
NewsTime:
A Graphical User Interface to Audio News

by
Christopher D. Horner

A.B., Computer Science
Harvard University

(1991)

SUBMITTED TO THE
PROGRAM IN MEDIA ARTS AND SCIENCES,

SCHOOL OF ARCHITECTURE AND PLANNING
IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1993

@ 1993 MIT All Rights Reserved

Signature of A uthor7
Program in Media Arts and Sciences

May 7, 1993

Certified

Accepted by.............

Christopher Schmandt
Principal Research Scientist, MIT Media Lab

Thesis Supervisor

I
Stephen A. Benton

Chairperson
Departmental Committee on Graduate Students

R otch
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

[UL 12 1993
LIBRAR!ES

NewsTime:
A Graphical User Interface to Audio News

by

Christopher D. Horner

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

on May 7, 1993 in partial fulfillment of the
requirements for the Degree of

Master of Science

Abstract

A random scan through the radio dial through the course of a single
day will demonstrate a stimulating variety of information programming.
Speech is a natural channel for news because it keeps us informed while we
do other activities: driving, office work, etc... Yet the ephemeral nature of
speech underlies both its benefits and drawbacks. Although speech is an
expressive communication medium, it is inherently slow, serial, and
provides no immediate indication of what's ahead or what came before.

Current graphical user interfaces to stored audio can provide random
access using familiar point and click paradigms. However, these interfaces do
not address navigational issues for audio recordings that are very long, such
as a newscast. What is needed is to offer visual feedback for different audio
segments, such as where news, weather and traffic are located. Also needed is
a way to maintain resolution despite increasing sound duration, and better
methods to assist audio search. Finally, a facility for text support of audio
files, such as annotation or transcripts is required.

This thesis describes a visual interface to audio news, "NewsTime",
which addresses these shortcomings. News is a particularly interesting
domain not only because it is inherently timely, but also because it
demonstrates relatively structured speech, which is more amenable to a rich
visual interface than unstructured conversation.

Thesis Supervisor: Christopher Schmandt
Title: Principal Research Scientist, MIT Media Lab

NewsTime:
A Graphical User Interface to Audio News

by
Christopher D. Horner

Thesis readers

R ead er... ..
Walter Bender

Principal Research Scientist
MIT Media Lab

R ead er..
Kate Ehrlich

Manager, Human Interface Group
Sun Microsystems

Acknowledgments

I would like to recognize the Media Lab community for its general support of

this work, and in particular thank the following people:

My advisor, Chris Schmandt for encouraging my interest in this area, and his

overall supervision of this thesis.

My readers, Walter Bender and Kate Ehrlich for their time and comments.

Barry Arons, Alan Blount, Karen Donoghue, Eddie Elliott, Mike Hawley,
Debby Hindus, Charla Lambert and Jordan Slott for their direct contributions

to this project.

Finally, I would like to acknowledge Sun Microsystems, and the member

companies of the News in the Future consortium for their sponsorship.

Table of Contents

Introduction
1.1 The Scenario
1.2 Why Audio?
1.3 Why News?
1.4 NewsTime Overview
1.5 Thesis Outline

2 The
2.1
2.2
2.3

3 The
3.1
3.2
3.3

SoundViewer Widget
Introduction
The Original SoundViewer
Evolution of the SoundViewer
2.3.1 Audio Attribute Display
2.3.2 Prior Art
2.3.3 Distinguishing Speech from Silence
2.3.4 Semantic Content Display
2.3.5 Speed Control
2.3.6 SoundViewer Text Labels
2.3.7 Indicating SoundViewer Duration
2.3.8 SoundViewer Modes
2.3.9 Bookmarks
2.3.10 Audio Feedback Via a Visual Interface

MegaSound Widget
Motivation: SoundViewer Limitations
Hierarchical Magnification of Long Sounds
Synchronized Text Annotations

4 NewsTime
4.1 Introduction
4.2 Recording Programs
4.3 NewsTime Window Synchronization
4.4 Next/Previous Speaker, Next/Previous Story
4.5 Segmentation of Television News

4.5.1 Closed Caption Synchronization
4.5.2 Closed Caption Results
4.5.3 Commercials
4.5.4 Keyword Search
4.5.5 Categorizing the News

4.6 Segmentation of Radio News
4.6.1 Music Detection for Next/Previous Story
4.6.2 Performance
4.6.3 Integrating Program Structure with Music
4.6.4 Results
4.6.5 Future Possibilities

5 Implementation 63
5.1 Widgets' Technical Specification
5.2 The OmniViewer Widget
5.3 Chatfiles
5.4 SoundViewer Hierarchy
5.5 MegaSound Hierarchy
5.6 Auxfiles

5.6.1 Speech and Silence database
5.6.2 Content database
5.6.3 Annotation database

6 Conclusion 73
6.1 Goals Accomplished
6.2 Predicting the Future

A Widget Terminology 76

B Widget Documentation 78
B.1 Bboard Widget
B.2 ChatMan Widget
B.3 OmniViewer Widget
B.4 MegaSound Widget

C Keywords for News Categorization 98

D Description of NewsTime Auxiliary Programs 100

Bibliography 103

Chapter 1
Introduction

1.1 The Scenario

Imagine a day in the near future when you approach your workstation

to find that the entire day's news has been captured from a variety of audio

sources, and assembled into a coherent whole. The news has been repackaged

into sections, allowing you to scan the weather, traffic, local, national,

international, and even business news as you see fit. While you accomplish

other work, the news is read to you in the background. When the announcer

starts reading news of little interest to you, say the weather in another

country, you can either speed up the presentation or skip ahead to another

section. Upon finding a segment of greater interest, you can mark it and

annotate it for future reference. Although such interaction methods have

long been possible for the traditional newspaper, an inherently visual and

thus spatial medium, there has been little progress on how to map this

interface style to sequential, time based media, such as stored speech.

As audio hardware becomes commonplace and the storage capacity of

workstations increases, it will become possible to capture large quantities of

speech for later browsing. For some, this may involve recording sounds from

one's daily life, such as meetings or lectures. But for many, the natural

application will be to capture existing sources of audio from the mass media

for time-shifted listening, just as a VCR allows time-shifted television

viewing. Despite advances in hardware however, the scenario described

above is not realizable with current software. This thesis therefore

investigates the four areas necessary to make this a reality:

1, Automatic gathering and segmentation of news recordings.

2, A more direct method for audio control via a visual interface.

3, A tool for magnifying different regions of a long recording.

4, A way of associating text annotations with audio files

1.2 Why Audio?

Interactive Voice Response (IVR) systems such as the movie-phone

(333-FILM), or Amtrak's schedule line (1-800-USA-RAIL) demonstrate the

recent success of audio information on demand. These systems provide a

non-visual user interface, usually via the telephone touch pad, moving

through a series of menus, to access brief snippets of recorded speech. Clearly

there is a large market for prerecorded information on demand, but what

makes these products successful is the precision of the audio interface.

Although the database of recorded snippets as a whole adds up to a large

amount of speech, users have the ability to find only those segments which

have relevance to them. For example, a person calling Amtrak on a given

day is given the option to listen to morning, afternoon or evening departures

separately. The designers of the system realized that the longer an individual

segment becomes, the less likely it will still be of interest.

Because such IVR systems are accessed over the telephone with the

keypad, the highly structured "finite state machine" menu interface is

appropriate. On the desktop however, a visual interface to audio can be

infinitely richer, for instance by providing all menu choices in parallel.

Although there is current work at the Media Lab on enhancing a purely audio

interface to lengthy recordings [Aro93], as the duration of recorded audio

increases, a visual interface which can let the user instantly find what they are

looking for will be more efficient.

1.3 Why News?

Besides IVR systems, another readily available source of audio

information literally surrounds us every day: the mass media. Just as IVR

demonstrates the popularity of audio information on demand, so too has

news on demand become an increasingly popular method of delivery. The

success of CNN Headline News is a prominent example. However, there are

other classes of news that lack a wide enough audience to be broadcast 24

hours a day. Time-shifted automatic recording of local news or traffic reports

can make this information readily accessible, when it is not provided on

demand by the broadcaster. The flexibility of the computer gives time-

shifting even greater potential than on a simple VCR. Different types of news

can be recorded from easily obtainable different sources (AM/FM radio,

television audio) and be presented via one application.

Convenient time-shifting is not the only compelling reason for

exploring the news domain. At any moment, television and radio airwaves

are brimming with information programming, much of which we might find

informative and much of which will be superfluous. Essentially, time-

shifting gives the user a coarse grained filter for sifting through the entire

broadcast spectrum at a program level. But this level of filtering will be

inadequate for the active user who knows what interests him. Even a local

newscast which is distinctively tailored for a particular geographic area will

not entirely appeal to "all the people, all the time." After all, how many

people in Boston really care about yet another fire in, say Chelsea? A

newspaper reader can flip past such headlines at a glance, but someone

listening to the 11 o'clock news has no such choice. A useful time saver

would be an interface to help the user weed out such segments that are

irrelevant, and highlight likely areas of interest.

Much work at the Media Lab has been done on filtering text based news

to provide personalized electronic newspapers. NewsTime however tackles

the filtering problem from a different angle. Rather than prior deletion of

material from the news source, the newscast is recorded in its entirety, but

then an enhanced user interface assists the user with accessing the news in a

non-serial manner. As anyone who has used the fast-forward or rewind

buttons on a VCR knows, this type of access is fundamentally different than

listening to a broadcast synchronously. The fundamental premise of the

NewsTime approach is that the user should perform the tasks that humans

are best at, such as choosing the desired stories, while the computer does what

it's best at, providing an efficient interface. Such an interface requires the

ability to skip past an irrelevant segment, to quickly scan through an area for a

particular segment, and to visually or textually mark a segment for later

reference.

1.4 NewsTime Overview

This project can be divided into two main phases: news segmentation,

and news presentation. Segmentation is important for audio newscasts

because as a temporal medium, it is very difficult to locate and select

individual stories without listening to a great deal of unwanted audio in

between. Segmentation alone however does not overcome all the inherent

linearity of audio. A pure audio interface to a perfectly segmented newscast

would require one to sequentially skip from one segment to another, without

any advance notice of what segment is coming up. Presentation becomes an

important aspect of accessing recorded news because a visual interface is a

spatial medium, which can overcome audio's linearity by indicating several

segments in parallel.

The first objective of this thesis is to capture the news and segment it

into semantically meaningful chunks, using whatever cues are available in

the broadcast signal. Among these cues are: significant pauses that occur

between speakers and stories, musical segues that are placed between program

segments, and closed-captioned transcriptions of what is being said. Different

combinations of these cues are used depending on their relevancy for

different types of broadcasts.

The second objective is to display news recordings, taking advantage of

any segmentation cues to provide random access. This is the job of the

NewsTime application; it presents news from a variety of sources with one

consistent interface, thereby giving audio news some of the same interface

advantages of printed newspapers. The key issues for NewsTime are the

display and browsing of large quantities of audio, and the integration of audio

with text annotations.

NewsTime was written on a Sun SparcStation 2, in the X Window

System (a.k.a. "X Windows"), and is built from a collection of interacting

widgets. A widget is the technical term in X Windows for any class of

interface component, such as a scrollbar or menu. 1

Figure 1.1 shows a representative NewsTime application window, with

each main widget labeled. This example contains a typical ABC World News

Tonight broadcast. Across the top of the screen is the menu bar, which lets

one choose between various news programs, search for particular keywords

in the news transcript, and skip from story to story, or speaker to speaker. The

left-hand window which contains the transcript of the newscast (or program

1 Since this thesis is concerned with visual interfaces to sound, all such interfaces are
hereafter referred to as "audio widgets".

name if no transcript is available) is a collection of ordinary text widgets. The

right-hand window contains a custom widget known as MegaSound, which

was written specifically for NewsTime. MegaSound enhances the browsing of

large audio newscasts in the four ways mentioned at the outset: automatic

segmentation, more direct audio control, scale magnification, and text

annotations.

program
selection

\k

search by
keyword

\I

skip by
story
/ I

skip by play all exit
speaker segments program

/ \ \ \

[I]<<St] ~,"1> I< Spae ~ekr>> 1g7Il[~it

Good evening. Me begin tonight
with what Hr. Clinton canpaign
aides used to call the econon,
stupid. Their wag of reninding
each other and Mr. Clinton that
the overriding problen they faced
uas national econonic recovery.
For sone nonths nou, it has
appeared that a recovery is under
uag. But, nou it appears to have
stalled. He learn this fron the
governnent's index of leading
indicator. In narch, the index
dropped one full percentage point,
which is its worst perfornance
since Novenber of 1990. Mith an
explanation, ABC's Stephen Rug.

Ted Mahoney builds hones in the
Boston area, and he says business
is not living up to his
expectations.

I tho ht things would be a lot
bett this gear than they have
bee so far. but, at least we're

EGood evening. He begin tonight
with what Mr. Clinton canpaign
aides used to call the econon,
stupid. Their wag of reninding
each other and Hr. Clinton that
the overriding problen they faced
was national econonic recovers.

30 Tf iniLLL 1h IL 1 | |
-- ----- -- - --- --------.- ! ! ! 1 1 . . .! ! ! .

scrollable transcript of audio, current speaker shown audio widgets for playing recorded
one speaker per box with thick border program, zoomed in on top story,

flags denote new story boundaries

Figure 1.1: Overview of the NewsTime application

1.5 Thesis Outline

This thesis is written from the bottom up, first describing the interface

of the widgets that comprise NewsTime, and later describing the NewsTime

features per se. This facilitates an appreciation of how NewsTime itself was

built from the bottom up using these widgets, and what the underlying issues

were in building a widget to handle large quantities of audio.

Chapter 2 discusses earlier work in interfaces to recorded audio, both at

the Media Lab and elsewhere. This chapter provides general background, and

highlights the incremental improvements that were made to the Speech

Group's existing audio interface. Chapter 3 describes the limitations to these

incremental improvements and why the new widget, MegaSound was

necessary. In chapter 4, the NewsTime application which makes use of

MegaSound is examined at the feature level. This chapter also contains the

techniques used for segmenting the news, and reports on their overall

success. Chapter 5 discusses the technical details of how both the interface

and application were produced. Finally, chapter 6 reflects back on the project

as a whole. It explores future research directions, both in ways that

NewsTime itself can be expanded, as well as suggesting related applications of

this work.

Chapter 2
The SoundViewer Widget

2.1 Introduction

As mentioned in chapter 1, NewsTime utilizes the "MegaSound"

widget. MegaSound is based on a simpler audio widget called the

"SoundViewer", which was originally developed by Ackerman and

Schmandt at the Media Lab in 1987. This chapter discusses why the original

SoundViewer was insufficient for dealing with the long audio recordings that

were used in NewsTime. After detailing each improvement that was made

to the SoundViewer to deal with some of these issues, it relates these

improvements back to NewsTime in particular. Since SoundViewer

enhancements alone did not solve all the problems unique to long

recordings, chapter 3 discusses the MegaSound widget: an additional layer of

interface on top of the SoundViewer that tackled the remaining problems.

2.2 The Original SoundViewer

A sound file (or audio file) is a Unix file which contains audio data. On

the Sun SparcStation, sound files are usually stored in an 8 kHz, 8-bit mu-law

format. A sound file can be arbitrarily long, so an entire newscast for instance

will correspond to exactly one sound file, regardless of the program's

duration. The SoundViewer presents a sound file as a bar delineated with

one tick mark for each second of audio. With longer sound files each tick

mark can represent more time, often a minute.

