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Abstract

The goal of this Masters project is to implement the WRF model with 3D varia-
tional assimilation (3DVAR) at MIT. A working version of WRF extends the scope
of experimentation to mesoscale problems in both real and idealized scenarios. A
state-of-the-art model and assimilation package can now be used to conduct science
or as a benchmark to compare new methods with.

The second goal of this project is to demonstrate MIT's WRF implementation in
an ongoing study of the impact of position errors on contemporary data assimilation
(DA) methods [21]. In weather forecasting, accurately predicting the position and
shape of small scale features can be as important as predicting their strength. Position
errors are unfortunately common in operational forecasts [2, 14, 21, 27] and arise for
a number of reasons. It is difficult to factor error into its constituent sources [21].

Traditional data assimilaton methods are amplitude adjustment methods, which
do not deal with position errors well [4, 21]. In this project, we configured the
WRF-Var system for use at MIT to extend experimentation on data assimilation to
mesoscale problems. We experiment on position errors with the WRF-Var system by
using a standard WRF test; a tropical cyclone. The results for this identical twin
experiment show the common distorted analysis from 3DVAR in dealing with position
errors. A field alignment solution proposed by Ravela et al. [21] explicitly represents
and minimizes position errors. We achieve promising results in testing this algorithm
with WRF-Var by aligning WRF fields from the identical twin.
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Chapter 1

Introduction

The goal of this Masters project is to implement the WRF model with 3D varia-

tional assimilation (3DVAR) at MIT. Although research at MIT includes other cou-

pled physical-numerical systems, such as the planet-in-a-bottle project by Ravela et

al. [22, 23, 24], a working version of WRF extends the scope of experimentation to

mesoscale problems in both real and idealized scenarios. A state-of-the-art model

and assimilation package' can now be used to conduct science or as a benchmark to

compare new methods with.

Accordingly, a second goal of this project is to demonstrate MIT's WRF imple-

mentation in an ongoing study of the impact of position errors on contemporary data

assimilation (DA) methods [21]. We now go on to briefly discuss the position-error

problem and the experimental setup.

1.1 Position Errors

In weather forecasting, accurately predicting the position and shape of small scale

features can be as important as predicting their strength. Errors in a forecast for

a squall line, for example, can be the difference between a population center that is

prepared and one that is off-guard. Thus, such errors can carry a high cost in terms

of both life and business.
1http://www.wrf-model.org/



Position errors are unfortunately common in operational forecasts [2, 14, 21, 27]

and they arise for a number of reasons including timing errors, parameterized and/or

approximated physics, coarse resolution, and errors in the background flow [11, 12,

18, 21]. It is difficult to factor position error into its constituent sources [21].

Traditional data assimilaton methods are amplitude adjustment methods, which

do not deal with position errors well [4, 21]. Strong, small scale features with dif-

ferences in position or shape between model and observed data can lead to large

amplitude errors. These errors are not accounted for in typical background statistics

and, indeed, background statistics which are adequate when no position errors exist

are no longer so because of bias, distorted background covariances [21] or both. Thus,

model adjustments are sub-optimal in that distorted analyses result while position

error remains (as we will show with a simulated tropical cyclone example). Obviously,

this can lead to poor forecasts and a corrupt forecast-assimilate cycle.

Operational users have already developed schemes to deal with position errors.

For example, bogussing is a technique in which a tropical cyclone (TC) is forcibly

removed from the model and manually replaced with a standard version in the correct

location. Xiao et al. [30] discusses a bogussing scheme for use with WRF-Var that

involves introducing a set of bogus observations instead of changing the model state

directly. Symmetric sea level pressure observations are created from typhoon reports,

using an empirical formula, and bogus wind observations are calculated based on an

idealized gradient wind relationship. The errors to these synthetic observations are

chosen to be small enough so confidence in the bogussed observations overwhelm the

existence of the TC in the background. If the TC in the background is very strong

and remains after the assimilation cycle then a removal algorithm is used. This is

imporant because if any piece of the old cycle remains it can interact in a way to

worsen forecasts as. Bogussed observations must also be designed carefully so as not

to cause shock to the model. Clearly, this is an ad hoc method and not an optimal

solution to the problem.

In a recent paper, Ravela et al. [21] propose a field alignment solution which ex-

plicitly represents and minimizes position errors. Control variables that represent



displacements are estimated at each node of the state grid and specify the deforma-

tion of the grid. A 2-step method of both amplitude and position adjustment can be

conveniently used as an approximation to the minimization problem, and thus can be

combined with traditional state-estimation methods in a current model data assimi-

lation package. However, tests have not been carried out with a real world model. A

goal of this project is to test the plausibility of using the field alignment algorithm

with WRF-Var by aligning actual WRF model fields after simulating a position error.

1.2 WRF-Var Implementation & Experiment

Atmospheric.
Terrestrial.

SST Input Data

Figure 1-1: WRF system flow chart [28]

As shown in Figure 1-1 the entire WRF system consists of four components: input

data, WPS, WRF-ARW Model, and WRF-Var. The WRF Preprocessing System

(WPS) processes input data for a simulation. The Advanced Research WRF (ARW)

uses the WPS output to initialize the simulation and set the boundary conditions

and then runs the forecast. WRF-Var utilizes 3DVAR to assimilate observations to

create an analysis from the forecast, and then updates boundary conditions to launch

another forecast.

For experimentation, a standard WRF test case is used; a 2 day simulation of

Hurricane Katrina. As the short range forecast for Katrina performed well in real-

ity, forecast position errors are simulated through a zonal wind perturbation. The

real simulation is also run and functions as both truth and a source of synthetic



observations. Using the mechanics of this set up, real-time forecasting and DA ex-

perimentation for future TCs is possible, using real observations from the MADIS

network2 .

Implementing the WRF-VAR system on a standard test-case should've been merely

an exercise in dowloading, compiling and running. Unfortunately, our experience sug-

gested otherwise, entirely. As documented locally3 and on the website used for WRF

user discussion at the time4 , our effort required a number of forays into the code

and its invocation. Indeed, this effort seems to be of substantial benefit to other

researchers too. They are thus documented.

1.3 Organization

The rest of this thesis is arranged as follows. Chapter two describes the WRF forecast

model and configuration issues. Chapter three provides an overview of data assim-

ilation methods and describes how 3DVAR is implemented by WRF-Var. Chapter

four describes setup for the identical twin experiment involving position errors and

then compares results of WRF-Var assimilation in the experiment to field alignment

of WRF fields.

2http://madis.noaa.gov/madis.wrf-var.html
3 http://ecovision.mit.edu/ ecovision/forum/
4 http://tornado.meso.com/wrf-forum/



Chapter 2

WRF Model

As shown in Figure 1-1, the Weather Research and Forecasting model (WRF) is

a mesoscale forecast model developed by several collaborating institutions [26]. It

is supported as a community model for research but is also run operationally at

many private and public institutions1 . The model is claimed to be fully portable and

comes with an initialization routine, making it suitable for both real and idealized

experiments.

