
Javarifier: Inference of reference immutability in

Java

by

Jaime Quinonez

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2008

c© Jaime Quinonez, MMVIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

May 23, 2008

Certified by. .
Michael D. Ernst

Associate Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Javarifier: Inference of reference immutability in Java

by

Jaime Quinonez

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2008, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Javari is an extension of Java that supports reference immutability constraints. Pro-
grammers write Javari type qualifiers, such as the readonly type qualifier, in their
programs, and the Javari typechecker detects mutation errors (incorrect side effects)
or verifies their absence. While case studies have demonstrated the practicality and
value of Javari, a barrier to usability remains in the development process. A Javari
program will not typecheck unless all the references in the APIs of libraries it uses
are annotated with Javari type qualifiers. Manually converting existing Java libraries
to Javari is both tedious and error-prone; the development process requires an auto-
mated solution.

This thesis presents an algorithm for statically inferring reference immutability in
Javari. The flow-insensitive and context-sensitive algorithm is sound and produces a
set of qualifiers that typecheck in Javari. The algorithm is precise in that it infers the
most readonly qualifiers possible; adding any additional readonly qualifiers will cause
the program to not typecheck. A tool, Javarifier, implements this algorithm in order
to infer the Javari type qualifiers over a set of class files. Javarifier can also insert
these qualifiers into the corresponding source code, if the source code is available.

Javarifier automatically converts Java libraries to Javari. Additionally, Javarifier
eases the task of converting legacy programs to Javari by inferring the mutability of
every reference in a program. In case studies, Javarifier correctly inferred mutability
over Java programs of up to 110 KLOC.

Thesis Supervisor: Michael D. Ernst
Title: Associate Professor

3

4

Acknowledgments

Michael Ernst provided comprehensive guidance and was instrumental in the various

stages of design and evaluation of Javari and Javarifier. Adrian Birka implemented

the Javari2004 prototype compiler for an earlier dialect of Javari. Matthew Tschantz

provided the formal Javari type rules, the initial Javarifier algorithm and the initial

Javarifier prototype. Matthew Papi designed the extended Java annotation system

(JSR 308) and implemented the compiler that writes these annotations to class files,

which is necessary for Javarifier to read existing Javari annotations. Matthew Papi

also designed and implemented the checkers framework for compile-time checking

of custom type qualifiers. Telmo Correa created a prototype checker for Javari on

top of the checkers framework. Matthew McCutchen performed initial evaluations

of the Javarifier prototype. Finally, we are grateful to Mahmood Ali, Joshua Bloch,

John Boyland, Gilad Bracha, Doug Lea, Sandra Loosemore, Jeff Perkins for their

comments on the Javari design. This work was supported in part by NSF grants

CCR-0133580 and CCR-0234651, DARPA contract FA8750-04-2-0254, and gifts from

IBM and Microsoft.

5

6

Contents

1 Introduction 13

2 Motivation 17

3 The Javari language: Java with reference immutability 19

3.1 Definition of immutable references . 19

3.2 Containing object context . 20

3.3 Generic types and array types . 22

3.4 Mutability polymorphism . 24

3.5 Method subtyping . 26

3.5.1 Extending the method subtyping rules to incorporate polyread 27

3.6 Abstract state . 30

4 Type inference for Javari 33

4.1 Core algorithm . 33

4.1.1 Constraint generation . 34

4.1.2 Constraint solving . 36

4.1.3 Subtyping . 38

4.2 Pre-existing annotations and unanalyzed code 39

4.2.1 Mutability annotations . 39

4.2.2 assignable and mutable field annotations 40

4.3 Arrays and generics . 42

4.3.1 Arrays . 42

7

4.3.2 Parametric types (Java generics) 46

4.4 Inferring polyread . 49

4.4.1 Approach . 50

4.4.2 Constraint generation rules 50

4.4.3 Constraint solving . 52

4.4.4 Interpreting the simplified constraint set 53

4.5 Inferring assignable and mutable field annotations 54

4.5.1 Leveraging readonly and polyread annotations to infer which

fields cannot be in the abstract state 55

4.5.2 Incorporating existing annotations into the constraint set . . . 59

4.5.3 Heuristics for excluding fields from the abstract state 63

5 Evaluation 67

5.1 Comparison to manual annotations 68

5.2 Comparison to another mutability inference tool 69

6 Related Work 73

6.1 Javarifier . 73

6.2 JQual . 74

6.3 Pidasa . 75

6.4 JPPA . 76

6.5 Other reference usage analyses . 76

6.6 Type checking . 76

7 Conclusion 79

8

List of Figures

1-1 A Java program and a corresponding Javari program 14

3-1 Javari keywords: type qualifiers and field annotations 20

3-2 Javari’s type hierarchy . 20

3-3 Examples of reading this-mutable fields 21

3-4 Examples of writing to this-mutable fields 21

3-5 Type error if this-mutable field is not written to as mutable 22

3-6 The motivation for subtyping invariance in terms of type arguments . 23

3-7 Example of code using polyread . 25

3-8 Method subtyping examples for polyread return types 28

3-9 Method subtyping examples for polyread parameters 29

3-10 Example class with a field excluded from the abstract state 31

4-1 Core language for constraint generation 34

4-2 Constraint generation rules . 35

4-3 Example of constraint generation . 36

4-4 Constraint solving algorithm . 37

4-5 Constraint generation rules extended for assignable and mutable fields 42

4-6 Core language extended with arrays 42

4-7 Simplified subtyping rules for mutability in Javari 44

4-8 Constraint generation rules extended for arrays 44

4-9 Definition of asType . 47

4-10 Constraint generation rules extended for parametric types 48

4-11 Simplified subtyping rules of Javari including parametric types 48

9

4-12 An example of a mutable type variable bound 49

4-13 Constraint generation rules extended for polyread 52

4-14 Extended constraint solving algorithm 53

4-15 Inferring mutability from user readonly annotations 57

4-16 Constraint generation rules extended to record target fields 60

4-17 Constraints generated due to a user’s readonly annotation 61

4-18 A mutable field enables respecting a user’s readonly annotation . . . 62

4-19 An assignable field enables a polymorphic Iterator.next() 64

5-1 Javari’s conservatism in inheritance 70

10

List of Tables

4.1 Mapping from mutabilities on upper and lower bounds to Javari type 46

5.1 Subject program results for case studies 68

5.2 Types of differences between Javarifier and Pidasa 69

11

12

Chapter 1

Introduction

Javari is an extension of Java with reference immutability type qualifiers [30]. It

allows programmers to specify whether references may be used to modify their ref-

erents. A readonly reference cannot be used to modify its referent, while a mutable

reference may be used to modify its referent. The Javari type system increases the

expressiveness of Java by making certain mutability contracts explicit in a machine-

checked format. For example, a library method with a readonly List parameter is

guaranteed to not add or remove elements from that list. This guarantee allows users

of that library to pass their internal data directly—without going through the costly

process of making a copy and passing the copy—without fear of the library modifying

the data. As another example, a method with a readonly return type can safely re-

turn a reference to the internal state of the enclosing object without risking the user

modifying that state, since the returned reference cannot be used for mutation.

Javari provides reference immutability guarantees over the transitive, abstract

state of an object. The abstract state of an object is the value of all its primitive

fields and, transitively, the abstract state of all object fields. However, Javari allows

explicitly excluding certain fields from the abstract state of an object. Furthermore,

the user can exclude either the value or identity (or both) of a field from the abstract

state. In our experience with Javari, these features allow enough flexibility to specify

the exact abstract state of an object to match the developer’s intent.

Figure 1-1 shows an example Java class and the corresponding Javari class.

13

Java
class Event {

Date date;

int hc;

Date getDate() {

return Date;

}

void setDate(Date d)

{

this.date = d;

}

static void printDate(Date d) {

System.out.println(d);

}

int hashCode() {

if(hc == 0) {

hc = date.hashCode();

}

return hc;

}

}

Javari
class Event {

/*this-mutable*/ Date date;

int hc;

polyread Date getDate() polyread {

return Date;

}

void setDate(/*mutable*/ Date d)

/*mutable*/ {

this.date = d;

}

static void printDate(readonly Date d) {

System.out.println(d);

}

int hashCode() readonly {

if(hc == 0) {

hc = date.hashCode();

}

return hc;

}

}

Figure 1-1: A Java class (left) and the corresponding Javari class (right). Underlines
indicate immutability qualifiers. The figure shows default qualifiers in comments for
clarity (Javarifier adds nothing in such cases). A qualifier after the parameter list
and before the opening curly brace annotates (as for getDate() and hashCode()) that
method’s receiver, similar to annotations on other parameters. The qualifiers are
explained in Chapter 3.

The Javari typechecker offers the reference immutability guarantee that references

are used correctly with respect to mutability. Thus, it detects, or guarantees the

absence of, various types of mutability errors. It aids developers both in finding

unintended mutability errors in existing Java code and in preventing mutability errors

in new Javari code.

In order to port existing Java code to Javari, this thesis presents an algorithm

for automatically inferring the reference immutability of Java classes with respect to

Javari. The algorithm infers the multiple annotations that are needed for an expres-

sive language like Javari, including readonly, specifying containing-object context

(this-mutable), an extension to wildcards (? readonly), and non-generics polymor-

phism (polyread), The algorithm handles the complexities of the Java language, in-

14

cluding subtyping, generics, arrays, and unseen code. Furthermore, the algorithm

heuristically recommends fields to exclude from the abstract state of a class via the

assignable or mutable field annotations; the user may accept some or all of the

recommendations. Javarifier, the tool that implements the inference algorithm over

class files, has successfully converted programs up to 110 KLOC from Java to Javari.

The algorithm is sound and precise. Its results typecheck under the Javari type-

checker, and changing any mutable qualifiers to readonly, without further modifying

the qualifiers or the program, causes the results to not typecheck under the Javari

typechecker.

All of the tools use the JSR 308 [11] extension to Java annotations, which is

backward-compatible and which is planned for inclusion in Java 71.

The rest of this thesis is organized as follows. Chapter 2 outlines the need for a tool

to automatically convert Java programs to Javari. Chapter 3 provides an overview

of the Javari language for reference immutability. Chapter 4 describes the reference

immutability algorithm in detail, including support for arrays, generics, mutability

polymorphism and heuristics for excluding fields from the abstract state of an object.

Chapter 5 reports experience using Javarifier. Chapter 6 discusses related work.

Finally, Chapter 7 concludes with a summary of contributions.

1To focus on the language and algorithmic details rather than the implementation details, this
thesis uses keywords rather than annotations for the Javari type qualifiers. The actual Javarifier
tool uses annotations that can be inserted in either the source code or class files of a program.

15

16

Chapter 2

Motivation

The reference immutability constraints of Javari have many benefits: programmers

can formally express intended properties of their code; explicit, machine-checked doc-

umentation enhances program understanding; static or dynamic checkers can detect

errors or guarantee their absence; and analyses and transformations depending on

compiler-verified properties are enabled. In practice, immutability constraints have

been shown to be practical and to find errors in software.

By default, a Java program is a valid Javari program where every reference is

mutable (or this-mutable for fields). Thus, running the Javari typechecker on Java

code cannot reveal any mutability errors; the Java code must first be converted to

use Javari qualifiers. Writing reference immutability qualifiers to obtain these benefits

can be tedious and error-prone; an automatic conversion is necessary. An even more

important motivation for immutability inference is the need to annotate the signatures

of all used libraries. The Javari typechecker, in order to remain sound, assumes that

all methods in an unannotated library may modify their arguments. In particular,

passing a readonly reference to any library method would be a type error.

Tschantz developed an initial algorithm that soundly calculates reference im-

mutability [29]. This algorithm computes all the references (including local variables,

method parameters, and static and instance fields) that may have Javari’s readonly,

polyread, or ? readonly keywords added to their declarations. Given the Java class

on the left side of Figure 1-1, the algorithm produces the Javari class on the right

17

side of Figure 1-1. Note that hc is heuristically recommended (see Section 4.5) to be

assignable. Otherwise, hashCode would be inferred, undesirably, to have a mutable

receiver. This thesis improves upon the algorithm by improving its treatment of mu-

tability polymorphism, method overriding, heuristics for inferring which fields should

be excluded from the abstract state of an object, and the algorithm for efficiently

solving the algorithm’s constraint set.

Javarifier is a scalable tool that implements this algorithm. Javarifier’s input is a

Java (or partially annotated Javari) program in class file format. Javarifier operates

on class files rather than source code because programmers may wish to convert li-

brary code whose source is unavailable. The Javarifier toolset can insert the inferred

qualifiers in source or class files, or present them to a user for inspection. Sometimes,

the user may want to modify a few qualifiers from the results. For example, a pa-

rameter that is not modified inside a method will be inferred to be readonly, but the

specification of the method may indicate that the parameter is in fact mutable. Also,

the user may want to exclude certain fields from the abstract state of an object. To

allow this fine-grain tuning of Javarifier results, the user can insert any number of

qualifiers in the program and run Javarifier in the presence of these qualifiers (see

Section 4.2).