I I I I I ii i I I I I i i I I I I I I I I I I I i I I I I I i i I I

Figure 2.1: The Speech Group's SoundViewer

The SoundViewer first appears as an inert empty box, but a mouse click

puts the SoundViewer into play mode. While the sound plays, the

SoundViewer fills up with an indicator bar to denote position, resembling a

car's fuel-gauge while being fueled up.

roughly 9 seconds into the sound...

- I Ii||1 1 i||i 1 | 11| 1 I l l I I|| II i IIi

10 seconds later...

|| 11111111 i I I I |

Figure 2.2: Time-lapse sequence of SoundViewer while playing

Myers found that such progress bars are essential to most computer

users, to provide an assurance that something is indeed happening on their

system, even while no other feedback is evident [Mye85].

The mouse that comes with Sun workstations has three buttons, and

the SoundViewer makes use of all three. The left button acts as a play/pause

control for the sound. The middle button can be used to click and drag the

indicator bar to a new position, allowing random access. The right button can

be used to click and drag out a selected segment of a SoundViewer, which can

then be pasted into another application.

I 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 |1I I I I l I i I i I 1 I |

Figure 2.3: Selecting a SoundViewer region

2.3 Evolution of the SoundViewer

Because the SoundViewer is widely used in Speech Group code, the

improvements motivated by NewsTime, outlined below, had a major impact.

2.3.1 Audio Attribute Display

A major drawback of the original SoundViewer was that it did not take

into account the audio attributes of whatever sound file it was displaying.

One sound file of someone slowly counting to ten would contain ten distinct

segments of speech, while another file might be one continuous sound,

perhaps a piece of music. If each sound was the same duration, the two

SoundViewers that displayed them would be indistinguishable. The longer

an audio recording gets, the greater the need is to map out audio segments in

order to distinguish various parts of the file. My search through the literature

found that none of the audio widgets previously developed sufficiently

addressed the unique problems of visualizing large quantities of audio. With

minor variation, these widgets shared the same basic interface: a simple

linear timeline to allow random access, but no support for displaying content

other than waveform based information. Waveform information is

derivable from the audio signal itself, i.e. amplitude of the signal vs. time.

This information is useful at a smaller scale, i.e. an individual story, rather

than at the scale of an entire broadcast. For instance, one might want to

visually locate a particular chunk of sound in order to select it for cut, copy

and paste operations. Some earlier research projects provided insight on how

the interface could be improved by displaying sound content.

2.3.2 Prior Art

Schmandt's "Intelligent Ear" [Sch8l] was a digital Dictaphone which

used signal magnitude to derive a waveform display of the recorded audio.

The higher the average absolute magnitude of the signal, the higher the

waveform appeared along the linear timeline, and the brighter its appearance.

Although this provided a sense of how loud things were at a given point in

time, news stories are generally reported in a calm, consistent speaking tone.

Nevertheless, the general idea of displaying waveform derivable information

is a good one, and the SoundViewer was given the new ability to display

intervals of speech versus silence as alternating black and white bars

respectively.

[- - - I I
i I II I I i i i i Ii I I i l ii i i I i iI I I i i i I Ii I I i|

Figure 2.4: Display of speech and silence in a SoundViewer

This simpler binary display was used successfully in Xerox PARC's

Etherphone [AS86]. In developing this office system, the authors argued that

everyday users would not have any interest in viewing, storing or editing

sound at the word, phoneme or even lower level. Rather, they noted that

their users were interested in entire phrases or sentences. The threshold

level to distinguish these was set so that natural pauses between sentences

would be selected for. In NewsTime, the threshold was set so as to select for

pauses between speakers and stories. The SoundViewer interface assisted in

skipping between these segments as well. The space bar key was used to skip

ahead, and the 'b' key jumped backwards. If the indicator bar was less than

half a second after the beginning of the current speech segment, it would

jump back again to the previous one, which prevented it from always

jumping back to the beginning of the current one.

2.3.3 Distinguishing Speech from Silence

The speech/silence detection algorithm works by sampling the first 35

seconds of the file to get a sense of the average sound level in the newscast.

The number 35 was chosen to be sufficiently large to get past pure theme

music (which usually contains no silences) to a point where there was some

speech and silence in the recorded programs. Fortunately news anchors do

not change their dynamic range significantly during a program since they are

paid to speak in an intelligible, consistent manner. Furthermore, even when

the program changes from one reporter to another mid stream, it is the studio

engineer's job to maintain consistent amplitude levels. From looking at the

beginning of the sound file therefore, a threshold level for speech, T, can be

derived for the entire program. Any samples of magnitude greater than T are

labeled "speech" and any less are considered "silence." 2 Moreover, as in

Etherphone, a silence had be of a minimum duration to be counted as

significant. Any silence less than this minimum length was tacked onto the

end of the preceding speech block. This prevents stop consonants in the

middle of a sentence from breaking the continuity of the speech block.

Depending on the desired resolution of the speech blocks (i.e. phrase,

sentence, or news story) that minimum silence duration can be set by the

user. For voice mail, a value of 500 ms or even less is a good estimate, but for

longer news casts, a value from 600-900 ms was more appropriate. Obviously

the higher the number the more missed story boundaries there will be, and

the smaller the number, the more "false alarms." This kind of tradeoff

always exists in any decision procedure, and so by letting the programmer

modify this value, flexibility is achieved depending on the application. There

is some current work in the Speech Group on algorithms to compute what

2 For a thorough review of speech and silence detection algoithms see [Aro92a].

the minimum silence window ought to be [Aro93], but for the purposes of

this thesis, only the threshold value for minimum speech amplitude, T, is

computed automatically. This is done by the following formula:

T = (0.08 MAX + 2.92 * MIN)

MAX refers to the maximum sample magnitude observed in the

beginning of the file, while MIN is the minimum. Spurious pops or clicks

which are due to noise are weeded out by throwing away any maximum

sample which exceeds the prior sample by more than a certain ratio (25%).

The formula above is based on Speech Group experience in recording voice

mail over the telephone. It was found that the background noise level varied

within a range of 5db or so. This implied that roughly 3.0 * MIN was a good

threshold for determining the existence of any sound at all. Because both

radio newscasts and telephone messages were recorded the same way, over a

wire at the same sampling rate, a similar background noise level was

assumed.

Measurements of the background noise alone however are not

sufficient, because they do not take into account speech characteristics, but

only the recording environment itself. Therefore further analysis on a

variety of public radio news programs revealed that the sound of a reporter

taking a breath between stories was at an amplitude approximately 8% of the

full dynamic range of the recording, or .08 * (MAX - MIN). When this

quantity is added to the 3.0 * MIN baseline, the formula given above for T is

derived.

Given a threshold T for speech amplitude, and a minimum silence

duration window, W, the speech and silence detection algorithm works by

finding the first silence block in the sound file, and then repeatedly finding

the next silence block in the file, until there is no more audio data. Speech

blocks are inferred between each silence block. The temporal resolution at

which the boundaries of a speech or silence block are calculated is to the

nearest 10 ms, which will be referred to as the search interval or I.

Rather than simply measure the amplitude of every search interval in

the audio file, which takes too long, a faster method was used.3 To find the

next block of silence from the current position, the routine first takes the

average sample magnitude for one search interval, I. If the interval's average

magnitude is greater than T, it means no allowable silence block of the

minimum length W may contain this sample interval. Therefore, the

routine skips ahead W ms in the sound file, and takes another 10 ms sample,

hoping to fortuitously skip into the middle of the next silence block.

10 Ms.
first interval per block

- -- W -----
silence speech

Figure 2.5: Skipping ahead to find next silence

The reason for this is that if the first interval is "speech" we can skip no

further than W ms ahead without risking skipping over a salient window of

silence. This worst case assumes the very next interval is "silence" which of

course most of the time it will not be. At any rate, if it finds silence in this

3 The original speech/silence detection algorithm, written by Jordan Slott, was modified
for this purpose.

new search interval, then a linear search is done to find the boundaries of the

entire silence window. Assuming the total silence duration is larger than W,

the function returns its location, otherwise the search for silence continues.

This method works faster than a linear search of the entire file because

assuming the silence window W is significant, silences will be few and far

between. This means that average sample magnitude calculations can be

ignored for large portions of the file. In reality though it still takes a

significant amount of time to segment a large audio file, about 1 second per

minute on a Sun SparcStation 2. For NewsTime therefore, a program called

paws 4 (a pun on the word "pause") is called right after a news program is

finished recording, which does this segmentation automatically. This makes

the segmentation information available as soon as the application is run.

2.3.4 Semantic Content Display

Some high level structure is present in all speech: e.g. who is talking,

what topics are being discussed, and so forth. There has been prior work in

the Speech Group in semi-structured audio, for instance telephone calls, in

which segmentation can be derived from turn taking detection, without

using speech recognition [Hin92, HS92]. This thesis extends this work by

utilizing the structures inherent in news programming: what program is on

and where the story boundaries are. A person accessing large quantities of

audio news obviously cares much more about this type of content

information than what its waveform looks like. Waveform displays will not

help distinguish the business news from the national news, since they look

alike. Although speech and silence data are useful at the individual story

level, for an entire newscast, segments must be displayed at a higher level of

semantic and structural information. Unlike video, audio offers no such

4 A more thorough description of paws, and all other supplementary programs used by
NewsTime is found in the appendix.

concept as a salient "still frame" to represent an entire segment. Instead,

another straightforward way of displaying program information is to print it

textually or iconically. Below is a simple example:

Figure 2.6: Initial design for semantic content display

This initial design was scrapped when it became clear that multiple text

labels within the widget itself would overlap significantly for any real

broadcast. This was evident after the label for sound file name and duration

was added. Multiple text labels which are independent of the SoundViewer

are instead incorporated separately as part of the MegaSound widget, which is

described fully in the next chapter. Within the SoundViewer though, the

iconic representation alone was used to display semantic content.

The binary display of speech vs. silence also inspired the presentation

of semantic content in the SoundViewer. It was decided to have another layer

of black and white bars drawn in below the speech and silence bars to

distinguish between two types of audio.

I I II I I I I I l iii I I I I

Figure 2.7: Content bars displayed beneath segmentation layer

But while speech and silence was an obvious distinction for showing

waveform derived characteristics, the question was whether or not a similar

intuitive choice could be made to distinguish between two fundamental types

Traffic 1 World News Weather

1min 2 3 4 5 6 7 8 9 10

I I I | | I | I I |

of higher level content? For instance, black bars could represent male

speakers, and white bars female. Alternatively, black bars could indicate news

programming, while white bars are commercials. Remember that the widget

is not concerned about how these distinctions are made; it's job is simply to

display the information which is provided from an outside source, whether

human or computer generated.

I concluded that because the SoundViewer is a widget meant to be used

across a variety of audio applications, some of which are unforeseen at the

present time, that the default interpretation of the content bars was to

distinguish between speech and non-speech audio. This way, the exact nature

of the non-speech audio is determined by the application, and not the widget,

which provides maximum flexibility for the programmer. In fact, the

SoundViewer widget contains optional icon resources for extendibility. The

first of these allows the programmer to specify an icon which represents the

nature of the non-speech audio by overlaying the black bars.

Figure 2.8: Use of content icons with content bars

In the case of NewsTime, this icon was a musical note because the

content database reflected the presence of speech vs. music. This is salient to

news broadcasts because music is used frequently during commercials, and as

a segue between major stories. An in depth analysis of the music detection

algorithm will follow in chapter 4. Just as there were accelerators to skip to

next or previous speech segment, NewsTime also maps accelerators onto the

SoundViewer to skip to next music segment ('m'), or back to the previous

music segment (shift-'B').

On top of this base layer of speech vs. non-speech content, additional

icons can be overlaid to indicate even higher semantic levels of content, such

as the topics under discussion.5 In NewsTime the icons were chosen to

represent different types of news, e.g. weather, sports, and so forth, so that the

widget could accept top level content description from NewsTime, and

generate the appropriate visuals for a given news program. How this is

actually accomplished, and what the icons used in NewsTime are described in

chapter 4.

Note that although NewsTime is concerned with the presentation of

audio news, news is representative of an entire class of speech domains

which demonstrate structural layering: for instance lectures or meetings.

Because the content database is extensible, and icons are not hardcoded into

the widget, new icons representing different types of semantic content can be

provided. This work will therfore be robust enough to allow other structured

audio domains to be explored with the SoundViewer widget in the future.

2.3.5 Speed Control

Just as being able to skip from segment to segment increases the

efficiency of listening to a long audio file, a more direct method for increasing

speed of playback was added to the SoundViewer. Code was added to the

sound server 6 to change the default playback speed of audio files, anywhere

from half of regular speed, to five times as fast. The playback speed is altered

without modifying the speaker's pitch, which increases the intelligibility of

the altered speech.7 One can comfortably comprehend normal speech played

5 The idea for a base content layer overlayed by additional content icons was given to me
by Karen Donoghue of the Visible Language Workshop.
6 The soundserver is the background program that the SoundViewer makes all requests
to for the playing of audio files. See [Aro92b] for details.
7 For a detailed discussion of various methods that accomplish this, refer to [Aro9l].

back at twice normal speed, and when there is no pitch distortion it is possible

to detect speaker changes at even higher speeds. The SoundViewer maps the

entire row of number keys along the top of the keyboard to speed control keys.

Keys '2' through '9' go from 0.5 to 2.5 times normal speed in 0.25 increments.

The '0' and '1' keys both return to normal speed. To go beyond 2.5x the '+' and

'-' keys also change the speed by + or - 0.25 relative to the current speed. In

NewsTime, these speed controls make it very easy to rush through

uninteresting parts of a broadcast, to a more interesting segment that is

expected nearby. For instance, hitting the '9' key during a pledge break on

public radio, then the '0' key the split second it ends is very convenient.

2.3.6 SoundViewer Text Labels

A major drawback of the original SoundViewer was that it did not take

into account the attributes of the sound file it was displaying, in particular the

file name. One SoundViewer might contain Beethoven's Ninth Symphony,

and another a news report from Peter Jennings of ABC. Even if the sound

files were named "beethoven9" and "jennings", the old SoundViewer could

not indicate the difference. Applications that wanted to print sound file

names had to do so separately, as in the sbrowse application that displays a

SoundViewer for each sound file in a directory.

quit| nenu /sound/nusic/classicak

brahns

nozart

vivaldi

Figure 2.9: The sbrowse application

It was incumbent on the sbrowse application to annotate the

SoundViewers with a separate text field, indicating what sound files they are

associated with. One obvious enhancement to the SoundViewer therefore

was the ability to show sound file names directly, without requiring extra

code from the application writer.

Ibrahms 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1

Imozart I I I | I I I I | I I

vivaldii 1 | 1 | 1 1 | 1 i 1 1 | 1 1 1 1 1 1 1 1 1 1

Figure 2.10: Placing text labels in SoundViewers

The ability to print a text label directly in the SoundViewer does not

have to be limited to sound file names either. The SoundViewer is meant to

be a reusable module across any number of audio applications, some of which

might need something besides the file name printed. Therefore, the label

defaults to containing the sound file name but can be overwritten with any

text string. This might have utility in simplifying the look of vmail, the

Speech Group's desktop interface to voice-mail [Sti9l].

Figure 2.11: The vmail application

In vmail the caller's name or phone number is displayed if known,

and not the sound file name. This is because the sound files in vmail are

assigned fairly cryptic names by the recording program. Again, rather than

printing the caller's name or number in a separate text widget, it could place it

directly in the label field of the SoundViewer.

