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ABSTRACT

The initiation of delamination in graphite/epoxy lami-

nates was investigated both analytically and experimentally

and the effect of effective ply thickness on this phenomenon

assessed. Three differeht laminate families were investi-

gated: [±15n]s, [±15n/Ons, and [0n/±15,] s with the normalized

effective ply thickness, n, varying from 1 to 5. Delamination

initiation was detected using the load drop technique in con-

junction with edge replication. Initiation was determined to

have occurred when a load drop was detected and a delamination

initiation was confirmed on the replication of the specimen

edge. Two different analytical techniques were used to corre-

late the measured delamination initiation stresses: the previ-

ously proposed strain energy release rate approach and the

Quadratic Delamination Criterion which is introduced herein.

The strain energy release rate approach was unable to accu-

rately correlate the data for two of the three laminate fami-

lies as the data clearly showed that the critical value of

strain energy release rate is significantly dependent on the

effective ply thickness. The Quadratic Delamination Crite-

rion, an average stress criterion which involves the compar-

ison of the calculated interlaminar normal stress and

interlaminar shear stress (aiz) to their related strength pa-

rameters, is proposed and shows excellent correlation with the

delamination initiation stress data.

Thesis Supervisor: Paul A. Lagace

Title: Charles Stark Draper Assistant Professor
of Aeronautics and Astronautics
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CHAPTER 1

INTRODUCTION

The development and use of advanced composite materials

in recent decades has been a significant boon to the aerospace

industry. These materials offer high strength and stiffness

at less weight than their metallic counterparts and engineers

have found many applications for them. The present apparent

high cost per pound of the materials are being offset by the

fact that they produce less waste than metals and the weight

savings they produce translates into a significant savings in

life-cycle costs for aerospace structures.

Some unique applications of advanced composites are in

the Harrier AV-8B vertical takeoff and landing (VTOL) fighter

aircraft and the Grumman-DARPA X-29 forward swept wing air-

craft. The AV-8B has a graphite/epoxy wing assembly which en-

ables it to perform as an advanced fighter while still being

light enough to have VTOL capability and sufficient range. The

forward swept wing configuration of the X-29 is

aeroelastically feasible only because clever use is made of

the highly orthotropic nature of advanced composites.

The transport and business jet industries are also learn-

ing to successfully integrate advanced composites into new

generations of aircraft. The new Boeing 757 and 767 aircraft



make extensive use of composites in their secondary structural

components. This helps to make these aircraft fuel-efficient

and hence, fuel costs decrease over the life of the aircraft.

Several new business jets are vying to be the first aircraft

to be certified in which all of the primary structure is ad-

vanced composite. These aircraft are the Learfan 2000, the

Beech Starship 1., and the Avtek 400.

The astronautical industry is also very interested in ad-

vanced composites for their high specific strength and

stiffness. When the cost of getting a pound of payload to or-

bit is considered, a premium must be placed on weight. The

largest use of composites in a single structure today is in

fact in a new solid rocket booster casing for the space shut-

tle. This new casing is manufactured by Hercules, Inc. It has

fewer components and weighs 35 tons as compared to the present

50 ton steel casing. This results in a significant increase

in shuttle payload capability or the ability to achieve higher

orbits.

Composites, however, have even greater potential. Because

engineers lack a total understanding of the materials, they

are reluctant to use them to their fullest extent. It is be-

lieved, for example, that composites could easily constitute

half of the structural weight of future transport aircraft,

including a substantial portion of primary structural compo-



nents such as wings and fuselage. At present, designers usu-

ally prefer "quasi-isotropic" laminates. Since equal strength

and stiffness is generally not needed in all directions of a

structure, this is a waste of the unique abilty of highly

orthotropic composites to be "tailored" to specific applica-

tions.

The various modes of damage in composites (fiber frac-

ture, fiber pullout, ply delamination, fiber debond, matrix

cracking, etc.), and how they interact to cause failure are

still not completely understood. In part due to this inade-

quate understanding of failure, the composite structures pres-

ently in use are limited to design ultimate strains of

4000 microstrain.

Some progress has been made in the prediction of compos-

ite strength and failure modes. Tsai and Wu [1] proposed a

method by which failure of component plies could be predicted

on the basis of the plane stress state predicted by Classical

Laminated Plate Theory. This correlated well with tensile

data [2] except in some cases where the strength of the com-

posite laminates was significantly less than that predicted by

this method.

In many cases, the failure modes of these laminates

showed out-of-plane separation (delamination) of component

plies. Delamination is seen to be the result of the failure



of an interlaminar epoxy layer between two plies. It has been

known for some time [3] that this failure is caused by a full

three-dimensional state of stress that arises near the free

edge of multi-directional laminated specimens. This delami-

nation failure mode is not something which is seen in the

failure of homogenous materials such as metals. One key issue

to the future of the efficient use of composites is the devel-

opment of criteria which can be used in preliminary and ad-

vanced design stages to determine the propensity of various

candidate laminates to delaminate.

A review of the literature on the subject of delamination

of composite laminates is contained in Chapter 2. The various

approaches for studying delamination including the calculation

of the interlaminar stresses that arise in a boundary region

at the free edges of composite laminates are discussed. The

development of methods for incorporating interlaminar stress

calculations into criteria for the prediction of delamination

initiation are traced in Chapter 3. Details of these analyses

as applied to the specific laminates used in the experiments

in this thesis are included. The experimental portion of the

thesis is described in Chapter 4. In particular, specimen

manufacture, testing methods, and edge replication techniques

are discussed. The results of the experiments are contained

in Chapter 5 where specific data is presented as well as de-
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scriptions of the varying degrees of delamination seen in

specimens. In Chapter 6 there is a complete discussion of the

data and how well the proposed methods of predicting delami-

nation initiation correlate this data. A summary of this work

is presented in Chapter 7 in the form of relevant conclusions

and recommendations for further research into the subject of

the strength of composites prone to delamination.
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CHAPTER 2

SUMMARY OF PREVIOUS WORK

2.1 Interlaminar Stresses and Delamination

The problem of free edge delamination of advanced compos-

ites has been studied for more than a decade. There is gen-

eral agreement that the cause of delamination is the

interlaminar stresses that arise in a boundary region near the

free edge. Since elastic properties (such as Young's modulus,

Poisson's ratio, the coefficient of mutual influence, etc.) of

the layers (plies) that make up the laminate change when the

angular orientation of the fibers in the plies changes with

respect to the longitudinal axis of the composite, mismatches

of these properties arise between plies. Classical Laminated

Plate Theory, which imposes strain continuity through the lam-

inate thickness, therefore predicts differences in the

in-plane stresses (a 1 1 , 0 2 2 , C 1 2 ) in the plies when the lami-

nate is loaded. The Classical Laminated Plate Theory solution

cannot hold at stress-free edges of the laminate. For example,

consider the case of a laminate under uniaxial loading as il-

lustrated in Figure 2.1. The coordinate system used in this

investigation is defined in this figure. Unless Poisson's ra-

tio is identical for all plies, Classical Laminated Plate The-
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ory will predict a transverse stress (922) which varies from

ply to ply. At the free edge, the stress free boundary condi-

tions are therefore only met in an average sense. The boundary

conditions thus require that a full three-dimensional state of

stress arise in the region of the free edge to preserve force

and moment equilibrium. The state of stress at a free edge is

illustrated in Figure 2.2.

Much work has been done on the calculation of

interlaminar stresses over the past fifteen years. Some at-

tempts used numerical techniques such as finite difference [3]

or finite elements [4,5]. Early analytical attempts often

only dealt with one component of interlaminar stress. Puppo

and Evensen [6] calculated an interlaminar shear stress (Giz)

by modeling the interlaminar resin layers as isotropic shear

layers. Pagano and Pipes [7] derived a rough approximation of

interlaminar out-of-plane normal stress (,,zz) by assuming a

azz distribution and satisfying equlibrium of moment and

normal force near the free edge. Whitney [8] approximated se-

veral of the components of interlaminar stresses by assuming

more complicated stress functions which satisfied differential

equilibrium and achieved reasonable agreement with some

elasticity solutions despite the fact that he had not satis-

fied compatability. Pipes and Pagano [9] tried a Fourier se-

ries approach to the calculation, but found the derivative of
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displacement with respect to distance through the thickness

diverged as more terms were added. Hsu and Herakovich [10]

used a perturbation solution. They found fair agreement with

finite difference solutions, some instabilities in azz, and a

dependence of the distribution on specimen width and far-field

strain.

Lagace and Kassapoglou [11,12] have recently developed a

method for determining the stresses at the free edge by assum-

ing stress functions which satisfy both integral and differen-

tial equilibrium. Given these functions, energy is minimized.

This "Force Balance Method" requires considerably less compu-

tation time than the finite element methods. It has been

shown to have the capability of handling laminates of 100

plies or more quite easily. The results of the calculations

show excellent agreement with numerical solutions in the lit-

erature. This method also has the capability of easily handl-

ing interlaminar stresses due to thermal loading.

Interlaminar stresses are the cause of delamination ini-

tiation. There are several approaches used to analyze how

this happens. Two main methods have been employed in the lit-

erature: the mechanics of materials approach, which takes

interlaminar stress calculations and material strength parame-

ters directly into account, and fracture mechanics approaches,

which need not specifically use values of interlaminar



stresses, but instead use the amount of strain energy avail-

able per unit of delaminated area as a delamination parameter.

2.2 Mechanics of Materials Approach

Early mechanics of materials methods were generally qual-

itative attempts to correlate delamination with the

interlaminar stress state. Rough approximations of the stress

components were often used in these calculations. In a 1973

paper, Pipes et al. [13] studied the delamination of [±O],

laminates. Since these laminates have no mismatch in

Poisson's ratio, they have no azz. They concluded that iz

was the primary cause of interfacial delamination in these

laminates. Herakovich [14] did similar experiments in which

he compared the effect of clustering versus alternating the +0

and -0 plies. He found that eight-ply laminates with clus-

tered plies ([+02/-02]s) failed at significantly lower

stresses than the corresponding laminates with alternated

plies ([(±8)2]s). He concluded that "the differences are ex-

plained analytically through consideration of the influence of

layer thickness on the magnitude of the interlaminar shear

stress."

Rodini and Eisenmann [15] attempted to correlate delami-

nation to azz. Their assumption that only normal stress is



important is based on the fact that several laminates showed a

greater propensity to delaminate when their stacking sequence

was altered to give higher values of a,,zz. They used the ap-

proximate approach of Pagano and Pipes [7] to determine the

sign and relative magnitude of azz. They proposed, as a cri-

terion, that delamination was a function of the integral over

the volume of the specimen of the tensile values of azz. They

believed that delamination initiation fit a Weibull distrib-

ution. This approach predicted that delamination was only a

function of azz and that it was highly dependent on stacking

sequence. It also predicted that, for any given laminate

type, delamination strength is inversely proportional to both

the length of the free edge and the square root of the ply

thickness.

Lagace [16] also considered ozz as a basis on which to

predict delamination. Rather than considering the integral

over the entire volume, however, he looked at each ply inter-

face separately. He suggested that the propensity for a given

interface to delaminate could be qualitatively correlated with

the value of the integral of azz along the interface from the

free edge to the point where it changed signs as illustrated

in Figure 2.3. It was believed that positive values of this

integral indicated interfaces prone to delamination. Within
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any given laminate, a larger value indicated a higher proba-

bility of delamination.

There are some papers, such as the one by Wang and

Choi [17], which suggest stress singularities may exist at the

free edge. These singulariies, however may only be important

in very small regions near the free edge. This region may be

so small that the underlying analytical assumption that all

plies can be treated as homogeneous orthotropic layers breaks

down.

The region of high stress at the free edge is in some

ways similar to the region of high stress near the edge of a

hole in the failure process. In the case of a hole, the

stresses at the edge far exceed the ultimate stresses of the

material as determined by testing an unnotched specimen. It

is therefore reasoned failure at the hole is due to an average

of over a region rather than the point value at the hole edge.

In an investigation of the failure of composites with

notches, Whitney and Nuismer [18] introduced this concept of

an "average stress" criterion. They averaged the longitudinal

stress (all) over a certain distance from the free edge of the

hole and predicted failure when the average stress reached a

critical value.

The interlaminar shear and normal stresses calculated at

the free edge of an unnotched specimen far exceed the strength
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of the neat matrix. It would thus seem plausible that this

average stress concept could be applied to describe delami-

nation initiation. Kim and Soni [19] first attempted to apply

this method to delamination initiation. They tried to corre-

late delamination initiation stress with the averaged value of

azz. They arbitrarily chose an averaging dimension of one

nominal ply thickness and predicted that initiation would oc-

cur when the averaged value of azz reached an estimated

interlaminar normal strength parameter which they approximated

as the transverse strength of the unidirectional ply. Reason-

able agreement with their data was achieved. The results

clearly showed that the approximate value of the azz at the

free edge is significantly higher than this averaged value.

This serves as proof that the calculated value of azz at the

free edge is considerably higher than this estimated

interlaminar strength.

In another set of experiments, Kim and Soni [20] used

this average stress approach for the interlaminar shear stress

by averaging the 1iz component of interlaminar stress over a

distance of one ply thickness from the free edge. Delamination

was predicted to occur when this parameter reached the

interlaminar shear strength of the laminate, which was esti-

mated as the in-plane shear strength of the composite. Rea-

sonable agreement was again achieved. It is not clear from



these experiments whether or not both the azz and a,, compo-

nents are important in delamination initiation. It is also

not clear that the nominal ply thickness is necessarily the

proper dimension over which the stresses should be averaged.

The recent development by Lagace and Kasapoglou [11,12]

of the Force Balance Method for the calculation of

interlaminar stresses has made it easier to use an average

stress approach. The stress distributions assumed for this

calculation technique are sums of constant and exponential

terms. It is therefore simple to calculate the average stress

values.

Brewer et al. [21] conducted a study of delamination

failure. A strong correlation was found between an increase

in ply thickness and a decrease in failure strength. This

correlation applied not only to laminates with tensile values

of interlaminar normal stress at the free edge ([±15n/On]s),

but also to laminates where this normal stress was compressive

at the free edge ([0/±15n]s) or identically equal to zero

throughout the laminate ([±15ns). Interlaminar stress calcu-

lations were made using the Force Balance Method of Lagace and

Kassapoglou [11,12].