18

Chapter 3

The Javari language: Java with

reference immutability

Javari extends Java’s type system to allow programmers to specify and statically

enforce reference immutability constraints. This chapter explains Javari’s keywords,

as listed in Figure 3-1. The Javari language, along with formal type rules, is fully

defined elsewhere [30, 29].

3.1 Definition of immutable references

For every Java type T, Javari also has the type readonly T, where T is a subtype

of readonly T. Figure 3-2 demonstrates how Javari augments the type hierarchy to

include both readonly and mutable versions of every Java reference type. References

that are not readonly can be used to modify their referent and are said to be mutable.

The default mutability for references with unspecified mutability is mutable. This

default ensures backwards compatibility, as all Java code is legal Javari code with all

references assumed to be mutable. By Java’s subtyping rules, a mutable reference can

be used anywhere a readonly reference is expected, but a readonly reference cannot

be treated as a mutable reference.

A reference declared to have a readonly type cannot be used to mutate the object

it references:

19

Type qualifiers
readonly The reference cannot be used to modify its referent
/*mutable*/ The reference may be used to modify its referent
polyread Polymorphism (for parameters and return types) over mutability
? readonly The reference has a readonly upper bound and mutable lower bound

Field annotations
/*this-mutable*/ The field inherits its mutability from the

reference through which it is reached
assignable The field may be reassigned through a readonly reference
mutable The field may be mutated through a readonly reference

Figure 3-1: Javari keywords: type qualifiers and field annotations. Default keywords
that are not written in a program are shown in comments.

readonly
Date

readonly
Object

Date

Object

Figure 3-2: A portion of the Javari type hierarchy, which includes readonly and
mutable versions of each Java reference type. Arrows connect subtypes to supertypes.

readonly Date d = new Date();

d.setHours(9); // compile-time error

Mutation is any modification to an object’s abstract state (see Section 3.6). By

default, an object’s abstract state is the value of all its primitive fields, and the

abstract state of all its object fields. Thus, the abstract state captures all state

transitively reachable from a reference.

3.2 Containing object context

Javari allows fields to inherit their mutability from the context in which they are

accessed. The default mutability for fields, this-mutable, specifies that when a field

is read, it has the same mutability as the mutability of the reference through which

it is read. Given a reference x, the expression x.f provides a reference to a subset

of the abstract state of x. Thus, x.f should be mutable if and only if x is mutable.

Figure 3-3 provides detailed examples of reading this-mutable fields.

20

class Cell {

Date date;

}

readonly Cell readonlyCell;

/*mutable*/ Cell mutableCell;

readonly Date readonlyDate;

/*mutable*/ Date mutableDate;

readonlyDate = readonlyCell.date; // legal

readonlyDate = mutableCell.date; // legal: mutable reference

// can be read as readonly

mutableDate = readonlyCell.date; // illegal: readonlyCell.date is readonly

mutableDate = mutableCell.date; // legal

Figure 3-3: Examples of reading this-mutable fields. Each field is read at the same
mutability as the reference used to access that field.

class Cell {

Date date;

}

readonly Cell readonlyCell;

/*mutable*/ Cell mutableCell;

readonly Date readonlyDate;

/*mutable*/ Date mutableDate;

readonlyCell.date = readonlyDate; // illegal: must write field as mutable

mutableCell.date = readonlyDate; // illegal: must write field as mutable

readonlyCell.date = mutableDate; // legal

mutableCell.date = mutableDate; // legal

Figure 3-4: Examples of writing to this-mutable fields. A this-mutable field must
always be written to as mutable.

For type-safety reasons, all this-mutable fields must be written to as mutable, as

shown in Figure 3-4. Otherwise, using a mutable reference where a readonly reference

is expected would allow a user to convert a readonly reference to a mutable reference,

as shown in Figure 3-5.

21

class Cell {

Date date;

}

static mutable Date convertToMutable(readonly readonlyDate) {

/*mutable*/ Cell mutableCell = new Cell();

readonly Cell readonlyCell = mutableCell; // legal: mutable Cell

// is a subtype of

// readonly Cell

readonlyCell.date = readonlyDate; // illegal: cannot write to

// field as mutable

mutableDate mutableDate = mutableCell.date;

return mutableDate;

}

Figure 3-5: Example of a type error that would occur if a this-mutable field could be
written to as readonly through a readonly reference. Since readonly references can
alias mutable references, writing to a this-mutable field through a readonly reference
may be writing to a field that can be read as mutable through another (mutable)
reference. Therefore, in order to remain sound, Javari conservatively requires that a
this-mutable field is always written to as mutable.

3.3 Generic types and array types

Javari handles generic type parameters in a natural way to account for the fact that

every type specifies its mutability. Below are four declarations of type List. The

mutability of the parameterized type List does not affect the mutability of the type

argument.

/*mutable*/ List</*mutable*/ Date> ld1; // List: may add/remove;
// Date: may mutate

/*mutable*/ List<readonly Date> ld2; // List: may add/remove
readonly List</*mutable*/ Date> ld3; // Date: may mutate
readonly List<readonly Date> ld4; // (no side effects allowed)

As in Java, subtyping is invariant in terms of type arguments. Javari expresses the

common supertype of List</*mutable*/ Date> and List<readonly Date> as the type

List<? readonly Date>. The ? readonly wildcard keyword is an extension to Java’s

wildcard mechanism. The type argument ? readonly Date specifies that readonly

Date is the type argument’s upper bound and /*mutable*/ Date is its lower bound.

22

void addToList(readonly Date date, ArrayList<readonly Date> list) {

list.add(date);

}

/*mutable*/ Date convertToMutable(readonly Date roDate) {

ArrayList</*mutable*/ Date> mutList = new ArrayList</*mutable*/ Date>();

addToList(roDate, mutList); // error: passing an ArrayList<mutable Date>

// reference into an ArrayList<readonly Date>

// formal parameter

return mutList.get(0);

}

Figure 3-6: The convertToMutable method attempts to convert a readonly Date

reference to a mutable Date reference by adding it to a list when the list is read
as a List<readonly Date>, and then extracting it from the same list when the list
is read as a List<mutable Date>. Javari prohibits this invalid conversion by making
subtyping invariant in terms of type argument mutability, so that a List<mutable

Date> can never be read as a List<readonly Date>.

Elements are read from this type of list as readonly, but must be written to it

as mutable. A List declaration with this type would be written as List<? extends

readonly Date super /*mutable*/ Date>, except Java does not allow the declaration

of both a lower and an upper bound on a wildcard.

The mutability wildcard is useful for the same reasons Java wildcards are. For ex-

ample, a method that prints all the Dates in an input List can have a List<? readonly

Date> parameter. If the parameter were declared as List<readonly Date>, then a

List</*mutable*/ Date> argument could not be passed in, due to the invariance of

type arguments. This case also demonstrates why subtyping must be invariant in

terms of the mutability of type arguments. Figure 3-6 shows how a readonly refer-

ence could be converted to a mutable reference if a List</*mutable*/ Date> could be

passed as an argument to a method with a List<readonly Date> parameter.

Javari keywords, including ? readonly, apply to arrays analogously to parame-

terized types; each level of an array has its own mutability, and Javari arrays are

invariant with respect to mutability.

23

3.4 Mutability polymorphism

The polyread qualifier expresses parametric polymorphism over mutability. (The

polyread qualifier was previously named “romaybe” [30, 29].) This qualifier is useful

for representing cases where certain method-local references may be either readonly

or mutable, and a method must be written so that both qualifiers could be valid. The

polyread qualifier may appear on any method-local reference: parameters, receiver,

return type, local variables, and fields of method-local classes. The type checker

conceptually duplicates any method containing a reference with a polyread qualifier.

In one version of the method, all instances of polyread are replaced by readonly (or

by ? readonly, if polyread appeared as a type argument to a parameterized class).

In the other version, all instances of polyread are removed, so the references are

mutable. Both versions of the method must typecheck in Javari. Clients may use

either version.

Figure 3-7 demonstrates the use of polyread to properly annotate an accessor

method. The polyread qualifier permits an accessor method have the same mutability

semantics as a field access of a this-mutable field. When the accessor getSeat()

is called on a mutable reference, the returned field is read as mutable. When the

accessor is called on a readonly reference, the returned field is read as readonly.

(This similarity only applies to reading a this-mutable field. A method that sets a

field cannot have a polyread receiver, since in the version of the method with polyread

replaced with readonly, the assignment will modify the state of the object and thus be

illegal.) Without this parametric polymorphism, an accessor method could not have

the same mutability semantics as a straight forward field access. If the receiver of an

accessor is mutable, then the accessor can never be called on a readonly reference. If

the receiver of an accessor is readonly, then the accessor can only return a readonly

reference to the internal field. Since a polyread receiver and return type is the natural

way to annotate an accessor, polyread is critical for precision; in the JDK, polyread

is needed 70% as often as readonly [20].

The polyread semantics are not expressible in terms of Java generics. In partic-

24

class Bicycle {

private Seat seat;

polyread Seat getSeat() polyread { return seat; }

}

static void lowerSeat(/*mutable*/ Bicycle b) {

/*mutable*/ Seat s = b.getSeat();

s.height = 0;

}

static void printSeat(readonly Bicycle b) {

readonly Seat s = b.getSeat();

System.out.println(s);

}

Figure 3-7: The polyread keyword expresses polymorphism over mutability without
polymorphism over the Java type. lowerSeat uses the mutable version of getSeat and
takes a mutable Bicycle parameter. printSeat uses the readonly version of getSeat
and can take a readonly Bicycle parameter. Without polyread, all the underlined
annotations would be /*mutable*/. In particular, printSeat would take a mutable

Bicycle parameter, and this imprecision could propagate through the rest of the
program.

ular, Javarifier must be able to convert existing Java programs into Javari programs

by only adding qualifiers (see Chapter 4). Therefore, Javari must be able to express

mutability polymorphism without using generics. The program in Figure 3-7 does

not use generics, but is still able to express the mutability polymorphism required in

getSeat().

Neither of the polyread and ? readonly qualifiers subsumes the other. The

polyread qualifier allows a reference to be either readonly or mutable each time a

type rule is checked; it can vary its mutability depending on which type rule is being

checked. The ? readonly qualifier does not have different semantics in different con-

texts, but rather, adds the additional constraints to the semantics of both mutabilities;

some mutable references can only be read as readonly and some readonly references

must be written to as mutable. The polyread and ? readonly qualifiers have different

goals: polyread is useful for expressing the precise mutability of a this-mutable field,

whereas ? readonly is useful for expressing the basic common features of types that

differ only in mutability, which allows, for example, methods that can accept either

a List<readonly Date> reference or a List<mutable Date> reference.

25

Wherever one of these qualifiers is used, the other cannot be used to accomplish

the same goal.

For example, a general accessor method cannot have a ? readonly qualifier in its

return type because that would imply that some part of the returned value can never

be mutated. If a method’s return type is mutable List<? readonly Date>, clients

could never mutate any of the Dates in the returned list. However, if the returned

type of an accessor is polyread List<polyread Date>, the Dates could be read as

mutable by a client if the client called the accessor method on a mutable reference.

polyread cannot subsume ? readonly because it can only be used to for mutability

polymorphism over method-local references, since polyread requires conceptually du-

plicating the method for typechecking. Therefore, polyread cannot be used on type

arguments for fields, whereas ? readonly is not restricted to methods.

3.5 Method subtyping

In Javari, method subtyping is covariant with respect to the mutability of the return

type and contravariant with respect to parameter mutability (including the receiver,

the implicit this parameter). The type hierarchy in Figure 3-2 expresses the two

orthogonal dimensions in which one type may subtype another type; a type can

be a subtype in terms of mutability and it can also be a subtype in terms of the

Java class type. The Javari rule for method subtyping states that methods must

be covariant in terms of the mutability of their return types and contravariant in

terms of the mutability of their parameters. This rule is unaffected by, and does

not affect, the orthogonal Java rule that method subtyping is covariant in terms of

the class types of their return types and contravariant in terms of the class types of

their parameters. A previous formalism required, for simplicity, method subtyping

to be invariant with regards to the mutabilities of return types and parameters [29].

However, this restriction is not necessary to ensure type safety, so we removed this

restriction.

The rule for enforcing that methods must be covariant in terms of the mutability

26

of their return types states that if a method returns a mutable reference, all overrid-

ing methods in subclasses must return a mutable reference. If a method returns a

readonly reference, an overriding method may return either a readonly reference or

a mutable reference. The rule that methods are covariant in terms of the mutability

of their return types is orthogonal to the rule that methods are covariant in terms of

the class type of their return types. If a method in a superclass returns a mutable

ArrayList, an overriding method may neither return a readonly ArrayList (which is

not a subtype with respect to mutability) nor return a mutable List (which is not a

subtype with respect to class type).