2.3.7 Indicating SoundViewer Duration

Another shortcoming of the original SoundViewer is that it was hard

to tell sound duration because the user did not know whether a mark

represented a second, a minute, or something else. The SoundViewer

authors initially dealt with this problem by making the hash marks that

corresponded to a minute taller than those corresponding to a second, and so

forth. Here we see ten seconds of sound versus ten minutes:

I I I I I I I I I -i

I I I | I I I I c
Figure 2.12: Ten minutes vs. ten seconds in a SoundViewer

In practice, users found it very difficult to quickly and reliably

distinguish between the two cases, and so hash marks by themselves were

deemed an inadequate way of displaying sound duration (although hash

marks were kept in the SoundViewer as an option). As sound files get larger,

this could lead to a hazardous situation, in which half an hour of sound is

purged accidentally by a user thinking it's only a trivially brief snippet.

Having earlier added the text label capability to the SoundViewer, I decided

the duration could simply be printed in this label, using the appropriate level

of detail: "549 msec", "53 sec", "1 min 20 sec", "15 min."

10 min | |-4 | | |

10 sec i -

Figure 2.13: Printing duration in SoundViewer label

2.3.8 SoundViewer Modes

The most fundamental SoundViewer attribute is how it scales time to

fit within its boundaries. The SoundViewer can be set to either fixed,

truncated, scaled or "best" mode. A fixed mode and truncated mode widget

take up a constant amount of screen space per unit of time. The difference is

that a fixed mode widget always fills up the same amount of total screen

space, leaving blank any portion not filled by sound. A truncated mode

SoundViewer however only takes up as much space as necessary.

I I I I I
I I I I II

Figure 2.14: Truncated vs. fixed mode

A scaled SoundViewer always has the same width, but scales the

amount of screen space per unit time to fit. The "best" mode will create a

SoundViewer that is truncated, unless the duration exceeds some maximum

time (specified by the application), beyond which the widget is scaled. When

a SoundViewer in best mode exceeds the default maximum duration, the

SoundViewer scales itself accordingly, and denotes this scaling by printing a

'<' symbol in its right margin.

I 1

Figure 2.15: "Best" mode showing scaled sound mark, '<'

2.3.9 Bookmarks

Over the years we have become accustomed to consumer technologies

for dealing with large amounts of audio, e.g. the LP, the cassette, and the CD.

A common problem with these technologies is the lack of a suitable interface

to find and mark just the segment you are looking for. You might generally

know where the interesting sound bites are in a long speech, but there is no

easy way to "point" to a particular one and automatically jump to play from

that location. Although many playback devices have a sequential counter,

most users can only remember to zero it at a position of interest, which is

then lost when the tapes or disks are switched.

Degen et al. built an improved "tape recorder" that let the user mark

multiple points during playback [DMS92]. Their visual interface to these

recordings, the SoundBrowser, would point out the location of these markers

either with an arrow or an arrow with the word "todo" underneath

(corresponding to items in a things to do list). Arbitrary textual annotations

were not allowed. This was because their audio source was always personal

recordings made on the portable recorder, which had two distinct marker

buttons. Users found that playback via random access to these markers was

one of the most useful qualities of the visual interface. They further found

that visual bookmarks were sufficient, making voice annotation unnecessary.

Even a simple bookmark with no associated text can still be very

helpful. A valuable application is to help people manually segment large

audio streams. Instead of laboriously stopping to note points of interest, the

audio can playback at high speeds, while the user types an annotation key

every time a mark is desired. This capacity was added to the SoundViewer

via the 'A' key. Each time this key is pressed, a bookmark is added at the

current position, and the SoundViewer updates itself by drawing a 'A' at the

note's location. In the NewsTime application, these marks are automatically

generated to indicate new story boundaries.

2.3.10 Audio Feedback Via a Visual Interface

The original SoundViewer's manual interface, although easy to use,

was insufficient for scanning. Recall that a left click is a play/pause control,

while the middle mouse button moves the indicator. Although the user's

ability to set position at random is useful, there is no audio feedback while

setting this position. While the user holds down the middle button, and

drags the indicator bar, sound play is disabled until the button is released, at

which point playback resumes normally.

The problem with this method is that it makes scanning very difficult.

Imagine the user wants to find a brief phrase embedded somewhere within a

larger file, say the name of a particularly hot stock somewhere within the

Wall St. report. The user must drop the indicator at random points, resume

playing, and unless they hear what they wanted, they must pick it up and try

it again. With lengthy audio files, all this button clicking and skipping

around at random becomes very tedious. What was needed was a more direct

scanning method, which would map mouse motion events to play

commands. As the user clicks and drags the position indicator, there would

be accompanying audio feedback. This interface paradigm is called direct

audio manipulation via the visual display.

Such direct audio manipulation was used in Elliott's Video Streamer

[E1193], but audio was always played back at normal speed. If a user scanned

faster than this, portions of the audio were skipped. MegaSound works in a

similar fashion, but with some enhancements. First of all, if the user sweeps

the mouse too quickly such that a skip in playback would occur less than 250

ms after the prior play command, that mouse action is skipped. This avoids a

flood of play commands that interrupt each other so quickly that no

intelligible sound is heard. Experimentation determined that 250 ms was still

insufficient to actually make sense of what people were saying, but was

sufficient to yield the overall acoustic characteristics of the sound. That is,

one can tell if a man or woman is speaking, whether music is playing, or

when a speaker change occurs. This is particularly useful for finding the

transitions between news stories. When one wants to hear the sound play

uninterrupted from the current position, one need only stop moving the

mouse, take a brief listen, and then continue scanning by moving the mouse

again. The total number of mouse clicks needed to find a particular spot is

reduced from an undetermined number to a constant of 1.

The new SoundViewer also improves on the speed control approach

taken in Degen et al's SoundBrowser. The SoundBrowser uses time scaling

code which can speed up or slow down audio playback without changing the

pitch of recorded voice. But whereas the SoundBrowser had a separate speed

control, the SoundViewer includes speed control as part of the scanning

interface. The faster the dragging motion, the faster the audio plays in order

to cover the region swept out. If the user drags too fast some portions may

still have to be skipped over, but continuous scanning is possible up to 5.0

times normal playback speed. On a backwards drag, the audio jumps back to

the indicator position, plays a split second of audio normally at the given

position, and then quickly jumps back again to keep up with the user's

motion. This has the benefit of simulating the feel of a real world audio

device such as the shuttle control on a VCR. However, it has the added

advantage of being able to play faster or slower than normal without

changing pitch, and of allowing comprehension during backwards play.

The reason enhanced scanning is beneficial for NewsTime is that any

segmentation heuristics will not be perfect, and may leave the user in the

middle of a story they wanted to skip to. In this situation it will be valuable

for the user to quickly sweep back, listening for the audio cues that signal the

beginning of the story. If the computer didn't skip far enough ahead, but the

user senses the end of a story is near, they can conversely sweep forward

rapidly. The combination of imperfect segmentation heuristics with a robust

scanning interface makes it possible for users to quickly locate story

boundaries.

Chapter 3
The MegaSound Widget

3.1 Motivation: SoundViewer Limitations

The improvements to the SoundViewer described in chapter 2, while

necessary for the NewsTime interface were not sufficient by themselves. The

SoundViewer is effective in a variety of sound based applications (e.g. voice-

mail, things to do lists, etc...) in which the segments of audio are brief. But

when scaled up, the SoundViewer model breaks down. To pack an hour's

worth of audio into 120 pixels (a reasonable widget size), the SoundViewer

would achieve resolution of 30 seconds per pixel. This leads to several

problems: first is the breakdown of the selection mechanism. Even if you had

the dexterity to drag the position indicator one pixel at a time, it would be

impossible to pinpoint and select an interesting sound bite in less than 30

second increments. Chances are that the segments a user would want to

select and save would be only a few seconds long: an important 800 number,

the name of a good new movie, etc... The related scaling problem is that at 1

pixel per 30 seconds of real-time, the SoundViewer appears stagnant even

while active. Simply changing the scale of the mapping, by zooming in and

out, is a standard but unsatisfactory solution. By filling up the zoom window

with only the current 30 seconds of interest, you lose a global sense of where

you are in the sound, i.e. you can get lost.

The problem of showing the content of a sound by visual inspection is

closely related to the problems of scaling up a SoundViewer's duration.

Displaying speech and silence intervals as black and white bars is useful for

brief segments, but upon scaling upwards this representation becomes too

dense to convey much meaning. If 30 seconds is represented by only a single

pixel, there may be many speech and silence segments that pixel is responsible

for. Such resolution limitations are intrinsic to the SoundViewer, and so a

solution extrinsic to the SoundViewer was required. The solution was to

create an additional interface layer above the SoundViewer, known as the

MegaSound widget. MegaSound was implemented as a sound magnifier,

which is able to expand and compress pieces of the audio stream on screen,

without losing global positioning information.

MegaSound also generalizes the concept of bookmarks in the

SoundViewer, by turning them into full fledged annotations, into which the

user can place arbitrary text. This chapter describes both the zooming and

annotation features of MegaSound.

3.2 Hierarchical Magnification of Long Sounds

Following the example of Mills et al. [MCW92], a hierarchical

magnifying lens that can view individual portions of the sound to increasing

levels of detail was used. This solves the problem of magnification without

loss of overall context, because the hierarchical structure is maintained on

screen. A MegaSound widget is really just two SoundViewer widgets with

connecting lines that show the zoom region in its global context, and give a

rough idea of its duration. Recall that the duration of the zoomed

SoundViewer can be written into its text label directly, in case an exact

measurement is desired. To make this possible, the SoundViewer widget first

had to be manipulated to show only a zoomed portion of a sound file rather

than the entire file.

Figure 3.1: A MegaSound widget with both root and zoom levels

Because MegaSound incorporates the SoundViewer widget directly, all

of the existing SoundViewer behaviors are preserved, such as speed control,

bookmarks, skipping and scanning. Because the user can interact with either

the root level or the zoomed SoundViewer, it is MegaSound's job to

maintain the link between the two layers, so that the position indicators are

synchronized. If either SoundViewer begin playing, the other will move its

indicator in tandem. Also, if the user sets the root's indicator to a position

beyond the boundaries of the current zoom region, either through direct

mouse motion or through the keyboard accelerators, a new zoom region

starting at the root's position replaces the old. Likewise, a change of position

in the zoomed region will be reflected at the root level.

The zoom region can be set using the SoundViewer's selection

mechanism: the desired region is dragged out with the third mouse button,

either in the root or zoomed SoundViewer, then the 'e' key (for "expand") is

pressed to zoom the selected region. When the user simply wants to browse

through a large recording, MegaSound offers an automatic zoom mode. The

default mode chooses a zooming region of one minute (although this can be

modified), so that when the global play position is set at the top level, the

zoom region changes to indicate the nearest minute. The zoomed sound

begins playing, and when the full minute of audio has been played, the next

minute is zoomed in on, and playing resumes. In this way the casual user

I1 1 1 1 1 1 1 1 1 1 1| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

m i IM .I 11E
lil ll 1 I I I I I M I

can listen to the entire recording with only one mouse click, but can also stop

at any point for fine control instant replay.

Mills' interface was a Hierarchical Video Magnifier, not an audio

magnifier. He could use still frames to represent content. Although this

cannot be done with audio, the speech and silence bars and content icons of

the SoundViewer serve this purpose. When multiple segments or content

icons are clustered together at the top layer, the zoomed layer can reveal each

segment or icon separately. In NewsTime, story and speaker boundaries are

provided from an external source, which allows the application to magnify

individual stories, one after the other. When an individual story is

expanded, the finer resolution of speech and silence segments allow scanning

at the phrase level. On a recent broadcast of ABC's World News Tonight,

stories varied in length anywhere from 7 seconds to 5 minutes. If a constant

zoom factor was hardcoded into the MegaSound widget, it would not be

appropriate for different types of news which have different segment lengths.

By allowing the MegaSound widget to magnify arbitrary regions of sound,

this problem is avoided.

3.3 Synchronized Text Annotations

Just as the ability to place a text label in the SoundViewer was very

helpful for identifying the general nature of the sound, being able to link text

to specific points within a segment is likewise advantageous. The Intelligent

Ear demonstrated one way that text could be integrated into an audio widget.

In this case a speech recognition technique known as keyword spotting was

used; so that if a keyword from a known set was recognized, it would be

printed at the spotted location underneath the waveform display.

Unfortunately, algorithms for such automatic keyword spotting are not

robust enough to be used in NewsTime. Nevertheless, assuming that such a

mapping from the text spoken to the time spoken can somehow be provided

independently, MegaSound has the capability to indicate salient portions of

the text by "flagging" parts of the audio display.8

Good evening. we begin in sonalia tonight
where u.s. forces have now been caught

.3m0 min | | | || || | | | | | | | || | | | | | | | |
Figure 3.2: A non-zoomed MegaSound widget with annotation flags

Each flag indicates a text annotation linked to a particular time offset in

the audio file. The MegaSound widget can separately initialize each flag to be

visible or invisible, and can toggle this state whenever the controlling

application needs to. As the pointer is moved into a given flag, its associated

text is automatically displayed in the main note window of the MegaSound

widget, and the sound's indicator automatically jumps to the flag's position.

This allows rapid scanning of linked text and also facilitates editing. Clicking

on a flag sets the zoom region of the MegaSound widget to the temporal

boundaries for that flag, and plays the associated audio.

The Intelligent Ear only highlighted individual keywords but there is

no reason to limit MegaSound in this regard. The text associated with a

single flag can be up to 2048 characters, which corresponds to about two pages

of printed text. There is no arbitrary limit on the total number of flags. This

provides support for a full transcript to accompany the audio, which has

8 How this time-stamped text is actually generated for NewsTime will be taken up in
Chapter 4, while the file format used is described in Chapter 5.

many potential uses even beyond the news domain. For example, given the

MegaSound widget, a trivial application would be the presentation of a text

translation while a story is read in another language. The user could control

the audio playback by clicking on the text portion they want to hear, thus

enhancing language learning. Recall that the widget is not responsible for

figuring out this concordance of text and speech. It must come externally

from another source and be stored within an associated auxiliary file. Besides

text annotations, auxiliary files contain the segmentation and content

information used by the SoundViewer. Auxiliary files are kept separate from

their associated sound files so that they can be stored, shared, and modified

more easily. The exact format of these auxiliary files will be deferred until

chapter 5.

This thesis follows the example of Xerox PARC's Etherphone which let

the user type arbitrary text annotations for a specified piece of sound.

Although the initial text annotations are read in from the auxiliary file,

MegaSound allows them to be modified at any time, either directly by the

user or by the parent application. For annotations, the only information that

is needed is start and stop offsets for the segment, and the text itself. The

main note window of the MegaSound widget provides both read and write

access, such that when the enter key is pressed, the active note is updated with

the contents of that window.

The annotation flags are also related to the SoundViewer's simple

bookmarks. When a bookmark is placed in a SoundViewer, it is flagged as an

initially empty text annotation by the MegaSound widget, and becomes

available for text editing. The ability to associate annotations with sound files

has utility in semi-structured domains besides news. Although these

domains are beyond the scope of this thesis, the MegaSound widget lays the

groundwork to make their exploration possible. For instance, during a

meeting which is being recorded, as someone transcribes the minutes on-line,

or clicks off agenda items, timestamps could be used to produce annotations

describing the topics.

Chapter 4
NewsTime

4.1 Introduction

NewsTime is an X Windows application which utilizes all the features

of the MegaSound widget previously discussed. It does this in order to

facilitate the interaction of the average user browsing through the latest news.

Prorn S < Storg Storg >> << Speaker Speaker> Plag All Quit

EGood evening. He begin tonight
with uhat Mr. Clinton canpaign
aides used to call the econong,
stupid. Their wag of reninding
each other and Mr. Clinton that
the overriding problen theg faced
was national econonic recoverg.

