Content-based Motion Retrieval
Using Vector Space Model
by
Zhunping 'Justin’ Zhang

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2008
(© Massachusetts Institute of Technology 2008. All rights reserved.

~ \
Author (e e e e

August 29, 2008

Certified by......... , B

/ .’ " Jovan Popovié

Associate Professor
Thesis Supervisor

Accepted by FARRE TR S

| Terry P.Orlando
MASSACHUSETTS INSTITUTE| - Chairman, Department Committee on Graduate Students

OF TEGHROLORY

ey

R S T

o
0CT 2 22008

UpraRies 1 ARCHIVES

Content-based Motion Retrieval
Using Vector Space Model
by
Zhunping ’Justin’ Zhang

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2008, in partial fulfillment of the
requirements for the degree of
Master of Science in Computer Science

Abstract

Motion retrieval is the problem of retrieving highly relevant motions in a timely man-
ner. The principal challenge is to characterize the similarity between two motions
effectively, which is tightly related to the gap between the motion data’s represen-
tation and its semantics. Our approach uses vector space model to measure the
similarities among motions, which are made discrete using the vocabulary technique
and transformation invariant using the relational feature model. In our approach,
relational features are first extracted from motion data. then such features are clus-
tered into a motion vocabulary. Finally motions are turned into bag of words and
retrieved using vector-space model. We implemented this new system and tested it on
two benchmark databases composed of real world data. Two existing methods, the
dynamics time warping method and the binary feature method, are implemented for
comparison. The results shows that our system are comparable in effectiveness with
the dynamic time warping system, but runs 100 to 400 times faster. In comparison
to retrieval with binary features, it is just as fast but more accurate and practical.

The success of our system points to several additional improvements. Our ex-
periments reveal that the velocity features improve the relevance of retrieved results,
but more effort should be dedicated to determining the best set of features for mo-
tion retrieval. The same experiments should be performed on large databases and
in particular to test how this performance generalizes on test motions outside the
original database. The alternative vocabulary organizations, such as vocabulary tree
and random forest, should be investigated because they can improve our approach by
providing more flexibility to the similarity scoring model and reducing the approxi-
mation error of the vocabulary. Because the bag of words model ignores the temporal
ordering of key features, a wavelet model should also be explored as a mechanism to
encode features across different time scales.

Thesis Supervisor: Jovan Popovié
Title: Associate Professor

Acknowledgments

I want to thank my advisor, Prof. Popovic, for introducing me into this fascinating
area and guided me in overcoming the challenges with great advice, patience and
encouragement. Without him this work would never be done so enjoyably. I also
want to thank my labmates in MIT Computer Graphics Group for their support on
both research and life. Especially I want to thanks Sara, Tilke, Eugene, Yeuhi for
helping improving the English of my thesis. Finally I want to thank my parents and

my sister for their unconditional support.

Contents

1 Introduction

2 Related Work

2.1
2.2
2.3

Text Retrieval
Image Retrieval

Motion Retrieval

3 Approach

3.1
3.2
3.3
3.4

3.5

Feature Extraction
Learning Vocabulary
Vector Space Model
Complexity e
3.41 Complexity for Preprocessing
3.4.2 Complexity for Querying

Extension,

4 Experimental Results

4.1
4.2

4.3

Benchmark Datasets
System Implementation
4.2.1 Vector-Space Model-based Retrieving System
42.2 The Dynamic Time Warping System
42.3 The Binary Feature System

Precision-Recall Evaluation

17

23
23
24
26

29
30
33
37
39
40
40
41

431 Methodology 46

432 Results. 46
4.3.3 Sensitivity to Choice of Features 49
4.4 Cross-Category Mistakes 50
4.5 Time Performance Evaluation 53
4.6 Observation and Discussion 5%
Conclusion 57
51 Future Work 59
5.1.1 Determining The Best Set of Features. 59
5.1.2 Large Dataset and Generalization Ability 59
5.1.3 Alternative Organization of Vocabulary 59
914 Wavelet 60
5.1.0 Longtermgoals 60
Material Included For Completeness 63
A.1 Relational Feature Computation Example 63
A2 Searching with Inverted Index 64
A3 Review of Wavelet Filter 65
A31 AnExample 65
Source Code 69
B.1 Dynamic Time Warping System 69

B.1.1 Dynamic Time Warping Code For The Similarity Between Two

Motions 69

B.2 Binary Feature-based String Matching 70
B.2.1 Relational Features Computing 71
B.2.2 Converter From Non-binary Feature To Binary Feature 74
B.2.3 Generate Return Lists From Binary Features 75

B.3 Motion Word-based Vector Space Model 7
B.3.1 Computing Features 78

B.3.2 Clustering
B.3.3 Converting Motions Into Words
B.3.4 Using Vector Space Model,

List of Figures

1-1

1-2

The emerging of motion reusing as the future motion creation frame-
work demands a highly effective and efficient motions retrieval system.
Here we show three generations of motions creation methods: keyfram-
ing, motion capture, and motion reusing. Keyframing was replaced by
motion capture due to the latter’s lower cost and high authenticity.
Compared to motion capture, motion reusing promises more flexibil-
ity on the creation of motions and rich content from the large amount
of data accumulated from motion capture. In the reusing framework,
motion retrieval is an integral subsystem that supplies the system with

relevant motion data.

This figure shows the content-based motion retrieval problem and its
evaluation. The system takes an example motion as the input, and
tries to find motions in database that are as similar to the example
as possible. The system has no access to the labels, and the shown
organization of motions by labels is completely conceptual. In reality
motions are organized without the aid of labels. The return lists can

be evaluated by comparing its labels with the example’s label.

Our approach has three steps. First, the system computes relational
features from the motion data. Second, the system learns a vocabulary
from the features and uses this vocabulary to translate motions into
text form. Third, the text formed motions are retrieved using the

vector space model.

19

3-2

3-3

3-6

Here is a side-by-side comparison of the Cartesian coordinates repre-
sentation (left) and the relation features (right). In the right figure,
the relational feature examples being shown are: the distance between
the vertical axis and the hand, the distance between the vertical axis
and the two ankles, and the distance between the right hand and the

horizontal axis at neck level.

A dance motion in feature space. Only the first two dimensions of the

19-dimensional space are shown.

Here shows the features from all motions in a dance motion database.
Only the first two dimensions of the feature space are shown. A motion
vocabulary will be learned from the feature set to help translate the

motions into text form.

Because of the high dimensionality of the real feature set, we use a 2D
artificial dataset to explain the algorithm. The left figure shows the
example feature set in 2D. The right figure shows the clustering results

with kequalling 8.

The left figure shows the Voronoi diagram corresponding to the cluster-
ing in Figure 3-5 (right). Each circle is the centroid of one cluster. The
right figure shows how the feature sequences of two motions are trans-
lated into motion words. Here the Voronoi diagram is superimposed
onto the two feature sequences, where every feature falls into a cell.
Then our approach replaces every feature with its cell-id, obtaining an
integer list for every motion. In this example, motion A is translated
into the list (1,1,2,2,2,2,1,1,8) and motion B is translated into the list
(2,3,3,4,5,5,54,3,2).

31

33

34

35

3-7 The vector space model in our approach consists of three steps. First

4-1

4-2

43

the system computes the histogram vectors of the database motions
and the query motion. Then, it weights such vectors using TF-IDF
weighting. Then it computes the cosine similarities between the mo-
tions in database and the example. Finally the system sorts the dataset

by their similarities to the example and return the best ones.

Precision-recall evaluation on benchmark A. In the figure, every sub-
plot shows the system’s precision-recall evaluation in retrieving mo-
tions of a particular category. For the DTW system and the VSM
system, the ranked return lists result in PR curves, while for the BF
system the unranked return lists result in PR pairs or PR points. In
the figure, stars stand for PR points from the BF system, where ev-
ery star corresponds to the querying using a particular mask, Circle-
solid-curve/triangle-dashed-curve are PR curves from the VSM/DTW
systems, and solid-line/dashed-line are averaged precisions from the
VSM/DTW systems. From the figure we can see that the vector-space
model is in general the most effective one. The vector-space model

system uses 38-dimensional features.

Precision-recall evaluation on benchmark B: Stars are precision-recall
pairs from the Binary Feature system, Circle-solid-curve/triangle-dashed-
curve are PR curves from VSM/DTW. Solid-line/dashed-line are av-
eraged precisions from VSM/DTW. In all five cases, our approach is
shown to be the most effective. The vector-space model system uses

38-dimensional feature to get the results in this figure.

Plots of precision-recall evaluation of our system on benchmark A using
19-dimensional and 38-dimensional features. The 19-dimensional fea-
tures do not include the velocity information while the 38-dimensional

features do. L

4-4

4-5

4-6

4-7

4-8

Plots of precision-recall evaluation of our system on benchmark B using
19-dimensional and 38-dimensional features. The results show that the

velocity information is not helpful on benchmark B.

Here shows the error matrices on benchmark A using the dynamic term
warping system and the vector-space model system. In both figures,
the block at row ¢ and column j stands for what percentage of category
J motions are returned within the top 10 hits on retrieval using an

example from category ¢.

Here shows the error matrices on benchmark B using the dynamic term
warping system and the vector-space model system. From the results

we see that our system is more effective on benchmark B.

This figure shows the preprocessing time costs. It shows that the
vector-space model system uses roughly 3 times more preprocessing

time than the other two systems.

This figure shows the querying time costs. The time cost of binary fea-
ture system and vector-space model system are low and barely visible

inthefigure.

This is a plot of the measure of how far the left foot is to the front
in a running motion over time. The signal shows periodic changes
and suggests that the system should exploit the temporal ordering of

frames. s,

Here shows the Fast Fourier Transform results on the example signal
from Figure A-1. The left figure shows the frequency domain response
of the signal. The signal has a major low frequency peak. The right

figure is the magnified version of the left over the horizontal axis.

12

51

52

52

54

54

66

66

A-3 This is a plot of the wavelet transform of the example signal in Figure
A-1; The wavelet filter used is Daubechies 4 filter. In contrast to the
temporal signal in Figure A-1 and the frequential responses in Figure
A-2, this figure is a combination of the two: the horizontal axis is the
time axis and the vertical axis corresponds to period; the higher on the

vertical axis, the longer the period the response stands for.