WRF
/

/~" ~'-~-

Figure 2-1: WPS and ARW WRF flow chart [28]

The steps for running a real data case in WRF are shown in Figure 2-1. In this

chapter we briefly discuss the steps necessary to run a simulation and the integra-

tion of equations/physics included in the ARW solver. More detailed information

lhttp://wrf-model.org/plots/wrfrealtime.php



on running the model can be found in the ARW User's Guide [28] while technical

information on ARW is in Skamarock et al. [26].

2.1 Domain & Input Data

The WRF Preprocessor System (WPS) is made up of the routines GEOGRID, UN-

GRIB, and METGRID shown in Figure 2-1. The functions are to set up the model

domain and interpolate input data horizontally onto it.

The first step is the routine GEOGRID, which defines the projection and coordi-

nates of the domain. It then interpolates 2D static land data 2 and outputs a single

netcdf [25] file. Time dependent atmospheric and sea surface data are extracted from

grib [1] formatted files by the utility UNGRIB. For the Katrina simulation, AVN 0.5'

analysis data is used for the atmospheric variables and NCEP 0.50 RTG (Real-Time

Global) analysis is used for sea surface temperatures. The routine METGRID inter-

polates all of the data horizontally onto the domain. The output from METGRID

are a succession of netcdf files used for initialization and boundary conditions of the

simulation.

2.2 Initialization & Boundary Conditions

The program REAL creates initial and boundary condition files for WRF. REAL

interpolates atmospheric inputs vertically onto the hydrostatic pressure coordinate r1.

REAL also partitions some of the variables into a standard dry reference state and

perturbation state [28]. The latter is defined by the difference between the reference

state and the full state including moisture. The prognostic variables are thus in

exact hydrostatic balance for the model equations. The initialization file outputted

by REAL is a netcdf file with a single time at the start of the simulation.

Additionally REAL creates a lateral boundary condition file at the desired tem-

poral spacing which defines the four sides of the rectangular grid. The fields have

2available from the MMM website (www.mmm.ucar.edu)



values valid at the boundary time and a tendency term to get to the next boundary

time period [26]. For the Katrina test case, REAL was also used to create a bottom

boundary condition file containing SST data. The top boundary condition is set as

w = 0 (where w is the pressure vertical velocity), and is gravity wave absorbing.

2.3 Integration of Governing Equations

The advanced research wrf (ARW) solver used for this project integrates the compress-

ible, nonhydrostatic Euler equations in flux form [26]. The equations are formulated

using a terrain-following hydrostatic-pressure vertical coordinate defined as

r7 = (Ph - Pht)/pt where P = Phs - Pht (2.1)

where Ph is the hydrostatic component of pressure, and Phs, and Pht are surface and

top boundary values. Model variables are converted to flux form as follows

V = pv = (U, V, W), Q = pl, E = MO (2.2)

where v = (u, v, w) are covariant velocities in the horizontal and vertical directions

while w = ~ is the contravariant vertical velocity, and 0 is the potential temperature.

The prognostic flux-form dry Euler equations are

OtU + (V. Vu) - d,(po,) + a,(pqx) = Fu (2.3)

OtV + (V Vv) - ,y(p¢o) + a,(poy) = Fv (2.4)

OtW + (V. Vw) - g(aOp - p) = Fw (2.5)

tEo + (V VO) = Fe (2.6)

t + (V V) = 0 (2.7)

S+ -1[(V V4) - gW] = 0 (2.8)



where the subscripts x, y, and r denote differentiation, g is the gravitational constant,

¢ = gz is the geopotential, a = 1/p is the inverse density, and the right-hand-side

terms Fu, Fv, Fw, and Fe represent forcing terms from model physics, turbulent

mixing, spherical projections, and the earth's rotation. The diagnostic relation for

the inverse density and the equation of state respectively

07, = -ap (2.9)

p = po(RdO/Poa)" (2.10)

are used to close the system, where y = c,/c, = 1.4 is the ratio of heat capacities for

dry air, Rd is the gas constant for dry air, and Po is a reference pressure.

The full equations solved by the ARW are put in perturbation form, and include

moisture and map factors for different projections [26]. To include moisture the

vertical coordinate is written as

rl = (Pdh - Pdht)/1 d (2.11)

where Id is the mass of dry air in the column and Pdh and Pdht are the hydrostatic pres-

sure of the dry atmosphere and hydrostatic pressure at the top of the dry atmosphere.

The coupled variables are

V = AdV = (U, V, W), Q = IAd, E = ldO. (2.12)

To include map factors, the momentum variables are redefined

U = Idu/m, V = Ildv/m, W = ILdw/m, Q = /d41/m (2.13)

where m is the ratio of the distance in computational space to the corresponding

distance on the earth's surface. Lastly, variables are defined with respect to a hydro-

static reference state that is only a function of z. Pressure p, velocity potential /,



inverse density a, and mass of the column Yd are defined

X = x(z) + x' (2.14)

where x is each of the mentioned variables respectively. The momentum equations

are now written

ou + m[o,(Uu) + oy(Vu)] + (,(Qu) + (PldaxP' + Lda'Oxp) (2.15)

+(a/aId)(POxd( + (OqP'9x¢ - P'd8x¢) = Fu (2.16)

9tV + m[&,(Uv) + &,(Vv)] + 8,(Qv) + (Pdaap'+ Pa'ldayp)

+(a/ad)(0day' + &,p'&a- -u&d)

atw + m[ax(Uw) + a,(Vw)] + a?,( w)

-m- g(a/ad) q' - Ild(qv ± q+ q q,)] + m- 1 /4 g

(2.17)

= Fv (2.18)

(2.19)

= FW (2.20)

where q,, q%, and qr are mixing ratios for vapor, clouds, and rain, the mass conservation

and geopotential equation respectively are

tp•dl + m2 [aU + ayV] + md,• D

&aq' + P-I[m2(UO5 + Vq5) + mQO+, - gW]

= 0

= 0

(2.21)

(2.22)

where qm is the total mixing ratio and Qm = Pldqm, the conservation equations for

the potential temperature and scalars are

ate + m2[Ox(UO) + &,(VO)] + m&aQ)

atQm + m2[( Uqm) + ay(Vqm)] + ma,(Qqm)

= Fe

= FQm

(2.23)

(2.24)

the hydrostatic relation is

' = --pdad - ad/Id (2.25)

and the equation of state is

p = po(RdOm/apoad)"' (2.26)



where 0mm - ¢(1 + 1.61q,).

