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Abstract

This thesis is concerned with the study of blast effects on vehicular structures. The specific
problem of a point source blast originating under the vehicle hull is considered, and its
impact on the solid body is measured in terms of the total impulse acting on the vehicle.
Simplified two-dimensional and three-dimensional computational models are developed to
simulate this problem, and the effect of vehicle hull shape on the net impulse loading on
the vehicle is analyzed over varying initial blast intensities. Blast mitigation strategies are
proposed to minimize blast impact by identifying optimal shapes for the vehicle hull for
which net impulse acting on the vehicle is minimized.
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Chapter 1

Introduction

This thesis is concerned with the development and analysis of models relating to blast ef-

fects on vehicles. This chapter describes the relevance of this research to society, summa-

rizes some of the previous work in our area of focus, and outlines the scientific contributions

of the thesis.

1.1 MRAPs

As much as 63% of US deaths in the recent wars in Iraq and Afghanistan are known to have

been caused by Improvised explosive devices(IEDs) [5]. There has been an urgent need to

develop armored military vehicles which are capable of providing protection against such

IED attacks and other ambushes in combat zones. This has led to formation of the Mine

resistant ambush protected(MRAP) vehicles program, and acquisition of these MRAPs

has been amongst the Department of Defense's highest priorities in recent times [6].

Shown in Fig:1-2 is an US Marine Corps RG-31 Cougar that rests on its front axle

after an improvised explosive device detonated under the vehicle near Camp Taqaddum,

Iraq. The IED detonated directly under the vehicle, and its impact, as can be seen from the

figure, rendered the vehicle immobile.



Figure 1-1: Example of a vehicle Figure 1-2: BAE's RG-31 damaged by an
with a clearly visible V-shaped hull IED attack obtained from [7]

1.1.1 Design

When a flat-bottomed vehicle, such as a Humvee, hits a mine, a large amount of gas is

released which gets trapped underneath the vehicle. As the super heated air from the ex-

plosion rapidly expands, it can lift and even throw the 6-ton, up-armored Humvee dozens

of feet. Even if the armored crew compartment remains intact, the soldiers inside can be

killed by the instant acceleration, which compresses spines and snaps necks.

MRAPs are usually designed with a V-shaped hull to deflect away explosive forces

arising from below such that impact on the vehicle itself is minimized, thereby protecting

the passenger compartment and the vehicle body. Although these explosive forces usually

arise from mine blasts, they could come from IEDs as well. The V-shaped hull design

dates back to the 1970s when it was first implemented by a South African Company, Land

Systems OMC, in the Casspir armored personnel carrier. Since then several derivatives of

this model have been implemented by various military forces around the world. V-hulls

are incorporated in armored vehicle designs in several different ways. Following is a brief

description of some of the most popular MRAPs and the kind of V-shaped hull design that

they possess.



International Maxxpro

International Maxxpro, manufactured by Navistar International accounts for 45% of MRAPs

ordered in the year 2007. It uses a body-on-frame chassis, with an armored V-hull crew

compartment, and an additional V or semicircular shaped piece protecting the driveline.

In such constructions, the body is separate from a rigid frame that supports the drive train

of the vehicle. This construction method offers the flexibility to change the design of the

vehicle such as the hull without affecting the chassis of the vehicle.

Figure 1-3: Navistar's Maxxpro obtained from [1]

Cougar H

Cougar H, another MRAP which has been in high demand from the US Marines, is manu-

factured by Force Protection Industries. It has a V-hull crew compartment, and allows the

drive line and suspension components to be sacrificed in an attack, while maintaining the

safety of the crew. The Cougars have been hit more than 300 times by IEDs and there have

been no fatalities so far as of August, 2007 [8].

The deployment of MRAP vehicles has not been without criticisms. Some of the com-
mon causes for concerns have been high cost, fuel consumption and varied designs. Also
their effectiveness against explosively formed penetrators(EFPs) is still unclear. This al-
leged threat is being addressed by the next generation MRAP II. One of the models pro-



Figure 1-4: Force protection's Figure 1-5: Ceradyune Bull from the MRAP
Cougar-H from [2] II program from [3]

duced under this program is the Ceradyne bull shown in Figure 1-5 which claims to be able

to defeat EFP type IEDs [3]. Again this model uses a V-shaped hull.

1.2 Objective

From all the above observations, it's clear that there is an increasing need for better de-

signed vehicles, capable of handling more powerful IEDs, EFPs and other kinds of ex-

plosives. In all these instances the hull shape plays an important role in blast mitigation,

offering protection by minimizing the damage impact to both the crew and the vehicle. We

will focus our attention in this study on the hull shape design more than concerning our-

selves with the material itself, and try to develop a better understanding of how the hull

shape affects the impact of a blast on the vehicle.

In particular we will develop simple models to simulate blast wave flow around rigid

solid objects representative of the vehicle body. As an impact criterion, we choose to

calculate the net impulse acting on the solid owing to the blast, and show how the hull

shape can be designed so as to minimize blast impact.



1.3 Past work and literature survey

Quite a few studies have been done in the past to analyze the response of vehicle floor plates

subjected to blast loading. In [9], the work explored the effect of geometry on floor plates

subjected to buried blast loading. In this study, experiments were conducted for varied

depths of burial in soil, Stand-off distance(SOD) and plate geometries and their effects

on impulse transferred to the target were studied. Results from this research study show

that changing the target geometry caused up to a 45% reduction in impulse and this was

shown to correlate well with previous experimental results from Gupta [10]. One limitation

in these studies was that they were conducted for explosions of very mild intensity and

restricted to dihedral shapes . It remains to be seen how the floor plates would respond

under strong explosions and other kind of floor plate shapes.

Tremblay [11] derived equations to estimate the total impulse on a blast deflector at

an arbitrary orientation from a buried mine blast explosion.This study is based on the em-

pirical equations developed by Westin [12] for specific impulse transmitted to floor plates.

Results from this study show a variation in total impulse with change of dihedral angle

in V-shaped blast deflectors. Fairlie [13] did a 2D and 3D numerical study of mine blast

loading on a circular plate using AUTODYN and also compared results with experimen-

tal measurements by calculating momentum transferred to an horizontal pendulum from a

mine blast event. Fiserova [14] also did a numerical analysis of mine-blast loading using

AUTODYN, focusing more on the effect of soil properties on the impact loading.

From these studies, we can see that there has been a strong interest in buried blast

modeling and its impact on a vehicle. However, the focus of most of the studies has been

on modeling and analysis of the explosive detonation products that consist of both soil and

the blast waves. The effect of blast deflector shape has not been given due importance

in these analyses. Even in cases where effects of vehicle floor plate shapes have been

considered, the blast intensities and range of shapes considered are extremely limited.

Our contribution will essentially be towards the numerical analysis of vehicle loading

under purely blast loading conditons, considering a wider span of generic shapes for the

vehicle hull. Analysis of soil effects on the loading of the structure is outside the scope of



this work.

1.4 Structure

In the following chapter we will describe some of the commonly used blast models, and

also the model used in our study. Following this, Chapter 3 will provide details on the

computational models that are relevant to our study. It will also further elucidate on the

fluid and solid solvers used, and describe how the fluid-structure interaction effects have

been implemented in our code. Chapter 4 will provide details on the various analyses

conducted to explore the effect of shapes, and follow it up with a discussion of the results.

Chapter 5 gives the conclusions from this study and suggests the future direction of work

from where our understanding stands currently.