The rule for enforcing that methods must be contravariant in terms of the muta-

bility of their parameters states that if a method accepts a readonly parameter, all

overriding methods must also accept a readonly parameter. If a method accepts a

mutable parameter, overriding methods may accept either a mutable or readonly pa-

rameter. In this case, an overriding method accepting a readonly parameter demon-

strates the sometimes conservative nature of Javari’s type qualifiers. The mutable

type qualifier on the overridden method conservatively specifies that the method may

mutate the argument passed in through that parameter. Javari does not require that

a method actually mutate a mutable parameter. An overriding method that does not

use that parameter for mutation may therefore safely declare that parameter to be

readonly. Since the overridden method guarantees clients only that the method may

or may not mutate its parameter, the overriding method honors this guarantee and

then strengthens it by stating that the overriding method will not mutate its param-

eter. Thus, Javari can allow method subtyping to be contravariant with respect to

parameter mutability while still maintaining all its previous guarantees.

3.5.1 Extending the method subtyping rules to incorporate

polyread

The Javari type hierarchy for mutability from Figure 3-2 does not incorporate the

polyread qualifier because polyread does not specify a mutability type; however,

27

class A {

polyread Date get() polyread;

}

class B extends A {

polyread Date get() polyread;

}

class C extends A {

mutable Date get() polyread;

}

Figure 3-8: Examples of method subtyping for polyread return types (underlined for
emphasis). In Javari, methods are covariant with respect to the mutability of return
types. For methods with polyread references, the typechecker checks each subtyping
relation once with each instance of polyread in all methods replaced with mutable,
and once with each instance of polyread in all methods replaced with readonly. (See
Section 3.5.1)

polyread may appear as a qualifier on parameters (including the implicit receiver)

and return types. Section 3.4 presented the rules for type checking the bodies and

usage of methods with some polyread references in their signatures. This section

extends the type checking rules for method subtyping from Section 3.5 to check the

subtyping relations for methods that may contain some polyread references.

To check the subtyping relations for a pair of methods that contain polyread

references, the type checker conceptually creates two versions of each method: a

readonly version with all instances of polyread replaced by readonly and a mutable

version with all instances of polyread replaced by mutable. Then, the type checker

enforces that each version of the methods typecheck using the method subtyping rules

from Section 3.5; the type checker checks that the readonly versions of the methods

obey the subtyping rules and then checks that the mutable versions of the methods

obey the subtyping rules.

The method subtyping rules enforce that methods are covariant in terms of return

type as follows:

• In the mutable versions of a method, if the return type is mutable in the super-

class, it must be mutable in the subclass. Figure 3-8 demonstrates two methods

that override a method with a polyread return type. In the mutable version

28

class A {

polyread Date get() polyread;

}

class B extends A {

polyread Date get() polyread;

}

class C extends A {

polyread Date get() readonly;

}

Figure 3-9: Examples of method subtyping for polyread parameters (including the
implicit receiver, underlined for emphasis). In Javari, methods are contravariant with
respect to the mutability of parameters. For methods with polyread references, the
typechecker checks each subtyping relation once with each instance of polyread in
all methods replaced with mutable, and once with each instance of polyread in all
methods replaced with readonly. (See Section 3.5.1)

of A.get(), the method has a mutable return type. In B.get(), the polyread

return type is mutable in the mutable version of that method. The return type

of C.get() is mutable in both versions of that method.

• Analogously, in the readonly versions of a method, if a method has a readonly

return type in a subclass, it must have a readonly return type in the superclass.

If the method has a polyread return type in the subclass, it must have either a

readonly or polyread return type in the superclass.

The logic is similar for enforcing contravariant parameter mutability. The two

versions of a method with polyread references are checked as follows:

• In the mutable versions of the method, if a parameter (including the implicit

receiver) is mutable in the superclass, it may be either mutable or readonly

in the subclass. Figure 3-9 demonstrates two methods that override a method

with a polyread parameter. In the mutable version of A.get(), it has a mutable

receiver. In B.get(), the receiver is also mutable in the mutable version of the

method. In C.get(), the receiver is readonly in the mutable version of the

method, which obeys the contravariant parameter subtyping relation.

• Analogously, in the readonly versions of the method, if a parameter is readonly

29

in the superclass, it must be readonly in the subclass. If the parameter has

a readonly qualifier in the superclass, it must have a readonly qualifier in the

subclass. If the parameter has a polyread qualifier in the superclass, it must

have either a readonly or polyread qualifier in the subclass.

3.6 Abstract state

By default, the abstract state of an object is its transitively reachable state, which is

the state of the object and all state reachable from it by following references. Javari’s

deep reference immutability is achieved by giving each field the default annotation of

this-mutable, which means the field inherits its mutability from the reference (this)

through which it is accessed. Since it is the default, this-mutable is never written in

a program.

The assignable and mutable keywords enable a programmer to exclude specific

fields from an object’s abstract state. The assignable keyword specifies that a field

may always be reassigned, even through a readonly reference; Java’s final keyword

plays a related role, specifying that a field may not be reassigned at all through any

reference once it has been set. The mutable keyword specifies that a field has a mutable

type (its own fields may be reassigned or mutated) even when referenced through a

readonly reference. A mutable field’s abstract value is not a part of the abstract state

of the object (but the field’s identity may be). Assignability and mutability of fields

are orthogonal notions. Both are necessary to express code idioms such as caches,

logging, and benevolent side effects, where not every field is part of the object’s

abstract state. For example, in Figure 3-10, the value of the log field is excluded

from the abstract state of a NetworkRouter.

The (implicit, default) mutable type qualifier and the (explicit) mutable field use

the same syntax, but have somewhat different semantics. The mutable type qualifier

denotes that a reference may be used to modify its referent. The mutable field an-

notation excludes a field from the abstract state of an object by specifying that the

field may always be used to modify its referent, even when the field is read through

30

public class NetworkRouter {

mutable List<String> log;

// The readonly keyword indicates that the method does not

// modify its receiver.

public void selectRoute(String destination) readonly {

log.add("selecting route to: " + destination);

}

}

Figure 3-10: Example class with a field excluded from the abstract state. The mutable
field annotation on the log field excludes the value of that field from the abstract state
of a NetworkRouter. Therefore, adding elements to log inside of the selectRoute()

method is only a mutation of the concrete state and not a mutation of the abstract
state.

a readonly reference. The mutable field annotation thus also qualifies the field refer-

ence with all the same semantics as the mutable type qualifier. Therefore, the mutable

keyword serves as both a type qualifier and field annotation when it appears on a

field, and serves only as a type qualifier on any other reference.

31

32

Chapter 4

Type inference for Javari

This chapter presents a flow-insensitive and context-sensitive algorithm to statically

infer reference immutability. The algorithm determines which references may be de-

clared with readonly or other Javari keywords; other references are left as the default

for their reference types (this-mutable for fields, mutable for all other references).

The algorithm is sound: its recommendations type check under Javari’s rules. Fur-

thermore, the algorithm is precise: declaring any references in addition to its recom-

mendations as readonly— without other modifications to the code — will result in

the program not type checking. The algorithm is implemented as a tool, Javarifier,

which also includes the toolflow for interacting with the user, as in Section 4.5.

Section 4.1 describes the core inference algorithm. The algorithm extends to

handle subtyping (Section 4.1.3); unseen code and pre-existing constraints including

assignable and mutable fields (Section 4.2); arrays (Section 4.3.1); Java generics (Sec-

tion 4.3.2); and mutability polymorphism (Section 4.4). Furthermore, Section 4.5

presents heuristics for excluding fields from the abstract state of an object.

4.1 Core algorithm

Given as input a program, the algorithm generates, then solves, a set of mutability

constraints. A mutability constraint states when a given reference must be declared

mutable. The core algorithm uses two types of constraints: unguarded and guarded.

33

Q ::= class {f M} class def
M ::= m(x){s;} method def
s ::= x = x statements

| x = x.m(x)
| return x

| x = x.f
| x.f = x

Figure 4-1: Grammar for core language used during constraint generation. x is short-
hand for the (possibly empty) sequence x1 . . . xn. The special variable thism is the
receiver of method m; it is treated as a normal variable, except that any program that
attempts to reassign thism is malformed.

(Section 4.4 introduces a third variety of constraints, double-guarded constraints.) An

unguarded constraint such as “x” states that a reference is unconditionally mutable.

x is a constraint variable that refers to a Java reference or other entity in the code.

A guarded constraint such as “y → x” states that if y is mutable, then x is mutable;

again, x and y are constraint variables.

4.1.1 Constraint generation

The first phase of the algorithm generates constraints for each statement in a program.

Unguarded constraints are generated when a reference is used to modify an object.

Guarded constraints are generated by assignments and field dereferences.

We present constraint generation using a simple three-address core language (Fig-

ure 4-1). Control flow constructs are not modeled, because the flow-insensitive al-

gorithm is unaffected by such constructs. Java types are not modeled because the

core algorithm does not use them. Constructors are modeled as regular methods re-

turning a mutable reference to thism. Static members are omitted because they do

not illustrate any interesting properties. Without loss of generality, all references and

methods have globally-unique names. (While the formalism in this thesis is simplified,

the Javarifier implementation handles the full Java language.)

Each statement from Figure 4-1 has a constraint generation rule (Figure 4-2):

Assign The assignment of variable y to x causes the guarded constraint x → y to be

34

x = y : {x → y} (Assign)

this(m) = thism params(m) = p retVal(m) = retm

x = y.m(y) : {thism → y, p → y, x → retm}
(Invk)

retVal(m) = retm

return x : {retm → x}
(Ret)

x = y.f : {x → f, x → y} (Ref)

x.f = y : {x, f → y} (Set)

Figure 4-2: Constraint generation rules for the statements of Figure 4-1. Auxiliary
functions this(m) and params(m) return the receiver reference (thism) and parame-
ters of method m, respectively. retVal(m) returns retm, the constraint variable that
represents the reference to m’s return value. type(x) returns the static type of x.

generated because, if x is a mutable reference, y must also be mutable for the

assignment to be valid.

Invk The constraints are extensions of the Assign rule when method invocation

is viewed as pseudo-assignments or framed in terms of operational semantics:

the receiver, y, is assigned to thism, each actual argument is assigned to the

method’s corresponding formal parameter, and the return value, retm, is as-

signed to x.

Ret The return statement return x adds the constraint retm → x because, if the

return type of the method is found to be mutable, all references returned by the

method must be mutable.

Ref The assignment of y.f to x generates two constraints. The first, x → f, is

required because, if x is mutable, then the field f cannot be readonly. The

second, x → y, is needed because, if x is mutable, then y must be mutable

to yield a mutable reference to field f. (The core algorithm assumes all fields

are this-mutable. Fields that have been manually annotated as mutable can

override this behavior, as discussed in Section 4.2.)

35

class C {

F f; field declaration
Y foo(P p) {

X x = p; Assign: {x→p}
Y y = x.f; Ref: {y → f, y→x}
Z z = x.foo(y); Invk: {thisfoo→x,

p→y, z→retfoo}
this.f = y; Set: {thisfoo, f→y}
return y; Ret: {retfoo→y}

}

void doNothing(P p)

{ no constraints to generate
}

}

Simplified program constraints:
{thisfoo, x, p}

class C {

readonly F f;

readonly Y foo(/*mutable*/ P p)

/*mutable*/ {

/*mutable*/ X x = p;

readonly Y y = x.f;

readonly Z z = x.foo(y);

this.f = y;

return y;

}

void doNothing(readonly P p)

readonly {

}

}

Figure 4-3: Example of constraint generation and solving. The left part of the figure
shows the original code. The center shows, for each line of code, the constraint genera-
tion rule used, the constraints generated, and the simplified program constraints — the
references that may not be declared readonly. All the other references (y, z, retfoo,
and f) can be declared readonly, as shown in the Javarifier output on the right side
of the figure.

Set The assignment of y to x.f causes the unguarded constraint x to be generated

because x has just been used to mutate the object to which it refers. The

constraint f → y is added because if f, which is this-mutable, is ever read as

mutable from a mutable reference, then a mutable reference must be assigned

to it. If f is never mutated, the algorithm infers that it is readonly, in which

case y is not constrained to be mutable.

The constraint set for a program is the union of the constraints generated for each

line of the program. Figure 4-3 shows constraints for a sample program.

4.1.2 Constraint solving

The second phase of the algorithm solves the constraints by simplifying the constraint

set. If any unguarded constraint satisfies (i.e., matches) the guard of a guarded con-

straint, the consequent of the guarded constraint becomes an unguarded constraint,

which can then be used to satisfy guards in other guarded constraints. The algo-

rithm finds how many constraints can become unguarded constraints by propagating

36

The core algorithm for solving constraints uses three constraint sets:

• the set of unguarded constraints (U), with constraints of the form a

• the set of guarded constraints (G), with constraints of the form a → b

• a work-list (W) of unguarded constraints left to propagate

Pseudocode for the constraint solving algorithm:

initialize W with all the constraints from U
while W is not empty

pop a constraint a from W
for each constraint g in G that has a as its guard

let c be the consequent of g

if c is not in U, add c to W and to U

When the algorithm terminates, U contains all the constraints that can be satisfied
from the initial constraint sets.