The equations 2.16 through 2.26 are solved for using a time-split integration

scheme, where the meteorologically significant low-frequency modes are integrated us-

ing third-order Runge-Kutta (RK3) while acoustic modes are integrated over smaller

time steps for numerical stability [26]. Acoustic integration is cast as a correction to

the RK3 integration and acoustic modes are filtered by using divergence damping.

Diabatic forcing is integrated within the acoustic steps as well. For the Katrina sim-

ulation, 5th order accurate spatial discretizations (using an Arakawa-C grid) of the

flux divergence are used for momentum, scalars, and geopotential.

The time steps for low and high frequency modes were chosen based on stability

constraints. The maximum time step for advection in RK3 is given by

Atmax < Crtheory AX (2.27)

where Cr is the Courant number, Ax is the grid size, and umax is the expected

maximum velocity [26]. For the Katrina simulation the Atmax value was 246s . The

WRF manual recommendation is to stay 25% below the maximum figure, so the time

step of 180s is used. The ratio of the advection time step to the acoustic time step is

set as the default value of 1. This time scale length ensures both stability and ease

of experimentation, as a shorter time scale leads to longer wall-clock running time.

2.4 Physics

Model physics are categorized in a modular way into microphysics, cumulus parame-

terization, planetary boundary layer (PBL), land-surface model, and radiation. There

are multiple physics options available for each module to be chosen by the user de-

pending on the type of simulation. Details on each option (including those that follow

in this section) are found in Skamarock et al. [26].

For microphysics in the Katrina simulation, the WRF Single-Moment 3-class sim-

ple ice scheme is used. For cumulus parameterization the Kain-Fritsch scheme is used.



To calculate surface heat/moisture fluxes for the land-surface model and surface stress

for the PBL scheme, the Eta surface layer scheme based on similarity theory is used.

The land-surface model uses a 5-layer thermal diffusion based on the MM5 5-layer

soil temperature model. The PBL module uses Yonsei University PBL. The radiation

scheme for longwave is the RRTM (Rapid Radiative Transfer Model) taken from the

MM5 model and the shortwave scheme is similarly taken from MM5. Interactions

between the modules occur via model state variables and surface fluxes.

2.5 Configuration

The WRF model is configured for ecovision.mit.edu, the computer used for this re-

search, using the linux, single processor option. A requirement is that netcdf libraries

are compiled by the same compiler used by WRF, and that they are linked to WRF

by setting the environmental variable "NETCDF" to the location of the libraries.

A segmentation fault runtime error in WPS v2.2.1 is remedied by inserting the

following statement at line 325 of /WPS/geogrid/src/interp_module.f90:

call mprintf(.true.,STDOUT, 'maskval. %f',f =maskval)

At first glance, this seems like a bizarre modification and one that would have no

bearing on the functioning of the code because it is merely a print statement. It turns

out to be, however, a critical patch to the program that prevented it from segfaulting.

The mechanics of memory management in fortran, the key to make this statment

meaningful, are unfortunately beyond the scope of this document. Discussion of this

fix is found on the WRF Forum 3

3http://tornado.meso.com/wrfforum/





Chapter 3

Data Assimilation

The numerical weather prediction (NWP) problem requires an estimate of the future

state of the atmosphere from a set of initial conditions and time varying bound-

ary conditions. This is predominantly accomplished using approximated governing

equations making up the model.

Prof. Lorenz's pioneering work [17] has shown that errors merely due to finite

numerical representation will result in a nonlinear and chaotic error growth between

model forecasts and truth. If the uncertainty in the numerical representation of a

model's state were perfectly known, then one could invoke the Fokker-Plank equation

to forecast both states and their uncertainties, up to the predictability limit suggested

by some suitable objective measure on the distribution.

However, not only is an analytic solution to the Fokker-Planck impossible, but

even an appropriate representation of uncertainty, which is an even more fundamental

issue, is far from understood. To complicate matters further, models are not perfect

(and some believe they never can be). There is no chance that Fokker-Plank is

a viable means for effective prediction, although it is a reasonable mechanism for

understanding predictability limits.

Our best bet to improve predictions, many will argue, is to couple numerical mod-

els with observations of the real system in an attempt to arrest a forecast distribution

from diverging. This can be accomplished by inferring a variety of properties of the

coupled physical-numerical system. Just what is inferred (and how) is the subject of



study called data assimilation in the meteorological community and, as such, it is a

proper subset of estimation, control, optimization and stochastic systems theory.

Alas, the data assimilation problem is also hard. We now have a high-dimensional,

imperfect numerical representation of nonlinear governing equations. Not only are

initial and boundary conditions for the model unknown, but real atmospheric data

are available from relatively sparse and noisy data and not necessarily in the form of

model variables. State estimation is in fact a fundamental challenge for NWP and

much algorithmic and applied work is devoted to advancing it.

3.1 State Estimation Methods

State estimation is the process by which we constrain model states using observations,

whilst balancing uncertainties in the knowledge of model states and observations.

Current methods for state estimation can be broken into two general approaches,

filtering and smoothing.

Smoothing is the natural framework when we wish to estimate all states, typically

at discrete times within a time window, using all available observations. A batch

smoother is conceptually the simplest of smoothers, which estimates model states at

all times by creating a meta-state that concatenates all of them. However, such an

approach is computationally expensive for all but the most trivial problems. Fortu-

nately, for dynamical systems of interest to us, smoothing over specific intervals can

be done sequentially.

The Rauch-Tung-Striebel algorithm [20] is an optimal sequential smoother for a

linear system and approximate methods have been developed to deal with nonlinear

systems. These include the variational forms such as the representer method [3]

and 4DVAR [16]. The latter is also known as the adjoint method [29] and derived

from solutions to two-point boundary value problems [5]. Another class of methods

uses Monte-Carlo representations of uncertainty to statistically compute approximate

adjoints, and this forms the basis of the ensemble Kalman smoother [8, 9].

Smoothing by any these methods implies that model states at all previous times in



the interval relative to a fixed observation time are updated. In an NWP application,

however, we typically only care for an estimate (analysis) at a fixed point in time.

For a fixed-point, smoothing may be used too, by leveraging observations in the

future relative to it. This is decidedly better than only using observations from the

past and present. For example, ECMWF (the European Centre for Medium-Range

Weather Forecasts) uses observations within a time window to estimate the state at

the beginning of the window and then launches a forecast in to the future from it.

This form of smoothing, where a smaller finite window progresses within a larger or

infinite time window is called fixed-lag smoothing. For a more complete discussion,

see Ravela and McLaughlin [21].

Filtering refers to the estimation of state at the current time using observations

from the entire past up to the present time. When viewed naively, the filtering

problem might appear to have a disastrously increasing burden as time progresses.