13

14

List of Tables

3.1
3.2

4.1

4.2

4.3

4.4

4.5

Notations L
Here is the list of the 19 relational features used in our approach. Fea-
tures 1 through 6 summarize the two hands’ positions in regards to the
upper body, features 14 through 19 summarize the two feets’ relative
position to the lower body, and features 7 through 13 summarize the

relation between the hands and other body parts.

Basic database information for the two benchmark databases. The first
contains eight different categories that indicate the basic dance steps
of Lindy Hop [11], the second contains five different basic locomotions
from the CMU motion capture database [16]..
This table lists the details of 8 dance steps in benchmark B. Open/close
stands for an open or close stance.
Preprocessing time evaluations in minutes. The last three columns are
the segmented costs of the vector-space model system. All values are
Inminutes.
Averaged querying time in seconds. Both the vector-space model sys-
tem and the binary feature systems query 100 to 400 times faster than
the dynamic time warping system.
This table summarizes the observations from the experiments results.
It shows that the vector-space model system is overall a better system
as it is more effective than the binary feature system and more efficient

than the dynamic time warping system.

15

16

Chapter 1

Introduction

Character animation is a powerful tool to create arbitrary video sequences for story
telling and entertainment purposes. This work concerns the problem of human motion
retrieval, a central problem in inventing the next generation of character animation
solutions. While existing solutions rely on skillful animators and cumbersome hard-
ware, this new solution centers on the concept of data-driven animation, or reusing
existing motion. For example, to create a fighting sequence for a new movie, we sim-
ply go through sequences from previous movies, find the one that best fits our new
story, and use it with minor modifications. This is nothing less than “standing on
the shoulder of giants” and will definitely revolutionize the whole industry.

The most traditional way to generate motion is keyframe animation. In keyframe
animation, the animator specifies a sparse list of 3D character key-poses, and then the
system interpolate between each adjacent pair of key poses to obtain the animation
sequence. This process has been improved with inverse kinematics and other posing
systems. However, such a solution still requires skill and manual effort.

Motion capture provides an alternative by capturing motions from real humans.
Markers are attached to the human body, and their movements are recorded with a
number of cameras in the form of video sequences. From this point, triangulation is
used to recover the 3D movements of the markers from these videos. Motion capture
creates authentic human movement with little animator input. This makes it popular.

As motion capture gets popular, the amount of motion data increases dramatically.

17

This leads to the emerging “motion reuse” field. There however is a subtle catch.
The data-driven approach favors larger a database over smaller ones. One way to
understand it is that the more data we have, the more likely we will find a good
motion, and thus the more likely we can get what we want with little effort. The
catch is that the larger database also has its downside. It requires more effort to go
through and to search. An effective and efficient data retrieval tool is necessary for
this data-driven method to work, as illustrated in Figure 1-1. This motion retrieval
problem is hard, not well solved, and is the subject of this thesis.

Keyframe Animation

Requirement —>Motion Capture ——> Motion Sequence

Motion Reusing
Dissect into Synthesize to
Micro- meet the
requirements requirement
«"‘.--l-duer.y".""-....
':‘ Motion return "‘-_ Useful Motion
«Database —— > Segments
.‘.... .“‘
accumulate

Figure 1-1: The emerging of motion reusing as the future motion creation framework
demands a highly effective and efficient motions retrieval system. Here we show three
generations of motions creation methods: keyframing, motion capture, and motion
reusing. Keyframing was replaced by motion capture due to the latter’s lower cost
and high authenticity. Compared to motion capture, motion reusing promises more
flexibility on the creation of motions and rich content from the large amount of data
accumulated from motion capture. In the reusing framework, motion retrieval is an
integral subsystem that supplies the system with relevant motion data.

Before we dive into the problem, let us first constrain the problem with two
assumptions. First is the content-based retrieval constraint. It assumes that the
requirement of the retrieval is given in the form of an example motion. This motion is
given by the animator to specify what kind of motion she is looking for. The system’s

goal is to find motions that are as similar to this motion as possible. This defines

18

the content-based retrieval framework. Second is the manually labeled groundtruth
assumption. It assumes that every motions, including the query example, is manually
labeled into several categories to serve as groundtruth. Given a query example of label
i, the correct returned result is all other motions labelled with i. By comparing the
label of the example and the labels of the motions returned by the system, we can
evaluate the return list’s quality quantitatively. Figure 1-2 shows an illustration of
this formulation. Please note that labels are not available to the retrieval system.
Labels are only used during evaluation. This is the actual problem being solved by

our approach.

Query
Motion Database Example Example
Motion Motion's Label
| Label 1 Motions I
Return List
| Label 2 Motions | :
o I retrieve 1st Match Motion Label evaluate
I abe otons 2nd Match Motion Label
E 3rd Match Motion Label
| Label z Motions | : .
A-th Match Motion Label

Figure 1-2: This figure shows the content-based motion retrieval problem and its
evaluation. The system takes an example motion as the input, and tries to find
motions in database that are as similar to the example as possible. The system has
no access to the labels, and the shown organization of motions by labels is completely
conceptual. In reality motions are organized without the aid of labels. The return
lists can be evaluated by comparing its labels with the example’s label.

Let us analyze the difficulties of the problem. The system needs to process search
orders intelligently enough and fast enough. Missing either one of these will make
the system useless. To enable a computer to screen a dataset intelligently, we need
to equip it with a reasonable understanding of human motion. This implies to give
it the ability to infer semantics from form, a highly non-linear process. This is hard
because: first, we don’t understand how humans do it; second, even if we understand
it, it is likely to be too complicated to be computed efficiently. Our best hope now is

to find an approach that is like a sweet point, which is effective enough and efficient

19

enough, such that it can be useful in real animation practice.

The representation of motion data itself involves some of the difficulties. All
motions are physically geometric data, represented as Cartesian coordinates or joint
angles. Such geometric data does not expose the motion semantics. First, Cartesian
coordinates are variant to translation, rotation, and scaling, while semantics is not.
Second, the geometric data are in continuous space, while the semantics is ultimately
discrete. Third, the motion sequence is simply an assemble of motion frames, while
the relation between the frame order and semantics is very complicated. It turns out
that in each frame, the geometric representation has much redundant information
than its semantics, while on the whole sequence, the simple manner of frame listing

ignores much hidden information.

Unfortunately these difficulties cannot be solved by existing techniques. Time
alignment aligns two motions in temporal order such that their averaged frame-to-
frame difference is minimal. This makes a strong assumption that motions have to be
matched monotonically. There have been much efforts on simplifying the single frame
representation, using models like PCA for dimension or space partitioning. These will
be reviewed in the next chapter. Our goal is to propose a solution that addresses all

these difficulties and come up with a system that actually work.

The center of the focus is how to come up with a similarity model that is both
effective and fast to compute. Our similarity model breaks up into three parts. First
we need to find ways to cancel out transformations that are irrelevant to the semantics.
We found out that the relational features is a good method for this purpose [4, 22].
It computes the geometric relations between skeletal parts and removes Euclidean

transformation from the data.

Second, we want to compact the space. The output of the relational features is
still very high dimensional. We basically have two choices: dimension reduction or
discretization. The former reduces the space down to a low dimensional subspace,
while the latter partitions the space into a finite number of cells. We go for the
latter one because we believe that although human poses are numerous, we should be

able to enumerate them into a finite set of thousands or tens of thousands of unique

20

poses. So intuitively, we should be able to have a finite pose vocabulary. We will
use a clustering method to partition the real space into a finite number of cells to
generate such vocabulary. This packs the motion frames into a finite and discrete set
of meaningful components.

Third, we want to uncover hidden information among frames. Instead of using
time alignment, we go for the vector-space model [27]. We did not used time alignment
because the monotonicity constraint is too strict and it is too costly to compute. The
vector-space model treat motion as a bag of words, and computes a histogram from
it. Then this histogram is used as the indicator of semantics. This is both proven
to be effective in capturing the semantics in text and image retrieval field, and is
efficient to compute.

In summary, we explore a motion-retrieval technique that removes the transforma-
tion variance from the geometric representation using relational features, then cluster
such relational features into a compact finite vocabulary, and finally translate motions
into a bag of words and retrieve using the vector-space model.

We evaluate this approach by comparing our approach with two other competing
methods: the dynamic time warping method [26] and the binary feature system [22].
The dynamic time warping method computes an optimal time alignment between two
motions, and use this alignment to compute a similarity between them. It is highly
effective, but runs excessively slowly. The binary feature system computes relational
features and then binarizes them into Os and 1s. Then it indexes motions by their
binary features and retrieves them using string matching. It runs very fast, but is less
effective because it lost quite much information in the binarization step. Furthermore,
because it uses string matching, it is highly sensitive to motion noises. The system
requires the user to give a fuzzy matching mask to compensate this. This makes the
system not automatic and less practical.

Our system, in comparison, is effective, automatic, and fast. It is more effective
than the binary feature system at least because it does not binarize the features.
The motion vocabulary approach, in contrast, adapts to the distribution of features

and creates a higher quality discretization. It is more practical because the vector

21

space model is not sensitive to noise, thus excluding the need for a manually se-
lected fuzzy mask. It is fast because it discretizes motions into a bag of words, which
can the searched efficiently as text. We evaluate all three systems on two bench-
mark databases. The evaluation consists of precision-recall evaluation which tells
the change of the return list’s accuracy against its completeness, error matrix analy-
sis which shows the proportions of mis-returned motions by labels, and performance

evaluation.

22

Chapter 2

Related Work

Motion retrieval is a cross field problem. First there has been a collection of works
directly on the problem of motion retrieval [22, 18, 6, 20, 18, 5]. Although none of
such works gives a practical solution to the problem, they tested many important .
concepts such as relational features, motion-index tree, time alignment in retrieval,
and so on. Computer graphics has gone far in trying to manipulate motion data
(17,1, 2, 4, 26, 13, 14]. These give a strong background in understanding the data we
are dealing with, and provide powerful tools such as time alignment. Image retrieval
is a closely related and much more thoroughly researched field [10, 7, 21, 8, 9, 29,
24, 25, 23|. Some works in this field discuss the fundamental limitation of computers
in approximating human perception. They came up with powerful concepts such
as feature-based method and vision words. These concepts have changed our way of
thinking about the motion retrieval problem. Text retrieval is an old and sophisticated
field that supplies insights and tools on generic informational retrieval[27, 3, 28]. Tools
like the vector space model and inverted index are tightly integrated into our method.

