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An experimental and analytical comparison of Neo-Classical and optimal
control design techniques for controlled structures is conducted. Neo-Classical
control design is a control methodology which blends the loop assignments and
complex topological design of Linear Quadratic Gaussian controllers, the robustness
of Sensitivity Weighted Linear Quadratic Gaussian controllers, and the lower order,
robustness and practical insight of the classical controllers into a control strategy for
structures. The asymptotic properties of the SISO LQG compensator are presented.
The SISO disturbance rejection topology is divided into three distinct topologies,
depending upon the performance and output being analogs, and/or the disturbance
and input being analogs. For each of these topologies, assuming collocated, dual,
and complementary extreme input output pairs, LQG and SWLQG compensators are
designed for a typical section model, and interpreted classically, with the results
summarized in a set of design rules. Adaptations to noncollocated input output
pairs, and MIMO topologies are also addressed, and summarized in additional
design rules. Neo-Classical compensators are designed for the typical section, and
compared with the optimal techniques. Optimal and Neo-Classical compensators
are designed and experimentally implemented on the Middeck Active Control
Experiment, a test article for Controlled Structures Technology.
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Chapter 1

Introduction

With the evolution of controlled structures, a control design methodology is

required which delivers required performance with minimum compensator size and

maximum robustness. The literature of the last decade is replete with optimal

solutions to this problem, but few shed practical insight into the "philosophy"

embedded within them, or the relationship to classical approaches. All optimal

approaches attempt (and succeed to a greater or lesser degree) to address the four

main issues in Controlled Structures Technology(CST) [Crawley and Hall (1991)]:

robustness, order, complextopologies,and practical insight.

The first issue is closed loop robustness to model errors. In lightly damped

structures, the model is extremely sensitive to errors, such that small parameter

variations can lead to large variations in the frequency response. Errors such as

these pose closed loop stability concerns for the control designer, and must be dealt

with in the control design process.

A second issue in the control design for structures is the dimension of the

compensator. In many optimal compensation techniques, the order of the
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compensator is equal or greater than the mathematical model of the plant. The

model, however, because of the high number of modes in a lightly damped structure,

tends to be very large.

A third issue is the development of controllers for complex system topologies.

The most basic of these is the multiple input multiple output (MIMO)problem, with

the possibility of several performances and disturbances. The MIMO problem is

very important for controlled structures.

The fourth and often overlooked issue in the control strategy for structures is

the practical insight into the control design. Many techniques design a compensator

which solves the problem theoretically, or provides disturbance rejection in this case.

However, the practical implementation of many of the resulting compensators is

infeasible, thus creating another challenge to the designer.

The objective of this work is to develop a control methodology for controlled

structures which addresses these four primary issues, namely robustness, reduced

order, complex topologies, and practical insight. This methodology is called Neo-

Classical control. A parallel objective of this work is to examine existing control

strategies, to identify their strengths and weaknesses in these four areas.

Extending our understanding of the design of controllers for structures will lead to

new optimal control strategies.

Much research on these four areas has been done in the field of controlled

structures. Optimal control techniques, such as Linear Quadratic Gaussian (LQG)

compensators lack robustness to model errors [Doyle(1978)],which is especially true

for lightly damped structures. How (1993) divides the techniques for developing

robust compensators into six distinct categories: polynomial, state space, Jl, multiple

model, stochastic, and de-sensitizing techniques. Each approach represents a

fundamentally different way of modeling uncertainty and determining how the

changes in the system influence stability. In each of these approaches, the goal is to

22



develop a system uncertainty, without being overly conservative.

Polynomial techniques analyze the characteristic equation to determine the

stability of an uncertain system, such as the Routh-Hurwitz criterion [D'Azzo and

Houpis (1988)] and Kharitinov's Theorem [Kharitonov (1978)]. The 9fco or small gain

approach has been developed to test the stability of the system with a single,

complex uncertainty block [Doyle et ale (1989)]. An extension of this work has been

to couple the !Ifoo uncertainty test with an 94. performance objective [Haddad and

Bernstein (1990)]. In order to reduce the conservatism inherent in a single block,

the JL-synthesis technique was developed [Doyle (1985)] which uses a structured

complex uncertainty. However, these approaches are known to be conservative for

systems with constant real parameter uncertainties. Therefore, real JL and mixed JL

techniques have recently been developed for real parameter uncertainties [Doyle

(1985)], [Morton and McAfoos(1985)], and [Fan et ale (1991)]. Recent work by How

(1993) has introduced a combined 9ljreal JL approach to robust control. Where as

before, there is an !J-t;, performance objective, but a much tighter bound on the real

parameter uncertainty.

Multiple model techniques have been used for many years [Ashkenazi and

Bryson (1982)] and [Ly (1982)]. It is recently that they have been used to gain

robustness to parametric uncertainty for the control of structures [MacMartin et ale

(1991)] and [Grocott et ale (1992)]. The objective is to design a single compensator

for several models of an uncertain system, consisting of the nominal system and the

expected parameter variations. Hyland (1982) presents a stochastic technique called

the Maximum Entropy approach, where a multiplicative white noise model is used

to capture the parameter uncertainty of the system. The final technique, called de-

sensitization, attempts to directly address the sensitivity problems of LQG

compensators. For example, Blelloch and Mingori (1990) modify the state and noise

weighting matrices in the LQG compensator to account for structured parametric
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uncertainty, thus reducing the optimality. Sesak and Likins (1988) add sensitivity

states, which penalize the variation of the performance objective with respect to

parameter variations. These states can be eliminated from the model using a

singular perturbation technique.

Although many of these techniques provide robust compensation, a tradeoff is

usually a larger order compensator, leading to the second primary area of controlled

structures.

Most of the work in compensator order reduction falls into three categories:

full order model reduction followedby compensator design; compensator design on

the full order model followed by compensator order reduction; and optimal, fixed

order compensator Both reduction techniques can be accomplished by similar

methods, such as the cost analysis approach [Skelton et al. (1982)] and [Yousuff and

Skelton (1984)]or internal balancing [Moore (1981)]. Model reduction followedby

compensator design suffers from observation and control spillover from unmodeled

and higher frequency dynamics [Balas (1978)]. Optimal Projection techniques such

as those developedby Bernstein and Hyland (1986), produce an optimal, fixed order

compensator. A key difficulty with this, and other numerical techniques, is an

initial guess is required. The numerical problem is difficult, and when it is solved,

there is no guarantee that the solution is at the global minimum. Therefore, the

most prominent compensator order reduction algorithm is compensator design on

the full order model, followedby compensator reduction. A survey of the different

controller reduction algorithms was done by Hyland and Richter (1990).

Techniques have also been developed which address both of these issues,

robustness and controller reduction. Any of the robustness techniques that require a

numerical solution can combine these two constraints. Bernstein and Haddad

(1988) show how to incorporate real structured uncertainty into the Optimal

Projection equations. Bernstein and Hyland (1988) combined the insights of
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Maximum Entropy and Optimal Projection.

The third issue in the control strategies for structures is the development of

compensators for complex topologies, such as MIMO control and noncollocated

control. Fixed architecture control designs, such as sensor actuator loop

assignments, however, can not be addressed by the original formulation of LQG.

Mercadel (1990) addresses the fixed architecture !J4 designs. In the classical

framework, topologiessuch as the MIMOproblem are a significant weakness.

SISO classical design techniques [D'Azzoand Houpis (1988)] are simple and

easy to interpret. Wie and Byun (1989) developed SISO structural filters such as

nonminimum phase notch filters for noncollocated control. Wie et al. (1991) also

used classical design for disturbance rejection ofnarrow band disturbances.

Avariety of techniques have been developedfor the classical control ofMIMO

plants. Unfortunately, many of them, such as sequential loop closure [Maciejowski

(1989)]are ad hoc. Techniques have been developed[Mayne (1979)]to decouple the

problem into a series of SISO problems. However, in controlled structures, this

decoupling destroys the pole zero patterns of certain loops, such as those with

alternating poles and zeros. Characteristic locus methods have been developed

[Kuvaritakis (1979)] which establish an approximate communitive compensator by

manipulating the characteristic loci. Other methods include Nyquist array

techniques [Rosenbrock (1970)] and reversed-frame normalization [Hung and

MacFarlane (1982)],which is quite difficult to solvefor the MIMOproblem.

Although the MIMO problem and other complex topologies such as

noncollocated control are still significant weaknesses in classical techniques,

significant practical insights can be learned using these methods, leading to the final

issue in control strategies for structures. In the classical design of SISO systems,

the control designer uses practical insight which can be meaningful when

experimentally implementing compensators. Often in the optimal or robust design
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techniques, although the resulting compensator mathematically works, the

implementation of the compensator is infeasible. Practical insight can be used in

examining the compensator resulting from the optimal technique, and then

changing the formulation of the problem to fit the designer's needs. The classical

techniques allow the control designer more interaction throughout the control design

process.

The approach of this work is to examine an optimal technique for the control

design of certain SISO structural control topologies. Then, a robustfied optimal

control technique will be used to show robust compensators for the same topologies.

These optimal control techniques will then be interpreted using the practical insight

of classical design, with the results presented in a set of design rules for low order,

robust SISO compensators. Finally, compensators are designed and implemented

experimentally, including both SISO systems and an adaptation to MIMOsystems.

Compensators will be designed and examined on a smaller order model called

a typical section [Miller et ale (1990)]. The typical section model encompasses all of

the important details of a controlled structure, Le. collocated and noncollocated

control, and MIMO control, without the complexities of the experiment, i.e. sensor

actuator dynamics, and computer processor lags.

In order to develop low order, robust MIMO controllers designed with the

practical insight of the control designer, a variety of tools will be used. The Linear

Quadratic Gaussian (LQG) compensator [Kwakernaak and Sivan (1972)] will be

examined because of its ability to handle the MIMO problem, and other difficult

topologies such as noncollocated inputs, outputs, disturbances, and performances.

The Sensitivity Weighted LQG controller (SWLQG)[Grocott and Sesak (1992)] will

be used as a robustification tool for the LQGcompensator. Through changes in the

weighting matrices, the SWLQGcompensator robustifies the LQG compensator to

changes in modal frequencies.
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The LQG and SWLQGcompensators, and a truncation of these compensators

designed for SISO topologies, will be thoroughly examined to understand the

optimal compensation techniques of the LQG compensators, the robustification

techniques of the SWLQGcompensators, and how truncation of different modes in

the compensator affects the closed loopstability. All of the issues of control strategy

for structures will be examined, namely robustness, order, complex topological

design, and practical interpretation using classical insights. The results are

summarized in a set of rules for the control design strategy called Neo-Classical

control design. Neo-Classical Control blends the loop assignments and complex

topological design of the LQGcontrollers, the robustness of the SWLQGcontrollers,

and the lower order, robustness and practical insight of the classical controllers, into

a control strategy for controlled structures.

Chapter 2 developsbackground information needed for the foundation ofNeo-

Classical control design. The problem format is presented, which is a disturbance

rejection performance requirement. The optimal LQG and SWLQG controller

designs are presented, along with their asymptotes, followedby a short discussion of

classical control design techniques. The SISO topologies examined in the following

chapters are presented, along with a discussion of the importance of the pole zero

patterns of the input output pairs. The typical section used throughout the work is

introduced. It is a four mode, Rayleigh-Ritz model of a cantilever beam. The

Middeck Active Control Experiment (MACE)is also introduced. MACEis a NASA

In-Step and Control Structure Interaction (CSI) Office funded Shuttle middeck

experiment, with the launch expected in the summer of 1994. The MACE test

article is used as a verification of the different control design techniques

experimentally.

Chapters 3, 4, and 5 examine three SISO topologies of the disturbance

rejection problem, which depend upon the relationships between the four variables,
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the input, output, disturbance, and performance. If the performance and output are

collocated and dual, then they are said to be analogs. If the disturbance and input

are collocated and dual, then they are also said to be analogs. Chapter 3 examines

the SISO disturbance rejection topology when the performance and output are

analogs, and the disturbance and input are analogs. Chapter 4 examines the SISO

disturbance rejection topology'when the performance and output are analogs, or the

disturbance and input are analogs. And Chapter 5 examines the SISO disturbance

rejection topology when neither the output and performance are analogs, nor the

input and disturbance are analogs.

The format of Chapters 3, 4, and 5 are very similar. The input output pairs

are collocated, dual, and complementary extreme, creating an alternating pole zero

pattern. LQG and SWLQG compensators designed on the typical section will be

examined and interpreted classically. The results are presented in a Neo-Classical

Design Rule. This rule is then used to design low order robust compensators for the

typical section. Experimental closed loop results of LQG, SWLQG,truncated LQG,

and Neo-Classical compensators designed and implemented on the MACE test

article are the presented.

In Chapters 3, 4, and 5, an assumption of the pole zero pattern of the input

output pair transfer function is made, i.e. alternating poles and zeros. This is a

result of the input output pair being collocated, dual, and complementary extreme.

Chapter 6 examines the implications on the control design when this is not the case,

or when the input output pair is noncollocated. Similar topologies to those is the

previous chapters are used, and the format of the chapter is also similar. Optimal

controllers are designed and interpreted into another Neo-Classical Design Rule,

and a closed loop experiment using a Neo-Classical compensator for a topology on

the MACEtest article with a noncollocatedsensor actuator pair is presented.

Chapter 7 examines the MIMO problem, with two inputs, two outputs, one
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disturbance, and one performance. The Neo-Classical Design Rules presented in the

previous chapters are used to design MIMO compensators for implementation

experimentally on the MACE test article using two techniques: High Authority

Control/Low Authority Control (HAC/LAC)[Gupta et al. (1982)] and Sequential Loop

Closure. LQG, and SWLQG compensators were also designed and implemented

experimentally, for comparison to the classical MIMO compensators. The subject of

MIMO topologies is a very large and complex issue, and this chapter is used to show

the abilities of the Neo-Classical Control to adapt to the MIMO problem.
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Chapter 2

Background

2.1 Introduction

This chapter describes tools and background information which will be

used throughout this document to develop Neo-Classical control design for

structures. Included in this chapter is the problem formulation for performance

robustness and disturbance rejection. The optimal control techniques used such

as Linear Quadratic Gaussian (LQG)and Sensitivity Weighted Linear Quadratic

Gaussian (SWLQG) will be discussed, along with classical control techniques

such as loop shaping, filtering, and PIn control. Single input single output

systems will be examined in more detail, including loop shaping for different

control topologies, and pole zero patterns for actuator sensor pairs. A four mass

typical section model is presented, which is used as a vehicle for illustrating the

different control techniques. And finally, the MiddeckActive Control Experiment

(MACE) will be introduced as a platform for demonstrating control designs

experimentally.
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2.2 Problem Format

The primary objective in many control designs, especially for controlled

structures, is disturbance rejection. For multibody space structures, disturbances

may enter a structure at a variety of different points and with many different

frequency contents. Figure 2.1 shows a typical control system with disturbances

w, performances z, inputs u, and outputs y. The G block is the open loop system,

while the designed compensator K is shown connecting the outputs to the inputs.

w

u

~ Gzw Gzu
..~

.. GyW GyU
....~ P" ~

K ".~

z

y

Figure 2.1. Standard control system with disturbances w, inputs u,
performances z, and outputs y.

In multiple input, multiple output (M~MO) form, the above system is given

by

For a control law

{Z} [Gzw Gzu]{W}
y = Gyw Gyu U

u=-Ky
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the MIMO closed loop transfer function from the disturbances to the performances

is

(2.3)

and the stability of the closed loopsystem can be evaluated using the multivariable

nyquist criterion: If a system GyuK has p unstable poles, then the closed loop

system is stable if and only if the polar plot ofN(jm) encircles the (-1,0)point withp

counterclockwise encirclements, where N(jm) is given by

N{jm) = DET( I + Gyu(jm)K(jm»-1

2.3 Optimal Controllers

(2.4)

Linear Quadratic Gaussian (LQG) controllers [Kwakernaak and Sivan

(1972)] are the standard to which most control designs are compared, because of

optimality and simplicity. In the control design for structures, the strengths of

LQG design are its ability to developMIMOcompensators, including both multiple

performances and disturbances, and to develop compensators for complex

topologies, such as noncollocated input output pairs. LQG design, however, lacks

robustness to model errors [Doyle (1978)]. For structural plants, a slight

mismodeling could lead to a large phase difference between the model and the

actual plant. These errors could easily lead to unstable closed loop systems,

especially for relatively nonrobust LQGcompensators. The dimension of the LQG

compensator, equal to that of the plant, is also a weakness. The large dimension

of models for structures could prevent the actual implementation of such large

LQG compensators. Despite their known weaknesses, LQG compensators will be



used as a reference in this work.

LQG compensators are H2 optimal compensators designed by solving two

separate problems, the first of which is the Linear Quadratic Regulator (LQR)

problem [Kalman (1960)]. Consider the following plant,

y=Cyx+V

z=Cx z

(2.5)

(2.6)

(2.7)

where x represents the states, y the outputs, u the inputs, z the performances, W

the disturbances, and u the sensor noise. In the LQR problem, a deterministic cost

is given by

- -
J = J(ZT z+uTRu)dt = J(XTQX+uTRu)dt

o 0

(2.8)

where Q and R are positive semidefinite and positive definite weighting matrices

respectively, or

R>O

The result of the LQR problem is a matrix of optimal gains for state feedback

u=-Gx

which minimizes the cost given in Equation 2.8.

(2.9)

(2.10)

(2.11)

The second part of the LQG problem is the standard Kalman Filter

[Kalman and Bucy (1961)], and is dual to the LQR problem. For the Kalman filter,



an estimate x of the states is made by using knowledgeof the outputs of the system,

corrupted by sensor noise, and knowledge of the previous estimates. The

disturbance and sensor noise assumed to be zero mean, Gaussian processes that

are uncorrelated in time, and have the followingcovariances

W=E{WWT}~O

V=E{vvT}>O

(2.12)

(2.13)

The optimal estimate x of the states x is found by minimizing the expected error

(2.14)

The result of the Kalman Filter problem is a matrix of optimal gains H that

produces an optimal estimate of the states X, with the following estimator

dynamics

(2.15)

The LQG compensator is formed by combining the LQR and Kalman Filter

solutions into a model based compensator, by using the estimate of the states, X,

from the Kalman Filter problem as if these were the exact states, x, in the LQR

problem. The LQG compensator then becomes

(2.16)

In the LQG problem, the weighting matrices R and V are defined as

(2.17)

(2.18)
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where p and Jl are positive scalar weightings, and Ro and Vo are diagonal matrices

in the LQR and Kalman Filter problems. The weighting p defines the relative

importance between minimizing the performance z versus control effort u, while

Jl defines the relative importance between minimizing the disturbance w versus

sensor noise v.

In this work, the single input single output (SI80) LQG compensator will

be examined thoroughly. In order to show the locations of the compensator poles

and zeros, a summary of the asymptotic properties of the SISO LQG compensator

will be presented. The derivations are shown in Appendix A. For the general

disturbance rejection problem, the 8180 LQG compensator simplifies to

(2.19)

where <I> is the state transition matrix (sI-Ar1• In most cases, the Kalman Filter

gain Jl is smaller than the LQR gain p, in an effort to make the state estimator

dynamics faster than the state feedback dynamics. Therefore, the relevant

asymptotical limits of the SI80 LQG compensator are for small values of the

Kalman Filter weighting Jl, and varying values of the LQRweighting p.

The SI80 LQG compensator for low noise, or small values of Jl, and

expensive control, or large values of p, is given by

LIM K(s) = G<I>Bw
Jl~O C <I>Bp~_ y w

Note: For the MIMOproblem, this compensator can be written as

LIM K(s) = G<I>Bw[Cy<I>Bw]-l
Jl~O
p~-

(2.20)

(2.21)



This states that the zeros of the SISO LQG compensator for low noise and

expensive control, tend to the zeros of the GcI>Bw transfer function, and the poles

tend to the zeros of the gyw transfer function. This compensator is dependent upon

the assumption that the transfer function gyw is minimum phase. Also, the rate

in which the compensator converges to this asymptote is dependent upon the pole

zero pattern of gyw. For instance, the LQG compensator will approach the

asymptote more quickly if gyw has alternating poles and zeros, instead of poles and

missing zeros.

The LQR gain matrix G was solvedby MacMartin (1990) for the expensive

LQR control case

(2.22)

where Vi and Wi are the right and left eigenvectorsof the system matrix A, and the

superscript H denotes a complex conjugate transpose. For single input single

output systems, the entire quantity is a constant, except for the last term, w~. The

optimal LQR feedback gains are seen from Equation 2.22 to be a weighted

combination of the left eigenvectors. Lazarus (1991) show~dthat in the expensive

control case, the gains are nonzero only for the rate states. The LQR compensator

is equivalent to a rate feedback sensor.

For an undamped, single mode example, the LQG compensator, for low

noise and expensive control, reduces to

kLG S [ ]-1LIMK(s)= ~ 2 2 g,w
JL-+O vP s +m
p-+-

(2.23)



LIM K(s) = kLG ~ = kLG
Jl O rp S rpp _ Vp Vp

(2.24)

(2.25)

where kLG is a scalar constant. The compensator in this case is a low gain,

constant feedback of the rate state, which is the output y. Note that the

compensator contains a pole zero cancellation at zero, and a pole zero cancellation

at infinity. For a two undamped modes example, the compensator is given by

(2.26)

(2.27)

(2.28)

where rl is the residue of the first mode and r2 is the residue of the second mode in

the transfer function Gc1>Bw• For this case, the poles of the compensator are the

zeros of the gyw transfer function. The compensator zeros, however, have a zero at

zero, and a pair of zeros which are a weighted average of the poles of the open loop

system. For the case where the first mode is most dominant, or rl is much greater

than r2, the asymptote simplifies to

(2.29)
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For the undamped, two mode example, with only one dominant mode, the low

gain LQG compensator with small noise not.only uses rate feedback, but the less

dominant mode is also inverted. Note that the compensator also has a pole zero

cancellation at zero, and a pole zero cancellation at infinity. This leads to a

generalized statement for the SISO expensivecontrol, low noise LQGasymptote

(2.30)

where Cdm and lOdm are the damping ratio and frequency of the most dominant

mode, and kLG is a scalar constant. Note that the residue of the most dominant

modes has been absorbed into the scalar constant kLG• This compensator is called

the low gain LQG asymptote. The poles of this compensator are the zeros of the

disturbance to output transfer function gyw, and the zeros include a zero at zero for

rate feedback, and the poles of the gyw, except for the dominant pole pair.

The SISO LQG compensator for low noise, or small values of jl, and cheap

control, or small values of p, as shown in AppendixA to be

(2.31)

This result states that the zeros of the low noise, cheap control SISO LQG

compensator tend to the zeros ofgzw, and the poles tend to a weighted combination

of the zeros ofgzu and gyw. This compensator is dependent upon the assumptions

that the transfer functions gyw andgzu are minimum phase. However, in addition

to being minimum phase, the low noise, cheap control LQG asymptote is also

dependent upon the actual pole zero structure of gyw and gzu, as was the low gain

LQG asymptote. For instance, the convergence of the LQG compensator to the



asymptoticallimit in Equation 2.31 is much faster if the pole zero patterns of gyw

andgzu consist of alternating poles and zeros.-

For the case where the Kalman Filter weighting is smaller than the LQR

weighting, or the estimator dynamics are faster than the state feedback dynamics,

the high gain LQG asymptote simplifies to

LIM K(s) = :t{p1 gzw
Jl-tO P g
p-tO yw
p>Jl

(2.32)

If gyw and gzu have alternating pole zero patterns, and the asymptotical

limits in Equations 2.30 and 2.32 are valid, the poles of the LQG compensator

remain constant, set at the zeros of the disturbance to output transfer function,

gyw' The zeros, however, range from a zero at zero, and the open loop poles except

for the most dominant mode in the low gain LQG asymptote (Equation 2.30), to the

zeros of the disturbance to performance transfer function, gzw, in the high gain

asymptote (Equation 2.32).

Many approaches have been attempted to address the principle weakness of

the LQG compensator, robustness [Ashkenazi and Bryson (1982)] and [MacMartin

et ale (1991)]. In order to examine a typical optimal compensator which is more

robust compensator than LQG, the Sensitivity Weighted Linear Quadr.atic

Gaussian (SWLQG) [Grocott and Sesak (1992)] will also be used as a reference.

The SWLQG compensator de-sensitizes the original LQG compensator to changes

in modal frequency. In SWLQGdesign, the open loop system, (Equations 2.5-2.7),

is first transformed into modal form. The transformation is similar to the Jordan

tranformation [Strang (1980)]. If the eigenvalues and eigenvectors of A are given

by

(2.33)
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then the corresponding transform for a real eigenvalue is the corresponding

eigenvector, or

(2.34)

And the corresponding transform for a complexconjugate set of eigenvalues is the

real and imaginary part of the corresponding eigenvector, or

(2.35)

With this transformation, the A matrix will be diagonal for real eigenvalues, and

a 2x2 block for complex eigenvalues. The 2x2 block for each structural mode in the

model is then in modal form

(2.36)

In modal form, the A matrix is block diagonal and there is a one degree of freedom

set of equations for each mode. The states of the transformed system are called

modal coordinates.

In the SWLQGprocedure, the weighting matrices Q and W of the LQR and

Kalman Filter problems are appended with another matrix

Qsw =Q+/lQ

Wsw=W+/lW

(2.37)

(2.38)

The appended matrix is all zeros except for a 2x2 block corresponding to the mode

being de-sensitized. This 2x2 block is the same block from the original matrix,
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multiplied by a positive scalar factor for sensitivity.

As an example, for a 4x4 system in modal form, if the second mode of the

system is de-sensitized, the A matrix, and the corresponding Q and W weighting

matrices would be

(2.39)

(2.40)

(2.41)

where aij, qij, and wij are all 2 x2 blocks.

The de-sensitizing factor f3 is the choice of the control designer, as it is

dependent on the mode, bandwidth of the system and other factors of the

particular structural control problem. With the open loop system in this form, the

SWLQG procedure de-sensitizes the compensator to frequency changes by

increasing the apparent cost of the mode. This increase will prevent possible

inversion of the mode, thus robustifYing the standard LQG compensator for that

particular mode. Other robustness issues such as changes in damping can also

be addressed by SWLQG,but with a different appended matrix [Grocott and Sesak

(1992)].

The large dimension of the compensators is another of weakness of LQG

compensators [Yousuffand Skelton (1984)] and [Moore (1981)]. Model truncation

followedby compensator design and compensator design followed by compensator

truncation are two approaches to achieving a lower order compensator. In both

truncation techniques, spillover is the dominant problem [Balas (1978)]. In this
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work, the 40 state LQG compensators were truncated using a Hankel Singular

Value analysis [Kaileth (1980)]and [Matlab (1990)]. The analysis ranks the modes

based upon their residues, or combined controllability and observability of the

modes. Those with modes with smaller Hankel Singular Values are discarde4.

The resulting compensator, however, will not be optimal in minimizing the

performance metric.

2.4 Classical controllers

Classical control design has been applied successfully to many types of

applications [D'Azzoand Houpis (1988)]. The benefits include controllers that are

robust to model errors, and the dimension of the compensators are usually

smaller than that of the plant. Classical compensators also capture the physical

insight of the control ~esigner. These benefits of classical control mirror the

weaknesses of LQG compensators. The complement is also true. MIMO designs

are difficult to derive and understand using classical control. The choice and

sequence of loops to closed is a complexand iterative process. Nevertheless, the

benefits of classical control design make it valuable as a reference as well.

For classical control design for disturbance rejection, a frequency domain

analysis such as Bode or Nyquist is preferred. Time domain performance metrics

such as step response or jitter requirements can be interpreted in the frequency

domain.
The closed loop system of a SISO classical design can be shown as

G GK
z = w+ ( ) v = s(s)w+ C(s)v

(l+GK) l+GK
(2.42)

where z is the performance, w is the disturbance, and v is the sensor noise. The
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IGKI

Figure 2.2. Classical design of control systems in the frequency
domain for disturbance rejection and noise reduction.

open loop transfer function from the input u to the output y is G, and the

compensator is K. For this system, the disturbance is equivalent to the input, and

the performance is equivalent to the output. 8(s) and C(s) are defined as the

sensitivity and complementary sensitivity functions.

Typically, the disturbance has a low frequency content, while the noise has

a high frequency content. Figure 2.2 shows a Bode plot of a typical loop transfer

function GK, used to design the closed loop system with a disturbance wand noise

v. At low frequency, when disturbance rejection is more important than the

influence of sensor noise, the closed loop system becomes
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G
z- l+GKw (2.43)

In order to reduce the effect of the disturbance, the magnitude of GK is made

large. If the closed loop design objective is to reduce the magnitude of the

disturbance by a specified amount, over a specified frequency range, then the

closed loopsystem can be givenby

(2.44)

Kw is used to represent how far and over what frequency range the disturbances

are rejected in the design, and can be applied to the control design graphically, as

shown in Figure 2.2.

Similarly, at high frequency, when the reduction of sensor noise is more

important than the influence of the disturbance, the closed loopsystem becomes

~=IGKI=K" (2.45)

Ku is used to represent how far and over what frequency range the noises are

rejected in the design, and is also shown as a graphical design tool in Figure 2.2.

The design of the loop transfer function GK using these requirements is called

loop shaping.

For structural control design, classical loop shaping achieves phase

stabilization within the bandwidth, and gain stabilization beyond the bandwidth by

employing techniques such as PID control and first and second order filters.

Figure 2.3(a) shows a second order notch filter. The choice of damping ratio '0
controls the width of the notch, while a controls the depth of the notch. Another

type of notch filter, called a nonminimum phase notch filter, has been used as a
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Figure 2.3. Filtering techniques: (a) Second order notch filter (b)
First order lag filter.

classical tool for noncollocatedloops [Wieand Byun (1989)]. This notch filter is the

same as that shown in Figure 2.3(a), except the zeros in the numerator are

nonminimum phase. The magnitude for each is the same, while the phase drops

rapidly because of the nonminimum phase zeros. This phase drop allows the

designer to phase stabilize, or add damping, to certain modes.. The nonminimum

phase notch can be made by using negative values for both '0 and a.

Figure 2.3(b) shows a first order lag filter, which is used in loop shaping.