Fortunately, again, filtering dynamical systems of interest to us is recursive. A model

forecast to the present is updated with current observations and a new forecast is

launched from the analysis. The process repeats and in this way a model recursively

benefits from an entire observation sequence. As we shall see shortly, a Bayesian

formulation expresses recursive filtering in a direct and elegant manner.

At any given time of analysis however, an estimation problem must be solved to

update model states and their uncertainties. The measure used to solve such problems

is overwhelmingly a metric. Although metrics may come in different flavors, they

share an underlying form that traces its history to least-squares methods for minimum

variance estimation.

For example, Optimal Interpolation (OI) [15] utilizes a least squares approach for

minimizing the errors between observations and a forecast. OI assumes an isotropic

forecast error covariance matrix (also known as the background error covariance)

for use at all assimilation times. 3DVAR [15] produces a best estimate analysis by

minimizing a cost function by a variational approach, finding the solution through an

iterative method'. The background errors in this case can be estimated in a variety

'This approach has the advantage of incorporating nonlinear relationships between observations



of ways, but tyically a weakly flow-dependent, but still static technique called the

NMC method [19] is often used. This solution has been adopted as a standard for

NWP in the US.

The Kalman filter [10, 15] is the optimal recursive filter for linear systems with

additive Gaussian uncertainties. For a linear observation model under a Gaussian

assumption, there is a methodological consistency between the Kalman filter and

3DVAR and OI. The former however produces an estimate of both the first and sec-

ond moment for a Gaussian-parameterized forecast distribution. Doing so is optimal

for linear-gaussian systems but this optimality is not achieved by OI or 3DVAR be-

cause the second moment is never updated. Thus, in addition to the linear-Gaussian

requirement, 3DVAR and OI are optimal only to the degree the uncertainty in forecast

distribution is modeled accurately.

Extensions to nonlinear systems take the usual form of linearizing nonlinear prob-

lems, and a linearization of the dynamics forms the basis for the extended Kalman fil-

ter [13]. However, linearized or linear, for large systems advancing the background er-

ror covariance is computationally expensive, if not prohibitive. The ensemble Kalman

filter [8] (and many variants) provide a statistical alternative; an ensemble of forecasts

is used to compute a reduced-rank estimate of the population covariance. Multiple

simulations thus replace explicit propagation of the covariance, and the model is never

linearized. For nonlinear dynamics, this approach appears to offer some advantages

over the extended Kalman filter, but optimality is neither guaranteed nor observed

and significant issues with regard to noise, fidelity and dispersal of the ensemble

remain.

For nonlinear dynamical systems, which will transform initially Gaussian uncer-

tainties into non-Gaussian uncertainties downstream, then, a new approach is re-

quired. A particle filter appears to be the the most promising. This filter implements

the Bayes rule using Monte-Carlo methods but questions regarding appropriate repre-

sentations of uncertainty and dimensionality remain. The particle filter is the subject

of vigorous research in many fields.

and states.



In this chapter, we will study sequential filtering from a Bayesian point of view and

relate it to contemporary practice, with entirely Gaussian assumptions in uncertain-

ties and a linear relationship between observations and states. This will be a prelude

to a discussion of 3DVAR using the NMC method, which is the method available with

WRF. We will end the chapter with notes on configuring WRF-VAR for experiments

conducted here, including code modifications to make the the distribution work.

3.2 Bayesian Formulation of Filtering

Let us assume a model state vector Xn at discrete time n is only a function of the

state at a previous time n - 1:

X, = f(Xn-,_ U,_~) (3.1)

where U,_1 is a vector of model inputs in the form of control variables and f is a

nonlinear evolution function 2. Observations are modeled linearly in this report and

take the form

Y, = HXn + r. (3.2)

The vector Y, contains observations, H is a linear observation operator, and r is

noise.

The goal is to estimate Xnrue, the true state of the atmosphere at discrete time tn,

by finding a model state that is most consistent with the observations. We assume

that Xnue can be captured by a statistic of the analysis's distribution. Thus we may

posit a variable X, representing a random model-state, such that E[Xn] = Xnrue. The

goal is to find this analysis distribution and its statistics using one of the possibly

many estimation methods.

In filtering, the estimation problem is reduced to quantifying the statistics of an

analysis distribution, that is the distribution of model-state X, conditioned on all

2We assume the model itself does not change with time, though states and control inputs obviously
do.



observations Yo to Y,. We quantify this distribution as

(3.3)

Assuming the observations are not correlated in time P(Yo0 :) = fl-o P(Yi) and using

the Markov property, Bayes rule can be used to express the posteriori probability 3.3

as
P(XnIYo:n) = P(YnXn)P(XnIYo:n-1)

P( Y)
(3.4)

The denominator is a distribution of observations which does not depend on model

state and therefore can be ignored as just a normalization constant. Thus

P(XnlYo:n) oc P(YnXn)P(XnlYo:n-1)

= P(YnjX) P(XnIXn-•)P(Xn-iIYo:n-_)dXn-1

= P(Y,nXn)P(Xn).

(3.5)

(3.6)

(3.7)

Equation 3.5 expresses the recursive form of filtering, whilst Equation 3.6 expands

it to properly include stochastic models (i.e. model error), and Equation 3.7 is the

form we will use here, where P(X f ) is the conditional prior or the forecast distribution.

We will next assume a parametric (Gaussian) form of these distributions to estimate

Xtrue

3.3 Gaussian Assumption & Quadratic Objectives

If the distributions in Equation 3.7 are assumed to be Gaussian, we may write X(f

N(X,, B) and 77- N(O, R), where B and R are matrices of error covariances in the

state and observations respectively. Thus, we can write:

(3.8)

P(Xn Yo:,n)

P(X4) c e-2-1[(Xn -x f)TB-1(Xn-Xnf)]



and the probability of observations given state can be written

P(Y, X,) oc e - [Y-H(Xn )]T R '[Yn -H(X n )] (3.9)

The distributions in Equation 3.8 and 3.9 are assumed to be unbiased. That is,

Xn = E[Xf] and HXn = E[Yn] is the mean of the conditional and prior distributions.

We wish to quantify an unknown X, as a statistic of two distributions, whose samples

in the form of Y, and X4 are given.