The rest of this chapter reviews above works individually.

2.1 Text Retrieval

Text retrieval is not perfectly solved but well understood. A text document consists

of words and is convenient to search by matching them with keywords. It is also

23

possible to extract the semantic meaning of a text document and search according to
its semantics. One example is the vector-space model [27]. The vector-space model
computes the word histogram of documents, mapping every document into a high
dimension space. Every dimension in this space corresponds to a word in vocabulary,
and the dimensionality is the size of the vocabulary. The angles among these vectors
are good indicators of their semantical similarities. Two powerful add-ups to the
vector space model is the inverted index and stop list. Inverted index maintains
pointers from every word to the documents that contain it. This allows the system
to quickly find out the set of relevant documents given a set of keywords. Stop list
is a list of frequent words that the system ignores. This is useful in lowering the

theoretical bound of the retrieval algorithm’s complexity.

2.2 Image Retrieval

Image retrieval, in contrast, is a multimedia retrieval problem. It is possible to
annotate every image such that the technique of keyword matching can be applied.
It takes too much time do so and the annotation can not capture the original meaning
perfectly. Content-based image retrieval is widely used as an alternative. As with
content-based text retrieval, an example image is given, which is compared to database
data for the most relevant ones. The similarity metric used for such finding is non-
trivial. Content of image is a high level interpretation of the image. Some vision
techniques take insights from the human vision system, which is thought to be divided
into two levels: the low level vision that reads details in image, and the high level
vision that interpret meaning from the collection of such readings.

The feature based approaches mimic the low level vision system. Details in an
image, such as corners and edges, are located and transformed into a convenient
mathematical form such as points in high dimension Euclidean space. Harris et.
al. invented a detector that finds edges and corners in image [10]. Freeman et.
al. introduced an architecture for synthesizing filters of arbitrary orientation, and

presented its use in edge detection [7]. Lowe introduced a feature filter that is invariant

24

to image scaling, translation and rotation [21].

Then it is up to the higher level system to infer semantic similarities from extracted
features. One way to do this is to compute a matching between two sets of features.
Constructing a bipartite graph with features as the graph vertices and distances
between features as the edge weights, the optimal assignment and hence the matching

cost is obtained by solving the bipartite graph matching problem [15].

Another way to do it is the vision word approach. It partitions the feature space
into voxels, and matches sets within this structure. The purpose of this is that then
a feature set can be approximated by its histogram over all voxels, and matching two
histograms is trivial. Grauman et. al. introduced an architecture in which the feature
space is partitioned hierarchically by a uniform grid. Feature sets are superimposed
over such a grid and their histograms are computed. The similarity among feature
sets is computed by combining the histogram overlaps with weights [8]. In essence,
this technique gives an approximation of the optimal assignment with a fraction of
the cost. Grauman et. al. introduced a partition that is adaptive to the feature
distribution. This is shown to reduce the error when the space dimensionality is high
[9].

Sivic et. al. constructed a video frame retrieval system using feature vector
quantization . In this system, features are extracted using the filters proposed by Lowe
[21]. Then the features are clustered and each feature is represented by its cluster-id,
translating every image into a bag of integer cluster-ids. Finally such a bag of integers
is retrieved by vector-space model as text documents. Such cluster-ids are also called
“words” [29]. Nister et. al. introduced a vocabulary tree architecture which allows
a larger and more discriminatory vocabulary to be used efficiently. The hierarchical
k-means algorithm clusters the features hierarchically. Each feature thus not only
corresponds to a word, but a word path in the tree. A scoring system is developed
to give weights to words by their depth in the tree . The results show that such tree
structure improves the retrieval effectiveness[24]. Philbin et. al. showed a comparison
of using flat k-means, hierarchical k-means, and random forest in quantizing features

. The random forest approach randomly selects a dimension from a few dimensions

25

with the largest variance and divides the space into two, and continues this process
on both cells until a certain variance threshold is met. Several such random space
partitions are used complementarily to mitigate quantization errors. The random
forest technique is shown to outperform hierarchical k-means in certain tasks [25].
In another related work, Li et. al. showed a framework to extract video sequence

semantics using spatial-temporal interest points [23].

2.3 Motion Retrieval

In contrast to image retrieval, motion retrieval needs to take the time dimension
into account. The content of a motion is determined by both the skeleton poses and
their ordering over time. Time adds complexity to the problem because motions do
not match each other uniformly on time. This demands a time alignment between
motions. The dynamic time warping algorithm is a classic algorithm to compute
an optimal temporal alignment between two sequences [26]. It works by running a
dynamic programming aigorithm over a pose-to-pose distance matrix between two
motions. Although it gives optimal alignment, its monoticity assumption is overly
strict and the quadratic time complexity is expensive for retrieval purposes.

Lin stated that it is only necessary to compare the peaks of two curves [18].
Keogh et. al. pointed out the uniform scaling problem in dynamic time warping
and proposed a solution using bounding envelopes [12] . Kovar et. al. proposed an
approach to locate locally optimal frame correspondences within a database, grow
optimal time alignment between such correspondences, and connect them into a web
structure for retrieval [13]. Arikan et. al. applied dynamic programming at different
levels to create motions according to user’s intuitive specification over time [2]. Arikan
et. al. proposed a method to synthesize motion from a dataset using randomized
search [1]. Lee et. all. proposed a method to synthesize real time motion from a
dataset that has been processed by adding transition edges and by clustering similar
segments [17].

All time alignment algorithms require an objective function to define what is an

26

optimal alignment. The objective function is usually the averaged aligned frame-to-
frame distance. The computation of the distance between two frames is non-trivial.
If two frames are represented in joint angles, their distance in the high-dimensional
joint angle space is one such metric. If the poses are represented in joint positions and
are normalized on translation, rotation and scaling, then their distance in the high-
dimensional Cartesian joint coordinate space is another candidate after alignment

[14]. These two metrics are not very discriminative and are slow to compute.

A feature-based approach is a powerful alternative. Similar to the feature-based
image retrieval solutions, feature-based motion retrieval approaches extract informa-
tion from sequence based on highly discriminative models. In such models, local
information is extracted into high-dimensional feature space, which is discrimina-
tive and convenient for computation. Combinatorial geometry features measure the
qualitative properties of groups of geometry features that are invariant over certain
transformations [4]. Mueller et. al. proposed a set of 31 such combinatorial measures
on joints of a skeleton. Examples are the distance between two hands and the angle
of the knee joint. In the systems , such features are binarized into 0 and 1 and are
shown to be effective in recognizing poses [22]. Lin proposed a set of five features
that characterize the orientation and motion of five separate body parts: the torso
and the four limbs. Such features are discretized into 0,1,and 2 [18]. Forbes et. al.
proposed a weighted PCA-based pose representation [6]. Liu et. al. used principal
component analysis to find a subset of principal markers that are representative for

the skeleton, essentially projecting pose down to a joint location subspace [20].

A different approach than time alignment is to discretize motions into meaningful
discrete components, and then retrieve them as text. This has the advantage of not
having the monoticity constraint and is more friendly for fast processing. The model
Mueller et. al. proposed essentially divides motions into lists of segments, and then
retrieves them using string matching [22]. Liu et. al. proposed a technique that
divides motions into piecewise linear components [20)].

As a summary of the the integrated system Mueller et. al. reported, the system

computes binary relational features of motion, and then divide them into segments.

27

Such lists of segments are then organized in an inverted index. Given a query example,
exact string matching is found by unioning the corresponding inverted indices. The
system also allows a feature mask to adjust the fuzziness in the string matching. The
system is tested on the CMU motion database [16] and is shown to be effective in
several retrieving tasks [22]. Liu et. al. proposed a motion index tree structure and
built a retrieval system on it. The motion index tree uses the hierarchical structure
of the skeleton to organize the database. The retrieval using such structure is shown
to be effective in a mid-sizes labeled database [19]. Chiu et. al. reported a retrieval
system that finds a set of candidate motions through a structure termed “index maps”
and the uses dynamic time warping to locate the best matches. Such index maps
are essentially a segment-posture retrieval subsystem. The skeleton is divided into
segments, and the posture of segments are clustered into a look up structure. Given
a query example, the system puts its start and end frame into index maps to narrow

the candidates and then search with traditional methods [5].

28

Chapter 3

Approach

Our approach has three steps. In the first step, the system extracts relational features
from the motions, generating 19-dimensional feature vectors. In the second step, the
system learns a motion vocabulary from features in the dataset and translates features
into integers. In the third step, the integer format motion data is retrieved as text
using the vector space model. Figure 3-1 illustrates this pipeline. Overall this method
has quadratic preprocessing complexity and O{nlogn) querying complexity. Table

3.1 summarizes the notations used.

: . . Retrieve using
Motion Features in Translation Motion in Text Retrieval System
—_— —— —_—
Data Real Space Text Format Based on
Vector-space-model
Clustering\
Motion
Vocabulary

Figure 3-1: Our approach has three steps. First, the system computes relational
features from the motion data. Second, the system learns a vocabulary from the
features and uses this vocabulary to translate motions into text form. Third, the text
formed motions are retrieved using the vector space model.

29

Symbol | Meaning Type
D Whole Motion Database set
S One Motion matrix
C The Set of All Feature Vectors set
V The Motion Vocabulary set
n Number of Motions in the Database integer
m Total Number of Frames in the Database integer
Q Dimensionality of Feature Space integer
k Number of Motion Words in the Motion Vocabulary | integer
Dimensionality of Histogram Vector Space

Table 3.1: Notations

3.1 Feature Extraction

Our approach first extracts relational features from motion. Relational features de-
scribe the geometric relation between different parts of the skeleton. Figure 3-2
shows a side-by-side comparison of the Cartesian coordinates representation and the
relational features. Cartesian coordinates depend on the coordinate basis and trans-
formations, while relational features do not depend on the coordinate basis and are
invariant to transformations. Such features eliminate irrelevant transformation infor-

mation and are shown to capture pose semantics well [4, 22].