The study also concluded that delamination failure is a

two step process consisting of an initiation point for delami-

nation and a growth stage. Failure is assumed to occur when
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the delaminated area reaches a critical size. It is believed

that initiation stress shows a similar trend with respect to

ply thickness. The initiation stress is thought to be an im-

portant parameter in design.

2.3 Strain Energy Release Rate Approach

In recent years, some researchers have attempted other

methods for predicting delamination. Since delamination can

be modeled as an interlaminar crack, many researchers decided

to use a fracture mechanics approach. Rybicki et al. [22]

reasoned that delamination could only occur if the strain en-

ergy released as the delamination grew was sufficient to pro-

vide the energy needed to create the new surface. They

believed this could be characterized by a critical value of

the strain energy release rate per unit of delaminated area,

Gc. They computed the value of strain energy available to be

released per unit area, G, as a function of the far field

stress. This was done simply by releasing nodes of the finite

element model as a representation of delamination growth. The

change in strain energy per unit increase in delaminated area

was then calculated. Their experiments with boron/epoxy lami-

nates demonstrated that the Gc approach "warranted further in-

vestigation."



Wang and Crossman [23] extended this approach. They cal-

culated the strain energy available for release using finite

elements and assumed that the resistance curve ("R-curve") of

strain energy release rate required to extend the delamination

starts at zero at an assumed inherent flaw size and rises rap-

idly to a constant critical value. These curves are illus-

trated in Figure 2.4. They proposed that the following

sequence of events lead to delamination failure. The initial

interlaminar flaw undergoes relatively little growth until the

stress level reaches a critical value. Since the available

strain energy release rate is proportional to the applied far

field stress and it rises to a local maximum and then dips

slightly, there can be instantaneous but limited growth when

this maximum value of available strain energy release rate re-

aches the critical value. This is followed by stable delami-

nation growth. At a critical value of delamination size, the

curve of available strain energy turns rapidly upward. This

causes unstable delamination growth which can trigger laminate

failure. These curves were determined for [±25/90n]s lami-

nates (n = 1, 2, 3). Their experiments [24] showed good

agreement with theory despite the fact that the transverse

cracking that occurred in the two thicker laminates before the

onset of stable delamination growth was not accounted for in

their analysis.
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O'Brien [25] attempted to simplify this approach by de-

veloping an easy way to approximate the strain energy release

rate. He proposed that the modulus of the delaminated region

could be estimated as the weighted average modulus (by thick-

ness) of the sublaminates formed by the delamination. By com-

puting the difference in strain energy between the delaminated

and undelaminated cases at a given strain level, he derived a

simple formula for calculating the strain energy release rate:

G - t [E2 lam -E
avg

(2.1)

where: Eavg = modulus of delaminated region

Eiam = modulus of undelaminated laminate

t = laminate thickness

E = strain level

With this equation, he predicted that if a simple G c approach

is used, initiation strain (and therefore, since linear behav-

ior is assumed, initiation stress) is inversely proportional

to the square root of the ply thickness. O'Brien also stated

that only a numerical method such as finite elements can be

used when it is necessary to break the strain energy release

rate into its mode I (opening), II (sliding), and III (tear-



ing) components. In his experimental work on quasi-isotropic

laminates, a value of Gc for the material system used was de-

termined. He also plotted an experimental R-curve for delami-

nation growth of one of his laminates. He concluded that the

Gc approach could give estimations of delamination stresses

that may be "sufficient" for early stages of design.

In a further paper [26], this idea was extended by com-

paring the utility of the width tapered double cantilever beam

specimen, which is tested under out-of-plane normal load and

measures the critical value of the mode I component of the

strain energy release rate, G1 c, to the "edge delamination

specimen," a [±30/±30/90/90]s specimen which is tested in a

standard uniaxial manner and delaminates at the free edge. The

conclusion is that either specimen could be used as a measure

of the ability of a matrix to resist delamination, but that

both Gc and GIc would be required to quantitatively character-

ize "toughness." In further work, O'Brien [27] proposed that

GI is the controlling parameter for delamination under static

loading while the total G is the critical quantity for delami-

nation onset under cyclic loading.

After further investigation, O'Brien et al. [28] deter-

mined that the value of Gc is a laminate parameter which is

highly dependent on the percentage of the total G which is due

to mode I. They varied the stacking sequence of a family of



laminates in order to compare laminates with similar total G

values but greatly varied amounts of GI. They found that

brittle resins were affected only by the mode I component of G

but that toughened resins could be characterized by critical

values of total G where this Gc is highly dependent on the

percentage of G that is mode I. This means that G, is a

strong function of laminate type for systems with toughened

matrices.

Many researchers [24,25,29,30,31] have found transverse

cracks in 900 plies before the onset of delamination. Wang and

Crossman [23] dealt with the problem in terms of strain energy

release rate. They computed the onset strains for delami-

nation and transverse cracking for [±25/ 90n] s laminates. Al-

though the transverse cracking onset strain was higher than

the failure strain for [90,n] specimens and approached it

asymptotically for large values of n, they found good agree-

ment between their predictions and the actual onset strains

and damage types in the experimental portion of their

work [24,31].

O'Brien [29] noted that "local delaminations" can form

where the crack meets the neighboring ply. He proposed that

these can grow unstably across the specimen and developed a

simple formula for predicting onset of transverse cracking in

terms of strain energy release rate. Using this equation and



the one proposed for predicting delamination [25], O'Brien was

able to correlate onset strain and damage type of Crossman and

Wang's data [31] and achieved good agreement.

2.4 Experimental Determination of Delamination Initiation

The investigation of delamination is strongly dependent

on the ability to accurately determine the delamination initi-

ation stress experimentally. Delamination criteria and their

predictions can only be evaluated when supported by valid

data. There are several methods described in the literature

for the detection of delamination initiation. Kim and

Soni [19] monitored the acoustic emission of their specimens

during testing. They assumed that a rapid increase in the

rate of emissions was indicative of delamination initiation.

Wang et al. [24] and O'Brien [25] used X-rays and a

dye-penetrant to find the delaminated area of specimens which

were loaded in small increments. Wang et al. plotted delami-

nated area as a function of stress and then extrapolated back-

wards to find the stress where the area was equal to zero.

This was taken to be the estimated initiation stress. O'Brien

determined the stress at which delamination initiates by as-

suming that the first stress at which a detectable delaminated

area could be observed corresponded to the onset of nonlinear-



ity in the load-deflection curve. He achieved relatively good

agreement with his X-ray data. It is important to note that

these X-ray methods often detected transverse cracks across

the width in the 900 plies of specimens before delamination

detection. These transverse cracks probably have a signif-

icant effect on the interlaminar stress state and therefore

the strain energy release rate components in these specimens

before delamination.

Reifsneider et al. [32] continually monitored the atten-

uation of ultrasonic through the thickness of a specimen dur-

ing testing by mounting an ultrasonic transducer on the front

and back of the test section. The initiation stress was esti-

mated as the point where the modulus appeared to change and a

corresponding increase in ultrasonic attenuation occurred. It

is not clear how difficult it was to judge exactly where the

change in attenuation or modulus which respect to load oc-

curred. An optical microscope was mounted on the testing ma-

chine to -allow for observations and photographs of the

specimen edge during testing. They always observed transverse

cracks in the 900 plies of their quasi-isotropic specimens be-

fore delamination initiation. These cracks served as delami-

nation initiation sites. An acoustic emission transducer was

used on some specimens in a manner similar to that of Kim and

Soni. For their [0/90/±45]s specimens, they found a change in



modulus without an observed delamination or increase in ultra-

sonic attenuation.

Klang and Hyer [33] investigated delamination initiation

at circular boundaries. They loaded specimens to specific in-

crements of load at which point the load was held and acetate

film replications were made of the free surface. Six to

twelve replications were made of each specimen before failure

occurred. These replications were studied under a microscope

for indications of delamination. The loading interval in

which delamination occurred could be determined from these

permanent records.

It is important to point out that in all the methods

which involve changing the load in small increments, the ini-

tiation could conceivably have existed for some finite time

before it is detected. The other methods described above do

not give any quantitative criteria for determining how much of

a change in a given parameter is indicative of delamination.

In most of'these cases, the change of the parameter is rather

subtle, thus causing the precise initiation point to be ob-

scured. It is important to any study of initiation that exam-

ination to determine if a delamination exists be made and as

soon as possible after that delamination could have formed.

For this, a method which can detect initiation almost instan-



taneously and with certainty is necessary so that the test can

be stopped and the specimen examined.

Much work has been concentrated on explaining the trans-

verse cracking phenomenon and its relationship to delami-

nation. It is perhaps advisable, however, that when studying

delamination, researchers restrict themselves to laminates

which are not prone to massive transverse cracking. Generally,

this would mean studying laminates which do not have 900

plies. This would allow for in-depth study of delamination

isolated from transverse cracking. Once delamination by it-

self is fully understood, its interaction with transverse

cracking could be explored in a more meaningful light.



CHAPTER 3

PROPOSED CRITERION

3.1 Selection of the Average Stress Approach

Of the methods for predicting delamination initiation

which were reviewed in Chapter 2, the two which show the most

promise in terms of simplicity and agreement with data seem to

be the average stress and strain energy release rate ap-

proaches. Both methods have physical bases and attempt to ac-

count for the important contributors to delamination

initiation.

The strain energy release rate seems to be the most popu-

lar method in the recent literature. It is a one parameter

model. Once this parameter has been determined for a given

laminate, the behavior of laminates with different ply thick-

ness can be quickly estimated. Initiation stress is predicted

to be proportional to the reciprocal of the square root of the

ply thickness.

A strict strain energy release approach has two fundamen-

tal problems. First, the character of the decrease in initi-

ation stress with ply thickness is restricted to an

exponential decay. This is a vestige of the one parameter

model. The model therefore predicts very low initiation



stresses for thick laminates despite the fact that the

stresses at the free edge at these stress levels may be quite

small. Second, the behavior of only a minority of laminates

can be predicted using a single parameter determined for a ma-

terial system. Due to the full three-dimensional state of

stress at the free edge, there are generally both mode I and

mode II contributions to the initiation process. Most lami-

nates have brittle resins which seem to be primarily sensitive

to the mode I component of the strain energy release rate.

Determination of this component must presently be done using

numerical methods such as finite elements. This complicates

the procedure considerably. There is evidence to suggest that

the critical value of the mode I component of strain energy

release rate may be dependent on the fraction of total strain

energy release rate which is due to mode I. These additional

complications reduce the usefulness of this method in early

design stages.

The 'average stress approach attempts to predict initi-

ation using values of certain stress components averaged over

a certain distance from the free edge and corresponding

strength parameters. The average value of a stress component

can easily be calculated for a given averaging dimension,

Xavg:



x
Savg

ij x ij dx (3.1)
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where x is the distance from the free edge. The strength pa-

rameters might be the interlaminar normal strength or

interlaminar shear strength of the composite.

The average stress method has been difficult to apply be-

cause of the lack of simple analytical solutions for the

interlaminar stress state at the free edge of the laminate.

The stress state is generally determined for a specific me-

chanical and/or thermal loading. It has been necessary to nu-

merically integrate stress components to determine average

stresses. The advent of the Force Balance Method by Lagace

and Kassapoglou [11,12] has removed this obstacle. The thermal

and mechanical loading can be varied independently. The stress

distribution funtions are sums of constant and exponential

terms which can be easily integrated. This new ability to

quickly calculate parameters which describe the average stress

state under general loading make the average stress state much

more attractive.

The average stress approach has the potential to describe

all laminates of a given material system with one set of pa-

rameters. The criteria proposed by Kim and Soni [19,20] and

the criterion proposed in this investigation depend on the de-

termination of interlaminar strength parameters which would be



constant for all laminates made from a given material system.

The other parameter of the average stress approach, the dis-

tance over which the stress components are averaged, is also

believed to be a material system constant rather than a lami-

nate constant, although continued experimentation will be

needed to bear this out.

3.2 Quadratic Delamination Criterion

It has been shown in the literature that both the

interlaminar normal stress (azz) [2,15,16,19] and the

interlaminar shear stress (1iz) [13,14,20] can be important in

delamination initiation. Useful average stress criteria must

include at least these stresses along with some measure of

meaningful strength parameters. Kim and Soni [19,20] chose to

deal only with the azz or 1iz component at one time. The op-

posite extreme would be to include all the components of

stress, perhaps in the form of a Mises-Hencky equivalent

stress:

S 1 2 2 (3.2)
S= [(ll - a22 ) + (22 - ) + - (3.2)
E 22 22 zz zz 11

- 2 - 2 - 21/2
+ 3a 12 2z z 1



This approach introduces the difficulty of determining an ap-

propriate strength parameter. It has been suggested that the

interlaminar normal strength can be approximated as the trans-

verse strength of the composite and the interlaminar shear

strength can be approximated as the shear strength of the com-

posite. In the composite system used in this investigation,

no one critical value of 7E would give adequate agreement for

both cases of delamination dominated by shear stresses and

cases dominated by out-of-plane normal stresses.

The problem in developing a useful criterion is to deter-

mine which components of stress are most important in initi-

ation. Delamination is essentially a failure of the interply

matrix layer. Hashin [34] developed criteria for various dam-

age modes of composite materials by comparing stress compo-

nents to their related strength parameters. His criterion for

tensile matrix damage contained both normal and shear stress

terms. The criterion was formulated to be independent of the

sign of shear stress. Thus, all shear stress terms were

squared. The terms containing normal stresses were also of

second order. When this criterion is applied to delamination

using an average stress approach, it is evident that the con-

tributions of in-plane stresses in the matrix layer are rela-

tively small when compared to the contributions of the average

out-of-plane interlaminar stress components. Hence, only



out-of-plane interlaminar shear and normal components need be

considered in this approach.

It is obvious from the calculation of the interlaminar

stress state that the square of the average value of the C2z

component is overwhelmed by the square of the average value of

the 1iz component. This is due to the fact that the value of

,iz is highest at the free edge whereas the boundary condi-

tions require- that a2z be zero at the free edge. Thus, the

average value of ,iz will always be considerably greater than

the value of a 2 2. In the laminates studied in this investi-

gation, the square of the average value of mechanical a2z

never exceeds 0.7% of the square of the average value of me-

chanical aiz. If the shear strength of the composite is taken

to be on the same order for the oz and a2z stresses, then the

72z term will always be negligible when compared to the 71z

term and can be ignored.