Chapter 2

Blast theory and modeling

2.1 Generalities of explosions

During the ignition of an explosive, hot gases at very high pressures are generated. The

sudden release of high energy leads to the formation of shock waves. Modeling of the

shock waves arising by this sudden energy release from a concentrated source can be done

in several ways. Two commonly used initial conditions considered by Brode [15] in the

study of spherical blast waves are described below:

2.1.1 Isothermal model

One of the typical methods used is to model the initial conditions of the explosion as an

isothermal sphere with pressure pi and density pi. The sphere is assumed to be uniformly

distributed with a certain explosive, for example TNT. The expanding gas from the explo-

sion can be assumed to have a specific heat -y=1.4 at all stages of the process [16].

Given the energy released during the blast Ej, initial temperature Ti, and the initial

radius of the sphere ri, we can determine the initial pressure and density in the sphere as

per Equation 2.1:



3(y - 1)E+
Pi = 4rr3  + Pa

PiPi = (2.1)RTi

where R = 287 Pa , 3the gas constant, and Pa is the atmospheric pressure. For example,

let us consider the case of explosion of 1 kg of TNT modeled by a 0.1m-radius sphere of

hot gas with an initial temperature (Ti = 5T, = 1465K). Then one has:

Ei = 4520 103J

Pi = 4295 105Pa

pi = 1021.5kg/m 3  (2.2)

Extensive numerical simulations have been carried out to establish the time evolution

of these blast waves, and empirical formulae giving the variation of blast overpressurewith

distance r have been derived in [15] as given by Equation:2.3.

Aps= Pa [p r 11 if Ap, > 10P

2. C 2 1

with C1 = 0.1567 , C2 = 0.137 , C3 = 0.119m'a and C4 = 0.269 -4-.JT JJ
By knowing the value of the blast overpressure Ap, at the shock wave front, and using

the Rankine-Hugoniot jump relationships, we can determine the density of the fluid just

behind the shock wave front from Equation 2.4.

Let p, and p, refer to density and the pressure just behind the wave front. Then

PS Pa + 1+p, + [Y - l1Pa
[Y - 1]p, + [1 + 1]pa
7pa + 6Ap,- 7Pa if = 1.4 (2.4)
70Pa + tAPs

In the above set of equations, Ap, represents the incident overpressure, Pa the atmo-



spheric pressure and p, the atmospheric density. Using results from any standard textbook

such as [17], the fluid behind the shock can be derived as

5Ap8  1
Us -c CaA + 7  (2.5)V77-a V 6Aps + 7pa

where Ca is the ambient sound velocity given as ca - .•'a. When a shock wave is reflected
Pa

from a target with a zero degree angle of incidence, the reflected overpressure Apr is given

according to Equation 2.6 as

Apr = 2Ap+ [7-y+1]q 8

7+1= 2Aps + psu (2.6)
2

where q, is the dynamic pressure. It follows from Equation 2.4 and Equation 2.5 that

7pa + 4ApsApr -_ 2Ap a + 4 [2 Aps, 8Ap,] (2.7)
7Pa + Ap8

Given in Table 2.1 are the values of specific energy and mass in equivalent TNT for

some commonly used explosives obtained from [18]:

Table 2.1: Specific energy of explosives and their mass in equivalent TNT
Explosive Specific Energy Mass in eq. TNT

(ei [kJ/kg]) (w [kg-1])
Nitroglycerine 6700 1.481

TNT 4520 1.0
Semtex 5660 1.250

2.1.2 Point source solution

For very strong explosions, it may be justified to treat the original, central, high pressure

area as a point while modeling the initial conditions of a blast. When a finite energy E0 is

packed within a region whose volume shrinks to zero, the pressure in it will theoretically

have to rise to infinity. Of all known phenomena, nuclear explosions come closest to re-

alizing these conditions. Under such strong shock assumptions, the initial pressure of the



shock wave is very high and the atmospheric pressure Po can be neglected in comparison.

This hypothesis allows the use of "similarity property" of the point source solution which

was proposed by Taylor in [16]. "Similarity" here means that the spatial distributions of the

flow variables will have the same form during a given time interval, the variables differing

only in scale. Taylor postulated that under such circumstances the radius of a spherical

shock wave propagated outwards in time is

2 1 1

R = S(y)tSE5 po (2.8)

where R is the distance travelled by the shock wave front at time t. E is the Energy intensity

of the explosion, po the atmospheric density and S(-y) is a calculated function of y, the ratio

of specific heats of air. The effect of the explosion is to force most of the air within the

shock front into a thin shell just inside that front. Behind the shock front, the air is in an

adiabatic state in which the entropy decreases radially. The similarity assumptions used in

[16] for an expanding blast wave of constant energy are

Pressure P/Po = y = R-3 (2.9)

Density p = po = (2.10)

Radial velocity u = R-201 (2.11)

where fl, 4 and 01 are dependent on r7 -= where r is the radial coordinate or distance

from the point source. Taylor's work was followed by Von Neumann [19] who derived ex-

act solutions for the point source blast wave with the strong shock assumption. The details

of the solution method for this can be found in [20]. Sedov [21] also followed the work

of Taylor, and derived the point source solution taking counter pressure into account. This

work also offers comparisons between different theories of point source solution which in-

clude the self-similar solution from [16], and other non self-similar solutions which were

derived by [22], [15], and [23] respectively.

From these solution methods, it is observed that since the point source blows away all

the material from the origin of the blast, the density around the origin degenerates to zero



while the temperature tends to infinity. Due to this singularity, numerical solutions for

point blast can deviate from the exact soluton in the vicinity of the point source origin, and

appropriate measures must be taken to enforce to the correct solution close to the origin.

2.2 Currently used blast model

In our current study, we use the point source solution which is based on the non self-

similar solution developed by Okhotsimskii [23], and further improved by Bui [24]. The

solver consists of an one-dimensional CFD code which solves Equations 2.12 using a finite-

difference schemes taking counter pressure taken into account. The solution method is

summarized as follows:

2.2.1 Governing equations

Let s and r be the Lagrangian and Eulerian coordinates, respectively. The equations of

motion in Lagrangian form is given as

Or J-1 Po
Os ri-1 p
Ou 1 0p Os
at p Os Or
Or

= 0 (2.12)
at

where U is some function of the entropy p/py , j=1,2,3 corresponding to the planar, cylin-

drical and spherical symmetries.The variables s,t,p, u and r are then non-dimensionalized

as

s t _ p

Elip E/pl/2 - 2j po

p U r
= PP f- a; -- E/p/ (2.13)

23



Where E =aEo and a = I/ao where ao = 0.5385, 0.9840 and 0.8510 corresponding to

planar, cylindrical and spherical symmetries respectively.

Introducing new variables,

and ~p and V) as

2f7
7-1

7-1

(2.14)

(2.15)

and after performing a set of operations, the equations of motion are rewritten in terms

of dependent variables o, 4b, 0 and (

oo

O0

+ ~-p aO
+ A + v• = 0,

80
+ + =+ ,' 0

B-7=O
aj - 1 02

= 0

where

S - 1 0(O 2 -_ 2)
A = (j-1) 8

20 '4Vý~2 0u

-Y-1( + 0 -Y-1 V-1
OCj-1

DOc-i-
ao,

(2.16)

f .- 12-= y ; 0= V2

= O8p,



2.2.2 Solution method

In the first time step, when 7 = 70, the blast is assumed to be very close to the origin and

the strong shock analytical solution of Sedov or Von Neumann is applied in the interval

[0, ao]. This solution is advanced in time and space by integrating the system of equations

2.16 numerically. In order to do that the (T, U) plane is divided into a computational net

as follows. The T-axis is first divided into equal subintervals such that T" = T"- 1 + AT.

and then the interval [0, ao] is divided into ko subintervals, i.e. 9i+l = oi + Ai,i+1, i =

0, ... , ko. The distance the blast wave front can travel in the time AT is given as

Au = ATc", (2.17)

where the superscript n denotes the n th time step, and hence the nth row in the computa-

tional net. Therefore, one computational point is added on the (n + 1)th row so that

kn+1 = k" + 1. (2.18)

Using the symmetry boundary conditions at the point source origin and the Rankine-

Hugoniot conditions at the blast wave front, the non-linear PDEs from Equation 2.16 are

discretized and solved explicitly using the Picard iteration in each time step and advanced

forward in time. At the end of each time step the flow variables can be obtained from the

dependent variables as follows

1n+1 | +-1 n+l)

1 7 i (2.19)

+fl 1 -,(Pn+l -/An+l), (2.20)
n+l (pn+1)1/7

P (p+l) 2  (2.21)

Using this model, we can solve for the blast wave solution of planar, cylindrical and

spherical blasts up to any desired distance. This is particularly useful since solving the

one-dimensional CFD code is extremely fast. The solution obtained from this code is given



as an initial condition to shock flow problems solved on higher dimensional domains which

require more intensive computations.