30

P

Figure 3-2: Here is a side-by-side comparison of the Cartesian coordinates representa-
tion (left) and the relation features (right). In the right figure, the relational feature
examples being shown are: the distance between the vertical axis and the hand, the
distance between the vertical axis and the two ankles, and the distance between the
right hand and the horizontal axis at neck level.

Our system uses 19 relational features in total, as listed in Table 3.2. These
features concern the hands’ and feets’ relative positions to the body. Features 1
through 6 capture the two hands’ relative positions to the upper body. This essentially
sets up a coordinate system on the torso and projects the hands into it. Features 14
through 19 capture the feets’ relative positions to the lower body. This again sets
up the lower body coordinate system and represents the feet with it. When we
compute how far the left foot is to the front, i.e. feature 14, we use a coordinate
system determined by the hips and the right leg. Features 7 through 13 capture the
distance between the hands and other body parts. For instance, feature 8 measures
the distance between the left hand and both legs. When the left hand is 2 units to
the left leg and 1.5 units to the right leg, this feature value is 1.5 units.

31

Features | Description

1,2 Left/right hand to the front

3,4 Left/right hand raised

5,6 Left /right hand sideways

7 Distance between two hands

8,9 Left /right hand distance to both legs

10,11 Left/right hand distance to head or neck
12,13 Left /right hand distance to hip area
14,15 Left /right foot to the front

16,17 Left /right foot raised

18,19 Left/right foot sideways

Table 3.2: Here is the list of the 19 relational features used in our approach. Features 1
through 6 summarize the two hands’ positions in regards to the upper body, features
14 through 19 summarize the two feets’ relative position to the lower body, and

features 7 through 13 summarize the relation between the hands and other body
parts.

This feature extraction maps every motion into a time series in a 19 dimensional
real space R'®. Figure 3-3 shows an example of a dance motion in this space. Only
the first two dimensions are shown in the figure.

We can also include first derivatives of distances into the features, getting 38-
" dimensional features. This includes more information of the motion but also intro-
duces more noise. In later chapters we experiment with both choices and make a
comparison between them. For convenience, we use & to denote the total number of

features.

32

A Motion In Feature Space
14— ==y T T T T T T

Feature 2

09

08

07+

04 05 0.6 0.7 0.8 09 1 1.1 1.2 1.3
Feature 1

Figure 3-3: A dance motion in feature space. Only the first two dimensions of the
19-dimensional space are shown.

3.2 Learning Vocabulary

Feature extraction turns every motion in a datasetinto a time series in a-dimensional
space. Then the system concatenates these time series together into a feature sequence
for the whole dataset. This giant time series then has its order discarded and is used
as a set. We use C to denote this set. Figure 3-4 shows such a feature set obtained
from a dance database.

Then the system uses the k-means clustering algorithm to cluster C into a number
of clusters. These clusters are words in the motion vocabulary. In the rest of the
section, we first introduce the k-means algorithms, and then explain it using an

example.

33

Features From Benchmark A

0.5

Second Feature

15 I I L 1 L I
-1.5 ~1 -0.5

[05
First Feature

Figure 3-4: Here shows the features from all motions in a dance motion database.
Only the first two dimensions of the feature space are shown. A motion vocabulary
will be learned from the feature set to help translate the motions into text form.

K-means algorithm
Given a number k, the demanded number of clusters, and a point set with m points
C = {c1,...,cm}, the algorithm tries to find a k-fold partition of C that minimizes
the averaged variance within each partition. The algorithm makes an initial guess of
the cluster centers, and iteratively refines them until convergence. In the following
pseudo-code, centers represents the cluster centers and cluster represents the id of

the closest cluster center to each feature.

centers «— k random locations in R

cluster[i] < z s.t. ||centers[z]|—c; |= min;<;<x ||centers|j]—c; ||

21<j<m O(b,cluster(j])c;
2 1<j<m O(icluster(j])

If clusters changed during 2, goto 2, otherwise, return centers, clusters.

1
2
3. centers|i] —
4

34

Step 2 calculates the closest centroid to every feature in the feature set. This
partitions the feature set into k subsets, with i-th subset being the features closest to
i-th cluster centroid. Step 3 recalculates the centroids by taking the average of each
cluster and step 4 checks if the process converges. The result is sensitive to the choice
of initial cluster centers. The common solution is to run the algorithm several times
and use the solution with the smallest average feature-to-centroid error.

Here we use an example to explain the algorithm. Because the clustering happens
in o dimensional space, and this cannot be visualized in 2D, we illustrate the process
with an artificial 2D dataset. Figure 3-5 (left) shows the dataset and Figure 3-5

(right) shows the clustering results with k being 8.

Figure 3-5: Because of the high dimensionality of the real feature set, we use a 2D
artificial dataset to explain the algorithm. The left figure shows the example feature
set in 2D. The right figure shows the clustering results with k equalling 8.

35

Such clustering results correspond to a Voronoi diagram where the vertices are
the cluster centroids. Figure 3-6 (left) shows the Voronoi diagram of the clustering
in Figure 3-5 (right). We call each cell a motion word and enumerate them from 1 to
k . In the follow text, we use motion words exchangeably with numbers 1 to k. All

k words together are called the motion vocabulary, denoted by V:

V={1,2,..,k}

Figure 3-6: The left figure shows the Voronoi diagram corresponding to the clustering
in Figure 3-5 (right). Each circle is the centroid of one cluster. The right figure shows
how the feature sequences of two motions are translated into motion words. Here the
Voronoi diagram is superimposed onto the two feature sequences, where every feature
falls into a cell. Then our approach replaces every feature with its cell-id, obtaining
an integer list for every motion. In this example, motion A is translated into the list
(1,1,2,2,2,2,1,1,8) and motion B is translated into the list (2,3,3,4,5,5,5,4,3,2).

36

Using this vocabulary, the system translates every feature in a sequence into an
integer motion word. For any given feature vector, we can easily determine its motion
word by finding the cluster centroid that is closest to it, or equivalently by finding the
Voronoi diagram cell that contains it. By finding the motion words for every feature

in a motion, the motion is turned into a walk of the cells.

Figure 3-6 right shows an example of how the feature sequences of two motions
are translated into motion words. In the figure motion A is a walk of the cells
(1,1,2,2,2,2,1,1,8) and motion B is a walk of cells (2,3,3,4,5,5,5,4,3,2). After trans-
forming motions into lists of integers, the system treats them as text documents and

retrieves them using a vector-space model.

3.3 Vector Space Model

The vector-space model represents every motion as a histogram vector and measures
the difference between motions solely by their vector orientations. These vectors are
vectors in k-dimensional space where k is the size of the vocabulary. Every coordinate

stands for the number of occurrences of one word in the motion.

Given a query example, it is first transformed into its histogram vector, and
then measured against histogram vectors of the dataset. The distance between two
vectors is the cosine of their spanned angle. The system sorts the dataset according
to the distance between the motions and the example and returns the best ones.
Term-frequency and inverse-document-frequency (TF-IDF) are used to improve the

histogram vector weights. This process is briefly shown in Figure 3-7.

For the example in Figure 3-6 (right), the histogram of motion A is (4,4,0,0,0,0,0,1)
and the histogram of motion B is (0,2,3,2,3,0,0,0). Both vectors are in 8-dimensional
vector space. In this 8-dimensional space, every coordinate tells the frequency of one
word in the motion. Histogram vectors are normalized into unit vectors, and this does

not change the result of cosine similarity metric which only depends on the vectors’

37

TF-IDF Weighting

/N

Database —> Histograms Histogram <«—— Query

\ / Example

Cosine

6 sort Similarities
@‘ -

Figure 3-7: The vector space model in our approach consists of three steps. First
the system computes the histogram vectors of the database motions and the query
motion. Then, it weights such vectors using TF-IDF weighting. Then it computes
the cosine similarities between the motions in database and the example. Finally the
system sorts the dataset by their similarities to the example and return the best ones.

orientation. This normalization step gives the term frequency (TF):

€i,j

D€

tfi; =

where e; ; is the frequency of word j in motion .

TF-IDF weighting computes Inverse document frequency (IDF) to represent the

discriminativeness of each words:

idf; = log %
where n; is the number of motions that contain word 7 and n is the total number of
motions. The word-by-word product of the TF weighting and the IDF weighting is
the TF-IDF weighting:

thdf; ; = tf; ; - idf;.

TF-IDF weighting uses a balanced measure of the popularity and the discriminative-

ness of words. The more frequent a word is in a motion, the higher its TF value. The

38

more motions that contain the word, the less discriminative it is and its IDF weight is
smaller. In the computation, every motion has a TF weighting vector, and the whole

database has a IDF weighting vector:

tfz == (tf'i,lv tfi’Q, ceey tf1,k)

idf = (idf, idfs, ..., idf;).

A motion’s TF-IDF vector is defined as the element-to-element product between the

IDF vector and its TF vector:

tﬁdfz = (tfi,l . idfl, tf@g : idfg, ceey tfi,k ‘ ldfk)

Once the TF-IDF vectors of the motions have been determined , the system computes
the similarities between every motion in the database and the example. Finally our
system sorts motions in the database in descending order by their similarities to the
example and returns the highest ones. The similarity used in this process is defined

as:

COS(tfidf, - thdf,)
I efidf, ||| thdf, ||/

3.4 Complexity

The complexity of the system is best analyzed individually for the preprocessing
subsystem and the querying subsystem. The preprocessing subsystem computes a
TF-IDF vector for every motions in the database, and the querying subsystem does
so for a query example and looks for the closest motions in a database given this

example.

39

3.4.1 Complexity for Preprocessing

e In the feature extraction step, our system spends O(m) time computing relational
features for motions in the database, where m is the total number of frames in the
database.

e Our system usually spends less than O(m?) time learning the motion vocabulary.
It first runs the k-means clustering algorithm to cluster the features. This usually
takes much less than O(m) steps to converge, where each step costs O(m) time to
update cluster centers and feature indices. The total time, the product of the number
of steps and the cost of each step, is usually much less than O(m?).

e Our system spends O(m) time translating motions into word sequences and then
into histogram vectors where m is the total number of frames in database.

e Our system spends O(nk) time computing the motion’s TF-IDF vectors. This
operation takes place in k-dimensional vector space, and the cost is the product of n,

the total number of motions, and k, the dimensionality of the space.