The choicesof T, k and a are utilized in the loop shaping process. They also can be

used in root locus techniques, by adding a pole zero pair to shape the root locus.

Classical compensators also contain rolloff dynamics. These dynamics are

used to ensure closed loop stability from modes above the bandwidth of the system,
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the loops, choices of loops and loop assignments, and designing compensators for

multiple performance metrics and disturbances have accentuated the

shortcoming of classical control design in the compensation of MIMO systems.

One option for classical compensation of MIMO systems is sequential loop closure,

shown in Figure 2.4. In this procedure, loops are designed and closed

sequentially, beginning with the highest bandwidth loop. The second loop is closed

around the new plant, which incorporates the first compensator. If the first loop

closed is a high bandwidth, high gain loop, then the next loop closed with a lower

bandwidth will not have harmful effects on the first closed loop. The resulting

MIMO compensator is created by designing each loop independently.

A form of sequential loop closure is High Authority ControllLow Authority

w

Figure 2.4.

~ Gzw Gzu
...-,

... GyW GyU
...~ "..

~ ~
"..

.,..
U1 Y1

K1
~....

K2
.....-

Sequential loop closing technique.
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Control (HAC/LAC)[Gupta et ale (1982)]. In this procedure, low authority control

loops, usually collocated rate feedback, are first closed on the controlled structure

to add damping to critical modes. A new plant is created which is more robust to

model errors when high authority control loops are closed.

2.5 SISODisturbance Rejection Topologies

The single input single output disturbance rejection problem can be used

not only for control design for 8180 systems, but also for interpretation of other

aspects of the control design process such as different topologies, input output loop

assignments, and even MIMO compensator design insight. For the 8180

problem, different simplifications in the topology of the system make the

compensator design more intuitive.

If the general control system given in Equation 2.1 is simplified to a 8180

system, the result is

{z} =[gzw gzu]{W}
y gyw gwu U

(2.46)

The closed loop transfer function from the disturbance w to the performance z is

givenby

z gzw + (gzwgyU - gzugyw)K- = ------~---.:..-
W 1+gyuK

where the compensator is

u=-Ky

Setting the closed looptransfer function from w to z equal to E,
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.=.. = gzw + (gzwgyU - gzugyw)K = e
w 1+gyuK

(2.49)

Disturbance rejection can be achievedby letting e tend to zero.

The topologyof the system given in Equation 2.46 is very important to the

closed loop system. The relationship between u and y, is the association between

the sensor and actuator of the control system. The resulting transfer function, gyu'

is dependent on location, duality, and impedance of the sensor actuator pair

[Fleming (1990)]and [Fleming and Crawley (1991)]. Sensor actuator pairs are the

most important relationships in the control design process because they create the

plant around which the compensator is closed. This relationship will be explored

more fully in Section 2.6.

Two other relationships, however, can be meaningful in simplifYing the

control design process and in gaining physical insight into designing the

compensator. The relationship between z and y is the association between the

performance and output. If z and yare collocated,or at the same spatial point in

the structure, and they are the same type, i.e. direction, spatial distribution, and

inertial or a relative based, then there is an explicit relation between the two

z(s) = tPzy(s)y(s) (2.50)

If tPz,(s) exists, then the performance and output are said to be analogs. An

example of this type of topologyis the feedbackof an inertial rate gyro as the sensor

output, with the integration of the rate gyro, or inertial angle as the performance.

A similar comparison can be made for the association between the

disturbance wand the input u. If the wand u are collocated, or at the same

spatial point in the structure, and they are the same type, i.e. direction, spatial
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distribution, and have the same reaction characteristics, then the relation between

the two is identical

w(s) = u(s) (2.51)

If this is true, then the disturbance and input are said to be analogs. This type of

disturbance is less common,but an example of this type of topology is the isolation

of a mirror from a moving base. The relative motion between the base and the

mirror is the disturbance, and the input can be a force actuator placed between the

two in order to isolate the mirror.

If the measured output y and the performance z are analogs and the input

u and the disturbance ware analogs, then the 8180 system in Equation 2.46

simplifies to

{z} = [gzw gzu]{W} = [tfJzygyu tfJzygyu] {W}
y gyu gyu U gyu gyu Z='zyy U

w=u

And the closed loop transfer function from disturbance to performance is

-=- = gzw = tfJzygyU
w 1+ gYUK 1+ gyuK Z='zyy

w=u

(2.52)

(2.53)

If the above transfer function is set equal to e, and solved for the compensator K,

K = gzw - e = tfJzyg yu - e
egyu egyu Z='zyy

w=u
(2.54)

Gooddisturbance rejection is achieved as e tends to zero, giving the compensator
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(2.55)

This is the disturbance to performance transfer function minimizing compensator

when the performance and output are analogous, and the disturbance and input

are analogous. Equation 2.55 shows that disturbance rejection for this topologyis

achieved by using a compensator which is high gain, and contains the

transformation tPzY' This compensator can also be generalized into a magnitude

only requirement, since disturbance rejection is desired for the magnitude only,

and in loop shaping, only the magnitude of the loop transfer function is shaped.

For loop shaping, using a high gain compensator, the magnitude of the closed loop

system within the bandwidth reduces to

for (2.56)

The design of compensation for this form is relatively simple. Except for the

transformation tPzy(s), disturbance rejection performance is accomplished by

setting the magnitude of K to be large. This is a valuable insight, but the pole zero

structure of the plantgy" will still be the most important factor in the compensator

design because of the closed loop stability. This case is the subject of Chapter 3.

For the case where the output y and performance z are analogs, but the

input u and the disturbance ware not, the SISO system simplifies to

(2.57)

And.the closed loop transfer function from disturbance to performance is

51



(2.58)

If the above transfer function is set equal to e, and solved for the compensator K,

(2.59)

Gooddisturbance rejection is achieved as e tends to zero, giving the disturbance to

performance transfer function minimizing compensator

(2.60)

Disturbance rejection in this problem is accomplished in the same manner as in

the previous problem, by setting the magnitude of K to be large. By comparison

with the simplest case of Equation 2.55, there remains the transformation function

f!Jzy(s), but there is also a ratio of transfer functions, or filter gyw/ gyu. The contrast of

the compensators Equation 2.55 with 2.60 shows that if an input is moved away

from the disturbance in a structure, and all other features are held constant, the

compensator design task is the same, except for an added filter gyw/ gyu, which

contains the transfer function through the plant from u to w. In certain cases, the

compensator design may need to convolve the dynamics of this filter into the

compensator in order to sufficiently reduce the magnitude of the disturbance to

performance transfer function.

For loop shaping, using a high gain compensator, the magnitude of the

closed loop system within the bandwidth reduces to
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for (2.61)

Similarly, for the less commoncase where the input u and the disturbance

w are analogs, but the output y and the performance z are not, the SlSO system

simplifies to

{z} [gzw gzu]{w} [gzu gzul {w}
y = gyu gyu U = gyu gyu =u U

And the closed loop transfer function from disturbance to performance is

(2.62)

(2.63)

If the above transfer function is set equal to e, and solved for the comPensator K,

(2.64)

Good disturbance rejection is achieved as e tends to zero, giving the disturbance to

performance transfer function minimizing compensator

UM K = Czw = C•• 1
£-+0 ~a J:!'a

~ yu '"'0 yu w=u
(2.65)

This case is dual to the system in Equations 2.57-2.61, however, the filter is now

gzu/ gyu, and there is no transformation function, 4'zy. Notice, however, the

transformation between z and y is embedded in the filter, gzu/ gyu. The contrast of

the compensator in Equation 2.55 with 2.65 shows that if an output is moved away

from the performance in a structure, and all other features are held constant, the
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compensator design task is the same, except for an added filter gzu/ gyu, which

contains the transfer function through the plant from z to y. The compensator

design may need to convolve the dynamics of this filter into the compensator order

to sufficiently reduce the magnitude of the disturbance to performance transfer

function.

For loop shaping, using a high gain compensator, the magnitude of the

closed loop system within the bandwidth reduces to

for (2.66)

These two cases are the subject of Chapter 4.

The simplifications in leading to the closed loop transfer functions in

Equations 2.56, 2.61, and 2.66, although different in many respects, contain a

similarity

(2.67)

For the general 8180 design case as in Equation 2.46, the simplification

given in Equation 2.67, which leads to the closed loop systems in Equations 2.56,

2.61, and 2.66, does not occur. The control design is more complex and potentially

limited in performance. In the previous simplified topologies, disturbance

rejection could be accomplished by setting the magnitude of K to be large, i.e. loop

shaping. However, for the general closed loop system given in Equation 2.46, the

only simplification which occurs for the high gain compensator is

I~I= gzwgyu - gzugyw
W gyu
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In examining Equation 2.68, the disturbance rejection performance of the closed

loop system does not tend to zero as the magnitude of K increased as it did in the

simplified topologies. For the loop shaping concept to Yield improved performance,

then the large K closed loop limit for disturbance to performance must be smaller

than the open loop disturbance to performance, or

(2.69)

In general, this will not be the case. Equation 2.69 may in some cases be useful as

a tool for sensor actuator selection. Sensor outputs and actuator inputs ca~ be

designed to insure Equation 2.69 to be satisfied. In the case that Equation 2.69 is

satisfied, then the closed loop transfer function from disturbance to performance

simplifies to

(2.70)

If the above transfer function is set equal to e, and solved for the compensator K,

K = gzw - e
eg,"

(2.71)

Good disturbance rejection is achieved as e tends to zero, giving the disturbance to

performance transfer function minimizing compensator

UMK= gzw
£-+0 eg,"

(2.72)

The closed loop system again contains a filter gzwlgyu, and the loop shaping concept

of setting the magnitude of K to be large, in order to achieve disturbance rejection
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applies. The compensator again may need to convolve the dynamics of the filter

into the compensator in order to sufficiently reduce the magnitude of the closed

loop disturbance to performance transfer function. For loop shaping, using a high

gain compensator, the magnitude of the closed loop system within the bandwidth

reduces to

gzwgyu - gzugyw «Igzwl, (2.73)
gyu

For the general closed loop disturbance to performance transfer function

given in Equation 2.47, when the test given in Equation 2.69 is not met, the

alternative to loop shaping is to derive the dynamic compensator to drive the

numerator of the closed loop disturbance to performance transfer function

(Equation 2.47) to zero. Setting the closed loop transfer function from w to z equal

z gzw + (gzwgyU - gzugyw)K
-= =e
w l+gyuK

And solving for the compensator K Yields

K= gzw-e
egyu -(gzwgyU - gzugyw)

(2.74)

(2.75)

Gooddisturbance rejection is achieved as e tends to zero, giving the disturbance to

performance transfer function minimizing compensator

LIMK= -gzw
£ .... 0 gzwgyu - gzugyw

(2.76)

In examining the resulting compensator, one can see that it inverts the second
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term. in the numerator of Equation 2.47, and cancels the first. Although, in

principle, this accomplishes the disturbance rejection goal, in practice it will be

very difficult to implement due to robustness concerns. This compensator does not

fall into the loop shaping category, since the magnitude is a constant, and there

are no simplifications such as in the magnitude only requirement. This may lead

to a fundamental performance robustness limitation in the general case when u

and ware not analogs, and y and z are not analogs. This case will be the subject of

Chapter 5.

It must be stressed that compensator design for each of these topologies,

Equations 2.52, 2.57, 2.62, and the general system in 2.47, is a combination of the

simplification of the closed loop system and an accommodation of the pole zero

structure ofgyu, which will be addressed next in Section 2.6.

2.6 Pole zerostmcture of loops

Control design for structures is greatly dependent on the pole zero structure

of the input output pair. Lightly damped poles and zeros create large differences

in the magnitude and phase of a transfer function, thus leading to small gain and

phase margins, and concern for stability robustness in the closed loop system. For

certain input output pairs, real minimum and nonminimum phase zeros may

occur. Although a structure is passively stable, nonminimum phase zeros create

possible limitations in achieving the performance objective [Freudenberg and

Looze(1985)].

Fleming (1990) showed that the zeros of a transfer function are dependent

on the type, impedance, and location of the sensors and actuators. For a SISO

system, when a sensor and actuator are dual, complementary extremes, and

collocated, the resulting pattern is alternating poles and zeros [Gavartner (1970)].
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Duality implies the actuator and sensor are the same type, Le. direction, spatial

distribution, and the nature of the sensing or actuating as being inertial or relative

measurement based. Complementary extreme pairs implies the sensor actuator

pair have different impedances, such as a force actuator and a displacement

sensor. And collocated implies the sensor actuator pair are located at the same

spatial point in the structure. This pole zero pattern is desirable to control

designers because the system is hyperstable [Steiber (1988)]. This hyperstable

system is bounded-input-bounded-output (BIBO) stable, and ensures that the

closed loop system is hyperstable if the feedback form around the system is

hyperstable. This means a large subset of controllers will be closedloop stable on a

system with a dual, complementary extreme, collocated sensor actuator pair.

Fleming studied the pole zero patterns of systems where the duality,

impedance, and location of the sensor actuator pair were changed. A collocated,

dual, and complementary extreme sensor actuator creates alternating poles and

zeros, as shown in Figure 2.5(a). As the pair becomes noncollocated, the zeros

increase in frequency. At a certain point, pole zero cancellations occur, and

eventually, the zero moves to the other side of the pole, creating a missing zero

between two poles. This is shown in Figure 2.5(b). Missing zeros usually occur at

high frequencies first. Therefore, for slight noncollocation, an alternating pole

zero pattern may be evident in the lower frequency range. As the sensor actuator

pair becomes even more noncollocated, the zeros will become nonminimum phase

in some structures, as shown in Figure 2.5(c). The nonminimum phase zeros

diminish in frequency as the noncollocationdistance is increased.

Nonminimum phase zeros place fundamental limitations on the frequency

ranges over which control can be exerted. However, if there is a frequency range

in which the poles and zeros are alternating, such as if the nonminimum phase

zeros are before or after the bandwidth of interest, then the noncollocated sensor
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(a) (b) (c)

Figure 2.5. Typical pole zero patterns for sensor actuator pairs on a
structure: (a) collocated (b) slightly noncollocated (c)
noncollocated

and actuator pair may be adequate.

2.7 Typical section model

In order to examine trends in optimal controllers and demonstrate Neo-

Classical design, a two dimensional typical section model will be used. Typical

sections used in structural control are small order model used to gain insight

necessary to design and interpret higher order problems [Miller et al. (1991)]. A

typical section should be designed to be a simple, small order model that captures

the fundamental physics of the problem.

Figure 2.6 shows a typical section model of a cantilever beam, which will be

used in this study. The. model is made up of four identical masses and rotary

inertias and four springs. A four mode Rayleigh-Ritz representation [Bathe



Figure 2.6. Four mass, typical section model of a cantilever beam.

(1982)] of a Bernoulli-Euler beam was made and an eight state model was

constructed. Damping was added to the model, using 1% proportional damping.

For control design, there are three inputs u, i.e. vertical forces on the first three

masses, and three outputs y, i.e. the measured vertical velocity on the first three

masses. There are also three disturbances w and performances z, i.e. the vertical

forces and displacements on the first three masses. A summary of the typical

section model is shown in Appendix B.

The typical section model shown in Figure 2.6 has all of the important

features of a complexcontrol design of a flexible structure, such as collocated and

noncollocated control and relevant performance metrics and disturbances.

However, it lacks some of the aspects of a control design that would be part of the

experimental implementation of compensators such as time delays and sensor

and actuator dynamics.

2.8 The Middeck Active Control Experiment (MACE)

The platform for experimental testing for each of the controllers designed

as part of this study is the MiddeckActive Control Experiment (MACE)[Miller et

al. (1992)], a Shuttle middeck experiment tentatively scheduled for flight in the
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Figure 2.7. MACE Development Model test article.

summer of 1994. The Development Model, the first of three sets of hardware to be

developed under the MACE program, is shown in Figure 2.7. The test article is

designed to simulate flexible spacecraft with multiple pointing payloads. The

objective of the experiment is to develop a qualification procedure for flexible

precision spacecraft. For future vehicles which cannot be dynamically tested on

the ground in a sufficiently realistic zero-gravity simulation, this procedure will

increase confidence in the eventual orbital performance of such spacecraft

[MACE-l-lOl (1991)]. Specifically,the objectiveis to investigate the extent to which

closed loopbehavior of the MACEtest article in zero gravity can be predicted. This

prediction becomes particularly difficult when dynamic behavior during ground

testing exhibits extensive suspension and direct gravity coupling.

The test article is a multiple input, multiple output (MIMO) system
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Table 2.1. Description of the actuators on the MACE test article.

Inputs I Actuator Location Description

2 Gimbal Node 1 Relative torque
X & Z axis rotation only
two DC torque motors

3 Torque Wheels Node 3 Inertial torque
three DC servo motors
aluminum inertia wheels
orthogonally mounted

[Saarmaa (1991)]. There are five inputs: a two axis gimbal exerting a relative

torque between the pointing payload and the right end of the bus (Figure 2.7); and

a three axis set of torque wheels, producing an inertial torque at the center of the

bus. A summary of the actuators is given in Table 2.1. The are 12 outputs: a three

axis rate gyro package at the center of the bus, and a two axis rate gyro in the

payload, measuring inertial rotational velocity; two three axis accelerometers on

nodes 2 and 4 measuring linear acceleration; and two rotary encoders measuring

Table 2.2. Description of the sensors on the MACE test article.

Outputs I Sensor Location Description

3 Rate Gyro Node 3 Inertial rotational velocity
Nominal 48 Hz natural frequency
0.35 of critical damping

2 Rate Gyro Payload Can Inertial rotational velocity
Nominal 48 Hz natural frequency
0.35 of critical damping

2 Accelerometer Node 2 Linear acceleration
X & Y axes only
Natural Frequency> 300 Hz
0.3-0.8 of critical damping

3 Accelerometer Node 4 Linear acceleration
Natural Frequency> 300 Hz
0.3-0.8 of critical damping

2 Encoder Gimbal Axes Relative gimbal angle
Laser rotary encoders
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Figure 2.8. Block diagram of the experimental setup of the MACE test
article.

the relative angle between the end of the bus and the payload. Table 2.2

summarizes the sensors on the MACE test article. Various signal conditioning

and power amplification electronics are included for the sensors and actuators.

The bus is composed of flexible Lexan struts, interconnected by aluminum

nodes. The 7 kg dummy mass on node 5 will be replaced in the future with

another two axis gimbal. The test article is suspended by a pneumatic/electric low

frequency suspension system [Kienholz(1990)].

Other equipment important to the experiment includes an 8-pole

anti aliasing Bessel Filter with a comer frequency of 150 Hz used in each control

loop. The compensators are designed using Matlab [Pro-Matlab (1990)]or Matrixx

[Matrixx (1990)], and the digitally implemented compensator is constructed in

System Build of Matrixx. A real time control computer [AC-100(1991)] is used to

implement the compensator. The hardware channels include 16 inputs (AID's), 6

encoder inputs, and 8 outputs (D/A's). A Fourier analyzer was also used as a

disturbance source and for taking data. Figure 2.8 shows the experimental block

diagram.



Table 2.3. Frequencies, damping ratios, and type of structural modes
for each mode in the finite element model of the
Development Model from 0-60 Hz.

Frequency (Hz) Damping Ratio (%) Type of Mode

0 1 Torque wheel #1

0 1 Torque wheel #2

0 1 Torque wheel #3

0.2001 0.150 Suspension - bounce

0.2198 0.150 Suspension - Y axis pendulum

0.2317 0.150 Suspension - X axis pendulum

0.2333 0.150 Suspension - Z axis pendulum

0.3339 0.0786 Suspension - tilt

1.0930 0.150 Suspension - 1st twist

1.2140 0.150 Outer gimbal pendulum

1.2870 0.0563 Inner gimbal pendulum

1.8620 0.03689 1st X-Y bending'

3.1310 0.03723 1st X-Z bending'

6.7190 0.01741 2nd X-Y bending

6.8690 0.01211 2nd X-Z bending'

8.8500 0.01624 Suspension - 2nd twist

9.4000 0.0080 3rd X-Y bending

13.290 0.00660 3rd X-Z bending

14.000 0.00660 4th X-Y bending

14.250 0.00664 Suspension - 3rd twist

17.400 0.00588 4th X-Z bending

36.000 0.01180 Suspension - 4th twist

39.100 0.020 Suspension - 5th twist

42.500 0.0150 5th X-Y bending'

64.120 0.010 5th X-Z bendine

86.000 0.010 1st axial



Table 2.4. Additional dynamics appended to the finite element model

Component

Rate Gyros

Time Delay

Stabilized
Integrator

High Pass
Filter

Dynamics

ro11off: 2 poles: ro= 46 Hz, , = 0.5
1pole: ro= 70 Hz

4th order PADE approximation:
4 stable poles
4 nonminimum phase zeros

2 poles: ro= 0.03 Hz, ,= 0.707
1zero: ro= 0 Hz

2 poles: ro= 0.03 Hz, , = 0.707
2 zeros: ro = 0 Hz for each

and assigned a nominal 10/0 value for all other modes. Appended to the finite

element model are dynamics for additional components of the experiment. These

are shown in Table 2.4. The rate gyros have three states for their rolloff

characteristics. A fourth order PADE approximation is used to model the time

delay. Time delays in the control computer, the Bessel Filters, and mismodeled

dynamics figured significantly in the control design process. In order to avoid

secular offsets due to integration of DC bias in any of the sensors, particularly the

rate gyros and accelerometers, a two pole stabilized integrator or two pole high

pass filter, both with a comer frequency of 0.03 Hz, were used in each control loop.

Appendix C shows the pertinent transfer functions of the model and data

taken from the test article. Flexible modes such as those at 6.8 and 9.4 Hz were

modelled well, with less than 5% error for all flexible modes at frequencies less

than 50 Hz. The difficulty in modeling suspension effects, and the inability to

reproduce the same suspension system for each experiment prevented accurate

modeling of the suspension modes. These errors can be seen in Appendix C,

where the finite element model does represent the actual suspension modes at low

frequency. Nonlinearities also occurred in the experimental setup. Large gimbal



motions are the most obvious nonlinearity. An example of nonlinearities can be

seen by comparing the transfer functions in Figures A.2 and A.4. In the z-axis

gimbal to z-axis bus rate gyro transfer function, the model accurately represents

the flexible mode at 6.8 Hz. But, in the z-axis torque wheels to Z-axis payload rate

gyro transfer function, the mode is approximately 7.2 Hz. This model will be used

for all control designs.

A finite element model was developed for the MACE test article [Rey and

Glaese (1992)]. The model is a 40 mode model, which is truncated to a smaller

number of states for control design. Table 2.3 shows the frequency, damping

ratio, and type of mode for all modes below 60 Hz in the finite element model.

Damping in the model was measured experimentally for all modes up to 50 Hz,



Chapter 3

SISO Topology I:
Analogous Performance & Output

and
Analogous Disturbance & Input

3.1 Introduction

This chapter describes the first building block of the Neo-Classical design

methodology, namely when the performance and output are collocated and dual, i.e.

analogs, and the disturbance and input are collocated and dual, i.e. analogs. It is a

simplified case of the general closed loop disturbance rejection problem, as described

in Chapter 2. In the first section of this chapter, specific topologies of the typical

section will be introduced as tools for compensator examination. The topologies have

collocated, dual input output pairs only. Aspects of the LQG compensator and the

robustified SWLQG compensator are analyzed such as dominant mode control, plant

inversion, and truncation of compensator states. The benefits and weaknesses of the

LQG and SWLQG compensators are then interpreted classically and presented in

the format of a Neo-Classical Design Rule. Compensators are then designed using

LQG, SWLQG, and the Neo-Classical design rule and implemented on the Middeck

ActweComrolExperimem.
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3.2 Topologies Examined

It was shown in Section 2.5 that when the performance z and output y are

collocated and dual, or analogs, and the disturbance w and input u are collocated

and dual, or analogs, the general single input single output disturbance rejection

problem simplifies to

where q,zyand is the temporal relationship betweenz andy,

z(s) = q,Zy(s)y(s)

(3.1)

(3.2)

This type of topology is Topology I. The following relationships can be seen between

the transfer functions.

(3.3)

(3.4)

(3.5)

This is an important insight because disturbance rejection in the closed loop transfer

function from disturbance to performance simplifies to

w
z gzw _ q,zygyU
-=

1+gyuK - 1+ gyuK Z='67Y
w=u

(3.6)

If the above transfer function is set equal to E, and solved for the compensator K,
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(3.7)

Good disturbance rejection is achieved as e tends to zero, giving the compensator

(3.8)

This is the disturbance to performance transfer function minimizing compensator

when the performance and output are analogous, and the disturbance and input are

analogous.

There are two important considerations in the design of the compensator for

the above system. The first is the performance criterion, which is disturbance

rejection in the closed loop system (Equation 3.6). This can be accomplished by

increasing the magnitude of K, such that

for (3.9)

The second is the stability of the closed loop system, as opposed to the performance

metric. Of course this must also be insured in the control design process.

In the SISO disturbance rejection case, there are three important

relationships to consider in defIning the topology, and therefore the difficulty of the

compensation: The relationships between: z and y, wand u, and y and u. In Section

2.6, the importance of the relationship between u and y, and the benefits of a

collocated, complementary extreme, and dual actuator sensor pair were presented.

This input output pair produced an alternating pole zero pattern and a simple plant

to compensate. The topologies examined in this chapter will have a collocated, dual,

and complementary extreme, input output pairs, in addition to the performance and
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output being analogs and the disturbance and input being analogs, and fall into the

category of topologies called Topology I.

In Typical Section lA in Figure 3.l(a), the performance z 1 is the vertical

position of the tip mass, while the output YI is the vertical velocity of the tip mass.

The relationship between Zl andYI is then

therefore,
1

tPzy(s) =-
S

(3.10)

(3.11)

The disturbance WI is an inertial vertical force on the tip mass, as is the input Ut.

Therefore, WI andul are identical.

The closed loop system for Typical Section lA then simplifies to

1-gZl _ S yu
WI l+gyuK

(3.12)

(3.13)

(a) Typical Section 1A (b) Typical Section IB

Figure 3.1. Topology I: Typical Sections lA and IB with analogous
performance and output, and analogous disturbance and
input, and collocated, dual, and complementary extreme
input and output.
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Typical Section lB, given in Figure 3.l(b), has the same type of topology and

structural plant as Typical Section lA, except the action is at the third mass. The

temporal relationship between the performance Z3and the outputY3 is the same as

that given in Equation 3.11, and the disturbance W3 and the input U3 are identical.

Figures 3.2(a) and (b) show the open loopinput output transfer functions for

Typical Sections lA and lB. The features of the alternating pole zero pattern are

evident. The performance for these topologiesis the time integral of the output, and

the disturbance is the same as the input. The disturbance to performance transfer

functions, gzw, are therefore, l/s times the corresponding input output transfer

functions, gyrn shownin Figure 3.2.
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Figure 3.2. Input output transfer functions for Typical Sections 1A and
lB.
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The two typical sections in Figure 3.1 are designed to illustrate several

important issues in compensator design for the topologygiven, without adding to the

complexity ofa large model and experimental implementation. The first issue is the

choice of the bandwidth of the system, which is governed by the performance

requirements and input output nature of the plant. The term bandwidth in this

work, is synonymous with the crossover of the dereverberated mobility of the loop

transfer functiongyJ(. MacMartin (1990) defined the dereverberated mobility to be

the backbone of the transfer function. Once a bandwidth has been chosen in a

control design, the loop transfer function can be separated into four regions. The

first is the lowfrequency region far within the bandwidth of the loop. Another is the

high frequency region far outside the bandwidth of the loop. The final two regions

create the crossover region of the loop transfer function. The crossover region is a

small frequency band before and after the crossover of the loop gain at 0 dB. The

final two regions lie in this band, before and after the crossover.

The selection of a bandwidth, or loop crossover, will define the four regions,

and subsequently which modes lie in each. The form of compensation for each mode

will be seen to depend on which of the four regions the mode lies in. Figure 3.3

shows an example of a loop transfer function, with a crossover of 15 rad/sec. For this

example, the mode at 1.6 rad/sec is within the bandwidth, at low frequency, and lies

in Region 1, and the mode at 51 rad/sec is outside the bandwidth, at high frequency,

and lies in Region 4. The modes at 10.1 and 28 rad/sec are both in the crossover

region, with the mode at 10.1 rad/sec lying in Region 2, and the mode at 28 rad/sec

lying in Region 3. Modes in Regions 3 are defined by having an additional loop gain

greater that -3 dB after the crossover, for robustness. An example of a mode in

Region 3 is the 28 rad/sec mode in Figure 3.3. The division between Regions 2 and 3

is the crossover of the loop transfer function. The boundaries between the other two

regions are conceptual, and dependent upon the specific control design problem.
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Figure 3.3. Typical loop transfer function, 8,,)(, with a crossover of
15 rad/see showing the four regions in which structural
modes may lie.

Defining these will become more clear in the analysis of the compensators for the

typical sections in Section 3.3.

The second issue contracted by the two typical sections is the presence or

absence of a single dominant mode. Typical Section lA has one dominant mode, at

1.6 radlsec (as defined by its Hankel Singular Values, or residues). This system can

be thought of as having the dominant dynamics of a second order resonance, with

some additional higher frequency dynamics. Typical Section IB, does not have one

dominant mode. The first two modes at 1.6 and 10 radlsec have equivalent Hankel

Singular Values.

In order to determine the form of compensation required, LQG and other

optimal compensation techniques will be examined for these topologies of the typical

section models.
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3.3 Optimal Compensation

Examination of Linear Quadratic Gaussian (LQG) and other optimal

compensators for the topologies such as those given in Figures 3.1(a) and (b) will

reveal dynamic optimal compensation techniques for structural modes far below, far

above, or within the region of loop crossover, and dominant versus recessive mode

control. For the control law

u(s) = -K(s)y(s)

the LQGcompensator is given by

K(s) = G(sI -A+BuG+HC,ft H

(3.14)

(3.15)

where G and H are the Linear Quadratic Regulator (LQR) and Kalman Filter

optimal gains respectively.