Tensile values of interlaminar normal stress are obvi-

ously important in initiating delamination. It is believed,

however, that compressive values of interlaminar normal stress

at the free edge do not affect initiation. Thus, compressive

values of average interlaminar normal stress should be ig-

nored. Laminates which have values of interlaminar normal

stress which are identically zero or compressive at the free

edge will never have tensile values of 7z. Delamination in



these laminates is therefore controlled solely by the average

value of a1z. Care should also be taken not to include the

contributions of compressive values of azz when calculating

the average value of interlaminar normal stress for laminates

which have tensile values at the free edge but have

compressive values within the range of the averaging dimen-

sion.

It is therefore proposed that delamination will initiate

when the following Quadratic Delamination Criterion is met at

a ply interface:

Olz 2 [o 2

Iz2 + uz] 1 (3.3)

where [Tzz ] = 0 if Tzz is compressive

7zz if 7zz is tensile

Zt = interlaminar tensile normal strength

Zs = interlaminar shear strength.

This Quadratic Delamination Criterion accounts for the con-

tributions of the two stress components that are believed to

be primarily responsible for delamination initiation. The

criterion compares the average stress components with their

related strength parameters. This single criterion can there-



fore describe delamination initiations which are dominated by

significant values of interlaminar shear, tensile interlaminar

normal stress, or any combination thereof.

3.3 Implementation of Quadratic Delamination Criterion Using

the Force Balance Method

3.3.1 General Application

The Force Balance Method is very well suited for use with

the Quadratic Delamination Criterion. The general forms of

the O'z and a,, stresses are:

-x € x
a = f ( e
zz m m

-x t t
f (C et t

-€ x
G =he
I m

- x
-e )Off

-e x

-a x
o +he
ff t

where: f,h = interlaminar stress constants determined for a

specific interface via the Force Balance Method

O,X = interlaminar stress constants determined for the

laminate via the Force Balance Method

(3.4a)

(3.4b)



52

x = distance from the free edge

Off = far field mechanical stress

AT = laminate temperature minus curing temperature

m,t = subscripts denoting mechanical or thermal

contributions.

The interlaminar stress distributions of a,, and aiz due to

thermal loading and unit mechanical loading are depicted for

the +150/-150 interfaces of the three types of laminates used

in this investigation in Appendix A. The +150/-15 interface

has been determined to be the critical interface for each of

these laminates. Upon choosing a value for Xa,,,, the averaged

stress components become:

f -, x -x x
- m [e avg - e m avg

S = - le e t tzz 0 X tt
m avg

ft tx  - t t Xavg (3.5a)
+ [e avg e avg] AT

t avg

h -0x- m m avg

z - e X ff
m avg

ht -9tx  (3.5b)
+ [1 - e avg] AT

t avg

Once the interlaminar stress parameters have been determined,

the application of the Quadratic Delamination Criterion be-

comes quite simple.



3.3.2 Effect of Ply Thickness

It has been shown through the reasoning of dimensional

analysis [35] that 0 is the only interlaminar stress parameter

that varies as the ply thickness of the laminate changes. The

results of the Force Balance Method show that 0 is inversely

proportional to ply thickness. The result of this is that the

distributions of the various components "spread out" with re-

spect to distance from the free edge as ply thickness in-

creases. This is shown for the azz distribution of a

[±15n/0n] s laminate in Figure 3.1. It is important to note

that the shape of the stress distribution remains the same and

the value of stress at the free edge is constant for a given

thermal and/or mechanical load. This behavior is the same for

all components of stress.

This has specific implications in the average stress

method. As ply thickness increases, the region of high stress

near the free edge widens. Since the averaging dimension re-

mains constant, the average azz and a,,z stress components in-

crease for a given far field stress. This implies that

initiation will occur at lower far field stresses for lami-

nates with larger ply thicknesses as observed experimentally.

The limit of this effect occurs when the ply thickness becomes

large with respect to the averaging dimension. When this hap-
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pens, the average stress components asymptotically approach

the values at the free edge. Thus, the predicted initiation

stress asymptotically approaches a lower bound as ply thick-

ness increases.

3.3.3 Effect of Averaging Dimension

Changing the chosen averaging dimension has an effect

which is similar to that of changing the ply thickness. As the

averaging dimension is increased, the region of the stress

distribution over which the stress components are averaged is

increased. This is relatively the same effect as that of de-

creasing the ply thickness. These two effects are illustrated

in Figure 3.2 for 1,,. All other stress components exhibit

the same sensitivity relative to changes in the averaging di-

mension. Thus, average stress components and, more impor-

tantly, predicted initiation stresses can be expressed in

terms of ply thickness normalized by averaging dimension as

illustrated in Figure 3.3. Thus, calculations may be made us-

ing a convenient averaging dimension. The curve that corre-

sponds to a different averaging dimension can be found easily

by scaling the effective ply thickness axis by a factor equal

to the reciprocal of the change in the averaging dimension.

The curve does not change its shape; it merely shifts horizon-
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tally as illustrated in Figure 3.4. This allows for the easy

exploration of several averaging dimensions in the search for

a best fit value.

As noted in Section 3.2, care must be taken when the av-

eraging dimension is greater than the distance from the free

edge to the point where ozz changes sign. It is not believed

that the compressive stress affects delamination initiation.

Therefore, compressive values should not be included in the

calculation of average stress components. This is not to say,

however, that laminates with compressive values of azz at the

free edge should ever be considered to have an average value

of a,,zz which is tensile.

3.3.4 Effect of Interlaminar Strength Parameters

It is obvious that a change in the interlaminar strength

parameters will have an important effect on the predicted de-

lamination initiation stress, regardless of the averaging di-

mension. To illustrate this sensitivity, consider the cases

where [7zz ] is taken to be zero (i.e. when azz is identically

zero or compressive at the free edge). The Quadratic Delami-

nation Criterion reduces to the simple shear criterion used by

Kim and Soni [20]:
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If the contributions of thermal stresses are ignored, it is

evident that the shape of the predicted initiation stress ver-

sus ply thickness curve will remain the same, but will shift

upward by a factor equal to the proportional change of

interlaminar shear strength. This effect is depicted in Fig-

ure 3.5.

When specimens are dominated by mechanical shear stress

but have both ,,zz and thermal stress contributions, a change

in the interlaminar shear strength will still have the same

general effect but the increase in predicted strength will not

be perfectly linear. There will be some shape change of the

predicted initiation stress curve as the thermal and normal

stress components become more important in the Quadratic De-

lamination Criterion. For example, Figure 3.6 illustrates the

effect of changing the assumed value of the interlaminar shear

strength on the predicted curve for [+±15n/0, s specimens. It

can be seen that increasing the interlaminar shear strength

causes the predicted strength to increase for all ply thick-

nesses. The percentage change in predicted strength varies,

however, as the contributions of the thermal and normal

stresses change.
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CHAPTER 4

THE EXPERIMENT

4.1 Specimen, Material, and Laminate Choice

The specimen used in this investigation is the standard

TELAC specimen. This specimen is a straight-edged coupon

which is 350 mm long and 50 mm wide. Glass/epoxy loading tabs

75 mm long and 50 mm wide are bonded onto the ends of the

specimen using American Cyanamid FM-123 film adhesive. The

layup of the loading tabs is [0/90]n s where n is sufficient

for the loading tab to be 1.5 to 4 times as thick as the lami-

nate as is suggested by the American Society for Testing and

Materials [36). Table 4.1 contains a summary of loading tab

thicknesses used for the various laminate thicknesses in this

experiment. The test section of this coupon is thus 200 mm by

50 mm. The specimen is illustrated in Figure 4.1.

All specimens were made from Hercules AS1/3501-6

graphite/epoxy. This material contains unidirectional AS1

graphite fibers in a 3501-6 thermosetting epoxy matrix. This

composite is supplied as a preimpregnated tape nominally

305 mm in width with the epoxy in a semicured state. The

"prepreg" must therefore be stored at -18 0 C or below until



TABLE 4.1

NOMINAL LAMINATE AND TAB THICKNESSES

NOMINAL NOMINAL TAB
LAMINATE NOMINAL TAB TO LAMINATE
THICKNESS THICKNESS THICKNESS

LAMINATE [mm] [mm] RATIO

[±15]s 0.536 2.03 3.79

[±15,] s  0.678 2.03 2.99

[±152] s  1.07 3.05 2.85

[±153] s  1.61 4.06 2.52

[±154] s  2.14 6.10 2.85

[±155] s  2.68 6.10 2.28

[±15/0] s , [0/1l5] s  0.804 2.03 2.52

[±15,/0,] s  1.02 3.05 2.99

[+152/02]s, [02/±152]s 1.61 4.06 2.52

([±153/03]s ' [03/±153] s 2.41 6.10 2.52

[±154/041 s' [04/±154]s 3.22 6.10 1.89

[±155/05] s , [0 5/±1 5 5] s 4.02 8.13 2.02

Note: Subscript "*" indicates laminates made
190g/m prepreg

from
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laminate manufacture. The basic elastic properties of the

unidirectional ply of this material are reported in Table 4.2.

Three different laminate "types" were chosen for this in-

vestigation: [±15n]s, [±15n/Ons, and [0n/±15n] s . These lam-

inates were chosen for their relative propensity to delaminate

as observed in previous experiments at TELAC [2,21] and for

their respective interlaminar stress states. The [±15n] s lam-

inates delaminate although their calculated interlaminar

normal stress, a,,, is identically zero. The [±15n/On] lami-

nates were chosen because both interlaminar shear stress, liz,

and tensile azz exist in significant magnitudes at the free

edge. The [0n/±15]rs laminates exhibit delamination despite

compressive values of azz at the free edge. The interlaminar

1iz distribution is similar at the +150/-150 interfaces in the

last two laminates. The calculations of interlaminar stresses

were performed using the Force Balance Method of Lagace and

Kassapoglou [11,12].

In order to examine the effect of ply thickness on the

initiation of delamination, the ply thickness of these lami-

nates was varied in two ways. In most cases, standard

Hercules AS1/3501-6 graphite/epoxy with a nominal areal weight

of 150 g/m2 and cured per ply thickness of 0.134 mm was used.

To vary the "effective ply thickness", a number of plies of

the same orientation were stacked on top of one another as il-
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TABLE 4.2

ELASTIC PROPERTIES OF AS1/3501-6 GRAPHITE/EPOXY



lustrated in Figure 4.2. For example, the effective ply

thickness of a [±15], laminate is taken to be 0.134 mm. The

effective ply thickness of a [±155ss laminate is taken to be

five times that value, or 0.670 mm. For each of the three

laminate types mentioned above, specimens were constructed

with values of normalized effective ply thickness (effective

ply thickness divided by 0.134 mm), n, equal to 1, 2, 3, 4,

and 5. It is important to note the fact that in previous ex-

periments [21] these "multiple-thick" plies always behaved as

a unit (i.e. there was never any delamination within a group

of plies with the same angular orientation). Thus, they can

be analyzed as single plies of a different ply thickness.

The second method for varying effective ply thickness was

to use a special AS1/3501-6 prepreg with a nominal areal

weight of 190 g/m 2 originally prepared by Hercules for Boeing

Aircraft Co. This material has a nominal ply thickness of

0.169 mm and therefore a value of normalized effective ply

thickness o'f 1.27. Specimens of [±15], and [±15/0], laminate

types were made from this material. A laminate of the third

type, [0n/±15n]s, was found to be improperly constructed and

did not yield relevant data.

There were therefore five or six normalized effective ply

thicknesses for each laminate type (n = 1, 2, 3, 4, 5,

and 1.27 for the [±15]s and [±15/0]s laminate types). The five
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or six resulting laminates of the same basic orientation, al-

beit different effective ply thicknesses, constitute a "lami-

nate family." These values of n were chosen because they gave

a wide region over which to study the effects of ply thick-

ness. The value of 1.27 was chosen specifically to "fill in

the gap" between n equal to 1 and 2. This is important when

one considers that the value of normalized ply thickness is

doubling in this important region of the initiation stress

versus ply thickness curve. Five specimens of each laminate

type and ply thickness were manufactured. The total testing

program is denoted in Table 4.3.

4.2 Nomenclature

The method for identifying specimens is an adaptation of

the standard three bit TELAC code. The first bit contains a

shorthand laminate notation of the form nOQm. The 0 repres-

ents the angular orientation of the angled plies in degrees.

The Q represents a letter which denotes the location of any 00

plies. An "A" denotes that the 00 plies are located at the

midplane while a "B" denotes that they are on the outside of

the laminate. The m denotes the number of 00 ply groups in

each half of the symmetric laminate. Hence, 15A0 represents a



TABLE 4.3

TESTING PROGRAM

aNumbers indicate the

b °

number of specimens of each type

Laminate was layed up incorrectly

n H±15 ]s [±15n/0 ] [0 /+15 ]s

1 5a 5 5

1.27 5 5 b

2 5 5 5

3 5 5 5

4 5 5 5

5 5 5 5

• I "I



[±15]s laminate, 15A1 represents a [±15/0], laminate, and 15B1

represents a [0/±15], laminate.

For this experiment, the prefix n is added to this desig-

nation when the normalized effective ply thickness is differ-

ent from one. Since the angular orientation in degrees of any

unidirectional ply can be represented by a single number be-

tween -90 and +90, the addition of a preceding integer greater

than one would lead to no ambiguity. This normalized effec-

tive ply thickness is used for this prefix. The only excep-

tion is that an asterisk is used for the laminates constructed

of the 190 g/m2 composite. Hence, 315A1 denotes a

[+153/-153/03s, laminate.

The second bit in the three bit code is reserved for the

nominal size of the manufactured notch normalized by 1.59 mm

(1/16 inch). Since all of the specimens in this experiment

were unnotched, the second bit of the code is zero for all

specimens.

The third bit is an individual specimen number. To avoid

confusion between the specimens manufactured for different

projects, TELAC has adopted a practice of sequentially number-

ing all specimens of a given laminate type and notch size.

This means that the first specimen of a given laminate type in

a given investigation might not be specimen number one. This

is the case for most of the specimens in this experiment as



these laminate types have been used in several previous inves-

tigations. The exceptions are the specimens manufactured from

the 190 g/m2 composite as these are the first specimens in

TELAC constructed of this material.

4.3 Manufacture of Specimens

The eighty-five specimens manufactured for this investi-

gation were constructed using the procedures developed at

TELAC [37]. A review of these procedures is given.