Figure 4-4: Pseudocode for the constraint solving algorithm.

unguarded constraints throughout the set of guarded constraints. If the guarded con-

straints are viewed as graph edges, then the core algorithm can be viewed as graph

reachability starting at the unguarded constraints. This approach can be implemented

with linear time complexity in the number of constraints, and the Javarifier tool does

so.

The algorithm is given in Figure 4-4. If the set of guarded constraints G is im-

plemented as a hash table from each guard to the set of consequents it guards, then

looking up all constraints that one unguarded constraint satisfies takes a constant

amount of time, in expectation. Since every unguarded constraint is only added to the

work-list once, and every guarded constraint is only satisfied by a unique guard, this

process has linear time complexity. This makes the tool highly scalable in practice, as

the number of constraints is linear in the size of the subject program. Specifically, the

number of constraints is linear in the size of the program under analysis as measured

in the three-address core language of Figure 4-11.

The algorithm always terminates because each constraint variable is added to

the work-list W at most once. Only constraints that are initially in the unguarded

1A program’s representation in this language is roughly the size of its class files.

37

constraint set U or are consequents in guarded constraints from G whose guard is

satisfied are added to the work-list. Therefore, only unguarded constraints are added

to W , at which point they are also added to U if they were not previously in U .

After the work-list is initialized, only constraints that are not in U are added to W .

Therefore, each constraint is only added to W at most once, and since there are

a linear number of constraint variables, the algorithm will check each constraint in

W and will terminate in linear time.

The unguarded constraints in the simplified constraint set must be declared mut-

able, except for instance fields, which must be declared this-mutable. All other ref-

erences may safely be declared readonly, since the algorithm propagated unguarded

constraints to every reference that those constraints could reach. Thus, the algorithm

excludes the maximum number of constraint variables from the unguarded constraint

set when there are no field annotations. (Section 4.2.2 discusses how the assignable

and mutable field annotations change the constraint generation rules, but they do not

change the constraint solving step.) For a fixed set of field annotations, constraint

solving therefore results in the maximum number of readonly references in the pro-

gram. (Section 4.3.1 expands this argument to the other Javari qualifiers.) Since the

algorithm always terminates, constraint solving cannot fail. In the worst case, every

reference will be mutable when the algorithm terminates.

Figure 4-3 shows the result of applying the algorithm to an example program.

4.1.3 Subtyping

Java and Javari allow subtyping polymorphism, which enables multiple implementa-

tions of a method to be specified through overriding2, as explained in Section 3.5.

Javari requires that overriding methods have covariant return mutability types and

contravariant parameter mutability types (including the receiver, the implicit this pa-

rameter). To enforce these constraints, the algorithm adds the appropriate guarded

2We use the term overriding both for overriding a concrete method, and for implementing an ab-
stract method or a method from an interface. For brevity and to highlight their identical treatment,
we refer to both abstract methods and interface methods as abstract methods.

38

constraints for every return type and parameter of an overriding method. If a pa-

rameter is mutable in an overriding method, it must be mutable in the overridden

method. If the return type is mutable in an overridden method, it must be mutable

in the overriding method. For simplicity, a previous formalism [29] forced the muta-

bilities of overriding methods to be identical to the overridden method, but that is

not required for correctness.

4.2 Pre-existing annotations and unanalyzed code

This section extends the inference algorithm to incorporate pre-existing annotations.

These are useful for un-analyzable code such as native methods; for missing code, such

as clients of a library, which might have arbitrary effects; and to permit users to over-

ride inferred annotations, such as when a reference is not currently used for mutation,

but its specification permits it to be. Furthermore, user-provided annotations enable

the algorithm to recognize which fields should be excluded from the abstract state

(see Section 4.5). The heuristics first infer which fields should be excluded from the

abstract state of an object and then mark those fields as assignable and/or mutable.

Thus, the constraint generation rules in Figure 4-5 do not need to distinguish between

assignable/mutable fields supplied by the user and those supplied by the heuristics

for excluding fields from the abstract state of an object.

Section 4.2.1 discusses pre-existing annotations that specify that a reference is

either readonly or mutable. Section 4.2.2 discusses field annotations that exclude a

field from the abstract state of an object.

4.2.1 Mutability annotations

A readonly annotation causes the algorithm, upon finishing, to check whether the

reference may be declared readonly. If not, the algorithm issues an error. Alterna-

tively, the algorithm can recommend code changes that permit the reference to be

declared readonly. The algorithm can track which constraints caused the reference to

be declared mutable, by tracking, for each guarded constraint that was satisfied, which

39

unguarded constraint satisfied it and turned the consequent into an unguarded con-

straint. The algorithm can then determine the initial constraint that was unguarded

at the end of constraint generation. If this constraint was generated by the Set rule

(from Figure 4-2), the algorithm can recommend that the field that was written to

can be excluded from the abstract state. If this constraint was generated from a user’s

explicit mutable annotation (from Figure 4-5), this conflict can be pointed out to the

user.

A mutable type qualifier (not field annotation) or a field this-mutable annota-

tion causes the algorithm to add an unguarded constraint that the reference is not

readonly.

Closed-world versus open-world inference mode

The algorithm has two modes. In closed-world mode, or whole-program mode, the

algorithm may infer readonly type qualifiers for returned/escaped references, such

as public method return types and types of public fields. This ability yields more

precise results — that is, more readonly references. In open-world mode, the al-

gorithm marks (i.e., adds an unguarded constraint for) every non-private field and

non-private method return value as mutable. If an entire package is being analyzed,

package-protected (default access) methods and fields need not be so marked; they

may be processed as under the closed world assumption. The open-world assumption

is required when analyzing partial programs or library classes with unknown clients,

because an unseen client may mutate a field or return value.

4.2.2 assignable and mutable field annotations

The inference algorithm in Section 4.1 does not handle the assignable and mutable

field annotations (discussed in Section 3.6). Without handling these field annota-

tions, Javarifier might infer many references to be mutable which the user expects to

be readonly. In some cases, this type of discrepancy could expose a bug in the imple-

mentation; the specification for a reference is that it should not be used to modify its

40

referent, yet the implementation uses that reference to perform an illegal mutation.

Automatically finding unintended mutability errors by pointing out the difference be-

tween a specification and an implementation is one of the main benefits of Javarifier.

(Javarifier points out errors by producing a set of Javari type qualifiers which type-

check in Javari, but which don’t match a user’s specification. The Javari typechecker

points out errors by demonstrating that a set of Javari type qualifiers provided by

the user does not conform to Javari.) However, this discrepancy may also arise if

the user has marked some fields with either of the assignable or mutable field anno-

tations, in which case Javarifier should ignore some of the mutations through those

references. This section explains how Javarifier extends the core inference algorithm

of Section 4.1 to understand the assignable and mutable field annotations.

Javarifier handles fields annotated as mutable or assignable by extending the

constraint generation rules to check the assignability and mutability of fields before

adding constraints. The auxiliary function assignable(f) returns true if and only if f

is declared to be assignable; likewise for mutable(f). The changes to the constraint

generation rules are shown in Figure 4-5 and are described below.

To handle assignable fields, the Set rule is divided into two rules, Set-A and

Set-N, that depend on the assignability of the field. If the field is not assignable,

Set-N proceeds as normal. If the field is assignable, Set-A does not add the

unguarded constraint that the reference used to reach the field must be mutable: an

assignable field may be assigned through either a readonly or a mutable reference.

Constraint generation rule Mutable adds an unguarded constraint for each field

that is annotated as mutable.

The Ref rule is divided into two rules depending on the mutability of the field.

If the field is not mutable, then Ref-N proceeds as normal. If the field is mutable,

then Ref-M does not add any constraints because, when compared to the original

Ref rule, (1) the consequence of the first constraint, x → f, has already been added

to the constraint set via the Mutable rule, and (2) the second constraint, x → y, is

eliminated because a mutable field is mutable regardless of how it is reached.

41

¬assignable(f)

x.f = y : {x, f → y}
(Set-N)

assignable(f)

x.f = y : {f → y}
(Set-A)

mutable(f)

{f}
(Mutable)

¬mutable(f)

x = y.f : {x → f, x → y}
(Ref-N)

mutable(f)

x = y.f : {}
(Ref-M)

Figure 4-5: Modified constraint generation rules for assignable and mutable fields.
The Set and Ref rules of Figure 4-2 are replaced by those of this figure. Mutable
is new.

s ::= ...

| x[x] = x

| x = x[x]

T, S ::= A | C types

A, B ::= T[] array types

C, D class names

T, S ::= C<T> | X types

C, D class names

X, Y type variables

Figure 4-6: Core language grammar (Figure 4-1) extended for arrays (left). Constraint
generation type meta-variables extended for arrays (center) and parametric types
(right).

4.3 Arrays and generics

This section discusses how to infer immutability for arrays and generic classes. The

key difficulty is inferring the ? readonly type, which requires inferring two types (an

upper and a lower bound) for each array/generic class. If the bounds are different,

then the resulting Javari type is ? readonly.

4.3.1 Arrays

This section extends the algorithm to handle arrays. First, we extend the core lan-

guage grammar to allow storing to and reading from arrays (Figure 4-6).

A non-array reference has a single immutability annotation; therefore, a single

constraint variable per reference suffices. Arrays need more constraint variables, for

two reasons. First, an array reference’s type may have multiple immutability an-

notations: the element type can be annotated in addition to the array itself. Sec-

ond, Javari array elements have two-sided bounded types (Section 3). For example,

42

the type (? readonly Date)[] has elements with upper bound readonly Date and

lower bound mutable Date, and (readonly Date)[] has elements with identical up-

per bound and lower bound readonly Date.

Javarifier constrains each part of a type using a separate constraint variable. An

array has parts for the top-level array type and for the upper and lower bounds of

the element type. If the elements are themselves arrays, then there are parts for the

upper and lower bounds of elements of the elements, and so on. For example, the

type Date[][] has seven type parts: Date[][], the top-level type; Date[]⊳, the upper

bound of the element type, and Date[]⊲, the lower bound of the element type; and

four Date types corresponding to the upper/lower bounds of the upper/lower bounds3.

We subscript upper bounds with ⊳ and lower bounds with ⊲. This matches

the conventional ordering: in the declaration List<? extends readonly Date super

/*mutable*/ Date>, the upper bound is on the left and the lower bound is on the

right. We assume that within a program, textually different instances of the same

type are distinguishable. The type meta-variables are shown in Figure 4-6. As usual,

T and S range over types, and C and D over class names. We add A and B to range

over array types.

The type constraint generation rules use the auxiliary function type, which re-

turns the declared type of a reference, similar to the less intuitively named Γ type

environment used in other work.

Constraint generation

The constraint generation rules are extended to enforce subtyping constraints. For

the assignment x = y, where x and y are arrays, the extension must enforce that y is

a subtype of x. Simplified subtyping rules for Javari are given in Figure 4-7.

The constraint generation rules now use types as constraint variables and en-

force the subtyping relationship across assignments including the implicit pseudo-

assignments that occur during method invocation. The extended rules are shown in

3An alternate approach of treating arrays as objects with fields of the same type as the array
element type would not allow inferring different mutabilities on the different levels of the array. This
alternate approach would not be able to infer the ? readonly qualifier.

43

S[] → T[] T ⊂: S

T[] <: S[]

D → C

C <: D

T⊳ <: S⊳ S⊲ <: T⊲

T ⊂: S

Figure 4-7: Simplified subtyping (<:) rules for mutability in Javari. These simplified
rules only check the mutabilities of the types, because we assume the program being
converted type checks under Java. An array element’s type, T, is said to be contained
by another array element’s type, S, written T ⊂: S, if the set of types denoted by T is a
subset of the types denoted by S. Each rule states an equivalence between subtyping
and guarded constraints on types, so each rule can be replicated with predicates
and consequents swapped. Java arrays are covariant. Javari arrays are invariant in
respect to mutability (see Section 3); therefore, we use the contains relationship as
Java’s parametric types do.

x = y : {type(y) <: type(x)} (Assign)

this(m) = thism params(m) = p retVal(m) = retm

x = y.m(y) : {type(y) <: type(thism), type(y) <: type(p), type(retm) <: type(x)}
(Invk)

retVal(m) = retm

return x : {type(x) <: type(retm)}
(Ret)

x = y.f : {type(f) <: type(x), type(x) → type(y)} (Ref)

x.f = y : {type(x), type(y) <: type(f)} (Set)

x = y[z] : {type(y[z]) <: type(x)} (Array-Ref)

x[z] = y : {type(x), type(y) <: type(x[z])} (Array-Set)

Figure 4-8: Constraint generation rules extended for arrays. These rules replace the
constraint generation rules of Figure 4-2, where the type() function was not needed.

Figure 4-8.

Type well-formedness constraints

In addition to the constraints generated for each line of code, the algorithm adds

constraints to the constraint set to ensure that every array type is well-formed. Array

well-formedness constraints enforce that an array element’s lower bound is a subtype

of the element’s upper bound.