The constants that need to be specified as input parameters for blast initialization are

E 0, Po, Po and -y. Also specified as part of the inputs are the coordinates of the origin of the

blast, distance up to which the blast solution needs to be solved, and the type of the blast

itself viz. planar, cylindrical or a spherical blast.

2.2.3 Validation

This blast model has been validated by comparing with other experiments and numerical

codes involving air blasts with spherical symmetry. The other numerical models and ex-

perimental studies used for comparison are described in [25] and [4] and results from the

validation study can be found in [26]. A test layout for the measurement of the different

metrics is shown in Figure 2-1.

(a) Reflected pressure and impuse. (b) Incident pressure anl impiusd.

Figure 2-1: Schematic of test layout from [4]

Good agreement was found to exist for important metrics such as the Incident and

reflected, pressures and impulse . Shown in Figure 2-2 and 2-3 are comparisons of the

incident positive scaled impulse and reflected positive scaled pressure between the current

model and previously developed numerical models and experimental results.
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Chapter 3

Computational models

In this chapter we will present the computational models that were used to conduct the

various analyses. Two types of analyses were conducted : two-dimensional and three-

dimensional studies. Details for each of these models will be presented in the following

sections elaborating separately on the representation of the solid and the fluid in each case.

3.1 Two dimensional modeling

As described earlier, we wish to model the flow of a blast wave around a vehicle and

measure its impact on the vehicle body over time. Since we are modeling this in 2D, we

will consider a cross-section along the mid-section of the vehicle and parallel to the frontal

plane. This cross sectional plane also contains the point source of the blast, as shown in the

schematic Figure 3-1.

3.1.1 Fluid modeling

The fluid model consists of: blast initialization, blast propagation and reflection at the

solid boundary. We use the point source solution developed by Bui [24], and model the

explosion under the vehicle as a cylindrical blast. E, p, p and -y are specified as constants

to the blast initialization code, where E is the blast intensity in J/m, p is the density of air, p

is atmospheric pressure, and y the ratio of specific heats of air. Also given as inputs to the
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Figure 3-1: Schematic layout of a 2D problem

code are the origin of the blast and the radial distance from the origin up to which the blast

needs to be initialized.

Once this initialization is done, the hydrodynamic values from this solution are inter-

polated over the fluid grid using cubic spline interpolation. The fluid grid is generated

by AMROC (Adaptive mesh refinement using object oriented C++) [27], a mesh adap-

tion framework designed for the solution of hyperbolic fluid flow problems on distributed

memory machines. In these set of simulations, AMROC uses an external package called

Clawpack (Conservation LAWs software PACKage) [28] to solve the euler equations over

the fluid domain.

The Clawpack code requires that the user specify a Riemann solver for the problem

being solved and a subroutine that implements the boundary conditions. Source terms can

also be handled in which case a subroutine must also be supplied to solve the source terms

over one time step. In our case, this was done by giving the interpolated values of the blast

initialization as described earlier. The equations are solved over logically rectangular grids
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and this is adapted to block structured grids with parallelization implemented in AMROC.

3.1.2 Solid representation

In order to model complex boundaries within cartesian meshes, level set methods have

recently become very popular. The boundary is represented implicitly with a scalar function

0 that stores the signed distance to the boundary surface and allows the direct evaluation of

the boundary outer normal at every mesh point as n = V/I7•V I [29].

The level set method in our simulations uses some of the cells on the Cartesian fluid

mesh to enforce immersed boundary conditions [30] between the solid and fluid before

a numerical update. This step involves interpolation and/or extrapolation operations to

construct appropriate values in those "internal ghost cells" which represent the solid (refer

Figure 3-2). A cell is considered to be a valid fluid cell near the boundary if the distance

in the cell midpoint is positive and is treated as solid otherwise. Conservation errors and

numerical "staircase" artifacts at the boundary are minimized by the use of block-structured

dynamic adaptation of the mesh.

The boundary condition at a rigid wall moving with velocity w is u-n = w -n. Enforcing

this within ghost cells will require mirroring of the values of p, u, p across the embedded

boundary and a velocity modification within the ghost cells as per Equation 3.1.

u' = 2((w - u) -n)n + u (3.1)

The mirrored values in a ghost cell center x are then calculated by spatially interpo-

lated values at the point x = x + 2qn from neighboring interior cells. Figure 3-2 shows

the interpolation locations indicated by the origin of arrows normal to the complex bound-

ary(dotted).

3.2 Three dimensional modeling

Three dimensional modeling is in many ways similar to that of two dimensional modeling.

However there are a few concepts that are different or exclusive to the three-dimensional



Figure 3-2: Interpolation stencils for the construction of values in interior ghost cells (gray)
at an embedded rigid wall obtained from [31]

models which will be discussed in this section.

3.2.1 Fluid modeling

Blast initialization is done using the point source solution developed by Bui [24]. However

in this case, the solution is obtained for a spherical blast wave and interpolated using the

cubic interpolation on a 3D fluid grid. Riemann solvers for 3D euler equations are used in

this case and interfaced with AMROC as described earlier.

3.2.2 Solid representation

The main difference between 2D and 3D modeling is the way the solid has been mod-

eled. Unlike the 2D case, in 3D the solid is considered as a deforming object. Hence the

full interaction between the solid and the fluid is accounted for explicitly by the numeri-

cal method. In the simulation studies, the solid meshes are created using a finite element

modeling software ABAQUS [32] using tetrahedral elements. A separate computational

solid dynamics(CSD) solver ADLIB [33] is used to study the response of the solid to the

hydrodynamic loading produced by a blast. It uses an advanced parallel finite-element sim-

ulation capability based on a Lagrangian large-deformation formulation of the equations of
motion [34].
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3.2.3 Fluid structure interaction

Fluid structure interaction(FSI) is an important concept utilized by these 3D simulations.

This is implemented in the Virtual test facility(VTF) [33] which is a software environment

for coupling solvers for compressible CFD(in AMROC) with solvers for CSD(in ADLIB).

The CFD solvers facilitate the computation of flows with strong shocks as well as fluid

mixing. The CSD solvers provide capabilities for simulation of dynamic response in solids

such as large plastic deformations, fracture and fragmentation. In addition, the VTF can

be used to simulate highly coupled fluid-structure interaction problems such as high rate

deformation of metallic solid targets forced by the detonation of energetic materials, which

is similar to scenarios we consider in our simulations.

This technique assumes that the fluid and solid domains are disjoint and that the in-

teraction takes place only at the fluid-solid interface. The information exchange between

the fluid and solid solvers is reduced to communicating the velocities and geometries of

the solid surface to the Eulerian fluid mesh and imposing the hydrostatic pressure onto the

Lagrangian solid as a force on its exterior.