The graphite/epoxy comes in rolls of semicured

unidirectional preimpregnated tape or "prepreg". The nominal

width of the 150 g/m2 composite is 305 mm while the nominal

width of the 190 g/m2 composite is 75 mm. To prevent curing

of the matrix before the laminates were manufactured, the com-

posites were stored in freezers at or below -180 C. When manu-

facturing was to begin, the composite was left at room

temperature in a sealed- bag for at least 30 minutes. This

prevents condensation from forming on the composite.

The prepreg was layered into uncured laminates in a

"clean room" which is air-conditioned to keep room temperature

below 250C and the relative humidity low. Surgical gloves

were used whenever handling uncured composite to avoid contam-

ination from skin oil. The composite was cut into trapezoidal



shapes which could be placed together to make 305 mm by 350 mm

plies with specific fiber orientations. These shapes were de-

signed such that there were no fiber breaks in any ply, that

is, the edges of the shapes which butted up were parallel to

the fiber direction. Thus, the only joints were "matrix

joints" which became indistinguishable during curing. The

plies were cut from the prepreg using teflon-covered aluminum

templates, which were machined to tolerances of one millime-

ter, and razor blades.

Several "curing materials" were used to insure proper

curing of the composite. The surface of the composite layup

was protected throughout the curing process by a peel-ply.

This is a nylon-like fabric which is porous to the epoxy. The

uncured laminate encased in peel-ply was placed onto an alumi-

num caul plate which was protected by a nonporous

teflon-coated glass fabric (TCGF). A layer of porous TCGF was

placed on top of the laminate. Several layers of a paper

bleeder material were placed on top of the porous TCGF in or-

der to absorb excess epoxy resin which flows out of the lami-

nate during the bleed stage of the cure. For laminates of the

standard 150 g/m2 prepreg, the number of layers of paper

bleeder was one half the number of plies in the laminate.

Three and four plies of paper bleeder were used for the

four-ply and six-ply laminates of the 190 g/m2 material, re-



spectively. Aluminum top plates wrapped in nonporous TCGF

were placed on top of the paper bleeder. Each laminate was

bordered on two sides by aluminum dams and on two sides by

dams of a corprene rubber material (cork). The dams prevented

shifting of the composites during curing. The corner of the

aluminum dams provided a sharp "good corner" which could be

used for reference of the fiber orientations.

The curing plate was large enough to handle all six lami-

nates of a laminate family in a single cure. The six lami-

nates and their top plates were covered by a sheet of porous

TCGF and a heavy fiberglass fabric air breather which provided

a path for air and other gases to escape into the vacuum sys-

tem. The entire assembly was vacuum bagged with a

high-temperature nylon bagging material and Schnee-Morehead

vacuum tape. Figure 4.3 is a schematic representation of the

cure set up for a laminate.

The curing of the composite is a two-stage process which

takes place in an autoclave at 0.59 MPa (85 psig) pressure and

an applied vacuum of at least 740 mm Hg (29 inches Hg). The

first stage is a one hour "flow stage" at 117 0 C in which the

epoxy is at its minimum viscosity. This allows for "bleeding"

off of excess epoxy resin, proper bonding of the plies, and

the removal of possible voids by the vacuum and pressure. The

second stage of the cure is a two hour "set stage" at 177 0 C.
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This is where most of the chemical crosslinking of the polymer

chains in the epoxy takes place. All heat-up and cool-down

rates were in the range of 1 to 30C/min to avoid thermally

shocking the composite. A postcure of eight hours at 1770 C in

an unpressurized oven was used. The entire cure cycle is il-

lustrated in Figure 4.4.

Each cured laminate was machined into five 50 mm by

350 mm specimens using a water-cooled diamond grit cutting

wheel. Approximately 25 mm was cut from the reference edge of

the laminate and discarded before the specimens were cut. The

cutting wheel was attached to a specially outfitted milling

machine to avoid any tapering of the specimens.

The specimens were measured for width at three points us-

ing a caliper and for thickness in nine places using a micro-

meter. The exact location of the measurement points is shown

in Figure 4.5. The average values for width and thickness for

each specimen are reported in the data tables. It should be

noted that 'thickness measurements are used simply as a quality

control check. It can be readily seen under a microscope that

"dimpling" of a surface layer of epoxy due to the presence of

the peel-ply during curing can distort thickness measurements.

This apparent extra thickness is most evident for thinner lam-

inates. Thus, nominal thicknesses were used in all stress

calculations. The thicker laminates showed some decrease in
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thickness toward the laminate edge. This increased the coef-

ficient of variation of thicknesses of the specimens of a

given laminate as well as decreasing the average ply thickness

slightly below the asymptotic level of the nominal value. Ac-

tual laminate and average ply thicknesses are reported in Ta-

ble 4.4. The average value of ply thickness for the laminates

constructed of the 150 g/m 2 prepreg is 0.132 mm with a coeffi-

cient of variation of 5.5%. The average value of ply thick-

ness for the laminates constructed of the 190 g/m 2 prepreg is

0.168 mm with a coefficient of variation of 3.9%. These aver-

age values of ply thickness are within 2% of the nominal val-

ues of 0.134 mm and 0.169 mm, respectively.

Glass/epoxy loading tabs, as described in Section 4.1,

were manufactured from 3M SP-1003 unidirectional

preimpregnated glass/epoxy. These laminates were cured ac-

cording to procedures outlined in Reference 37. The cure cy-

cle consisted of a single stage cure of two hours at 1660C

under vacuum and an applied pressure of 0.34 MPa (50 psig).

Manufactured laminates were 305 mm by 710 mm and were cut into

individual tabs measuring 50 mm by 75 mm. One of the 50 mm

edges of each tab was bevelled to a 300 angle to the plane of

the tab using a belt sander.

Tabs were bonded onto the specimen with American Cyanamid

FM-123-2 film adhesive. The adhesive was applied directly to



81

TABLE 4.4

AVERAGE LAMINATE AND PLY THICKNESSES FOR EACH LAMINATE

Average Coefficient
Laminate Average Ply of

Laminate Thickness [mm] Thickness [mm] Variation

[+15] s  0.59 0.148 1.4%

[*15,] s  0.70 0.174 3.3%

[+152] s  1.06 0.132 3.3%

[+153] s  1.56 0.130 3.1%

[ 4154] s  2.08 0.130 3.5%

[:155] s  2.60 0.130 3.6%

[l15/0] s  0.83 0.138 1.7%

[*15,/, s  0.99 0.166 2.4%
[+152/02] s  1.55 0.129 3.0%
[+153/03 s  2.25 0.125 3.7%
[+154/04] s - 3.06 0.127 3.2%
[1155/05] s  3.73 0.124 3.0%

[0/*15] s  0.84 0.141 2.7%

[02/*152]s 1.56 0.130 4.9%
[03/153] s  2.30 0.128 3.9%
[04/+154] s  3.17 0.132 3.0%
[05/1155] s 3.93 0.131 4.1%

Note: Subscript
prepreg

"*" indicates laminates made .from 190g/m 2



the tab. The film, which is stored at -180 C, becomes tacky

enough at room temperature to hold the tab in place on the

specimen while preparing the bonding cure. The specimens were

placed on an aluminum plate covered with nonporous TCGF. The

specimens were covered with another layer of TCGF and a steel

top plate placed on top of each specimen. Air breather was

placed over the top plates and the entire assembly vacuum

bagged. The film adhesive was cured for two hours at 114 0 C.

An applied vacuum and an autoclave pressure of 0.068 MPa

(10 psig) on the top plates yielded an absolute pressure of

approximately 0.34 MPa (50 psia) on the bonding surface.

4.4 Instrumentation of Specimens

A strain gage was attached to each specimen to monitor

longitudinal strain during testing. The gage was mounted in

the center of the test section as shown in Figure 4.1. All

gages are Micro Measurements EA-06-031DE-120 strain gages with

a 3.175 mm square constantan wire element on a 0.025 mm thick

polyimide backing. The gages were aligned with the longitudi-

nal axis of the coupon specimen using lines that were lightly

scribed on the thin epoxy layer of the laminate surface. The

gages were bonded onto the specimen with M-Bond 200 adhesive.
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The resistance of the gages is 120 ohms ± 0.15% and the gage

factor is 2.04 ± 0.5%.

4.5 Edge Replication Procedures

The edge replication technique was used to monitor and

inspect the specimen edges for delamination. An edge repli-

cation involves the use of a strip of acetate film to make an

impression of an edge of a specimen. The specimen edges had

to be carefully polished before testing. The polishing was

done with 25 mm diameter felt bobs mounted in a drill press.

The felt bobs were continually dipped in a colloidal solution

of a fine abrasive, Kaopolite-SF, with an average particle

size of 0.7 microns. The solution was hand-mixed and con-

tained approximately two parts tap water for each part of ab-

rasive. A smooth back and forth motion of the specimen edge

against the felt bob was used for polishing. After polishing,

the edges were quickly rinsed to prevent the solution from

solidifying on the edge. This gave the specimen edge a glossy

finish.

In this investigation, edge replications were made of

both edges of each specimen before testing and after each

test. Replications were therefore made while the specimen was

both outside the testing machine and inside the testing ma-



chine while under load. To make a replication, a strip of

replicating tape 25 mm in width is cut to the correct length

to replicate the portion of the free edge which is not inac-

cessible, i. e., not within the grips of the testing machine.

The edge is wiped with cheesecloth soaked in acetone. The

acetone is allowed to evaporate and the replicating tape

placed up against the corner of the edge as depicted in Fig-

ure 4.6. A squirt bottle containing acetone is held up to the

tape and used to squirt acetone over the surface of the tape

which is facing the edge of the specimen. This softens the

tape for replication. The tape is then smoothed against the

edge with a finger or other smooth object and allowed to dry

for approximately one minute. During this time, a mark is

placed on the tape using a magic marker. This corresponds to

a similar mark which had been made on the specimen about 30 to

40 mm from the tab. These marks are used for reference of

distance along the free edge. This is necessary as the tabs

are not exposed enough when the specimen is in the testing ma-

chine to allow the end of the tab to be a longitudinal refer-

ence point.

Once the replications dry, they are removed. Replications

are carefully examined to see if sufficient pressure was ap-

plied to the entire surface. If insufficient pressure were

applied, smudges can be seen with the naked eye. If areas are
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FIGURE 4.6 POSITION OF REPLICATING TAPE DURING APPLICATION
OF ACETONE



seen to be improperly replicated, the replication is discarded

and the specimen is rereplicated. If the replications are ac-

ceptable, they are labelled with a piece of masking tape and

placed between two clean flat surfaces to finish drying. This

prevents curling of the replications. The replication tech-

niques used in this investigation were refined during prelimi-

nary investigative work.

When properly done, replications may show features as

small as individual fibers. Differences in plies,

interlaminar resin layers, and an occasional microvoid can

easily be seen. Softened acetate can seep into tight trans-

verse cracks and delaminations, especially when they are sus-

ceptible to being "opened" when under load. The difference in

surface texture of the replications of these features gives

replications the unique ability to highlight these

difficult-to-detect features when viewed under a microscope.

This detection is nearly impossible to do when viewing the ac-

tual specimen under an optical microscope as these features

appear as dark lines against a dark background. The repli-

cations were illuminated from behind while being viewed under

the microscope. This enhanced the different surface texture

and made initiation detection more reliable.



4.6 Load Drop Phenomenon

An important extension of the load-displacement curve ap-

proach of O'Brien [25] was made in this work in an effort to

detect delamination initiation directly. When delamination

initiates, strain continuity is no longer applicable in the

delaminated region since the delaminated sublaminates are no

longer rigidly bonded. O'Brien suggested that the modulus of

this region is the average modulus of the remaining sublami-

nates weighted by the thickness of the sublaminates. Energy

considerations suggest that this modulus will always be less

than the original modulus. When this decrease in modulus is a

result of an instantaneous delamination in a laminate which is

being statically loaded under displacement (stroke) control,

the result is an instantaneous drop in load. Hence, it is be-

lieved that a drop in load in a quasistatically loaded speci-

men may be indicative of delamination initiation. For the

small amount of delaminated area expected to occur at initi-

ation, the change in effective modulus of the test section is

small. The point of change of modulus would be difficult to

detect using stress-strain data. In contrast, a drop in load

can be pinpointed as long as data are taken with enough fre-

quency that the load drop is not obscured by the increase in

load due to normal loading of the specimen.



A computer program was therefore written for the testing

of specimens which allowed the automatic termination of a test

when a drop in load was detected. The ability of the computer

to detect a drop in load was dependent on several factors.

First, the size of the load drop is a function of the size of

the delaminated area. O'Brien [25] showed:

del Eff - Elam

A E - E (4.1)
tot avg lam

where: Ael = delaminated area

Ato t = total test section area

Eeff = longitudinal modulus of partially

delaminated specimen

Eavg = weighted average modulus of the sublaminates

Elam = longitudinal modulus of undelaminated laminate.

If linear stress-strain behavior is assumed under stroke con-

trol, a decrease in load proportional to the decrease in

modulus is expected. That is, since the stroke is assumed

constant at any given point, the load divided by the specimen

stiffness must remain constant. Since the total area remains

unchanged this yields:
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P E
del eff

P E
und lam

where: Pdel = load applied to partially delaminated specimen

Pund = load applied to undelaminated specimen.

Solving for E eff, and substituting

Equation 4.1 yields,

this result into

upon simplification:

A
del

A
tot

del - P und

und

avg

E
lam

- E
lam

If the fractional load drop is defined as:

AP f r

-
del -und

P
und

Equation 4.3 can be manipulated to obtain:

E - E I A
avg lam del

Pfr ElamA tot

(4.2)

(4.3)

(4.4)

(4.5)



Assuming that the interface which is most likely to delaminate

can be predicted, the percentage drop in load can be directly

related to the area of delamination. Thus the load drop is

given by:

E Adel
P = AP p = av del p (46)

r und E A und (4.6)

The ability to detect the load drop is a function of the

parameters of the data acquisition system and the strain rate

at which the test is conducted. Load data from the testing

machine is available to the computer data acquisition software

through analog-to-digital conditioners. These conditioners

digitize the analog voltage data representing the applied load

by discrete "computer units". The value of a computer unit of

load is dependent on the load range setting of the testing ma-

chine. .The ranges used in this investigation were

44.5 kilonewtons (10,000 pounds), 89.0 kilonewtons

(20,000 pounds), and 222.4 kilonewtons (50,000 pounds). The

full range was divided into 2048 computer units. Thus, a com-

puter unit was equivalent to 21.7 N with the machine in the

44.5 kN range, 43.4 N in the 89.0 kN range, and 108.6 N in the

222.4 kN range.