30 min| [K [[| I
ii i ii 1 1111'b 11 1Ii Li

Figure 4.1: The NewsTime application

Here again is the ABC World News Tonight broadcast from the

introduction. In the left-hand window, the transcript of the newscast is

shown, broken down into individual text boxes, each of which represents a

Good evening. Me begin tonight
with what hr. Clinton canpaign
aides used to call the econong,
stupid. Their wag of reninding
each other and Hr. Clinton that
the overriding problen theg faced
was national econonic recoverg.
For sone nonths nou, it has
appeared that a recoverg is under
wag. But, now it appears to have
stalled. ie learn this fron the
government's index of leading
indicator. In narch, the index
dropped one full percentage point,
which is its worst perfornance
since Novenber of 1990. Uith an
explanation, ABC's Stephen Aug.

Ted Hahoneg builds hones in the
Boston area, and he sags business
is not living up to his
expectations.

I thought things would be a lot
better this gear than theg have
been so far. but, at least we're

new speaker. Clicking on any of the text boxes causes it to become active, i.e.

highlight its border, and to have the related audio played. Likewise, in the

right-hand window, a MegaSound widget is used to access the audio portion

of the broadcast directly. The annotation flags default to being visible only at

each new story boundary, rather than at every speaker change. As the user

quickly sweeps the pointer through the flags, the headlines of each story can

be rapidly scanned. At any time, one can decide to listen to the full story by

clicking on the flag. This interaction method was extremely efficient at

browsing a newscast for the first time, as well as going back to find an earlier

story of interest. It maps very well onto the real world process of flipping

through the pages of a newspaper.

4.2 Recording Programs

NPR
Mlarketplace
Fll Things Considered _________

Traffic begin tonight
with what Mr. Clinton canpaign
ades used to call the econony,

Figure 4.2: The "Programs" menu

The "Programs" menu simply lets one select between the various

recordings available. Each of these programs, with the exception of Traffic

reports and World News Tonight, was recorded live off of a cheap portable

radio in my office, tuned to a local National Public Radio (NPR) affiliate,

WBUR. The radio output was plugged directly into the microphone port of

my Sun SparcStation 2. WBUR was chosen because it was a single station

with a wide variety of programs. Everything from business news

(Marketplace), to national news, to more general interest information

programming (All Things Considered) is available. This meant that the radio

could be tuned into one station, and then left alone, which greatly facilitated

the automatic recording process. An added benefit of NPR is their lack of

commercials, and the guarantee that everything being recorded is at least

newsworthy to begin with. Traffic information came from a different station,

WBZ radio, and so was recorded off a separate NeXT computer with its own

radio receiver. These traffic recordings were accessible to my SparcStation via

a local area network (LAN), and were compatible with the audio file formats

on my Sun workstation. ABC World News was also recorded on a NeXT

computer and likewise made accessible on the LAN.

The "Programs" menu is possible because news is a reliable source of

large quantities of speech audio in which signal processing is not needed to

distinguish the overall program category. Regular program schedules are

sufficient to yield top level content information, i.e. what type of news was

recorded (traffic, business news, news updates, etc...). Fortunately, the selected

radio news sources were predictable enough that an accurate recording

schedule could be provided.

Station Program Type of News Duration Frequency
WBUR FM Marketplace Business 30 min Once/day

All Things Misc. Reports 60 minutes Once/day
Considered & Interviews

NPR News National 5 minutes Hourly
WBZ AM Traffic 2 minutes 10 min.

Table 4.1: NewsTime program schedule

As you can see, a wide variety of recording strategies must exist for the

different types of news depending on the frequency and duration of recording.

Program durations last anywhere from a couple of minutes to a full hour.

Frequency of updates can be anywhere from once each hour to once per day.

Recording was done automatically using a Unix cron job, which allowed for

this kind of schedule flexibility.

NewsTime provides only up to date information at any given time.

When an entirely new report comes in, as in the NPR news updates or the

Marketplace program, the new report completely overwrites the old one at

record time. However, when the news comes in frequent incremental bursts

of new information, it is necessary to store a history. The traffic reports for

example are given by a helicopter pilot who samples traffic congestion at

different locations ten minutes apart. In this situation, NewsTime keeps a

running buffer of the last six traffic reports and presents them all at once. The

"Play All" button in the NewsTime menu is used to make all these reports

play through automatically in sequence, without requiring the user to click

on every one.

4.3 NewsTime Window Synchronization

Just as the MegaSound widget concurrently displayed annotations

synchronized to the audio position, so too does NewsTime synchronize its

left-hand window, containing the newscast transcript, along with its right-

hand window containing the MegaSound widget. ABC World News Tonight

was the only program for which a full transcript could be automatically

generated. This transcript was created by one Unix process, getcaption 9,

which read the raw ASCII closed-captioning signal off a line 21 video decoder

box, while the audio track of the program was recorded by a separate process,

9 The original getcaption program was written by Alan Blount, along with a set of
filtering utilities: remnull, grok, remhdr, capper, firstwordCAP & specialCAP which make
the captions easier to read. Following this, another program cap2db (written by myself) was
run to create a database file for the soundViewer, containing timestamps for each text block.

rec3Omin10 . Because both processes were triggered at the same time by a

single Unix shell script, it was possible to roughly synchronize the two, (the

method for doing this is described shortly). Given this time-stamped

transcript, NewsTime scrolls through the closed captions in real-time, at the

rate they were originally recorded. This scrolling is not line by line smooth

scrolling as it was on the original closed captioning display, but rather scrolls

an entire speaker block at a time. This however is a favorable feature as it

allows one to read ahead of the announcer.

4.4 Next/Previous Speaker, Next/Previous Story

Although program schedules will imply the general category of a

newscast, within individual programs a major challenge was how to segment

the broadcast. This thesis does not intend to solve the problem of

understanding what is being said in an audio recording, independent of a

closed-caption transcript. Nevertheless, news exhibits enough structure that

with a little more background knowledge, heuristics can provide a rough

level of intra-broadcast segmentation.

Resnick and Virzi [RV92] implemented a method for skipping and

scanning through hierarchically structured audio in the form of voice menus.

Their system in which the user controlled the presentation of menu items,

rather than having menus read automatically, sped up access times

considerably. The main reason was that their system allowed users to skip

over familiar, unwanted items to find the right one. NewsTime also

provides skip ahead functionality which operates at either the story or

speaker level. The remainder of this chapter examines the heuristics

NewsTime uses to implement the Next/Previous Speaker, and

1 0 rec30min was modified from a demo program included with the NeXT computer,
recordfiletest, which records audio in the background.

Next/Previous Story buttons for different types of news. Given that there are

imperfections in any of these segmentation heuristics, the MegaSound visual

interface enhances news browsing, within these limitations.

The Next Speaker or Story buttons are labeled with the familiar

symbols for fast forward ">>", while the Previous Speaker and Story buttons

are prefixed with the rewind symbol "<<". Note that for purposes of

NewsTime, new story markers will always have a corresponding new speaker

marker, so that pressing the "next speaker" button would also jump ahead to

the next story if read by the same speaker.

4.5 Segmentation of Television News

The closed-captioning of television news makes segmentation a far

different task than for radio news. This section examines the segmentation

techniques that captions allow.

4.5.1 Closed Caption Synchronization

The closed captions provided by ABC World News Tonight (and also

CNN) follow a consistent format which prefixes any new speaker with the

string ">>". This is to assist hearing impaired viewers because the video

accompanying a news story often does not show who is talking, or does not

show them concurrently with their speech. Likewise, whenever there is a

new story the string ">>>" is transmitted. Upon startup, the getcaption

program notes the time, and later whenever two '>' characters arrive

sequentially, the time since startup is written out enclosed by '<' characters,

which do not normally appear in closed-captioning. Since the getcaption

program is run immediately after the program which records the audio,

rec30min, the timestamps for new speakers and new stories should be

properly aligned with the audio file.

A similar method of synchronizing video news stories with closed

captioned text was used in Judith Donath's "Electronic Newstand" program

[Don86], except that the resolution of the timestamps was one for every

individual character that came in. This resolution is unnecessary for

NewsTime. A user will only need to browse at the story or speaker level and

not at the word or letter level; and even if they did need this resolution for

some reason, it would not be possible to provide it accurately. The reason is

that the closed caption text itself is far from being perfectly synchronized to

the audio. The words come in roughly at the rate they are spoken but there

are usually significant and unpredictable delays. On a typical broadcast I

measured these delays to be anywhere from less than a second to as much as 4

seconds. In fact, because the person entering the captions has a transcript of

the news already prepared, the text can even precede the actual speech,

though this almost never happens.

How then were text and audio perfectly synchronized to indicate new

stories and speakers? This was done in two steps by a program called syncs,

which takes the original caption timestamps and adjusts them to better reflect

the actual timestamps that would synchronize the captions to the audio. This

is based on the idea that significant pauses will often occur between speakers,

and nearly all of the time between stories. This was verified by analyzing the

pause data for a sample World News Tonight broadcast.

Pause Length Between Stories Between Speakers Same Speaker
Average .753 .580 .503
Min .319 .309 .309
Max 1.158 1.497 1.118

Table 4.2: Pause data for World News Tonight 11

All times are given in seconds.

One would expect the numbers to decrease from left to right, as pauses

between stories should be longer than pauses between speakers, or pauses

taken by a single speaker. In fact this is correct for the average pause time,

although the variation is wide across the three types of pause, and in fact the

maximum intra-speaker pause exceeds that for inter-speaker pause. Since the

difference in the average time between inter and intra-speaker pauses is

negligible (580 vs. 503 ms), it was chosen to instead select for the between story

pauses only. This was done by setting the minimum silence duration

window to 800 ms, which exceeds the average such pause length of 753 ms.

Given the speech and silence segmentation database for the audio

broadcast, the syncs program made a first pass through the caption database,

finding the nearest speech segment to each new speaker timestamp, which

should correspond to the new story boundaries. The delay from which the

person begins speaking to the time the caption initially appears is referred to

as a "synchronization delay."

speech begins here captions begin here

j>jood evening..."

Synchronization ---
delay

Figure 4.3: Definition of "synchronization delay"

1 1 These results were derived by Charla Lambert of the Speech Group.

After the first pass, syncs sorted all these delays into a list, choosing the

median as a default value to use for the second pass. During the second pass,

the program tried to synchronize the new speaker timestamps, offsetting

them first by this median delay. If the nearest speech block began at an

absolute distance greater than twice this median value from the initial

timestamp, then the median itself was used as a default offset value to adjust

this timestamp. The resulting adjusted caption timestamps are then written

back out to the annotation database.

4.5.2 Closed Caption Results

Total New Story Hit Miss Hit Yield Sig. Miss Insig. Miss
131 118 13 90% 3% 7%

Total New Speaker Hit Miss Hit Yield Sig Miss Insig. Miss
489 374 115 76% 6% 18%

Table 4.3: Closed caption synchronization via syncs

Table 4.3 summarizes the results of running the syncs program on a

week of ABC World News Tonight. The hit yield is the percentage of all

segments perfectly synchronized, while the miss yield is broken down by

significant misses (off by more than a single word), and insignificant misses

(off by a single word or syllable). As expected, new story boundaries were

correctly synchronized more often than new speaker boundaries. This is

because pauses between stories are longer, and therefore more reliable to

detect than briefer pauses between speakers in the same story. One major

source of synchronization mistakes was very brief speech segments, on the

order of the median synchronization delay itself. In one such case, the

reporter asked a yes/no question, got an answer after a brief pause, then

immediately asked another question, both the answer and the second

question were originally mapped to the same speech block. To avoid any

overlap the syncs program would adjust these two segments to be sequential,

but this did not guarantee the brief segment would be accurately

synchronized. In reality though this is not a big problem because the very

brief segments will likely not contain keywords of interest, so the user will

not have done a search on them in the first place. Besides which, the speech

segment in question will either be in the preceding or subsequent segment,

which can be retrieved at the press of a button during playback.

The real problem was not in matching the text timestamps with the

audio, but rather in relying on the new story indicators (">>>") that originally

came with the captions. These indicators are not exactly "new story"

indicators per se, but are better described as "change of focus" indicators. For

example, the first ">>>" will tag the introduction to a new story by Peter

Jennings, the anchorman; however another ">>>" will prefix the story itself

which is given by a field reporter. On one broadcast there were 8 such segues

that were marked as new stories, out of 40 overall markers. The upside of

this liberal use of new story markers is that no actual new stories were left

unmarked. That is, there are some "false alarms" but no "misses."

4.5.3 Commercials

Another advantage that closed-captioning provides is the ability to

reliably filter out commercials. Closed-captions on the news always use

smooth scrolling with centered text, while television commercials have no

scrolling, and can pop up in any location. The change between these two

display modes is detectable by a control string. The raw caption data, having

been passed through the standard filtering pipeline to make it more readable,

is then handed off to a lex based parser called cap2db. This program then

creates the time-stamped transcript readable by the SoundViewer and

NewsTime. Whenever the control string indicated a switch from news to

commercial captions, any ensuing text and time stamps were ignored. This

means commercials' text will not appear in NewsTime, but that the audio

will still be there; however, one can instantly skip past it by clicking the next

story or next speaker button.

4.5.4 Keyword Search

The "Search" menu in NewsTime is meant only for programs which

have closed-captioned transcripts, i.e. ABC World News Tonight. NewsTime

can do a keyword search through the closed-captioned text, making visible

any annotation flags whose text contains the keyword, and hiding all others.

Clicking on these flags plays the accompanying sound just as before, and an

accelerator for jumping to the next annotation is also available. Shown in

Figure 4.4 is a search for the word "president".

President Clinton sags the latest
nunbers are further proof that the

3 countru needs his plan for
reducing the deficit. He also
acknouledged that he and his staff
need to refocus their attention on
uhat is inportant. Rs the
president put it, to get our
priorities straight. Here's ABC's
Brit Hune. Ll

In the oval: ne sac
president aci
contenplatini president,
white house i
najor push ti Ok |CancelFlag Stories
progran th roL...------------
conceded sone of that laser focus
on the econong he pronised has
been lost.

IPresident Clinton sags the
latest nunbers are further proof
that the countrg needs his plan
for reducing the deficit. He also
acknowledged that he and his
staff need to refocus their
attention on uhat is inportant.

M e .11 1 r1_ 1111il

i I i i I 1

Figure 4.4: Keyword searching

Since the keyword search function hides the original flags which

denoted story boundaries, the "Flag Stories" button recreates the initial state

of all flags.

I__ -1 - -

4.5.5 Categorizing the News

Obviously some words will provide more information content than

others. "Wall Street" or "Dow Jones" will invariably give you the daily stock

report, while "president" can give you any number of things. To assist

NewsTime in identifying particular types of news, an automatic keyword

search program called karma, was written, so named because it infers the

overall feeling or atmosphere of a story. karma takes as input the closed

caption transcript, and for each story determines how many key phrases in

each of several categories are contained in the story. The news categories

included are: international, national, economic/business, entertainment,

health/medical, sports, and weather. The category with the most matches

"wins" that particular story. In case of a tie, the later category is chosen

because they tend to be more specific than the earlier ones, with fewer

matching key phrases. In case there are absolutely no matches, the story is left

as indeterminate.

Each category could include up to 256 key phrases, read in one per line

from a standard text file. New phrases and categories can be easily added by

modifying this file, instead of changing the karma program. This makes it

easy to add world "hot spots" temporarily to the list of international locations,

and remove them later. Phrases were chosen for each category by informal

analysis of the transcripts from a week of news. The phrases are mostly place

names, person names, and terms used in a particular field, e.g. "disease" for

medical news, "interest rate" for economic news, etc... The phrases do not

even have to be complete words, as long as they unambiguously indicated the

category: for instance "econom" is a key phrase because it matches

"economics", "economist", or "economy." A complete list of the phrases for

each category is listed in the appendix.