A key issue that arises with this approach is how to represent the evolving surface

geometry on the Eulerian fluid mesh. As described earlier for the 2D solid representation,

the VTF uses a "ghost fluid" cell approach whereby a diffused boundary technique is used

in which some interior cells are used directly to enforce the embedded boundary conditions

in the vicinity of the solid surface. One advantage of this approach is that the numerical

stencil is not modified, thus ensuring optimal parallel scalability. Also conservation errors

and the numerical "staircase" artifacts at the embedded boundary are minimized by the use

of a block-structured dynamic adaptation of the mesh in AMROC. As the solid deforms,

the solid-fluid boundary is implicitly represented with a scalar level set variable that is

updated on-the-fly using the closest-point transformation algorithm (CPT) [35]. The CPT

effectively allows the explicit description of a triangulated surface mesh into the signed

distance function. It computes for every discrete point on the Cartesian grid the nearest

point on the surface mesh. A number of publications provide details about the coupling

approach, including numerical properties and validation [31, 36, 37, 38].





Chapter 4

Analysis and discussion

4.1 Study of basic shapes

In this study, some basic shapes for the hull were considered and their influence on the im-

pact of the blast wave on the solid and its flow around the object were studied. A schematic

layout of the different shapes considered in these set of simulations is shown in Figure 4-1.

Shapes considered
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Figure 4-1: Schematic layout of different shapes
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* Concave shape consisting of a quarter circle, concave upwards, between points A

and B

* Convex shape consisting of a quarter circle, convex upwards, between points A and

B

* Convex-Concave shape consisting of two quarter circles, convex upwards between

points A and C, and concave upwards between points C and B

* Concave-Convex shape consisting of two quarter circles, concave upwards between

points A and C, and convex upwards between points C and B

* V-shape consisting of a straight line joining points A and B

* Flat-shape or no hull, consisting of a vertical straight line through B

4.1.1 Geometry

Each of the curves shown in Figure 4-1 passes through points A and B, thus making the

stand-off distance(SOD), measured as the distance from the point source to the front-tip

point A, being 0.3 m for every shape except the flat-shape for which it is 1.3 m. The curve

from A to B represents the shape of the hull. Behind point B is a rectangular region of

the solid object which represents the body of the vehicle. The dimensions of the solid

object used in these simulations approximately reflect the actual dimensions of a Cougar-H

MRAP vehicle [2]. The ground clearance in this case is the SOD, which is taken to be 30

cm. Half-width of the vehicle is taken to be 1.0 m, and the total height of the vehicle is 2.5

m. The Cougar-H uses a V-shaped hull whose cross section is roughly the same as the one

used for this simulation.

4.1.2 Initial conditions

Thus we are essentially considering a simplified 2D cross section of a standard MRAP

(taken perpendicular to its length) and comparing its performance with other possible

shapes for the hull. The solid object is assumed to be rigid and stationary and thus the



ghost-fluid boundary is kept fixed throughout the entire simulation. Energy release for the

cylindrical blast wave from the point source is specified as an input parameter with the

units J/m as this a 2D problem. The one dimensional point source CFD code is solved up

to a distance of 2 cm lesser than the SOD from the point source, its values are interpolated

over the fluid mesh and given as the initial condition to this simulation.

4.1.3 Boundary conditions

In this simulation setup we assume that the point source lies on the line of symmetry for

the solid shape. This type of arrangement will be referred to as centerline symmetry. The

domain lying on only one side of the line of symmetry is considered for meshing, while

applying symmetry boundary conditions along the same. By doing so, the computational

effort for the simulation is reduced by half.

Two types of boundary conditions are considered:

* Surface blast The point source is chosen to lie on the left boundary, and symmetric

boundary conditions are applied to it in order to model a semi-cylindrical surface

blast.

* Air blastThe left boundary is chosen to be to the left of the point source and outflow

conditions are applied to it. Such a scenario corresponds to a fully cylindrical air

blast wave.

4.1.4 Simulations setup

Figure 4-2 shows the typical mesh layout at the beginning of a simulation. Three levels

of refinement including base level are used on a block structured grid with adaptive mesh

refinement generated using AMROC [27]. The boundary is represented implicitly with a

scalar function q that stores the signed distance to the solid surface. Since AMROC se-

lectively refines the mesh along internal boundary lines, as observed in Figure 4-2, mesh

elements are finer around the solid boundary and the blast wavefront. This is useful to ob-

tain a well defined solid geometry and cylindrical shock front in a cartesian mesh, and helps

in minimizing error created by the numerical "staircase" artifacts along these boundaries.



Figure 4-2: Mesh layout for a V-shaped plate ahead of a blast

The simulations are carried out for a total time of 7 ms using 4 processors for each

run. The variables recorded during the course of the simulation included the net force

acting on the object in the x and y directions at each time step, with the x axis being

along the line of symmetry. The forces acting on the body at each time step in the x and

y directions are determined by measuring the overpressure on a set of data points lying

along the boundary of the solid object, and integrating their value over the entire boundary

of the object according to Equation 4.1 and Equation 4.2. By integrating the total force

acting on the body over all the time steps,the impulse acting on the body is estimated using

in Equation 4.3. The impulse is calculated in the units of Pa.m.secs as the body is two

dimensional. It can be split into two components: head-on impulse measured on the hull

and the back face using Equation 4.1 and Equation 4.3, and the side-on impulse which

is measured as the impulse acting on the top face of the solid object using Equation 4.2

and Equation 4.3. The multiplying factor of 2 is used in Equation 4.1 because we are

considering only one half of the hull and the total force on the hull will be twice as much.

Maximum values of the head-on impulse and the side-on impulse are used as the most
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important criteria to assess the impact of the blast on the solid object.

Fx = 2(p - Po) x ds

F, = ( p -po) ey* ds

(4.1)

(4.2)

(4.3)I = JFdt

In the equation above, ds refers to the elemental length ds over which the overpressure

(p - po) acts.

Simulations are carried out for varying levels of the initial blast intensity in order to

observe the effect of blast intensity on performance of each shape. The energy levels that

are considered are 0.80 MJ/m, 4.0 MJ/m, 20.0 MJ/m and 40.0 MJ/m respectively. It is to

be noted that 4.0 MJ corresponds to the energy release from 1 kilogram of TNT.
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Figure 4-3: Head-on impulse evolution on the bodies for a surface blast. Energy intensity of
the blasts considered are 8 x 105J/m,4 x 106 J/m,2 x 107J/m and 4 x 107J/m respectively
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Surface blast

Shown in Figure 4-3 are the results of the head-on impulse evolution for the different energy

levels that are considered. It is observed that in each case, the head-on impulse builds up

to a maximum and then tails off to a lower value over time. This is so because initially the

blast wave flows over the hull with a high pressure, thereby generating a strong positive

force acting on the solid. This leads to a rapid build-up of the head-on impulse on the

solid. This rate of impulse build up is related to the peak force load acting on the solid,

and this in turn is dependent on the hull shape at its tip. It can be seen that shapes with

a narrow and pointed tip such as the concave, concave-convex and to an extent V-shape,

have a lower rate of impulse buildup than those which are flatter such as the convex shape.

This is so because a blunt front tip presents a low angle of incidence to the incoming blast

wave, creating higher reflected pressures and higher net force acting on the solid in the

x-direction.

As the blast wave flows around the solid, the pressure acting on the hull reduces, while

the pressure on the back face of the solid object increases. This leads to a net negative force

acting on the body in the x-direction. Hence the head-on impulse reaches a maximum and

then starts decreasing in value. We are interested in studying this value of peak head on

impulse acting on the body as our primary criterion in assessing blast impact.