The data was sampled automatically at discrete time in-

tervals. The stress rate is a function of the modulus and the

strain rate:

o = E E (4.7)

The loading rate is given by the stress rate times the

cross-sectibnal area of the test section:

P = A = EA e (4.8)
CS CS

where A cs is the cross-sectional area of the test section.

Assuming linear stress-strain behavior, the increase of load

per time interval is simply the loading rate times the time

increment between data acquisition:

AP = PAt = EA ;At (4.9)Cs

It is imperative that this increase in load be less than the

expected drop in load due to delamination described by

Equation 4.6. Otherwise, the load increase would obscure the

load drop as illustrated in Figure 4.7. To be detectable by

the computer program, the load drop must be at least one com-

puter unit greater than the load increase. If Pcu,, is defined
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as the load equivalent to one computer unit, the following in-

equality must be satisfied:

Savg - 1 del P > EA EAt + P (4.10)
E A und - cs culam tot

It is assumed that it is known which interface will de-

laminate so that various terms in Equation 4.10 can be deter-

mined. In addition, the load range for a specific laminate is

chosen based on maximum loads as previously observed for these

laminates in tests to failure. The load at which delamination

takes place, Pund, is linked to the minimum delamination area

which can be detected, Ade i. Thus, the sensitivity of this

technique is defined by the resulting Aoel in that the delami-

nation of such an area will induce a detectable load drop.

To be conservative, P und was taken to be one half of the

ultimate tensile stress. Thus, the minimum detectable Ade

can be directly related to the actual strain rate and thus the

chosen time increment. There is a limit as to how short the

data acquistion time increment can be. It must not be so

short that the computer data file (which is limited in size to

1314 data points) is filled before the specimen can reach ex-

pected delamination load plus a margin of safety. Also, the



noise of the system must be taken into account. The variation

of load measurement can vary by as much as plus or minus

1 or 2 computer units. If the time increment is too short,

this noise can be larger than the expected rise in load per

time increment. When this occurs, the test can be stopped er-

roneously. Trial and error were used to determine time incre-

ments which were short enough to provide adequate sensitivity

but long enough to avoid problems with noise. In all cases,

it was decided to err slightly on the side of choosing a time

increment which is too short. This was decided because it was

reasoned that it was better not to miss a real initiation and

chance having to retest the specimen than to have an initi-

ation missed and the specimen go on to final failure without

having given any information about initiation. The time in-

crements chosen for each specimen type are tabulated in Ta-

ble 4.5. The actual strain rate and Adel that can be

detected, as determined from Equation 4.10, are also listed.

4.7 Testing Procedures

All specimens were tested in an MTS 810 Material Test

System equipped with hydraulic grips. Tests were conducted

under quasistatic monotonic tensile loading. The machine was

always run under stroke control with a constant stroke rate of



TABLE 4.5

LOAD DROP TESTING PARAMETERS FOR EACH LAMINATE

Data Average Actual Minimum
Aquisition Strain Rate Detectable

Time Increment [Microstrain/ Delamination
Laminate [Sec] Sec] Area [mm 2 ]

[±l5] s  0.30 71.2 (2 .6%)a 220

[±15,] s  0.30 71.9 (3.7%) 231

[±152] s  0.20 70.2 (2.9%) 188

[±153] s  0.15 67.9 (2.2%) 189

[±154 s  0.11 65.1 (4.8%) 152

[±155] s  0.11 61.8 (2.6%) 145

[±15/0] s  0.18 70.3 (3.1%) 161

[±15,/0,]s 0.16 69.9 (1.8%) 187

[±152/02]s 0.16 65.5 (1.5%) 188

[±153/03 s 0.12 60.3 (3.4%) 151

[±154/04 s 0.12 55.2 (2.8%) 196
[±155/05] s  0.12 53.0 (3.3%) 168

[0/±15] s  0.18 71.0 (3.1%) 138

[02/±1521 s  0.16 65.0 (0.9%) 166
[03/±153] s  0.12 60.5 (1.9%) 121

[04/±154] s  0.12 57.4 (3.7%) 168

[05/±155 s  0.12 54.1 (2.7%) 150

aNumbers inparentheses are coefficients of variation

Note: Subscript "*" indicates a laminate made from 190g/m 2

prepreg



1.07 mm/min. This translates to a nominal strain rate of ap-

proximately 90 microstrain/sec over the 200 mm test section.

Specimens were aligned in the grips using a machinist's

square. The upper grip was closed and the lower grip posi-

tioned around the lower tab. This was considered the "zero

load" position at which strain gage calibration was done. The

strain gages were monitored by computer using Vishay strain

gage conditioners. The computer stored data which was re-

trieved from the strain gage conditioners or testing machine

through analog-to-digital devices which divided the full range

of the channel into ±2048 digital units as described in Sec-

tion 4.6. In this investigation, the stroke range is 12.7 mm.

Thus a computer unit of stroke is equivalent to 0.0062 mm. It

should be noted that stroke could not be used as an accurate

measure of the stretching of the test section due to the sig-

nificant shearing of plies of the loading tabs relative to

each other. This effect is more pronounced in the thicker

specimens since they have thicker tabs.

The value of a computer unit of strain could be adjusted

using the gain control on the strain gage conditioner. In this

investigation, the conditioner was calibrated before each test

so that each computer unit represented six microstrain. The

gage was first "balanced" so that zero strain registered in

the zero load position. A calibration resistance was con-
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nected in parallel with the strain gage in order to calibrate

the system.

The testing machine was run under computer control such

that data aquisition and load application would start simul-

taneously. The test can be stopped in three ways. One, a

test can be stopped by intentionally interrupting the test.

Two, a test can be stopped automatically when the data file

collecting load, stroke, and strain data is filled. The third

possibility, which was the normal procedure, is that a test is

stopped when the detected load at one data point is lower than

the value at the previous point. This apparent load drop is

taken as an indication of possible delamination initiation.

Once the test had been stopped, maximum load and stroke

values from the testing machine were recorded in the labora-

tory notebook. It is desirable that edge replications be made

while the specimen is under load. As the machine had a tend-

ency to gradually increase load while being held at a given

point, the'computer was used to decrease the stroke (and thus

the load) by a factor of approximately two. Two edge repli-

cations were taken of both edges of the specimen while it was

loaded at this lower level. The specimen was then completely

unloaded and removed from the testing machine.

The replications were carefully examined under a micro-

scope at magnifications ranging from 14X to approximately 50X.



When a replication showed a delamination that was not in a

previous replication (replications were taken of the specimens

before testing to serve as initial comparisons), the test was

considered to have detected an initiation point. If no such

feature was discovered, the specimen was retested. When a

specimen was retested, the computer program ignored any per-

ceived load drop which occurred before the specimen reached

its previous maximum load since these load drops were

artifacts of the procedure and not indicative of delamination

initiation.

One specimen of each laminate family with a normalized

effective ply thickness of one (specimens 15AO-0-9, 15A1-0-21,

and 15B1-0-18) was tested in a slightly different manner. The

testing set up was identical, but instead of stopping the test

at a drop in load, the specimen was incrementally loaded to

specific loads needed to achieve stresses in increments of

50 MPa. After each stress level was achieved, the load was

reduced by a factor of approximately two and two replications

were made of each side. The specimen was unloaded but not re-

moved from the testing machine between tests. These tests

were repeated until final failure occurred. This allowed for

an initial indication of the growth of delamination after ini-

tiation. More importantly, these tests serve as a check that

delamination does not initiate prior to the stress levels de-
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tected by the load drop technique. This is assured by these

tests when the specimens are inspected at regular intervals

and do not show any signs of delamination initiation on the

replications taken at stresses lower than the delamination in-

itiation stress determined from other specimens.
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CHAPTER 5

RESULTS

5.1 Stress-Strain Behavior

The stress-strain behavior of all specimens in this in-

vestigation was linear until delamination initiation, at which

point the test was terminated. The stress calculations were

made using load data from the testing machine, measured width,

and nominal thickness. The longitudinal moduli of individual

specimens are listed in the data tables. A summary of the av-

erage longitudinal moduli for the various laminates is re-

ported in Table 5.1. In all cases, the reported modulus is

for the final test of a given specimen, that is for loading

from no load to the load at which delamination initiates. The

values for most laminates were within experimental scatter of

the values predicted by Classical Laminated Plate Theory which

are 107 GPa for the [±15n] s laminates and 116 GPa for the

[±15n/0n sJ and [0n/±15n] s laminates.

For the vast majority of specimens, the modulus did not

vary by more than 5% from this final value from test to test.

This is within the expected range of experimental scatter.

Typical stress-strain plots for specimens of each family are

depicted in Figures 5.1 through 5.3.
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TABLE 5.1

AVERAGE LONGITUDINAL MODULUS OF EACH LAMINATE

Note: Subscript
made from

"*" indicates a laminate
190g/m 2 prepreg

aNumbers in parentheses are coefficients
of variation

Average Longitudinal
Laminate Modulus [GPa]

[±15] s  110 (2.3%) a

[±15,] s  104 (2.8%)

[±152] s  102 (7.6%)

[±1 5 3]s  103 (6.4%)

[±154 s  105 (6.4%)

[±1 5 51 s 103 (7.1%)

[±15/0] s  117 (1.3%)

[±15,0,] s  114 (4.3%)

[±152/02] s  112 (5.7%)

[±1 5 3/ 0 31 s 113 (8.0%)

[±154/04] s  108 (4.4%)

[±155/05] s  109 (5.8%)

[0/±15] s  115 (2.8%)

[0 2/± 15 2]s 112 (6.5%)

[03/±153] s  112 (6.3%)

[04-/±154 s  107 (8.7%)

[0 5/± 1 5 5] s 104 (5.3%)
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5.2 Detection of Delamination Initiation

Delamination detection is a two step procedure as de-

scribed in Chapter 4. Tests were stopped at load drops which

could have been caused by initiation. Initiation was verified

by comparing replications taken after the test (while the

specimen was still partially loaded) with replications taken

before any testing occurred.

It took some experience to determine exactly what a de-

lamination looked like on a replication. The dark regions be-

tween plies were originally thought to indicate delamination.

Upon examination of the replication taken before testing, how-

ever, it was evident that these were merely interlaminar resin

layers. Small flaws could be seen on some of the original

replications. These ranged from small interlaminar voids to

transverse cracks which could have been introduced during

specimen handling. Figure 5.4 contains photographs of some of

these inherent features. In general, however, the polished

free edge was clean, smooth, and free of flaws as depicted in

Figure 5.5.

Delamination initiation appeared in several ways. In most

cases, initiations were detected on edge replications as light

white lines which followed the ply interfaces. This "hairline"

initiation was the type of initiation that was expected. The
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FIGURE 5.5 PHOTOGRAPH SHOWING A TYPICAL CLEAN SURFACE OF
A FREE EDGE (40X)
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white line on the replication was probably caused by the dif-

ference in surface texture between the initation and the sur-

rounding material. A typical initiation can be seen in the

photograph in Figure 5.6. Detection tended to be easier on

replications with more contrast. The degree of contrast may

be a function of the amount of polishing of the specimen edge.

It is important to point out that in a majority of specimens,

no transverse cracking was detected. In no case was a trans-

verse crack detected in a region where no transverse crack had

previously existed unless it was associated with a small de-

lamination separation. The newly formed transverse cracks

were only seen on the branch of the initiation in the immedi-

ate vicinity of the delamination separation and occurred at

the termination of these initiation branches as can be seen in

Figure 5.7.

Some specimens exhibited delamination initiations which

appeared to initiate at previously existing flaws such as

interlaminar microvoids or transverse cracks and microvoids.

Examples of these initiations are visible in the photographs

in Figure 5.8. The initiation stresses for such specimens is

occasionally lower than that of similar specimens which were

free of preexisting flaws.

In some cases, there was visible out-of-plane separation.

This ranged from small edge delaminations measuring up to

-- I _-~~--------------F----- -- ~--ar ll l *-~lsln__
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FIGURE 5.7 PHOTOGRAPH OF REPLICATION SHOWING TRANSVERSE
CRACK DAMAGE NEAR A SMALL DELAMINATION (14X)
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20 mm in length to massive delamination failure. Figure 5.9

contains photographs of these types of delaminations. The

small delaminations were usually symmetric with respect to the

midplane. That is, if part of the front surface ply delami-

nated, a similar delamination was found on the corresponding

part of the back surface.

It is difficult to determine the validity of the data

generated by the specimens exhibiting large delaminations.

Their delamination stresses tended to be greater than the ini-

tiation stresses of similar specimens. It is possible that

the load drop due to initiation came at a load slightly less

than the maximum load in the previous test. This could be due

to experimental scatter. The testing program would ignore

this load drop and loading could continue until final delami-

nation failure could occur.

The four types of delamination initiations were classi-

fied as follows: Type A initiations were hairline initi-

ations. -Type B initiations were hairline initiations from a

defect. Type C initiations were small delamination sepa-

rations. Type D initiations were massive delamination fail-

ures. The type of initiation exhibited by each specimen is

indicated in the data tables. Table 5.2 shows the number of

each specimen type that exhibited each type of initiation. The
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TABLE 5.2

DISTRIBUTION OF DELAMINATION TYPES FOR EACH LAMINATE

Note: Subscript
prepreg

"*" indicates a laminate made from 190g/m 2

aKey: Type A - Hairline initiation
Type B - Hairline initiation from a defect
Type C - Small delamination
Type D - Massive delamination

bvalues indicate the number of specimens exhibiting
each delamination type

Delamination Type Detecteda

Laminate A B C D

[015]s b  0 2 1

[1l5,] s  1 1 0 2

[1l52]s 0 1 4 0

[+ 1 5 31 s 2 1 0 2

[±154s 3 2 0 0

[±155] s  2 1 0 2

[il5/0]s 4 0 0 0

[il5,/0,] s  5 0 0 0

[.152/02]s 4 1 0 0

[±15 3 /03] s  2 2 0 1

[+154/04 s  4 1 0 0

[±155/05] s  3 1 0 1

[0/±15]s 4 0 0 0

[0 2/± 1 5 2s 3 1 0 1

[0 3/±1 5 3] s  4 1 0 0

[04/±154 s  3 2 0 0

[05/±155] s 5 0 0 0
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numbers include the incrementally loaded specimens which all

exhibited hairline (Type A) initiation.