3.4.2 Complexity for Querying

e In the first step of querying, our system computes the feature sequence from the
given example in O(r) time where r stands for the number of frames in the example.

o In the second step, our system transforms the feature sequences into a histogram
vector in O(r) time. Motion vocabulary is generated and used as a middle step in
O(r) time.

e In the third step, our system computes the motion example’s TF-IDF vector in
O(k) time.

e In the fourth step, our system computes the cosine similarities between the
example and every motion in the database in O(n) time.

e In the fifth step, our system sorts the similarities and returns the best ones in
O(nlogn) time.

Our system has an overall preprocessing time complexity of O(m? + nk) and an

overall querying time complexity of O(r + k +nlogn). Assuming that the number of

40

frames per motion is bounded by a constant: O(m) = O(n) and O(r) = O(1), and
the size of the vocabulary k is a constant, then the preprocessing complexity reduces

to O(n?) and the querying complexity to O(nlogn).

3.5 Extension

The algorithm can be further enhanced to improve its accuracy and performance.
First we can introduce an incremental learning algorithm to improve the generaliza-
tion ability of our technique. Because both the motion vocabulary and the IDF vector
are trained from the database, it might not generalize well to the query example. If
our system incrementally updated the vocabulary using the query example, then the
generalization issue would be solved. |

The query speed of the approach can be improved by two tricks. The sorting
cost in query can be reduced by selecting only a small fraction of motions with top
similarities to be sorted. The other speedup is using a combination of inverted index

and stop list, which decouples the query cost from the size of the database.

41

42

Chapter 4

Experimental Results

Performance is difficult to evaluate because of the enormous variety in motion. We
evaluate systems on two manually labeled datasets, both of which were collected from
other projects: a Lindy-hop dance dataset and a locomotion dataset with basic hu-
man movements. We tested the vector-space model approach against two competing
approaches: dynamic time warping and binary feature search. In order to do so, we
compute precision-recall evaluation to evaluate the effectiveness of the systems. In
addition, we measure our system’s sensitivity to feature set selection, and we compute
the cross-category retrieval error to see the difference between how systems handle
different type of motions. Finally, we instrumented all systems for speed perfor-
mance. As a snapshot, the results show our method to have a superior combination

of effectiveness and efficiency over dynamic time warping and binary feature search.

4.1 Benchmark Datasets

We evaluated the systems with two datasets. The first dataset contains eight different
categories of Lindy Hop dancing motions [11]. The second dataset contains five
different basic locomotion motions with 77 irrelevant ones from the CMU motion
capture database [16]. Table 4.1 summarizes the two benchmarks and Table 4.2 lists

the semantical meaning of the Lindy Hop categories.

43

Benchmarks A B

Content - Lindy Hop Dancing | Subset from CMU Database
Number of clips 288 353

Number of frames 54,280 368,654
Framerate 30 120 and 60
Number of joints in skeleton 18 31

Number of categories 8 5

Number of motions 90,72,18,18, 46,148,42,10,30

In each category 36,18,18,18

Table 4.1: Basic database information for the two benchmark databases. The first
contains eight different categories that indicate the basic dance steps of Lindy Hop
[11], the second contains five different basic locomotions from the CMU motion cap-
ture database [16].

Step No. | Step Detail

Open — close

Close — open

Open — close crosshand

Close crosshand outside turn to open crosshand
Close — close

Close inside turn to open

Close outside turn to open

8 Open crosshand inside turn to close

| O OY x| W N~

Table 4.2: This table lists the details of 8 dance steps in benchmark B. Open/close
stands for an open or close stance.

4.2 System Implementation

4.2.1 Vector-Space Model-based Retrieving System

The vector-space model (VSM) system implements the design described in chapter
3 with minor improvements. It uses the 19 features in Table 3.3 as the basic set of
features and their first order derivatives as optional features. During the clustering
stage, the system uses a stratified clustering with k-means approach, but only keeps
the leaf nodes. Essentially it does a flat k-means clustering. The system uses three
layers of stratified clustering with branching factor six, resulting in 206 clusters. The

system runs the k-means algorithm ten times and picks the best one.

44

4.2.2 The Dynamic Time Warping System

In preprocessing, the dynamic time warping (DTW) system computes the relational
features as in the feature computation stage of the vector-space model system. Then
the system runs the dynamic time warping algorithm to compute a time alignment
between the query example and every motion in the dataset [26]. For each align-
ment, the system measures a distance by summing the aligned pose-to-pose distance.
Finally, the system sorts the datasets descendingly by their distance to the example
and returns the top motions. DTW is the most traditional way to solve this problem,

and is used as a ruler to measure the effectiveness of the vector-space model.

4.2.3 The Binary Feature System

The binary feature system computes binary features from motions and uses a com-
bination of inverted indices and string matching to find the relevant motions [22]. It
uses fuzzy retrieval to loosen the string matching restrictions. We implemented the
fuzzy matching and apply a full matching mask when exact matching is tested. One
problem with the fuzzy version of the binary feature system is that it requires the user
to select a matching mask, which is costly for large scale testing. Instead our system
randomly generates 300 masks and retrieves using each of them, then visualizes the

results to compare the performance.

4.3 Precision-Recall Evaluation

Precision-recall evaluation allows us to evaluate the quality of a return list by measur-
ing how many useful hits versus how many irrelevant hits have been returned [3]. This
method is applied to our problem and indicates that the vector-space model system
outperforms the other two. We also show that the effectiveness of the vector-space

model is sensitive to the choice of features.

45

4.3.1 Methodology

Suppose there are R relevant motions in the database. Given a query example, the
system returns A motions, among which R, are relevant. The precision and the recall

are defined as:

Precision = R, /A
Recall = R, /R

For any query, the higher the precision and the recall the better. For a ranked hitlist,
we get a precision-recall pair for every prefix of the hitlist. This gives us a PR curve.
If we draw this curve in 2D coordinates, with the horizontal axis as the recall and the
vertical axis as the precision, then for any ranked hitlist, the higher the curve, the
better.

To have a single number evaluation of a query instead of a curve, we calculate the
averaged precision. For every prefix of the hitlist that ended with a relevant motion,
we calculate its precision. If Precision; is the precision of the i-th prefix of the hitlist

that ended with a relevant motion, then the averaged precision is defined as:
1 &
Averaged-Precision = . ; Precision,;.

Our system queries the dataset using its own motions as examples, and reports

the average precision-recall performance. It does this for each category separately.

4.3.2 Results

Figure 4-1 shows the precision-recall evaluation results of Benchmark A. The center
sub-plot in Figure 4-1 evaluates the querying of dataset A using its category 5 motions.
The stars that denote the binary feature system’s performance are high on precision,
but they are low on recall. This is undesirable because the hit-lists do not include
most of the relevant items in the database. There is one star high on recall and low

on precision. This corresponds to a hit-list containing all documents in the database.

46

This hit-list contains all the relevant documents, but it is not useful because it contains
all the irrelevant ones as well.

For the PR curves of the VSM system, the precision is high at low recall, meaning
the top results in the hit-lists are mostly relevant ones. This is a good because most
users only check the first several returns for any given query. The curve roughly
exhibits the shape of a line. This implies that as the hit-list gets longer, the precision
decreases linearly. In comparison, a concave PR curve would be worse, and a convex
PR curve would be better. In the figure, the PR curve of the VSM system in the
“Query of Step 6”7 is a concave PR curve, while the same curve in “Query of step 4”
is convex.

Overall, the figure shows that our approach is the most effective method among
the three except in the first two cases. In the first two cases, our approach is still
very comparable to the dynamic time warping system. In all cases, our approach is

more effective than the binary feature approach.

47

Query ofStep 1 Query ofStep 2 Query ofStep 3

Precision
o
($)]

Precision
o
(9]
£
ji
Precision

0 0.5 1 0 0.5 1
Recall Recall
Query ofStep 4 Query ofStep 6

Precision
Precision
Precision

0.5 1
Recall

* BF
—6— MWVSM
MWVSM Avg.
- A-DTW
— — — DTW Avg.

Precision
Precision

2 voew

0 0.5 1
Recall

Figure 4-1: Precision-recall evaluation on benchmark A. In the figure, every subplot
shows the system’s precision-recall evaluation in retrieving motions of a particular
category. For the DTW system and the VSM system, the ranked return lists result
in PR curves, while for the BF system the unranked return lists result in PR pairs or
PR points. In the figure, stars stand for PR points from the BF system, where every
star corresponds to the querying using a particular mask, Circle-solid-curve/triangle-
dashed-curve are PR curves from the VSM/DTW systems, and solid-line/dashed-line
are averaged precisions from the VSM/DTW systems. From the figure we can see
that the vector-space model is in general the most effective one. The vector-space
model system uses 38-dimensional features.

Figure 4-2 shows the results on benchmark B. In all the plots, the vector-space
model’s lines are higher than the dynamic time warping approach’s. This is good
because the dynamic time warping is used as a performance groundtruth. The stars
from binary feature system are on the axises except in the first plot. This means
the binary feature system either returns all the motions in dataset or returns almost

nothing. Overall the vector-space model gives the best result.

48

Query ofRunning Query ofWalking Query ofJumping

Precision
o
)
1
1>
>
>
»
»
H
Precision
o
I
| B
E
P
ol
B
P

==
e T _ _ __A
3 05
&
a N
N,
T)
0 0.5 1 0 0.5 1
Recall Recall
Query ofCartwheel
c c * BF
o (@]
B B —6— MWVSM
3 o MWVSM Avg.
o o - A - DTW
Reeeeeg a1 e
0.5 1
Recall

Figure 4-2: Precision-recall evaluation on benchmark B: Stars are precision-recall
pairs from the Binary Feature system, Circle-solid-curve/triangle-dashed-curve are
PR curves from VSM/DTW. Solid-line/dashed-line are averaged precisions from
VSM/DTW. In all five cases, our approach is shown to be the most effective. The
vector-space model system uses 38-dimensional feature to get the results in this figure.