Over all blast intensity levels, we observed that the V-shape showed the best perfor-

mance in terms of minimizing the peak head-on impulse and the convex shape performed

the worst. For the convex shape and flat-shape, it is observed that there are repeated reflec-

tions of the blast wave between the solid and the left boundary where symmetry boundary

conditions are applied. This led to repeated loading on the solid object as can be seen

from the bumps on the impulse evolution curve for the convex shape for energy intensity

of 0.8 MJ/m in Figure 4-3. Also, it must be noted that the convex and flat-shapes suffer

from the secondary reflected blast waves. In one-dimension point source codes, these sec-

ondary reflected waves are caused by the singularity of the explosion center which causes

the primary reflected wave to reflect back towards the plate. A similar effect is seen with

the convex and flat shaped hulls, which behave approximately as a planar obstacle would



at distances very close to the point source explosion.
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Figure 4-4: Side-on impulse evolution on the bodies for a surface blast. Energy intensity of
the blasts considered are 8 x 105 J/m,4 x 106 J/m,2 x 107 J/m and 4 x 107 J/m respectively

Yet another reason could be the fact that the convex and flat-shapes suffer from sec-

ondary blast reflections, as described earlier.

Shown in Figure 4-4 are the side-on impulse evolution curves for different blast inten-

sities. Side-on impulse ,in this case, is obtained by integrating the net force acting on the

top surface of the solid over time using Equation 4.2 and Equation 4.3. From these set of

curves, we observe that at all blast intensities, apart from the flat-shape, the concave and

convex-concave shapes are the most effective in reducing the side-on impulse. There is a

marked difference in the peak impulse values for these shapes when compared with the rest.

The concave and convex-concave shapes show as much as 30-40% reduction in maximum

impulse over other shapes such as the convex, concave-convex and the V-shape.

It can be seen that the concave shapes have a natural tendency to deflect the incoming

blastwave away from the body of the vehicle in a transverse direction. On the other hand,
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the convex shapes will make the blastwave flow around them, thereby leading to greater

side-on impulse acting on the top-face of the solid object. The schematic shown in Figure

4-5 gives a qualitative explanation for this shape effect on the movement of the blast wave,

and hence the side-on impulse values.

Wave propagation along side Wave propagation away from
face of the plate , side face of the plate

Figure 4-5: An illustrative view showing effect of curve shape on wave propagation direc-
tion. Concave shapes deflect the blast wave away from the side face of the vehicle while
convex shapes will have opposite response.

It is seen that over all energy levels, the side-on impulse values are lower than the

corresponding values for head-on impulse. This is expected because while measuring the

head-on impulse, the pressure being measured on the surface and integrated is reflected

overpressure which is the static overpressure times the reflection coefficient, whereas in

the case of side-on impulse, the pressure being measured on the surface and integrated is

the static pressure itself. This is due to the near ninety degree angle of incidence of the

blast wave with the top surface which causes the reflection coefficient to be one in this

case. Besides, by the time the pressure wave reaches the top surface of the solid where the

side-on impulse is measured, there is a significant drop in the peak overpressure of the blast

wave. This could also be another reason why we observe lower side-on impulse values.

Free air blast

The same set of simulations are then carried out with a change of boundary conditions.

Instead of imposing reflection boundary conditions on the left boundary of the computa-

tional domain, we apply outflow conditions on the left boundary. This study models a fully
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cylindrical air blast wave and also can be compared with the surface blasts to check for any

shape effects.

This boundary condition also models a free explosion in air unlike the earlier case where

we modeled a surface blast. The following curves shown in Figure 4-6 and 4-7 present the

results for the head-on and side-on impulse evolution for various shapes subjected to blasts

of varying intensity.
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Figure 4-6: Head-on impulse evolution on the bodies for a free air blast. Energy intensity of
the blasts considered are 8 x 105J/m,4 x 106 J/m,2 x 107J/m and 4 x 107 J/m respectively

From Figure 4-6 we see that even under impact from an air blast wave, the V-plate

performs the best in terms of minimizing the peak head-on impulse at all energy levels.

Similarly we observe from Figure 4-7 that the side-on impulse is minimized when the

flat-shape is used, followed by concave and the convex-concave shapes which are second

lowest. We observe a significant reduction in the maximum side-on impulse values for

these two shapes over the remaining set of shapes as seen before with the surface blast

initial conditions. As explained earlier with schematic Figure 4-5, these two shapes will
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push the incident blast wave into a lateral direction, so that the impact of the blast wave

on the top face is reduced. As observed from the snapshots shown in Figures 4-8 and 4-9

at time instant t = 1 ms, we can see that these two shapes are most efficient in pushing

away the blast into a lateral direction as compared to the rest of the shapes at the same time

instant. This shows why these shapes cause reduction in the side-on impulse.

It is also interesting to note here that although head-on impulse values are significantly

higher than the side-on impulse values for the lowest energy levels (about seven times at

E=8e5 J/m), this ratio decreases as the blast intensity is increased. At a blast intensity of

40 MJ/m, we notice that the maximum head-on impulse values is just about three times the

maximum side-on impulse values.

This could be due to the fact that at higher blast intensities, the blast wave travels

faster, and this limits the time of interaction between the incident and reflected pressure

waves. Thus the blast wave would reach the top surface sooner, and also with a higher

peak overpressure, causing a relative increase in side-on impulse values over the head-on

impulse.

This trend shows that though side-on impulse values may be lower in magnitude at

lower energy levels, they become comparable to the head-on impulse at higher blast inten-

sities, and thus should not be discounted while analyzing the design of hull shapes.

4.1.5 Comparison between effects of shape on Air blasts and Surface

blasts

Figure 4-13 offers a comparison of the head-on impulse curves for a blast intensity of 4

MJ/m for the given two boundary conditions. Let us, for example, consider the case of flat

shape in both these figures. It can be seen that there is an initial rise in the impulse values,

followed by a secondary increase. It can be seen that in both the cases, the first peak on both

the head-on impulse values are almost equal at around 1280 Pa.m.sec. However, while the

second peak in case (a) is over 1400 Pa.m.sec, in case (b) the second peak impulse value

is lesser than that of the first peak i.e. 1280 Pa.m.sec . This could imply that the reflection

boundary condition applied to the left boundary in the case of surface blasts contributes to



E=8~5 Il,~ E=4~6 106

0 0.001 0.002 0.003 0.004 .005 0.006 0.007 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Time in seconds Tme i seconds

E--27Jm E--471/m

d6.

convex
conve ....

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Tim in seconds Time ia second

Figure 4-7: Side-on impulse evolution on the bodies for a free air blast. Energy intensity of
the blasts considered are 8 x 105J/m,4 x 106 J/m,2 x 107J/m and 4 x 107J/m respectively

an enhanced secondary presure wave acting on the hull.
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(a) t = 0.1 ms

(c) t= 3 ms (d) t = 7 ms

Figure 4-8: Snapshots of blast flow over

(a) t = 0.1 ms

(c) t= 3 ms

a concave hull at different time instants

(b) t = 1 ms

(d) t = 7 ms

Figure 4-9: Snapshots of blast flow over a concave-convex hull at different time instants
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(a) t = 0.1 ms

(c) t= 3 ms

Figure 4-10: Snapshots of blast flow over a convex-concave hull at different time instants
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Figure 4-11: Snapshots of blast flow over a convex hull at different time instants
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(a) t = 0.1 ms

(c) t= 3 ms (d) t = 7 ms

Figure 4-12: Snapshots of blast flow over a V-shaped hull at different time instants

4.2 A more detailed look at V-shapes

From previous results for generic shapes, it can be seen that the V-shape offers the minimum

value for peak head-on impulse, the primary criterion used in measuring the impact on the

solid. In the following study we look at the effect of changing the SOD, keeping the floor

height a constant.