The specific character of the Type A and Type B hairline

initiations was quite variable. They always occurred at

+150/-150 interfaces. In a majority cases, the damage was re-

stricted to one free edge of the specimen. The Type B initi-

ations were generally single initiations only a few

millimeters long and were usually restricted to one +15*/-150

interface. Type A initiations ranged in size from sporadic

initiations several millimeters long scattered along the free

edge to initiations which ran along the entire length of the

free edge. There did not seem to be any distinct trend as to

whether the initiations were symmetric with respect to the

midplane (i.e. whether they occurred at both +150/-150 inter-

faces in a laminate or at just one). The number of occur-

rences of each type was approximately equal.

Two specimens, *15AO-0-5 and *15B1-0-1, were not included

in the data. Due to unexpected features of the testing ma-

chine while in computer control, they were inadvertently de-

stroyed before they yielded initiation data.
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5.3 Initiation Stresses and Strains

The initiation stresses were taken to be the computed

stress at the point where the final load drop occurred in the

test of a specimen which showed delamination initiation in its

replication. The initiation strains were taken to be the

strain in the computer data file which corresponded to the in-

itiation stress. These stresses and strains are listed for

each specimen in the data tables.

It can be noted that the specimens which exhibited initi-

ations from initial defects often had initiation stresses

which were lower than those of similar specimens and specimens

which exhibited massive delamination failure often exhibited

"initiation stresses" which were considerably higher than

those of similar specimens. It is difficult to say which of

these specimens yielded valid data. For example, initiation

at a defect may have occurred only instantaneously before ini-

tiation would have occurred normally or it may be the result

of a stress concentration near the defect which caused it to

be considerably premature. Massive delamination may be the

result of substantial growth due to having missed the real in-

itiation point or merely a result of a large "pop-in" delami-

nation area. Due to these ambiguities, it was decided to omit

from the calculated averages the initiation stresses and
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strains obtained from specimens which exhibited initiation at

a defect and had an initiation stress lower than any other

valid data of similar specimens and specimens which exhibited

massive delamination and had "initiation stresses" greater

than any similar specimen. Table 5.3 lists all specimens

which were omitted. Table 5.4 shows the effect on the average

initiation stress and coefficient of variation for the lami-

nates which were affected. Table 5.5 shows average valid ini-

tiation stress and strain for all laminates.

5.4 Delamination Area

The delaminated area for each specimen which exhibited a

Type A or a valid Type B initiation was computed from the

measured loading rate (per time increment) and measured frac-

tional load drop using Equation 4.3. The computed area for

each specimen, as well as the magnitude that would be intro-

duced by cbnditioner noise equivalent to one computer unit, is

included in Appendix B. The values for detected delamination

area ranged from just under 50 mm2 to nearly 600 mm2 . The av-

erage detected area was 150 mm 2 . For virtually all specimens,

the delaminated area was more than two to three times the area

that would be caused by system noise of one computer unit.



118

TABLE 5.3

SPECIMENS OMITTED FROM THE DATA BASE

*15A0-0-2

*15A0-0-3

215AO-0-10

315A0-0-8

515A0-0-6

515A0-0-7

515A0-0-9

215A1-0-9

315A1-0-7

315A1-0-10

515Al-0-8

515A1-0-10

215B1-0-7

215B1-0-8

415B1-0-6

415B1-0-19
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TABLE 5.4

AVERAGE DELAMINATION INITIATION STRESSES OF
LAMINATES WITH AND WITHOUT OMITTED DATA

Note: Subscript "*" i
190g/m prepreg

ndicates a laminate made from

Numbers in parentheses are coefficients of

Average Average
Delamination Delamination

Initiation Stress Initiation Stress
With Omitted Data With Omitted Data

Laminate [MPa] [MPa]

[±15 ]s  691 (11.6%) a  696 (0.5%)

[±1 5 21 s 571 (19.2%) 618 (5.4%)

[ 3153]s  541 (19.1%) 508 (16.4%)

[±155] s  358 (54.4%) 402 (19.2%)

[±152/02] s  527 (41.6%) 625 (5.0%)

[±153/03 s  553 (19.8%) 539 (5.2%)

[±155/05] s  473 (12.7%) 452 (1.1%)

[02/±1521s 669 (21.5%) 645 (8.4%)

[04/±1 5 4 s 511 (18.6%) 566 (9.8%)

" ''
variation
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TABLE 5.5

AVERAGE DELAMINATION INITIATION STRESS AND
STRAIN FOR EACH LAMINATE

Note: Subscript
prepreg

"*" indicates a laminate made from 190g/m 2

aNumbers in parentheses indicate coefficient of variation

Average Average
Delamination Delamination

Initiation Stress Initation Stress

Laminate [MPa] [MPa]

[+15]s 859 (8.7%)a 7517 (7.9%)

[±151 696 (0.5%) 6327 (0.1%)

[±152 s  618 (5.4%) 5802 (4.7%)

[±153] s  508 (16.4%) 4991 (14.5%)

[±154] s  383 (27.1%) 3618 (19.6%)

[±1551s 402 (19.2%) 3903 (5.8%)

[±15/0]s 734 (12.3%) 6089 (13.3%)

[±15/0 ]s  641 (14.2%) 5395 (9.5%)

[±152/02 s  624 (5.0%) 5334 (6.7%)

[±153/03] s  539 (5.2%) 4542 (11.5%)

[±154/041 s  481 (2.7%) 4240 (5.0%)

[±155/05] s  452 (1.1%) 4070 (2.3%)

[0/i15)s 757 (2.6%) 6246 (5.6%)

[02/1l52 s  645 (8.4%) 5690 (7.9%)

[03/±153] s  484 (12.0%) 4271 (10.8%)

[04/±1541 s  566 (9.8%) 4898 (8.3%)

[05/+155] s 539 (13.7%) 4909 (9.1%)
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This indicates that the load drops were most likely those that

are associated with initiation.

The fact that it was possible to detect delaminated areas

smaller than the minimum detectable area as reported in Ta-

ble 4.5 is a result of the fact that the delamination initi-

ation load was much higher than the conservative estimate of

one half of the previously determined failure load. As a

given delamination area causes a given fractional load drop,

the minimum detectable area is inversely proportional to the

delamination initiation load.

The delaminations which occurred were usually confined to

one free edge of the specimen. The delamination initiation

occasionally ran along the entire free edge but often there

were one or more small delaminations. The total delamination

length was usually 50 mm or more. The average computed delam-

ination area was 150 mm2 . This implies that the initiations

penetrated on the order of one to three millimeters toward the

center of the test section.

5.5 Incrementally Loaded Specimens

The results of the incremental loading tests were con-

sistent with the results of the other tests. All incrementally

loaded specimens exhibited Type A hairline initiations. Ta-
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ble 5.6 compares the initiation stress range of the incre-

mental specimens with the average initiation stress and range

of the specimens tested in a normal manner. It is important

to remember that for the specimens which were incrementally

loaded, the stress at which delamination initiates can only be

narrowed to a 50 MPa range since the specimens were replicated

at 50 MPa intervals. The initiation stress ranges found for

these specimens were comparable to the initiation stress val-

ues found using using the load drop method. Figures 5.10

through 5.12 show the progression of damage for each specimen

from before initiation to the replication taken just prior to

final failure for the region where delamination initiation

first occurred.

5.6 Calculation of Theoretical Parameters

5.6.1 Quadratic Delamination Criterion

The Quadratic Delamination Criterion contains three im-

portant parameters: the averaging dimension xavg, the

interlaminar shear strength Zs , and the interlaminar normal

strength Zt. The interlaminar strengths are values for a ma-

terial which in principle can be determined directly from

tests. In practice, however, it is difficult to apply pure
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TABLE 5.6

DELAMINATION INITIATION STRESS RANGE
OF INCREMENTALLY LOADED SPECIMENS

VERSUS AVERAGE DELAMINATION INITIATION STRESS

Delamination Average
Initiation Stress Delamination

Range Of Initiation Stress
Incrementally Of Remaining Four

Laminate Loaded Specimen Specimens
[MPa] [MPa]

[±15] 701 - 754 859 (8.7%) a

[±15/0)s 700 - 752 734 (12.3%)

[0/±15]s 801 - 852 757 (2.6%)

aNumbers in parentheses are coefficients of variation
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a1z or azz to a laminate and no measured values for these pa-

rameters have been reported. However, approximations have

been made for these parameters. Kim and Soni [19,20] sug-

gested Zs could be approximated by the in-plane shear strength

of the composite and Zt could be approximated by the trans-

verse tensile strength of the composite. The accuracy of

these approximations is difficult to ascertain, however. Thus,

until Zs and Zt can be conclusively determined, they can be

treated as variables in the analysis.

If values of the interlaminar strengths are known or as-

sumed, values of the averaging dimension can be determined nu-

merically from the initiation stress data and the Quadratic

Delamination Criterion. These values, however, can be mis-

leading due to the asymptotic nature of the criterion. At low

values of effective ply thickness, the predicted values of in-

itiation stress are quite sensitive to the averaging dimen-

sion. Thus, "backfiguring" an averaging dimension

(i.e. numerically determining what averaging dimension will

yield a predicted initiation stress which equals the actual

initiation stress) can be relatively accurate for data col-

lected at these low values of effective ply thickness.

In contrast, the predicted initiation stress is rather

insensitive to averaging dimension when the effective ply

thickness is relatively large. Thus, there can be a signif-
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icant change in the backfigured averaging dimension when

normal experimental scatter occurs. Figure 5.13 illustrates

this problem: if the average value for initiation stress

falls slightly above the asymptote, the backfigured value of

effective ply thickness divided by the averaging dimension can

be very much lower than its realistic value (thereby yielding

a value of xavg which is too high). Similarly, if the initi-

ation stress falls slightly below the asymptote, the Quadratic

Delamination Criterion can not predict initiation no matter

what value of averaging dimension is used and no real value of

xavg can be obtained.

It is therefore necessary to use another method for de-

termining the best fit values of the Quadratic Delamination

Criterion parameters. It was decided to compare various sets

of assumed values of the parameters on the basis of the actual

initiation stresses normalized by the predicted initiation

stresses. A set of parameters (that is the averaging dimen-

sion and interlaminar strength parameters) is deemed accepta-

ble if the average normalized initiation stress for the data

being considered is equal to one. A set of parameters is

deemed the best fit if its values of normalized initiation

stress have the lowest coefficient of variation.

Calculations were made both with and without the effects

of thermal stresses included. This was done to ascertain the
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significance of thermal stresses on the computed parameters.

The thermal difference used in this calculation is the differ-

ence between the set temperature of the epoxy, 177 0C, and room

temperature (200C). If it is assumed that these fabrication

stresses provide a limiting value for the thermal interlaminar

stress state, then the two cases analyzed act as reasonable

bounds to the actual problem.

Since only two coordinates of data were available (ply

thickness and initiation stress), it was only possible to de-

termine two parameters from one set of data. This was ade-

quate for data from the [±15n] s and [0n/±15n] s laminate

families as the value of [7zz] was zero. These cases thus re-

duced to the simple shear criterion which required only the

determination of the averaging dimension and the interlaminar

shear strength.

For the data from the [±15n/0n s laminate family, it was

impossible to determine all three parameters from the avail-

able data.. It was necessary to assume one of the parameters

to evaluate assumed values of the other two. One solution

would be to assume a value of interlaminar shear strength or

averaging dimension such as the value suggested by Kim and

Soni [20]. A best fit value of the interlaminar normal

strength could then be estimated and used in the calculation
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of the best fit values for interlaminar shear strength and av-

eraging dimension.

There is a problem with this approach for the laminate

families selected. The average value of zz and thus the

square of the quantity 7T, divided by interlaminar normal

strength is quite small for the [l5n/0n] s laminate family.

As the interlaminar shear stress state is very similar for the

[±15,/On] and [0n/±l5n]s laminate families, the difference

between the experimental values must be attributed wholely to

the normal stress contribution. Since the average value of

azz is small, the value of interlaminar normal strength must

be small in order to make the square of the quantity 7zz di-

vided by interlaminar normal strength significant. The value

of interlaminar normal strength is therefore unreasonably sen-

sitive to experimental scatter and assumed values of averaging

dimension and interlaminar shear strength.

Values of interlaminar normal strength were computed for

an assumed value of interlaminar shear strength equal to

105 MPa (the shear strength of the composite, as suggested by

Kim and Soni [20]). For the case in which thermal stresses

are included, the value of interlaminar normal strength is

3.9 MPa. This value is so small that the Quadratic Delami-

nation Criterion predicts initiation at the midplane of the

[±15n/0, s, laminates before the +150/-150 interface. It also
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predicts initiation at stress levels much lower than are actu-

ally seen. All [±15n/On s specimens exhibited initiation at

the +15*/-150 interface. When thermal stresses were not in-

cluded, no value of interlaminar normal strength could be de-

termined. In this case, the coefficient of variation

approached an asymptote as interlaminar normal strength in-

creased, implying that the best fit occurs when the

interlaminar normal strength is infinite.

It is clear that assuming a value of interlaminar shear

strength would not give acceptable results for the [±15n/On s

laminate family. Thus, it was decided to instead assume that

the value of interlaminar normal strength be equal to the

transverse strength of the composite (53.9 MPa), as suggested

by Kim and Soni [19]. The parameters which best fit the data

were then determined.

Best fit values of interlaminar shear strength and aver-

aging dimension were determined for each individual laminate

family as'well as for the entire data base. All these calcu-

lations were made both including and excluding the thermal ef-

fects on the interlaminar stress state. These determined

values, as well as the coefficients of variation of the nor-

malized initiation stresses, are reported for each case in Ta-

ble 5.7 and the results plotted in Figures 5.14 through 5.19.

In Figures 5.14 through 5.16, the theoretical curves of delam-



TABLE 5.7

BEST FIT PARAMETERS FOR THE QUADRATIC DELAMINATION CRITERION

Thermal' Effects Included Thermal Effects Excluded

Coefficient Coefficient
Inter- Of Variation Inter- Of Variation

laminar Of laminar Of

Family Averaging Shear Normalized Averaging Shear Normalized
Family Dimension Strength Delamination Dimension Strength Delamination

X Zs  Initiation X Z s  Initiation
[mavg [MPa] Stresses avg [MPa] Stresses
[mm] [mm]

[±15 ]s  0.374 64 8.36% 0.279 88 7.92%

[±15 n/0n] s  0.192 81 5.91% 0.144 108 5.64%

[0n /15 ]s  0.155 93 8.05% 0.116 121 8.05%

All
Specimens 0.242 78 9.90% 0.178 105 9.70%
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ination initiation stress versus ply thickness are shown using

the best fit parameters for the individual laminate families.