44

Constraint solving

Before the constraint set can be simplified as before, subtyping (<:) and containment

(⊂:) constraints must be reduced to guarded (→) constraints. To do so, the algorithm

replaces each subtyping or containment constraint by the corresponding guarded con-

straints and simplified subtyping or contains constraint (see Figure 4-7). This step

is repeated until only guarded and unguarded constraints remain in the constraint

set. For example, the statement x = y, where x and y have the types T[] and S[],

respectively, would generate and reduce constraints as follows:

x = y : {type(y) <: type(x)}

: {S[] <: T[]}

: {T[] → S[], S ⊂: T}

: {T[] → S[], S⊳ <: T⊳, T⊲ <: S⊲}

: {T[] → S[], T⊳ → S⊳, S⊲ → T⊲}

In the final result, the first guarded constraint enforces that y must be a mutable array

if x is a mutable array, while the second and third constraints constrain the bounds

on the arrays’ element types. T⊳ → S⊳ requires the upper bound of y’s elements to be

mutable if the upper bound of x’s elements is mutable. This rule is due to covariant

subtyping between upper bounds. S⊲ → T⊲ requires the lower bound of x’s elements

to be mutable if the lower bound of y’s elements is mutable. This rule is due to

contravariant subtyping between lower bounds.

After reducing all subtyping and containment constraints, the remaining guarded

and unguarded constraint set is simplified as before. A subtype or containment con-

straint on an array type only leads to one guarded constraint for the top-level type

and two guarded constraints for the lower and upper bounds. Compared to the non-

array algorithm, the total number of constraints only increases by a constant factor.

Therefore, the constraint simplification algorithm remains linear-time.

45

Upper bound (⊳) Lower bound (⊲) Javari type
mutable mutable mutable
readonly readonly readonly
readonly mutable ? readonly

Table 4.1: The inferred mutability of the upper and lower bounds on array element
types are mapped to a single Javari type. The case that the upper bound is mutable

and the lower bound is readonly cannot occur due to the well-formedness constraints.

Applying results

Finally, the results must be mapped back to the initial Java program. Top-level

types are annotated the same way they were before. However, for element types, the

constraints on the type upper bound and type lower bound must map back to a single

Javari type. Table 4.1 illustrates this mapping.

As in Section 4.1.2, given a fixed set of field annotations, the algorithm excludes

the maximum number of constraint variables from the unguarded constraint set. Af-

ter mapping mutabilities on constraint variables to Javari types, no reference that is

? readonly could be readonly because a mutable lower bound implies the reference

cannot be readonly (since only mutable references can be assigned to it). There-

fore, the algorithm infers the maximum number of references that do not need to

be mutable, and each of these references is either readonly if possible, or ? readonly

otherwise.

4.3.2 Parametric types (Java generics)

Parametric types (Java generics) are handled similarly to arrays. For a parametric

type, constraint variables are created for the upper and lower bound of each type

argument to a parametric class. As with arrays, type parts serve as constraint vari-

ables.

The following meta-syntax represents parametric types. Figure 4-6 shows the type

meta-variable definitions. As with arrays, ⊳ denotes type arguments’ upper bounds

and ⊲ denotes their lower bounds.

46

asType∆(C<T>, C) = C<T>

class C<X V> ⊳ C′<U> S = asType∆([T/X]C′<U>, D)

asType∆(C<T>, D) = S

Figure 4-9: asType returns C<T>’s supertype of class D.

Auxiliary functions

The subtyping rules use the auxiliary function bound∆. bound∆(T) returns the de-

clared upper bound of T if T is a type variable; if T is not a type variable, T is returned

unchanged. In this formulation, there is a global type environment, ∆, that maps

type variables to their declared bounds. bound ignores any upper bound (⊳) or lower

bound (⊲) subscripts on the type.

As with arrays, the type constraint generation rules use the auxiliary function

type, which returns the declared type of a reference.

The subtyping rules use the asType∆(C<T>, D) function (Figure 4-9) to return C’s

supertype of class D4. asType is used when a value is assigned to a reference that is

a supertype of the value’s type. In such a case, asType converts the value’s type to

have the same class as the reference. For example, consider

class Foo<T> extends List<Date> { ... }

Foo<Integer> f;

List<Date> lst = f;

lst.get(0).setMonth(JUNE);

On the assignment of f to lst, asType converts f’s type from Foo<Integer> to

List<Date> with the call: asType∆(Foo<Integer>, List). This conversion ensures

that constraints placed on the type of lst elements affect f indirectly through the

type of lst rather than the type of f, so the final inference result is class Foo<T>

extends List<mutable Date> rather than the incorrect Foo<mutable Integer> f.

4We call C<T> a type because its type arguments are present. We call D a class because type
arguments are not provided.

47

x = y : {type(y) <: type(x)} (Assign)

this(m) = thism params(m) = p retVal(m) = retm

x = y.m(y) : {type(y) <: type(thism), type(y) <: type(p), type(retm) <: type(x)}
(Invk)

retVal(m) = retm

return x : {type(x) <: type(retm)}
(Ret)

x = y.f : {type(f) <: type(x), type(x) → type(y)} (Ref)

x.f = y : {type(x), type(y) <: type(f)} (Set)

Figure 4-10: Constraint generation rules in the presence of parametric types.

D → C T′′ ⊂: S′

T <: S where bound∆(T) = C<T′> and bound∆(S) = D<S′> and
asType∆(C<T′>, D) = D<T′′>

T⊳ <: S⊳ S⊲ <: T⊲

T ⊂: S

Figure 4-11: Simplified subtyping rules for mutability in the presence of parametric
types.

Constraint generation

As with arrays, the constraint generation rules (shown in Figure 4-10) use subtyp-

ing constraints. However, the subtyping rules (shown in Figure 4-11) are extended

to handle type variables. In Javari, a type variable is not allowed to be annotated

as mutable; therefore, type variables cannot occur in the constraint set. In the case

of a type variable appearing in a subtyping constraint, bound is used to calculate

the upper bound of the type variable, and the mutability constraints are applied to

the type variable’s bound. Therefore, mutation of a reference whose type is a type

variable results in the type variable’s bound being constrained to be mutable. An

example of this behavior is shown in Figure 4-12.

48

class Week<X extends /*mutable*/ Date> {

X f;

void startWeek() {

f.setDay(Day.SUNDAY);

}

}

Figure 4-12: The result of applying type inference to a program containing a mutable
type variable bound. Since the field f is mutated, X’s upper bound is inferred to be
/*mutable*/ Date. The mutable annotation may not be applied directly to f’s type
because in Javari, a type parameter cannot be annotated as mutable.

Type well-formedness constraints

As with arrays, in addition to the constraints from the constraint generation rules,

well-formedness constraints are added to the constraint set. As before, a constraint

is added that a type argument’s lower bound must be a subtype of the type argu-

ment’s upper bound. Parametric types, additionally, introduce the well-formedness

constraint that a type argument’s upper bound (and, therefore, by transitivity, lower

bound) is a subtype of the corresponding type variable’s declared upper bound.

Constraint simplification and applying results

As with arrays, subtyping (and containment) constraints are simplified into guarded

constraints by removing the subtyping constraint from the constraint set and replacing

it with the subtyping rule’s predicate. The results of the solved constraint set are

applied in the same manner as with arrays. Javari does not allow raw types, and this

analysis is incapable of operating on code that contains raw types. In particular, this

algorithm does not account for the required casts when using raw types.

4.4 Inferring mutability polymorphism

This section extends the inference algorithm to infer the polyread keyword (previously

named “romaybe” [30]). As described in Section 3.4 and illustrated in Figure 3-7,

polyread enables more precise and useful immutability annotations to be expressed

49

than if methods could not be polymorphic over mutability.

4.4.1 Approach

Methods that have at least one polyread parameter or return type have two contexts.

In the first context, all polyread references are mutable. In the second context, all

polyread references are readonly. Javarifier creates both contexts for every method.

If a parameter/return type has an identical mutability in both contexts, then that

parameter/return type should have that mutability. If a parameter/return type is

mutable in the mutable context and readonly in the readonly context, then that

parameter/return type should be polyread. The case where a parameter/return type

is readonly in the mutable context and mutable in the readonly context cannot occur

due to well-formedness constraints.

To create two contexts for a method, Javarifier creates two constraint variables for

every method-local reference (local variables, return value, and parameters, including

the implicit this parameter). To distinguish each context’s constraint variables, we

superscript the constraint variables from the readonly context with ro and those

from the mutable context with mut. Constraint variables for fields are not duplicated:

polyread may not be applied to fields and, thus, only a single context exists.

Section 4.4.3 demonstrates that inferring polyread only requires increasing the

number of constraints (and the time complexity of the algorithm) by a constant

factor.

4.4.2 Constraint generation rules

With the exception of Invk, all the constraint generation rules are the same as before,

except now they generate (identical) constraints for constraint variables from both

the readonly and mutable versions of the methods. For example, x = y now generates

the constraints {xro → yro, xmut → ymut}.

Thus, there are now two constraint variables for every reference, one for when it is

in a mutable context and one for when it is in a readonly context. For shorthand, we

50

write constraints that are identical with the exception of constraint variables’ contexts

by superscripting the constraint variables with “?”. For example, the constraints

generated by x = y can be written as: {x? → y?}.

The method invocation rule (shown from Figure 4-13) must be modified to invoke

the mutable version of a method when a mutable return type is needed, and to invoke

the readonly version otherwise. This restriction can be represented using double-

guarded constraints, which are constraints with two guards that must be satisfied

before the consequent constraint can be added to the unguarded constraint set. (So

the double-guarded constraint “x → y → z” states that if both x and y are mutable,

then z must be mutable as well.) For example, consider the code in Figure 3-7, in

which the Bicycle.getSeat() method has a polyread return type and a polyread

parameter. In the lowerSeat() method, the returned reference is mutated, so the

mutable version of getSeat() must be used. In the printSeat() method, the returned

reference is indeed readonly, so the readonly version of getSeat() can be used.

The first constraint in the invocation rule of Figure 4-13 thus states that if the

returned reference s is mutable, then the reference b on which (the mutable version

of) getSeat() is called must be mutable if the receiver of getSeat() is mutable inside

the mutable version of getSeat(). (Recall that the receiver inside a readonly method

is readonly in both the mutable and readonly versions of that method, whereas the

receiver of a polyread method is mutable only in the mutable version of the method.)

In matching Figure 3-7 to the invocation rule of Figure 4-13, note that the ?

superscripts would be on the references s and b local to lowerSeat() (or printSeat()),

whereas the explicit mut superscript would only occur on references local to getSeat().

In particular, since the lowerSeat() and printSeat() methods are static, they only

have one context so the different versions of duplicated constraint variables will always

be the same. The ? superscripts demonstrate that after fixing the explicit mut contexts,

these constraints are generalized with ? in the same fashion all other constraints are

generalized.

The last constraint in the invocation rule states that if the reference s is later

mutated, then the return type of getSeat() must be mutable in the mutable version of

51

this(m) = thism params(m) = p retVal(m) = retm

x = y.m(y) : {x? → thismutm → y?, x? → pmut → y?, x? → retmutm }
(Invk-polyread)

Figure 4-13: The core algorithm’s Invk rule (Figure 4-2) is replaced by Invk-
polyread, which is used for method invocation in the presence of polyread ref-
erences. Each superscript denotes the contexts of the method in which the variable
is declared. All of the ? contexts refer to the method containing the references x and
y, whereas the explicit mut contexts refer to context inside method m.

getSeat(). The Ret rule for return types and Ref rule for field references in Figure 4-

2 together generate the constraint that if the return type of getSeat() is mutable (in

whichever version of the method is called), then the receiver of getSeat() is mutable

(in that version of the method). Since the method invocation rule in Figure 4-13 only

generates the constraint that the return type of getSeat() is mutable in the mutable

version of getSeat(), the return type and receiver of getSeat() are mutable only in

the mutable version of the method, and thus they are both inferred to be polyread.

4.4.3 Constraint solving

This algorithm extends the solving algorithm of Section 4.1.2 in order to account for

double-guarded constraints. Figure 4-14 lists the extended algorithm.

The algorithm maintains expected linear time complexity if the sets G and D are

implemented as hash tables. For G, the table maps a guard to the set of constraint

variables it guards. For D, the table maps the first guard to a set of the consequents

(which are single-guarded constraints) that it guards. That is, given constraints a →

b1 → c1 and a → b2 → c2, the hash table maps a to the set {b1 → c1, b2 → c2}. This

allows looking up all single-guarded constraints that are guarded by the same guard

in a double-guarded constraint to take constant time, in expectation. Since every

constraint is read from either G or D at most once, and each double-guarded constraint

only adds one single-guarded constraint to G, the constraint-solving algorithm has

linear time complexity in the total number of constraints. The number of constraints

is linear in the size of the program under analysis as measured in the three-address

52

The extended algorithm for solving constraints uses four constraint sets:

• the set of unguarded constraints (U), with constraints of the form a

• the set of guarded constraints (G), with constraints of the form a → b

• the set of double-guarded constraints (D), with constraints of the form a →
b → c

• a work-list (W) of unguarded constraints left to propagate

Pseudocode for the constraint solving algorithm:

initialize W with all the constraints from U
while W is not empty

pop a constraint a from W
for each constraint g in G that has a as its guard

let c be the consequent of g

if c is not in U, add c to W and to U

for each double-guarded constraint d in D that has a as its first guard

let b → c be the consequent of d

if b is in U
if c is not in U, add c to W and to U

else, add b → c to G

When the algorithm terminates, U contains all the constraints that can be satisfied
from the initial constraint sets.