4.2.1 Initial conditions

We consider a solid object with a half width of 1 metre, total height of 2.5 metres, and a

floor height of 1.3 metres. The SOD is varied from 0.3 m to 1.3 m. It can be seen that

when the floor height is same as the SOD, the shape is nothing but the flat-shape. As done

earlier, the body is assumed to be rigid and stationary and doesn't deform or move during

the course of the simulation.The point source solution is solved upto a distance of 2 cm

lesser than the SOD and is provided as the initial condition of the blast wave.
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Figure 4-13: Effect of changing boundary condition on the impulse evolution for various
shapes

4.2.2 Boundary conditions

We assume the same boundary conditions as that for a surface blast. So reflection boundary

conditions are applied at the left and bottom boundary while the other two boundaries have

outflow conditions.

Simulations are run for a total time of 7 ms and the results from the simulation are

presented below:

Shown in Figure 4-14 are the results of maximum head-on impulse versus SOD for 4

different blast intensities. From the plots it can be seen that as the SOD is increased, the

impulse value drops to a minimum, remains nearly a constant over a range of SOD values,

and then rapidly increases monotonically beyond this range. This range is relatively a

constant over all the values of blast intensities and corresponds to around (0.4m, 0.7m) for

the given configuration. The impulse recorded over this range varies between 0.70 to 0.80

times of the peak impulse recorded for the flat plate for a given blast intensity, with this

ratio increasing as the blast intensity is increased.

This suggests that, for the given geometry, any choice of SOD lying between 0.4 m and

0.7 m, the maximum head-on impulse is likely to be the minimum. Given this information

alone, it would be wiser to choose a design with SOD to be the lowest(0.4 m) as we would

like the vehicle's ground clearance to be as low as possible.

Figure 4-15 gives the values of the side-on impulse for varying SOD. In this case,
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Figure 4-14: Maximum head-on impulse versus stand-off distance for V-plate

we notice that as SOD is increased, the side-on impulse value decreases. For the lowest

energy level considered, i.e. blast intensity of 0.8 MJ/m, minimum impulse occurs for

maximum SOD of 1.3 m which is equivalent to the no hull/flat plate case. As the blast

intensity is increased, we noticed that the minimum impulse occurs for decreasing values

of SOD, being 1.1 m for 4 MJ/m, 1.0 m for 20 MJ/m, and 0.9 m for 40 MJ/m of initial blast

intensity respectively. The ratio of minimum to maximum value for the impulse for a given

blast intensity is found to be nearly a constant around 0.65 for all blast intensities that were

considered.
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Figure 4-15: Maximum side-on impulse versus stand-off distance for V-plate

4.2.3 Changing the floor height

Our next step is to investigate the combined effects of changing the floor height and SOD

on the maximum head-on impulse acting on the solid object. We assume the same initial

conditions and boundary conditions as used earlier and keep the blast intensity fixed for

each simulation at 4 MJ/m. A schematic shown in Figure 4-16 gives one an idea of what

we refer to as the "floor height" and "Stand-off distance (SOD)".

Simulations are conducted for floor height values from 0.9 m to 1.3 m, in increments of

0.1 m. In each case, the range of SOD considered is from 0.3 m up to the floor height value

for those corresponding set of simulations. It can be seen that we refer to the flat-shape/no

hull case when the floor height and SOD are of the same value.

Figure 4-17 shows the influence of floor height and SOD on the peak head-on and

side-on impulse values.

From Figure 4-17(a) it is obvious that decreasing the floor height leads to a jump in

the peak head-on impulse values for a given SOD. This jump roughly corresponds to an
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Figure 4-16: A schematic describing Stand-off distances(SOD) and floor heights

increase of 8-10 % in the peak impulse for a given SOD and for a decrease in floor height

in 0.1 m and this percentage change increases slightly with decreasing floor height and

increasing SOD. As seen earlier, for a given floor height, the peak impulse values are nearly

constant over a range of low SOD values, and then show a steady monotonic increase when

SOD increases beyond this range. The range of values over which the peak impulse values

are nearly constant is variable with the floor height, and progressively decreases as the floor

height is decreased.

Figure 4-18 shows the iso peak head-on impulse contours plotted with SOD and floor

height along the X and Y axes. The impulse values have been plotted by approximating the

peak impulse value to the nearest multiple of 50, and then plotting the iso-contours over the

range of minimum value of 1050 Pa.m.sec to a maximum of 1700 Pa.m.sec with increments

of 50. Bezier curve interpolation is used to connect the data points withthe same impulse

value to obtain the corresponding contour curve.

This figure shows that the lowest impulse values are obtained when the SOD is min-

imized and floorheight is maximized. Another interesting fact to be noted is that there

is a linear relationship between the SOD and floor height of the vehicle for a fixed peak

impulse.

Peak side-on impulse values change with SOD and floor height as shown in Figure
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Figure 4-17: Influence of floor height and SOD on the peak head-on and side-on impulse
values in a V-shaped hull

4-17(b). The impulse values are nearly constant for lower SOD values, and the value is

also constant for changing floor heights. However, unlike the head-on impulse values, the

side-on impulse values decrease with increasing SOD. Also the magnitude of the impulse

decreases as the floor height increases. Thus, in picking a design with minimum side-on

impulse, we would prefer one with a higher SOD and floor height. In the set of simulations

conducted, this minimum is observed for a floor height of 1.3 m and a SOD of 1.1 m.

From the above discussion, it becomes clear that a choice of maximum floor height

would be suitable in reduction of impulse for a V-shaped hull design. The best choices for

SOD would be a compromise between low values(suitable for lower peak head-on impulse)

and higher values(more suitable for lower peak side-on impulse).
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4.3 Changing V-shape

We observed that when the V-shapes are changed, there is a range of stand-off distances

for which the maximum head-on impulse remains almost a constant minimum- being any-

where between 0.4 m and 0.7 m for the geometric considerations used in the earlier set of

simulations. As a next step we explore the effect of changing the SOD continuously over

time during the course of the simulation, and observe how it affects the head-on impulse

acting on the body.

From the results it can be seen that positive velocities contribute towards an increase in

head on impulse while negative velocities cause a decrease in the impulse. In other words,

in going from shape shown in Figure 4-19(a) to Figure 4-19(b) there is an increase in head-

on impulse as compared to a stationary case and vice-versa in going from Figure 4-19(b) to

Figure 4-19(a). It is also seen that this increase/decrease in impulse value is proportional to

the magnitude of front tip velocity. Thus the moving shape with velocity V= -300 m/s has

the minimum head-on impulse while V=+300 m/sec has the maximum head-on impulse.

This might appear to be non intuitive as the results suggest that a shape which moves

forward towards the blast actually has a lesser impact load on it as opposed to one which
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(a) Standoff = 0.4 m (b) Standoff = 0.7 m

Figure 4-19: Figure showing the two end configurations for the shapes with a movable hull

moves away from the blast. However it should be noted that in the this case, while the front

tip moves forward towards the blast, the incident angle between the incoming blast wave

and the vehicle hull increases. In the latter case it is vice versa.

It is possible that when the angle of incidence between the blast and hull plate increases,

the reflected pressure as a ratio of the incident pressure decreases. This causes a drop in

the net force acting on the object, as also the impulse obtained using Equation 4.3. Also,

in this case, the initial SOD of the hull is 0.7 m, which is 0.3 m more than the other end

configuration. In a cylindrical blast, the pressure is expected to vary roughly as - where

R is the radial distance from the point source. Hence the incident pressure at an SOD of

0.7 m would be nearly 3 times lesser than the incident pressure at an SOD of 0.4 m.