Depending on the category computed for each story, NewsTime

displays a content icon which is recognizably associated with the category.

* International

E National

$ Economic/Business

$ Entertainment

' Health/Medical

@ Sports

Weather

Figure 4.5 News category icons

Because the icons are of a fixed width, when the story takes up less

screen space than the icon that portrays it, icons from brief stories will

overlap. Here we see the very brief Wall Street report sandwiched between

two other stories:

,on wall street, the Dow Jones
industrial average gained nearig
19 points todag to close at 3446.
and the trading was active.

Figure 4.6: Zooming into story clusters

When this occurs the user can zoom the MegaSound widget into the

cluster of stories to reveal their individual nature. Another approach to

solving the icon overlap problem has been implemented in Marc Davis'

Media Streams system for video annotation [Dav93]. Instead of a single

content icon layer, a hierarchy of layers for specific icon types exists.

Similarly, Thomas Smith's Anthropologist's Video Notebook could graph

multiple layers, or "strata", associated with different keywords [Smi89]. As in

Media Streams, multiple strata could overlap along the x (time) axis, because

each had its own y coordinate. Such stratification may be a good future

addition to the SoundViewer widget.

The karma program was very successful at distinguishing between the

news categories used for this thesis. There were only one or two very short

reports per program that were left uncategorized, and no falsely categorized

stories. Current research at the lab is investigating how to automatically

compute story understanding through various text similarity metrics [Has93].

It is hoped that an intelligent agent can be created to find stories which are

attuned to the user's interests. Were such an agent available, NewsTime

could make use of it to flag the stories of potential interest; but the main idea

behind NewsTime is not to have the computer figure out what news stories

you're interested in, but rather to let you make that decision.

4.6 Segmentation of Radio News

Closed captions are a subcarrier that is embedded in the news signal; in

radio news however there is no such auxiliary signal. There is a standard

known as Radio Data System, or RDS, which has been used in Britain and

other European countries since the late 80's [Fel92]. It transmits digital

information to complement to the audio broadcast, such as station name and

program type. Someday RDS might offer a text transcript as well. Lacking

such a subcarrier today, we are dependent on the program signal alone to

determine story boundaries. As there is no general technique for speaker

independent continuous speech recognition, a different method was required.

A related project in the video domain shed some light on how this

might be achieved. Elliott's "Video Streamer" knew nothing at a semantic

level about what was being viewed, but could derive transition points based

on signal characteristics. His program finds where likely scene changes are by

checking how much the chrominance distribution has changed from frame to

frame. In fact, Elliott's software was originally considered as a potential

source of timestamps for NewsTime speaker and story boundaries. When it

was found that the closed captions were sufficient for this purpose, this idea

was abandoned. In the future though, video signal analysis might provide

some benefit for partitioning non-captioned programs.

Determining when one speaker stops and another begins without

solving the much more difficult problem of voice or speech recognition is

appealing. Rather than identifying the speaker or what is being said,

NewsTime answers the question: "Was there a long enough pause to denote

a possible speaker change?" In the NPR hourly news updates, which are each

5 minutes long, different silence windows were tested against a day of news.

Results for finding the speaker and story boundaries (which are treated the

same in this case) as a function of the minimum silence window, W, are

summarized for a day of NPR (11 separate updates) in Table 4.4.

W (Ms.) Hit Miss False Alarm
400 115 37 116
600 53 99 24
800 25 127 2

1000 20 132 0

Table 4.4: NPR new speaker and story yield vs. W

In order to increase the number of hits, the silence window had to be

made more liberal (i.e. shorter), but this always leads to a corresponding

increase in false alarms. Further, the law of diminishing returns applies,

since the rate of additional false alarms quickly exceeds the rate of additional

hits. In going from 600 to 400 ms, the number of hits doubles, but the

number of false alarms explodes by a factor of five. The reason there will

always be some misses is that news reporters are not completely consistent in

pausing between stories, and getting every last story boundary would require

false alarms within every story too. Of those 37 misses when W is 400 ms, 15

are rapid transitions within a story between one speaker and another.

Personally, I found a setting of 400 ms for W to be bothersome, because of the

equal number of hits and false alarms. Rather than hit every single speaker

transition, I was more interested in hitting story transitions. Consequently I

set the W parameter for NPR to 600 ms. Of the 99 misses, 65 were either

speaker transitions, or station identifications. This left only 34 actual story

boundaries missed, or 3.1 per recording.12 As there were an average of 8

genuine new stories per recording, this yielded a hit ratio of around 61%, with

only 2.1 false alarms per recording.

There is no one right answer to what the silence window should be.

Longer radio programs such as Marketplace or All Things Considered do not

follow the same limited formula of "while not done, read next story, pause,

repeat..." Pauses may also depend on the speaking style of the person being

interviewed, or reading a commentary. Figure 4.7 shows an hour long radio

program, All Things Considered, displaying silences greater than 800 ms.

1 2 One of these 3.1 missed stories was always the stock market update, which due to its
brevity was never preceded by a long pause.

Figure 4.7: Frequent pauses reveal unique speaker

Each pixel represents roughly 10 seconds of audio. If a silence of the

minimum duration exists within that pixel's 10 seconds, it is left unfilled. At

the indicator's position there is a visible difference in speaking style, as this

person clearly pauses much more often than anyone else in the show. In fact,

this example is a commentator telling a story, while the rest of the broadcast is

more in line with the hard news format of the hourly NPR updates. The

isolated pauses at the beginning of the program can help to locate stories but

not those near the end. But because this portion of the program is visibly

different, the savvy user can quickly sweep the indicator through this region

and notice when the voice changes to find the next story.

4.6.1 Music Detection for Next/Previous Story

The visual display of speech and silence can indicate extreme variation

in speaking style, but for many programs there is a more prominent signal

processing technique for finding story boundaries. Most programs have a

theme song, but many also use musical segues of five to fifteen seconds to

separate major stories. Michael Hawley has developed an algorithm which

can detect the presence of music by finding sustained peaks in the magnitude

spectrum [Haw93]. Viewed in a frequency vs. time spectrogram, these

sustained peaks appear as sharp lines of frequency, while regular speech

appears much more irregular. The algorithm samples the sound every 0.25

seconds, and measures the overall "striation" of each sample on an arbitrary

scale. Values on the scale mostly range from around 4 to 8, with a higher

value denoting more striation. The values actually represent the average

length of the sustained peaks for that sample, measured in "frames", where

there are 40 frames per second. A graph of these values plainly reveals the

presence of music against the speech that borders it:

Striation 14- - - - - - - - - music- - -- - - - - -- -

8

7

4

--- . ------ .-- --- --- - - - 5.5

3

2

1 time (sec)

2 4 6 8 10 12 14 16 18 20

Figure 4.8: Striation of music vs. speech

The first three seconds are a person finishing up one story, while the

last nine are the beginning of a new story. The peaks in the middle are a

drum and bass combo of about eight seconds. From the above graph, we see

that the average speech striation rarely goes above 5.5, while the music rarely

dips below 5.5. These same numbers are constant across a wide variety of

speakers and music. A prominent false alarm is someone who speaks in a

large hall, or stadium which echoes. In this case the striation increases

because each frequency component in the echoed speech is stretched out over

time, which ends up looking more musical than ordinary speech.

4.6.2 Performance

Hawley's algorithm considers only peaks in the frequency range of

150Hz to 1050Hz, which is suitable because higher frequencies would merely

appear as additional harmonics to the lower frequencies, and do not in

themselves provide unique information. The algorithm ran on a NeXT

station about twice as fast as real time, i.e. an hour long recording took 30

minutes to evaluate. For this reason, a program called music which

incorporated his algorithm was run immediately after each broadcast. Just as

the speech/silence detector had to specify a minimum speech threshold and a

minimum silence window, so too did the music program have to specify a

minimum striation threshold and minimum music window. After trial and

error on various broadcasts, a value of 6.0 was chosen as a good striation

minimum for music. The fact that most musical segues did not exceed this

threshold for their entirety was not an issue because for any melody longer

than a few seconds, it was found that this limit was always exceeded at least

once. For the music window, a value of 3.0 seconds was chosen, for similar

reasons. These were conservative estimates to minimize likelihood of false

alarm. They do not guarantee to catch all possible musical signatures, but

they consistently found those in the sample programs tested, and only

averaged between two and three false alarms per hour with these settings.

4.6.3 Integrating Program Structure with Music

Though not all stories are prefixed this way, recent logs of All Things

Considered showed an average of seven musical transitions, with between

four and five stories not preceded this way. The unannounced stories were

generally not the hard news ones, but were interviews, commentary or

reviews. Interviews were often considered part of a larger story, which had

already been initially tagged with music.

Just as radio programs occur at regular clock intervals throughout the

day, so too do regular program segments occur at roughly predictable offsets.

On Marketplace there is consistent music, but it is used to denote entire

portions of the program rather than every individual story. As on All Things

Considered, music plays while an introductory summary is given at the top of

the show. On Marketplace though it also precedes the mid show summary,

the foreign business news, the top story, the day's corporate news, the stock

report, news from the daily business press, and various other special reports.

Here we see a picture of a Marketplace broadcast with the music segments

flagged as new story markers.

.Corporate News

P .r1
P P .r5

Figure 4.9: Music confirms story predictions

Within these reports the next speaker button can find new stories with

the same accuracy as in the NPR hourly news updates. Ironically, this

simpler speech and silence algorithm is more precise at finding individual

stories than the more sophisticated music detector. One factor is that the

announcer often reads interesting news while the "band plays on." Because

the human voice only adds frequency components to the background

spectrum, it will not interfere with music detection, but it does mean that

finding the actual news is not a simple matter of skipping past the music.

To assist with this problem, output from the music detector goes to a

second process, music2db, which given the name of the program being

analyzed, looks up a template for that program. These templates are entered

by the programmer in advance to reflect any background knowledge about the

predictable structure of the broadcast. Each line of the template lists five

pieces of information: the minute and second offset at which to look for a

musical segue, the expected length of the segue, whether or not the

announcer speaks over the music, and a brief description of what the segment

ought to be. The Marketplace template which was determined by averaging a

week's worth of shows is shown here:

Min Sec Dur Keep Music? Description
0 0 65 1 Theme/Summary/Top Story
7 38 26 1 Still To Come... /Foreign Desk

12 55 10 0 Feature Story 1
15 39 30 0 Corporate News
17 27 46 1 Stock Report
18 38 30 0 Daily Business Press
19 36 10 0 Feature Story 2
23 36 10 0 Feature Story 3
26 37 91 0 Final Notes on News

Table 4.5: Marketplace template

The music2db program first makes a pass through all musical

segments, and groups them into clusters. This is because the conservative

parameters fed to the music program meant that rather than identifying a

single piece of music as a solid continuous block, it was more likely a

fragmented collection of brief but closely spaced musical segments. Music

fragments which were less than 25 seconds apart were assumed to be part of

one large musical cluster. For each line in the template file, the start time was

matched to the start time of the nearest cluster, and then depending on

whether or not the "keep music" flag was set, an annotation containing the

text description was added to the database either at the start or end of the

music cluster. 13 After the template was fully matched, any leftover musical

clusters which were left unmatched would be tagged with the default

annotation, containing "???". This feature helped the user find any

unexpected musical segues in the program, and would also compensate for

any mislabeled segments. This way, even if a segment was in the wrong

place, it would still be flagged, albeit with a meaningless label.

1 3 Actually if the music was to be skipped, the note would be placed 1.25 seconds earlier
than the end time to be on the safe side.

If the new story marker is placed too early or too late with respect the to

musical interlude, the user interface once again compensates. One can easily

jump back to the beginning of the current music block, in case any words

were missed, or to skip to the end to save time. This capability to skip

between music blocks is part of the improved SoundViewer.

4.6.4 Results

Marketplace is on Monday through Friday, and there are nine

segments to find per show, so in the week that was tested there should have

been 45 segments to correctly discover. In fact 35 of these were accurately

labeled by the mus2db program, or roughly 80%. Of the ten that were missed,

five were still found, but just labeled incorrectly with "???", two were

mislabeled as another segment of the show, one was omitted from the show

in the first place, and only two were not detected at all by the music program.

There were an additional eight false alarms or 1.6 per day; one of which

actually was music, but was part of the story nevertheless.

4.6.5 Future Possibilities

Music detection is only one signal processing technique which can

make use of a priori knowledge analysis of a newscast. In All Things

Considered, there are usually two anchors, male and female, who alternate

reading the headlines. Unlike what is found in spontaneous conversation,

the two never interrupt each other, and each person always speaks for at least

several seconds. The anchor will often read a headline, then yield to field

reporters who have phoned in their stories. The audio quality of these

phoned in reports is noticeably lower than that for the live anchor. Natalio

Pincever's Home Moviemaker's assistant [Pin9l] successfully demonstrated

how statistical analysis, Fast Fourier Transforms, and Linear Predictive

Coding could be used to detect significant changes in the audio stream. His

purpose was to parse video scene transitions through audio analysis alone,

such as changes in root mean squared amplitude of background noise.

Pincever found that most shot changes could indeed be discovered through

audio analysis. With future improvements in pitch tracking software, it

should be possible to spot such patterns in the audio and use them as

"signposts" for further scanning in NewsTime.

Chapter 5
Implementation

5.1 Widgets' Technical Specification

We have now explained widgets like MegaSound at their functional

level, i.e. as "object[s] providing a user-interface abstraction" [Pet89]. The term

"widget" also has a more precise technical definition, as one of the underlying

data abstractions of the X Window system. Widgets themselves are in fact

realized as individual X Windows, and the Xt Intrinsics Library (colloquially

known as "Xt") is provided as an application programming interface (API) to

the widget sets. Different widget sets are available, such as Motif or

OpenLook, which all are based on Xt and its abstractions. The work described

herein is all based on the Athena widget set, which comes with the standard X

Windows release.

Within any widget set is a number of widget classes, the Scrollbar 14

class for example. Each class contains a number of data fields and methods,

and new widgets are written by subclassing an existing class. Scrollbar is a

subclass of the Simple class, which itself is subclassed off the root class known

as Core. A number of elemental classes such as Simple and Core are provided

with Xt, along with some methods essential to all widgets: Initialize,

SetValues and GetValues, Redisplay, etc... A widget inherits all the data fields

and methods of its superclass, and then adds its own. In addition, the subclass

has the option to overwrite any of the superclass' default values or methods.

1 4 By convention, all widget class names are Capitalized.

5.2 The OmniViewer Widget

One of the underlying ideas of Xt is that widget semantics are kept

independent of widget geometry. That is, widgets are supposed to have no

control over where they are placed on screen, relative to other widgets. This

stems from the idea that every widget stands alone, unaware of the existence

of sibling widgets, or of the overall application in which it is used. This is in

keeping with the object oriented approach of Xt, which lets the same widget

be used across any number of applications without side-effects.

In order to handle widget layouts Xt provides another widget class

called Composite. Composite widgets are designed to manage the geometry of

a number of child widgets. Two composite widgets come with the Athena

widget set: Form and Box, both of which let the programmer specify the

position of each child widget relative to its siblings. Neither one lets you

specify the position of a child in absolute coordinates, and perhaps

surprisingly, no such "bulletin board" style widget exists in the Athena widget

set. To alleviate this problem a widget class called "Bboard" was created. 15

The geometry manager in Bboard simply grants all its childrens' layout

requests, and resizes the Bboard to exactly fit all children.