4.3.3 Sensitivity to Choice of Features

To examine the effects of including the first derivative information, i.e. the velocity
information, among the features, we plot the precision-recall results of the vector-
space model system with and without the velocity information. Figure 4-3 and 4-4
show these results.

In Figure 4-3, all the PR curves with velocity are higher than the curves without,
indicating that including velocities in the feature improves the performance. In Figure
4-4 however, the curves with velocity are lower than the curves without except in the
last plot, indicating that including velocities drops the performance. From these we
see that the system’s performance is sensitive to the choice of features and it is unclear

whether including velocities improves or drops the performance.

49

Query ofStep 1 Query ofStep 2 Query ofStep 3

q
0.8}
A
S os = s
1 s \A\—::z—‘sw;‘ :
= 0.4} ~A A 1? &
0.2
0
0 0.5 1 0 0.5 1 0 0.5 1
Recall Recall Recall
Query ofStep 4 Query ofStep 5 Query ofStep 6
1 1 1
q =
08—~ T&A \Q — O.8<
5 06 \ § S 06
8 \ s S
& 04 \ & & 04 A
e N . M
ol 0 .Y
0 0.5 1 g 0 0.5 1
Recall Recall Recall
Query ofStep 7 Query ofStep 8
1 1&
A
0.8Rn 08} A ,)
c & \ —6— With 1st Deriv.
S 0.6 S 0.6 i 5 .
2 \ 2 With 1st Deriv. Avg.
5] [N
& 04 N P SE——— A :A: === — A — Without 1st Deriv.
L 02 - - — = Without 1st Deriv. Avg.
A
0 0
0 05 1 0 0.5 1
Recall Recall

Figure 4-3: Plots of precision-recall evaluation of our system on benchmark A using
19-dimensional and 38-dimensional features. The 19-dimensional features do not
include the velocity information while the 38-dimensional features do.

4.4 Cross-Category Mistakes

We evaluate the systems’ cross-category mistakes by creating an error analysis matrix,
a t-by-t matrix where ¢ is the number of motion categories in the database. Element
(row ¢, column j) is the averaged percentage of category j motion in the top ten
hits returned from a query using category ¢ motion, otherwise stated as category j

motions mis-returned as category ¢ motions. We compute it as following;:

Suppose for a query of category p, the first ten returned motions are

R = {81, S 810},

50

Query ofRunning Query ofWalking Query ofJumping

1 14 1
3 A A A
. =3 = DA o — DA
0.8 b 08 SN o.:\é\s\s\f
\ N\
c c c
\ g 0° il
[5] o
3 o 2 SA Y
L o4 204 S04 z\\
0.2 0.2 0.2 4
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
Recall Recall Recall
Query ofCartwheel Query ofSalsa
144 14
0.8 iy -A\ 0.8
i e ATA A A = —o— With 1st Deriv.
S 0.6 2 506 A A
0 F g —— With 1st Deriv. Avg.
1] 1]
& 04 & 04 — A — Without 1st Deriv.
0.2 G‘s‘e—%e—e_q 0.2 — — — Without 1st Deriv. Avg.
0 0
0 05 1 0 0.5 1
Recall Recall

Figure 4-4: Plots of precision-recall evaluation of our system on benchmark B us-
ing 19-dimensional and 38-dimensional features. The results show that the velocity
information is not helpful on benchmark B.

among which there are h; category 1 motions, hy category 2 motions, and so on. By
dividing h; by 10, we get the percentage of labels within the first ten returns. In the
ideal case, the system would return only relevant motions, resulting in h; satisfying

the following property:

1 2=p
0 i#p

We perform the query using all motions of category 1, getting such a percentage
vector for each of them. By averaging these pefcentage vectors, we put the averaged
percentage vector into the first row of the error matrix. For the second row, we use
the value from queries using category 2 motions, and so on.

Figure 4-5 shows the error analysis matrix on Benchmark A using the dynamic
time warping system and the vector-space model system. The systems give mostly
relevant returns in the first 10 hits, but make visible mistakes in several spots. Both
systems makes two major mistakes. They return category 1 motion in queries of

category 3 motions, and confuse category 6 with category 7. Referring to Table 4.2,

o1

we find out that category 6 and 7 only differ from each other in the direction of turn,
and category 1 and 3 are the same except that the hands cross at the end of step 1.
Both of these cases are confusing even for humans. This is a fascinating observation
as 1t suggests that both systems show some resemblance to human cognition.

Figure 4-6 shows the error matrix on benchmark B. The error matrix from vector-
space model has higher diagonal values than that from dynamic time warping method.

This indicates that the vector-space model has higher overall accuracy, conforming

with the precision-recall results.

Error Matrix: DTW Error Matrix: MWVSM

Query Label
Query Label

1 2 3 4 5 6 7 8

Return Label Return Label

Figure 4-5: Here shows the error matrices on benchmark A using the dynamic term
warping system and the vector-space model system. In both figures, the block at row

¢ and column j stands for what percentage of category j motions are returned within
the top 10 hits on retrieval using an example from category 1.

Error Matrix Analysis Error Matrix Analysis

Query Label
Query Label

1 2 3 4 5

Return Label Return Label

Figure 4-6: Here shows the error matrices on benchmark B using the dynamic term

warping system and the vector-space model system. From the results we see that our
system is more effective on benchmark B.

52

4.5 Time Performance Evaluation

We evaluate the time spent during the preprocessing and the querying phase. All
systems are implemented in MATLAB and run on a dual-core Xeon 3.4Ghé machine
with 8GB memory. Table 4.3 and Table 4.4 summarize the results and Figure 4-7
and Figure 4-8 show the visualization. The results show that the querying phase of
the vector-space model system is as fast as the binary feature system, and is about
100 to 400 times faster than the dynamic time warping system. The difference shown

in the preprocessing phase is less significant.

DTW | BF | VSM | Feature | Clustering | Histogram
Benchmark A | 16.13 | 15.51 | 54.44 | 16.13 36.65 1.66
Benchmark B | 1.31 1.32 | 6.26 1.31 4.70 0.25

Table 4.3: Preprocessing time evaluations in minutes. The last three columns are the
segmented costs of the vector-space model system. All values are in minutes.

DTW | BF | VSM
Benchmark A | 1438.89 | 2.60 | 3.74
Benchmark B | 34.70 | 0.26 | 0.31

Table 4.4: Averaged querying time in seconds. Both the vector-space model system
and the binary feature systems query 100 to 400 times faster than the dynamic time
warping system.

53

Preprocessing Time Cost (in minutes)

DTW BFSM MWVSM

OBenchmark A [JBenchmark B

Figure 4-7: This figure shows the preprocessing time costs. It shows that the vector-
space model system uses roughly 3 times more preprocessing time than the other two
systems.

Querying Time Cost (in seconds)

1500 T T
I Benchmark A
B Benchmark B
1000+ q
500+ B
0 L !
1 2 3

1-Dynamic time warping, 2-Binary feature, 3—Vector-space model

Figure 4-8: This figure shows the querying time costs. The time cost of binary feature
system and vector-space model system are low and barely visible in the figure.

o4

4.6 Observation and Discussion

Overall, we found the vector-space model system to be both effective and efficient,
while the dynamic time warping system is not efficient and the binary feature system is
not effective. Table 4.2 summarizes such observations. This leads us to conclude that
our approach is better than the other two. The binary feature system is not effective
enough partly because the binarizing process discards too much information. The
resulting binary features are coarse. Although such discreteness allows the system
to retrieve using fast string matching, the effectiveness is reduced. In our system,
the different path we take, i.e. letting the system discretize motions using a learned

vocabulary, is more effective.

Relatively Effective | Relatively Efficient
Dynamic time warping Yes No
Binary feature No Yes
Vector-space model Yes Yes

Table 4.5: This table summarizes the observations from the experiments results. It
shows that the vector-space model system is overall a better system as it is more
effective than the binary feature system and more efficient than the dynamic time
warping system.

55

56

Chapter 5

Conclusion

Data-driven motion production is changing the way people create animation. Its
promise of inexpensive and rich production makes it a promising future production
model. This promise, however, is undermined by the the limitation of motion re-
trieval techniques. This paper proposed a motion retrieval framework that is both
accurate and effective, making it more practical to create motions from a captured
database. The core of the problem demands two somewhat contradicting goals: an
“as sophisticated as possible” similarity model to capture human’s recognition of mo-
tions, and an “as high as possible” retrieval speed. These two goals are reconciled by
a tool we proposed called motion words. It is an adaptive and discrete guess at the
basis of human motion, upon which motions are effectively captured by vectors in
high dimensional space. We implemented a system with this concept, and compared
it with two competing methods on two real world datasets. The results shows that
our method is the most desirable among the three because it is the only one that is
both effective and fast.

The new approach applies three pieces from three different fields together to form
an effective framework. These three pieces are relational features, adaptive vocabu-
lary generation, and a vector-space model. Relational features compute the relations
between parts of a skeleton, excluding irrelevant transformation informations. Adap-
tive vocabulary generation clusters features in real space, creating a vocabulary that

is adapted to the distribution of features in the database. A vector-space model maps

57

every motion into a vector in histogram space, and effectively measures the similar-
ities among motions by their vector orientations. For every given query example,
the system maps it into the vector space, and then computes its similarities to the

motions in the database, and finally return the most similar ones.

We implemented the system along with the dynamic time warping system [26] and
the binary feature system [22] for comparison. All three systems are tested on two
benchmark databases consisting of real world motion capture data. Three evaluations
are performed: the precision-recall evaluation, the error matrix evaluation, and the
performance evaluation. The precision-recall evaluation shows that our systems are
in most cases the most effective, and in some cases comparable to the dynamic time
warping system. The precision-recall results also shows that velocity information
does not necessarily improves the retrieval effectiveness. The error matrix evaluation
shows that out system are more likely to make mistakes in two cases that are hard
for humans. The performance evaluation shows that both our system and the binary
feature system are orders of magnitude faster than the dynamic time warping system.
Overall, we observed that our system is comparably as effective as the dynamic time
warping system, and its efficiency are comparable to the binary feature system. This

makes it the most practical one among the three.