Figure 4-14: Pseudocode for the constraint solving algorithm (from Figure 4-4) ex-
tended to handle double-guarded constraints.

core language of Figure 4-1.

4.4.4 Interpreting the simplified constraint set

Once the constraint set is solved, the results are applied to the program. For method-

local references, the two constraint variables from the readonly and mutable method

contexts must be mapped to a single method-local Javari type: readonly, mutable,

or polyread.

A reference is declared mutable if both the mutable and readonly contexts of

the reference’s constraint variable are in the simplified, unguarded constraint set. A

reference is declared readonly if both mutable and readonly contexts of the reference’s

53

constraint variable are absent from the constraint set. Finally, a reference is declared

polyread if the mutable context’s constraint variable is in the constraint set but the

readonly constraint variable is not in the constraint set, because the mutability of the

reference depends on which version of the method is called.5 Thus, in the example of

Figure 3-7, after the constraints have been solved, the receiver of getSeat() is known

to be mutable in a mutable context but not known to be mutable in a readonly

context, so it is annotated as polyread. The reference returned by getSeat() is

similarly known to be mutable in a mutable context but not known to be mutable in

a readonly context, so it is also annotated as polyread.

It is possible for a method to contain polyread references but no polyread param-

eters. For example, below, x and the return value of getNewDate could be declared

polyread.

polyread Date getNewDate() readonly {

polyread Date x = new Date();

return x;

}

However, polyread references are only useful if the method has a polyread parameter.

Thus, if none of a method’s parameters (including the receiver) are polyread, all

the method’s polyread references are converted to the mutability of the receiver. If

the receiver is the only parameter with a polyread qualifier, it can be converted to

readonly.

4.5 Inferring assignable and mutable field annotations

As explained in Section 3.6, the assignable and mutable field annotations override

Javari’s default of transitive immutability through all fields. Annotating one of an

object’s fields as assignable removes that field’s identity from the abstract state of

that object. Annotating one of an object’s fields as mutable removes that field’s value

from the abstract state of that object.

5The case that the readonly constraint variable is found in the constraint set, but the mutable
context’s constraint variable is not, cannot occur by the design of the Invk-Polyread constraint
generation rule.

54

Recall that the core inference algorithm in Section 4.1 infers readonly for refer-

ences that are not used to mutate any part of the abstract state of their referent,

where the value and identity of all fields are included in the abstract state of an

object. Section 4.2.2 extended the algorithm to incorporate existing assignable and

mutable field annotations so that the algorithm operates over a specific abstract state

of an object and not just its concrete state. This process requires the user to man-

ually insert assignable and mutable field annotations on select fields before running

Javarifier.

This section extends the algorithm in two ways to automatically infer assignable

and mutable field annotations:

• First, Section 4.5.1 informally presents a technique that leverages references that

the user marked as readonly or polyread but are used to modify the concrete

state of their referents; any concrete state modified through a readonly reference

or a polyread receiver must not be part of the abstract state. Section 4.5.2

formally incorporates this technique into the core algorithm.

• Second, Section 4.5.3 presents heuristics to suggest fields that should be ex-

cluded from the abstract state of an object. The heuristics are based on which

methods read or write to an object’s fields and on other information about fields,

such as whether the field is marked with Java’s transient keyword, which in-

dicates that a field is not part of the persistent state of an object.

4.5.1 Leveraging readonly and polyread annotations to infer

which fields cannot be in the abstract state

Javarifier may infer a reference to be mutable or polyread which the user expects to

be readonly, and may infer a reference to be mutable which the user expects to be

polyread. In some cases, this type of discrepancy may be due to an implementation

that does not match the user’s specification (see Section 4.2.2). In other cases, this

discrepancy may indicate a difference between the concrete state of an object and the

intended abstract state. This section discusses how to bridge this difference between

55

the concrete and abstract state by using existing annotations to exclude fields from

the abstract state of an object. Essentially, the user provides a few hints about the

semantics of the program, and Javarifier uses those hints to make logical deductions

about other parts of the program.

If a user annotation conflicts with Javarifier’s results — a user believes that a

reference should be readonly but Javarifier infers that reference to be mutable or

polyread (or a user believes that a reference should be polyread but Javarifier infers

that reference to be mutable) — it is likely that Javarifier observed a mutation only

to the concrete state of the object, and not to the abstract state. (If Javarifier knew

the intended abstract state of each class, its results for the rest of the program would

more closely match the user’s expectations.) If the user annotates a few references

as readonly or polyread, Javarifier can use these qualifiers to determine which part

of the concrete state must be excluded from the abstract state in order for those

references to typecheck as readonly or polyread.

This ability saves the user from the tedious task of annotating each field that is not

part of the abstract state, for two reasons. First, some readonly and polyread quali-

fiers, such as those on method parameters (including the receiver) are inherited from

qualifiers on parent classes. If a method in a parent class, such as Object.toString(),

is annotated with a readonly receiver, all subclasses that implement that method in-

herit the readonly receiver qualifier, as per the type rules for method subtyping in

Section 3.5. Second, manually examining the references in a few method signatures

only requires reasoning about the specification of a method, whereas determining the

correct field annotations for a set of fields requires examining the code in all methods

that use those fields.

For example, consider the balance method shown in Figure 4-15. In this example,

Javarifier infers the receiver of balance() to be mutable because it is used to mu-

tate this.securityLog. However, the user has specified that the receiver should be

readonly. In fact, there is no conflict: the mutation does not affect the object’s ab-

stract state, only its concrete state. To account for this situation, Javarifier excludes

the securityLog field from BankAccount’s abstract state: Javarifier recommends that

56

class BankAccount {

int balance;

/* Not a part of BankAccount’s abstract state. */

List<String> securityLog;

int balance() readonly {

securityLog.add("balance checked");

return balance;

}

}

Figure 4-15: A user has annotated the receiver of balance() as readonly; how-
ever, balance() mutates the field securityLog. Thus, Javarifier correctly infers that
securityLog should be declared mutable.

securityLog be declared mutable.

This technique of using existing readonly and polyread annotations to infer which

fields must be excluded from the abstract state is a two-step process.

• First, the user runs Javarifier, which automatically incorporates all existing

readonly and polyread annotations. These annotations may be inherited from

method signatures of superclasses, inserted by the programmer, or inferred by

some other tool. Javarifier might infer some of the original readonly references

to actually be polyread or mutable and may infer some of the original polyread

references to actually be mutable. These sorts of discrepancies arise because

existing annotations might be operating over the abstract state of the object

whereas Javarifier inferred mutability over the concrete state of the object,

including some fields that are not part of the abstract state. Javarifier will

provide a list of fields that can be declared mutable or assignable and removed

from the abstract state in order to make the references in question readonly.

Additionally, the heuristics in Section 4.5.3 can further suggest which of these

fields should be excluded from the abstract state based on how the fields are

used.

• Second, the user can select which of these fields should be excluded from the

57

abstract state. Since changing the definition of the abstract state of an object

may have unintended consequences for the mutabilities of other references that

the user did not manually annotate as readonly, the user can select which fields

should be excluded from the abstract state and then run Javarifier a final time,

yielding the correct results for the entire program.

Excluding fields from the abstract state cannot cause Javarifier to infer mutable

for a reference that was previously inferred to be readonly. Specifically, if a ref-

erence was originally readonly, the constraint solving algorithm in Section 4.1.2

did not satisfy enough guards to add the constraint variable corresponding to

that reference to the unguarded constraint set. The modified constraint genera-

tion rules in Figure 4-5 for when there are existing field annotations generate a

subset of the guarded and unguarded constraints from the core constraint gener-

ation rules in Figure 4-2. Therefore, if a constraint variable could not be added

to the unguarded constraint set when solving the original program constraints

(with no field annotations), it cannot be added to the unguarded constraint set

when solving the constraints generated with the additional field annotations.

Since removing fields from the abstract state cannot cause Javarifier to infer

mutable for a reference that was previously inferred to be readonly, the user

does not need to iterate this process multiple times. (Analogously, Javarifier

cannot infer polyread for a reference that was previously inferred to be readonly

and it cannot infer mutable for a reference that was previously inferred to be

polyread.)

Section 4.5.2 discusses how to implement this process by extending the constraint

generation and constraint solving algorithm from Section 4.1 to leverage user anno-

tations to suggest which fields should be excluded from the abstract state.

When there are multiple field references leading to an assignment, there are mul-

tiple ways of declaring fields to be mutable or assignable that would resolve the

conflict. It is preferable to modify a field of the class containing the reference in ques-

tion than to modify a field of another class. For example, in the case of BankAccount

58

(figure 4-15), making List’s add method readonly by declaring List’s internal fields

to be mutable would also allow the receiver of balance to be readonly. However,

changing List’s internals is a non-local change and, therefore, less desirable. Our

technique lists possible modifications in order of their locality.

4.5.2 Incorporating existing annotations into the constraint

set

Javarifier can determine which fields to exclude from the abstract state in order to

satisfy other user annotations by extending the constraint set to record which fields

are used to generate constraints. In the case of field reference and field assignment,

Javarifier records, in the constraint variable of the enclosing class, the field that is

being read or manipulated. This field is referred to as the “target field”. The target

field of a constraint variable is shown after the constraint variable and is separated by

a “:a” in the case of a field assignment and a “:r” in the case of a field reference. The

modified constraint generation rules are shown in Figure 4-16. The field assignment

x.f = y produces the constraints

{x :a f, f → y}

The field f is the target field of the constraint variable x because f is the field that

was assigned. The field reference x = y.f produces the constraints

{x → f, x → y :r f}

The field f is the target field of the constraint variable y because f is the field that

was referenced.

Constraint variable target fields are recorded during constraint generation as aux-

iliary data, but do not affect constraint solving; the auxiliary data simply propagates

through the constraint solving algorithm along with its corresponding constraint vari-

ables.

59

x = y : {x → y} (Assign)

this(m) = thism params(m) = p retVal(m) = retm

x = y.m(y) : {thism → y, p → y, x → retm}
(Invk)

retVal(m) = retm

return x : {retm → x}
(Ret)

x = y.f : {x → f, x → y :r f } (Ref)

x.f = y : {x :a f , f → y} (Set)

Figure 4-16: Constraint generation rules extended to record target fields. Modifica-
tions to the constraint generation rules from Figure 4-2 are indicated by boxes.

Javarifier uses the solved constraint set6 to calculate which fields need to be de-

clared assignable or mutable by looking up, for each reference in the solved constraint

set that the user explicitly marked as readonly, the target field that caused that ref-

erence to be inserted into the solved constraint set. Specifically, if there is a conflict

about reference x where a user annotation states that x is readonly but Javarifier

infers that x is mutable, then Javarifier can infer x to be readonly by applying the

following two rules:

• If the constraint x :a f is in the solved constraint set, then f should be declared

assignable.

• If the constraint x :r f is in the solved constraint set, then f should be declared

mutable.

Using target fields to infer assignable field annotations

This section demonstrates how Javarifier can use target fields for field assignments

(:a) to infer that some fields should be declared assignable. In Figure 4-17, the

6We assume that satisfied guarded constraints are maintained in the constraint set throughout
the solving process. The same result can be obtained by saving a copy of the unsolved constraint
set then unioning the unsolved and solved constraint sets together.

60

class Tire {

int pressure;

int radius;

}

class Bicycle {

Tire tire;

void foo() readonly {

Tire t = new Tire(); // none
this.tire = t; // this foo :a tire, tire → t

}

}

Solved constraint set:

{thisfoo :a tire, tire → t}

Figure 4-17: Inferring a field to be assignable. The receiver of foo (thisfoo) has
been annotated explicitly by the user as readonly. Constraints generated for each
line of code are shown after the line of code. thisfoo can be readonly only if tire is
declared assignable.

receiver of the method foo, also denoted using the shorthand thisfoo, was explicitly

marked readonly by the user; however, Javarifier determined that thisfoo should be

declared mutable, as seen by the fact that the constraint variable thisfoo :a tire

is in the unguarded constraint set. The fact that the constraint variable thisfoo

is tagged by the target field :a tire demonstrates that this.tire was assigned to

within the method body of foo, thus modifying the concrete state of thisfoo. This

tagged constraint variable directly suggests that thisfoo could be readonly if tire

was declared to be an assignable field. If tire was assignable, then it could be

assigned to through a readonly reference. This observation can be generalized to the

following rule: If there is a conflict about reference x where a user annotation states

that x is readonly but Javarifier infers x is mutable, then x can be made readonly by

declaring a field f to be assignable if the unguarded constraint x :a f appears in the

solved constraint set.