Asymptotjc Properties of LOG Compensators

In order to determine the properties of the optimal dynamic compensator, the

asymptotic properties of the LQG compensator are examined. In the problem

definition, the LQG compensator is dependent on the choices of the LQR and

Kalman Filter scalar weightings p and J.l. respectively. The Kalman Filter weighting

is chosen to be smaller than the LQR weighting in order to make the estimation

dynamics of the LQG compensator faster than the state feedback dynamics. The

relevant asymptotical limits to examine, therefore, are as J.l. tends to zero, and

varying p from infinity to zero. As p tends to infinity, the LQR problem is said to

have expensive control, and as p tends to zero, the LQRproblem is said to have cheap

control.
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It was shown in Equation 2.30 that as the sensor noise diminishes, and for

the expensive LQR control problem, the LQG compensator simplifies to

(3.16)

Using the simplifications for Topology I, this reduces to

(3.17)

where ~m and COdm are the damping ratio and frequency of the most dominant mode,

andkLG is a scalar weighting. Note that the residue of the most dominant modes has

been absorbed into the scalar constant kLG• This compensator is called the low gain

asymptote ofLQG. The poles of this compensator are the zeros of the disturbance to

output transfer function gyw, or the input output transfer function, g,", in this case.

And the zeros include a zero at zero for rate feedback, and the poles of the gyw, or g,",

except for the dominant pole pair.

The high gain LQG asymptotic compensator is given by letting both the

Kalman Filter weighting JL and LQR weighting p tend to zero. It was shown in

Equation 2.32 that as the sensor noise diminishes, and for the cheap LQR control

problem, the LQG compensator simplifies to

LIM K(s) = :f:-;rp1 gzw
Jl-+O P gP-+O ,W
P>Jl

Using the simplifications for Topology I, this reduces to
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assuming that Jl is smaller than p. This asymptotical compensator is formed by

assuming the transfer functions gzu and gyw are minimum phase. The simplifications

in Equations 3.3-3.5 show that these transfer functions contain alternating poles

and zeros. This states that the SISO cheap control, low noise LQG asymptotic

compensator is a high gain compensator, containing the temporal relationship

between the performance and output. The poles and zeros of the compensator are

identically the zeros of the open loop gyu transfer function. This is the high gain

LQGasymptote for TopologyI. Notice how it identically matches the disturbance to

performance transfer function minimizing compensator in Equation 3.8.

For Typical Sections 1A and 1B, given the relationship between z and y in

Equation 3.11, the compensator simplifies to

(3.20)

This states that the high gain LQG asymptotic compensator, is a high gain

integration of the output velocity, or equivalently displacement feedback.

As shown in Equation 3.17 and 3.19, the poles of the LQG compensator are

the open loop zeros of gyu, regardless of the choice of p. The zeros of the

compensator, however, range from a zero at zero and an inversion of the open loop

poles of the gyu transfer function (except for the most dominant pair of poles) in the

expen~ive LQR control problem (Equation 3.17), to the open loop zeros of the g,u

transfer function in the cheap LQR control problem (Equation 3.19). The cheap

control, lownoise LQGasymptote results in compensator pole zero cancellations.

Equations 3.17 and 3.19 show the asymptotical limits of an LQG

compensator, with no sensor noise. The actual LQG compensator, is one of a family

of compensators whose bandwidth is set by the choice of the LQR weighting
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parameter p. In the expensive control problem, the compensator has low gain, and

thus there is no crossover, and no bandwidth. In the cheap control problem, the

compensator increases proportional to 1A[';;. As p tends to zero, the gain increases,

as does the crossover and closed loop bandwidth of the system. The bandwidth

increases asymptotically to infinity.

Typical Section Results; LOG compensator

Typically, an intermediate p is chosen to set a finite bandwidth. For this

intermediate case, the compensator is a blending of the compensators from the low

gain and high gain LQG asymptotes, with the division between the two essentially

the bandwidth or crossover of the system. At high frequencies, above the

bandwidth, the compensator is similar to the low gain LQG asymptote given in

Equation 3.16. At low frequencies, within the bandwidth, the compensator is

similar to the high gain LQG controller given in Equation 3.19. The frequency range

between these two controllers is the crossover region.

Figure 3.4 shows the open loop input output transfer function, gyu, for Typical

Section 1A (Figure 3.1(a». Figure 3.5(a) shows an 8 state LQG compensator for low

sensor noise (JL=lE-8) and an intermediate LQR weighting (p=lE-1), plotted with the

low and high gain LQG asymptotes designed for Typical Section 1A. The crossover

or bandwidth of the system is 4 rad/sec, as can be seen in the loop transfer function

g,J( in Figure 3.5(b). Within the bandwidth of 4 rad/sec, the compensator is a high

gain integrator, as in the high gain LQG asymptote (Equation 3.20). This

corresponds to the low frequency Region 1, in Figure 3.3.

Well above the bandwidth of the system, as one can see by examining the

loop transfer function in Figure 3.5(b), the modes at 28 and 55 radlsec are exactly

inverted, similar to the low gain, LQG asymptote (Equation 3.17). This corresponds

to Region 4, in Figure 3.3.
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In the crossover region, the integral control, or position feedback of the high

gain LQG asymptote, changes to proportional. or rate feedback of the low gain LQG

asymptote. This change is made by the use of a zero, as in a proportional-integral

(PI) controller. The characteristics of the PI controller are integral control (position

feedback in this case) at low frequency, and proportional control (rate feedback in

this case) at high frequency. The setting of the zero is such that the phase margin at

crossover is approximately 60°. Although the phase margins of an LQG compensator

are not guaranteed [Doyle (1978)], with the pole zero structure of gyw, the Kalman

Filter exactly estimates the states for small sensor noise, or small values of Jl.

Therefore, the guaranteed phase margins of 60° for the Linear Quadratic Regulator

[Stein and Athens (1984)] are approximated in the LQG compensator. For this case,

the zero is at 1.8 rad/sec.

The mode at 10 rad/sec is interesting because it is within the crossover
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Figure 3.4. Open loop input output transfer function, gyu. for Typical
Section 1A
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region, and therefore does not fall clearly into the low or high gainLQG controller

cases. This mode is in Region 3, as in Figure 3.3. Notice that the open loop zero is

inverted by the compensator pole exactly. However, the open looppole is not exactly

inverted. The zero is inverted because the poles of the compensator, as given in

Equations 3.17 and 3.19, are the zeros of the input output transfer function, and are

not a function of the LQR weighting p. In contrast, the pole will be inverted if it is

far above the bandwidth of the system, and not be inverted if it is well within the

bandwidth. The resulting compensator zero is neither a compensator pole zero

cancellation, as in the high gain LQGcontroller, or an open loop pole inversion, as in

the low gain LQGcontroller. It is an intermediate case.

Alsonote that the dominant pole pair at 1.6 radlsec is not inverted. The high

gain asymptote (Equation 3.20) would not invert it, and neither would the low gain
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asymptote (Equation 3.17), since it is the dominant mode.

Figure 3.5(c) shows the open and closed loop transfer functions from w to z.

The performance metric used is

(3.19)

where Gz is the variance of the position z. For this LQG compensator, the

performance improvement in the closed loop is 27.7 dB.

Figure 3.6 shows LQG compensators designed for Typical Section 1A for

three values of the LQR control weighting p. The Kalman Filter weighting JL is held

constant at IE-B. Figure 3.6(b) shows the corresponding loop transfer functions,

gy$, for the three LQG compensators. Notice that as p is decreased, Le. as the

bandwidth of the loop transfer function increases, the zero frequency of the PI

controller increases, as does the gain of the compensator and loop transfer function.

Thus, there is a larger frequency range which matches the high gain integral control

of the LQG asymptote (Equation 3.20).

Notice how the poles of the compensator do not change. They are fixed at the

zeros of the open loop input output transfer function, gyu' The zeros of the

compensator move from the poles of the open loop transfer function gyu (Equation

3.17), to the zeros of the open loop transfer function gyu (Equation 3.19). For

instance, examining the compensator pole zero inversion for the mode at 10 rad/sec,

as p decreases, the compensator zero moves toward the fixed compensator pole, thus

decreasing the residue of the pole. If p were made smaller, the residue continue to

decrease to zero, creating a compensator pole zero cancellation. This results in the

compensator not inverting the modes within the bandwidth of the system, as p

decreases, which can be seen in the loop transfer functions.

The most dominant mode at 1.6 radlsec is never inverted. In the closed loop,
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these dominant poles essentially act as a second order mode, whose closed loop

frequency becomes greater as the control weighting is decreased.

Now that the trends in optimal compensation are understood for low sensor

noise weighting, and varying control effort weightings, the LQG compensators will

be analyzed for changes in the Kalman Filter weighting JI.. Figure 3.7(a) shows three

LQG compensators for a constant LQR weighting (p=lE-1), but the Kalman Filter

weighting is varied. Figure 3.7(b) shows the corresponding loop transfer functions,

gyr./(, for the three LQG compensators. As JI. is increased, representing an

increasingly noisy sensor, the PI controller becomes a lag filter, as the frequency of

the integrator pole rises. In the general high gain asymptote in Equation 2.31 if JI. is

not assumed to be less than p, then for Topology I asymptote, instead of an

integrator, the high gain LQG controller resembles a high gain lag controller, with a

pole at ~ Jl.1p. Or, as the sensor becomes more noisy, pure integration of the output

is not used. The zero of the PI controller does not move as JI. is varied.

As JI. is decreased, a high frequency, heavily damped pole pair decreases in

frequency, thus creating a steeper rolloff in the compensator and loop transfer

functions in Region 4. In Section 2.4, it was shown that to design for sensor noise

minimization, a magnitude requirement should be placed on the closed loop transfer

function at high frequency, or

(3.22)

Increasing the value of JI. is equivalent to the sensors becoming more noisy. A

classical designer would decrease the value of the design criterion K tI in Equation

3.22, if the sensors became more noisy, thus decreasing the magnitude of the loop

transfer function gyuK at higher frequency. In examining Figures 3.7(a) and (b), this

is what the LQG compensator does.
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Multiple Domjnant Modes

Figure 3.8 shows the open loop input output transfer function gyu for Typical

Section 1B (Figure 3.1(b». In this case, there are two dominant modes at 1.6 and 10

rad/sec. Figure 3.9(a) shows an 8 state LQG compensator and the low and high gain

LQG asymptotes for Typical Section lB. The Kalman Filter uses low sensor noise

again (p=lE-8), and the LQR weighting is set as an intermediate value (p=7E-4).

The bandwidth is 15 rad/sec, as shown in the loop transfer function in Figure 3.9(b).

The compensator once again contains a PI controller, with a zero at 7 rad/sec, used

to create a phase margin at loop crossover of approximately 60°. At higher

frequencies, the open loop dynamics, gyru are inverted by the compensator. At

frequencies below crossover, the open loop zero pair at 4 rad/sec is inverted by a pole

pair of the compensator, however, the two most dominant modes at 1.6 and 10
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Figure 3.8. Open loop input output transfer function g7u for Typical
Section lB.
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rad/sec are not inverted.

The mode at 10 rad/sec is in the crossover region, as a result of the 15 radlsec

crossover frequency of the loop transfer function (Figure 3.9(b». Equation 2.28

showed that for a two mode example, the low gain LQG asymptote will place a

weighted zero pair between the two polepairs, ifboth pole pairs are dominant. As p

decreases, and the bandwidth increases, this weighted zero pair should migrate to a

compensator pole pair, according to the high gain LQG asymptote, creating a

compensator pole zero cancellation. For this compensator, there is a zero pair at 6

rad/sec and 30% damping ratio, and is migrating toward the pole pair at 4 rad/sec.

If p were decreased further, the compensator zero pair cancel the pole pair at 4

rad/sec, and becomea high gain integrator as in the high gain LQGasymptote. Note

that this is the same result as for the single dominant modes case. Therefore, except
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for the low gain LQG compensator which places a weighted zero pair between the

two dominant poles, compensation of a system with two dominant modes is quite

similar to compensation of a system with only one dominant mode. And if both

dominant modes are far within the bandwidth, i.e. in Region 1, compensation is

identical to a system with only one dominant mode.

Sensitivity Weighted LQG

One of the weaknesses of LQGcompensators for controlled structures is lack

of robustness. In compensators described previously, the pole zero inversions can

create closed loop stability problems if there are small modelling errors in the open

loop frequencies of the poles and zeros. Examining the phase of the compensators,

the pole zero inversions have phase drops of at least 1500 for some modes. If the

open loopsystem has even slight modelling errors, this phase drop could de-stabilize

the closed loop system very easily. The Sensitivity Weighted LQG compensator, as

described in Section 2.3, will be seen to robustify these pole zero inversions.

Figure 3.10(a) show three SWLQG compensators designed for the Typical

Section lA, and Figure 3.10(b)shows the corresponding looptransfer functionsgy,J(.

The LQR and Kalman Filter weightings are the same as the LQG compensator in

Figure 3.5(a). Notice that the crossover of the loop transfer function is

approximately 4 rad/sec. The three compensators shown have increasing

uncertainty in the mode at 10 rad/sec. This mode is chosen because it lies within the

crossover region, and after the loop crossover, corresponding to Region 3 in Figure

3.3. As the uncertainty increases, or as the weighting factor f3 in the SWLQG

compensator increases, the pole of the compensator pole zero inversion damps

quickly, but the zero does not. The phase drop due to this pole zero inversion is not

as large. As f3 increases, the pole zero inversion in the SWLQGcompensator begins

to resemble the notch filter shown in Figure 2.3(a).
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Figure 3.11 shows a comparison of a pole zero inversion and notch filter. The

notch filter is given by

82 +2'o~ + (J)2

82 +2a'o~ + (J)2

(3.23)

Note that the width of the bucket in the magnitude plot of the notch filter controlled

by the choiceof ~, while the depth of the notch is a function of a. The parameters

for the notch filter are chosen such that the depth of the magnitude bucket of the

notch filter is the same as that of the pole zero inversion, and the width is wider, to

accommodate increased uncertainty in the open loop pole frequency. In examining

the phase plot, the absence of the lightly damped pole used to invert an open loop

zero creates a smaller phase drop in the compensator phase. Instead of -1500 of

phase drop, which could de-stabilize the system if there are modelling errors, the

notch filter phase drop is only -500
• The zero inversion of an open loop pole is
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preserved in the notch filter, without the large phase drop. Although the choice of '0
will affect the phase drop of the notch filter, the phase drop of the notch filter will

never be as large as that of the pole zero inversion.

Notice also in Figure 3.10(a) the drop in gain of the compensators at low

frequency, as the uncertainty in the 10 radlsec mode is increased. This also occurs

in the notch filter, pole zero inversion comparison in Figure 3.11. In return for

increased robustness in the compensator by damping the lightly damped poles, the

low frequency compensator gain decreases, as does the closed loop performance

improvement. This is a tradeoff between performance improvement and

compensator robustness.

Figure 3.12(a) shows three SWLQG compensators for de-sensitizing the same

mode as in Figure 3.10(a), at 10 radlsec, but the crossover of the loop transfer

function is now 15 radlsec. Therefore, the mode lies in Region 2 as in Figure 3.3, or

in the crossover region, but before the loop crossover. Instead of adding damping to

the compensator poles first, as it did in Figure 3.10(a), the SWLQG compensator

damps both the poles and zeros, and moves them together, thus creating a pole zero

cancellation. Therefore, for uncertain modes in Region 2, the SWLQG compensators

essentially use no compensation for the structural modes, just as in the high gain

LQG asymptote in Equation 3.19 for modes in Region 1. Notice also that the low

frequency gain of the compensator again decreases with increased uncertainty in the

10 radlsec mode. The SWLQG compensator is giving away a small amount of closed

loop performance improvement, in return for. a more robust compensator, as in

Figure 3.10(a).

Tnmcation of Compensator States

In addition to lack of robustness, another weakness of LQG compensators is

in the large dimension. If there are compensator dynamics that are not important to
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Figure 3.12(a). SWLQG compensators for Typical Section 1A for three
different uncertainties in the mode at 10 rad/sec (Region 3).
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Figure 3.12(b). Loop transfer functions g,uK for the three SWLQG
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the stability and performance goals of the controller design, then they considered

superfluous and may be truncated. For this topology, the locations of the

compensator pole zero inversions, in relation to the regions in Figure 3.3 will yield

the importance, and possible truncation of compensator states. The compensator

dynamics in Region 1, according to Equation 3.19, are pole zero cancellations. These

dynamics, therefore, can be truncated from the compensator. For the compensator

dynamics in Region 2, from the SWLQG compensators in Figure 3.12(a), the pole

zero inversions often are removed in the robustification process, and therefore can be

truncated from the compensator.

Compensator dynamics in Region 3 are addressed by the SWLQG

compensators in Figure 3.12(a). For these dynamics, the pole zero inversions often

became notch filters. Therefore, these dynamics are not truncated. Compensator

r dynamics in Region 4 are given by the low gain, LQG asymptote in Equation 3.17, or

the inversion of the input to output transfer functiongyu. In examining an example

of these dynamics, in.Figure 3.5(a) and (b), the LQG compensator contains pole zero

inversions of the modes at 28 and 51 radlsec. These dynamics lie in Region 4, well

after the loop crossover at 4 radlsec. If these dynamics are truncated, the

performance and stability of the closed loop system would not be altered. Therefore,

compensator dynamics in Region 4 are truncated.

The decision of where the division between Regions 3 and 4 in Figure 3.3 is

very important. According to the previous discussion, it means the difference

between truncating or not truncating modes in a compensator. Modes in Region 3

have loop gains above -3 dB, while those in Region 4 do not. Checking the closed

loop stability, therefore, is very important when designing the compensator.

Summary

The optimal LQG compensator for topologies such as those given in Section
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3.2 was presented in the previous section. The LQG compensator is a blending of

the high gain LQG asymptote (Equation 3.19) and the low gain LQG asymptote

(Equation 3.17), with the division between the two approximately the crossover

frequency of the loop transfer functiongyuK. The high gain asymptote is a high gain

controller, with the temporal relationship between the performance and output. The

low gain asymptote is a rate feedback controller, inverting the input output transfer

function at high frequency. The LQR weighting, P, changes the bandwidth of the

system, and therefore the mixture of the high and low gain LQG asymptotes, as was

shown in Figure 3.6<a). Also, as the sensor noise in the system increases, or as the

Kalman Filter weighting Jl increased, the high gain integral control used at low

frequency becomes high gain lag control. And the rol1offof the compensator and loop

transfer function is made steeper, by using a high frequency, heavily damped pole

pair in Region 4. These were both shown in Figure 3.7(a) and (b).

In Region 1, open loop modes are not inverted, and the compensator uses pole

zero cancellations. These modes are therefore, able to be truncated from the

compensator. The LQG compensator, far outside the bandwidth in Region 4, inverts

the dynamics in the disturbance to output transfer function gyw, or the input output

transfer function gyu in this case. Because these compensator dynamics do not affect

the closed loop performance or stability, they are able to be truncated. For modes

within the crossover region, or in Regions 2 and 3, the LQG compensator exactly

inverts the open loop zero with compensator poles, but do not exactly invert the open

loop poles with compensator zeros. The SWLQG compensator robustifies modes in

Region 2 by creating compensator pole zero cancellations, as shown in Figure

3.10(a). These compensator dynamics, therefore, can be truncated. And when the

SWLQG compensator robustifies modes in Region 3, the compensator creates

dynamics similar to notch filters, as shown in Figure 3.12(a).

The benefits of the optimal LQG compensator, along with the robustification
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and truncation of superfluous states, are used to make a low order, robust

compensator called a Neo-Classical compensator.

3.4 Neo-ClassicalControl

In this section, the analysis of compensator design from the previous section

are interpreted to create a set of rules to design low order, robust compensators for

the topology given in Section 3.2, or Topology I. These rules are used by convolving

each step into the compensator, until a low order, robust compensator is returned at

the completion of the design rule. Neo-Classical Design Rule 1 for analogous

performance and output, and analogous disturbance and input, and collocated, dual,

and complementary extreme, input and output topology is shown below.

Neo-Classical Design Rule 1

For analogous performance and output, and analogous disturbance
and input, and collocated, dual, and complementary extreme input
and output:

A. . Design a low frequency controller for Regions 1 and 2, i.e.
K=kotPzy

where ko is a gain used to set the bandwidth of the system
subsequently, and ~%1 is the temporal relationship between the
performance % and the outputy.

B. Select a bandwidth. Design the high frequency controller for
Regions 3 and 4 such that the convolution of A and B yields a
rate feedback compensator at high frequency. Adjust ko such
that the crossover of the loop transfer function is equal to the
choice of bandwidth. Insure that placement of these dynamics
is made such that the phase margin at the loop crossover is
approximately 30o-6€r.

C. Add higher frequency rolloff dynamics, if necessary.

D. Examine the loop transfer function, gyuK, consisting of the
open loop system,gyu, and the compensator designed from
rules lA-C. Notch filter all modes in Region 3, which may
affect the closed loop stability of the system. Ifnecessary,
iterate to B if the phase margin is not in the 30°-60>range.
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The Neo-Classicalcompensator is a compilationof the previous results from

the optimal compensation analysis, for topologies which fall into the Topology I

category. In Design Rule lA, a low frequency controller is created for Region 1,

which resembles the high gain LQGasymptote given in Equation 3.19. It is a high

gain controller, with the temporal relationship tPzy~).

(3.24)

where the gain k 0 will be used to set the bandwidth after Design Rule lB is

completed.

Design Rule lB states that first, a bandwidth is chosen. Then, a high

frequency controller is designed. The LQG compensator, according to the low gain

LQGasymptote in Equation 3.17, is a rate feedbackcontroller, with the inversion of

the disturbance to output transfer function, or input to output transfer function in

this case, at high frequency, except for the dominant mode. The inversion of the

dynamics of gyu in Region 4 were shown to be superfluous, and compensation for

modes in Region 3 is addressed in Design Rule lD. Therefore, only a rate feedback

controller is designed for high frequency in Design Rule lB, with no extra

compensator dynamics. The dynamics of this controller are convolved with the

controller designed in Design Rule lA (Equation 3.24), to Yielda high frequency rate

feedbackcompensator. For instance, if the temporal relationship tPzy is an integrator,

as in Typical Sections lA and lB, then the low frequency controller would be

integral control, or position feedback. In order to design a high frequency rate

feedback controller, a zero is added at an intermediate frequency, creating

proportional control of the output, or rate feedback. In the example, the placement

of the zero is made such that the phase margin of the loop transfer function is

between 30° and 60°. This is how all dynamics are placed, as stated in the Design

Rule lB. The design constant ko is then adjusted, such that the crossoverof the loop
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transfer function is equal to the choice of the bandwidth.

Following Design Rule lC, a high frequency rolloffis designed, consisting of

two heavily damped poles, or one real pole. This rolloff is used for noise attenuation,

and the rolloff of high frequency dynamics, and should only be used if necessary.

The rolloff of the open loop transfer function may be sufficiently steep, such that no

rolloffin the compensator is needed.

Design Rule lD states that the loop transfer function, made up of the open

loop transfer function gyu, and the compensator designed from Design Rules lA-C, is

examined. Modes from Region 3, which have a loop gain above -3 dB are examined

for possible closed loop stability problems. Those modes which present questionable

closed loop stability are gain stabilized by using notch filters. The notch filter is

used, as a result of the robust compensation techniques of the SWLQG compensators

for modes in Region 3, as shown in Figure 3.l2(a).

As an example, a Neo-Classical compensator is designed for Typical Section

lA, shown in Figure 3.1(a). The open loop transfer function gyu is shown in Figure

3.13. This is dual to the LQG design in Figure 3.5(a)-(c). As shown in Design Rule

lA, a low frequency controller is constructed from the high gain LQG asymptote, or

(3.25)

The value for the gain ko is adjusted when Design Rule lB is complete.

The bandwidth chosen is the same as the bandwidth of the LQG compensator

in Figure 3.5(b), or 4 radlsec. Design Rule lB states that a controller is designed

such that its convolution with the controller from lA yields a high frequency rate

feedback controller. For this case, integral control (position feedback) is the low

frequency controller, as shown in Equation 3.25. Therefore, a zero is convolved into

the compensator to make the high frequency controller a proportional controller, or
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rate feedback. This zero is placed at 1.8 radlsec, such that the phase margin of the

loop transfer function at the 4 radlsec crossover is approximately 600
•

Design Rule 1C states that a rolloff controller is added, if necessary. A one

pole rolloff is added, with a corner frequency of 100 radlsec. Finally, the gain ko is

adjusted, such that the loop crossover of the compensator designed from 1A-C and

the open loop system gyu, is 4 radlsec.

Design Rule 2D states that the loop transfer function from the compensator

created from Design Rules 1A-Cand the open loop transfer function gyu is examined.

Figure 3.14(a) shows the compensator designed from Design Rules 1A-C, and the

corresponding loop transfer function is shown in Figure 3.14(b). Notice that the loop

gain for the mode at 10 radlsec is above -3 dB. This mode is stable for this particular

system, but in a system with phase delays, its stability might be questionable

because of a small phase margin. Therefore, this mode is notch filtered. A notch
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filter, as in Equation 3.23, is constructed for this example with the following

characteristics: ro=10,a=10, '=0.02.

Notice the modes above 10 rad/sec. These modes fall into Region 4, from

Figure 3.3, and therefore are not compensated, as stated in Design Rule lB.

Figure 3.15(a)shows the resulting 4 state Neo-Classical compensator, plotted

with the 8 state LQGcompensator from Figure 3.5(a), designed for Typical Section

1A. The corresponding loop and closedloop transfer functions are shown in Figures

3.15(b) and (c). Notice the low frequency gain of the two compensators is identical.

This is a result of both compensators having a system bandwidth of 4 rad/sec, and

using a low frequency integral control. Both the Neo-Classical and LQG

compensators gain stabilize the open loop pole at 10.1 rad/sec with a compensator

zero inversion. However, the Neo-Classical compensator has no compensator pole,

as an inversion of the of the open loop zero at 8.6 rad/sec. The high frequency pole

zero inversions in the Neo-Classical compensator at 28 and 51 rad/sec are not

present in the LQG compensator. Also at high frequency, the gain of the

compensator is greater than that of the LQG compensator. This is the result of

using the more robust notch filters, rather than pole zero inversions.

In comparing the loop transfer functions of the Neo-Classical compensator

with and without the notch filter in Figures 3.15(b) and 3.l4(b) respectively, the

mode at 10.1 rad/sec is gain stabilized. Also notice that the phase at crossover is

00°, within the 30°-60° range. Figure 3.12(c) shows the open and closed loop

disturbance to performance transfer functions. The performance improvement of the

Neo-Classical design is the same as the LQG design, 27.7 dB. The Neo-Classical

compensator has 4 states, compared to the 8 state LQG compensator. The

robustness of the Neo-Classical compensator is better, from not using lightly damped

compensator poles at 8.6, 27, and 51 rad/sec to cancel open loopzeros.

Figure 3.16 shows the open loop input output transfer function g,", for

100



103

103

102

101

-- Neo-Classical
---- LQG

$
",,,,-"'_.- : ,.--\--------------------------.'~'

.---_ ..--, ,--- ", .."" .
"..
H..:

101

Frequency (rad/see)

101

Frequency (radlsec)
10°

101

Go) 101]'S
tlO
tIS::s 10°

10-1
10-1

50

0-tlOGo) -50~.......
Go)

~ -100
If

-150

-200
10-1

Figure 3.15(a). 4 state Neo-Classical compensator K and the LQG
compensator (p=lE-l, Jl=lE-8) for Typical Section 1A

103101

I ==~ ..icol I
-~::.~--T--.---.------.--.---.---.---.---.---.---.--.---.---.-

",

101

Frequency (rad/see)
10°

102

101
Go)

]
.~ 10°

tIS::s
to-1

10-1
10-1

50

-tlOGo) -50S
Go)

tQ
If

-150

-200 L..-.---l_.L-.I..-1-Ju..&..LL...._-'---'--.L...L...L.I..u..L_.-J---L-J-..L..L..L.LL"'--_L.-.L-.J-J-.L...U.J.J

to-1 100 101 101 103

Frequency (rad/see)

Figure 3.15(b). Loop transfer functions g,J{ consisting of the compensators
in Figure 3.15(a) and the open loop transfer function.

101



::: /\\
"

",

-- Neo-Classical
--- LQG
....••..•..• OpenLoop

10.1

-8
.E 10.2Q
as
~

to-3

10-4

10.S

Frequency (rad/sec)

Figure 3.15(c). Open and closed loop disturbance to performance transfer
functions for Typical Section 1A Performance improvement
with both the Neo-Classical and LQG compensators is
27.7 dB.

Typical Section 1B in Figure 3.1(b). In order to design a Neo-Classical compensator

for this typical section, Design Rule 1 is again used. This design is dual to the LQG

design in Figures 3.9(a) and (b). Using Design Rule lA, the low frequency controller

again is high gain integral control, as in Equation 3.25. The gain constant ko is set

when Design Rule 1Bis completed.

Using design Rule 1B, a bandwidth of 15 rad/sec is selected, identical to that

of the LQG compensator in Figure 3.9(b). The high frequency rate feedback

controller is created by placing a zero in the compensator. The zero frequency is set

at -2.5 rad/sec, such that the phase margin at the 15 rad/sec crossover is

approximately 60°. The gain constant k 0 is set such that the bandwidth of the

system is 15 rad/sec.

A one pole rolloff filter is added to the compensator, following Design Rule
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1C. The pole frequency is set at 100rad/sec.

Design Rule 1D states that the loop transfer function of the compensator

designed with Design Rules 1A-C, and the open loop transfer function gyu, is

examined. The modes at 28 and 51 rad/sec create a loop gain greater than -3 dB,

therefore these modes are gain stabilized with two notch filter with the following

characteristics: (m=28, a=10, '=0.02) (m=51, a=20, '=0.02).

Figure 3.17(a) shows the resulting 6 state NeO-Classicaland 8 state LQG

compensators (Figure 3.9(a» for Typical Section 1B, shown in Figure 3.1(b). Notice

how the two compensators are again very similar at lowfrequency. The LQGlightly

damped compensator poles or open loop zero inversions are not used in the Neo-

Classical compensator, and the compensator zeros or open looppole inversions are

very similar for modes at 28 and 51 rad/sec. The high frequency gain of the Neo-

Classical compensator again is higher than that of the LQGcompensator, due to the
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use of notch fl.lterse

Figure 3.17(b) shows the loop transfer function for the Neo-Classical

compensator and LQG compensators. Notice how the modes at 28 and 51 rad/sec

are gain stabilized by both compensators, but the Neo-Classical compensator does

not compensate the modes at 1.6 and 10.1 rad/sec because they lie within the

bandwidth.