The Bboard is very useful but also very generic. Since it knows

nothing about the nature of its children, it needed to be subclassed to

specifically manage audio and text widgets. The subclass created for this

purpose was the ChatMan widget, which is short for chat manager. ChatMan

mananges a database of text and audio items, but does not actually create any

widgets to represent those items. This is done by a subclass of ChatMan called

OmniViewer.

1 5 The original Bboard widget was created by Russ Sasnett and Mark Ackerman of
MIT/Project Athena.

Athena class

Bboard bulletin board

ChatMan manage text/speech
item database

.e creates text/speechOmniViewer item widgets

Figure 5.1: The OmniViewer class hierarchy

ChatMan stores all relevant information for each item in its database:

such as type of item (text or audio), sequence number, x and y coordinates.

Sound items additionally have their Unix file name, start time, stop time and

duration managed, while text items simply need their contents stored.

External procedures are provided by the ChatMan widget for adding new

items, deleting items, moving items, changing an item's contents, and

reading or writing the entire item database.

ChatMan was designed as a more general superclass of the ChatViewer

widget, which was written by Debby Hindus of the Speech Group [Hin92]. The

ChatViewer not only managed the items' data, it also created the widget

realizations of those items. The ChatViewer was created to view telephone

conversations as a series of SoundViewer widgets, according to one of only

three layout styles: a horizontal row, a vertical row, or in miniature.

ChatMan was spun off separately because there could be any number of

applications for displaying text and speech items, any one of which might

have its own unique layout technique. For extreme example, the Speech

Group's "Scrap" application creates a scrapbook of sound and text items for

reference, pasting them onto the screen at any possible location.

By separating out the code which managed the item database, the

widget realization of those items could be left up to the subclass, e.g. what type

of widget to use for sound items. The choice of how to lay items out can also

be left up to the subclass. The OmniViewer is one such subclass, so named

because as the Scrap application demonstrates, it can handle all possible

layouts. Like the original ChatViewer, the OmniViewer uses Athena Text

widgets for text items, but instead of SoundViewers, uses MegaSound

widgets. The OmniViewer has parallel procedures to ChatMan's for adding,

deleting, moving and modifying its items. These procedures affect the

children widgets on screen, but additionally call the equivalent ChatMan

procedures to update the internal item database. The appendix lists all

resources, translations, callbacks, and external procedures for the Bboard,

ChatMan and OmniViewer widget classes. 16

5.3 Chatfiles

Much of the underlying code for the ChatMan was modified from the

ChatViewer. The ChatViewer employed two different file formats to read

and write its item databases, both of which were preserved for ChatMan. The

first format is a chatfile, which is simply a flat text file, with one item per line.

Each line is either the text item itself, or a reference to a sound file name, with

segment start and stop times optional. For instance:

This is a text item.
<sound file: /sound /news/today/npr>

The chatfile format merely lists the contents of each item, but cannot

reflect supplementary item information, such as item coordinates. If this type

of information is desired, another file format called a dbfile may also be used.

This format is supported by a Speech Group database, ndb, written to

1 6 For definitions of these Xt terms, see appendix.

maintain key-value pairs. The ndb database is also the native language used

by both the ChatViewer and ChatMan widgets internally. The exact format of

dbfiles are discussed in the appendix.

NewsTime is written by putting two OmniViewers side by side. The

one on the left holds the show's text, while the one on the right holds the

show's audio. When there is no transcript to put in the text window, as is

true with all radio programs, the name of the program is placed there instead.

When someone selects a new program from the "Program" menu of

NewsTime, the OmniViewers will purge all existing text and audio items,

and then reload the appropriate chatfiles for either the text or audio of the

show. These chatfiles are found in a network accessible directory for audio

news, and are simply named chatl.text - chat5.text, and chatl.sound -

chat5.sound.

5.4 SoundViewer Hierarchy

The SoundViewer widget class is based on another custom widget: the

Ind (or Indicator) which is subclassed off the Xt class, Simple. The

SoundViewer deals with all the details of playing an audio file, while the

Indicator (which knows nothing about audio) deals with sizing the widget,

drawing in hash marks, and implementing the black indicator bar which

moves across the screen. The indicator bar works by noting when it is

activated, then repeatedly calling the IndicatorTimerProc method. This checks

the clock again to see how much time has elapsed since the bar was switched

on, and based on this number the bar updates its position. The SoundViewer

needed to overwrite the IndicatorTimerProc method with its own

SoundViewerTimerProc. Rather than checking the clock at each iteration,

this method queried the sound server [Aro92b] about the current play

position in the sound file, and updated the bar based on this instead. This

made it possible to change the playback speed of sounds repeatedly, and have

the indicator bar slow down and speed up accordingly.

Some important resources that determine the SoundViewer's

appearance are the showSegs, showContent, showNotes, showDuration, and

showLabel flags. These respectively determine whether or not speech and

silence, content icons, annotation markers, segment duration, and the

optional text label are displayed. Finally the useAuxFile resource determines

whether the auxiliary file should be loaded during the Initialize method, or

written out if there are any changes, such as new bookmarks or new

segmentation parameters.

5.5 MegaSound Hierarchy

Since the MegaSound has already had an entire chapter devoted to it,

we will now only discuss its class hierarchy. MegaSound, like the ChatMan

widget, is also subclassed off the Bboard widget. In its Initialize method, all

children of the MegaSound widget are created: the root SoundViewer and any

zoomed SoundViewer region, the optional annotation flags, (which are

Athena Command widgets) and optional main note entry window (an

Athena Text widget). The flagNotes resource controls whether the

annotation flags are drawn, while the autoMode resource determines if a

zoom region is automatically created. The duration of the zoom region is

specified by the autoWindow resource. The appendix contains complete

MegaSound widget documentation.

5.6 Auxfiles

To support the speech and silence segmentation, semantic content, and

annotation databases associated with a sound file, the auxfile format (short for

"auxiliary file") was created. These three databases are just concatenated

together to create a file with the same name as the sound file, with the suffix

".aux" added, and prefixed by "." to make the file invisible to the Unix shell.

The databases themselves are managed by the same ndb library that the

ChatMan widget uses to maintain key-value pairs. A description of what

those pairs are for each of the three databases follows.

5.6.1 Speech and Silence database

The first record in the segmentation database contains the database type

(SegDb) for verification, as well as the detection parameters used to segment

the file.

Start of db
{Record
ITypel {SegDb\00}
{SilenceLength} {800\001
{SilenceLevel} {0\001
{FirstSeg} {1\00}

As in all dbfiles the first item enclosed in {}'s is the key, while the

second is the value. Note that all values end with the string "\00" by

convention. The segmentation information in this database reflects silences

at least 800 ms long by the SilenceLength field. The maximum SilenceLevel

of 0 indicates the level was determined by the formula given in chapter 2,

based on the first 35 seconds of the audio data.17 A FirstSeg of 1 indicates the

sound begins with speech, while a 0 would have meant silence.

17 T = (0.08 MAX + 2.92 * MIN)

Following the header record, all subsequent records contain only one

field:

Record{
{{SoundLen} {22720\00}
}

Subsequent records indicate the duration of the next interval, which

alternately is speech or silence, and depends on the binary value of the

FirstSeg field in the header record.

5.6.2 Content database

The content database also begins with an identifying header record:

Start of db
{Record
{{Typel {ContentDb\00}
{SoundStart} {-1\00}
I

Because the items in this database get sorted in increasing order by the

SoundStart field, the -1 in the header record is to insure it remains the first

record.

Following the header is an arbitrary number of content records, each of

which contains four fields:

Record{
{{Contents} {1\00}
{SoundStart} {6154\00}
{SoundLen} {7770\001
{SoundStop} {13924\00}
}

The SoundStart, SoundLen, and SoundStop fields reflect the location

and duration in the sound file of a segment with a particular type of content.

The Contents field is a number used by the SoundViewer to indicate which

content icon will be drawn at the specified start time. A Contents field of 0

also indicates to the SoundViewer to draw in a black bar spanning the

duration of the content segment, over which the icon is placed at the

beginning. With any non-zero value, only the content icon is drawn, and not

the bar. This is how regions of music can be drawn in as a base content layer,

while other types of semantic content can overlay this base with additional

icons.

5.6.3 Annotation database

The annotation dbfile reflects both bookmarks or annotations the user

has added through the SoundViewer or MegaSound widget, as well as the

transcript of the audio generated by closed captioning. For this reason the first

record requires more explanation than for the other dbfiles.

Start of db
{Record
{{SyncDelta} {-1155\001
{NewStory} {1\00}
{NewSpeakerl {1\00}
{SeqNum} {1\00}
{Visible} {1\00}
{Type} {TextItem\00}
{SoundStart} {6154\00}
{SoundLen} {7770\00}
{SoundStop} {13924\001
{Contents} {Good evening. We begin tonight with a story from
Washington. \ 001
I

In annotation dbfiles, the first record is no different than any other

record with the exception of the optional field, SyncDelta. Recall the

discussion earlier about the synchronization delay that was encountered for

closed-caption text. The cap2db program which generates the annotation

dbfile from the filtered caption data does not in itself compute the median

synchronization delay. This is done separately by the syncs program, which

when fed an auxfile adjusts the SoundStart, SoundStop and SoundLen fields

appropriately. Initially, if the syncs program was run more than once on the

same annotation dbfile it would compute a different synchronization delay

the second time, thereby destroying the properly adjusted timestamps. To fix

this problem, the synchronization delay is inserted into the first annotation

record, the first time the syncs program is run. If it finds it there the second

time, nothing more is done.

The NewStory and NewSpeaker fields are inserted into a record by the

cap2db program when the appropriate prefixes are found in the captioning.

An annotation or bookmark added by the user will have neither of these

fields set. The Visible field is another optional field, that is only set by default

for NewStory captions and not NewSpeaker captions. As there were usually

around 100 NewSpeaker captions 18 , flagging them all would clutter the

MegaSound widget. Yet the visible state of individual annotations can still be

changed by the user, as in NewsTime's keyword Search feature described in

chapter 3.

The SeqNum and Type fields are not necessary for either the

SoundViewer or MegaSound widget, and are technically not mandated by the

annotation dbfile format. They are only inserted by the cap2db program to

generate a dbfile that can also be used by the OmniViewer widget. This allows

NewsTime to take the one dbfile, and display it as the newscast transcript in

its left hand window. The same dbfile is incorporated into the auxfile which

MegaSound uses for the same newscast.

1 8 Actually 91.4 on average for the week of news examined.

Chapter 6
Conclusion

6.1 Goals Accomplished

The major focus of this work has been the enhancement of the visual

interface to large quantities of speech audio, within the context of news

broadcasts. The reusable MegaSound widget made both the NewsTime

programmer's and user's job easier. Logging enough knowledge about

different news broadcasts, and devising reasonably effective segmentation

techniques was a major problem to tackle. Even though segmentation was

not perfect, there were relatively high hit ratios, even using the simple speech

and silence detection algorithm. With music detection or closed captioning,

story segmentation achieved extremely high accuracy, while keeping the false

alarm rate low.

Given that no segmentation data was perfect, I found that the

enhanced MegaSound interface did indeed compensate in several ways. In

terms of usability, I personally found NewsTime enhanced my listening, and

made me enjoy my favorite programs even more. It truly provided for the

first time the ability to immediately "flip through" an audio newscast the

same way I would through a newspaper. For instance, I liked being able to

zoom in on Marketplace's stock reports very quickly at the end of the day.

Even though the report was correctly labeled only 80% of the time, the music

was still detected, and a click or two of the next story button would find the

report, within a second or two. But even with no segmentation information,

MegaSound's enhanced scanning with audio feedback, and its zooming

feature are a boon in distinguishing particular pieces of sound. This was

especially true if the sound characteristics were audibly different even in a

split second of feedback, such as music vs. speech, or a change of speaker.

The ability to display content icons within the SoundViewer was both

accurate and helpful in distinguishing among the general news categories

determined by the karma program. A good NewsTime enhancement for the

future would be an improved version of karma that could go beyond its very

general categories to let one target stories which are more likely to be of

particular interest. User modeling could help to detect which stories I actually

listen to in a broadcast, and then future stories would be highlighted that are

more similar to those I personally select. Another more trivial enhancement

would be to expand the "Search by keyword" feature to allow each user to

configure a set of keyword libraries for themselves, and then flag all segments

that contain any of the keywords, instead of only one at a time.

In terms of future segmentation techniques, pitch tracking and other

signal processing algorithms could be very beneficial in finding new speaker

and new story boundaries. I found that while listening for new stories by

skipping over silences, I could almost instantly distinguish between a hit and

a false alarm. The announcer would have a distinctively higher pitch, and

speak in a louder voice when starting a new story, than when merely pausing

within a story. Although speech recognition is not robust enough to

generate a transcript from the audio, keyword spotting algorithms could be

used to target predictable, repeatable theme music, or tag lines that indicate

particular program segments. On the local 11 o'clock Eyewitness News

television broadcast, the weather and sports report always begin with the

same prerecorded introduction. Finally, although it was not necessary for

NewsTime, a "talking heads" television news show, which contains

interviews or debates, but is not closed-captioned, may be broken up into new

speaker segments by using video continuity detection, as in Elliott's Video

Streamer.

6.2 Predicting the Future

I believe that someday there will be the capability to automatically

record all news programs coming in over the television or radio on a

particular day, and that the ability to browse through all this time based media

will become as commonplace as browsing through a newspaper. NewsTime

has taken the first steps by showing what is currently possible given the

hardware and software of today. Because no news provider explicitly

broadcasts signals to assist NewsTime, the fact that the program is fairly

successful in the first place is rather impressive. I predict that in the future a

standard for broadcasting high level content information along a subcarrier

will indeed be the norm. The question of whether this information will be

used wisely to educate and enlighten people is ultimately up to the consumer.

Appendix A

Widget Terminology
Resources, Callbacks, External Procedures, and Translations

The Xt widget abstraction supports the hiding of widget details from

the application programmer. That is, data fields within the widget structure

are not to be directly accessible unless made explicitly so through the resource

mechanism. In the SoundViewer widget for instance, the speed of playback is

a setting that the user or programmer would want to modify, and so it is

coded as a resource. Other data fields that the widget maintains for its own

purposes are kept private. Resources are written with a default value

specified, but can be set and received at run-time by a call to the respective Xt

functions XtSetValues() and XtGetValuesO. Default resource values may also

be overwritten in a resource file that is written specifically for each

application.

A translation table is a text resource which maps user behaviors to

widget actions. For instance, a user who clicks on the SoundViewer triggers

both the ToggleSoundo and Togglelndicatoro actions in the widget. This

particular translation is written into a resource specification as follows:

<BtnlDown>: ToggleSound() ToggleIndicatoro

A special type of resource known as a callback list can also be specified.

A callback list is a list of procedures which the programmer can append to.

Procedures on the callback list are triggered when the widget reaches a certain

condition. For instance, the SoundViewer has a resource named

finishedCallback, whose list is triggered whenever its indicator bar stops

moving.

An external procedure is provided by the widget for the programmer to

request certain behaviors which are either not accessible through resources, or

would too cumbersome to accomplish through resources. One example from

the SoundViewer is XawStartSoundO which both starts the audio playback, as

well as triggering the indicator bar. External procedures are like the widget

actions that can be specified in a translation table, except that they are called

directly from the application's C code, rather than only being called via Xt's

translation table mechanism.

Appendix B
Widget Documentation

This section lists the developer's documentation for all custom widgets

associated with NewsTime. The SoundViewer widget is not included since it

is not really NewsTime specific, but is so widely used in other applications.