Our system is more effective than the binary feature system because it does not
binarize the features. The motion vocabulary approach we take, in contrast, adapts
to the distribution of features and creates a much finer discretization. It is more
practical because the vector space model is not sensitive to noise, thus excluding the
need for a manually selected fuzzy mask. It is fast because it discretize motions into
bags of words, which can be searched efficiently as text. We observe that our system
requires more preprocessing time. Such cost, however, is not a big problem because
the database only needs to be preprocessed once, and the preprocessing time is within

an acceptable range.

58

5.1 Future Work

The success of our approach points to several additional improvements. These include
determining the best set of features, experimenting on large datasets especially on
the generalization ability of our approach, alternative vocabulary organizations, and

the wavelet model. In the following we discuss each of them:

5.1.1 Determining The Best Set of Features

Our experiments reveals that the velocity features improve the relevance of retrieved
results, but more effort should be dedicated to determining the best set of features for
motion retrieval. It might be fruitful to look into how velocity information changes
the internal system behavior. It might be true that some motions should be mainly
recognized by there pose, while other require the velocities. If this is the case, then
it is necessary to design a system that can automatically decide whether to include

velocity information for a particular query example.

5.1.2 Large Dataset and Generalization Ability

More experiments should be performed on large databases and, in particular, to test
how this performance generalizes on test motions outside the original database. In this
work the motion vocabulary is learned from the database, and might not generalize
well to the query motion. It might also be possible to design an incremental learning
algorithm that retrains the motion vocabulary with a modest cost every time a query

example is given.

5.1.3 Alternative Organization of Vocabulary

The alternative vocabulary organizations, such as vocabulary trees and random forests,
should be investigated because they can improve our approach by providing more flex-
ibility to the similarity scoring model and reducing the approximation error of the

vocabulary. In this work the system uses a flatly organized vocabulary. A vocabulary

59

tree, in contrast, retains the hierarchical structure in hierarchical k-means, providing
more flexibility in the similarity scoring model. A random forest is another possible
vocabulary organization for our framework. It creates several vocabularies to reduce

the approximation error of the discretization.

5.1.4 Wavelet

Because the bag of words model ignores the temporal ordering of key features, a
wavelet model should also be explored as a mechanism to encode features across
different time scales. One such example of temporal coherence is the periodic move-
ments in motions. Human motion exhibits great periodicity in some cases, such as
walking and running. If such information can be captured by the features, then the
representation of the motions would be more compact and the system would retrieve
more effectively. A wavelet model is one promising candidate model to capture such
frequential-temporal information. It gives rich and highly structured information

about the motion that is better at handling motion semantics.

5.1.5 Long term goals

The long term fundamental goals of motion retrieval are always to improve effective-
ness and efficiency. Improving effectiveness demands a more sophisticated statistical
model, a more sophisticated query model, and more data. Improving efficiency de-
mands more structured organization of data, and tight integration with hardware
advancement such as multi-core architectures. It is likely that these two will be bun-
dled together by some new technique similar to motion words. The technique will need
to deeply capture the semantic mapping process and still maintain its compactness
for scalable search.

Another long term direction is the integration of motion search as part of an
motion creation system. Such a system would integrate motion capture, key-frame
sketching, motion storage and search, and motion generation. It could boost motion

effects productivity to unprecedented levels. The motion search module will not only

60

search the database fast and accurately, but also be integrated with the authoring
interface. One possibility is that it could take query input from a sketch interface

and summarize the retrieved data in a ready to use sequence.

61

62

Appendix A

Material Included For

Completeness

A.1 Relational Feature Computation Example

Here is an example of relational feature computation. The follow math commands

checks how far the right hand is to the front:

n= (er — crs) X (cLs — crs)
n
d= —— - (CrH — Crs)
[o

, where cr, crs, cLs, cru are the locations of the thorax, the right shoulder, the
left shoulder, and the right hand respectively. n computes the normal of the plane
determined by the thorax and the two shoulders. We dot product it with the vector
from the right shoulder to the right hand, cry — cgrs, getting how far the right hand
is to the front. Following commands binarizes this feature. It compares the distance
with unit length 2, and set the feature accordingly. It checks if the right hand is to

the front for more than 2 unit length.
0 d<2
y prny
1 d>2

63

A.2 Searching with Inverted Index

The problem in the lookup stage is that we need to compute similarity with every
motion in the database. This poses a O(n) complexity query time. Inverted index
solves this problem by building an index from word to motions. In particular, we
have an index I(w) for every word w, that stores all motions that contain w.
During query, we only need to consider those motions that have an overlap with
the example. We achieve this by computing the union of inverted indices of all words

in the query example:

1= JI(w)

weX
, where b is the query example. Then instead of adding the example to the database,
we compute its similarity with every motion in [/, and return the ones with the great-
est similarities sorted descendingly on similarities. This inverted index essentially
computes the list of motions that are non-orthogonal to the example in the word
space.

Without using inverted index, the complexity of retrieval is O(n + nlogn), where
O(n) is the time to compute the example’s similarity to every motion in the database,
and O(n log n) is the time to sort these similarities. Using inverted index, only motions
that have words in common with — or non-orthogonal in histogram space with — the
example are processed. We call this list of non-orthogonal motions non-orthogonal
list.

An inverted index based query consists of three steps: get the non-orthogonal list,
compute their similarities to the example, sort. Assume the example has p different
words, then p lists need to be union-ed to get the non-orthogonal list. Assume the
longest list among the p list has ¢ motions. Then this union operation takes O(pq)
time.

Suppose we apply stop list approach and remove all words that existed in more
than ¢ motions, then ¢ is upper bounded by ¢. Thus the non-orthogonal list is O(p)
long, which leads to O(p) time of similarity computing and O(plog p) time of sorting,
totalling (plogp). This is much better than O(nlogn) because it is not relevant to

64

the size of the database, but to the number of words in the example.

A.3 Review of Wavelet Filter

Wavelet filter gives localized frequency responses in any resolution. By convolving a
signal with a translated and scaled wavelet function, we can get frequency response
of the signal in a particular time range and a particular frequency range. Here we
convolve every column of the feature sequence with such wavelet function:
1 t-p
X=D® —y(—
V)
, where 1) is the original wavelet function, « is the scaling factor and g is the translat-
ing factor. This equation gives the convolution of every column of D with a translated
and scaled wavelet. The translation controls the temporal location, and the scaling
controls the frequency of the resulting response. More specifically, this gives us the

frequency response in the frequency band [1/a,2/a] and at the location .

A.3.1 An Example

Here is an example to show the effectiveness of wavelet. As mentioned in the article,
one example of temporal coherence is the periodic movements. Figure A-1 shows a
plot of the measure of how far the left foot is to the front in a running motion; the
plot reveals periodic changes of the signal. Figure A-2 shows the Fourier transform
of this signal, revealing a peak in the frequency domain.

Figure A-3 shows the continuous wavelet transform of the signal in Figure A-1.
In contrast to the original signal and the frequency domain representation, wavelet

model gives a frequential-temporal representation that combines the two.

65

Plot of The 14-th Feature of A Running Motion

Feature Value

0 50 100 150 200 250 300 350
Frame

Figure A-1: This is a plot of the measure of how far the left foot is to the front in a
running motion over time. The signal shows periodic changes and suggests that the
system should exploit the temporal ordering of frames.

FFT of the 14~th Feature of A Running Motion FFT of the 14-th Feature of A Running Motion

g § % 8 % 38 % %
= 8 £ % % % & %

I T T T R T T) 7 3 r g g 7 O

Figure A-2: Here shows the Fast Fourier Transform results on the example signal
from Figure A-1. The left figure shows the frequency domain response of the signal.
The signal has a major low frequency peak. The right figure is the magnified version
of the left over the horizontal axis.

66

Absolute Values of Ca,b Coefficients fora= 1591317 ...

scales a

50 100 250 300

150 200
time (or space) b

Figure A-3: This is a plot of the wavelet transform of the example signal in Figure
A-1; The wavelet filter used is Daubechies 4 filter. In contrast to the temporal signal
in Figure A-1 and the frequential responses in Figure A-2, this figure is a combination
of the two: the horizontal axis is the time axis and the vertical axis corresponds to
period; the higher on the vertical axis, the longer the period the response stands for.

67

68

Appendix B

Source Code

B.1 Dynamic Time Warping System

B.1.1 Dynamic Time Warping Code For The Similarity Be-

tween Two Motions

function [r] = f(c1,c2);

% dynamic time warping distance of two motions, averaged distance

nl = size(ci,2);
n2 = size(c2,2);
ef = zeros(nl+2,n2+2); % the frame to frame distance

for i=1:n1,
for j=1:n2,

ef (i+1,j+1) = norm(c1(:,1i)-c2(:,j));
end

end

g=zeros(nl+2,n2+2);
step=zeros(n1+2,n2+2) ;

for i=2:n1+2,

69

for j=2:n2+2,
tmp=g(i-1,j-1);

if (j<n2+2 || step(i-1,j)>=n2)
tmp=min (tmp,g(i-1,j));

end

if (i<ni+2 || step(i,j-1)>=n1)
tmp=min(tmp,g(i,j-1));

end

g(i,j)=tmp+ef(i,j);

stepinc = (i<=nl+1 && j<=n2+1);

if tmp==g(i-1,j),
step(i,j)=step(i-1,j)+stepinc;

elseif tmp==g(i-1,j-1),
step(i,j)=step(i-1, j-1)+stepinc;

else
step(i,j)=step(i,j-1)+stepinc;

end

end

end

r=g(n1+2,n2+2)/step(ni1+2,n2+2); 7% averaging

end

B.2 Binary Feature-based String Matching

It is an implementation of features in: Mueller et. al. 2005, “Efficient content-based

retrieval of motion capture data”.