Figure 3.17(c) shows the open and closed loop disturbance to performance

transfer functions, for both the Neo-Classical and LQG compensators for Typical

Section 1B in Figure 3.1(b). The closed loop performance improvement from both

designs is 31.1 dB. The Neo-Classical compensator has 6 states, compared to the 8

state LQGcompensator. The robustness of the Neo-Classical compensator is better,
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as a result of not using lightly damped compensator poles at 9,27, and 36 rad/sec to

cancel open loop zeros.

3.5 Experimental Implementation

Optimal and Neo-Classical compensators such as those designed in Sections

3.2 and 3.3 were designed and implemented experimentally on the Middeck Active

Control Experiment (MACE). A few different techniques such as LQG, truncated

LQG, and SWLQG were used to design modern controllers, while the design rules

for Neo-Classical control presented in Section 3.3 were used to design Neo-Classical

controllers.

The first topology for which controllers were designed and run was MACE

lA, a pointing loop around the payload z-axis, shown in Figure 3.18. The

performance metric z is the z-axis integrated rate gYroin the payload. The metric is

bandlimited, from 0.5-50 Hz. The output y is also the z-axis rate gyro in the

+Y

)-+X
+Z

Figure 3.18. MACE 1A: The topology for the payload pointing loop.
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payload. The disturbance w and the output u are the z-axis relative torque of the

gimbal. Because the input is a relative torque between the payload and the end of

the bus, and the output is the inertial rotational velocity of the payload, the loop is

collocated but not dual. Fleming (1990) showed that a collocated sensor actuator

pair, which are not dual, but preserve the alternating pole zero pattern, can be

treated as dual. Such sensor actuator pairs are called pseudo-dual.

For this topology,the performance z is the time integration of the output y,

giving the followingrelationship between the two

1z=, y=-y
zy s

The disturbance w and the input u are identical.

w=u

Therefore, this topologyfalls into the TopologyI category

(3.26)

(3.27)

The experimental measurement of the input output transfer function, By", is

shown in Figure 3.19. Notice how the phase reflects the alternating pole zero

pattern, but it also shows a large phase delay in the loop. If there was no phase

delay in the system, the phase at 20 Hz would be -900
• However, the rate gyro,

Bessel filter, and AC-100add a time delay which makes the phase -1800 at 20 Hz.

The finite element model, which was used for the control designs, was a 40 state

model, with 2 states for the integrated rate gyro, 3 states for the rate gyro dynamics,

and 4 states for the PADE approximation of the time delay in the control loop, and

31 states for the structural modes.

Figure 3.20(a) shows a model based 23 state compensator, which was

truncated from a 40 state LQG compensator, designed from the 40 state model. The
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truncation was based upon a Hankel Singular Value analysis [Pro-Matlab (1992)]

and only affectedmodes in the compensator above 100 Hz, which were not important

in the experiment. Thus, for the purposes of this experiment, the 40 state and 23

state LQGcompensators were equivalent.

The LQG compensator used integral control (position feedback) at low

frequency, similar to the high gain LQG asymptote given in Equation 3.20. The

integral control changes to proportional control (rate feedback) with the use of a zero

at 8 Hz, creating a PI controller similar to the previous LQG compensators. The

LQGcompensator also used pole zero inversions of the modes at 6.8,9.4, 14,36, and

88 Hz. This is consistent with the low gain LQG asymptote (Equation 3.17), which

inverts the input output transfer function, gyu at high frequencies, except for the

dominant mode.
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Figure 3.19. Measurement of the open loop input output transfer
function gyu from z-axis gimbal to z-axis payload rate gyro,
for MACE 1A
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Figure 3.20(c). Measurement of the open and closed loop disturbance to
performance transfer functions for MACE 1A Performance
improvement with the LQG compensator was 25.7 dB.

Figure 3.20(b) shows a measurement of the loop transfer function, gyuK,

consisting of the model based 23 state LQG compensator (Figure 3.20(a», and the

open loop transfer function (Figure 3.19). Notice how the compensator pole zero

inversions of the modes at 6.8, 9.4, and 14 Hz were not exact, but the inversions of

the modes at 36 and 88 Hz were approximately exact. This is agreeable with the

previous analysis of LQG compensators, where modes that lie in Region 2 (6.8, 9.4,

and 14 Hz) are not exactly inverted in an LQGcompensator, while modes in Region

4 (36 and 88 Hz) are exactly inverted.

An aspect of the LQG compensator which was different from those designed

in Section 3.3 can be seen at high frequency. There was high gain at high frequency,

with commensurate phase lead added at loopcrossover. Notice how the phase of the
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compensator increases as the frequency increases. This was a result of the phase

lead (and high frequency magnification) added by the LQG compensator. The large

time delay is represented in the model using a fourth order PADE approximation,

with dynamics that contain damped nonminimum phase zeros. The phase delay,

therefore, limits the collocated dual properties of the control loop, and subsequently

also limits the bandwidth and performance improvement for this topology. The LQG

compensator constructed several lead filters in order to compensate for this phase

lag, adding phase lead at crossover, at the expense of high frequency amplification.

A discussion of this type of compensation is in Chapter 6, for noncollocated control

with nonminimum. phase zeros in the input output transfer functiongyu•

Figure 3.20(c) shows the measured open and closed loop disturbance to

performance transfer functions for the model based 23 state LQG compensator

MACE lA. The performance improvement with this LQG design was 25.7 dB.

Notice the closed loop transfer function did not roll off with the same slope as the

open loop transfer function. This was a result of the large phase lag in the open loop

transfer function, and the compensation technique of phase lead and high frequency

amplification in the LQG controller. Further increase in the bandwidth of the LQG

compensator, by decreasing the LQR weighting p, created closed loop stability

problems at high frequency. As p decreased, in an attempt to increase performance

improvement, the gain and bandwidth of the compensator increased, as did the

phase lead and high frequency amplification. The loop transfer function, shown in

Figure 3.20(b), began to contain additional high frequency loop crossovers from

modes above 50 Hz, which de-stabilized the closed loop system.

Figure 3.21(a) shows a 13 state reduced order LQG compensator, truncated

down from the same model based 23 state LQG compensator in Figure 3.20(a).

Truncation lower than 13 states resulted in an unstable closed loop system. Notice

that most of the pole zero inversions of the compensator were truncated (6.8, 9.4, 14,
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performance transfer functions for MACE lA. Performance
improvement with the truncated LQG compensator was
25.8 dB.

and 36 Hz). All that remains is the PI controller with a zero at 8 Hz, and the lead

filters which add phase lead at crossover and high frequency amplification, and a

pole zero inversion at 88 Hz. The pole zero inversion at 88 Hz was not truncated, as

it might have de-stabilized the closedloop system.

Figure 3.21(b) shows the measured loop transfer function, g~, consisting of

the 13 state truncated LQGcompensator (Figure 3.21(a», and the open loop transfer

function (Figure 3.19). Notice the similarities to the loop transfer function from the

23 state LQG controller (Figure 3.20(b». They are almost identical. Figure 3.21(c)

shows the measured open and closed loop disturbance to performance transfer

functions for the model based 13 state truncated LQG compensator MACE 1A.

Notice that it is also almost identical to the closed loop system from the 23 state
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LQG compensator (Figure 3.19(c», as was the performance improvement of 25.8 dB.

The truncation of the weak pole zero inversions at 6.8, 9.4, and 14 Hz (Region 2),

and 36 Hz (Region 4) did not affect the stability or performance improvement of the

closed loop system.

A Neo-Classical controller was designed for the MACE 1A topology, using the

Neo-Classical Design Rule 1 presented in Section 3.3. Using Design Rule lA, and

the temporal relationship between z and y in Equation 3.24, the low frequency

controller is integral control.

(3.28)

For the experiment, a 2 state stabilized integrator was used, as stated in Table 2.4,

to prevent integration of DC bias of the rate gyro. The design constant ko was

chosen upon the completion of Design Rule lB.

Using Design Rule 1B, a bandwidth of 20 Hz was chosen, similar to that of

the LQG compensators (Figures 3.20(b) and 3.21(b». Then a high frequency

controller was created by adding a compensator zero, thus creating PI controller.

The zero frequency of the PI controller was set at 8 Hz. The zero was not able to be

placed such that the phase at crossover is approximately 60°, as a result of the large

phase delay. Its placement, therefore, was somewhat arbitrary, and could be moved

after the construction of the lead filters.

Four lead filters, each with 2 damped poles and 2 damped zeros, were created

in order to compensate for the large phase lag in the control loop, similar to the high

frequency amplification and phase lead in the LQG compensator in Figure 3.21(a).

The lead filters provided lead at crossover versus high frequency amplification. The

gain ko of the compensator was then adjusted to create a 20 Hz bandwidth.

Following Design Rule 1C', a rolloff was not added to the compensator
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because the dynamics would add phase lag, and the rolloff from the open loop

dynamics was steep enough after the 20 Hz crossover (Figure 3.19).

From Design Rule 1D, in examining the loop transfer function gyuK consisting

of the controller designed from Design Rules 1A-C, and the open loop transfer

function gyu from Figure 3.19, the stability of the mode at 36 Hz was in question.

Therefore a two pole notch filter (Equation 3.23) was constructed for the 36 Hz mode

(m=36Hz, a=10, '=0.02). The resulting 12 state Neo-Classical compensator

designed for MACE 1Ais shown in Figure 3.22(a).

Notice the similarities between the 12 state Neo-Classical compensator in

Figure 3.22(a), and the 13 state truncated LQG compensator in Figure 3.21(a). The

PI controller and lead filters are equivalent. The LQG controller added a one pole

rolloff, which the Neo-Classical compensator did not. The truncated LQG

compensator inverted the 88 Hz mode, while the Neo-Classical compensator notch

filtered the 36 Hz mode.

Figure 3.22(b) shows the measured loop transfer function, g,J(, made up of

the 12 state Neo-Classical compensator (Figure 3.22(a», and the open loop transfer

function (Figure 3.19). Again notice the similarities to the loop transfer function

from the 13 state truncated LQG compensator (Figure 3.21(b». They are almost

identical, except the loop gain of the Neo-Classical compensator rose above 0 dB at

the 88 Hz mode. The stability of the mode at 88 Hz was in question because of the

amplification from the lead filters. This was a result of a noisy measurement of the

transfer function, however, and the mode was not actually unstable in closed loop.

Figure 3.22(c) shows the measured open and closed loop disturbance to

performance transfer functions for the 12 state Neo-Classical compensator for

MACE 1A. The performance improvement was 25.8 dB, identical to that from the 13

state truncated LQG compensator. Additional performance was again limited by the

phase lag in the control loop. Additional phase lead, and subsequent high frequency
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amplification from the lead filters would have de-stabilized the 88 Hz mode, along

with other higher frequency modes.

Figure 3.23 shows MACE 1B, the topology for the bus vibration reduction

loop. The performance metric z is the z-axis integrated inertial rate gyro of the bus.

The metric is bandlimited, from 0.5-50Hz. The output y is also the z-axis rate gyro

of the bus. The disturbance w and the output u act identically the z-axis inertial

torque of the torque wheels. The sensor actuator pair is collocatedand dual, as the

input is an inertial torque, and the output is an inertial rotational velocity, both

acting at the center node. The pole zero pattern of the input output transfer

function gyu, therefore is alternating poles and zeros, as shown in Figure 3.24.

Notice the large time delay in the loop is evident, similar to the input output

transfer function for MACE1Ain Figure 3.19.

117



u W
TO!CIue Wheel Assembly

/

\
Rate Gyro Platfonn

y Z
+Y

)-+X
+Z

Figure 3.23. MACEIB: The topologyfor the bus vibration reduction loop.

A Neo-Classical compensator was designed for the MACE lB topology using

Neo-Classical Design Rule 1. Notice that the topology is very similar to that of

MACE lA, the payload pointing topology, with the disturbance and input being

identical

w=u (3.29)

And the performance and output are related by the same temporal relationship, as

in Equation 3.26
1

Z= t1'z,Y=-Ys
(3.30)

Using Design Rule lA, a low frequency controller was created, based upon

the temporal relationship given in Equation 3.30.
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For this case, the low frequency controller was an integrator. The integrator for the

experiment was a two pole, stabilized integrator (Table 2.4). The design constant ko

was chosen upon the completion of Design Rule lB.

Following Design Rule lB, the bandwidth chosen for this design was 20 Hz.

Next, a high frequency controller was created by placing a zero in the compensator,

at 8 Hz, in order to create a rate feedback compensator at high frequency. Thus, a

PI controller is created. Four lead filters were also constructed, exactly as in the

Neo-Clas'sical compensator for MACE 1A (Figure 3.22(a», in order to compensate for

the large phase lag in the control loop. The design constant ko was chosen to set the

crossover of the loop transfer function to be 20 Hz.

From Design Rule lC, no rolloff dynamics were added, as a result of the steep

rolloff of the open loop transfer function in Figure 3.25.

Following Design Rule lD, in plotting the loop transfer function gyuK,

consisting of the compensator designed with Design Rules lA-C, and the open loop

transfer function gyu in Figure 3.24, the closed loop stability of the mode at 36 Hz

was questionable. Therefore, a two pole notch filter (Equation 3.23) was constructed

for the 36 Hz mode (ro=36Hz,a=20, '=0.02).

The resulting 12 state Neo-Classical compensator, designed for MACE 1B is

shown in Figure 3.25(a). Notice the similarities to the Neo-Classical compensator

for MACE lA (Figure 3.22(a». The only difference, in addition to the relative gain of

the compensators, is the notch filter in Figure 3.25(a) (MACE lA) is deeper than the

notch filter in Figure 3.23(a) (MACE lB). This is a result of the larger value of a (20

versus 10) in the notch filter construction.

Figure 3.25(b) shows the measured loop transfer function, g~, consisting of

the 12 state Neo-Classical compensator (Figure 3.25(a», and the open loop transfer

function (Figure 3.24). Notice how the 36 Hz mode was gain stabilized by the 36 Hz

notch filter. Figure 3.25(c) shows the measured open and closed loop disturbance to
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performance transfer functions for the 12 state Neo-Classical compensator for

MACE lB. The performance improvement with the Neo-Classical controller was

12.5dB.

Many different optimal and robust controllers have been designed and

implemented on this bus vibration reduction topology, MACE lB. Grocott and

Miller (1992) compared multimodel and LQG controllers, both designed with a

model made from the identification of the open loop system. The best performance

improvement was 9 dB for the 24 state LQGcontroller and 12 dB for the 24 state

multimodel controller. How (1993) designed robust controllers using the Popov

method, and the performance improvement was 11.5 dB for his 24 state

compensators. And Grocott (1992) designed and implemented 24 state SWLQG

controllers, with the best performance improvement being 12.8 dB. The Neo-

Classical controller, with 12 states and 12.5 dB performance improvement, was of
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Figure 3.24. Measurement of the open loop input output transfer
function gyu from z-axis torque wheels to z-axis bus rate gyro
for MACE lB.
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equal or lesser dimension and on the same order of performance improvement

compared to other compensators, designed for their optimality and robustness

characteristics.
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Chapter 4

SISO Topology II:
Analogous Performance & Output

or
Analogous Disturbance & Input

4.1 Introduction

This chapter examines the implications on the control design for TopologyII,

that is when the performance and output are analogs, or the disturbance and input

are analogs, and the input output pair is collocated, dual, and complementary

extreme. Two topologiesof the typical section will first be presented. They are the

same as in Topology I, but in one case, the performance is in a different spatial

location of the structure, and in the other case, the disturbance is in a different

spatial location of the structure. The LQG and SWLQG compensators will be

examined, showing differences and similarities to the compensators designed for

Topology1. The results will again be interpreted and presented in a design rule for

Neo-Classical compensators. Finally, LQG, SWLQG, and Neo-Classical

compensators were designed and implemented on the MACE test article, and the

closed loopresults will be shown.
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4.2 Topologies Examined

Chapter 3 examined a simplified topologyof the disturbance rejection control

design problem, namely when the performance z and output y are analogs, and the

disturbance w and input u are analogs. In this chapter, the control design will be

examined where only one of these is true.

If the disturbance w and the input u are identical, such that

w(s) = u(s)

Then the general SISO disturbance rejection problem simplifies to

{z} [gzw gzu]{w} [gzu gzu] {w}
y = g yu g yu U = g yu g yu w=u U

(4.1)

(4.2)

This topology is called Topology IIA because the disturbance and input are

analogous, but the performance and output are not. The following relationships

occur between the transfer functions.

gzw = gzu

And the closed loop transfer function from disturbance to performance is

(4.3)

(4.4)

(4.5)

If the above transfer function is set equal to e, and solved for the compensator K,
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Good disturbance rejection is achieved as e tends to zero, giving the disturbance to

performance transfer function minimizing compensator

UMK= g.w = g'_I
£-+0 Eg Eg

yu yu w=u

(4.7)

In the control design process, again there are two important aspects. One is

the minimization of the transfer function given in Equation 4.5. This can be

accomplished by setting the magnitude ofK to be large, or

I-=-I=~I
W c:Kl for (4.8)

The second, and more important aspect of control design is the structure of the input

output transfer function gyu. As in Chapter 3, the collocated, dual, and

complementary extreme actuator sensor pair will be examined, thus creating an

alternating pole zero pattern in the gyu transfer function.

Figure 4.1(a) shows an example of TopologyIIA. The outputYI is the vertical

rate of the tip mass, and the performance Z2 is the vertical position of the third mass.

The input UI and disturbance WI are the same, i.e. a vertical force on the tip mass.

Notice that this topology is the same as that in Figure 3.1(a), except the performance

Za is now on the third mass. Optimal compensation will examine the implications on

the control design from Topology I when the performance is in a different spatial

location.

Figure 4.2(a) shows the open loop disturbance to performance transfer

function for Typical Section 2A (WI to za). There is a missing zero pair between the

pole pairs at 1.6 and 10.1 radlsec, and two real zeros at 14 radlsec (nonminimum

phase) and -14 radlsec (minimum phase). Notice that the input output transfer

function gyu, is the same as that for Typical Section lA, given in Figure 3.2(a).
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This chapter will also examine the dual topology to that just discussed

previously, Le. when there is a relationship between the performance z and the

output y, such that they are analogs.

z(S) = tPzy(s)y(s) (4.9)

There is no explicit relationship between the disturbance w and input u, however.

This topology is called Topology lIB because the performance and output are

analogous, but the disturbance and input are not. Then the general SISO

disturbance rejection problem simplifies to

{z} = [gzw gzu]{w} = [tPzygyw tPzygyu] {w}
y gyw gyu U gyw gyu z=;zyY U

The followingrelationships occurbetween the transfer functions.

And the closedlooptransfer function from disturbance to performance is

(4.10)

(4.11)

(4.12)

(4.13)

If the above transfer function is set equal to e, and solvedfor the compensator K,

K = gzw -£ = lfl."gzw - £1
£Byu Egyu z=;zyY

(4.14)

Gooddisturbance rejection is achieved as e tends to zero, giving the disturbance to
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performance transfer function minimizing compensator

(4.15)

Control design is a function of the pole zero structure of Cy.u and seeking to

minimize the closed loop transfer function given in Equation 4.13. The input output

pair is collocated, dual, and complementary extreme, resulting in an alternating pole

zero pattern. Disturbance rejection, or minimization of the transfer function given

in Equation 4.13 can be accomplished by setting the magnitude ofK to be large, or

for (4.16)

Figure 4.1(a) shows an example of this type of topology with Yl and Ul

collocated, dual, and complementary extreme, andz1 andYl are analogs.

The output Yb is the vertical rate of the tip mass, while the performance Zlis

the vertical position of the tip mass. The temporal relationship q,zy, is then given by

(4.17)

(a) Typical Section 2A (b) Typical Section 2B

Figure 4.1. Topology II: (a) Topology lIA - analogous disturbance and
input (b) Topology lIB - analogous performance and
output. Both with collocated, dual, and complementary
extreme input and output.
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therefore,
1

t/J (8)=-
zy 8 (4.18)

Notice that this topology is the similar to that in Figure 3.1(a), except that the

disturbance W3 has movedto the third mass.

Figure 4.2(b) shows the open loop transfer function from disturbance to

performanceforTypicalSection2B (W3 to z1)' The input output transfer function gyu,

is the same as that given in Figure 3.2(a).

In examining the disturbance to performance transfer function minimizing

compensators in Equations 4.7 and 4.15, they are identical. Both are high gain

compensators, with the filter gzw/gyu. This suggests that the compensation

techniques for TopologyIIA and lIB should be similar.
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(a) gzw for Typical Section 2A (b) gzw for Typical Section 2A

Figure 4.2. Disturbance to performance transfer functions.
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The filter dynamicsgzw/&ucan be divided into two parts

gzw = A. g
g 't'o 0

yu
(4.19)

where t/Jois the temporal relationship between the performance and output, and go is

a structural filter. Then the simplified disturbance to performance transfer function

minimizing compensator for both Topology lIA and 1m is

LIMK= gzw =!t/J g
£-.0 Egyu e 0 0

(4.20)

Notice that for Topology lIB, the structural filter go isgyw/gyUand the temporal

relation t/Jois identically <Pzy. For TopologylIA, both the <Poand go lie within the filter

dynamics gzu/ /1yu'

For Typical Sections 2A and 2B, the input output transfer functions, gyu, are

the same, as are the disturbance to performance transfer functions, gzw, shown in

Figure 4.2. Therefore, the disturbance to performance transfer function minimizing

compensators are identical for both Typical Section 2A and 2B.

In the previous chapter, certain issues were examined such as bandwidth,

structural modes within four regions of the loop transfer function, dominant mode

control, robust control, and truncation of the compensator. This chapter will build

upon that analysis, by examining what happens to the optimal compensators

designed for the topologies discussed in Chapter 3, if the disturbance or performance

are at different spatial locations in the structure.

4.3 Optimal Compensation

In Chapter 3, optimal compensation techniques such as LQG revealed
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distinct trends for topologies where the u and w are analogs, and y and z are

analogs, and u and y were also collocated, dual, complementary extreme. This

section will examine the changes in the optimal compensators if the performance

and output are nonanalogous, or noncollocated in this case, or if the disturbance and

input are nonanalogous, or noncollocated in this case. Once again, the LQG

compensators will be compared to their asymptotes.

Asymptotic Properties of the LOG Compensator;

The LQG asymptote for low noise (i.e. the Kalman Filter weighting J.L tends to

zero) and expensive control (Le. the LQR weighting p tends to infinity) was shown in

Equation 2.30 to be

(4.21)

where 'dm and COdm are the damping ratio and frequency of the dominant mode, and

kLG is a scalar constant. For the Topology IIA, where the disturbance w and the

input u are identical, the low gain LQG asymptote simplifies to

Notice this low gain LQG asymptote is identical to that of Topology I, given in

Equation 3.17. The poles of the low gain asymptote for Topology lIA are the zeros of

the input output transfer function, gyu, and the zeros are at the poles of the gJU

transfer function, except for the dominant poles.

For Topology lIB, the temporal relationship between z and y does not create

the simplifications similar to Topology IIA, and therefore the low gain asymptote for

Topology 1m is given by
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(4.23)

The poles of the low gain asymptote for TopologyIIB are the zeros of the disturbance

output transfer function, gyw, and the zeros are at the poles of the gyw transfer

function, except for the dominant poles.

The LQG asymptote for low noise (i.e. the Kalman Filter weighting JL tends to

zero), cheap control (i.e. the LQR weighting p tends to zero), and JL less than p was

shown in Equation 2.32 to be

UM K(s) = :f:-;rpl gzw
Jl-+O P gP-+O yw
P>Jl

For Topology lIA, the high gain LQG asymptote simplifies to

(4.24)

(4.25)

The poles of the high gain LQG asymptote are the zeros of the input output transfer

function gyu, identical to the poles of the low gain LQG asymptote for Topology lIA

(Equation 4.22) and the zeros are the zeros of the input to disturbance transfer

function gzu. Notice that the high gain LQG asymptote is identical to the

disturbance to performance transfer function minimizing compensator for Topology

lIA given in Equation 4.7. This is the high gain asymptote for Typical Section 2A.

For Topology IIB, the high gain LQG asymptote simplifies to

(4.26)
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assuming Jl is smaller than p. Notice that this high gain asymptote is the same as

that for Topology I given in Equation 3.19, except the compensator pole zero

cancellations are the zeros of the disturbance to output transfer function, gyw, not the

input output transfer function, gyu. In comparing Equation 4.26 with 4.15, the high

gain LQG asymptote for Topology lIB does not match the disturbance to

performance transfer function minimizing compensator, as the Topology lIA high

gain asymptote did. Therefore, although the disturbance to performance transfer

functions minimizing compensators are identical for TopologieslIA and 1m, the high

gain LQG asymptotes are not.

For Typical Section lIB, given the temporal relationship between z and y in

Equation 4.18, the high gain LQG asymptote is

LIM K(s) =:1: 1 lPzygyw = :1:_1_
~:g {P gyw s{P
P>Jl

(4.27)

The high gain asymptote is an integrator, as it was for Typical Sections 1Aand lB.

The creation of the LQG asymptotes are dependent upon the disturbance to

performance transfer function gyw being minimum phase. In examining Typical

Sections 2A and 2B in Figure 3.1, the gyw transfer function for Typical Section 2Ais

collocated and dual, while it is noncollocated and dual for Typical Section 2B. The

gzu transfer function is also assumed to be minimum phase in the high gain

asymptote. With the assumption that JL is smaller than p, however, this assumption

is not as stringent. Although the disturbance to performance transfer function for

Typical Section 2B contains a nonminimum phase zero at 14 radlsec and a missing

pair of zeros between the pole pairs at 1.6 and 10.1 radlsec, the low gain asymptote

will still be used to show the implications of these pole zero patterns.

The LQG and SWLQG compensators will first be examined for the

nonanalogous performance output pair, such as that in Typical Section 2A.

132



Typical Section Results for a NODODp)OgQUS PerformancelOutpntj
LQG compensator

Figure 4.3 shows the open loop input output transfer function for Typical

Section 2A given in Figure 4.1(a). Figure 4.4(a) shows a typical 8 state LQG

compensator with a small value for the Kalman Filter weighting, (Jl=lE-8), and an

intermediate value for the LQRweighting (p:lE-2), and the lowand high gain LQG

asymptotes from Equations 4.22 and 4.25. Figure 4.4(b) shows the corresponding

loop transfer function, gy$, consisting of the LQGcompensator (Figure 4.4(a», and

the open loop transfer function (Figure 4.3). The bandwidth is approximately 6

rad/sec.

The LQG compensator uses integral control, or position feedback, at low

frequency, matching the high gain LQG asymptote in Equation 4.25. Note in the

filtergzu/gyu of the high gain LQG asymptote, the performance z is a position, and

10-1L--.L-.L--l-.1..UL..L.LL_---L.---L.-1-JI....I...L.LU..-.....L.-.....L.-.J-L...a.....L.I...u.- .. -...a..-~L...L-~10 ..
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o
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~
u
~
f

-50

-100
10-1

100

Figure 4.3. Open loop input output transfer function gyu for Typical
Section 2A
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Figure 4.4(a). B state LQG compensator K (p=lE-2, Jl=lE-B) for Typical
Section 2A, and the low and high gain LQG asymptotes.
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Figure 4.4(c). Open and closed loop disturbance to performance transfer
functions for Typical Section 2A Performance improvement
with the LQG compensator is 26.8 dB.

the output y is a velocity. Thus the temporal relation t/Jo is an integrator and at low

frequency, the filter gzu/ gyu is an integTator. At high frequency, the compensator

inverts the gyu transfer function, similar to the low gain rate feedback LQG

asymptote in Equation 4.22. In order to do this, the LQG compensator uses a zero at

1.4 rad/see, thus creating a PI controller.

Comparing this LQG compensator with LQG compensator in Figure 3.5(a),

with a collocated performance z, at high frequency, in Region 4, the compensators

are identical, inverting the gyu transfer function. At low frequency, in Region 1, both

compensators uses integral control by placing a zero in the crossover region.

Therefore, both compensators use PI controllers. The only difference between the

two is the LQG compensator for Typical Section 2A (Figure 4.4(a» does not contain a

lightly damped zero at 10.1 rad/sec open loop pole, as the compensator does for
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Typical Section 1A (Figure 3.5(a». This is a result of the Region 1 compensator

dynamics, i.e. the high gain LQG asymptote, for Typical Section lIA includes not

only the temporal relation between z and y, "'0' but also the structural filter go.

Because this mode is in the crossover region, or Region 3, it is in a transition from

the low gain asymptote with a lightly damped zero at 10.1 rad/sec, to the high gain

LQG asymptote, with no zero pair. This will be seen more easily as the bandwidth is

increased.

In Figure 4.4(b) notice that the high frequency open loop dynamics are

inverted by the compensator. But the mode at 10.1 rad/sec creates an additional

loop crossover. This is a result of the more heavily damped compensator zero in

Figure 4.4(a). Figure 4.3(c) shows the open loop and closed loop disturbance to

performance transfer functions. The performance improvement with the LQG

compensator is 26.8 dB.