This solution may be written as a search for the maximimum a posterior prob-

ability, which is X, = argmaxx, P(YnX,)P(X,). Since we make the Gaussian

assumption, our estimate of the system state is reduced to minimizing the negative

logarithm of the above equations and the best estimate is thus X," = arg minx, J(X,),

where the J(X,) is written as

1 1
J(X) = 1(Y, - HXn)TR- (Yn - HX,) + 2(X, - X )TB-'(Xn - Xn) (3.10)

2 2

If the dependence on time is dropped, then we may write the objective as

J(X) = (Y - HX)TR- (Y - HX) + (X - Xf)TB-'(X - Xf) (3.11)

The optimal estimate of the posterior (or analysis distribution) mean is the analysis,

written as Xa, which in the case of a linear H is found by least squares to be

Xa = X f + BHT(HBHT + R)-(Y - HX') (3.12)

OI and the Kalman filter both utilize Equation 3.12. However, OI will use a

constant isotopric Bo matrix for all times, or may make a simple assumption about

the behavior of P(Xf) over time such as that the model integration increases initial

error variance by a fixed amount. The Kalman filter updates the background error



covariance too. First define the Kalman gain as

K = BHT(HBHT + R)- . (3.13)

Then, the posterior distribution is represented by the mean Xa and a covariance

Ba = (I - KH)B. 3DVAR solves 3.11 iteratively, typically using the Conjugate

Gradient algorithm. This has the advantage for a nonlinear observation operator,

but here, since we assume the observation operator is linear, there is no difference

from Equation 3.12. A key point however is that like OI, 3DVAR does not propagate

the error covariance (or estimate it). Instead, the background error covariance, as B is

called, will be determined using the NMC method [19] at every assimilation time. The

ensemble Kalman filter can be seen as using an ensemble of forecasts and observation

pairs. Each pair produces a single analysis state. The expectation of the analysis

states is an estimate of truth, and the statistically computed covariance of analysis

states is an estimate of the posterior covariance. The derivation and convergence of

EnKF are beyond the scope of this document.

3.4 3DVAR in WRF-Var

We use 3DVAR because it is the most widely used method for data assimilation in

NWP and is packaged with WRF. The cost function that WRF-Var seeks to solve is

an adaptation of Equation 3.11:

J(X) = (Y - HX)T(R + F)-'(Y - HX) + (X - Xf)TB-I(X - X f ) (3.14)

where F, the representivity error-covariance matrix, estimates the errors caused by H

to change from analysis space to observation space [26]. Control variables are defined

for the background state to efficiently approximate B using a preconditioner U

X' = Uv (3.15)



where X' is the analysis increment, U represents the various stages of covariance

modeling, and v is the control variable. With a suitably defined U, UUT approximates

B. The incremental cost function is thus written

J(v) = vTv + (Yo - HUv)T(R + F)- 1 (Y/ - HUv). (3.16)

This is the form of the quadratic objective in WRF-Var [26]. The cost function is

minimized through either the conjugate gradient method or quasi-Newton method.

Control variables used are streamfunction 0, velocity potential 0, unbalanced

surface pressure p,, temperature T, and relative humidity r [26]. The analysis keeps

imbalance to a minimum because the first guess is either a WRF generated forecast

file or a REAL generated initial condition file. Balance is also imposed between mass

and wind geostrophically and cyclostrophically, when statistically relevant based on

regression coefficients. The transform is used for computational efficiency only in

WRF-Var as the WRF model variables are again used for a subsequent forecast.

WPS + REAL bc

Cold Start / Warm Start (Cycling Mode)

OBSPROC Y WRF-Var X ---- UPDATE BC --. WRF

GENBE P( j

Figure 3-1: WRF-Var in the WRF system [28]

The WRF-Var system is shown in Figure 3-1. WRF-Var is run using a cshell

script, where environmental variables are set according to start/end time, domain,

quality control flags, etc. WRF-Var outputs an analysis file that is the same format as

the wrfinput initialization file created by REAL. An additional utility UPDATE_BC

is run to update the boundary condition file (originally created by running REAL).



With those two files another forecast can now be run with WRF, completing the

assimilation cycle.

3.4.1 Observation Processing in WRF-Var

In order to be ingested by WRF-Var, observations must be in a proprietary format

called littler [28]. Observations accepted include U and V components, pressure,

temperature, and relative humidty by either pressure or height. Also included are

quality control flags and station information. This file is processed by the program

3DVAROBS, which outputs a file of similar format except with additional quality

control, domain, and instrumental error data. WRF-Var itself also outputs infor-

mation on how many and what kind of observations were assimilated, as a final

diagnostic.

Standard uncertainties for sounding data are included in a file called obserr.txt.

Instrumental errors are included for various air, water, and surface observation types

as well as satellite retrievals. For radiosonde data, wind sensor errors are included

on pressure levels of WRF forecast files and are based on those used in the FNMOC

NOGAPS and ECMWF forecast models. Uncertainties can be used in quality control

by throwing out those observations that differ from the first-guess (or forecast) by a

large multiple of the observation error. Because we use synthetic observations (in an

identical-twin experiment), such quality control measures are turned off.

It should be noted that the state estimates are a function of the relative differ-

ence between error uncertainties of observations and forecasts, and not their absolute

values. Although the process for determining an optimal estimate is well established,

mechanisms for determining the underlying error covariances are not. Typically, a

combination of physical reasoning, statistical exploration and experimentation is used.

A common problem with forecast error covariances is that whilst they have useful

correlation structure, the amplitude (or variances) are too small, thus resulting in

an unjustifiably strong confidence in a forecast. Observations are either rejected (if

quality control is in effect) or have minimal impact on the analysis. Inflation is

a commonly used method by which the variances are increased to the point that



observations start to yield updates.

Equivalently, and more conveniently, observation errors can be tuned, and this fa-

cility is provided with WRF-Var using a method proposed by Desroziers and Ivanov [7].

The utility TUNE included with WRF-VAR calculates an expectation of the second

half of Equation 3.16, based on randomly perturbing observations [28]. If there are

enough observations, a reliable tuning factor can be calulated at an analysis time

to adjust the relative strength of observation and forecast uncertainty. We use this

method to optimize observational errors in the Katrina experiment.

3.4.2 First Guess & Background Error Statistics

WRF-Var uses a wrfinput format file for the first guess, which has different variables

than those used by WRF as an initial condition. In cold start, a file in wrfinput format

is created by REAL. For warm start, an option is added to the main WRF namelist

for WRF to output a forecast file of the necessary format. WRF-Var overwrites the

wrf_input file with the analysis result (thus completing the cycle).

Climatological background error covariances are included as the default with

WRF-Var for North America during winter, but errors for the correct season and

resolution can be estimated by either the NMC method or the ensemble method us-

ing the utility GEN_]E. The NMC method is preferred as it is operationally more

prevalent, as well as relatively being computationally inexpensive. For this method

at least a month of 24 hour and 12 hour forecasts both ending at the same time in

12 hour intervals are recommended. B is then estimated by

B % [Xf(T + 24) - Xf(T + 12)][Xf(T + 24) - Xf(T + 12)]T (3.17)

where the overbar represents a long term average.

Implementation of this method begins with a cumbersome logistical step. Ac-

cumulated forecast files are split with a utility called TIME_SPLIT to extract the

forecast at a single time, the time at which the simulation ends. The files are then

ready to be ingested by the first stage of GEN_BE.