61

class Tire {

int pressure;

int radius;

}

class Bicycle {

Tire tire;

void bar() readonly {

Tire t = this.tire; // t → this_bar :r tire

t.radius = 16; // t :a radius

}

}

Solved constraint set:

{t :a radius, t, thisbar :r tire, t → this :r tire}

Figure 4-18: Inferring a field to be mutable. Constraints generated for each line
of code are shown after the line of code. The receiver of bar (thisbar) has been
annotated explicitly by the user to be readonly. thisbar can be made readonly only
if tire is declared mutable.

Using target fields to infer mutable field annotations

This section demonstrates how Javarifier can use target fields for field references

(:r) to infer that some fields should be declared mutable. In figure 4-18, thisbar

was marked by the user to be readonly. However, Javarifier inferred thisbar to

be mutable, as indicated by the unguarded constraint variable thisbar :r tire in the

unguarded constraint set. The cause of this constraint variable being in the unguarded

constraint set is that tire is read as mutable and must therefore be accessed through

a mutable reference to thisbar. This cause is recorded by the fact that the thisbar

constraint variable is tagged with :r tire. This target field directly suggests that

declaring tire to be a mutable field allows thisbar to safely be declared readonly.

If tire is a mutable field, then even if thisbar is readonly, the reference this.tire

is mutable. This observation generalizes to the following rule: If there is a conflict

about a reference x where a user annotation states that x is readonly but Javarifier

infers x is mutable, then x can be made readonly by declaring a field f to be mutable

62

if and only if x :r f is in the unguarded constraint set.

The two rules suggested thus far must be applied together simultaneously. That

is, if the code from foo() in Figure 4-17 and the code from bar() in Figure 4-18 was

combined into a single method with a user annotated readonly receiver, then Javarifier

would suggest that tire needs to be declared both assignable and mutable.

Leveraging existing polyread annotations to infer which fields cannot be

in the abstract state

Javarifier also uses existing polyread annotations to infer fields that have to be ex-

cluded from the abstract state. The process is similar to existing readonly annota-

tions; for any method with polyread references, Javarifier will generate similar con-

straints (including the target fields) as in the previous explanation when it generates

the constraints for that method in a readonly context (as explained in Section 4.4).

For example, consider the class in Figure 4-19. The NodeIterator.next() method

inherits polyread annotations for its receiver and return type. The version of this

method with all polyread references replaced by readonly can only typecheck if the

current field is assignable. When Javarifier generates the constraints for this method

in a readonly context, the assignment to the current field generates the constraint

variable thisnext :a current. Since this constraint conflicts with the readonly se-

mantics of the polyread annotation on the receiver, Javarifier recommends current

to be assignable.

4.5.3 Heuristics for excluding fields from the abstract state

Caches and other auxiliary data should often have mutable and assignable field

annotations. Javarifier searches for these types of fields and suggests that they should

be assignable or mutable according to the following heuristics:

1. Fields that are private and are only used in a single method. Many methods

that perform a computationally expensive operation will cache their results in a

private field. This cache field is essentially local to the method and not related

63

class NodeIterator implements Iterator<Node> {

private assignable Node current;

public polyread Node next() polyread {

Node returnValue = current;

current = current.next;

return returnValue;

}

}

Figure 4-19: A sample program where an existing polyread annotation on
Iterator.next() propagated to the next() method of a class that implements
Iterator. The NodeIterator.next() method must typecheck with all instances of
polyread replaced with readonly, in which case the reassignment of the current field
is only valid if that field is declared assignable.

to the rest of the class; it is more of a local variable that exists across multiple

method calls, and the only way to express this in Java is to use a field.

2. A related field usage pattern is private fields that are never referenced as mutable

in any method. Javarifier will infer these fields to be readonly rather than

this-mutable. If, additionally, these fields are never written to as readonly

(that is, only mutable references are assigned to it), then it would be valid

for Javarifier to change the fields from readonly to mutable and thus exclude

these fields from the abstract state. However, retaining the readonly qualifier

might be a more useful approach, since it eliminates the need to even consider

whether mutations to that field conceptually mutate the abstract state of the

object, since that field is never mutated. The user ultimately decides which

field annotation is most desirable.

3. Fields using the Java transient keyword (designed to mark fields that should

not be saved during object serialization). Since serialization is intended to

capture the state of the object that should persist between concrete instances

of that object, fields that are not serialized are likely not part of the abstract

state.

4. Fields that are not read in both the equals() and hashCode() method, if these

methods are implemented in a class. Object.equals() is specified to check

64

whether two objects can be considered equivalent according to the abstract

specification of those objects. The specification of hashCode() is that it must

provide identical values for objects which are equivalent according to equals().

Thus, fields that are in the abstract specification of a class should be read in

these methods, and fields that aren’t in the abstract specification should not be

read in these methods.

Javarifier only infers private fields to be assignable or mutable; non-private fields

are already exposed as part of the specification of the class.

Javarifier can apply these heuristics to subject programs as a pre-pass before

the constraint generation step. Alternatively, Javarifier can apply these heuristics

to suggest which fields should be assignable or mutable, but only apply these field

annotations if some user annotations conflict with Javarifier’s results and excluding

these fields from the abstract state would eliminate these differences. Thus, it does not

exclude fields from the abstract state if they would have no effect on other annotations.

Javarifier can determine if adding a field annotation to a field will eliminate some

differences between the user’s annotations and Javarifier’s results using the process

outlined in Section 4.5.1. That is, it can only exclude a field from the abstract state if

it appears as a target field for some reference that conflicts with the user annotation.

In this case, Javarifier provides additional justification for excluding a field from the

abstract state.

65

66

Chapter 5

Evaluation

Javarifier is the implementation of the algorithm described in Chapter 4. Javarifier

reads a set of classfiles, determines the mutability of every reference in those classfiles,

and inserts the inferred Javari annotations in either class files or Java source files.

Javarifier is publicly available for download at http://pag.csail.mit.edu/javari/

javarifier/.

To verify that Javarifier infers correct and maximally precise Javari qualifiers,

we performed two types of case studies. The first variety (Section 5.1) compared

Javarifier’s output to manually written Javari code that had been type-checked by

the Javari type-checker. The second variety (Section 5.2) compared Javarifier to

Pidasa, another tool for inferring immutability. For both varieties of case study, we

examined every difference among the annotations. The case studies revealed no errors

in Javarifier. It is possible that errors in Javarifier were masked by identical errors in

the other tools and the manual annotations, but we consider this unlikely.

Table 5.1 gives statistics for the subject programs used in our case studies:

• JOlden benchmark suite

(http://osl-www.cs.umass.edu/DaCapo/benchmarks.html)

• tinySQL database engine (http://www.jepstone.net/tinySQL/)

• htmlparser library for parsing HTML

(http://htmlparser.sourceforge.net/)

67

Size Annotatable references

Program lines classes Time Total readonly mutable this-mut. polyread ? readonly

JOlden 6223 57 9 1580 927 553 52 48 0

tinySQL 30691 119 47 5606 2227 2964 175 240 0

htmlparser 63780 238 45 4596 1623 2740 72 144 17

ejc 110822 320 1410 24899 8887 14774 690 548 0

Table 5.1: Subject programs used in our case studies. Inference time is in seconds on a
Pentium 4 3.6GHz machine with 3GB RAM. The right portion tabulates the number
of annotatable references for each inference result (in Javarifier’s closed-world mode).
When counting annotatable references, each type argument counts separately; for
example, List<Date> is counted as two references.

• ejc compiler for the Eclipse IDE (http://www.eclipse.org/)

The JOlden benchmark suite is written using raw types, so we first converted the

source code to use generics. We also renamed some identically named but distinct

classes in the different benchmarks within JOlden.

5.1 Comparison to manual annotations

Before either the Javarifier implementation or the Javari type checker [9] were com-

plete, another developer manually annotated the JOlden benchmark suite. We were

able to later verify the correctness of the annotations by running the Javari type-

checker. We compared the manually-written, automatically-verified annotations with

Javarifier’s inference results.

There were 74 differences between the manual annotations and Javarifier’s output.

58 are human errors, and 16 disappear when using Javarifier’s inference of assignable

fields.

The programmer omitted 22 readonly qualifiers due to simple oversights, such

as omitting the readonly qualifiers on receivers of toString() methods. Tool sup-

port while the programmer was annotating the program would have both eased the

annotation task and prevented these errors.

Javarifier inferred 36 private fields to be readonly, while the developer accepted

the default of this-mutable, meaning that the fields are part of the abstract state of

the object. However, all 36 of these fields are either never read or are only used to

68

Program inheritance polyread this-mutable arrays
tinySQL 0 3 6 0
htmlparser 12 6 0 2
ejc 1 0 17 31

Table 5.2: Reasons for differences between Javarifier and Pidasa inference results (see
Section 5.2). None of the differences indicates an error in Javarifier.

store intermediate values that do not need to be mutated. Thus, Javarifier pointed out

that these fields can be excluded from the abstract state, or even removed altogether,

without affecting the rest of the program.

The remaining 16 annotations that differed between the manual annotations and

Javarifier’s results do not represent any conceptual errors, and when we enabled

heuristics for inferring assignable fields (from Section 4.5), Javarifier’s results were

identical to the manual annotations. The developer had marked 4 fields as assignable.

Each of these fields is a placeholder for the current element in an Enumeration class.

The assignable annotation allowed the nextElement() method, which reassigns the

field, to have a polyread receiver and return type. In other words, the manual an-

notations differentiate the abstract state from the concrete state of an object. When

run without inference of assignable fields, Javarifier inferred that the return type is

readonly and the receiver is mutable, and this mutability propagated to other meth-

ods, for a total of 16 differences in annotations.

5.2 Comparison to another mutability inference

tool

Pidasa [3] is a combined static and dynamic immutability inference tool for param-

eters and receivers. Pidasa uses a different but closely related definition of reference

immutability. We compared Javarifier’s results to Pidasa’s results on four randomly-

selected classes from each of tinySQL, htmlparser, and ejc. An earlier analysis of

these results appeared in [4]. We manually analyzed each difference to verify the

correctness of Javarifier’s results.

69

class TagNode {

private List<Attribute> mAttributes;

public /*mutable*/ List<Attribute> getAttributes() /*mutable*/ {

return mAttributes;

}

public String toHtml() /*mutable*/ {

String s = "";

for(Attribute attr : getAttributes()) {

s += attr.toHtml();

}

return s;

}

}

class LazyTagNode extends TagNode {

public /*mutable*/ List<Attribute> getAttributes() /*mutable*/ {

// Actually mutates the abstract state of the object,

// in accordance to the specification for this class.

}

}

Figure 5-1: Inheritance conservatism in the Javari type system, as observed in simpli-
fied code from the htmlparser program. The method LazyTagNode.getAttributes()

is inferred to have a mutable receiver because it may change the state of its receiver.
The method subtyping rule thus forces TagNode.getAttributes() to have a mutable

receiver. Since TagNode.toHtml() calls getAttributes(), it must also have a mutable

receiver, even though not every call to toHtml() can cause a mutation.

All of the differences can be attributed to four causes, as tabulated in Table 5.2.

The first three causes are conservatism in the Javari type system which makes it

impossible to express that a particular reference is not mutated. The last cause is

inflexibility in Pidasa that prevents it from expressing different mutabilities on arrays

and their elements.

Inheritance: In 13 cases, Javarifier inferred a method receiver to be mutable

due to contravariant receiver mutability in Javari, even though Pidasa was able to

recognize contexts in which the receiver could not be mutated. Figure 5-1 gives an

example.

polyread: In 9 cases, Javarifier inferred a parameter to be mutable due to the type

rules of the polyread qualifier, but Pidasa inferred the parameter to be readonly.

70

A method such as filter(polyread Date) cannot mutate its polyread parameter

because the method would not typecheck when all polyread qualifiers are replaced

with readonly. However, when filter is called from another method (from the same

class) that has a mutable receiver, the type of this is mutable and thus Javari requires

that the program typecheck as if the filter method took a mutable parameter.

this-mutable: In 23 cases, Javarifier inferred a mutable parameter due to Javari’s

type rule that this-mutable fields are always written to as mutable, but Pidasa in-

ferred the parameter to be readonly. For example, if a method stores a parameter into

a this-mutable field, that parameter must be declared mutable, even if no mutations

occur to it.

Arrays: In 33 cases, Javarifier correctly inferred an array type to be partly im-

mutable, but Pidasa was conservative and marked the whole array as mutable. For

example, htmlparser used two readonly arrays of mutable objects. Javarifier correctly

inferred the outer level of the arrays to be readonly and the inner level to be mutable.

Pidasa infers a single mutability for all levels of the array. Ejc contained examples of

mutable arrays of readonly objects.