Figure 4.5(a) shows LQG compensators for three values of the LQR weighting

p, with the Kalman Filter weighting held constant (jl=lE-8). Figure 4.5(b) shows the

corresponding loop transfer functions. As p is decreased, the gain of the

compensator increases, and the magnitude of the compensator begins to resemble

the high gain LQG asymptote shown in Figure 4.4(a). Notice that the poles do not

change as a function of p, and the compensator does not become unstable or

nonminimum phase. If the LQG compensator identically matched that of the high

gain LQG asymptote, it would be unstable or nonminimum phase. Therefore, only'

the magnitude matches the asymptote. The poles of the compensator do not change

because they are the zeros of the input output transfer function, gyu, in both the low

and high gain asymptotes in Equations 4.22 and 4.25. This is also a result of the

transfer function g,w being alternating poles and zeros. This leads to the

generalization for Topology IIA that only stable minimum phase dynamics from the

structural filter go should be added in Regions 1 and 2.
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The magnitude of the LQG compensators resembles the high gain LQG

asymptote, which is also the disturbance to performance transfer function

minimizing compensator, in Region 1. In Region 4, the LQG compensator inverts

the input output transfer function, gyr.u except for the dominant mode, as the LQG

compensators did for TopologyI. The LQGcompensator for Regions 2 and 3, or the

crossover region, is again in transition between the low and high gain LQG

asymptotes. In Figure 4.5(b), for the lowest bandwidth compensator, p=IE-2, the

bandwidth is approximately 6 rad/sec. The compensator does not place a zero at the

open looppoles at 10.1 rad/sec because it is so close to Region 2, where the transition

to the high gain LQG asymptote dominates. In the intermediate bandwidth case,

p=IE-4, the bandwidth is approximately 20 radlsec. Notice how the LQG

compensator inverts the mode at 28 rad/sec, which is in Region 3. This inversion of

the modes in Region 3 is the prevalent case. Therefore, the LQG compensator for

modes in Regions3 and 4 are essentially the same for TopologyI and IIA.

Typical Section Results for a Nonanalogous PerformancelOutputj
SWLQG compensator

Because the LQGcontroller compensates modes within Region 3 for Topology

IIA similar to those for Topology I, the SWLQGcompensators are essentially the

same. If modes in Region 3 of the SWLQG compensator are de-sensitized, the

SWLQG compensator creates a notch filter, as they did for Topology I, shown in

Figure 3.10(b).

For modes within Region 2, where the transition to the high gain LQG

asymptote begins, the results are also very similar to those for TopologyI. The LQG

compensators, as the bandwidth increased, begin to drop the phase of the loop

transfer function below 1800 before loop crossover (Regions 1 and 2), as shown in

Figure 4.5(a) and (b). Figure 4.6(a) shows an LQG compensator (/3=0), and an

SWLQG compensator with a slight sensitivity added to the mode at 28 radlsec
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radlsec mode) compensators for Typical Section 2A.
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Figure 4.6(b). Loop transfer functions for the LQG and SWLQG
compensators in Figure 4.6(a).
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(fJ=0.03). Figure 4.6(b) shows the corresponding loop transfer functions. The

bandwidth for both compensators is approximately 35 rad/sec. The SWLQG

compensator immediately damped the compensator pole. This leads to the

generalization for TopologyIIA that not only should only stable, minimum phase

dynamics from the structural filter go be added to Regions 1 and 2, but also the

additions are not very robust, and therefore should be checked for closed loop

stability.

Typical Section Results for a Nonaualogous Disturbanceanput;
LOG compensator

The low and high gain LQG asymptotes for Topology liB are given in

Equations 4.23 and 4.26. Specificallyfor Typical Section 2B, the low and high gain

asymptotes are given in Equations 4.23 and 4.27. Remember, however, that these

asymptotes are dependent upon the disturbance to performance transfer function

being minimum phase, which it is not forTypicalSection2B.

Figure 4.7 shows the open loop transfer function gyu for Typical Section 2B,

given in Figure 4.1(b). Figure 4.8(a) shows a typical 8 state LQGcompensator and

the low and high gain asymptotes given in Equations 4.23 and 4.27. The

corresponding loop transfer function consisting of the LQG compensator (Figure

4.8(a» and the open loop system (Figure 4.7) is shown in Figure 4.8(b). The LQG

compensator has a small value for the Kalman Filter weighting (JL=lE-8), and an

intermediate value for the LQRweighting (p::1E-1).

The LQG compensator resembles the high gain LQG asymptote (Equation

4.27), an integrator, or position feedback, at low frequency. The magnitude of

dynamics from 10 to 100 rad/sec match the low gain LQG asymptote of Equation

4.23, by inverting the gyw transfer function. At higher frequencies, however, the

compensator rolls offinstead of matching the low gain LQG asymptote. If the value
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of the Kalman Filter weighting J.L is made smaller than IE-B, then the magnitude of

the LQG compensator would match the low gain asymptote at higher frequencies as

well.

The compensator contains a PI controller, as in the previous topology, with a

zero at 1.4 rad/sec. The zero is used as a transition from the low frequency integral,

or position feedback (high gain asymptote), to the high frequency proportional, or

rate feedback (low gain asymptote). Therefore, in this analysis, the magnitude of

the compensator is consistent with the low and high gain LQG asymptotes in

Equations 4.23 and 4.27. In examining the phase of the compensator, however, it is

unstable at 34 radlsec.

Figure 4.8(b) shows the loop transfer function gJ( for the LQG comPensator.

The loop crossover is approximately 4 radlsec, but there are additional loop

crossovers at 2Band 200 rad/sec. These are a result of the comPensator attempting
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Figure 4.7. Open loop input output transfer function gyu for Typical
Section 2B.
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Figure 4.8(c). Open and closed loop disturbance to performance transfer
functions for Typical Section 2B. Performance improvement
with the LQG compensator is 24.7 dB.

to match the dynamics low gain LQG asymptote. Notice how the magnitude of the

low gain asymptote at high frequency increases (Figure 4.8(a», instead of being

constant, is it was for both Typical Section 1A (Figure 3.5(a» and 2A (Figure 4.4(a».

This is a result of the noncollocated disturbance output pair in Typical Section 2B.

Figure 4.3(c) shows the open loop and closed loop disturbance to performance

transfer functions. The performance improvement for this compensator is 24.7 dB.

Figure 4.9(a) shows LQG compensators for three values of the LQR weighting

p, with the Kalman Filter weighting J1.remaining constant (J1.=1E-8). As p decreases,

the gain of the compensator increases, additional unstable poles occur at 120

radlsec, and for the smallest p case, a nonminimum phase zero pair occurs at 32

rad/sec. The compensator resembles the high gain LQG asymptote, an integrator, in

Regions 1 and 2 for all cases. However, the compensators are unstable and
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nonminimum phase for each case. This is a result of the pole zero pattern of the

disturbance to output transfer function. In examining Equation 4.27, the

compensator attempts to invert Cyw, but cannot because it contains a nonminimum

phase zero. Figure 4.9(b) shows the corresponding loop transfer functions for the

three LQG compensators. As p decreases, additional high frequency loop crossovers

occur.

For most cases of Typical Section 2B, the LQG compensators are unstable

and/or nonminimum phase. For Typical Section 2A, the compensators are stable

and min~um phase. The disturbance to performance transfer function minimizing

compensator is identical to the high gain LQG asymptote for Typical Section 2A, and

the asymptote is valid because Cyw is minimum phase. The transfer function

minimizing compensator for Typical Section 2B, which is identical to that of Typical

Section 2A, does not match the high gain LQG asymptote, and the asymptote is not

valid because Cyw is nonminimum phase. Therefore, it would be insightful to

compare an LQG compensator and the transfer function minimizing compensator for

Typical Section 2B.

Figure 4.10 shows a low noise, cheap control LQG compensator (p=lE-5,

p.=lE-8), and the disturbance to performance transfer function minimizing

compensator for Typical Section 2B, given in Equation 4.15. The bandwidth with

this compensator is 35 rad/sec. Notice the magnitude of the compensator matches

that of the transfer function minimizing compensator in Regions 1 and 2, except for

the high frequency poles at 8.3 rad/sec. In fact, for most systems, it is observed that

the magnitude of the LQG compensator matches that of the transfer function

minimizing compensator, usually better than the high gain LQG asymptote. This

will be seen in the closed loop tests on the MACE test article in Section 4.5.
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Figure 4.10. LQG compensator (p=1E-5, Jl=1E-8) , the high gain LQG
asymptote, and the disturbance to performance transfer
function minimizing compensator (Equation 4.15) for
TypicalSection2B.

Typical Section Results for a Nonanalogous Distwbance!Input;
SWLQG compensator

Figures 4.9(a) shows how the LQG compensator is unstable and/or

nonminimum phase for many different combinations of the Kalman Filter and LQR

weightings. Although unstable compensators are capable of being implemented,

they are not robust. The SWLQG compensator adds robustness in this case by

removing the unstable poles or nonminimum phase zeros. Figure 4.11(a) shows two

compensators. The fIrst is the LQG compensator shown in Figure 4.8(a) with an

unstable mode at 30 rad/sec. The second is a SWLQGcompensator with the mode at

28 rad/sec slightly de-sensitized ({3=0.2).The de-sensitization stabilizes the LQG

compensator. Figure 4.11(b) shows the loop transfer function for both the LQG and
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SWLQGcompensators. Notice how the mode at 30 rad/sec is phase stabilized by the

SWLQGcompensator, and the high frequency magnitude of the compensator drops

such that there are no loopcrossover except for that at 4 rad/sec.

Summary

The LQGcompensators developed for TopologyIIA are quite similar to those

developed for Typical Section lA Topology 1. The compensators are stable and

minimum phase, and the asymptotes are valid, since the disturbance to performance

transfer functions for each are minimum phase. In Region 4, both compensators

matched the low gain LQG asymptote, which is identical for the two cases: an

inversion of the input output transfer function, gyu, except for the dominant mode.

The SWLQG compensators designed for both Topologies I and IIA create notch

filters in Region 3. The primary difference in the compensators lies in compensating

the modes in Regions 1 and 2.

The Region 1compensators for both TopologyI and IIA are dominated by the

high gain LQG asymptote, which is identically the disturbance to performance

transfer function minimizing compensator for each. For TopologyI, it is a high gain

compensator, with the temporal relationship between the performance and output,

tPzyo For Topology lIA, it is a high gain compensator, with the filter gzu/g yu. For

TopologyIIA, the temporal relationship between z and y is embedded in the filter. If

the filter is split into two parts, as stated earlier,

(4.28)

where tPois the temporal relationship between z and y, and go is a structural filter.

Therefore, the only difference between the compensators designed for TopologyI and
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IIA is the structural filter, go, which is the structural dynamics in the transfer

function in the plant from the output to performance.

For Topology lIA, the SWLQG compensators show the additional dynamics

added in Region 1and 2 to replicate the structural filter go, are not very robust.

For Topology lIB, where the disturbance and input are analogous, but the

performance and output are not, the results are not as easy to interpret. The

asymptotes of the LQG compensator are not applicable because of the nonminimum

phase zeros in the disturbance to output transfer function gyw. The compensators

are unstable and/or nonminimum phase for many combinations of Kalman Filter

and LQR weightings. Unstable and nonminimum phase compensators, although

theoretically correct, are shown to be nonrobust by the SWLQGcompensators.

The magnitude of the compensators for Topology lIB seems to match that of

the disturbance to performance transfer function minimizing compensator. This

statement, which was not shown explicitly in the example with Typical Section 2B,

will be shown more thoroughly in the MACE experiment in Section 4.5.

Therefore, the magnitude of the compensators for Topologies lIA and 1m in

Regions 1 and 2 matched that of the disturbance to performance transfer function

minimizing compensator, which, according to Equations 4.7 and 4.15, are identical

for both topologies. It must follow, therefore, in order to design a low order, robust

Neo-Classical compensator for Topology II, Topology IIA should be used as the

template. For both Topologies lIA and 1m, the filter dynamics can be split into the

temporal relationship between z and y, and the structural filter go.

(4.29)

This leads to a generalized statement for Neo-Classical design for all topologies that

fall into the Topology II category.
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For Typical Section 2A and 2B, the function of the LQG compensators for

varying values of the Kalman Filter weighting JL was examined. Similar results to

the compensators designed for Typical Section IA are seen (Figure 3.7(a) and (b».

These include the PI controller becoming a lag controller, and the high frequency

rolloffbecomingsteeper, and at a lower frequency.

4.4 Neo-ClassicalControl

This section presents the Neo-Classical design rules for topologies as in

TopologyII, comprisedof TopologyIIA (analogous performance/output) and Topology

lIB (analogous disturbance/input). The optimal compensators are shown to be

similar to those designed for TopologyI, and the design rules are also be similar.

The design rule for analogous disturbance and input, or analogous performance and

output, with the input and output being collocated, dual, and complementary

extreme on the followingpage.

Neo-ClassicalDesign Rule 2Astates that the filter, Czw/ Cyu, is examined first,

and split into two parts: the temporal relationship between z and y, tPo and the

structural filter go. The temporal relationship, although is usually simple to

estimate for the case of a collocated performance/output pair, can usually be

estimated for the general case by comparing the output and performance. For

instance, in Typical Section 2A, since the performance z is the position on the third

mass, and the output y was rate, the temporal relationship tPo is an integration.

After the filter dynamics have been split, Neo-Classical Design Rules 2B-D

are identical to Neo-Classical Design Rules lA-D. This shows the similarities

between the control designs of TopologiesI and II.

Neo-Classical Design Rule IE states that stable, minimum phase dynamics

are added to the compensator in Regions I and 2, replicating the structural filter, CO.
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Neo-Classical Design Rule 2

For ~ogOUS performance and output, or analogous disturbance
and mput, and collocated, dual, and complementary extreme input
and output:

A. Examine the filter dynamics g.Jgyu. Split the filter into two
parts, the temporal relationship between the performance z
and the output y, 4>0, and the structural filter go.

6zw = 4> ggyu 0 0

B. Design a low frequency controller for Regions 1 and 2, i.e.
K = ko4>.,

where ko is a gain used to set the bandwidth of the system
subsequently.

B. Select a bandwidth. Design the high frequency controller for
Regions 3 and 4 such that the convolution of A and B yields a
rate feedback compensator at high frequency. Adjust ko such
that the crossover of the loop transfer function is equal to the
choice of bandwidth. Insure that placement of these dynamics
is made such that the phase margin at the loop crossover is
approximately 300-6«P.

C. Add higher frequency rolloff dynamics, if necessary.

D. Examine the loop transfer function, gyuK, consisting of the
open loop system,gyu,and the compensator designed from
rules lA-C. Notch filter all modes in Region 3, which may
affect the closed loop stability of the system. If necessary,
iterate to B if the phase margin is not in the 30°-60»range.

F. Add stable, minimum phase dynamics in Regions 1 and 2,
replicating the magnitude of go, without jeopardizing the
closed loop stability of the system.

The magnitude of the compensators designed for both TopologyIIA and 1m matched

that of the magnitude of the disturbance to performance transfer function

minimizingcompensator,gzw/gy", at low frequency, i.e. Regions 1 and 2. For those

designed for Topology IIA, the compensators are stable and minimum phase.

Therefore, only stable, minimum phase dynamics are added to the compensator.

The designer, however, must be also be careful not to jeopardize the closed loop

stability of the system by adding the structural futer to Regions 1 and 2. As shown
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in Figure 4.5(a) and (b), adding dynamics to the high gain compensator at low

frequency creates possible loss closedlooprobustness.

As an example, a Neo-Classical control design is made for Typical Section 2A

using Neo-Classical Design Rule 2. Design Rule 2A states that the filter gzw/gyuis

split into two parts: the temporal relationship between z and y, 4'0 and the structural

dynamicsgo.

gzw = 4' g
gOO," (4.30)

For Typical Section 2A, the performance z is the integration of the output y.

Therefore 4'0 is an integration

and the structural filter go is given by

1
f/J =-

o S
(4.31)

(4.32)

Figure 4.12 shows the filter dynamics gzw/ g,", the temporal relationship 4'0' and

structural filter go for Typical Section 2A. Note that these are identical to those for

Typical Section 2B.

Design Rule 2B states the low frequency controller is designed as the

temporal relationship 4'0' and a gain ko• For Typical Section 2A, this is a high gain

integrator, or position feedback. The design constant ko is chosen to set the

bandwidth when Design Rule 2C is completed.

Design Rule 2C states a bandwidth is selected. For this design,

approximately 6 rad/sec bandwidth is chosen, similar to the LQG design in Figure

4.4(a). Then, a high frequency controller is designed to add rate feedback. For this
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case, convolving a zero into the compensator creates a high frequency rate feedback

controller, or proportional feedback. The zero is set at 1.8 rad/sec, creating a phase

margin at crossover of approximately 60°. The design constant ko is then adjusted,

to set the 6 rad/sec bandwidth.

Using Design Rule 2D, one rolloffpole is added, at 100 rad/sec.

The next step, in accordance with Design Rule 2E, is to examine the loop

transfer function made up of the controller created from Design Rules 2A-D, and the

open loop transfer function,g,u' The mode at 10 rad/sec has a loop gain greater than

one. Therefore it falls into Region 3, and should be notch filtered. The notch filter

constructed, using Equation 3.231, has the followingcharacteristics: (ro=10.1,a=10,

~=0.02).

Design Rule 2F states that the structural filter dynamics go, are added to the

compensator in Regions 1 and 2, without jeopardizing the closed loop stability. In

examining go in Figure 4.12 for Typical Section 2A, there are no structural dynamics

within the 6 rad/sec bandwidth. Therefore, no additional dynamics will be convolved

into the Neo-Classical compensator, and the design is complete. The resulting 4

state Neo-Classical compensator is shown in Figure 4.14(a), along with the 8 state

LQG design from Figure 4.4(a), for Typical Section 2A. The open loop input output

transfer function is shown in Figure 4.13.

Both the LQG and Neo-Classical compensator use integral (position) feedback

at low frequency, and rate (proportional) feedback at high frequency. The Neo-

Classical compensator does not add the pole zero inversions at 28 and 51 rad/sec as

they do not affect the closed loop stability or performance. Notice the compensator

dynamics around 10 rad/sec. The Neo-Classical compensator places a notch filter to

gain stabilize the open loop pole at 10 rad/sec. The LQG compensator contains a

heavily damped zero pair at 9.5 rad/sec. This is a result of the compensator

dynamics being in the crossover region, and not necessarily in similar to the low
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gain (lightly damped zero pair at 10 rad/sec) and high gain (no zero pair) asymptotes

of LQG, as seen in Figure 4.4(a). Note that the Neo-Classical compensator is

designed assuming that the mode at 10 rad/sec might be closed loop unstable

because of possible unmodeled phase ~agin the loop, and therefore notch filtered.

The LQGcompensator has no knowledgeof a phase lag.

Figure 4.14(b) shows the loop transfer function for the LQG compensator in

Figure 4.14(a), and the open loop system in Figure 4.13. Notice how the mode at 10

rad/sec is gain stabilized by the Neo-Classical design, but is not gain stabilized by

the LQG design. This is a result of the notch filter present in the Neo-Classical

compensator, but not in the LQGcompensator.

Figure 4.14(c) shows the open and closed loop transfer functions with the
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Neo-Classical and LQG designs in Figure 4.14<a). The performance improvement for

both designs is 26.8 dB. The Neo-Classical compensator contains 4 states, compared

to the 8 state LQG compensator. The Neo-Classical compensator is also more

robust, as a result of gain stabilizing the loop gain in Figure 4.14(b), and not

inverting the open loop zeros at 27.4 and 51.1 radlsec.

Notice that the Neo-Classical compensator for this design is identical to the

Neo-Classical design for Typical Section 1A in Figure 3.5(a). This follows from the

fact that the filter dynamics gzw/ g," for Typical Section 2A and Typical Section 1A

are identical below the 6 rad/sec crossover, Le. an integrator with no structural

modes.

Notice also that if a Neo-Classical control design is designed for Typical

Section 2B, the same compensator as in Figure 4.14(a) would be created. This is a

result of the filter dynamics gzw/ &" being identical for both typical sections.

Although this was a very simple example because there were no filter

dynamics within the bandwidth of the system, in the more complex systems, such as

those of the MACE test article, the design of the filter dynamics will be very

important to the compensator design, and eventual performance improvement.

4.5 Experimental Implementation

Optimal LQG, SWLQG, and Neo-Classical compensators were designed and

implemented experimentally on the MACE test article for a topology consistent with

Topology II. Figure 4.15 shows an example of this topology on the MACE test

article, MACE 2. In the MACE 2 topology, the outputy is the z-axis rate gyro in the

payload, while the performance z is the integrated z-axis payload rate gyro. The

disturbance w is a z-axis inertial torque about the center of the bus, created by the

torque wheels. This topology is the same as the payload pointing loop topology of
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Figure 4.15. MACE2: The topology of the payload pointing loop with the
z-axis torque wheels as the disturbance.

MACE lA, shown in Figure 3.18, except that the disturbance is the torque wheels,

not at the gimbal. Because the performance and output are analogous, and the

disturbance and input are not, this topology falls into the Topology lIB category.

The implications are that the disturbance to output transfer function does not

contain alternating poles and zeros, and therefore, the construction of the optimal

compensators such as LQGmay have difficulties.

Figure 4.16 shows the measured open loop disturbance to performance

transfer function gzw. Notice that this is s times the disturbance to output transfer

function, gyw, which is important in the construction of the LQG compensator, as

shown in the LQGasymptotes in Equations 4.23 and 4.26. In this transfer function,

there is are nonminimum phase zeros at 1.8, 14, and 35 Hz, and a pair of missing

zeros between the poles at 6.8 and 8.8 Hz. The large phase delay of the loop also

evident.

Figure 4.17 shows the measured open loopinput output transfer function, gyw
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for MACE 2. Figure 4.18(a) shows the model based 24 state LQG compensator

designed for MACE2. This compensator contains a PI controller with a zero of3 Hz.

There are two lightly damped pole pairs at 6 and 9.4 Hz, and a nonminimum.phase

lightly damped zero pair at 14 Hz. The LQG compensator also constructs several

lead filters in order to add lead at crossover,versus high frequency amplification.

For MACE2, the high gain asymptote for TopologylIB in Equation 4.26 is

(4.33)

as a result of the performance z being the integration of the output y. Therefore, in

Regions 1 and 2, the LQG compensator should resemble an integrator, and in

examining Figure 4.18(a), it does not. The asymptotes for this design, because g~

contains nonminimum phase zeros, are not valid. The magnitude of the LQG

compensator in Regions 1 and 2, however, matches that of the disturbance to

performance transfer function minimizing compensator shown in Figure 4.19.

Notice the LQGcompensator contains two lightly damped pole pairs at 6 and 9.4 Hz,

matching the transfer function minimizing compensator.

Figure 4.18(b) shows the measurement of the loop transfer function

consisting of the open loop input output transfer function (Figure 4.17), and the 24

state model based LQG compensator (Figure 4.18(a». Notice how the phase of the

loop transfer function drops quickly at 14 Hz as a result of the nonminimum phase

zero pair. The gain and phase margins at this point are very small, and the

robustness of this compensator to changes in the plant was questionable. The

magnitude of the loop transfer function also rises above 0 dB at 36 and 70 Hz. This

was a result of the attempt of the compensator to invert the open loop disturbance to

output transfer function g,w, except for the dominant mode, similar to the low

frequency LQG asymptote in Equation 4.23. It is similar to the LQG compensator
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designed for Typical Section 2B in Figure 4.8(a) and (b), where additional loop

crossovers occurred at frequencies above the bandwidth. The SWLQGcompensator

showed. these additional loop crossovers are nonrobust for Topology lIB

compensators. The bandwidth is approximately 17Hz.

Figure 4.18(c) shows the measurement of the open and closed loop

disturbance to performance transfer functions for the model based 24 state LQG

compensator for MACE2. Notice that because of model errors, the open looppeaks

at 6.8 and 9.4 Hz could not be exactly reduced. There was marginal low frequency

closed loopperformance improvement. At high frequency, amplification can be seen

as a result of the lead filters in the LQG compensator. The performance

improvement of this design was 11.6dB.

Further performance improvement was hindered by the high frequency

amplification in the LQGcompensator (Figure 4.18(a». As the LQRweighting p was

reduced, the amplification in the compensator increased, driving the modes at 36

and 70 Hz unstable. Also, further truncation of the compensator resulted in an

unstable closedloopsystem.

Figure 4.20(a) shows the measurement of a model based 24 state SWLQG

compensator, designed MACE2. This compensator was de-sensitized to frequency

changes in the modes at 14, 36, 88 Hz. Comparing the LQG compensator (Figure

4.18(a) and the SWLQG compensator (Figure 4.20(a», the nonminimum phase

lightly damped zeros at 14 Hz were immediately made minimum phase, indicating

the low robustness of the lightly damped nonminimum phase zeros. The

compensator gain was also reduced by a small amount.

Figure 4.20(b) shows the measurement of the loop transfer function

consisting of the model based 24 state SWLQGcompensator (Figure 4.20(a», and

the open loop transfer functiong,", in Figure 4.19. Comparison of Figures 4.18(b)

and 4.20(b) shows how the mode at 14 Hz was phase stabilized SWLQG
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compensator, such that the phase of the loop transfer function does not cross -180°

until 30 Hz. This is a result of the SWLQGcompensator using a minimum phase

zero pair at 14 Hz. Also, the magnitude of the compensator at 36 and 70 Hz is

smaller, such that there are no loopcrossovers, similar to the SWLQGcompensators

designed for Typical Section 2B in Figure 4.11(a) and (b). The de-sensitization

attempts to gain stabilize these modes.

Figure 4.20(c) shows the measurement of the open and closed loop

disturbance to performance transfer functions with the SWLQGcompensator for

MACE2. The perfo~ance improvement was 11.6 dB, 0.4 dB smaller than that of

the LQG compensator. The tradeoff for robustness in the SWLQGcompensator,

caused a decrease in the performance improvement, as can be expected.

Next, a Neo-Classical compensator was designed for MACE 2. Since the
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performance and output are analogous, but the disturbance and input are not, Neo-

Classical Design Rule 2 is used.

Following Design Rule 2A, the filter dynamics Czw/ C," were split into two

parts, a temporal relationship between z and y, and the structural filter. The

measurement of the filter dynamics is shown in Figure 4.21. Knowing that the

performance is the integration of the output, the temporal relationship tPois

1
tP =-o S

The structural dynamics Co are then given by

Co = Czw S
C:JU

(4.34)

(4.35)

Using Design Rule 2B, a low frequency, high gain controller was designed,

with the temporal relationship tPo and a gain ko• For this case, the low frequency

controller was a high gain integrator, or position feedback. The design constant kois

set upon the completion of Design Rule 2C.

Following Design Rule 2C, a bandwidth of 20 Hz was chosen, similar to the

payload pointing loop topology MACE lA in Chapter 3. Next, a high frequency

controller was chosen such that its convolution with the low frequency controller

from 2B yielded rate feedback at high frequency. For this case, the low frequency

integral control (position feedback) is changed to proportional control (rate feedback)

at high frequency by adding a compensator zero. The zero frequency is chosen to be

8 Hz. Four lead filters, each with two poles and two zeros, were also constructed,

identical to those designed for the Neo-Classical compensators designed previously

(Figures 3.22(a) and 3.25(a». The lead fIlters add phase lead at crossover, with the

tradeoff of high frequency amplification, similar to the LQG compensators. Finally,

the design constant ko was chosen to set the loop gain crossover at 20 Hz.
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Using Design Rule 2D, there were no rolloff dynamics added to the design, as

a result of the open loop transfer function gyu r.ollingoff substantially (Figure 4.17).

Design Rule 2E states that the loop transfer function made up of the

controller designed from Design Rules 2A-D, and the open loop transfer function g;p

in Figure 4.17 is examined. The mode at 36 Hz was gain stabilized, as a result of its

loop gain being greater than -3 dB, and posing closed loop stability problems. A

second order notch filter was constructed (Ct)::36Hz, a=10, '=0.02) and added to the

compensator.

Design Rule 2F states that dynamics from the structural filter go in Equation

4.35 resulting from the splitting of the filter dynamics gzw/ gyu in Figure 4.21, is

convolved into the compensator, without jeopardizing the closed loop stability of the

system. In examining the filter dynamics, the resonances stand out at 6.0 and 9.4

Hz. For this reason, two lightly damped poles were added to the compensator at
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Figure 4.21. Measurement of the filter dynamics gZl/lI gyu for MACE 2.
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these frequencies. In order to stabilize the closed loop system, two zero pairs were

also added, at 6.0 and 10.4 Hz. Thus, 4 states were added to the Neo-Classical

design. The resulting 16 state NeO-Classicaldesign is shown in Figure 4.22(a).

Comparing the Neo-Classical compensator (Figure 4.22(a» and the SWLQG

compensator in Figure 4.20(a), in Regions 1 and 2, they both contain PI controllers,

but the NeO-Classicaldesign has a faster zero pole (mz=-8 Hz versus mz=-l Hz), thus

creating integral control over a larger frequency range. They both contain the

resonances replicating in the filter gzw/gyu at 6.0 and 9.4 Hz. And the SWLQG

compensator notches the 14 Hz mode, while the Neo-Classical compensator notches

the 36 Hz mode. Also,both compensators contain the lead filters, adding phase lead

at crossover and high frequency amplification.

Figure 4.22(b)shows the measurement of loop transfer function, consisting of

the 16 state Neo-Classical compensator (Figure 4.22(a», and the open loop input

output transfer function gyu (Figure 4.17). Notice the loop crossover is 20 Hz, the

same as the Neo-Classical design shown design for MACE1Ain Figure 3.22(b). Also

notice that the bandwidth is larger than that of the LQG (Figure 4.18(b» and

SWLQG (Figure 4.20(b» designs (20 Hz versus 14 Hz). This was a result of the

magnitude of the LQG and SWLQG compensator inverting the higher frequency

dynamics in the gyw transfer function, except for the dominant mode, as in the low

gain LQG asymptote (Equation 4.23). Additional loop crossovers at higher

frequencies (36 and 88 Hz), thus creating closed loop stability problems and limited

performance improvement for the optimal controllers.

Figure 4.22(c) shows the measurement of the open and closed loop

disturbance to performance transfer functions for the 16 state Neo-Classical design

for MACE 2. This design created a low frequency performance improvement from

the PI controller, while adding magnitude reduction of the peaks at 6.8 and 9.4 Hz.

