases for overlapping coincident edges.

1. t1 < 0 and 0 ≤ t2 ≤ 1:

Figure A-5: Coincident Edges: Case 1.

2. 0 ≤ t1 ≤ 1 and t2 > 1:

Figure A-6: Coincident Edges: Case 2.
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3. t1 < 0 and t2 > 1:

Figure A-7: Coincident Edges: Case 3.

4. 0 ≤ t1 ≤ 1 and 0 < t2 ≤ 1:

Figure A-8: Coincident Edges: Case 4.

There are two exceptions, however. It is possible that one of the two or both edges

are perfectly horizontal or vertical. In this case, there would be a DivideByZero error

in computing either tx or ty. In case of horizontal edge, ty would have the undefined

value since y2−y1 = 0 in the denominator of equation A.13. Likewise, with tx in case

of vertical edge.

These two exceptions are handled by using tx in all cases except vertical lines. In

case of vertical lines, ty is used in place of tx.
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A.5 Algorithm: generation of horizontal portal sur-

faces

• For any two adjacent spaces on the floor, look for “semi-portals” from both

spaces that may connect to each other (this is deduced from the target attribute

of the portal and the name of the space the portal belongs to). Let’s call

them portalA and portalB. It is quite possible that there are multiple portals

connecting the two spaces, therefore, it is not a good idea to rely on the name

of the space and the target of the portal to determine if the “semi-portals”

connect to each other. It is also important to observe the location of the two

“semi-portals” before declaring them to be part of a complete portal.

• Obtain floor-level vertices from the two “semi-portals” and compute the squared

distance dist between them.

• if dist < 0.49 then

{Check if the portal is implicit or explicit}

copy all 3D portal vertices from portal that has source set to false to portal

that has source set to true. Be mindful of the fact that the portal may

be implicit or explicit. Copy vertices only from explicit portals (implicit

portals are assumed to have no gaps) See figure A-9 for illustration.

end if

• Create four new Wall (face) objects for portals that are explicit (left, right,

top, and bottom). Implicit portals need not have portal surfaces since they are

assumed to have no gaps.
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Figure A-9: Portal surfaces for explicit horizontal portals
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A.6 Algorithm: generation of vertical portal sur-

faces

Not yet implemented. This is work in progress and may not even be able to be

finished in time for thesis deadline. I apologize for the inconvenience.
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Appendix B

3dGen Manual

B.1 3dGen Package Overview

The code for 3DGen is inside the 3dGen package. Below is the list of files in that pack-

age: genUtils.h, genUtils.cpp, Space.h, Space.cpp, Portal.h, Portal.cpp, VPortal.h,

VPortal.cpp, Vertex.h, Vertex.cpp, Wall.h, Wall.cpp, congif.h, tools.h, tools.cpp,

XMLtoUG.cpp, and main.cc.

Code in main.cc is responsible for reading XML files, and making the appropriate

calls to GenUtils (which contains almost all algorithms described in this thesis). No

new XML files are created – only existing XML files are modified. This is why it is

a good idea to create backup versions of the input XML files. In order to read XML

files, you need to have the xerces-c library installed on the machine you are compiling

the code on. Currently, the code is compiled and run on tritium.csail.mit.edu

machine.

Code in XMLtoUG is responsible for converting XML into UG (Unigrafix format)

and is saved in the output.ug file.

B.2 Where to obtain 3dGen

3dGen has been checked into the RVSN repository. To obtain the code, perform a

SVN checkout as follows:
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svn co svn+ssh://user@login.csail.mit.edu/afs/csail/group/rvsn/Repository/3dGen

The 3dGen package has the following structure:

3dGen

|- src

|- scripts

|- input

|- output

The src directory contains all the code and outside libraries necessary for the code

to run (such as gpc library for geometry operations). Xerces-c library is not included

since it has to be compiled for each platform separately. tritium.csail.mit.edu

has xerces-c library installed, so it should be used to run 3dGen for now.

The scripts directory contains all scripts necessary to run the 3dGen as a whole

package. The details of such scripts are listed below. In order to run the whole 3dGen

framework on building 10, run the start script by typing source start. This script

should generate the 10-all.iv file that can be viewed by the iv viewer.