GEN_BE is made up of 5 separate stages run by cshell script. The first stage,

STAGEO reads in forecast files starting at lagged initial time (12h) but valid at the

same forecast time. The fields are converted to WRF-Var fields and then differences

are calculated. These difference fields are used to calculate differences for stream-

function and velocity potential based on the U and V difference fields by solving the

Poisson equation. Difference fields are outputted into binary files named diff.date to

be read by the rest of the stages.

STAGE1 bins the difference data based on latitude of the Y-direction and removes

bias from the difference fields [26]. STAGE2 performs a regression against the stream-

function (by bin) in order to define unbalanced U, V, T, and P. STAGE3 calculates

vertical local and global eigenvalues and eigenvectors for the control variables using

an eigendecomposition. For regional applications like the Katrina example, STAGE4

calculates horizontal length scales by processing difference data as a function of grid-

point separation and least-squares fitting this curve to a Gaussian. All mentioned data

are combined into a single background statistic file called be.cv_5 (where 5 stands for

regional statistics calculated from WRF fields) by a utility called DAIGS. The same

background statistics file is used for all analysis times.

3.5 WRF-Var Code Edits

There were numerous code alterations done in setting up WRF-Var both for the

purposes of fixing apparent bugs in the source code and making WRF-Var function

better on ecovision.mit.edu.

Compilation errors were fixed in both MAP (a utility to view the location of in-

gested observations) by making the following change to the /3D VAR_OBSPROC/configure. user

file lines 61-62:

LIBS = -L$(NCARG_ROOT)/lib -1ncarg -icgm -Incarg_gks -incarg_c

-L$(PGI)/linux86/lib -Ipgftnrtl -ipgc -lX11 -Igfortran \

changed to:



LIBS = -L$(NCARG_ROOT)/lib -lncarg -lcgm -incarg_gks -lncarg_c \

-L/usr/X11R6/lib -lX11 -L$(PGI)/linux86/lib -lpgftnrtl -lpgc \

-L/usr/lib64 -lg2c -L/usr/lib64 lgfortran

The utility TUNE for tuning observational errors had a runtime error for calcu-

lating the expected Jo over multiple time periods, so the associated DO loops were

removed from line 219, 345, 526, 679, and 1219.

Another change was made in /wrfvar_v2.2beta/da_3dvar/src/DA_Obs/dause_ob_errfac.inc

to specify that only U and V errors were to be tuned. Lines 131-141 (below) com-

mented out:

iv % sound(n) % v(k) % error = iv %

iv % sound(n) % t(k) % error = iv %

iv % sound(n) % q(k) % error = iv %

sound(n) %

iv %

sound(n) %

iv %

sound(n) %

v(k) % error

sound_ef_v

t(k) % error

soundef_t

q(k) X error

iv % sonde_sfc(n) % u % error = iv %

iv % sonde_sfc(n) % v % error = iv %

iv % sonde_sfc(n) % t % error = iv %

iv % sonde_sfc(n) % p % error = iv %

iv % sonde_sfc(n) % q % error = iv %

iv % sound_ef_q

sonde_sfc(n) % u % error * &

iv % synop_ef_u

sonde_sfc(n) % v % error * &

iv % synop_ef_v

sonde_sfc(n) % t % error * &

iv % synop_ef_t

sonde_sfc(n) % p % error * &

iv % synop_ef_p

sonde_sfc(n) % q % error * &

iv % synop_ef_q

It was also ambiguous where the errfac.dat file was to be located, so the statement

in /wrfvar_v2.2beta/da_3dvar/src/DA_Obs/daread_errfac.inc on line 25:

open( fac_unit, status='old', file = 'errfac.dat', iostat=ierr )



was changed to:

open( fac_unit, status='old', file = &

'/home/align/wrf_new/wrfvar_v2.2beta/genbe/errfac.dat', iostat=ierr )

The other errors were all associated with GEN_BE. A compilation issue is solved

for gen_be_stage0 with this change in /wrfvar_v2.2beta/external/io_int/makefile on

line 4:

FFLAGS = $(FCFLAGS)

changed to:

FFLAGS = -Mpreprocess $(FCFLAGS)

SFC = pgf90

A runtime issue encountered was that STAGEO defines the character strings as

only length 80 to hold the names of WRF forecast inputs, so the inputs are now

located in a root directory of shorter length. STAGEO also tried to open the same

forecast file twice instead of the appropriate pair, resulting in difference files filled

with 0 values. The way in which STAGEO generated the file names was changed in

the file /wrfvar_v2.2beta/da_3dvar/src/DA_GenBeStats/DA StatisticsStepO. inc to

call for the appropriate file names. Line 86:

call DA_Make_Filename(file_datel, fcstdate, number, filename)

was changed to:

call DA_Make_Filename(file_datel, file_datel, number, filename)

while line 112:

call DA_Write_Diff (unit, file_date, number, diff, xp, &

ids,ide, jds,jde, kds,kde, &

ims,ime, jms,jme, kms,kme, &

was changed to:



call DA_Write_Diff (unit, file_datel, number, diff, xp, &

ids,ide, jds,jde, kds,kde, &

ims,ime, jms,jme, kms,kme, &

its,ite, jts,jte, kts,kte, xbl2 )

The same file was edited in experimentation with other methods of generating

background errors. Additionally because STAGEO uses many of the same framework

as WRF-Var, there were some instances where WRF-Var inputs had to be supplied

just for runtime to go smoothly. An "ANALYSIS.DATE" variable had to be defined in

/wrfvar_v2. 2beta/da_3dvar/src/DA SetupStructures/DA _setupfirstguess_wrf var. inc for

STAGEO even though no analysis was being calculated. Line 50 had this added only

for compiling gen_be, not wrfvar:

an_date=xb_date

The program also would not run unless a WRF 3DVAR input file was linked, even

though it was not used. Another change made to /wrfvar_v2.2beta/da_3dvar/Module-wrf_3dvario.F

so that the proper date would be passed to the difference file being outputted. The

following was added to line 78:

current_date=in_date

STAGE1 contained an error where the difference files for input were not properly

declared as old files, and so they were being overwritten instead of opened. The appro-

priate OPEN statements were thus edited in /wrfvar_v2.2beta/gen_be/genbe_stagel.f.