B.1 Bboard Widget

/ **

Bboard widget

Authors: Russ Sasnett
MIT/Project Athena
and GTE Laboratories

Mark Ackerman
Chris Horner
MIT Media Lab

Updated: 5/7/93

SUMMARY

The Bboard widget ("bulletin board") is an extremely simple composite
widget, which simply grants all geometry requests from its children,
and sizes itself to fit them all.

RESOURCES

The Bboard widget has no additional resources, in addition to those of
Core and Composite (Athena). It is a subclass of the Composite widget.
See the Athena widget documentation for additional details on Composite
resources.

CALLBACKS

The Bboard widget has no callbacks.

TRANSLATIONS

The Bboard widget has no default translations.

ACTIONS

There are no actions installed for the Bboard widget.

CONVENIENCE ROUTINES

extern void
BBCalculateNewSize(w, width, height)

Widget w;
Position *width, *height;

Returns the size of the bounding box needed to contain all
the Bboard's children.

B.2 ChatMan Widget

/ **

ChatMan widget

Author: Chris Horner
MIT Media Lab

Updated: 5/7/93

SUMMARY

The ChatMan widget ("chat manager") is for managing databases of text
and sound items. It is assumed that this widget will be subclassed to
create actual text and sound widgets that the ChatMan manages. See the
OmniViewer documentation for one such subclass.

This was spun off from the original ChatViewer widget, written by Debby
Hindus and myself. The original ChatViewer managed both the database
and the widgets by itself.

Data stored for an item includes: type, sequence number, "marked"
status, x and y coordinates, start time, stop time, duration and speaker
(if sound), contents (if text) or sound file name. This data is
reflected in the Item type:

typedef struct Item
int type;
char *contents;
long sound-start;
long soundjlen;
long sound-stop;
char *speaker;
Boolean marked;
int x,y;

} Item;

FILE FORMATS

Item databases are stored either as db files or chat files. Db files
are a format supported by the Speech Group's ndb library which maintains
databases of key-value pairs. This is the internal representation the
ChatMan uses to keep track of item information. An example db file with
one text and one audio item looks like this:

Start of db
{Record
{{Contents} {This is a text item.\00}
{XCoord} {10\00}
{YCoord} {0\00}
{SeqNum} {1\00}
{Type} (TextItem\00}
}

Record
{{Contents} {/sound/horner/things/thing.001\00}
{XCoord} {10\00}
{YCoord} {23\00}
{SoundStart} {0\00}
{SeqNum} {2\00}
{Type} {SoundItem\00}
{SoundLen} {3200\00}
{SoundStop} {3200\00}
}

A chat file on the other hand was a format developed for the original
ChatViewer. It is a more human-readable text format, with one line per
item. The above db file has this equivalent chat file:

This is a text item.
<sound file: /sound/horner/things/thing.001>

Note that the sequence numbers are implicit, and the coordinate
information is not saved in a chat file. Also the sound start and stop
are not explicitly required unless the sound item is only a segment
of a larger file. In this case the sound item looks like this:

<sound file: /sound/horner/things/thing.001::1000:2000>

The two numbers are the start and stop times in milliseconds of the
desired segment. When not given, the entire file is shown by default.

RESOURCES

The ChatMan widget has the following resources, in addition to those of
Core, Composite (Athena), and Bboard widgets. It is a subclass of the
Bboard widget. See the Bboard widget documentation for additional
details on Bboard resources.

chatDir
resource name
resource class
resource type
default

XtNchatDir
XtCChatDir
String
NULL

This is the name of the sub-directory in the user's /sound
directory in which ChatMan expects to find its sound files.

chatName
resource name
resource class
resource type
default

XtNchatName
XtCChatName
String
NULL

This is the default name of the chat file the ChatMan loads
and saves its items to.

fileDescriptor
resource name
resource class
resource type
default

XtNfileDescriptor
XtCFileDescriptor
Int
-1

This is the Unix fd for all sound files. It is passed to the
sound system.

If this is less than zero, the widget is set to insensitive
at Initialize or SetValues time.

editable
resource name
resource class
resource type
default

XtNeditable
XtCEditable
Boolean
True

This controls whether or not items are editable (True) or
"markable" (False). In "marked" mode, a subclass can select
an individual item without triggering that item's default
actions.

modified
resource name
resource class
resource type
default

XtNmodified
XtCModified
Boolean
False

If any modifications are made to the item database, this
resource becomes True.

isChatFile
resource name
resource class
resource type
default

XtNisChatFile
XtCIsChatFile
Boolean
False

This reflects what type of data file the chat items are
loaded and saved into. A True value means that this is
a chat file, while False implies a db file.

CALLBACKS

notifyMarkCallback
resource name
resource class
resource type
default

XtNnotifyMarkCallback
XtCCallback
XtCallbackList
NULL

This callback list is triggered by a subclass to indicate
an item has been selected by a user ("marked").

call-data is used for the number of the chosen item.

TRANSLATIONS

The ChatMan itself does not have translations, since it does not
manage any Xt widgets that represent its item database.

ACTIONS

There are no actions installed for the ChatMan. Again, this is
the job of its subclasses.

CONVENIENCE ROUTINES

extern int
XawCMIsChatFile (w)

Widget w;

Returns the value of the isChatFile resource.

extern void
XawCMDefaultSoundPath(w, defaultsound-path)

Widget w;
char *default_soundpath;

Returns in the buffer pointed to by defaultsoundpath
the full pathname of the sub-directory in the user's
/sound directory, in which ChatMan expects to find its
sound files. This is specified by the chatDir resource.

extern void
XawCMMarkItemInDB (w, itemid)

Widget w;
int itemjid;

Sets the "marked" status of the given item to True.

extern void
XawCMUnmarkItemInDB (w, item id)

Widget w;
int item id;

Sets the "marked" status of the given item to False.

extern int
XawCMNumItems(w)

Widget w;

Returns the number of items in the database.

extern void
XawCMGetCurrentItem (w, id)

Widget w;
ITEMID id;

Returns the number of the current (last modified) item.

extern void
XawCMGetPreviousItem (w, id)

Widget w;
ITEMID id;

Returns the number of the item preceding the current
item.

extern void
XawCMGetNextItem (w, id)

Widget w;
int id;

Returns the number of the item after the current item.

extern void
XawCMAddItem (w, id, info)

Widget w;
int id;
Item *info;

Creates a new item at position id with the given info.

extern void
XawCMDeleteltem (w, id)

Widget w;
int id;

Deletes the item at position id.

extern void
XawCMMoveItem (w, from, to)

Widget w;
int from,to;

Moves the item at position "from" to position "to",
moving all other item positions as necessary to
preserve the sequence.

extern void
XawCMGetItemInfo (w, id, info)

Widget w;
int id;
Item *info;

Places into the buffer pointed to by info the item
information at position id.

extern void
XawCMSetItemInfo (w, id, info)

Widget w;
int id;
Item *info;

Sets the information for the item at position id to that
pointed to by info.

extern void
XawCMSetItemCoords (w, id, x, y)

Widget w;
int id;
int x, y;

Sets the x and y coordinates for the item at position id
as specified.

extern int
XawCMReadFile (w, filename)

Widget w;
char *filename;

Reads the chat or db file with the given filename,
appending the items to the existing database.

extern void
XawCMWriteDB (w, fp)

Widget w;
FILE *fp;

Writes out the item database to the stream pointed
to by fp as a db file.

extern void
XawCMWriteChat (w, fp)

Widget w;
FILE *fp;

Writes out the item database to the stream pointed
to by fp as a chat file.

B.3 OmniViewer Widget

/ **

OmniViewer widget

Author: Chris Horner
MIT Media Lab

Updated: 4/26/93

SUMMARY

The OmniViewer widget (so named because of its flexibility across a
number of applications) is for displaying text and sound widgets whose
database is managed by its superclass, ChatMan. The ChatMan manages the
general information about each item while the OmniViewer manages the on-
screen realization of those items. The text widgets used are Athena
Text widgets while the sound widgets are the custom MegaSnd widget.

FILE FORMATS

The OmniViewer's parent class handles all file interaction, which is
either a db or a chat file. See the ChatMan documentation for details.

RESOURCES

The OmniViewer widget has the following resources, in addition to those
of Core, Composite (Athena), Bboard and ChatMan widgets. It is a
subclass of the ChatMan widget. See the ChatMan widget documentation
for additional details on ChatMan resources.

playable
resource name
resource class
resource type
default

XtNplayable
XtCPlayable
Boolean
True

This is equivalent too the editable resource of the
ChatMan. A sound widget which is playable keeps its
default translations while a non-playable widget is
markable. In non-playable mode, a user can click on
an individual soundViewer, which calls the notifyMarkCallback
list from the ChatMan.

whenToScale
resource name
resource class
resource type
default

XtNwhenToScale
XtCWhenToScale
Int
10000

This determines how much time (in ms) a soundViewer can display
before it begins to compress its time scale. The OmniViewer's

soundViewers use mode XawIndModeBest, which means that sounds
of less than this duration are truncated while anything
longer is scaled. See SoundViewer.doc for more information.

vertDist
resource name
resource class
resource type
default

XtNvertDist
XtCVertDist
Int
10

This determines the default vertical spacing of new items
in the OmniViewer.

indentDist
resource name
resource class
resource type
default

XtNindentDist
XtCIndentDist
Int
10

This determines the default spacing of new items from the
left margin of the OmniViewer.

playAllMode
resource name
resource class
resource type
default

XtNplayAllMode
XtCPlayAllMode
Boolean
False

If playAllMode is True, then whenever a soundViewer plays
through to the end, the next soundViewer is automatically
started playing.

CALLBACKS

There are no callbacks in the OmniViewer, although the
notifyMarkCallback is called when the OmniViewer's playable
resource is set to False, and the user clicks on an item. See the
ChatMan documentation for a description of the notifyMarkCallback.

TRANSLATIONS

There are no default translations on the OmniViewer.

ACTIONS

The actions for the OmniViewer widget are:

OVLayout

This should be called from a child text or sound widget.
It calls the convenience routine XawOVLayoutItems()
described below.

OVCleanUp

This should be called from a child text or sound widget.
It calls the convenience routine XawOVCleanUp() described
below.

OVShrinkWrap

This should be called from a child text or sound widget.
It calls the convenience routine XawOVShrinkWrap()
described below.

CONVENIENCE ROUTINES

extern void
XawOVVisualMarkItem (w, id)

Widget w;
int id;

Visually grays out the border pixmap of the item
with number id.

extern void
XawOVVisualUnmarkItem (w, id)

Widget w;
int id;

Visually restores the border pixmap of the item
with number id to normal.

extern int
XawOVNumItems (w)

Widget w;

Returns XawCMNumItems(, the number of items managed.
See ChatMan documentation.

extern Widget
XawOVItemToWidget (w, id)

Widget w;
int id;

Returns the widget id of the item with number id.

extern int
XawOVWidgetToItem (w, target)

Widget w;
Widget target;

Returns the item number of the target if it is a
child of the OmniViewer.

extern void
XawOVAddItemAtEnd (w, info)

Widget w;
Item *info;

Adds an item described by info to the end of the
OmniViewer's list.extern void

extern void
XawOVAddItem (w, id, info)

Widget w;
int id;
Item *info;

Adds an item described by info at position id in
the OmniViewer's list. Adjusts other item numbers
if necessary.

extern void
XawOVDeleteItem (w, id)

Widget w;
int id;

Deletes the item at position id from the OmniViewer.
Adjusts other items' numbers if necessary.

extern void
XawOVDeleteAll (w)

Widget w;

Deletes all items from the OmniViewer.

extern void
XawOVMoveItem (w, from, to)

Widget w;
int from, to;

Moves the item at position "from" to position "to".
Adjusts other items' sequence numbers as necessary.

extern void
XawOVCleanUp (w)

Widget w;

This arranges all items, 1 per line, all in a row
against the left margin, with spacing determined
by the vertDist and indentDist resources.

extern void
XawOVLayoutItems(w)

Widget w;

This arranges all items, 1 per line, all in a row
preserving their X-coordinates. Spacing is determined
by the vertDist resource.

extern void
XawOVShrinkWrap(w)

Widget w;

Sizes the OmniViewer to just fit all its children.

extern void
XawOVUpdateTextItems(w)

Widget w;

Updates the internal database to reflect any changes
the user has typed into the text widgets.

extern void
XawOVUpdateItemCoords(w)

Widget w;

Updates the internal database to reflect any changes
the user has made by moving widgets.

extern void
XawOVPlayAllItems (w)

Widget w;

Sets the playAll resource of the OmniViewer to True,
and starts playing the first sound.

extern void
XawOVStopPlayAll (w)

Widget w;

Sets the playAll resource of the OmniViewer to False,
taking the OmniViewer out of "play all" mode. This
does not stop the current sound playing if any.

extern int
XawOVReadFile (w, filename, origin-x, origin-y)

Widget w;
char *filename;
int originx, originy;

Reads in the chat or db file named by filename,
placing all its items with respect to origin-x
and originy as (0,0).

extern void
XawOVWriteDB (w, fp)

Widget w;
FILE *fp;

Calls XawCMWriteDB(), writing out the item database
in db file format to the stream pointed to by fp.
See ChatMan.doc for more details.

extern void
XawOVWriteChat (w, fp)

Widget w;
FILE *fp;

Calls XawCMWriteChat(), writing out the item database
in chat file format to the stream pointed to by fp.
See ChatMan.doc for more details.

B.4 MegaSound Widget

/ **

MegaSnd widget

Author: Chris Horner
MIT Media Lab

Updated: 5/7/93

SUMMARY

The MegaSnd widget ("mega sound") is for viewing large sound files and
supports maginification and viewing of the sound at hierarchical levels
of detail. It also allows users to view and modify text annotations.

RESOURCES

The MegaSnd widget has the following resources, in addition to those of
Core, Composite (Athena), and Bboard widgets. It is a subclass of the
Bboard widget. See the Bboard widget documentation for additional
details on Bboard resources.

soundName
resource name
resource class
resource type
default

XtNsoundName
XtCSoundName
String
NULL

This is the name of the sound file for the sound system.

fileDescriptor
resource name
resource class
resource type
default

This is the Unix
sound system.

XtNfileDescriptor
XtCFileDescriptor
Int
-1

fd for the sound file. It is passed to the

If this is less than zero, the widget is set to insensitive
at Initialize or SetValues time.

segmentDuration
resource name
resource class
resource type
default

XtNsegmentDuration
XtCDuration
long
0

This is the time duration for the data. The segmentDuration
gives the actual length of the sound. This is a long.

segmentStart
resource name
resource class
resource type
default

XtNsegmentStart
XtCStart
long
0

This is the time offset for the start of the actual data which
is not necessarily the beginning of the file.

whenToScale
resource name
resource class
resource type
default

XtNwhenToScale
XtCWhenToScale
long
0

This is the maximum duration in ms the soundViewers will
be in truncated mode, beyond which they are shown in
scaled mode.

borderPix
resource name
resource class
resource type
default

XtNborderPix
XtCBorderPix
Pixmap
NULL

This is the pixmap of the border for the entire composite.

vertDist
resource name
resource class
resource type
default

XtNvertDist
XtCVertDist
int
10

This is the vertical spacing between layers of the hierarchy
as well as between the text entry widget and the top level
soundViewer.

flagNotes
resource name
resource class
resource type
default

XtNflagNotes
XtCFlagNotes
Boolean
True

This controls whether or not sound annotations for the sound
are "flagged" with command widgets, and whether the text entry
widget for these notes is shown.

autoMode
resource name
resource class
resource type
default

XtNautoMode
XtCAutoMode
Boolean
True

When this is true, the MegaSound automatically creates a
two layer hierarchy with the beginning of the file in the
zoom window. Also, when a widget lower in the hierarchy
reaches the end, a new widget is created.

autoWindow
resource name
resource class
resource type
default

XtNautoWindow
XtCAutoWindow
long
60000

This is the duration in ms of the default zoom window for
autoMode.

backgroundPixmap
resource name
resource class
resource type
default

XtNbackgroundPixmap
XtCPixmap
Pixmap
XtUnspecifiedPixmap

This is the background pixmap for the widget.
Lines connecting layers of the hierarchy, and connecting
annotation flags to the top soundViewer are superimposed
on this background.