The percentage reduction of impulse at V = -300 m/s over the stationary cases is around

20 %. This means it could be a good means of active mitigation against blast impact. We

already know from our previous analyses that the V-shaped hull is capable of providing

maximum protection against head-on impulse amongst all generic shapes. In this study

we have compared the results for the moving plates with the best performing stationary

shapes amongst all V-plates, and we are able to show that it is possible to further reduce the

impulse by 20 % if we choose flexible designs with an active blast mitigation capability.
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Figure 4-20: Figure showing the Impulse evolution and Pressure evolution at the front tip
of the moving plates over time

4.4 Optimization of shape

Earlier analyzes that were conducted in our research study have dealt with a range of shapes

defined by a set of parameters that take discrete values. For example in our study of V-

shapes, we defined the SOD and the floor height as our variable parameters which can take

discrete values, and we do a sweep over allowable ranges of these parameters and determine

the minimum value of the peak impulse.

Another approach to determine the values of these best set of parameters would be

to set up an optimization problem where we define an objective function that needs to be

minimized/maximized, the variable parameters, and constraints on the variables defined. In

setting up such an optimization problem for our study, we define the peak head-on impulse

acting on the solid as our objective function, geometrical parameters depending on the
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Figure 4-21: Head-on force evolution for moving plates

class of shapes considered as our variables, and constraints depending on the geometrical

requirements from the problem under focus.

For these type of problems, an analytical function mapping the variable parameters to

the objective function does not exist. Such type of problems are typically solved either by

using iterative methods or using genetic algorithms(GA). For our study, iterative methods

are more suitable than genetic algorithms. This is so because genetic algorithms usually

need evaluation of the objective function over a large number of trial points before con-

vergence is guaranteed. Every single evaluation in our study involves running the code

to completion and then determining the maximum impulse. This requires a lot of compu-

tational effort and time and hence GA would not be suitable to our problem. Hence we

proceed with the use of a numerical scheme based on iterative methods.

4.4.1 Optimization scheme

We set up the problem to be solved using the gradient projection algorithm, which is the

natural extension of the steepest descent method to bound constrained problems. The solu-

tion scheme for this method is obtained from [39].
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Given current iterate xk, the new iterate is

Xk+1 = P(k - AVf(xk)) (4.4)

where A is a steplength parameter given by the simple Armijo line search rule and P is a

projection operator given as

Li if(x)i < Li,

P(x)i = (x)i i fLi < (x)i < Ui, (4.5)

Ui i f()i > Ui.

where Li and U2 are the lower and uppper bounds for the variable x.In order to implement

any line search scheme, we must specify what we mean by a sufficient decrease. For A > 0

define

x(A) = P(x - AV f(x)) (4.6)

For bound constrained problems sufficient decrease conditions for line searches are ex-

pressed as
-- O

f(x(A)) - f(x) < -jI x- x(A)112  (4.7)

where a is a paramater that one typically sets to 10- 4 [40].Following gives a description of

the numerical algorithm used.

1. For n = 1, . . . , nmax

(a) Compute f and Vf; test for termination.

(b) Find the least integer m such that Equation 4.7 holds for A = 3.

(c) x =zx(A).

2. If n = nmax and the termination test is failed, signal failure.

It must also be noted that for a constrained optimization problem, Vf need not be

zero at the solution. A natural substitute used is to terminate the iteration if the difference

between x and x(1) is small. A test study is conducted for a single variable parameter and

details for this test are presented below.



4.4.2 Test study with Elliptical shapes

X

Point source

Figure 4-22: Schematic of the elliptic hull shape used for the optimization study

Shown in Figure 4-22 is the schematic layout for the geometry used in our study. We

consider the set of semi-elliptical shapes for the hull with one axis of the ellipse being

fixed and the other axis being variable in length. The SOD measured as the distance from

the point source to its closest point on the hull is used as the variable paramater x in this

simulation. The width and length of the box behind the hull on the solid are kept constant

at 0.4 m. Initial conditions included the initialization of the point blast code up to a distance

of 0.02 m lesser than the SOD. Input parameters supplied to the blast code include

Ambient pressure Po = 101214Pa

kgAmbient density Po = 1.22

Blast intensity Eo = 4 x 106joules

- = 1.4 (4.8)

Boundary conditions include outflow on all the boundaries, and the solid is kept rigid and

fixed. The peak head-on impulse measured from these simulations is used as the objective

function and results from the optimization study are given in Table 4.1

From this study we observed that our objective function is minimized for x=0.58878 m, and

the minimum value for the objective function is 165.27 Pa.m.s. The study took overall 18



Iteration number Number of sub-steps x(in m) Function value at end of iteration(In Pa.m.s)
1 1 0.40000 190.99
2 1 0.72095 174.57
3 4 0.57638 168.55
4 5 0.59040 165.38
5 7 0.58878 165.27

Table 4.1: Results from an optimization study on elliptic shapes

runs(including all the sub-iterations) of the simulation to obtain the optimized shape. The

results are compared with a discrete numerical study whose results are shown in Figure

4-23. Simulations are run for SOD varying from 0.3 m to 0.9 m with increments of 0.05 m.

Once the shape corresponding to the lowest value of the peak impulse is identified among

these, a local refinement to 0.01 m is used. As observed from the figure below, a tip distance

of 0.59m gave the minimum value for the objective function and this result compares well

with the optimization study.

Although, the optimization study is extremely fast, it may or may not always converge.

This is so because the objective function f is obtained by running a simulation in a fluid

grid which is prone to numerical errors arising for the "staircase" artifacts along the internal

boundaries. Hence f is not necessarily a smoothly varying function, and local fluctuations

in the function value around a data point can lead to inaccurate results in an iterative scheme

which is dependent on the gradient of the function for convergence. On the other hand, the

discrete numerical sweep study requires a comparable amount of computational effort as

the optimization scheme, but is relatively more straight forward and gives more reliable

results.
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Figure 4-23: Discrete numerical study for semi-elliptical hull shapes

4.5 Three dimensional simulations

Following from the earlier studies, we conduct simulations of blast-vehicle interaction in

a 3 dimensional environment. The mechanics of the fluid-structure interaction have been

described in Section 3.2. From our earlier results for 2D, we were able to observe that the

V-shaped hull is the most effective among all the generic shapes considered in minimizing

the peak head-on impulse values. In the following study we compare a 3D model of a V-

shaped hull with another model which does not possess a hull. The details of these set of

simulations are presented below.

4.5.1 Geometry

Two particular solid models are considered :

* Flat-box: This corresponds to a hollow rectangular box with the outer dimensions:

0.4m x 0.4m x 0.4m. The thickness of the box is taken to be 2 cm.

* V-shaped box: This corresponds to an object with the same dimensions as that of

a flat-box, but also having a V-shaped hollow hull attached to one of its faces. The

height of the hull is 0.3 metres and it has a thickness of 2 cm.

V amuen



Shown in Figure 4-24 are the meshes for the two types of solid that are quoted above.

These shapes are a scaled down representation of an actual vehicle, with the flat box repre-

senting the passenger compartment, and the V-shaped hull being the blast deflector attached

to the bottom face of the vehicle. Scaled down models are used in this study to reduce com-

putational costs associated with 3D simulations.