The actual initiation stress data is plotted on these graphs.

The "error bars" indicate the range of the valid data. The

theoretical curves obtained when the best fit parameters are

determined from the entire data base are shown for each lami-

nate family in Figures 5.17 through 5.19. These figures also

include actual delamination initiation stress data.

5.6.2 Strain Energy Release Rate Approach

The critical value of strain energy release rate was de-

termined for each value of effective ply thickness of each

laminate family using Equation 2.1. Average valid delami-

nation initiation strains and theoretical moduli were used in

these calculations. Table 5.8 summarizes the critical values

of the total strain energy release rate calculated for each

laminate a'long with the average value and coefficient of vari-

ation for these values for each laminate family. It appears

that G. increases significantly with effective ply thickness

for the [±15n/0n s and [0,/±15n]s laminate families. The value

of Gc is expected to differ from laminate family to laminate

family due to the different fraction of total strain energy

release rate due to mode I for each laminate family. Fig-
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TABLE 5.8

COMPUTED CRITICAL STRAIN ENERGY RELEASE RATES

Computed Critical
Strain Energy
Release Rate

Laminate [Joules/m 2]

[±15]s 750

[±15,] s  673

[±152] s  893

[±153] s  991

[±154] s  695

[±155] s  1010

835 (1 7 .9%)a

[±15/0]s 421

[±15,/0,] s  419

[±1 5 2/0 2]s 646

[±153/03] s  703

[±154/04] s  816

[+15 5 /05] s  940

658 (31.9%)

[0O/±15]s 443

[02/±1521 s  735

[03/±153 s  621
[04/±154] s  1089

[05/±155 s  1367

851 (43.8%)

Note: Subscript "*" indicates a laminate
made from 190g/m 2 prepreg

aNumbers in parentheses are coefficients
of variation
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ures 5.20 through 5.22 show the theoretical curves for each

laminate family. The average value of Gc for each particular

laminate family was used in determining these theoretical

curves.
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CHAPTER 6

DISCUSSION

6.1 Evaluation of the Testing Procedure

There is a need for a method which can detect delami-

nation instantaneously during a test so that accurate values

of delamination initiation stress and strain can be

confidently obtained. This will also allow for the examina-

tion of such delamination initiation before any substantial

additional growth occurs. The load drop method described

herein combined with a nondestructive evaluation (such as the

edge replications used in this investigation) seems to be an

excellent way to achieve this goal.

Another possible nondestructive testing method is X-rays

combined with a dye penetrant that is opaque to X-rays. This

is a more expensive procedure than edge replication, but

X-rays do have the advantage of being able to determine the

delaminated area directly. This area can then be compared to

the computed value of delaminated area. The X-rays, however,

may not be able to detect initiation at defects as easily as

replication techniques.

The testing method used in this investigation appears to

have worked quite well. The delaminations seen were usually
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of the hairline type, as would be expected. The fact that

there were variations in the length and symmetry (with respect

to the midplane) of the delaminations has important impli-

cations. Initiation is thought to be a "pop-in" phenomenon in

which rapid but limited growth occurs. It would be expected

that it would take little additional load for a delamination

initiation to cause symmetric damage which runs along much of

the length of the free edge. The presence of many cases of

unsymmetric and small uncoalesced initiations implies that

tests were stopped soon after the initial pop-in commenced.

The delaminated area calculated for the valid hairline

initiations were generally the result of a total load drop of

three or more computer units. It is unlikely that such load

drops could be caused by noise in the data acquisition system

which is usually on the order of one computer unit. This lends

further credence to the technique for detecting delamination

initiation.

The sensitivity of the delaminated area calculations was

dependent on several factors. The load increase per unit time

was dependent on the actual strain rate of the test section

(which was affected by the varying amounts of tab shear in the

different specimens), the actual modulus, and the actual time

increment used. The load equivalent to one computer increment

was obviously dependent on the load range of the testing ma-
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chine that was used. The sensitivity of the method could be

further increased if a way were found to decrease the relative

noise of the data acquisition system.

Despite the general success of the technique, there were

a number of specimens for which the determined initiation

points were deemed invalid. These initiation points are di-

vided into two types. In one type, delamination initiated

from defects which were present in the untested specimen.

These specimens showed delamination initiation stresses which

were below the range of valid data. Thus, these are most

likely initiations due to local stress concentrations around

the defects. Continuation of testing for these specimens

would yield only information about delamination growth and

nothing definitive about the true initiation stress.

The second type of invalid initiation observed was mas-

sive delamination of the specimen. In these cases, the meas-

ured initiation stresses were above the range of valid data.

Most likely these specimens exhibited a load drop due to ini-

tiation at a load just below the maximum load seen in the pre-

vious test. The fact that the initiation load could be below

that of the previous maximum load may be the result of exper-

imental scatter or may be a ramification of the

loading-unloading-reloading cycle of these specimens. The

computer program ignored such load drops that occurred below
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the previous maximum load on the usually valid assumption that

they are probably caused by system noise since replications

taken at higher loads have exhibited no detectable damage.

Thus, it appears that initiation occurred just below the pre-

vious maximum load and slow delamination growth continued un-

til the delamination area reached a critical value. Steady

growth could continue as long as the decrease in load per unit

time due to the delamination growth did not exceed the corre-

sponding increase in load due to regular specimen loading.

Nonetheless, the testing technique generally succeeded as

indicated by the incremental tests which are a crucial check

of the load drop testing method. The three specimens tested

incrementally showed delamination initiation in the same gen-

eral range as the specimens which were tested using the load

drop method. The initiation stress range of the [±15/0]s

specimen showed excellent agreement with the corresponding

load drop data. The initiation stress range of the [0/±15],

specimen was above that of the load drop specimens. This can

be attributed to experimental scatter as there is no apparent

reason for the load drop method to accelerate the initiation

process or the incremental test method to retard initiation.

The [±15]s specimen exhibited delamination slightly earlier

than was seen in the specimens tested using the load drop

method. However, this is within the experimental scatter.
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Overall, the experimental technique proved to be an ex-

cellent method for the accurate determination of delamination

initiation.

6.2 Evaluation of Delamination Models

6.2.1 The Quadratic Delamination Criterion

The Quadratic Delamination Criterion shows a great deal

of potential for the prediction of delamination initiation.

As evidenced in Figures 5.14 through 5.19, this criterion pre-

dicts the trend of the initiation stress data versus effective

ply thickness quite well. For example, the Quadratic Delami-

nation Criterion predicts asymptotic behavior of the initi-

ation stress as the effective ply thickness becomes large when

the interlaminar stress calculations assume finite values of

the stresses at the free edge. The data does suggest that the

actual behavior is asymptotic, although this cannot be conclu-

sively determined.

The Quadratic Delamination Criterion was applied to the

data in two ways. In one case, the parameters in the crite-

rion were determined by using all the experimental data. In

the second case, these parameters were determined using the

data from specific laminate families. When the criterion is
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applied to individual laminate families, there is excellent

agreement with the delamination initiation stress data. The

coefficients of variation of the actual delamination initi-

ation stresses normalized by the predicted values are in the

vicinity of 6% to 8%.

The values of interlaminar strength and averaging dimen-

sion which are used to achieve these fits are listed in Ta-

ble 5.7. It can be seen that these values are similar for the

[±15n/On] and the [0n/±15n] s laminate families in both the

cases where thermal effects are included and the cases where

they are excluded. The values for the [±15n]s, however, are

somewhat different. The averaging dimension is greater for

this family by a factor of approximately two and the "backcal-

culated" interlaminar shear strength is smaller by 20% to 30%.

It is important to note here that the magnitude of the average

values of eiz and azz decrease as averaging dimension in-

creases. Thus, the increase in averaging dimension and de-

crease in interlaminar shear strength offset each other. Since

the coefficient of variation of normalized delamination initi-

ation stress (the parameter which was minimized to determine

the best fit set of parameters) is relatively insensitive to

specific values of averaging dimension and interlaminar shear

strength, the actual difference in behavior between the three

laminate families is well within the range of experimental



152

scatter. This is demonstrated by the fact that the coeffi-

cient of variation of normalized delamination initiation

stress does not rise above 10% when all the data from all the

laminate families are considered together. This is still ex-

cellent agreement with the data, especially since it is the

correlation of data of three different laminate families with

three different states of interlaminar stress.

When all the data is considered together, the best fit

averaging dimensions are 0.242 mm when thermal stress effects

are included and 0.178 mm when these effects are ignored.

These are both of the same order of magnitude as the nominal

ply thickness of the 150 g/m2 prepreg, 0.134 mm. However, the

averaging dimension did not equal the nominal ply thickness as

Kim and Soni had suggested [19,20]. It is important to note

that if the suggestion of Kim and Soni were taken to its log-

ical conclusion, the laminates constructed of single plies of

190 g/m2 would have the exact same behavior as the laminates

constructed of single plies of 150 g/m2 prepreg, as the ratio

of ply thickness to averaging dimension would remain constant

at one. This is definitely not what is observed. Thus, the

argument that the averaging dimension can be taken as the nom-

inal ply thickness is invalid.

The global best fit values of the interlaminar shear

strength are 78 MPa for the case in which thermal effects are
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included and 105 MPa for the case in which thermal effects are

neglected. The second value is exactly equivalent to the

in-plane shear strength of the composite as suggested by Kim

and Soni [20]. Due to the uncertainty involved in determining

the interlaminar shear strength, however, it is not conclusive

as to which value is more accurate and whether or not thermal

stress effects should be included in the analysis. Further

experimentation on different specimen types will be needed to

definitively determine this. Furthermore, this uncertainty

points to the overwhelming need for an experiment to directly

determine the interlaminar shear strength (as well as the

interlaminar normal strength). These two parameters, Z' and

Zs , should be measured directly rather than backcalculated

from delamination data.

6.2.2 Strain Energy Release Rate Approach

The strain energy release rate approach appears to give

good agreement with the delamination initiation stress data

from the [±15nJ s laminate family as shown in Figure 5.20. The

coefficient of variation of the strain energy release rate

values determined for the various effective ply thicknesses

for this laminate family is 17.9%. The coefficient of vari-

ation of the actual delamination initiation stresses normal-
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ized by the value predicted by the strain energy release rate

approach is 6.5% when the average critical value of strain en-

ergy release rate of 835 Joules/m 2 for the laminate family is

used.

However, this is not the case for the other two laminate

families as the critical values of strain energy release rate

for the [±15n/0]s and [0n/±15n s specimens are not constant

with effective ply thickness. In this cases, the critical

value of strain energy release rate increases consistently and

substantially as effective ply thickness increases. There is

a factor of more than two difference among the values of crit-

ical strain energy release rate for the [±15,/Ons laminate

family and a factor of more than three for the [0n/±15n] s lam-

inate family as n varies from 1 to 5. This causes the coeffi-

cient of variation for these specimens to be on the order of

twice that seen for the [±15,]s specimens. This steady in-

crease with ply thickness can only be explained by the fact

that the delamination initiation stress simply does not decay

as fast as the reciprocal of the square root of effective ply

thickness as predicted by the strain energy release rate

model. There is no mechanism in the strain energy release

rate approach that can explain this behavior.

It is important to note that the previously reported work

on the strain energy release rate approach did not deal spe-
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cifically with angle ply laminates such as the members of the

[±15n s laminate family. These specimens have no mode I com-

ponent of strain energy release rate. Recent

work [26,27,28,30] suggests that delamination initiation in

statically loaded specimens with brittle matrices is sensitive

primarily to mode I contributions of strain energy release

rate. The argument is therefore made that, as the mode I con-

tribution is increased, the critical value of total strain en-

ergy release rate decreases. This is what is seen for the

average value of the strain energy release rate of the

[±15n/0nl s specimens. The [±15n/On s specimens have a tensile

value of azz at the free edge and thus a nonzero mode I con-

tribution to strain energy release rate. The average value of

critical strain energy release rate for the [±15n/0,s speci-

mens is 20% less than the average value for the [±15n]s lami-

nate family. It is critical to note, however, that the

computed strain energy release rates of individual members of

the [±15n/0On s laminate family are on the same order of magni-

tude as the average value obtained for the [±15nL s laminate

family. In fact, the computed value for the [±155/05,]s speci-

mens is 13% higher than the average value for the [±15n) s lam-

inate family. Thus, this trend does not hold true for

individual laminates.
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The average value of critical strain energy release rate

for the [0,/±15n] s is approximately the same as the average

value for the [±15n]s specimens. However, the computed values

for individual laminates range from half of the average value

of critical strain energy release rate for the [±15n s, lami-

nates to more than 50% more than this value.

In summary, the strain energy release rate approach does

a poor job of predicting the behavior of delamination initi-

ation stress within individual laminate families. There is a

wide variation (a factor of two to three) in the critical

value of strain energy release rate for a particular laminate

family and this parameter increases consistently with effec-

tive ply thickness. This would indicate that the critical

value of strain energy is not a material or laminate constant,

but is dependent on a number of other factors as well.

6.2.3 Comparison of the Quadratic Delamination Criterion

and the Strain Energy Release Rate Approach

The Quadratic Delamination Criterion and the strain en-

ergy release rate approach both show very good agreement with

the delamination initiation stress data for the [±15n] s lami-

nate family. The Quadratic Delamination Criterion, however,

is able to correlate the data from the [±15n/0n] s and
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[0,/±15n]1 laminate families while the strain energy release

rate approach exhibits wide variations in the computed values

of critical strain energy release rate. When the actual val-

ues of the initiation stresses are normalized by the predicted

values of the initiation stresses, the coefficients of vari-

ation for these values are 6.5%, 13.7%, and 19.8%, respec-

tively, for the [±15,]s, [±15n/0n]s, and [0n/±15n] s specimens

when the strain energy release rate approach is used. When the

Quadratic Delamination Criterion is used, the coefficients of

variation for the entire data base are 9.9%, if thermal ef-

fects are considered, and 9.7%, if thermal effects are neg-

lected.

This implies that the Quadratic Delamination Criterion

is, in general, better at predicting the trends of the data

than the strain energy release rate approach. It is important

to note that this better performance was achieved using one

set of material parameters rather than a single parameter de-

termined experimentally for each laminate family. In addition,

it should be possible to devise test methods to experimentally

determine the interlaminar strength parameters. Thus, only

the averaging dimension must be determined experimentally. In

the strain energy release rate approach, experimentation is

necessary to determine the critical strain energy release rate

for each laminate family unless it is acceptable to estimate
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this value from a preexisting data base and a determination of

the mode I component from numerical methods. The current data

suggests that this would be a poor prediction.