The peaks could not be reduced exactly because of modeling errors, and closed loop
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Figure 4.22(a). 16 state Neo-Classical compensator K designed for MACE 2: 2
states for the stabilized integrator; 8 states for the lead filters;
2 states for the notch filters; 4 states for the structural filter.
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Figure 4.22(b). Measurement of the loop transfer function g,,)( consisting of
the Neo-Classical compensator and open loop transfer function.
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Figure 4.22(c). Measurement of the open. and closed loop disturbance to
performance transfer functions for MACE 2. Performance
improvement with the Neo-Classical compensator was 15.9
dB.

stability concerns with adding the exact filter dynamics (Design Rule 2F). The

performance improvement of this design was 15.9 dB, better than both the LQG (12

dB) and SWLQG(11.6 dB) designs. This is a result of the higher frequency zero in

the PI controller, thus yielding a higher gain and a larger frequency range of

integral control in the Neo-Classical design, and the higher loopcrossover. The Neo-

Classical design was also 16 states, compared to the 24 states for the LQG and

SWLQG designs. This shows that Neo-Classical control design is a viable design

technique for low order, robust compensators for topologies with a nonanalogous

disturbance or performance.
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Chapter 5

SISO Topology III:
Nonanalogous Performance & Output

and
Nonanalogous Disturbance & Input

5.1 Introduction

This chapter examines the implications on the control design when

simplifications such as those in TopologiesI and II cannot be made, i.e. the general

8180 disturbance rejection problem with a nonanalogous performance and output,

and nonanalogous disturbance and input. The input output pair is collocated,dual,

and complementary extreme, similar to the first two topologies. A test will be

developed which can be used to evaluate the effectiveness of input output pairs in

minimizing the disturbance to performance transfer function. Optimal

compensation techniques will be examined, with the results summarized in Neo-

Classical Design Rule 3. Finally, compensators designed and implemented on the

MACEtest article will be presented.
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5.2 Topologies Examined

Topologies I and II are simplifications of the general disturbance rejection

problem given by

(5.1)

These simplifications include the disturbance and input being analogous, or

performance and output being analogous. The topologies in this chapter, called

Topology III, contain nonanalogous performance and output, and nonanalogous

disturbance and input, and therefore, the general system in Equation 5.1 is used.

The closed loop disturbance to performance transfer function of the general

disturbance rejection problem is

z gzw + (gzwgyU - gzugyw)K
w= l+gyuK

(5.2)

The input output pair is collocated, dual, and complementary extreme. Therefore,

the input output transfer function, gyu, which is important in the closedloopstability

of the system, contains a pattern of alternating poles and zeros.

In the previous topologies, disturbance rejection could be accomplished by

using a high gain compensator. For this topology,however, setting the magnitude of

K to be large Yields

for (5.3)

The magnitude of the disturbance to performance transfer function does not tend to

zero as the magnitude ofK increases, as it did for the previous topologies: Equation
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3.9 (Top. I); Equation 4.8 (Top. lIA); Equation 4.16 (Top. lIB). For the general

disturbance rejection problem, there is an extra term in the numerator of the closed

loop disturbance to performance transfer function, resulting in a nonzero transfer

function when the magnitude ofK is large.

This leads to a test for actuator sensor pairs in determining the effectiveness

in reducing the disturbance to performance transfer function, using a high gain

compensator. The sensor actuator pair can be chosen such that

(5.4)

This result simply states that in order to loop shape, i.e. use a high gain

compensator, the magnitude of the disturbance to performance closed loop transfer

function must be less than the magnitude of the open loop w to z transfer function.

If this is satisfied, then the pair is a goodchoicefor disturbance rejection. Of course,

the compensator will also have to take the pole zero structure ofg," into account.

If the input output pair satisfies this test, then the closed loop transfer

function simplifies to

(5.5)

If the above transfer function is set equal to e, and solved for the compensator K,

K= gzw-E

Eg,"
(5.6)

Gooddisturbance rejection is achieved as E tends to zero, giving the disturbance to

performance transfer function minimizing compensator
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UMK= gzw
£-+0 egyu

(5.7)

This compensator (Equation 5.7) and closed loop system (Equation 5.5) are identical

to those for Topologies lIA (Equations 4.7 and 4.5) and 1m (Equations 4.15 and

4.13).

Setting the magnitude of K to be large for disturbance rejection, the closed

loop disturbance to performance transfer function simplifies to

for (5.8)

For the general closed loop disturbance to performance transfer function

given in Equation 5.2, when the test given in Equation 5.4 is not satisfied, the

alternative to a high gain compensator is to derive the dynamic compensator that

drives the numerator of the closed loop disturbance to performance transfer function

(Equation 5.2) to zero. Setting the closed loop transfer function from w to z equal to e

And solving for the compensator KYields

K= gzw-e
egyu - (gzwgyU - gzugyw)

(5.9)

(5.10)

Good disturbance rejection is achieved as e tends to zero, giving the disturbance to

performance transfer function minimizing compensator for the general SISO case

LIMK= -gzw
£-+0 gzwgyu - gzugyw
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The resulting compensator is not a high gain controller, as in Equation 5.7. Instead,

it is a constant gain controller which inverts the second term in the numerator of

Equation' 5.9, and cancels the first. Although, in principle, this accomplishes the

disturbance rejection goal, it would be very difficult to implement due to practical

robustness concerns.

Figure 5.1 shows an example of Topology III. In Typical Section 3, the

performanceZa is the vertical position of the third mass, and the disturbance Wa is a

vertical force,also on the third mass. The outputYl is the vertical velocityof the tip

mass, and the input Ul in the vertical force on the tip mass. Notice that the input

output pair is collocated,dual, and complementary extreme, similar to those in the

previous topologies.

Figure 5.2 shows the pertinent transfer functions for Typical Section 3.

Notice thatgyu and gzw have alternating poles and zeros, butgyw and gzu do not. The

transfer functions gyw and gzu both have a pair of missing zeros between the pole

pairs at 1.6 and 10.1 rad/sec, and minimum phase (-14 rad/sec) and nonminimum

phase (14 rad/sec) zeros.

Figure 5.3 shows a magnitude plot of the sensor actuator test given in

Equation 5.4 for TypicalSection 3. Notice that the test is satisfied for lowfrequency,

up to 3 rad/sec. A high gain compensator, therefore, can be used for this sensor

Typical Section 3

Figure 5.1. Topology III: Nonanalogous performance and output, and
nonanalogous disturbance and input, with a collocated,
dual, and complementary extreme input and output.
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Figure 5.3. Test for Typical Section 3 showing the ability of the input
output pair to loop shape, i.e. use a high gain compensator.

actuator pair, if the disturbance rejection performance metric is in a frequency range

less than 3 radlsec. For higher frequency disturbance rejection, this input output

pair is not a good choice for loop shaping.

5.3 Optimal Compensation

In Chapters 3 and 4, optimal compensation techniques such as LQG revealed

distinct trends for simplified topologies where the disturbance w and input u were

analogous, and/or the performance z and output y were analogous. This chapter

examines topologies where w andu, andz andy are not analogous.
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Asymntotic Pronerties of the LOGComnensator

The LQG asymptote for low noise (i.e. the Kalman Filter weighting JL tends to

zero), and expensive control (i.e. the LQR weighting p tends to infinity), is a rate

feedback compensator, inverting the gyw transfer function, except for the dominant

mode

(5.12)

Since there are no simplifications for Topology III, this is the low gain LQG

asymptote for all LQG compensators, including Typical Section 3.

The LQG asymptote, for low noise (i.e. the Kalman Filter weighting JL tends

to zero), and cheap control (i.e. the LQR weighting p tends to infinity), and JL being

smaller than p,

LlM K(s) = :f:-:JP1gzw
Jl~O P g
P~O yw
P>Jl

(5.13)

This is the high gain LQG asymptote for all LQG compensators in Topology III,

including Typical Section 3.

The creation of the LQG asymptotes are dependent upon the disturbance to

output transfer function gyw being minimum phase. The high gain LQG asymptote is

also dependent upon the gzu transfer function being minimum phase, but this is not

as stringent because of the assumption that JL is less than p. In examining Figure

5.2(c), the gyw transfer function for Typical Section 3 contains a nonminimum phase

zero at 14 rad/sec and a missing pair of zeros between the pole pairs at 1.6 and 10.1

rad/sec. Although the asymptotes are not valid, they will still be used to show the

implications of these pole zero patterns on the LQG compensator.
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Typical Section Results; LOG compensator

Figure 5.5(a) shows an 8 state LQG compensator and the low gain and high

gain LQG asymptotes given in Equations 5.12 and 5.13 for Typical Section 3. The

open loop input output transfer function gyu is shown in Figure 5.4. The Kalman

Filter weighting Jl is small (,LL=IE-8) and the LQRweighting is an intermediate value

(P=IE-2). Notice how the magnitude of the compensator approximately matches

that of the low gain LQG asymptote from 25 to 150 radlsec. At approximately 150

radlsec, the compensator rolls oft: If the Kalman Filter weighting Jl is made smaller,

the magnitudes would match at high frequency.

At low frequency, the LQG compensator matches the high gain LQG

asymptote (Equation 5.13)by creating integral control, or position feedback. But the

high gain LQG asymptote also predicts a lightly damped zero pair at 4 radlsec,
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Figure 5.4. Open loop input output transfer function gyu for Typical
Section3.
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which does not occur in the LQG compensator. The LQG compensator again

contains a PI controller, with a zero at 1.3 rad/sec, used to change the integral

(position) control at low frequency to proportional control (rate) control at high

frequency.

Notice also that the LQG compensator contains an unstable pole pair at 34

rad/sec. This is a result of the pole zero pattern of g,w not being alternating poles

and zeros. It is similar to the LQG compensator designed for Typical Section 2B

(Figure 4.8(a», also with an unstable pole at 34 rad/sec. Note that the disturbance

and output are identical for Typical Section 2B (Figure 4.1(b» and Typical Section 3

(Figure 5.1), as are theg,w transfer function (nonminimum phase zero at 14 rad/sec).

Figure 5.5(b) shows the loop transfer function gJ{ for the LQGcompensator,

and the open loop transfer function in Figure 5.4. The loop crossover is 4 rad/sec,
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with another loop crossover as a result of the mode at 10 rad/sec. Notice how the

unstable pole pair at 34 rad/sec causes the phase of the looptransfer function to rise

above 180°.

Figure 5.5(c)shows the open and closed loop transfer function disturbance to

performance transfer functions for the LQGcompensator. The magnitude is reduced

at low frequency, up to 2 rad/sec, as is the mode at 10 rad/sec. The performance

improvement is 21.5 dB.

Figure 5.6(a) shows LQG compensators for three values of the LQRweighting

p, with the Kalman Filter weighting being a constant (,u=lE-8). Figure 5.6(b) shows

the corresponding loop transfer functions for the three LQG compensators. The

magnitude of the compensator does not increase at low frequency proportional to

If{;, as predicted by the high gain LQG asymptote in Equation 5.13. The LQG

compensator is unstable, but minimum phase for the largest p case, stable and

minimum phase for the intermediate p case, and unstable and nonminimum phase

for the smallest case of p. In examining the loop transfer functions, as p is

decreased, the magnitude of the looptransfer function becomes approximately one at

high frequency.

Figures 5.4 and 5.5 show how the LQG compensator is unstable and for many

different choices of the Kalman Filter and LQR weightings for Typical Section 3.

These are a result of the pole zero structure ofgyw containing a nonminimum phase

zero and missing zero pair, instead of alternating poles and zeros. As stated

previously, these types of compensation techniques, although needed for certain

control designs, are not robust in the control of structures.

Because of the pole zero structure ofgyw, there are limitations in the control

design. LQG does not create high gain compensators such as those used in the

previous topologies. Examining Figure 5.6(a), as p decreases, the magnitude of the

compensator seems to approach a limit. For Typical Section lIB, where the
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asymptotes were not valid because of the g yw transfer function, the LQG

compensator was compared to the disturbance to performance transfer function

minimizing compensator. For Topology III, when the actuator sensor test from

Equation 5.4 is not satisfied, the disturbance to performance transfer function

minimizing compensatoris givenby Equation 5.11.

Figure 5.7(a) shows the LQG compensator with smallest value for p, from

Figure 5.6(a)(p=lE-6, Jl=lE-B), plotted with the disturbance to performance transfer

function minimizing compensator shown in Equation 5.11, which creates a

subtraction in the numerator of the disturbance to performance transfer function

(Equation 5.2). Except for the pole pair at 4 rad/sec, these are very similar. These

are not identical because of the nonminimum phase zeros in the gyw and gzu transfer

functions. In cases where these zeros are not present, the low noise, cheap control

LQG compensator creates an exact subtraction in the numerator of the closed loop

disturbance to performance transfer function, thus matching the transfer function

minimizing compensator in Equation 5.11. The compensator also has an unstable

pole at 16 rad/sec, and two nonminimum phase zero pairs at 10 and 46 rad/sec.

Figure 5.B(b)shows the loop transfer function g,J( consisting of the LQG

compensator and the open loop transfer function in Figure 5.4. The magnitude of

the loop transfer function is approximately one, except for the lightly damped pole

zero pairs. At low frequency, the magnitude is greater then one, indicating the use

of a high gain compensator for loop shaping (Figure 5.3). If the transfer function

minimizing compensator is exactly used, then the magnitude of the loop gain is

identically one, but the closed loop system is unstable because of the pole zero

structure of gyw. Figure 5.B(c) shows the open and closed loop disturbance to

performance transfer functions for the LQG compensator. At low frequency, the

magnitude is reduced, as a result of the integral control of the LQGcompensator, i.e.

loop shaping. For the modes at higher frequency, the magnitude reduction is
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accomplished by damping the modes, consistent with the high frequency, low gain

LQGasymptote.

The performance improvement with this compensator is 25.3 dB, only slightly

larger than the 21.5 dB performance improvement from the LQG compensator with

p::1E-2 in Figures 5.5(a)-(c). Although this compensator accomplishes the

disturbance rejection goal theoretically, it is not a robust compensator from a

practical viewpoint. Factors such as modeling errors and sensor noise make the

compensator shown in Equation 5.11 infeasible experimentally.

Summary

A test is presented which examines the ability of the actuator sensor choice to

minimize the disturbance to performance transfer function using a high gain
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compensator. When this test is satisfied, the LQG compensator creates a high gain

compensator. When this test is not satisfied, the LQG compensator creates a

subtraction in the numerator of the closed loop disturbance to performance transfer

function. This subtraction, although theoretically correct, is not a valid design

because of robustness concerns such as modeling errors and sensor noise. What the

compensator also does, in examining the closedlooptransfer function, is to damp the

higher frequency modesby using rate feedback, as in the low gain, LQG asymptote.

In most cases, the LQG compensators for this topology are unstable or

nonminimum phase. And because of the pole zero pattern ofgyw, and the inability to

loop shape using a high gain compensator (Equations 5.5-5.8), the performance

improvement may be minimal, even for the cheap control, LQGcompensators. In a

larger, more complex structure, where the pole zero patterns of the gyw transfer

function may contain multiple missing zeros or nonminimum phase zero pairs, the

LQG compensators are unstable or nonminimum phase for most choicesof the LQR

and Kalman Filter weightings. This places a fundamental limit on sensor actuator

pair choices for the practical minimization of certain disturbance to performance

transfer functions.

For Typical Section 3, the function of the LQG compensators for varying

values of the Kalman Filter weighting JL was examined. Similar results to the

compensators designed for Typical Section lA are seen (Figure 3.7(a) and (b». These

include the PI controller becoming a lag controller, and the high frequency rolloff

becoming steeper, and at a lower frequency.

5.4 Neo-ClassicalControl

This section presents Neo-Classical Design Rule 3 TopologyIII, i.e. with a

nonanalogous disturbance and input, and nonanalogous performance and output,
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and collocated, dual, and complementary extreme input output pair.

Neo-Classical Design Rule 2

For nonanalogous performance and output, and nonanalogous
disturbance and input, and collocated, dual, and complementary
extreme input and output:

A. Test the input output pair for the ability to loop shape, i.e. use
a high gain control.

Ig...gyag~g...g""I«lg...1

If the input output pair satisfies the test for all frequencies
then proceed to Design Rule 2. If not, proceed to B.

B. Examine the filter dynamics gz"Jgyu. Split the filter into two
parts, the temporal relationship between the performance %

and the output y, f/Jo,and the structural filter go.
gZID = f/J g
gyri 0 0

C. If the test inA is satisfied at low frequencies, then design a
low frequency controller for Regions 1and 2, i.e.

K = kof/Jzy
where ko is a gain used to set the bandwidth of the system
subsequently. If the test in A is not satisfied at low frequency,
then proceed to D and design a rate feedback controller for all
frequencies.

D. Select a bandwidth. Design the high frequency controller for
Regions 3 and 4 such that the convolution of A and B yields a
rate feedback compensator at high frequency. Adjust ko such
that the crossover of the loop transfer function is equal to the
choice of bandwidth. Insure that placement of these dynamics
is made such that the phase margin at the loop crossover is
approximately 30°.60».

E. Add higher frequency rolloff dynamics, if necessary.

F. Examine the loop transfer function, gyuK, consisting of the
open loop system, g2' and the compensator designed from
rules lA.E. Notch filter all modes inRegion 3, which may
affec~the closed loop stability of the system. If necessary,
iterate to D if the phase margin is not in the 30°-600range.

G. Add stable minimum phase dynamics inRegions 1 and 2,
replicating the magnitude of go' in the frequency range where
the input output test is satisfied without jeopardizing the
closed loop stability of the system.
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In D'esign Rule 3A, the input output pair is tested for the ability to loop

shape, or use a high gain controller. If this test is satisfied over all frequencies, such

that

(5.14)

then the closed loop transfer function (Equation 5.5), and disturbance to

performance transfer function minimizing compensator (Equation 5.7), are identical

to those for Topology lIA and lIB. Therefore, the Neo-Classical compensator is

designed using the Neo-ClassicalDesign Rule 2 presented for TopologyII.

If the test in Equation 5.14 is not satisfied over all frequencies, the actuator

sensor combination is not necessarily a poor choice. There can be frequency ranges,

potentially as small as one mode, in which the test is satisfied and a high gain

controller can be used. In a MIMO control design, for instance, a series of SISO

controllers can be designed on collocated, dual, and complementary extreme input

output pairs, such that each pair minimizes a certain frequency range of the

disturbance to performance transfer function. The result is a closed loop system

with goodrobustness and performance characteristics.

Design Rule 3B separates the filter gZJJJ/gyu into two parts: the temporal

relationship between z and y, ;0 and the structural filter go.

gzw = q, g
gOO

yu
(5.15)

In Design Rule 3C, if the test in 5.14 is satisfied at low frequency, then a low

frequency controller is designed using '0' and a gain ~.

(5.16)
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If the test in Equation 5.14 is not satisfied at low frequency, then the designer

proceeds to 3D and designs a rate feedback controller for all frequencies. There are

two occasionsin which this would occur. If the test is satisfied at higher frequencies,

a high gain compensator may be used in the frequency range where the test is

satisfied. This high gain compensator, however, is added to the compensator in 3F.

Therefore, the next step is to design a rate feedback controller for all frequencies in

3D.

If the test in Equation 5.14 is not satisfied for any frequency range, the LQG

compensator attempts to create a subtraction in the numerator of the disturbance to

performance transfer function, usually using unstable or nonminimum phase

compensators. The best practical controller is a rate feedback controller, adding

damping to the structural modes. Therefore, the next step is to design a rate

feedback controller for all frequencies in 3D.

In Design Rule 3D, a selection of a bandwidth is made first. Then, if the test

is satisfied at low frequency, and a high gain, low frequency controller was made in

3C (Equation 5.16), then dynamics are convolvedinto the compensator such that the

high frequency controller is rate feedback. If this is not the case, then a rate

feedback controller is created for all frequencies. The gain ko is then adjusted to set

the bandwidth.

Design Rule 3E states that rolloff dynamics are added to the compensator, if

necessary, such as one pole, or two heavily damped poles.

In Design Rule 3F, the loop transfer function consisting of the controller from

3A-Eand the open loopsystem gyu is examined. If any mode has a loop gain greater

than -3 dB, and its closed loop stability appears in question, the mode is to be gain

stabilized using a second order notch filter. Care should be taken in the

examination, however. Some modes may have a loop gain greater than one, with

large gain and phase margins. These modes are being damped by the rate feedback
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of the compensator and should not be notch filtered.

In Design Rule 3G, the structural filter, go, the test from 3A, and bandwidth

are compared. If there are structural resonances in the filter, within Regions 1 and

2 where disturbance rejection can be accomplished using a high gain controller, and

in which the actuator sensor test in Equation 5.14 passes, then these dynamics are

added to the compensator, without jeopardizing the closed loop stability of the

system

In designing a Neo-Classical compensator for Typical Section 3, the first step

is to apply the test in Design Rule 3A. Figure 5.8 shows this test for Typical Section

3. Notice that the test is satisfied up to 3 rad/sec, or in a low frequency region.

Using Design Rule 3B, the filter gzwlgyu is split into the temporal relationship

between the performance z and output y, tPo and the structural filter go. The

performance z is a position, and the output y is a velocity. Therefore tPo is an

100

10-1

-8 10-2

aos
~
~ 10-3

10-4

10-S

loo 101

Frequency (rad/see)

102 103

Figure 5.8. Test for Typical Section 3 showing the ability to loop shape
using a high gain compensator.
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integrator

and the structural filter go is given by

1tP =-o S
(5.17)

(5.18)

These are shown in Figure 5.9.

Design Rule 3C is used to design a low frequency controller. Since the test in

Figure 5.8 is satisfied at low frequency, the low frequency controller is given by a

gain ko times the temporal relationship between z andy in Equation 5.18.

1K=ko-
s

(5.19)

The gain ko is set upon the completion of Design Rule 3D.

Following Design Rule 3D, a 10 radlsec bandwidth is chosen. A zero is

convolved into the compensator, in order to create a PI controller, and subsequent

rate feedback at high frequency. The zero is placed at 3.5 radlsec, such that the

phase margin at crossover is approximately 60°. The gain ko is then adjusted in

order to approximate the 10 radlsec bandwidth.

A one pole rolloffis added to the compensator at 100 rad/sec, following Design

Rule 3E.

Using Design Rule 3F, examining the loop transfer function consisting of the

controller designed from 3A-E, and the open loop systemg," in Figure 5.10, there are

no modes above 10 radlsec which need gain stabilized.

Following Design Rule 3G, filter dynamics from go are to be added to Regions
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Figure 5.9. Filter dynamics gzwl g,u for Typical Section 3, and the
division into the temporal relationship between z and y, and
the structural filter.
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Figure 5.10. Open loop input output transfer function g,u for Typical
Section 3.
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Figure 5.11(a). 2 state Neo-Classical and 8 state LQG compensator (p=lE-
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Figure 5.11(b). Loop transfer functions gy,j{ consisting of the compensators
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functions for Typical Section 3. Performance improvement
with the Neo-Classical compensator is 24 dB and the LQG
compensators is 25.3 dB.

1 and 2, where the test from 3A is satisfied. Figure 5.8 shows this test is satisfied

up to 3 rad/sec. In examining the structural filter go in Figure 5.9, notice that there

are no structural dynamics in this range. Therefore, no additional compensator

dynamics are added.

The resulting 2 state Neo-Classical compensator designed for Typical Section

3 is shown in Figure 5.11(a). The Neo-Classical compensator is plotted with the low

noise, cheap control LQG compensator from Figure 5.7(a). Notice how both

compensators use integral control (position feedback)up to 3 rad/sec, corresponding

to where the test in 3A is satisfied (Figure 5.8), and proportional control (rate

feedback) up to 3 rad/sec.

Figure 5.11(b) shows the loop transfer functions g,uK, consisting of the
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compensators in Figure 5.11(a), and the open loop transfer function gyu in Figure

5.10. The bandwidth of the Neo-Classical design is approximately 10 rad/sec.

The open and closed loopdisturbance to performance transfer functions of the

Neo-Classical and LQG compensators are shown in Figure 5.11(c). The closed loop

performance improvement for the 2 state, stable minimum phase Neo-Classical

design is 24 dB, only slightly lower than that of the low noise, cheap control LQG

compensator (25.3 dB). The LQG compensator also has 8 states, and in unstable

and nonminimum phase.

5.5 Experimental Implementation

Optimal LQG, SWLQG, and Neo-Classical compensators were designed and

implemented experimentally on the MACEtest article for a topologyconsistent with

Topology III, i.e. nonanalogous performance and output, and nonanalogous

disturbance and input. Figure 5.12 shows the MACE3 topology. The output y is the

z-axis rate gyro of the bus, while the performance z is the integrated z-axis payload

rate gyro. The input u is a z-axis inertial torque about the center of the bus, created

by the torque wheels, and the disturbance w is the relative torque of the z-axis

gimbal. Since the performance and output are not analogous, and the disturbance

and input are not analogous, and the actuator sensor pair are collocated, dual, and

complementary extreme, this topologyfalls into the TopologyIII category.

Notice that the disturbance and output are noncollocated. Therefore, the

disturbance to output transfer function does not contain alternating poles and zeros.

There are nonminimum phase zeros at 1.8 and 35 Hz. Therefore, the asymptotes of

the LQG compensator again may not apply. The performance and input are also

noncollocated.
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Figure 5.12. MACE3: Topologyfor the payload pointing loop with the
bus loopused as the sensor actuator pair.

Figure 5.13 shows a measurement of the open loop input output transfer

function gy" for MACE 3. Figure 5.14 shows a model based 24 state LQG

compensator MACE 3. In an attempt to create a stable compensator, both the

Kalman Filter and LQR weightings were made large. As a result of the

nonminimum phase zeros in the g yw transfer function. However, a stable

compensator was never obtained. The 24 state LQG compensator contained

unstable pole pairs at 11.0, 18.4, and 27.6 Hz, and a nonminimum phase zero at 1.9

Hz and nonminimum phase zero pair at 6.6 Hz. The theoretical performance of this

design, evaluated on the model was 0 dB. Varying the LQR and Kalman Filter

weightings only modified to the unstable and nonminimum phase dynamics in the

compensator. The LQG compensator was unstable and nonminimum phase for all

combinationsof LQRand Kalman Filter weightings which wouldcreate a closedloop

system with any performance improvement. This compensator was not

implemented.
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Figure 5.13. Measurement of the open loop input output transfer
function gyu for MACE 3.
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Figure 5.14. Model based 23 state LQG compensator designed for MACE
3.
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Figure 5.15(a) shows a model based 24 state SWLQG compensator with the

modes at 1.2, 6.8, 9.4, 14, and 36 Hz sensitized. This resulted in a stable, minimum

phase compensator, which created a performance improvement of 0.5 dB when

evaluated on the model. Figure 5.15(b) shows the measurement of the loop transfer

function consisting of the SWLQG compensator and the open loop system in Figure

5.13. In examining this transfer function, the gain and phase margins at 1.0 and 14

Hz are very small. This is exemplified in the closed loop system, which was found to

be experimentally unstable for this compensator. No amount of sensitization of the

modes at these frequencies Yielded a compensator with a stable closed loop system.

And even with the loop closed, the closed loop performance improvement would have

been small, as shown by the 0.5 dB theoretical performance improvement.

The'LQG and SWLQG compensators in Figures 5.14 and 5.15(a) contain

complex dynamics such as unstable poles and nonminimum phase zeros, and the

closed loop systems are unstable experimentally and Yield only marginal

performance improvement on the design model. Practical optimal compensation of

this topology failed. A Neo-Classical compensator was designed next.

Using, Design Rule 3A, Figure 5.16 shows the test for the actuator sensor

pair,

for MACE 3.

versus gzwgyu - gzugyw
gyu

Notice how the test is satisfied for the peaks at 6.8 and 9.4 Hz, but it is not satisfied

in any other frequency range. If a high gain compensator were used, the closed loop

transfer function would result in an additional peak at 8 Hz, thus nullifYing the

performance improvement. Therefore, there is no frequency range in which

disturbance rejection can be accomplished by using a high gain compensator.
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Figure 5.15(a). Model based 23 state SWLQG compensator designed for
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Figure 5.15(b). Measurement of the loop transfer function gy$ consisting of
the SWLQG compensator and open loop transfer function.
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Figure 5.16. Measurement of the actuator sensor test from Design Rule
3Afor the ability to loop shape.

Using Design Rule 3B, the filter Czw/C," was split into the temporal

relationship lPo, and the structural filter CO'

Following Design Rule 3C, since the test in 3A was not satisfied for any

frequency range, the Neo-Classical compensator designed was a rate feedback

controller at all frequencies.

Using Design Rule 3D, a bandwidth of approximately 30-35 Hz was chosen,

in order to damp the modes at 6.8, 9.4, and 14 Hz. A constant controller, using rate

feedback of the output y was then designed. In order to avoid integration ofDC bias

in the rate gyro, a two pole high pass filter was used in the control loop, with a

corner frequency of 0.03 Hz (Table 2.4). Because of the phase lag of the system, a

two pole lead filter was also designed and convolvedinto the compensator to add

lead at the target frequency range between 5 and 15 Hz. The gain of the
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compensator, ko' was then adjusted in order to maximize the damping in the modes

between 5 and 15 Hz. A 35 Hz loop crossover was then created.

Using Design Rule 3E, one rolloff pole was added, at 100 Hz, as a result of

possible closed loop stability concerns with higher frequency modes.

Design Rule 3F states that the loop transfer function made up of the

controller designed in rules 3A-D, and the open loop transfer function g,u in Figure

5.17, is examined. The mode at 36 Hz had a loop gain greater than -3 dB, with a

negative phase margin. It was therefore notch filtered «(0:::36Hz, a=10,'=O.02).

According to Design Rule 3G, the test from 3A, the structural filter go, and

the bandwidth are compared. Because there was no frequency range where the test

in 3A was passed (Figure 5.16), no additional dynamics were added to the

compensator.

The resulting 7 state Neo-Classical compensator for MACE 3 is shown in

103101
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Figure 5.17. Measurement of the open loop input output transfer
function gyu for MACE 3.
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Figure 5.18(a). 7 state Neo-Classical compensator K for MACE 3: 2 states
for the high pass filter; 2 states for a lead filter; 2 states for
the 36 Hz notch filter; 1 state for the 100 Hz rolloff.
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Figure 5.18(c). Measurement of the open and closed loop disturbance to
performance transfer functions MACE 3. Performance
improvement with the Neo-Classical compensator was 0.5
dB.

Figure 5.18(a). Figure 5.18(b) shows the measurement of the loop transfer function

consisting of the Neo-Classical compensator, and the open loop system in Figure

5.17. The crossover is approximately 35 Hz. Notice how the three modes at 6.8, 9.4,

and 14 Hz all have loop gain greater than 0 dB, thus being controlled (added

damping).