(a) Mesh for the V-shaped box (b) Mesh for the flat-box

Figure 4-24: Figure showing the meshes for the two types of solid considered in the 3D
simulations

4.5.2 Initial conditions

The point source blast solution described in Chapter 2 is solved and interpolated over the

3D fluid grid to initialize a spherical blast wave. The input parameters supplied to the blast

code are

Ambient pressure po = 101214Pa
kg

Ambient density Po = 1.22-

Blast intensity E 0 = 4 x 106 Joules

7= 1.4 (4.9)

The point source origin is set to be 0.7 m below the the center point on the floor of the

vehicle in both cases. Thus SOD for the Flat-box is thus 0.7 m and for the V-shaped box it

___1Y



Table 4.2: Material model parameters for stainless steel.
Mass density Young modulus Poisson ao- 77 5 o e 60

p [kg.m - 3 ] E [GPa] ratio v [MPa] [s- 1]
7880 190 0.3 365 1.19 0.136 4.82 14518

.06

06,

06
*0

L.T

(a) Fluid solid representation for the V-shaped hull
body

(b) Fluid solid representation for the no hull body

Figure 4-25: Figure showing the FSI simulations conducted in VTF using 3D models

is 0.4 m. In either case, the point source is initialized up to a distance of 2 cm lesser than

the SOD. Figures 4-25(a) and 4-25(b) show the initial conditions of the 3D fluid-structured

interaction problem that we consider in our studies.

The solid is modeled as stainless steel whose elasto-plastic response was modeled with

an isotropic model of large-deformation plasticity. The hardening and rate-dependence of

the instantaneous yield stress is given by the power-law:

o1 1
S [= \+ ( P+ ) \ ý 7uy~~uo IlF- ±LT I (4.10)

where ay is the effective flow stress, ay is the initial von Mises yield stress, q, is the

strain hardening exponent, eP' is the equivalent plastic strain, Eo is the reference plastic

strain, qr is the strain rate exponent, iP' is the plastic strain rate and ýo is the reference

plastic strain rate. The values for stainless steel are given in table 4.2.
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4.5.3 Boundary conditions

Outflow conditions are assumed on all the six faces of the fluid grid. Also, no boundary

conditions are applied on the solid mesh, implying that it is a free standing object. The size

of the fluid grid used in these set of simulations is 0.8m x 0.8m x 1.6m.

4.5.4 Simulation setup

Simulations are run for a total time of up to 2 ms with outputs taken every 50 time steps.

The mesh consists of 40 x 40 x 80 cells on the base fluid grid, and 3 levels of refinement are

used on the Adaptive mesh framework generated by AMROC. Each sub level of refinement

corresponds to a decrease in mesh size by 0.5. Nominal CFL number used for each fluid

time step is controlled to be close to 0.9, and any given time step is repeated with a restart

from the earlier step if the CFL number exceeds over 0.99.

The solid meshes for each shape are created using tetrahedral elements with a seed size

of 0.02 m in ABAQUS. In the case of flat-box, this mesh contains 19747 elements with a

minimum shape factor of 0.16, while the meshes for the V-shaped box consist of 21768

elements with a minimum shape factor of 0.21.

Simulations are run on 8 processors using 5 processors for the fluid solver and the

rest for the solid solver. Fluid-structure coupling is enabled between the two solvers as

described in Section 3.2.3. From the output files obtained from the solid solvers at every

fiftieth time step, we determine the pressure acting on all the nodal points of the solid at

that time step. Using this information, we can compute the total force acting on the solid

and integrate it over time to obtain the impulse acting on the solid over time.

4.5.5 Results and analysis

Shown in Figure 4-26 are the results for the different impulse evolution curves obtained

by integrating the force acting on the different faces of the solid objects. Figure 4-26 (a)

gives a comparison of the impulse evolution on the front face/hull of the V-shaped box and

flat-box. This is a measure of the direct impact from the blast wave beneath the vehicle

body on the vehicle. It can be seen that at t = 1.3 ms, the impulse for the V-shaped box
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Figure 4-26: Comparison of different impulse evolutions between the flat-box and the V-
plate box

is 420 N.s while it is close to 580 N.s for the flat-box. Therefore the V-shaped hull leads

to a 30% reduction in the impulse as compared to a flat-bottomed vehicle. Figure 4-26(b)

and Figure 4-26(d) show the impulse evolution on the 2 side faces of the solid object owing

to the impact from the blast. It is seen there that is less than a 10% difference between

the V-shaped box and the flat-box for the side-on peak impulse at t = 1.3 ms. Figure 4-26

(c) shows the impulse evolution curves for the back faces of the two boxes, which would

correspond to the top face of a vehicle. Although we notice some difference in the impulse

evolution curves for the two cases considered, the effect on the net impulse acting on the

vehicle will be negligible as the magnitude of these impulse values are very low.

Figure 4-27 gives the specific impulse and pressure evolution at the center point of the

hull in the two cases considered. Specific impulse at a given point is obtained by integrating

the pressure acting on that point over time. Comparing the two sets of curves, we see that

the specific impulse for the flat-box is higher even though the peak pressure is higher for

Inpula acting en.the aideface or Uth ban over time
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Figure 4-27: Figure showing the pressure and Specific impulse evolution at the center of
the front face of the two objects considered

the V-shaped box. The reason for this is that the secondary reflected shock waves which

affect the flat-box and are not observed in the case of the V-shaped box. Due to these

secondary reflected shocks, we observe multiple peaks on the pressure evolution curve for

the flat-box and this also the causes the multiple humps on the mean impulse and specific

impulse curves. This shows us the advantage of using V-shaped hulls because they deflect

the incoming blast wave and do not suffer from secondary reflected shock loadings unlike

the flat-bottomed hulls.
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Chapter 5

Conclusions

We have conducted analyses of the blast wave-vehicle body interaction in both two dimen-

sional and three dimensional environments. A wide range of shapes and blast intensities

were considered and the impact of the blast on the vehicle body was measured in terms of

the head-on impulse and side-on impulse acting on the body. Based on our observations,

we can say that the V-shape showed the best performance amongst all the shapes consid-

ered ill reducing the peak head-on impulse. Shapes with a small angle of incidence to the

incoming blast wave (such as convex and other flat shapes) were affected by the secondary

reflected blast wave leading to peak head-on impulse values which were as much as 40 %

more than V-shapes under similar conditions. This result was also confirmed with 3D sim-

ulations where it was shown that V-shapes show over a 20 % reduction in the peak head-on

impulse when compared to flat-shaped hulls.

On the other hand, concave and convex-concave shapes showed a significant reduction

in the impulse acting on the sides of the vehicle. Peak head-on impulse values were 7

times or more higher than the corresponding peak side-on impulse values for low blast

intensities( E=4e6 J/m), but this ratio reduced significantly in magnitude when higher blast

intensities were considered. This leads to the conclusion that side-on impulse values may

have to be considered in the design of hull shapes for protection against blasts of much

higher intensities.

As the next step, a deeper analysis of V-shapes was conducted by considering the effect

of changing floor height and SOD on the blast impact on the vehicle. It was seen that



head-on impulse values were nearly constant and minimum for a range of SOD values.

Beyond this range, the peak head-on impulse showed a steady rise until the SOD was equal

to the floor height, in which case it corresponds to a flat-shape. Decrease in floor height,

i.e. lowering the vehicle floor, showed a drastic increase in the peak head-on impulse.

Therefore the best choice of shapes for the V-shaped hull were those with the maximum

floor height and a SOD which had to be picked from a range of values for minimum peak

head-on impulse. This value was chosen by considering the peak side-on impulse values

over this range of SODs. It was seen that for a given floor height, when the SOD value

was increased, it resulted in a decrease in peak side-on impulse. Using this information,

we pick the value of SOD to be the maximum from the range of values available so that

both peak head-on impulse and peak side-on impulse were minimized. For the geometries

considered in our study( which roughly corresponds to the cross-section of a Cougar H

MRAP vehicle), the best choice of value for the SOD is 0.8 m and the best choice for the

floor height is 1.3 m.

The future direction of work from this study would be towards a complete analysis of

these shapes under realistic loading conditins. In doing so, we will need to develop soil

models, and also a good understanding of the blast wave-soil-structure interaction. These

blast loading models must then be used with accurate three dimensional models of the

MRAP vehicle and thereafter impact measurements must be made.
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