CALLBACKS

There are no callbacks for this widget.

TRANSLATIONS

The MegaSnd itself does not have translations; however default
translations for the composite's children should be specified in
the application defaults file as follows:

*MegaSnd.SoundViewer.translations: #override \
<Btn2Up>: StopSound() StopIfIndicator() MoveIndicator() \

MoveSound() StartIfSound() StartIfIndicator()
NewMSWindow()\n\

<Key>e: ExpandSel() \n\

*MegaSnd.Text.translations: #override \
<Enter>: no-op() \n\
<Key>Return: EnterNote()

*MegaSnd.Command.translations:
<Enter>: MakeHotNote() \n\
<BtnlUp>: PlayNote()

#override \

ACTIONS

The actions for the MegaSnd widget are:

MakeHotNote(w, xevent)
Widget w;
XEvent *xevent;

This should be called from an annotation flag
(a command widget) on entry. It displays the note's
contents in the MegaSnd's text entry widget, and
lets the user modify the contents.

EnterNote(w, xevent)
Widget w;
XEvent *xevent;

This should be called from the MegaSnd's
text entry widget, to set the contents of the
current note to whatever's in the text widget.

PlayNote(widget, event, params, numparams)
Widget widget;
XEvent *event;
String *params;
Cardinal *num-params;

This should be called from an annotation flag
on the Return key. It jumps to the sound location
marked by the flag, and plays the sound from that
location.

ExpandSel(w, xevent)
Widget w;
XEvent *xevent;

This should be called from a soundViewer in the
MegaSnd. It calls XawMSExpandSel() (see below).

NewMSWindow(w, xevent)
Widget w;
XEvent *xevent;

This should be called from the top level soundViewer
widget to create a zoom window starting at the current
top level position and extending for autoWindow ms,
as specified by the resource.

CONVENIENCE ROUTINES

extern Widget
XawMSLastUsed (w)

Widget w;

Returns the widget id of the last soundViewer widget
the user played.

extern void
XawMSStopSounds(w)

Widget w;

Calls XawStopSV() and XawStopIndicator() on the last
soundViewer widget the user played, if any.

extern Widget
XawMSLevelToWidget (w, level)

Widget w;
int level;

Returns the widget id of the soundViewer at the
specified zoom level (0 == top level).

extern int
XawMSHotNoteIndex(w)

Widget w;

Returns the number of the currently viewed visible text
annotation.

extern void
XawMSHotNoteInfo(w, soundStart, soundStop, soundLen)

Widget w;
long *soundStart, *soundStop, *soundLen;

Modifies the parameters to reflect the characteristics
of the currently viewed text annotation.

extern void
XawMSMakeHotNote(w, index)

Widget w;
int index;

Makes the visible text annotation with the given index
the "hot note", i.e. the one that will be accessed if
XawMSHotNoteInfo(), XawMSHotNoteIndex() or
XawMSDisplayHotNote() (see below) is called.

extern void
XawMSDisplayHotNote(w)
Widget w;

Displays in MegaSnd's text entry widget the contents
of the "hot note".

extern void
XawMSExpandLevel(w, start, stop)

Widget w;
long start;
long stop;

Sets the MegaSnd bottom level zoom region to the
specified boundaries (in ms).

extern void
XawMSExpandSel(w)

Widget w;

If any soundViewer in MegaSnd owns the selection,
it sets the zoom region to this selection, otherwise
calls NewMSWindow() (see above).

extern void
XawMSCollapseLevel(w)

Widget w;

Removes all zooming from the MegaSnd, leaving the
single top level soundViewer.

extern void
XawMSShowNote(w, noteNum)

Widget w;
int noteNum;

Shows in MegaSnd's text entry widget the contents
of the visible note with the given noteNum.

extern void
XawMSShowSpeaker(w, noteNum)

Widget w;
int noteNum;

Shows in MegaSnd's text entry widget the contents
of the visible note with a new speaker index of
noteNum.

extern void
XawMSShowStory(w, noteNum)

Widget w;
int noteNum;

Shows in MegaSnd's text entry widget the contents
of the visible note with a new story index of
noteNum.

extern long
XawMSStoryToSpeaker(w, index)

Widget w;
long index;

Returns the speaker index of the story with the
given index.

extern long
XawMSTimeToSpeaker(w, soundStart)

Widget w;
long soundStart;

Returns the speaker index of the note with the
given start time (in ms).

extern long
XawMSSpeakerToVisNote(w, speakerNum)

Widget w;
long speakerNum;

Returns the index of the visible note with the
given speaker index of speakerNum.

extern void
XawMSSearchCapForKeyword(w, keyword)

Widget w;
char *keyword;

Hides any existing visible notes, and makes visible
only those containing the keyword.

extern void
XawMSShowAllNotes (w)

Widget w;

Makes all notes visible.

extern void
XawMSShowStoryNotes (w)

Widget w;

Hides any existing visible notes, and makes visible
only those which are new story headlines.

Keywords
Appendix

for News
C

Categorization

These keywords were used by the karma program, and were derived

empirically from a week of news to demonstrate the concept of story

categorization. They are not meant to be a complete set of such keywords.

International
News Keywords

AIR STRIKES
AMMUNITION
ARTILLERY
BOMB
COMBAT
EMBASSY
ESPIONAGE
INFANTRY
MILITARY
MISSILE
SOLDIER
SPY
TROOP
WAR
BOSNIA
BRITAIN
BRITISH
CANADA
CANADIAN
CHINA
CHINESE
CROAT
EGYPT
FRANCE
FRENCH
GERMAN
HONG KONG
IRELAND
IRISH
ISRAEL
JAPAN
LONDON

PARIS
RUSSIA
SERB
SOMALIA
UNITED NATIONS
PRIME MINISTER
YELTSIN
JOHN MAJOR
CATHOLIC
CHRISTIAN
HINDU
HINDI
ISLAM
JEW
MOSLEM
MUSLIM
PROTESTANT

National News
Keywords

ATLANTA
BOSTON
CHICAGO
DALLAS
DETROIT
HOUSTON
NEW YORK
LOS ANGELES
L.A.
SEATTLE
WASHINGTON
AMERICA
CALIFORNIA
COLORADO

FLORIDA
MASSACHUSETTS
TEXAS
UNITED STATES
U.S.
CAPITOL HILL
CONGRESS
DEMOCRAT
FEDERAL
LAW
PENTAGON
REPUBLICAN
SUPREME COURT
WHITE HOUSE
AIR FORCE
ARMY
MARINES
NAVY
ATTORNEY
GENERAL
CHIEF OF STAFF
CONGRESSMAN
PRESIDENT
SENATOR
CLINTON
STEPHANOPOULOS

Economic/
Business News
Keywords

BOND
BUSINESS
COMPANY
DOW JONES
ECONOM
EMPLOY
FACTORY
FACTORIES
GROSS DOMESTIC

PRODUCT
G.D.P
GROSS NATIONAL

PRODUCT
G.N.P
INCOME
INDUSTRY
INTEREST RATE
JOB
MANAGEMENT
MANAGER
MANUFACTUR
MARKET
MONEY
RECESSION
STOCK
TAX
TARIFF
WALL ST
YEN

Entertainment
News Keywords

ACADEMY AWARD
ACTOR
ACTRESS
ACTING
ALBUM
CINEMA
COMEDIAN

CRITIC
ENTERTAIN
FILM
GRAMMY
HOLLYWOOD
MUSIC
MOVIE
POET
REVIEW
SINGER
TELEVISION
WRITER .

Medical News
Keywords

AIDS
CANCER
CURE
DISEASE
DOCTOR
DRUG
HEALTH
HOSPITAL
INTENSIVE CARE
MEDIC
NURSE
NURSING
OPERATING ROOM
PHYSICIAN
SURGEON
SURGERY

SPORTS
TEAM
TENNIS

Weather News
Keywords

BLIZZARD
BREEZE
CELSIUS
CLOUD
DEGREES
FAHRENHEIT
FORECAST
HIGH PRESSURE
LOW PRESSURE
LIGHTNING
RAIN
SHOWERS
SLEET
SNOW
STORM
SUN
THUNDER
WEATHER
WIND

Sports News
Keywords

ATHLET
COACH
BASKETBALL
BASEBALL
FOOTBALL
GOLF
HOCKEY
RACING
SKIING

Appendix D
Description of NewsTime Auxiliary Programs

This section describes all of the supplementary programs that assist

NewsTime, in order of their appearance in the thesis.

Source Usage

paws.c paws sound-filename silence-level silence-length

Given a sound file and the segmentation parameters for
maximum silence level, and minimum silence length, performs
speech and silence detection on the sound file, and adds the
segmentation database to the sound's auxfile.

rec30min.c rec30min sound-filename

Records audio on a NeXT computer from the microphone for
half an hour. Output is an 8012 Hz, 8 bit mu-law NeXT audio
file with the given name. Original code from NeXT demos.

getcaption.c getcaption seconds

Reads raw closed-caption data from a tty port on a NeXT
computer, connected to a video line 21 decoder. Runs for the
requested number of seconds, dumping the output onto stdout.
Timestamps since the beginning of the recording are placed at
new speaker and story boundaries, in the format <sec msec<.
The raw data contains control characters and formatting strings,
and is all uppercase letters, making it almost illegible:

A@A@A@AT&AT&ATAT-TrTr>><8 321<<8 353< GOOD
EVENING.A@A@A@AT&AT&A@A@A@A@A@AT&AT&AT-AT-
ATrATrWE BEGIN IN WASHINGTONA@A@A@...

To make it more readable it is passed through a Unix pipeline of
utilities, remnull, grok, remhdr, capper, firstwordCAP &
specialCAP. These utilities strip away all non-alphabetic
characters, capitalize only relevant words, and produce
paragraphs for each new speaker or story. These paragraphs
retain the timestamps from getcaption, e.g.

>> <8 321<<8 353< Good evening. We begin in Washington...

Original getcaption and filters written by Alan Blount.

100

cap2db.c cap2db

A lex based parser which reads from stdin a filtered, cleaned up
closed-caption transcript, and writes to stdout an annotation
database compatible with the SoundViewer's auxfile format, as
well as the ChatMan's database format.

syncs.c syncs sound-filename

Given a sound file whose auxfile contains an annotation
database with raw closed-caption time-stamps, first performs
speech and silence segmentation on the sound file if necessary,
then synchronizes the original time-stamps to reflect the actual
story and speaker boundaries following pauses.

karma.c karma sound-filename

Reads in the auxfile for the given sound file, which should
contain in the annotation database, the synchronized transcript
from cap2db and syncs. Generates a content database,
categorizing each story according to its most salient keywords,
and adds it to the original auxfile.

music.c music [-1 music-level] [-d music-duration] sound-filename

Reads the given NeXT audio file and runs Hawley's music
detection algorithm on it. Output is directed to stdout; each line
contains three numbers pertaining to a single segment:

segment-duration segment-start music-or-not

segment-duration is the length (in ms.) of the segment.
segment-start is the offset in the file (in ms.) of the segment.
music-or-not contains a 1 if entire segment is above the music
threshold, i.e. is music, or 0 if entire segment is below the
threshold.

The segments do not have to be continuous and will not
generally comprise the entire sound-file. This is because
segments less than the minimum duration are ignored.

The -1 paramter sets the minimum sustained striation level for
music (default is 5.6). The -d parameter sets the minimum
duration window for music (default is 3 seconds). Original code
written by Mike Hawley.

101

music2db.c music2db

Reads from stdin the output of the music program, and writes to
stdout a content database compatible with the SoundViewer's
auxfile format.

102

Bibliography

[Aro9l] B. Arons. Techniques, Perception, and Applications of Time-
Compressed Speech. In Proceedings of 1992 Conference, pages 169-
177. American Voice I/O Society, 1992.

[Aro92a] B. Arons. Techniques of Adaptive Speech Detection. Technical
report, MIT Media Lab, April 1992.

[Aro92b] B. Arons. Tools for Building Asynchronous Servers to Support
Speech and Audio Applications. In Proceedings of the ACM
Symposium on User Interface Software and Technology, pages 71-
78, 1992.

[Aro93] B. Arons. Interactively Skimming Recorded Speech. Submitted
for publication, 1993.

[AS86] S. Ades and D. Swinehart. Voice Annotation and Editing in a
Workstation Environment. In Proceedings of 1986 Conference of
American Voice I/O Society, pages 13-28, Sept 1986.

[Dav93] M. Davis. Media Streams: An Iconic Visual language for Video
Annotation. Research paper. MIT Media Lab, 1993.

[DMS92] L. Degen, R. Mander and G. Salomon. Working with Audio:
Integrating Personal Tape Recorders and Desktop Computers. In
Proceedings of CHI '92. pp. 413-418, 1992.

[Don86] J. Donath. The Electronic Newstand: Design of an Intelligent
Interface to a Variety of news Sources in Several Media. Master's
thesis. MIT Media Lab, 1986.

[E1193] E. Elliott. Watch, Grab, Arrange, See: Thinking with Motion
Images via Streams and Collages. Master's thesis. MIT Media Lab,
1993.

[Fel] L. Feldman. Radio with Pictures. Video Review 12:16, March
1992.

[Has93] K. Hasse. Multi-Scale Parsing Using Optimizing Finite State
Machines. To appear in ACL-93, 1993.

[Haw93] M. Hawley. Structure out of Sound. Doctoral thesis in
preparation. MIT Media Lab, 1993.

103

[Hin92] D. Hindus. Semi-Structured Capture and Display of Telephone
Conversations. Master's thesis. MIT Media Lab, 1992.

[HS921 D. Hindus and C. Schmandt. Ubiquitous Audio: Capturing
Spontaneous Collaboration. In Proceedings of CSCW '92,
November 1992.

[MCW92] M. Mills, J. Cohen and Y. Y. Wong. A Magnifier Tool for Video
Data. In Human Factors in Computing Systems, CHI 92
Proceedings, pages 93-98, 1992.

[Mye85] B. Myers. The Importance of Percent-Done Progress Indicators for
Computer-Human Interfaces. In Human Factors in Computing
Systems, CHI 85 Proceedings, pages 11-17, ACM 1985.

[Pet89] C. Peterson. Athena Widget Set - C Language Interface, X Window
System, X Version 11, Release 4. MIT X Consortium, 1989.

[Pin9l] N. Pincever. If you could see what I hear: Editing assistance
through cinematic parsing. Master's Thesis. MIT Media Lab, 1991.

[RV92] P. Resnick and R. Virzi. Skip and Scan: Cleaning up Telephone
Interfaces. In Human Factors in Computing Systems, CHI 92
Proceedings, pages 419-426, 1992.

[Sch8l] C. Schmandt. The Intelligent Ear: A graphical interface to digital
audio. In Proceedings IEEE Conference of Cybernetics and Society.
pages 393-397, October 1981.

[Smi89] T. A. Smith. If You Could See What I Mean... Descriptions of
Video in an Anthropologist's Video Notebook. Master's Thesis.
MIT Media Lab, 1989.

[Sti91] L. Stifelman. Not just another voice mail system. In Proceedings
of 1991 Conference, pages 21-26. American Voice I/O Society, 1991.

104