The character of curves predicted by the two methods are

very different at higher values of effective ply thickness.

The strain energy release rate approach predicts that delami-

nation initiation stress decays as the reciprocal of the

square root of the effective ply thickness. The Quadratic De-

lamination Criterion predicts an asymptotic behavior of delam-

ination initiation stress as effective ply thickness is

increased. Due to the experimental scatter, it is difficult

to assert that the data does in fact become asymptotic al-

though this behavior is suggested. However, the data defi-

nitely does not fit the behavior predicted using the strain

energy release rate approach.

The ability of the Quadratic Delamination Criterion in

conjunction with the Force Balance Method, which determines

the state of interlaminar stress, to reasonably predict delam-

ination initiation stress with only one experimentally deter-

mined value means that it can be a powerful preliminary design

tool in evaluating the propensity for delamination of lami-

nation sequences. It is, however, absolutely necessary that

appropriate tests be established to measure the interlaminar
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shear and normal strengths of composite materials so that this

criterion can be properly evaluated and applied.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

An experimental method has been developed to detect the

onset of delamination initiation of graphite/epoxy laminates

under uniaxial tensile loads and a criterion presented to cor-

relate this initiation with material interlaminar strength pa-

rameters. The following conclusions are made based on the

work reported herein:

1. The load drop method used in conjunction with the

nondestructive evaluation technique of edge repli-

cation is an accurate technique for the detection of

delamination initiation in advanced composites.

2. The strain energy release rate approach is unable to

correlate delamination initiation in two of the

three laminate families in this investigation,

[±15n/0n] s and [0n/±15n]s, as the critical value of

strain energy release rate increases significantly

(a factor of two to three) with effective ply thick-

ness.
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3. The Quadratic Delamination Criterion proposed

herein, when used with the Force Balance Method for

the calculation of interlaminar stresses, is able to

easily and accurately correlate delamination initi-

ation. This technique has the potential to be a

powerful preliminary design tool for evaluating the

propensity of general laminates to delaminate.

4. The values of the interlaminar shear strength param-

eter backcalculated using the Quadratic Delamination

Criterion (78 MPa when the thermal effects are in-

cluded, 105 MPa when the thermal effects are ex-

cluded) compare quite favorably with the estimated

value of 105 MPa (the shear strength of the

unidirectional composite).

5. The calculated averaging dimension for the Quadratic

Delamination Criterion is 0.242 mm when thermal ef-

fects are included and 0.178 mm when thermal effects

are excluded. This is on the order of the ply

thickness of the composite but is definitely not

equal to this value as has been previously sug-

gested.
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6. The data indicates that the value of the delami-

nation initiation stress is asymptotic for large ply

thicknesses as predicted by the Quadratic Delami-

nation Criterion. However, inherent scatter in the

data makes it impossible to be conclusive in this

matter.

7. It is difficult to assert whether thermal effects

should be excluded or included in the delamination

initiation analysis.

The Quadratic Delamination Criterion has proved to be a

useful tool in predicting delamination initiation. Further

investigation will be needed to gain confidence in this ap-

proach. To acheive this goal, the following research is re-

commended:

1. Tests similar to those in this investigation should

be conducted on specimens with larger contributions

of interlaminar normal stress to isolate the effects

of interlaminar normal stresses and their contrib-

ution to the initiation of delamination.
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2. Specimens with very large ply thicknesses should be

tested to confirm the existence of the asymptotic

behavior predicted by the Quadratic Delamination

Criterion.

3. The effects of thermal stresses should be investi-

gated to determine their role in delamination initi-

ation.

4. The interlaminar normal and shear strengths should

be determined by direct experimentation. Once these

values have been determined, the averaging dimension

can be easily determined.

5. The growth of delamination from initiation to final

failure should be studied. Growth must necessarily

be monitored by nondestructive techniques such as

X-rays, ultrasonic C-scan, and photoelasticity.
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DATA TABLE 1: [±15 ] Laminate Family
n s

Specimen Thickness Width Long . Delamination Initiation ...

[mm] [mm] Modulus[mm] ] Modulus Type Stress Strain
[MPa] [pstrain]

15AO-0-6 0.59 50.31 107 0 749 6666

15AO-0-7 0.60 50.49 111 C 913 8016

15A0-0-8 0.59 50.44 110 A 887 7806

15A0-0-9 0.58 50.52 110 A ---

15A0-0-10 0.60 50.52 114 C 888 7578

059 (1.4%) 50.46 (0.2%) 110 (2.3%) 859 (8.7%) 7517 (7.9%)

*15A0-0-1 0.71 50.16 107 D 693 6324

*15A0-0-2 0.70 50.21 105 D 784 7212

*15A0-0-3 0.70 50.17 103 B 588 5532

*15AO-0-4 0.72 50.20 107 A 698 6330

*15A0-0-5 0.66 50.18 100 --- ----

0.70 (3.3%) 50.18 (0.6%) 104 (2.8%) 691 (11.6%) 6350 (10.8%)

215A0-0-6 1.06 50.49 97 C 599 6120
215A0-0-7 1.08 50.53 107 C 583 5484

215A0-0-8 1.06 50.47 108 C 656 5892

215A0-0-9 1.09 50.57 108 C 635 5712

215A0-0-9 1.00 50.47 91 B 382 4092

1.06 (3.3%) 50.51 (0.9%) 102 (7.6%) 571 (19.2%) 5460 (14.6%)

315A0-0-6 1.52 49.99 102 0 568 5568

315A0-0-7 1.59 49.83 106 B 438 4116

315A0-0-8 1.60 49.93 106 0 673 6000

315A0-0-9 1.58 49.97 109 A 591 5604

315A0-0-10 1.49 49.88 92 A 434 4674

1.56 (3.1%) 49.92 (0.1%) 103 (6.4%) 541 (19.1%) 5192 (14.9%)

415A0-0-6 2.00 49.97 101 8 326 3216
415A0-0-7 2.12 50.03 109 8 374 3366
415A0-0-8 2.16 50.00 113 A 534 4602

415A0-0-9 2.10 49.77 107 A 424 4074

415A0-0-10 2.00 49.99 96 A 259 2832

"2.08 (3.5%) 49.95 (0.2%) 105 (6.4%) 383 (27.1%) 3618 (19.6%)
515A0-0-6 2.56 49.44 102 D 472 4560
515A0-0-7 2.64 49.52 108 D 491 4554

515A0-0-8 2.72 49.77 112 A 456 4062

515A0-0-9 2.61 49.48 98 8 24 252
515AO-0-10 2.47 49.81 94 A 347 3744

2.60 (3.6%) 49.60 (0.3%) 103 (7.1%) 358 (43.4%) 3434 (52.8%)

Numbers in parentheses are coefficients of variation

Note: "*" indicates laminate made from 190g/m 2 prepreg
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DATA TABLE 2: [+15 /0 ] Familyn n s

Specimen Thickness Width Long. Delamination Initiation ...

[mm] [mm] Modulus
[GPa] Type Stress Strain

[MPa] [pstrain]

15A1-0-18 0.82 50.02 117 A 663 5586
15A1-0-19 0.85 49.94 118 A 670 5352
15A1-0-20 0.82 50.01 115 A 746 6264
15AI-0-21 0.84 49.98 118 A ---

15A1-0-22 0.82 49.95 115 A 858 7154
0.83 (1.7%) 49.98 (0.1%) 117 (1.3%) 734 (12.3%) 6089 (13.3%)

*15Al-0- 0.98 50.07 113 A 624 5448
*15AI-0-2 1.01 50.15 118 A 734 6000
*15A1-0-3 1.00 50.05 115 A 622 5220
*15AI-0-4 1.02 50.12 118 A 717 5670
*15A1-0-5 0.96 50.03 106 A 507 4638

0.99 (2.4%) 50.08 (0.1%) 114 (4.3%) 641 (14.2%) 5395 (9.5%)
215A1-0-6 1.52 50.04 106 A 645 5646
215A1-0-7 1.57 50.09 120 A 583 4848
215A1-0-8 1.59 49.99 115 A 652 5280
215AI-0-9 1.58 50.03 115 B 138 1212
215Al-0-10 1.48 49.98 105 A 618 5562

1.55 (3.0%) 50.03 (0.1%) 112 (5.7%) 527 (41.6%) 4510 (41.5%)
315A1-0-6 2.19 49.76 108 A 569 5142
315A1-0-7 2.29 49.99 118 D 724 5940
315AI-0-8 2.35 49.96 123 B 534 4218
315AI-0-9 2.28 50.07 116 A 514 4266
315A1-0-10 2.14 49.32 100 8 424 4146

2.25 (3.7%) 49.82 (0.6%) 113 (8.0%) 553 (19.8%) 4742 (16.5%)
415AI-0-6 2.93 49.98 104 8 484 4542
415A1-0-7 3.12 50.02 111 A 465 4002
415A1-0-8 3.15 49.98 115 A 491 4140
415Al-0-9 3.11 50.13 108 A 495 4152
415A1-0-10 2.97 50.07 104 A 471 4362

3.06 (3.2%) 50.04 (0.1%) 108 (4.4%) 481 (2.7%) 4240 (5.0%)
515A1-0-6 3.73 50.05 109 A 457 4176
515A1-0-7 3.80 50.18 112 A 451 4008
515Al-0-8 3.82 50.04 116 0 579 4986
515A1-0-9 3.76 50.16 107 A 447 4026
515A1-0-10 3.54 50.02 99 B 430 4350

3.73 (3.0%) 50.09 (0.1%) 109 (5.8%) 473 (12.7%) 4309 (9.3%)

Numbers in parentheses are coefficients of variation
Note: "*" indicates laminate made from 190g/m 2 prepreg
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DATA TABLE 3: [0 /±15 ] Family
n n s

Specimen Thickness Width Long. Delamination Initiation ...
[mm] [mm] Modulus

[GPa] Type Stress Strain
[MPa] l[strain]

1581-0-18 0.83 50.10 114 A ---

1581-0-19 0.85 50.17 116 A 751 6246
1581-0-20 0.84 50.12 116 A 758 6270
1581-0-21 0.88 50.17 120 A 735 5808
1581-0-22 0.82 49.45 111 A 783 6660

0.84 (2.7%) 50.00 (0.6%) 115 (2.8%) 757 (2.6%) 6246 (5.6%)
21581-0-6 1.48 49.91 102 A 583 5364
21581-0-7 1.58 49.97 117 D 896 7500
21581-0-8 1.64 49.88 118 B 514 4194
21581-0-9 1.61 49.69 116 A 680 5502
21581-0-10 1.47 49.99 106 A 673 6204

1.56 (4.9%) 49.89 (0.2%) 112 (6.5%) 669 (21.5%) 5753 (21.1%)
31581-0-6 2.27 49.91 110 A 534 4758
31581-0-7 2.35 49.79 112 A 541 4686
31581-0-8 2.37 49.86 117 A 498 4224
31581-0-9 2.34 49.78 119 8 433 3654
31581-0-10 2.15 49.86 101 A 413 4032

2.30 (3.9%) 49.84 (0.1%) 112 (6.3%) 484 (12.0%) 4271 (10.8%)
41581-0-6 3.16 49.69 101 B 490 4566
41581-0-7 3.24 49.65 108 A 511 4596
41581-0-8 3.24 49.59 117 A 565 4740
415B1-0-9 3.19 49.31 113 A 622 5358
41581-0-10 3.01 49.72 94 A 368 3702

3.16 (3.0%) 49.59 (0.3%) 107 (8.7%) 511 (18.6%) 4909 (9.1%)
51581-0-6 4.05 49.55 107 A 576 5004
51581-0-7 4.05 49.13 111 A 520 4608
51581-0-8 3.99 49.24 99 A 610 5436
51581-0-9 3.87 49.71 104 A 568 5178
51581-0-10 '3.67 49.68 98 A 420 4320

3.93 (4.1%) 49.46 (0.5%) 104 (5.3%) 539 (13.7%) 4909 (9.1%)

Numbers in parentheses are coefficients of variation
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APPENDIX A

INTERLAMINAR STRESS STATES
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APPENDIX B

CALCULATED DELAMINATION AREAS

Difference In
Computed Computed Area Due

Delaminat on Area To Error Of 1 2
Specimen [mmI ]  Computer Unit [mm2]

15AO-0-8 77 20

*15A0-0-3 81 24
*15A0-0-4 76 20

315A0-0-7 457 13
315A0-0-9 60 20
315AO-0-10 75 27

415A0-0-6 75 27
415A0-0-7 69 23
415A0-0-8 47 16
415A0-0-9 539 21
415A0-0-10 94 34

515A0-0-8 51 16
515AO-0-10 60 20
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Difference In
Computed Computed Area Due

Delaminat on Area To Error of 1
Specimen [mm ] Computer Unit [mm 2

15A1-0-18 126 33
15A1-0-19 163 66
15A1-0-20 111 30
15A1-0-22 114 52

*15A1-0-1 141 56
*15Al-0-2 124 47
*15Al-0-3 144 56
*15Al-0-4 118 49
*15Al-0-5 171 69

215A1-0-6 111 34
215A1-0-7 128 38
215A1-0-8 116 34
215A1-0-10 113 36

315A1-0-6 89 26
315A1-0-8 428 28
315A1-0-10 140 72

415A1-0-6 152 57
415A1-0-7 128 59
415A1-0-8 121 56
415A1-0-9 121 58
415A1-0-10 123 59

515A1-0-6 111 48
515A1-0-7 114 49
515A1-0-9 117 49
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Difference In
Computed Computed Area Due

Delamination Area To Error of 1
Specimen [mm 2 ] Computer Unit [mm 2]

15B1-0-19 117 30
15B1-0-20 113 29
15B1-0-21 119 30
15B1-0-22 108 29

215B1-0-6 118 38
215B1-0-9 105 33
215B1-0-10 101 33

315B1-0-6 507 28
315B1-0-7 91 27
31581-0-8 101 30
315B1-0-9 391 34
315B1-0-10 161 91

415B1-0-7 116 54
415B1-0-8 107 49
415B1-0-9 96 44

515B1-0-6 90 38
515B1-0-7 318 43
515B1-0-8 84 36
515B1-0-10 596 53