In conclusion, we found differences among the tools’ definitions, but in every case

Javarifier inferred correct Javari annotations, even where the results are not immedi-

ately obvious — another advantage of a machine-checked immutability definition such

as that of Javari.

71

72

Chapter 6

Related Work

6.1 Javarifier

The full Javarifier inference algorithm, and experience with a preliminary Javarifier

implementation, first appeared as part of Tschantz’s thesis [29]. A previous paper,

which is a summary of this thesis, built upon that work with an extensive experimental

evaluation [23].

Additionally, we have eliminated the requirement in [29] that methods have to be

invariant in terms of the mutability of their parameters and return types. Experimen-

tal evaluation revealed that this requirement was overly conservative and unnecessar-

ily propagated the mutable qualifier on parameters and return types throughout an

entire class hierarchy. The method subtyping rules outlined in Section 3.5 that allow

methods to be contravariant with respect to parameter mutability and covariant with

respect to return type mutability allow Javarifier to infer more readonly references

while maintaining Javari type safety.

Furthermore, [29] contained a constraint generation rule for inferring the polyread

qualifier which did not properly handle some cases of invocations on local variables of

methods defined in the same class. (It would result in conservative mutable qualifiers

instead of the more flexible polyread qualifiers.) Our polyread constraint generation

rule in Figure 4-13 does not have this shortcoming.

73

6.2 JQual

JQual [15] is an immutability inference tool similar to the conceptual framework

in [29]. JQual’s core rules are essentially identical to Javarifier’s. Like Javarifier,

JQual uses syntax-directed constraint generation, then solves the constraints using

graph reachability, and reports limited experimental results. However, there are some

differences in the approaches.

• Polymorphism: JQual discards our support for Java generics, and with it any

hope for compatibility with the Java language. Instead, JQual generalizes our

mutability polymorphism. Whereas polyread introduces exactly one mutability

parameter into a method definition, JQual supports an arbitrary number. Given

support for Java generics, we have not yet found a need for multiple mutability

parameters.

• Expressiveness: JQual generalizes Javarifier by being able, in theory, to infer

any type qualifier, not just ones for reference immutability. This generality

comes with a cost. JQual is tuned to simple “negative” and “positive” qualifiers

that induce subtypes and supertypes of the unqualified type; it appears too

inexpressive for richer type systems. JQual was used to create an inference

tool for a readonly qualifier, but it lacks support for every other Javarifier

keyword, for qualifiers on different levels of an array, for immutable classes,

and for various other features of Javari. Additionally, it has a limitation on

inheritance that ignores qualifiers in determining method overriding: it does

not enforce the constraint, required for backward compatibility with Java, that

mutability qualifiers do not affect overriding.

• Scalability: Context- and flow-sensitive variants of the JQual algorithm exist,

but the authors report that they are unscalable, so in their experiments they

hand-tuned the application of these features. Even so, JQual has not been run

on substantial codebases, and, except for JOlden, crashed on all of our subject

programs. By contrast, both Javarifier’s algorithm and its implementation are

74

scalable.

• Evaluation: JQual’s output and input languages differ (e.g., it has no surface

syntax for its parametric polymorphism), so its analysis results do not type

check even in JQual. Artzi et al. [4] report that JQual’s recall (fraction of truly

immutable parameters that were inferred to be immutable) was 67%, compared

to 94% recall for a version of Javarifier without inference of assignable or

mutable fields. JQual misclassifies a receiver as mutable in method m if m reads

a field f that is mutated by any other method. JQual also suffered a few errors

in which it misclassified a mutable reference as immutable.

Javarifier and JQual can be viewed as extensions of the successful CQual [13, 14]

type inference framework for C to the object-oriented context. Constraint-based type

inference has also been used for inferring atomicity annotations to detect races [7, 12],

inferring non-local aliasing [1], and supporting type qualifiers dependent on flow-

sensitivity (like read, write, and open) [14].

6.3 Pidasa

Pidasa [3] is a combined static and dynamic analysis for inferring parameter reference

immutability. Pidasa uses a pipeline of (intra- and interprocedural) stages, each of

which improves the results of the previous stage, and which can leave a parameter

as “unknown” for a future stage to classify. This results in a system that is both

more scalable and precise than previous work. Pidasa has both a sound mode and

also unsound heuristics for applications that require higher precision and can tolerate

unsoundness. By contrast, our work is purely static, making it sound but potentially

less precise. Another contrast is that our definition is more expressive: our inference

determines reference immutability for fields and for Java generics/arrays. Artzi et

al. [4] compare both the definitions and the implementations of several tools including

Javarifier, Pidasa, and JQual.

75

6.4 JPPA

JPPA [28] is a previous reference immutability inference implementation. (Sălcianu

also provides a formal definition of parameter safety, but JPPA implements reference

immutability rather than parameter safety.) JPPA uses a whole-program pointer

analysis, limiting scalability. Earlier work by Rountev [25] takes a similar approach

but computes a coarser notion of side-effect-free methods rather than per-parameter

mutability.

6.5 Other reference usage analyses

Reference immutability is distinct from the related notions of object immutability

and of parameter “safety” [28]; none of them subsumes the others. They are useful

for different purposes; for example, reference immutability is effective for specifying

interfaces that should not modify their parameters (even though the caller may do

so), and for a variety of other purposes [30]. A method parameter is safe if the method

never modifies the object passed to the parameter during method invocation. Effect

analyses [8, 27, 24, 26, 18, 17] can be used to compute safety or object immutabil-

ity, often with the assistance of a heavyweight context-sensitive pointer analysis to

achieve reasonable precision. (Like type qualifier inference, points-to analysis aims to

determine the flow of objects or values through the program.) Our algorithm is much

more scalable — the algorithm is flow-insensitive, and the base algorithm is context-

insensitive — but is tuned to take advantage of the parametric polymorphism offered

by both Java and Javari.

Porat et al. [22] and Liu and Milanova [16] propose immutability inference for

fields in Java, the latter in the context of UML, but their definitions differ from ours.

6.6 Type checking

This thesis covers inference of reference immutability according to the Javari lan-

guage [29]. We briefly mention type checkers for closely related notions of reference

76

immutability. Birka built a type-checker for an earlier dialect of Javari that lacked

support for Java generics, and wrote 160,000 lines of code in Javari [6]. Correa later

wrote a Javari implementation using the Checkers Framework [21] and did case stud-

ies involving 13,000 lines of Javari [20]. The JQual inference system [15] (discussed

above) can be treated as a type checker. JavaCOP [2] is a framework for writing

pluggable type systems for Java. Like JQual, JavaCOP aims for generality rather

than practicality. Also like JQual, JavaCOP has been used to write a type checker

for a small subset of Javari. The checker handles only one keyword (readonly) and

cannot verify even that one in the presence of method overriding. Neither the checker

nor any example output is publicly available, so it is difficult to compare to our work.

Other frameworks that could be used for writing pluggable type systems include

JastAdd [10], JACK [5], and Polyglot [19].

77

78

Chapter 7

Conclusion

This thesis presents an algorithm for statically inferring the reference immutability

qualifiers of the Javari language. Javari extends the full Java language (including

generics, wildcards, and arrays) in a rich and practical way: for example, it includes

parametric polymorphism over mutability and permits excluding fields from an ob-

ject’s abstract state, either by identity or by value. Javarifier, the tool that imple-

ments the inference algorithm, correctly infers all the advanced features of Javari.

To the best of our knowledge, ours is the first inference algorithm for a practical

definition of reference immutability.

The algorithm is both sound and precise. Experiments have both confirmed Javar-

ifier’s correctness on real programs and have shown that Javarifier scales to handle

large programs. The experiments also show that, like any conservative static type

system, the Javari language’s definition sometimes requires a reference to be declared

mutable even when no mutation can occur at run time.

The Javarifier tool infers immutability constraints and inserts them in either Java

source files or class files. Javarifier solves two important problems for programmers

who wish to confirm that their programs are free of (a large class of) mutation er-

rors. First, it can annotate existing programs, freeing programmers of that burden

or revealing errors. Second, it can annotate libraries; because the Javari checker con-

servatively assumes any unannotated reference is mutable, use of any unannotated

library makes checking of a program that uses it essentially impossible. Together,

79

these capabilities permit programmers to obtain the many benefits of reference im-

mutability at low cost.

Javarifier is publicly available for download at: http://pag.csail.mit.edu/

javari/javarifier/.

The Javari type checker is also publicly available for download at: http://pag.

csail.mit.edu/jsr308/current/checkers-manual.html#javari.

80

Bibliography

[1] Alex Aiken, Jeffrey S. Foster, John Kodumal, and Tachio Terauchi. Checking

and inferring local non-aliasing. In PLDI, pages 129–140, June 2003.

[2] Chris Andreae, James Noble, Shane Markstrum, and Todd Millstein. A frame-

work for implementing pluggable type systems. In OOPSLA, pages 57–74, Oct.

2006.

[3] Shay Artzi, Adam Kieżun, David Glasser, and Michael D. Ernst. Combined

static and dynamic mutability analysis. In ASE, Nov. 2007.

[4] Shay Artzi, Jaime Quinonez, Adam Kieżun, and Michael D. Ernst. A formal

definition and evaluation of parameter immutability., Dec. 2007. Under review.

[5] G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman, J.-L. Lanet,

M. Pavlova, and A. Requet. JACK: A tool for validation of security and be-

haviour of Java applications. In FMCO, Oct. 2006.

[6] Adrian Birka and Michael D. Ernst. A practical type system and language for

reference immutability. In OOPSLA, pages 35–49, Oct. 2004.

[7] Keith D. Cooper and Ken Kennedy. Interprocedural side-effect analysis in linear

time. In PLDI, pages 57–66, June 1988.

[8] Keith D. Cooper and Ken Kennedy. Interprocedural side-effect analysis in linear

time. In PLDI, pages 57–66, June 1988.

81

[9] Telmo Luis Correa Jr., Jaime Quinonez, and Michael D. Ernst. Tools for enforc-

ing and inferring reference immutability in Java. In OOPSLA Companion, pages

866–867, Oct. 2007.

[10] Torbjörn Ekman and Görel Hedin. The JastAdd extensible Java compiler. In

OOPSLA, pages 1–18, Oct. 2007.

[11] Michael D. Ernst. Annotations on Java types: JSR 308 working document.

http://pag.csail.mit.edu/jsr308/, Nov. 12, 2007.

[12] Cormac Flanagan and Stephen N. Freund. Type inference against races. In Static

Analysis Symposium, pages 116–132, 2004.

[13] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A theory of type

qualifiers. In PLDI, pages 192–203, June 1999.

[14] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type qualifiers.

In PLDI, pages 1–12, June 2002.

[15] David Greenfieldboyce and Jeffrey S. Foster. Type qualifier inference for Java.

In OOPSLA, pages 321–336, Oct. 2007.

[16] Y. Liu and A. Milanova. Ownership and immutability inference for UML-based

object access control. In ICSE, pages 323–332, May 2007.

[17] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object

sensitivity for points-to and side-effect analyses for Java. In ISSTA, pages 1–11,

July 2002.

[18] Phung Hua Nguyen and Jingling Xue. Interprocedural side-effect analysis and

optimisation in the presence of dynamic class loading. In ACSC, pages 9–18,

Feb. 2005.

[19] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible compiler

framework for Java. In CC, pages 138–152, Apr. 2003.

82

[20] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and

Michael D. Ernst. Pluggable type-checking for custom type qualifiers in Java.

Technical Report MIT-CSAIL-TR-2007-047, MIT CSAIL, Sep. 17, 2007.

[21] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and

Michael D. Ernst. Practical pluggable types for Java. In ISSTA, July 2008.

[22] Sara Porat, Marina Biberstein, Larry Koved, and Bilba Mendelson. Automatic

detection of immutable fields in Java. In CASCON, Nov. 2000.

[23] Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst. Inference of

reference immutability. In ECOOP, July 2008.

[24] Chrislain Razafimahefa. A study of side-effect analyses for Java. Master’s thesis,

School of Computer Science, McGill University, Montreal, Canada, Dec. 1999.

[25] Atanas Rountev. Precise identification of side-effect-free methods in Java. In

ICSM, pages 82–91, Sep. 2004.

[26] Atanas Rountev and Barbara G. Ryder. Points-to and side-effect analyses for

programs built with precompiled libraries. In CC, pages 20–36, Apr. 2001.

[27] Barbara G. Ryder, William A. Landi, Philip A. Stocks, Sean Zhang, and Rita

Altucher. A schema for interprocedural modification side-effect analysis with

pointer aliasing. ACM TOPLAS, 23(2):105–186, Mar. 2001.

[28] Alexandru Sălcianu and Martin C. Rinard. Purity and side-effect analysis for

Java programs. In VMCAI, pages 199–215, Jan. 2005.

[29] Matthew S. Tschantz. Javari: Adding reference immutability to Java. Master’s

thesis, MIT Dept. of EECS, Aug. 2006.

[30] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference immutabil-

ity to Java. In OOPSLA, pages 211–230, Oct. 2005.

83