Line 121 and 248 changed from:

open (iunit, file = trim(dat_dir)//'/'//filename, form='unformatted')

to:

open (iunit, file = trim(dat_dir)//'/'//filename, &

form='unformatted', status='old')

Finally, OPEN statements were changed in each of the 4 stages (in directory

/wrfvar_v2.2beta/gen_be/) to accept difference files from any date, not just in temporal



succession as was allowed before. A logical variable "johnfile" was declared and the

following statements were used every time a file was opened:

inquire (f ile=trim(datdir)//'/'//f ilename, exist=j ohnfile)

if (johnfile) then

-program continues-

end



Chapter 4

Identical Twin Experiment

As stated in the Chapter 1 introduction, the WRF-Var system provides a platform

for experimentation in data assimilation with different mesoscale problems. Here

we work through the process by simulating an important and common problem, a

position error in a tropical cyclone forecast.

The framework utilized is an identical-twin experiment with a simulated observa-

tion network. Each twin is a simulation of Hurricane Katrina. One, however, has a

constant, barotropic 2 m/s westerly wind imposed to simulate a perturbation run rel-

ative to what may be viewed as the true Hurricane Katrina simulation. The "truth"

is used as a source of observations (after adding noise).

We take this approach because identical twin experiments are accepted as a valid

source for methodological development and testing in data assimilation. Further,

although Katrina itself was well-forecasted, we are interested in examining the effect

position errors has on DA and this is achieved by comparing the perturbed run to

the simulated.

In this chapter, we discuss the generation of appropriate background error statis-

tics, creation of synthetic observations, and the mechanics of running the identical

twin experiment. We hope to illustrate both the opportunity for experimentation now

afforded by a working state-of-the-art assimilation package at MIT and the failing of

3DVAR in regards to position errors (as mentioned in Section 1.1). We also show

a field alignment solution for WRF fields from the identical twin experiment. The



encouraging results imply that this algorithm can be implemented into an already

existing data assimilation package such as WRF-Var.

4.1 Background Errors

The background errors are perhaps the most important component of 3DVAR, as they

are used to spread the influence of observations on surrounding model grid nodes and

impose balance constraints. For purpose of optimizing the performance of WRF-Var

in this experiment, background errors are generated from 4 years of past August

forecasts (2004-2007) using the same domain as the Katrina simulation. The domain

of study is shown in Figure 4-1.
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Figure 4-1: Domain for Katrina simulation.
330N, -76 0 W, center point is 250N, 890W.

SW to NE corner is 16.5 0N, 102 0W to

The Katrina simulation itself takes place over 2 days (August 28 and 29). Flow



dependent statistics for this particular storm would be optimal, but because we do not

implement an ensemble forecast here, and the inappropriateness of state-dependent

covariances in the presence of position errors is already obvious [6], we utilize a plausi-

bly more robust source of background error covariance by generating climatologically

relevant errors using the NMC method from past Augusts.

The NMC method is applied to pairs of forecast files ending at the same time as

described in Section 3.4.2. For creating difference files, 12 and 24 hour forecast files

every 12 hours are archived for each August of years 2004-2007. These files are WRF

forecasts using AVN grib data for initialization and boundary conditions.

Difference files are used to calculate background statistics. In order to obtain

statistically meaningful results, a sample size of 50 or more difference files is fed into

a WRF program called GENBE. Samples are chosen randomly from the 4 years and

the background statistics file is used for every assimilation time in the experiment.

A way of distilling some relevant information from all of the NMC characterization

of background uncertainty is by looking at the eigenvectors and eigenvalues of covari-

ance components in the vertical. Eigenvectors are a look into the vertical structure of

modes of oscillation for model variables. Eigenvalues for these eigenvectors, shown in

Figure 4-2 for control variables are a representation of the variance for each of these

vertical modes. Thus, these variances can be compared roughly at a glance to the

error variances for observations (once converting to the same variable).

As an example, taking a value of 1.8 x 1011 for a mode 1 eigenvalue of velocity

potential from Figure 4-2, an order of magnitude approximation for the variance in U

is found through U = where Ox = 30 km and V = 1.8 x 1011. This comes out

to a variance in U of around 10 m/s. The observation errors are of comparable scale,

around 3 m/s. Furthermore, the similarity in eigenvalues from both the 50 sample

and full case show that the subsample provides a reasonable representation of the the

background statistics.



chi_u

1.8x1011

1.5x10"

1.2x10"

0.9x10"

0.6x10"

0.3x10"

0.0x1011
4 8 12 16 20 24

Vertical Mode
t_u

0.030

a, 0.020

c-

a,
0.010

0.000
4 8 12 16 20 24

Vertical Mode

4 8 12 16 20 24

Vertical Mode
rh

4 8 12 16 20 24

Vertical Mode

Figure 4-2: Eigenvalues for WRF-Var control variables from NMC method

4.1.1 Analysis Increment

For understanding the spatial structure of the background error covariance estimated

by NMC at any level, a single sounding observation is assimilated into a perturbed

run. The sounding is located in the center of the domain as shown in Figure 4-3.

Surface pressure is plotted for truth to show the observation in relation to Katrina.

The resulting analysis increment from WRF-Var is shown in Figure 4-4.

The influence of the observation is consistent with other efforts and reasonable in

the analysis when taking into account that the U field has been balanced geostrophi-

cally and cyclostrophically in WRF-Var. This gives credence to the background error

method and the minimization of the cost function.
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Figure 4-3: Single observation location for analysis increment. Surface pressure (PA)

shown to indicate relative position of Katrina at 12 hours
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Figure 4-4: Analysis increment (analysis minus forecast) of U (m/s) for single obser-

vation

4.1.2 Amplitude Perturbation

Another test of the WRF-Var system is an amplitude perturbation of an atmospheric

variable, as 3DVAR is expected to perform well for amplitude errors. Surface pressure



is perturbed (200 PA is added) from the initial condition file at the domain center

point. After a forecast run is completed the perturbation has grown in amplitude and

area. The difference between the two runs at 12 hours is shown in Figure 4-5.
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Figure 4-5: Amplitude perturbation in surface pressure (PA) (forecast minus truth)

Now the perturbation is around 400 PA just north-east of the center. An analysis

is produced from WRF-Var using noisy U and V component observations from the

same grid as Figure 4-8. The analysis increment in surface pressure is shown in

Figure 4-6.

The analysis reduces the forecast run perturbation by about 200 PA, or half. The

analysis compared to the real run is shown in Figure 4-7.

The analysis shows that WRF-Var finds a solution midway between truth and the

forecast state. This is the expected result for similar confidence (error variances) in

observation and background states, as discussed in Section 3.4.1. Thus this example

gives confidence to the WRF-Var system as we have configured it.
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Figure 4-7: Analysis minus truth of surface pressure (PA) for amplitude perturbation
example

4.2 Perturbation Run

Here, in contrast, the perturbed run is designed to create a position error. A 2 m/s

barotropic wind is added to the U component at every grid point to "blow" Katrina

I
-85 -U80

E



off course eastward. This change is entered by a subroutine at the end of the WPS

procedure. Thus, the perturbation is included in the initialization file and also exists

in the boundary condition files to sustain the forcing at all times.