Figure 5.18(c) shows the measurement of the open and closed loop transfer

functions for the Neo-Classical compensator, impinged on MACE 3. The modes at

6.8, 9.4, and 14 Hz are all damped substantially from open loop. For instance,

evaluating the closed loop system on the model Yieldedan increase in the damping

in the mode at 6.8 Hz from 1.7%to 10%. The performance improvement was 0.5 dB

wit the Neo-Classical compensator. Although the closed loop performance
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improvement was small, the benefit of using this sensor actuator pair was not

performance improvement, but added robustness by damping the modes at 6.8,9.4,

and 14 Hz, which could be used to robustify the subsequent control loops in a MIMO

problem.
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Chapter 6

Noncollocated Sensor Actuator Pairs

6.1 Introduction

This chapter will examine the implications on Neo-Classical control design

with noncollocated sensor actuator pairs. In the examinations of the previous

topologies, the assumption of collocated, dual, and complementary extreme sensor

actuator pairs is made consistently. The resulting compensator design is therefore

simplified as a result of the alternating pole zeropattern of the input output transfer

function. In Section 2.6, the pole zero patterns of noncollocatedinput output pairs

were discussed. This chapter examines how these patterns impact the control

design. First, two topologieswill be introduced, similar to the previous topologies,

but using noncollocated input output pairs. LQG compensators will then be

considered and compared with the previously designed optimal compensators. The

changes and effects on the control design will be summarized in another Neo-

Classical design rule. Finally, the closed loop results of a compensator designed

using the rule, and implemented on the MACEtest article will be shown.
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6.2 Topologies Examined

In Section 2.6, the benefits of using collocated, dual, and complementary

extreme input output pairs were presented, i.e. alternating poles and zeros. The

critical input output transfer function,gyu, is simplified by the alternating pole zero

patterns, thus making the control design easier. However, in the controlled

structures technology, with multiple inputs, outputs, performances, and

disturbances, the use ofnoncollocatedcontrol is a commonpractice.

As input output pairs become noncollocated on a structure, the zero pairs

increase in frequency. Pole zero cancellations then occur, and eventually, the zeros

move higher in frequency, thus creating a pair of missing zeros between two pole

pairs. In certain structures, noncollocation can create real nonminimum phase

zeros. If the noncollocation distance is increased further, the zeros will decrease

from infinity in pairs, one being minimum phase and the other nonminimum phase.

Examples of zero movement are shown in Figure 2.6, and explained fully by Fleming

(1990).

Figure 6.1(a) shows Typical Section 4A, in which the performance Zl is the

vertical position of the tip mass, and the output Yl is the vertical velocity of the tip

mass. The disturbance W2 and input U2 are equivalent, as a vertical force on the

secondmass. Because the performance and output are analogs, and the disturbance

1-0-
TypicalSection4A TypicalSection4B

Figure 6.1. Noncollocatedinput output pairs.
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Figure 6.2. Open loop input output transfer functions.

and input are analogs, this topology falls in the Topology I category, with a

noncollocated input output pair, U2 and Yl.

Figure 6.1(b) shows Typical Section 4B, which also falls into the Topology I

category. The performance Zl is the vertical position of the tip mass, and the output

Yl is the vertical velocity of the tip mass, as in Typical Section 4A. The disturbance

W3 and input U3, however, are equivalent vertical forces on the third mass. The

noncollocated input output pair in Typical Section 4B is U3 and Yl.

Figure 6.2(a) shows the input output transfer function for the pair Yl and ~.

There is a missing zero pair between the first two pole pairs at 1.6 and 10.1 radlsec.

Figure 6.2(b) shows the input output transfer function for the pair Yl and Ua. Again
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there is a missing zero pair again between the first two pole pairst and there is a

nonminimum phase and minimum phase zero at 14 rad/sec. These two input output

pairs will help to show the important issues concerning noncollocated controlt i.e.

missing zero pairst and nonminimum phase zeros in the input output transfer

function.

6.3 Optimal Compensation

Acmnptotic Properties of the LOG Compensator

Typical Section 4A, because the output and performance are analogous, and

the input and disturbance are analogous, falls into the Topology Icategory. For the

low gain, expensive control problem, which was used to show similarities to the high

frequency LQG compensator, the asymptotic limit was shown in Equation 3.17 to be

where 'dm and lOdm are the damping ratio and frequency of the dominant mode, and

kLG is a scalar constant. The compensator is a low gain inversion of the disturbance

to output transfer function, C,w, except for the dominant mode. The transfer

function,c;yw, is also the input output transfer function,g,", for this topology.

For Topology I, the high gain LQG asymptote was shown in Equation 3.19 to

be

(6.2)

The high gain LQG asymptote is a high gain compensator, with the temporal

relationship between z and y. The compensator poles and zeros are identically the
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zeros of the input output transfer function, g,".
Given that the performance is the integration of the output, as in Typical

Section 4A and 4B,

1q, (8) =-
Z1 8

The high gain LQG asymptote becomes

LIM K (8) = :f:-;:jp1 g," = :f:-;:jp1
Jl-+O 8 P g 8 P
p-+o ,"
p>o

(6.3)

(6.4)

The high gain asymptote is a high gain integrator, or position feedback.

Both the low and high gain LQG asymptotes in Equations 6.1 and 6.2 are

dependent upon the fact that the pole zero structure of g,w is minimum phase, as

noted previously. For Topology I, g,w is identical to g,". In fact, for Typical Section

4A, where U2 and W2 are used, g," contains a missing zero pair. For Typical Section

4B, where U3 and W3 are used, g," contains a missing zero pair, and nonminimum

phase zero. The high gain LQG asymptote is also dependent upon the gZ" transfer

function being minimum phase. But this requirement is not as rigorous because J.L is

smaller than p.

Even though they are not expected to rigorously hold, the low and high gain

LQG asymptotes will be compared to typical LQG compensators in order to identify

the affects from the missing zeros or nonminimum phase zeros in the open loop

input output transfer functions for the noncollocated input output pairs. The LQG

compensators will also be compared to those designed for Typical Section lA, where

g", contains alternating poles and zeros.

211



Typical SectiOD RemIts; Missing Zeros in Ilm
LOG compen5Dtor

Figure 6.4 shows an B state LQG compensator, designed for Typical Section

4A, plotted with the low and high gain LQG asymptotes of Equations 6.1 and 6.4.

Figure 6.3 shows the open loopinput output transfer function, gyu. For this case, g:p

contains a missing zero pair between the pole pairs at 1.6 and 10.1 radlsec, but no

nonminimum phase zeros. The Kalman Filter weighting is a small value (jt=lE-B),

and the LQR weighting p is an intermediate value (p:=lE-1). At low frequency, the

LQG compensator matches the integral control (position feedback) of the high gain

asymptote (Equation 6.4). At high frequency, up to 300 radlsec, the compensator

matches the low gain asymptote (Equation 6.1). At 300 rad/sec, however, the LQG

compensator rolls off, compared to the low gain LQG asymptote. If the Kalman

Filter weighting is made smaller, the dynamics of the LQG compensator identically

matches that of the low gain asymptote, since there are no nonminimum phase zeros

ingyw. However, in comparing the 300 radlsec rolloffin this compensator to the LQG

compensator for Typical Section 1Ain Figure 3.5(a), where gyu contains alternating

poles and zeros, the rolloff of that compensator is greater than 1000 rad/sec. This

indicates the rate of convergence of the low gain asymptote is dependent upon the

pole zero pattern of gyu' Specifically, the convergence is faster ifgyu contains

alternating poles and zeros, and slower ifg,u contains a missing zero pair between

two pole pairs.

Figure 6.5(a) shows LQG compensators for Typical Section 4A, for three

values of the LQR weighting p, while holding the Kalman Filter weighting constant

{Jt=lE-B). These plots are complementary to those Figure 3.6(a) and (b), with

collocated input output pairs. At low frequency, the compensator is a high gain

integrator, and is proportional to It{;, as suggested in Equation 6.4. At high

frequency, magnitude of each compensator rolls off at approximately 300 radlsec, as
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a result of the missing zero pair in the g,u transfer function. At intermediate

frequencies, the g,u transfer function is inverted by each compensator, except for the

dominant mode, as in the lowgain asymptote.

The corresponding loop transfer functions, g,uK, made up of the three

compensators (Figure 6.5(a», and the open loop system (Figure 6.3), are shown in

Figure 6.5(b). Comparing the phase of the loop transfer functions with open loop

phase shown in Figure 6.3 for the large and intermediate values of p, the phase does

not drop below 1800
• For the largest value of p, the LQG compensator places a

lightly damped zero pair at approximately 9 rad/sec, thus making the noncollocated

input output transfer function resemble a collocated transfer function, Le.

alternating poles and zeros. As p decreases, the bandwidth increases, and the zero

p~r at 9 rad/sec increases in frequency and becomes more damped in order to add
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phase to the loopcrossover region. For the smallest value of p, the phase of the loop

transfer function drops below 180°,with the loop gain greater than one, indicating

conditioned stability. This is similar to the conditioned stability of the LQG

compensator for the small p case in Figure 4.6(a) and (b) for Typical Section 2A. The

SWLQGcompensator immediately brought the phase of the loop transfer function

above 180°,thus indicating the lowrobustness of this LQGcompensator.

The corresponding closed loop disturbance to performance transfer functions

for the three LQGcompensators (Figure 6.5(a», impinged on Typical Section 4A, are

shown in Figure 6.5(c). Notice how the magnitude of the closed loop transfer

function decreases proportionally to -{; at lowfrequency.

Typical Section Results; Nonmjnimnrn Phase Zeros in e.m
LOG compensator

Figure 6.7 shows an LQG compensator designed for the topology in Typical

Section 4B, and the low and high gain LQG asymptotes from Equations 6.1 and 6.4.

Figure 6.6 shows the open loopinput output transfer functiongyu, for Typical Section

4B. For this case gyu contains a missing zero pair between the pole pairs at 1.6 and

10.1 radlsec, and a nonminimum phase zero at 14 radlsec. The Kalman Filter

weighting is small (,u=lE-8), and the LQR weighting is an intermediate value

(P=lE-1). At low frequency, the compensator matches the high gain LQG asymptote

only below 0.1 radlsec. At intermediate frequencies, the magnitude of the LQG

compensator matches that of the low gain LQG asymptote, however, the phase does

not. At high frequency, the magnitude of the compensator again rolls off at 300

radlsec, well below that of the Typical Section 1Acompensators (Figure 3.5(a».

Figure 6.8(a) shows LQG compensators for Typical Section 4B for three

values of p, with p. remaining constant (p.=lE-8). As p is decreased, at low

frequencies, the compensator resembles an integrator, although it does not increase
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in magnitude proportional to v{;, as suggested in Equation 6.4, and as it does for

Typical Section 1A (Figure 3.6(a» and Typical Section 4A (Figure 6.5(a». At high

frequency, the gain of the compensator increases as p decreases, and it continues to

roll off between 200 and 300 rad/sec. For the large and intermediate cases of p, the

compensator zero pair at approximately 10 rad/sec is nonminimum phase. For the

smallest case of p, the zero pair becomes minimum phase.

The effects of this zero pair can be seen more easily in the loop transfer

functions in Figure 6.8(b), consisting of the three LQG compensators (Figure 6.8(a»,

and the open loop system (Figure 6.6). The nonminimum phase zero pair at 10

rad/sec in the compensator is used to reduce the phase by 180°, making the phase of

the loop transfer function drop to the next phase band. This has the affect of adding

phase margin at crossover by being able to shape the phase, and requires that the
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magnitude of the loop transfer function be below 0 dB, at the point where the phase

drops below -180° near 9 rad/sec. As p is decreased, and the crossover frequency

increases, and the zero pair becomes minimum phase, because the compensator

cannot shape the magnitude of the loop transfer function such that it drops below 0

dB near 9 rad/sec, as in the previous cases. The compensator, uses a high frequency

amplification, while adding phase lead at the crossover frequency, instead of a

nonminimum phase zero pair, in order to compensate for the phase loss due to the

open loop nonminimum phase zero. The amplification is similar to those which

occurred in the LQG compensators designed for the MACE test article for Topology

I: LQG compensator for MACE 1A shown in Figure 3.20(a). The phase lag in the

actuator sensor transfer function from the experiment is similar to the phase delay

from the nonminimum phase zero, as shown in the nonminimum phase PADE

approximation (Table 2.4) of the time delay.

The corresponding closed loop disturbance to performance transfer functions

for the three LQGcompensators (Figure 6.8(a», impinged on Typical Section 4B, are

shown in Figure 6.8(c). In comparing these transfer functions, with those from

Figure 6.5(c), the closed loop magnitude is not reduced ~ because of the open loop

nonminimum phase zero. In particular, virtually no control is exerted near 14

rad/sec, the frequency of the nonminimum phase zero. Notice above this frequency,

the closed loop magnitude is pushed up. The lowest p case contains a crossover of

approximately 14 rad/sec, and is near the limit on performance improvement for this

topology. Therefore, the performance improvement of systems with open loop

nonminimum phase zeros is limited.

For Typical Sections 4A and 4B, the compensators resulting from varying the

Kalman Filter weighting were also examined. Similar results to the compensators

designed in Typical Section 1Aare seen (Figure 3.7(a) and (b». These included the

PI controller becoming a lag controller, and the high frequency rolloff becoming
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steeper, and at a lower frequency.

Summary

If the input output transfer function, gyu, has a missing zero pair, the

compensator places a zero pair between the two pole pairs, and designs a

compensator similar to those for TopologyI, i.e. integral control (position feedback)

at low frequencies and proportional control (rate feedback) and inversion of the

input output transfer function, except for the dominant mode, at high frequencies.

However, the practical performance improvement, is limited by the missing zero pair

because the LQG compensator drops the phase of the loop transfer function below

1800
, while the loopgain is greater than 0 dB, thus creating robustness concerns.

If the input output transfer function is nonminimum phase, the results are

not as clear. For a crossover frequency far below the nonminimum phase frequency,

the compensator is similar to those described previously. Occasionally,

nonminimum phase zero pairs and unstable pole pairs are used to shape the phase

of the loop transfer function, adding damping to the modes at crossover. However,

as more performance is required, the control authority, of the compensator, and

closed loop performance improvement, is limited by the nonminimum phase zero.

The compensator gain does not increase at low frequency, and high frequency

amplification occurs, in return for adding phase lead at crossover to compensate for

the open loopnonminimum phase zero.

A similar analysis was performed for those typical sections which correspond

to TopologiesIIA, lIB, and TopologyIn, with noncollocated input output pairs. The

results were quite similar. For missing zero pairs, the LQG compensator places a

zero pair in the open loop transfer function, in order to create an alternating pole

zero pattern in the gyu transfer function, and then designs the compensators similar

to those with collocated input output pairs. For noncollocated input output pairs
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with nonminimum phase zeros, the performance improvement of these topologies is

again limited. An example of a noncollocated input output pair which falls into the

Topology1m category is shown as an experiment in Section 6.4.

6.4 Neo-ClassicalControl

This section presents the Neo-Classical design rule for noncollocated input

output pairs. The previous section showed the implications of noncollocated input

output pairs on the control designs for TopologyI. However, as was pointed out, the

results are similar for TopologiesII and III. Therefore, Neo-Classical Design Rule 4,

for general SISO noncollocatedinput output pairs, is stated on the followingpage.

Design Rule 4A states that the pole zero pattern of the input output transfer

function is checked first for three types of pole zero patterns: alternating poles and

zeros; poles and missing zeros; poles and nonminimum phase zeros. These pole

zero patterns encompass all of the pole zero patterns associated with collocated and

noncollocatedinput output pairs.

Design Rule 4B states that if there are nonminimum phase zeros throughout

the frequency range of the performance metric, then the selected sensor actuator

pair is not to be used. For instance, if the performance metric is between 0-50

radlsec, and if there are nonminimum phase zeros at 5 and 35 radlsec, then the

input output pair is not wise choice in the control design. Not only would optimal

compensators give a nonrobust unstable andlor nonminimum phase compensator,

but the pair would also only produce minimal performance improvement.

Design Rule 4C examines the case when there is a nonminimum phase zero

at high frequency, compared to the frequency range of the performance metric. In

this case, the compensator is designed using Neo-Classical Design Rules 1-3, with

the bandwidth set by the frequency of the nonminimum phase zero. This is similar
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Neo-Classical Design Rule 4

For noncollocated input output pairs

A. Examine the input output transfer function for three types of
pole zero patterns:

alternating poles and zeros
poles and missing zeros
poles and nonminimum phase zeros

B. If there is a nonminjmum phase zero in the frequency range of
the performance, such that there would be no net performance
improvement, then this sensor actuator pair is not to be used
in the control design.

C. If there is a nonmjnjmum phase zero at high frequency, then
design the compensator using Neo-Classical Design Rules 1-3,
with the bandwidth of the compensator being limited by the
frequency of the nonmjnjmum phase zero.

D. If there is a nonminimum phase zero at low frequency, then
design the low and high frequency compensator such that the
loop gain is greater than 0 dB in the frequency range of
alternating poles and zeros, i.e. above the nonminimum phase
zero. Then continue with Neo-Classical Design Rules 1-3.

E. If there is a frequency range with alternating poles and zeros,
and a missing zero pair, which corresponds to the
performance frequency range, add the zero pair as part of the
compensator, with a higher frequency damped pole pair, to
construct a frequency range with alternating poles and zeros.
Then proceed with Neo-Classical Design Rules 1-3,being
careful to check the loop transfer function for closed loop
stability.

to the LQG compensators in Figure 6.8(a) and (b), where the bandwidth is limited by

the 14 rad/sec nonminimum phase zero. For instance, if the performance metric is

between 0-50 rad/sec, and if there was a nonminimum phase zero at 50 rad/sec, then

compensators can be designed with lower bandwidths, usually up to 20-30 rad/sec in

this case. Also, a nonminimum phase zero may add phase lag in the open loop

transfer function. Phase lead could be added into the compensator by using lead

filters, with a high frequency amplification as a tradeoff.

Design Rule 4D examines the case where there is a nonminimum phase zero
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at low frequency. In this case, the low frequency, high gain LQG asymptote is not

valid, as a result of the nonminimum phase zero. The LQG compensators for this

case are difficult to interpret. Therefore, the insight of the control designer must be

used in this case. A controller is designed such that the loop gain is greater than 0

dB within the frequency range of the alternating poles and zeros. For instance, if

the performance metric is between 0-50radlsec, and if there is a nonminimum phase

zero at 1 radlsec, then a low frequency controller is designed which allows the

magnitude of the looptransfer function to be greater than 0 dB at frequencies above

the 1 radlsec nonminimum phase zero, Le. a region of alternating poles and zeros.

Disturbance rejection can be achieved, therefore, at frequencies greater than the

frequency of the nonminimum phase zero. Then the remainder of the Neo-Classical

Design Rules 1-3can be used. An example of the use of Design Rule 4D is shown as

an experiment in Section 6.5.

Accordingto Design Rule 4E, if there is a missing zero pair in the pole zero

pattern of g,", then the compensation technique is to use a zero pair, to create an

alternating pole zero pattern, as the LQG compensators do in Figure 6.5(a). A

higher frequency pole pair is also added. The damping of the pole pair is dependent

upon the required phase at crossover, and amplification at high frequency by the

compensator. Care must be taken in the placement of the lightly damped zero pair,

however. It must be placed between the two pole pairs. If modeling errors lead to

this not being true, closed loopinstabilities couldresult.

Design Rule 4A is used to design a Neo-Classical compensator for Typical

Section 4A, where the input output pair U2 Yl is noncollocated. For this pair, in

examining the open loop transfer function, g,", Figure 6.2(a), there are no

nonminimum phase zeros in the g," transfer function, but there is a missing zero

pair between the poles at 1.6 and 10.1 radlsec. Therefore, Design Rule 4E is used,

where a compensator zero pair is placed between the two pole pairs in the open loop

224



transfer function, to create a region of alternating poles and zeros. A higher

frequency pole pair is also added, to insure rolloffof the compensator.

Figure 6.9 shows the open loop transfer function, gyu, and the open loop

transfer function convolved with a lightly damped <'%=1%)zero pair added at 9

rad/sec, and a heavily damped pole pair at a higher frequency, 30 rad/sec <'p=40%).

Notice the alternating pole zero pattern at low frequency, up to 20 radlsec, with a

slight phase delay. The damped pole pairs act as a phase delay. This transfer

function is now used as the open loop transfer function gyu, and Design Rule 1 is

used, since the topology falls into the TopologyI category: the performance and

output are analogs, and the disturbance and input are analogs.

Using Design Rule lA, a low frequency controller is designed, consisting of

the temporal relationship tPzy, which is an integrator, sinceZl is the integration ofYl'
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Figure 6.9. Open loop transfer function for Typical Section 4A, from U2
to Yh convolved with a zero pair (~=10 rad/sec, '%=1%) and
pole pair (cq,=30 rad/sec, 'p=40%).
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Using Design Rule 1B, a closed loop bandwidth is chosen to be 3 radlsec,

similar to that of the LQG compensator for the large p case in Figure 6.5(a) and (b).

Then, a zero is convolvedinto the compensator, in order to achieve rate feedback at

high frequency. The zero frequency is chosen to be 1.5 radlsec, in order that the

phase margin at loopcrossover is approximately 60°. The gain of the compensator is

then adjusted such that the loopcrossover is approximately 3 rad/sec.

Using Design Rule 1C, no high frequency rolloffdynamics are added, because

they added phase to the crossover frequency, and there are no problems with sensor

noise.

Following Design Rule 1D, the loop transfer function consisting of the open

loop system in Figure 6.9, and the compensator designed from Design Rules 4E and

1A-C is examined. The modes at 28 and 51 radlsec pose closed loop stability

problems, and are therefore notch filtered. Figure 6.10(a) shows the resulting 6

state Neo-Classical compensator designed for the topology in Typical Section 4A,

using W2 and U2 as the disturbance and input.

The 6 state Neo-Classical compensator is plotted with an 8 state LQG

compensator for the large p case in Figure 6.5(a) for comparison. Both compensators

use PI controllers, invert the open looppoles at 28 and 51 radlsec, and contain a zero

pair below the open loop pole pair at 10.1 radlsec to create a pseudo open loop

alternating pole zero pattern. The Neo-Classical compensator uses a 9 radlsec zero

pair, while the LQG compensator uses a 9.7 radlsec zero pair. The Neo-Classical

compensator, however, does not invert the open loopzeros at 14 and 42 radlsec. This

results in the phase of the compensator at 3 radlsec being smaller than that of the

LQG compensator. The Neo-Classical compensator trades phase at crossover for

robustness by not inverting the open loopzeros.

Figure 6.1O(b)shows the loop transfer functions, consisting of the open loop

system in Figure 6.9, and the compensators from Figure 6.10(a). The loop crossover
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is designed for approximately 3 rad/sec. Notice how the phase margin at crossover is

larger for the LQG compensator. This is a result of not using the nonrobust lightly

damped pole pairs. Figure 6.10(c) shows the open and closed loop disturbance to

performance transfer functions for the two compensators in Figure 6.I0(a), impinged

on Typical Section 4A. The performance improvement for both designs is 24.0 dB.

6.5 Experimental Implementation

Noncollocated actuator sensor pair pose an interesting practical challenge for

the control designer. Not only must the actuator sensor pair be able to pass the loop

shaping test in Design Rule 3A, as shown in Chapter 5, but it also must contain a
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frequency range where the input output transfer function resembles a collocated,or

slightly noncollocated pair, i.e. alternating poles and zeros or nearly alternating

poles and zeros.

In search of a noncollocatedinput output topologyon the MACE test article,

the pointing payload loop topology of MACE 1A was first examined, as shown in

Figure 3.18, but using the output as the y-axis acceleration the node next to the

gimbal (Figure 2.7). Design Rule 4A was used, because of the noncollocated sensor

actuator pair. In examining the input output transfer function, nonminimum phase

zeros were discovered at 1, 14, and 30 Hz. The performance metric was the

integrated payload rate gyro, bandlimited from 0.5-50Hz. This actuator sensor pair,

as a result of the nonminimum phase zeros, was not a good choice for the control

design, according to Design Rule 4B.

Next, the bus loop was examined, again using the y-axis acceleration on the

same node. This topologyis show in Figure 6.11 as MACE 4. The input u and the

u w

Node'2

\
Rate Gyro Platfonn

z

y
Torque Wheel Assembly

/ Acx:elerome

Figure 6.11. MACE4: Topology for bus vibration reduction loop with
the noncollocated accelerometer as the output.
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disturbance w are the z-axis inertial torque produced by a rotation of the torque

wheels at the center of the bus. The output y is the linear y-axis acceleration at node

2, and the performance z is the integrated rate gyro, at the center of the test article.

The performance metric is bandlimited from 0.5-50Hz.

Using Design Rule 4A, the open loop transfer function, g," was examined.

Figure 6.12 shows the open loop transfer function from the z-axis torque wheels, to

the y-axis acceleration. In this transfer function, there was a nonminimum phase

zero at 0.8 Hz, and another at 60 Hz. Therefore, both Design Rule 4C and 4D were

used. The bandwidth is limited by the open loop 60 Hz nonminimum phase zero to

approximately 30-40 Hz. Design Rule 4D then was used. Control at low frequency

was limited by the nonminimum phase zero at 0.8 Hz. In examining the pole zero

pattern, however, from 2-30 Hz, it contains alternating poles and zeros. This is the

100
u
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~
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co 0u
S
u
~
5: -500

Figure 6.12. Measurement of the. open loop input output transfer
function gyu from z-axis torque wheels to y-axis linear
acceleration for MACE 4.
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frequency range used in the control design.

Since the disturbance w and input u are analogous, and the performance z

and the outputy are not analogous, this topology falls into the Topology II category,

(Topology lIB to be specific) and Design Rule 2 was used. Using Design Rule 2A, the

filter dynamics, gzw/gy" were divided into the temporal relationship between z andy,

and the structural filter go. Because the output is acceleration, and the performance

is position, tPo is a double integrator

And the structural filter go is given by

1tP =-2o S
(6.5)

(6.6)

Using Design Rule 2B, a low frequency controller is designed, corresponding to a

high gain controller, with the temporal relationship given in Equation 6.5. The low

gain controller is a double integrator, or position feedback. Another low frequency

controller must be used, however, due to the nonminimum phase zero at 0.8 Hz.

Therefore, a controller was designed using rate feedback at all frequencies, or

integral control.

Also, Because of the nonminimum phase zero at 0.8 Hz, the integral control,

or rate feedback was only used at frequencies above 2 Hz. Therefore, instead of a

pure integrator, a high pass integrator or lag filter was used, with a single pole at 2

Hz. A two pole, two zero lead filter was also added to the compensator to add phase

lead at crossover. The gain of the compensator was then adjusted in order to create

a loop crossover of approximately 20 Hz. This completed Design Rule 2C.

Following Design Rule 2D, a two pole rollofffilter was added «(0:::100Hz), as a

result of possible closed loop stability problems with modes above 100 Hz.
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Following Design Rule 2E, the loop.transfer function consisting of the open

loop system in Figure 6.11, and the compensator constructed from Design Rules 4D

and 2A-D was examined. The modes at 36 and 42 Hz posed closed loop stability

problems, and therefore needed gain stabilized. Two notch filters with nominal

frequencies at 36 and 42 Hz were then constructed and convolved into the

compensator.

According to Neo-Classical Design Rule 2F, the filter dynamics were

examined for possible additions to the compensator. Figure 6.13 shows the gzw/ g~

filter dynamics for MACE 4. Notice the large peaks at 9.4 and 14 Hz. The largest

peak at 9.4 Hz was added to the compensator, by designing an inverse notch filter

(ro=9.4Hz, '=0.2, a=0.1). The resulting 9 state Neo-Classical compensator, designed

for MACE4, is shown in Figure 6.14(a).

Figure 6.14(b)shows the measured loop transfer function, gyr}(, of the 9 state
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]
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Figure 6.18. Measurement of the filter dynamics gnl//gyu, for MACE4.
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Figure 6.14(a). 9 state Neo-Classical compensator K for MACE 4: 2 states for
the high pass filter; 4 states for the 36 and 42 Hz notch filters;
2 states for a filter dynamics; 1 state for the 100 Hz rolloff.
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the 9 state Neo-Classical compensator and open loop transfer
function.
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\

Frequency (Hz)

Figure 6.14(c). Measurement of the open and closed loop disturbance to
performance transfer functions for MACE 4. Performance
improvement with the 9 state Neo-Classical compensator
was 9 dB.

Neo-Classical compensator (Figure 6.14(a», and the open loop transfer function

(Figure 6.12) for MACE 4. Notice how the modes within the 20 Hz bandwidth

(Regions 1 and 2) at 6.8, 9.4, and 14 Hz all rise above the 0 dB line, and the modes

above the bandwidth (Region 3) at 36 and 42 Hz are gain stabilized. The modes

above 0 dB are being controlled. Figure 6.14(c) shows the measurement of the open

and closed loop disturbance to performance transfer functions. The performance

improvement was 9 dB. Notice how the compensator does not provide closed loop

performance improvement below 2 Hz, as a result of the nonminimum phase.zero

and subsequent compensator design. But the reduction of the peaks at 6.8, 9.4, and

14 Hz was quite good, especially near 9.4 Hz, as a result of the added filter dynamics

in the compensator.
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Chapter 7

MIMO Control

7.1 Introduction

This chapter shows the adaptation of the SISO Neo-Classical Design rules

presented previous chapters to the MIMO problem. These classical MIMO

compensators include High Authority ControllLow Authority Control (HACILAC),

and sequential loop closure. Two MIMO system will be examined on the MACE test

article, each having two inputs, two outputs, one disturbance, and one performance.

A summary of optimal LQG and SWLQG compensators for the MIMO problem will

be made, followed by a discussion of the HACILAC and sequential loop closure

methods. Finally, the experimental closed loop results for the MIMO controllers will

be shown. The LQG and SWLQG compensators are also designed and implemented

for comparison with the classical designs.
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7.2 Optimal Compensation

Optimal LQG and SWLQGcompensators are designed in the same manner

for this MIMOinput output system as in the SISO systems discussed in Section 2.3.

The weighting matrices Q and Ware identical to those in the previous

compensators, defined by the performance and disturbance. These weighting

matrices are given in Equations 2.9 and 2.12.