The input directory contains input XML files. The output directory contains

both XML files generated by gen3d and Inventor files generated by uggen and ug2iv.

B.3 Running 3dGen

Here is how I compile and run 3dGen. The sequence of commands bellow is taken

from the start script inside the scripts directory.
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svn update %th i s i s needed to update any f i l e s in the SVN r epo s i t o r y

%make sure that you are cu r r en t l y i n s i d e the s c r i p t s d i r e c t o r y .

%assume that backed−up f i l e s l i e in the input d i r e c t o r y

cp . . / input/10−1. xml . . / output/10−1. xml

cp . . / input/10−2. xml . . / output/10−2. xml % do t h i s f o r as many f i l e s as you need .

. . .

cp . . / input/10−8. xml . . / output/10−8. xml

%compi l e 3dGen

g++ − l xerces−c −o app . . / s r c / Portal . cpp . . / s r c /Vertex . cpp . . / s r c /Space . cpp . . / s r c /Wall . cpp

. . / s r c /VPortal . cpp . . / s r c / t o o l s . cpp . . / s r c /main . cpp . . / s r c / genUt i l s . cpp

%compi l e XMLtoUG

g++ − l xerces−c −o uggen . . / s r c /XMLtoUG. cpp . . / s r c / t oo l s . cpp

%run 3dGen

%to omit the c e i l i n g s in the geometr i c models , put the −no c e i l argument a f t e r gen3d

. / gen3d . . / output/10−1. xml . . / output/10−2. xml output/10−3.xml

%run XMLtoUG and generate f a c e s

%(to generat e wire mesh , use w f l a g in s t ead o f f a f t e r uggen command)

. / uggen f output/10−1. xml output/10−2. xml output/10−3. xml

%convert ug to i v ( only works on t r i t i um )

. / ug2iv output . ug > output . i v

%f i x l i g h t i n g i r r e g u l a r i t i e s

. / i v f i x output . i v output/10− a l l . i v

Figure B-1: The example sequence of commands to generate the geometric model of

MIT building 10

It is important to note that the files have to be listed from the lower floor to the

higher floor (the order of floors does matter) in the input to both app and uggen

scripts.

The iv files can be viewed by the inventor viewer, ivview.

B.4 Parameters set in the code

The three static parameters height, portal height and portal width are defined

in the genUtils.h file. These define the height of the floor, the height of every ex-

plicit portal (implicit portals have height of the floor), and width of explicit portals,

respectively.
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B.5 Viewing geometric models in VRML

The Inventor viewer (ivview) does not provide the user with the ability to navigate

the hallways of the geometric models. Another viewer is necessary in order to view

geometric models. Cortona Player has been verified to work on our models.

The following steps only work on Windows machines. You should download Open

Inventor Tools from the web at http://merlin.fit.vutbr.cz/ivTools/ivTools-bin-2.0.zip.

The tools package contains the ivvrml executable file. Running it as follows will

convert the output file from inventor format to VRML2 format that can later be

opened by VRML viewers.

ivvrml -2 10-all.iv 10-all.wrl

The only VRML viewer that has been verified to work with out output files is the

Cortona VRML viewer. It can be obtained from

http://www.parallelgraphics.com/products/cortona/. The installer for Cortona

Player installs a browser plugin. There are issues with running Cortona plugin on

Firefox 3, however, The Cortona Player has been verified to work in Internet Explorer

7. For now, use Internet Explorer 7 to view the geometric models.

Once the wrl file has been loaded into the Cortona player, the geometric model

will not appear on the screen automatically. This is because teh building models are

not drawn anywhere near the origin of the coordinate system. Clicking on the Fit

button on the bottom right of the viewer window will focus and center the viewer on

the geometric model. Please read the User Guide before attempting to navigate the

building model. The User Guide can be accessed by right-clicking on the window in

which the model is visible and going to Help− >User Guide in the context menu that

pops up.
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Appendix C

3D Geometric models

This appendix shows the result geometric models of various floors.

Figure C-1: Model 1 view 1: Looking into a neighboring space through the implicit
portal
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Figure C-2: Model 1 view 2: An example of the doorframes at portals

Figure C-3: Model 1 view 3: Hallway as seen inside the VRML viewer
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