Because the WRF preprocessing program REAL assumes atmospheric data is

balanced it does not impose any balance itself. Thus, we use another subroutine

to add a perturbation to the geopotential height to geostrophically balance the wind

perturbation. This prevents low frequency oscillations from dominating the movement

of Katrina and keeps the simulation from being nonphysical.

4.3 Observations
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Figure 4-8: Identical twin observation locations

Observations are taken from the 2-day simulation at every 4 th gridpoint as shown

in Figure 4-8. The first assimilation cycle for the identical twin is at 12 hours to allow

for damping of transients from the initialization process. Subsequent assimilations

are performed from observations at 6 hour intervals. At these times, a matlab script

gathers data from the netcdfoutput and puts the data into little_r format. The obser-

vations are then processed by OBSPROC for ingestion into WRF-Var. Random noise
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is added by selecting the "add observation noise" option in WRF-Var. Observation

errors are chosen as the standard sounding errors, and no observations are thrown

out for being too far away from the average state. Observation error statistics can be

tuned by using TUNE.f90 at the first assimilation time. Details of the identical twin

materials and scripts are found in appendix A.

4.4 WRF-Var Twin Analysis
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Figure 4-9: Identical twin plots. Rows: surface pressure (PA), U component near 900
mbar (m/s), V component near 900 mbar (m/s). Columns: forecast, truth, analysis

Forecast, truth, and analysis fields for the identical twin experiment are shown in

Figure 4-9 (original observation errors) and Figure 4-10 (observation errors scaled by
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a factor of about 2.5). The forecast is run for 12 hours with a 2 m/s perturbation in U

component. By this time the Katrina forecast shows a position error eastward of about

half the diameter of the cyclone's surface pressure signature. The background surface

pressure is generally different for the forecast because of the geostrophic balance

imposed along with the wind perturbation.
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Figure 4-10: Same as Figure 4-9 except with tuned observation errors.

The analysis in the U and V fields is smeared between the forecast and truth for

both cases.' The tuning factor of 2.5 multiplied by all observation errors in the second

example results in a higher confidence in the forecast, but this obviously does nothing

to make the analysis more reasonable. The resulting surface pressure for both shows

1 "Analysis" pressure is actually pressure calculated at 1 model time step (180s) as there is no
pressure increment and the wind analysis increments are not balanced in surface pressure.
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a wider and weaker tropical cyclone. It is clear from this experiment why methods

such as bogussing have been developed.

4.5 Field Alignment Description

Field alignment, as discussed in Ravela et al. [21], allows for position adjustments

in addition to amplitude adjustments. The goal is to create a cost function that

explicitly represents position errors. The new objective is written

J(X, q) = -(X(p) - Xf(p T B(q)-1(X(p) - XI(p))))
2

+-(Y - HX(p))TR-I(Y - HX(p))2
1

+L(q) - IlIn(IB(q)) (4.1)

where q is the displacement field, X(p :=r - q) represents displacement of X by q (r

are the position indices), and L(q) is an energy function which expresses constraints

on the displacement field.

Unfortunately, Equation 4.1 is highly nonlinear and although a direct solution

using an iterative minimization technique can be implemented [21], approximations

yield a more practical solution.

Instead of solving displacements and amplitudes simultaneously through Equa-

tion 4.1, an approximation involving the Euler-Lagrange equations can be made to

solve them sequentially. This cost function is minimized in two steps, the first is

a position adjustment step and the second is an amplitude adjustment step. The

displacement equation is

•V 2qi + W2V(V i) + [vx T jpHTR - 1 (H [Xf (p)] - Y)]i = 0 (4.2)

Here qi is the displacement at grid node i. Equation 4.2 is solved iteratively, and

a poisson equation is solved at each iteration to refine the displacement estimate.

The amplitude equation is applied after solving Equation 4.2. Let us define the



thus displaced grid nodes as 1. Then, the amplitude equation may be written as:

Xa -xf(f) + BHT(HBHT + R)- (Y - H Xf(p)) (4.3)

Notice that the background error covariance is the covariance after alignment.

In our case, because B is climatologically determined, it is unchanged as a resulf of

alignment and used as is.

The amplitude adjustment step is 3DVAR, as discussed, and here we focus on the

position adjustment step and integrate it with MIT's WRF-Var framework.

The positions of all fields are adjusted directly in model space. Note that all scalar

and vector model fields are aligned using the observations to define a single displace-

ment vector at each node [21]. Figure 4-11 shows the analysis by field alignment,

depicted here for surface pressure. Now, instead of feature distortion, there is a new

position for Hurricane Katrina between truth and forecast.
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Chapter 5

Conclusions

A fully working version of the WRF-Var system is now available for data assimila-

tion experimentation with both real and idealized cases. This is a state-of-the-art

mesoscale forecast model, the first available at MIT. Along with the ability to now

experiment with currently used DA methods, real-time forecasting is also possible

with addition of real data inputs.

A simple position error identical twin experiment using the system shows a clear

weakness with traditional amplitude adjustment methods like 3DVAR. Implementa-

tion of the two step field alignment algorithm appears a very promising solution as

shown with the alignment of WRF variable fields from the identical twin.





Appendix A

Identical-Twin Experiment

Mechanics

All materials for running the twin experiment including input data, edited code,

namelists, and configuration files are found on ecovision.mit.edu in the directory

/home/align/wrfnew/auto_run_twin. The run folder contains cshell scripts for the

single observation and amplitude adjustment experiment, tuning observation errors,

creating WRF forecasts for background statistics, and the identical twin experiment.

The script twin.csh runs through all the steps for the identical twin, which includes

configuration and compilation of code (if fresh WRF code is being used). For the

twin itself, start time, number of cycles, and length of time between cycles are de-

fined first. A forecast is then run for the perturbed case until the first analysis time.

Then observations are taken from the real run for that time and WRF-Var is run to

produce an analysis. After updating the boundary conditions, the next cycle runs

another forecast starting from the analysis and the assimilation cycle repeats. Netcdf

output from each forecast run and each assimilation is outputted into a single direc-

tory. This master script gives the ability to perform different experiments quickly, a

monumental improvement over trudging through the individual WRF steps manually.

Edited WRF code is located in the code folder, along with the matlab script

obs.m for creating little_r format observation files from Katrina truth and randfile. c

for generating a random difference file names for background statistics. Static land



data, GFS analysis data for Augusts of 2004-2007, and SST data for the same time

period are found in data. Namelists for creating forecasts for background statistics

and configuration files for compiling WRF, WRF-Var, and GEN_BE are found in

namelists. Other namelists for use in experiments are created by twin.csh as it runs.

Finally output from the identical twin experiment is moved by twin. csh into the folder

output.
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