The weighting matrices R and V describe the influence of the inputs and

outputs respectively in the LQR and Kalman Filter problems. It is assumed that

these matrices are diagonal, as shownbelow

(7.1)

(7.2)

where Ro and Vo are diagonal, and p and Jl are the positive scalar LQR and Kalman

Filter weightings. The diagonal matrices are constructed using Bryson's Method

[Bryson (1969)] for scaling in the LQG problem. For the Ro matrix, the diagonal

entry is the inverse of the square of the corresponding maximum actuator input.

The two actuators in this problem are the z-axis gimbal and z-axis torque wheels

and the Ro matrix is

1 o

1 (7.3)

The Vo matrix is scaled in a similar manner, using the inverse of the square of the

corresponding maximum sensor output. For the examples on the MACEtest article,

the two sensors are the rate gyros at the center of the bus, and in the payload.
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Therefore, the scaling matrix Vo is diagonal.

1
1 0 (75::J(y,,):Uv= =0 10

(y,,):U
0

o

1

(75 deg)2
see

(7.4)

The Kalman Filter weighting J.l is usually smaller than the LQR weighting p,

to ensure faster dynamics in the estimator. The LQR weighting is then varied to

change the bandwidth of the closed loop system, thus changing the closed loop

performance improvement.

The LQG compensator is given by

(7.7)

where G is the 2xn LQR optimal LQR gain matrix, and H is the nx2 optimal Kalman

Filter gain matrix, where n is the number of states.

7.3 ClassicalCompensation

There were two types of MIMO classical compensation implemented on the

MACE test article. The first is a High Authority ControllLow Authority Control

(HACILAC) compensator [Gupta et ale (1984)]. First a low authority controller,

usually collocated velocity feedback, is closed on the structure. Active damping is

added to critical modes, usually modes near the crossover region of a subsequent

loop. By adding damping to these modes, not only will the model errors be smaller,

especially in the phase, but the subsequent control design will be easier and more

robust.
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The second type of classical MIMO compensator designed for implementation

is sequential loop closure [Maciejowski (1989)]. SISO compensators are designed

one loop at a time, starting with the fastest or highest bandwidth loop. As one loop

is closed, the subsequent loop of smaller bandwidth is designed around the new

plant. These SISO compensators are designed using the Neo-Classical Design Rules

presented previously.

7.4 Experimental Implementation

MIMQ Payload Pointin~ Loop

Two topologies of the MACE test article will be examined, both with two

inputs, two outputs, one performance and one disturbance. Figure 7.1 shows the

first MIMO topology, MACE 5A. It is quite similar to MACE lA, the payload

pointing loop shown in Figure 3.15, since the disturbance and performance are the

Loop #2

U27ue Wheel Assembly

__ , ..""""",,,t-.

\
Rate Gyro Platform

+Y

}-+X
+Z

Y1 Z

Loop #1

Figure 7.1. MACE 5A: Topology for the MIMO payload pointing loop.
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Figure 7.2. Measurement of the open loop input output transfer function
for Loop #1: z-axis gimbal Uh to z-axis payload rate gyro,Yl.

103

103

102

101

101

Frequency (Hz)

101

Frequency (Hz)

100

100

101

100
u
"0a.~ 10-1
tIS

~ 10-1

10-310-1

200

0-co.g -200-u
~

-400

-600

-800
lO-1

Figure 7.3. Measurement of the open loop input output transfer function
for Loop #2: z axis torque wheels U2, to z-axis bus rate gyro, Y2.
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10-2

same. The disturbance w is the relative torque of the z-axis gimbal, and the

performance metric z is the integrated payload rate gYro,or inertial payload angle,

bandlimited from 0.5-50 Hz. The two inputs include the relative torque of the z-axis

gimbal Ult and inertial torque produced by the z-axis torque wheels U2. The two

outputs include the rate gYroin the payload Yb and the rate gyro at the center of the

bus Y2. Figure 7.2 shows the open loop transfer function g,u from the z-axis gimbal,

Ub to the z-axis rate gyro in the payload, Yb for Loop#1. Figure 7.3 shows the open

loop transfer function g,u from the z-axis torque wheels, U2, to the bus rate gyro, Y2.

for Loop#2.

The measurement of the open and closed loop disturbance to performance

transfer functions for a model based 30 state two input two output LQG

compensator are shown in Figure 7.4. This can be compared to the with the closed

loo

10-1
]
.~
~

~

10-3

Frequency (Hz)

Figure 7.4. Measured open and closed loop disturbance to performance
transfer functions with the model based 30 state MIMO
LQG compensator for MACE 5A Performance improvement
was 25.4 dB.
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loop system of the 23 state 8180 LQG shown in Figure 3.20(c). They are quite

similar, except the closed loop system with the MIMO LQG compensator is smoother

in the region from 5 to 30 Hz. The 8180 LQG compensator in Figure 3.20(a)

contains weak pole zero inversions (Region 2) for the modes in this frequency range.

Because the model is not exact in that region, and the inversions are not exact. The

closed loop system is not smooth. The MIMO LQG closed loop, however, is much

smoother. The MIMO LQG compensator does not use these pole zero inversions that

the 8180 LQG compensator does. The additional loops add damping and robustness

to the closed loop system. The closed loop performance improvement, however, did

not change (25.4 dB for MIMO LQG versus 25.7 dB for 8180 LQG).

Figure 7.5 shows the measurement of the open and closed loop transfer

function for a model based 30 state two input two output 8WLQG compensator. The

100

10-1
]
.~
«l::s

Frequency (Hz)

Figure 7.5. Measured open and closed loop disturbance to performance
transfer functions with the model based 30 state MIMO
SWLQG compensator for MACE 5A. Performance
improvement was 25.3 dB.
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modes at 6.8, 8.8, 9.4, and 14 Hz were de-sensitized. The closed loop performance

improvement (25.4 dB) was similar to that of the MIMOLQGcompensator (25.3 dB).

The limiting factor of this control design, therefore, was not closed loop stability

problems, but phase delay in the system. Notice the higher frequency amplification

as a result of the compensation for this delay, as in the previous designs.

A high authority, low authority control design (HACILAC) was then

attempted. The low authority loopwas Loop#2, U2 to Y2, and the high authority loop

was Loop#1, Ut to Yt. Notice that the low authority loop,Loop#2, actually falls into

the TopologyIII category, since the disturbance or input are not analogous, and the

performance and output are not analogous. This is identical to MACE 4 design

shown in Figure 5.18(a)-(c). The low authority loop was designed using rate

feedback, and when Neo-Classical Design Rule 3 was used for MACE3, the resulting

103102loo
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~
t,) -200
~.r:::

l:l. -250

loo 101
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102 103

Figure 7.6. 7 state Neo-Classical compensator for the low authority loop,
loop #2: 2 states for the high pass filter; 2 states for a lead
filter; 2 states for the 36 Hz notch filter; 1 state for the 100
Hz rolloW.
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Figure 7.8. 12 state Neo-Classical compensator for the high authority
loop, loop #1: 2 states for the stabilized integrator; 8 states
for the lead filters; 2 states for the 36 Hz notch filter.
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compensator used rate feedback at all frequencies. Therefore, the low authority

controller is identical to the Neo-Classical design in Figures 5.18(a)-(c). The

resulting 7 state Neo-Classicalcompensator is shown in Figure 7.6.

The design of the subsequent high authority loop for Loop #1, u 1 to Yh is

designed around the new plant, with Loop#2 closed. Figure 7.7 shows the open loop

transfer function for Loop #1 with and without Loop #2 closed. Notice how the

modes between 5 and 15 Hz are all damped by the low authority controller. The

Neo-Classical design for Loop #1 falls into the Topology 1 category, since the

disturbance and input are analogs, as are the performance and output. Therefore,

Neo-ClassicalDesign Rule 1 is used. This design is identical to the design created in

for MACE lA, except for the new open loop system is shown in Figure 7.7. Notice

how the open loop transfer function in Figure 7.7 is identical around the crossover

region (20 Hz) with or without Loop#2 closed. The high authority compensator is a

Neo-Classicalcompensator, therefore, identical to that designed for MACE1Ashown

in Figure 3.20(a) The resulting 12 state controller is shown in Figure 7.8.

Figure 7.9 shows the measurement of the open and closed loop disturbance to

performance transfer functions for the HACILAC design for MACE 5A. The

resulting closed loop transfer function is smoother within the closed loopbandwidth

than the 8180 Neo-Classical closed loop design for MACE 1A shown in Figure

3.20(c). The closed loop transfer function is also smooth, similar to the LQG and

8WLQG compensators in Figures 7.4 and 7.5. Although the LACdoes not add a lot

of robustness to the closed loop system because the modes are not in the crossover

region, the performance improvement did increase by a small amount, to 26.6 dB.

Note that the HACILACperformance (26.6 dB) was better than that of the LQG

(25.4 dB) and 8WLQG (25.3 dB).
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Figure 7.9. Measured open and closed loop disturbance to performance
transfer functions with the 12/7 state HACILACcompensator
for MACE SA. Performance improvement was 26.6 dB.

M1MQ Payload Pointing Loop with Torgue Wheel Disturbance

The next MACE topology examined was similar to the first, except the

disturbance was noncollocated from the performance at the payload. It was placed

at the torque wheels. This topology,MACE5B, shown in Figure 7.10, has the same

disturbance and performance as the 8180 MACE2 topologyin Figure 4.15.

A model based 36 state two input two output LQG compensator was first

designed for this topology. The measured open and closed loop disturbance to

performance transfer functions are shown in Figure 7.11. Notice how the MIMO

compensator reduced the peaks at 6.8 and 9.4 Hz, where the 8180 LQG

compensator, in which only Loop #1 was closed, did not (Figure 4.18(c». The low

frequency disturbance rejection, however, is poor. This is a result of modelling
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Figure 7.10. MACE5B: Topology for the MIMO payload pointing loop
topology, from the torque wheel disturbance.

101

100

10-1

u
].~ 10-1
tU::s

10-3

10'"

10-s
10-1 loo 101 101

Frequency (Hz)

Figure 7.11. Measured open and closed loop disturbance to performance
transfer functions with the model based 36 state MIMO
LQGcompensator for MACE5B. Performance improvement
was 11.2 dB.
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errors. Figure C.3 shows the open loop transfer function from z-axis torque wheels

to z-axis payload rate gyro. Notice that at low frequency, the magnitude of the

model is. in error by at least 10 dB. This error could affect the experimentally

measured closed loop performance when using the model based compensator. The

performance improvement of this design was 11.2 dB, equivalent to the 8180 LQG

closed loop system, with only Loop #1 closed, shown in Figure 4.18(c).

A model based 8WLQG compensator was then designed for this topology.

The modes at 1.2, 6.8, and 9.4 Hz were de-sensitized, in order to attempt to improve

performance at lower frequency. Figure 7.12 shows the measurement of the open

and closed loop disturbance to performance transfer functions. Notice the increased

closed loop performance at low frequency. However, the reduction of the resonances

at 6.8 and 9.4 Hz has been adversely affected. The performance improvement has
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Figure 7.12. Measured open and closed loop disturbance to perfonnance transfer
functions with the model based 36 state MIMO SWLQG
compensator MACE 5B. Perfonnance improvement was 9.6 dB.
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decreased from 11.2 dB (LQG) to 9.6 dB (SWLQG).

The final MIMO compensator design was a two input two output sequential

loop closure design, for the same topology, MACE 5B. The two loops closed were the

payload pointing loop, Loop #1, Ul toYh and the bus loop, Loop #2, U2 toY2. These

two loops, in comparison with the disturbance performance pair, both fall into the

Topology II category. For Loop #1, the output Yl and performance z are analogs, and

for Loop #2, the input U2 and disturbance w are analogs. Both loops were therefore

designed using Neo-Classical Design Rule 2.

The first loop closed is the high bandwidth loop, Loop #1, was shown in the

SISO case for MACE 2. The 16 state Neo-Classical design is shown in Figures

4.22(a)-(c). The bandwidth of this loop was 20 Hz. The 16 state Neo-Classical

compensator designed for Loop #1 is shown in Figure 7.13.
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Figure 7.13. 16state Neo-Classical compensator for loop #1 in MACE 5B:
2 states for the stabilized integrator; 8 states for the lead
filters; 2 states for the 36 Hz notch filter; 4 states for filter
dynamics.
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With this loop closed, the compensator for Loop #2, was designed, also using

Design Rule 2. The open loop plant, however, changed because Loop #1 was closed.

Figure 7.14 shows the input output transfer function for Loop #2 with Loop #1

closed. Notice the low frequency dynamics have changed, but above 10 Hz, the

dynamics were not affected.

The compensator designed for Loop #2, which contains 16 states, is very

similar to the Neo-Classical compensator designed for the first loop. It is a 16 state

compensator: 2 states for the stabilized integrator; 8 states for the lead filters; 2

states for the 36 Hz notch filter; and 4 states for the filter dynamics gzw/gyu. The

resulting compensator is equivalent to the first Neo-Classical compensator, except

for a deeper notch filter, and filter dynamics. This 16 state Neo-Classical

compensator is shown in Figure 7.15. The bandwidth of this loop was approximately

15Hz.

Although the bandwidths of the two loops were similar, there were no closed

loop stability problems. Figure 7.16 shows the measurement of the open and closed

loop disturbance to performance transfer functions for the sequential loop designs

for MACE 5B. Notice how the sequential loop closure design (Figure 7.16)

accomplished tasks that none of the other SISO or MIMO compensators have done

(Figures 4.18(c), 4.20(c), 4.22(c), 7.11, 7.12), namely low frequency disturbance

rejection and resonant peak reduction at 6.8 and 9.4 Hz. The closed loop

performance improvement with this compensator was 19.9 dB, larger that of the

previous MIMO compensators (11.2 dB for LQG, 9.6 dB for SWLQG).
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Figure 7.15. 16 state Neo-Classical compensator for loop #2 in MACE 5B: 2
states for the stabilized integrator; 8 states for the lead filters;
2 states for the 36 Hz notch filter; 4 states for filter dynamics.
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ChapterS

Conclusions and Recommendations

Conclusions

Neo-Classical control design techniques have been developed for controlled

structures. Neo-Classical Control combines the loop assignments and complex

topological design of LQG controllers, the robustness of SWLQG controllers, and the

lower order, robustness, and practical insight of classical controllers, into a control

strategy for structures. For the problems examined, the Neo-Classical compensators

were lower order, more robust, and deliver equal or superior performance when

compensated to the optimal LQG and SWLQG techniques.

In order to understand the form of the optimal compensation used to

motivate the Neo-Classical techniques, the asymptotic properties of the LQG

compensator were examined. For low noise (small p) and expensive control (large p),

the SISO LQG compensator converges to a rate feedback, low gain inversion of the

disturbance to output transfer function, except for the most dominant mode. If the

disturbance to output transfer function has two dominant modes, the compensator
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places a weighted zero pair between the two open pole pairs. For lownoise (small p.)

and cheap control (small p), the 8180 LQG compensator converged to a high gain

compensator, where the zeros are the zeros of the disturbance to performance

transfer function, and the poles are a weighted average of the zeros of the

disturbance to output and input to performance transfer functions. Making the

assumption that the Kalman Filter weighting is smaller than the LQR weighting,

the poles of the high gain asymptote are identical to those of the lowgain asymptote,

i.e. the zeros of the disturbance to output transfer function.

The lowgain asymptote is dependent upon the disturbance to output transfer

function being minimum phase, and the high gain asymptote is dependent upon both

the disturbance to output and input to performance transfer functions being

minimum phase. The rate convergence of the asymptotes is also affected by

regularity of the pole zeropatterns of these transfer functions as well.

The 8180 disturbance rejection problem can divided into three categories,

depending upon the relationship between the performance and output, and

disturbance and input. If the performance and output are collocatedand dual, they

are said to be analogs. If the disturbance and input are collocatedand dual, they are

said to be analogs.

For the case where the performance and output are analogs, and the

disturbance and input are analogs, and the input and output are collocated, dual,

and complementary extreme, the types of compensation for the structural modes

depends upon their location in the loop transfer function. For Region 1, at low

frequency within the bandwidth, the LQG compensator is a high gain controller,

with the temporal relationship between the performance and output, and pole zero

cancellations. This compensator is also identical to the disturbance to performance

transfer function minimizing compensator. For Region 4, at high frequency, the

LQG compensator is an inversion of the input output transfer function, except for
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the dominant mode. For Regions 2 and 3, which make up the region of the loop

transfer function before and after loop crossover, the LQG compensator is a

combination of both the open loop inversion, and open loop pole zero cancellation.

For this same topology, if the SWLQG compensator is de-sensitized to mode

in Region 2, the compensator pole and zero pairs in that region damp, and migrate

together, creating pole zero cancellations. If the SWLQG compensator is de-

sensitized to mode in Region 3, the compensator pole pairs damp quickly, however

the zero pairs do not, thus creating a controller resembling a notch filter.

The design rule for Topology I was created, based upon the analysis of the

LQG and SWLQG compensators. In Region 1, the compensator is a high gain

compensator, with the temporal relationship between the performance and output.

In Region 2, no dynamics are added because the SWLQG compensator suggests they

are nonrobust. In Region 3, the SWLQG compensator robustifies the compensator

pole zero inversions by creating notch filters. And in Region 4, the dynamics are

superfluous because they do not affect the closed loop stability or robustness of the

system.

If the open loop input output transfer function contains multiple dominant

modes, the LQG compensator is very similar to that of the compensator of a single

dominant mode. If the multiple dominant modes lie in Region 2, the LQG

compensator creates a weak pole zero inversion, similar in the single mode case.

And if the modes are in Region 1, the compensator contains pole zero cancellations,

identical to that of the single dominant mode case.

For the topology where the disturbance and input are analogs, but the

performance and output are not, and the input output pair is collocated, dual, and

complementary extreme, Topology IIA, the LQG and SWLQG analysis is very

similar to that of the first case. The only difference is that in Regions 1 and 2, the

LQG compensator creates a high gain filter, gzw/ g," instead of only the temporal
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relationship between the performance and output. This high gain compensator is

also identical to the disturbance to performance transfer function minimizing

compensator.

For the topology where the performance and output are analogs, but the

disturbance and input are not, and the input output pair is collocated, dual, and

complementary extreme, Topology1m, the LQG and SWLQG analysis is not very

similar to either Topology I or Topology lIA. The LQG compensators, for most

values of the Kalman Filter and LQR weightings are unstable and nonminimum

phase. These compensation techniques are shown to be nonrobust by comparison

with the SWLQG compensator. The LQG compensator, which should create the

high gain LQG asymptote in Region 1, does not because the pole zero pattern of the

disturbance to output transfer function is not alternating poles and zeros. The

magnitude of the compensator in Region 1, instead of creating the high gain LQG

asymptote with the filter gzw/ g,w, creates the magnitude of the disturbance to

performance transfer function minimizing compensator, gzw/ &u.

Because the transfer function minimizing compensator and closed loop

system for Topology1m is identical to that ofTopologylIA, the Neo-Classical design

rule is generalized for both cases. For this design rule, the filter dynamics gzw/ gJU

are split into the temporal relationship between the performance and output, and a

structural filter. The design rule then is identical to those in TopologyI, except the

final step is to add stable, minimum phase dynamics representing the structural

filter to the compensator in Regions 1 and 2.

For the general SISO disturbance rejection case, where the performance and

output are nonanalogous, and the disturbance and input are nonanalogous Topology

III, the LQGcompensators do not match the asymptotes, as a result of the pole zero

patterns of the disturbance to output and input to performance transfer functions

not being alternating poles and zeros. The LQGcompensator, instead, converges to
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the disturbance to performance transfer function minimizing compensator. This

compensator, in certain cases, creates a subtraction in the closed loopdisturbance to

performance transfer function, which is nonrobust as far as practical

implementation. This occurs when a test for the ability of a high gain compensator

to loop shape is not satisfied. The test is satisfied for a frequency range if the

magnitude of the closedloopdisturbance to performance transfer function (assuming

a high gain compensator), is less than the open loop disturbance to performance

magnitude. For Neo-Classicalcontrol, if the test is satisfied, then the design rule for

TopologyII is used. If it is not satisfied, then a rate feedback controller is designed

for all frequencies, as it is the best practical compensator.

For noncollocated input output pairs, the Neo-Classical design rules are

similar to those previously. However, they are dependent on the pole zero pattern of

the input output transfer function. If the pole zero pattern is alternating in the

frequency range of interest, the optimal and Neo-Classical compensators are the

same as in the previous topologies. If there is a high frequency nonminimum phase

zero, the optimal and Neo-Classical compensators are the same as in the previous

topologies, up to a bandwidth limited by the nonminimum phase zero. If there is a

lowfrequency nonminimum phase zero, the optimal and Neo-Classical compensators

are similar to the previous topologies,with disturbance rejection occurring at higher

frequencies. If there is a missing zero pair in the pole zero pattern, the LQG

compensator places a zero pair, and higher frequency pole pair, to create a region of

alternating poles and zeros. The Neo-Classical design rule also uses this technique.

As the Kalman Filter weighting is made larger, thus adding sensor noise to

the compensator design, certain compensation occurred in each topology. The

Region 1 controller became high pass filtered. The high frequency rolloff also is

steeper, and occurs at a lower frequency than the low noise case.

The Neo-Classical design rules were applied to a variety of topologies on the
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MACE test article. The compensators were designed and implemented

experimentally as a validations of the rules. Optimal LQG and SWLQG

compensators were also designed and implemented on the same topologies. In

general, the Neo-Classical compensators were lower order, more robust, and

achieved similar or better performance improvement.

The Neo-Classical design rules were adapted to a MIMO experiment on the

MACE test article. The Neo-Classical MIMO compensators designed and

implemented on the MACE test article had better performance improvement and

compensator dimension when compared to the LQGand SWLQGcompensators.

Recommendations

The LQG asymptotic analysis compares very well with the LQG

compensators when the open loop transfer functions contain. alternating poles and

zeros. However, when the open loop transfer functions contain nonminimum phase

zeros or missing zero pairs, the comparisons are not as easy. The LQG

compensators become unstable and/or nonminimum phase. And the rate of

convergence to the asymptote is also dependent upon the open loop pole zero

patterns. Therefore, this asymptotic analysis should be examined further.

A few MIMO compensators were designed and experimentally implemented

on the MACE test article. The MIMO control design problem, however, is a very

complex issue. The evidence is not presented to encompass the field of MIMO

control design. A few techniques were presented to shown the adaptability of Neo-

Classical control design to the MIMO problem, and two types of optimal MIMO

compensators, LQG and SWLQG,were used for comparison. This issue is still an

area of active research, and should be investigated more thoroughly.
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Appendix A

Asymptotic Properties of the
SISO LQG Compensator

Doyle and Stein (1982) showed that when the sensor noise is small, or the

Kalman Filter weighting J1 is small, and there are no nonminimum phase zeros in

the transfer function from disturbance G, then the LQR loop is recovered.

LIM K(s) = G(sI - Arl B(C(sI - Arl B)-l = GLQ(GOLrl (A.I)
}l-+O

where the LQR loop transfer function GLQ, and the open loop transfer function GOLJ

are given by

(A.2)

(A.3)

For the general disturbance rejection problem, where the disturbance is not

the same as the input, the resulting compensator does not simplify as easily. In this
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analysis, a matrix inversion lemma will be used [Kailath (1980)]

(A + BCDfl = A-1_A-1B(C-1 +DA-IBrlDA-l

The LQG compensator is given by

(A.4)

K(s) = G(sl - A + BuG + HCy fl H = G(4>-1 + HCy r
1

H (A.5)

where

<I>= (sl -A + BuG)-l

Using the matrix inversion lemma twice,

K(s) = G[<11- <IIH(I + Cy<IIHt Cy<II]H

K(s) = G<IIH[I-(I + Cy<llHtCy<llH]

K(s) = G<I>H(1 + Cy<I>Hfl

(A.6)

(A.7)

(A.8)

(A.9)

The above compensator is then split into two parts. The first of which is again

simplified using the matrix inversion lemma twice.

G<I>H = G(<I>-l+ BuGrl H

G<I>H = G[4>-<I>Bu(1 +G<I>Buf1G<I>]H

G<I>H = rI - G<I>Bu(I + G<I>Buf11G<I>H

G<I>H = [I+ G<I>Bur1G<I>H
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The second part of the problem is simplified in a similar manner.

(A.14)

(A.15)

(A.16)

(A. 17)

Substituting the results from Equations A.13 and A.17 into A.9, the LQG

compensator becomes

(A.IS)

This compensator can be further simplified by assuming the compensator is single

input, single output (SISO), or there is one performance, disturbance, input, and

output.

GCf>H [ C cJ)H ]-1K(s) = 1+-''----
1+ GCf>Bu 1+ GcJ)Bu

K(s) = GcI>H [1+GcI>Bu +C,cJ)H]-1
1+ GcI>Bu 1+ GcJ)Bu

K(s) = GcI>H
l+GCf>Bu +C,cJ)H

(A.19)

(A.20)

(A.21)

Equation A.21 shows the SISO LQG compensator for given LQR and Kalman

Filter gain matrices G and H.

For the low noise result of the SISO Kalman Filter, or as the Kalman Filter
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weighting Jl tends to zero, the optimal gains are given by [Kwakemaak and Sivan

(1972)]

(A.22)

where WH is an orthonormal matrix, or ::1:1in the SISO case.

(A.23)

This result is dependent upon the disturbance to output transfer function ClbBw

being minimum phase.

Similarly, for cheap control in the LQR problem, or as the LQR weighting p

tends to zero, the optimal LQR gains are given by

(A.24)

whereWa is an orthonormal matrix, or::l:1in the SISO case.

(A.25)

This result is dependent upon the input to performance transfer function C/PBu

being minimum phase.

This leads to the following simplified SISO LQG compensator, for low noise

and cheap control.

::I:~--!.-C ttlB
LIM K(s) = {P {P. z. W

Jl-+O 1 C B 1 C B
p-+O ::I:{P z<1> u::l:{P. ,<1» w

(A.26)

For the expensive control, low noise SISO compensator, the asymptotic

optimal gain matrix of the LQR problem is used. MacMartin (1990) showed that for
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the expensive LQR problem, the optimal gain matrix G is

(A.27)

where Vi and Wi are the right and left eigenvectors of the system matrix A, and the

superscript H denotes a complex conjugate transpose.

For single input single output systems, the entire quantity is a constant,

except for the last term, ufo This states that the optimal LQR feedback gains are a

weighted combination of the left eigenvectors. Lazarus (1991) showed that in the

expensive control case, the gains are nonzero only for the rate states. The LQR

compensator is equivalent to a rate feedback sensor. The expensive control, low

noise LQG compensator is then given by

(A.28)

where G is the expensive control, LQR gain matrix given in Equation A.27.

Note that ifin the MIMO case, the low noise, expensive LQG asymptote can

be shown to be

LIM K(s) = G4»Bw[C,cI>Bw r1

Jl-+O
p-+-

(A.29)

The low noise, cheap control LQG asymptote for the MIMO problem does not

simplify.
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AppendixB

Typical Section Model

The typical section model was made using a Rayleigh-Ritz analysis [Bathe

(1982)] of a cantilever beam. First, the beam was segmented into four beam

elements, each with the same properties. Figure B.1 shows a beam element, with

four generalized degrees of freedom, i.e. the vertical position of each end, U;, and

rotation of each end, Vi, and with four generalized loads, i.e. a vertical force, ri, and

torque, ti, at each end.

For each beam element, there is a generalized mass and stiffness matrix,

givenby

12 6L -12 6L

k; = EI 6L 4L2 -6L 2L2

-12 -6L 12 -6L (B.1)L
6L 2L2 -6L 4L2

u\ j_V_l_, -t1-----

U

-

2

-, -r2~ ~

FigureB.l. Generalized beam element.
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1
o

mi = pAL 0

o

000
000
010
000

(B.2)

The properties of this model are given in Table B.1.

TableB.l. Properties of the typical section model.

Parameter

EI

L

pA

Value

10
0.5
1

The four beam elements are then assembled into'a global system, with 10

generalized degrees of freedom, Ui and Vi, and 10 generalized loads, Ri and Ti.

These are shown iI).Figure B.2.
\

Applying the boundary conditions of the cantilever beam, and condensing out

the two degrees of freedom and two loads at node 5, the global mass and stiffness

matrices can then be put in matrix form.

[Moo Muv]{~}+[KUU Kuv]{U} = {R}
Mvu Mw V Kvu Kw V T

(B.3)

FigureB.2. Cantilever beam made up of four beam elements.
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where U and V are the 8 degrees of freedom, and Rand T are the B loads.

UT =[U1 U2 U3 U.] (B.4)

VT = [VI V2 V3 V.] (B.5)

RT =[R1 ~ 1l:J R.] (B.6)

TT = [T1 T2 T3 T.] (B.7)

Four static load patterns, qi, are then used to generate four Ritz vectors.

(B.B)

The four load patterns are vectors of all zeros, with a value of one at the ith vertical

force R;, shown in Figure B2. The Ritz vectors, 'II, are then found by solving the

static problem

K'P= Q (B.9)

These 8x4 Ritz vectors are then used to create the mass and stiffness matrices which

span the subspace of the Ritz vectors, or

K = 'PTK'P (B.IO)

(B.II)

Next, an eigenvalue problem is made, using the new mass and stiffness matrices.

(B.12)

The approximation of the eigenvectors for the system are now given by projecting

273



these eigenvectorsover the subspace ofRitz vectors, or

(B.13)

These eigenvectors are then used to find diagonal 4x4 mass and stiffness matrices,

giving the modal form of the system.

(B.14)

(B.15)

The mass and stiffness matrices are then put into state space form, with 1%

damping added to each of the four modes. The resulting system has 8 states, 4

inputs and disturbances as the vertical force at each degree of freedom, and 4

outputs as vertical velocity at each degree of freedom, and 4 performances as the

vertical position at each degree of freedom. The state space system is given by

where the system matrices are

Y-Cx- y

z=Cxz

(B.16)

(B.17)

(B.18)
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(B.20)

(13.21)

(B.22)



AppendixC

Open Loop Transfer Functions:
Finite Element Model and Data
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Figure e.l. Transfer function from z-axis gimbal to z-axis payload rate
gyro.
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Figure C.2. Transfer function from z-axis gimbal to z-axis bus rate
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