70

B.2.1 Relational Features Computing

function [nbf,hlshw] = f(r3,frate),

J r3: motion clip, every frame is a list of skeleton joints in 3D cartesian space
%, frate: framerate

% nbf: non-binary features

% hlshw: humerus length, shoulder width, and hip width;

n = size(r3,3);
assert(size(r3,2)==14 && size(r3,1)==3);
% this version is for 14 joints skeleton; Benchmark A use this skeleton

% benchmark B uses a skeleton of 31 joints, a subset of 14 joints of that skeletc

proot=1;

pneck=2;

plhip=3; prhip=4;

plknee=b; prknee=6;
plfoot=7; prfoot=8;
plshoulder=9; prshoulder=10;
plelbow=11; prelbow=12;
plhand=13; prhand=14;

if “exist(’frate’),
frate=30;
end

framerate = frate;

dl = diff(r3,1,3);
di(:,:,n) = d1(:,:,n-1); % last frame has the same dl as second to last frame

dl=di*framerate;

71

nbf=[]; hlshw=[];

for i=1:mn,

vs=r3(:,:,1

root=vs(:,1
neck=vs(:,2
lhip=vs(:,3
lknee=vs(:,
lfoot=vs(:,
1shoulder=v
lelbow=vs(:

lhand=vs(:,
hlshw (1,1)
hlshw (2,1i)

hlshw (3,1i)

% upper bod

nbf (1,1)
nbf(2,i) =
nbf(3,i) =
nbf(4,i) =
nbf(5,i) =
nbf (6,i) =
nbf (7,i) =
nbf (8,1i) =
nbf(9,1) =
nbf (10,1)

nbf(11,i) =

i);

); % joint locations

);

); rhip=vs(:,4);

5); rknee=vs(:,6);

7); rfoot=vs(:,8);

s(:,9); rshoulder=vs(:,10);
,11); relbow=vs(:,12);

13); rhand=vs(:,14);

norm(1lshoulder-lelbow) ; % humerus length
= norm(1lshoulder-rshoulder) ;

= norm(lhip-rhip);

y features

flet_plane ([rshoulder,root,lshoulder, lhand]);
flet_plane ([rshoulder,root,lshoulder, rhand]);
flet_nplane ([root,neck,neck, lhand]);

flet_nplane ([root,neck,neck, rhand]);

flet_nplane ([rshoulder,lshoulder,lshoulder, lhand]);
flet_nplane ([lshoulder,rshoulder,rshoulder, rhand]);
flet_cosine ([lshoulder,lelbow,lhand]);

flet_cosine ([rshoulder,relbow,rhand]);

norm(d1(:,plhand,i));

norm(d1(:,prhand,i));

(1shoulder-rshoulder)’ * (rhand-lhand) / norm(lshoulder-rshoulder)

72

nbf (12,i) = norm(lhand-rhand);

% lower body

legs = [lhip,lknee,lknee,lfoot,rhip,rknee,rknee,rfoot];

nbf (13,i) = flet_segsp_distance([legs,lhand]);
nbf (14,i) = flet_segsp_distance([legs,rhand]);
nbf (15,1i) = norm(lhand-neck);
nbf (16,1) = norm(rhand-neck);

nbf(17,i) = flet_segp_distance([lhip,rhip,lhand]);

nbf(18,i) = flet_segp_distance([lhip,rhip,rhand]);
mknee = (lkneetrknee)/2;

nbf (19,1i) = flet_cosine([neck,root,mknee]);

nbf (20,i) = norm(di(:,proot,i));

nbf (21,i) = flet_plane([lhip,rhip,rfoot,lfoot]);
nbf (22,i) = flet_plane([lhip,rhip,lfoot,rfoot]);
nbf (23,i) = flet_nplane([mknee,root,rfoot,lfoot]);
nbf(24,i) = flet_nplane([mknee,root,lfoot,rfoot]);
nbf(25,i) = norm(di(:,plfoot,i));
nbf (26,i) = norm(di(:,prfoot,i));
nbf(27,i) = flet_cosine([lhip,lknee,lfoot]);
nbf(28,i) = flet_cosine([rhip,rknee,rfootl);
nbf(29,i) = flet_nplane([rhip,lhip,lhip,1foot]);
nbf(30,i) = flet_nplane([lhip,rhip,rhip,rfoot]);
nbf(31,i) = (lhip-rhip)’ * (rfoot-1lfoot) / norm(lhip-rhip) / norm(1lfoot-rfoot);
end

end

73

B.2.2 Converter From Non-binary

ture

function [bf] = nbf2binf (nbf,hlshw),

n = size(nbf,2);

bf=[];

hl

hlshw(1,:);
hlshw(2,:);

SwW

hw

hlshw(3,:);
cos120 = cos(pi*2/3);

cos120s = ones(1,n)*cos120;

thresh = [hl;hl; hl1*0.2;h1*0.2; hl;hl;

h1*2.3;h1*2.3; zeros(1,n)];

bf(1:11,:) = nbf(1:11,:) > thresh;

Feature To Binary Fea-

co0s120s;cos120s;

thresh = [h1*0.3; hl1*0.5;h1*0.5; h1%0.5;h1*0.5; h1*0.5;h1*0.5];

bf(12:18,:) = nbf(12:18,:) < thresh;

thresh = [co0s120s; hl*2.1; h1*0.3;h1*0.3;
cos120s;cos120s;

bf(19:31,:) = nbf(19:31,:) > thresh;

a=[I;

for i=1:n, % encode into a long int
tmp = int32(0);

for j=1:size(bf,1),

tmp=tmp+bf (j,1)*2"(j-1);

74

hl;hl; hw*3;hw*3;

hw;hw; zeros(1,n)];

end
a(i)=tmp;

end

bf=a;

end

B.2.3 Generate Return Lists From Binary Features

function [rls] = bf2rl(bf,cl,masks),

% bf 2 retrieval lists

% function [rls] = bf2rl(bf,cl,masks),

if “exist(’masks’), % fuzzy retreival mask
masks=[2"32-1];

end

clstart = []; % clip start and end frame
for i=1:length(cl),
clstart(i) = sum(cl(1:i-1))+1;
end
size(clstart)
clending = clstart+cl’-1;

rls = {}; % retrieval list to be returned

for k=1:length(masks), % try every masks
art = zeros(1,length(bf));
mk = masks(k);
for i=1:length(bf),
art(i) = bitand(mk,bf(i));

end

75

% find segment ending and starting, in terms of frame
segending = sort(unique([find(diff(art)~=0) clending]));
segstart = sort(unique([find(diff(art)~=0)+1 clstart]));

sl = segending-segstart+l; 7} segment length

% find clip length in terms of segments
scl = [];
p = 1;
for i=1:length(cl),
Sp = P
sl(p);

while ct<cl(i),

ct

p=p+1;
ct=ct+sl(p);
end

assert(ct==cl(i));

scl = [scl p-sp+1]; 7% clip length in segs
p=p+l;

end

assert (sum(scl)==length(sl));

arte = art(segstart);

% clip no. of each segment
clno = zeros(1,length(arte));
cs = 1;
for i=1:length(scl),
clno(cs:cs+scl(i))=1i;
cs = cs + scl(i);

end

76

size(clno);

h

rl = {};

for e = 1:length(scl), % try every motions as the query example
ea = arte(sum(scl(l:e-1))+1:sum(scl(1:e)));

lea = length(ea);

caca = find(arte==ea(lea)); ¥ intersecting inverted files

for i=fliplr(1l:lea-1),

ce caca-1;

ce = ce(find(ce>=1));

caca = ce(find(arte(ce)==ea(i)));

end
cls = unique(clno(caca));
cls = cls(find(cls™=e)); 7% remove the example from returned list

rl{e} = cls; 7% return list for querying motion e

end

rls{k}=rl; Y% return lists by searching using mask k
end

end

B.3 Motion Word-based Vector Space Model

Features in this system is taken from the Binary Feature-based String Matching

system with modifications.

77

B.3.1 Computing Features

h
4

select some realtion features and pad them with

their 1st derivatives

function [dnd] = nbf2dnd(nbf,hlshw,frate),

dnd: distance and derivatives features

nbf: non-binary features

hlshw: humerus length, shoulder and hip width,
for normalization

frate: frame rate

t =[123456 12 13 14 15 16 17 18 21 22 23 24 29 30];

% subset of features we use

tx=[1111111 1 1 1 1 1 1 1 1 1 1 3 3];
% which length should every feature be normalized:

% 1-humerus length, 2-shoulder width, 3-hip width

nbfp=[];
for j=1:length(t), 7% normalizing
nbfp(j,:)= nbf(t(j),:) ./ hlshw(tx(j),:);

end

% approximating 1st order derivative
di=diff (nbfp,1,2)*frate;
n=size(nbfp,2);

di1(:,n)=d1(:,n-1);

dnd=[nbfp;di];

end

78

B.3.2 Clustering

We use the free “fastkmeans” software package came along with the paper: Elkan
2003, “Using the triangle inequality to accelerate kMeans”. We downloaded the code
from http://www-cse.ucsd.edu/ elkan/fastkmeans.html.

Wraper Of fastkmeans With Random Initial Seeds

% fastkemans with random seeds

function [idx,centers] = mykmeansfast(data,k,runs),
% data: feature vectors

% k : number of clusters

% runs: how many times to run

% idx : index of nearest center

% centers: cluster centroids

mind=1e100;
n=size(data,1);
if k>n,

disp(’k>n in kmeans’);

end

for i=1:runs,
while true,
tmp = randint(1,k,[1 n]);
if length(unique(tmp))==k, ¥ found k unique initial seeds
break;
end

end

[c,ii] = fastkmeans(data,data(tmp,:),2);

79

d = sumdist_clustering(data,ii,c);
if d<mind, % select the best
mind=d;
centers =c;
idx = ii;
end
end

end

Hierarchical K-means Code

function [tr,nwordnum] = hkm(a,k,depth,nextwordno),
% A recursive function for hierarhical clustering
% a: feature vectors

% k: branching factor

% deapth: current tree depth

% mnextwordno: the counted id of next word added

% tr: vocabulary tree

% nwordnum : the counted id of next word added

if depth== % leaf
tr = struct(’wordno’,nextwordno);
nwordnum = 1;
return;

end

% centers is K-by-P matrix, row major

[idx,centers] = mykmeansfast(a’,k,10);

tmp=[]; for i=1:k, tmp(i)=length(find(idx==i)); end;

80

% cluster the children

cs=cell(1,k);

nwordnum = O;

for i=1:k;
ac=a(:,find(idx==1));
[cs{i},tmp] = hkm(ac,k,depth-1,nextwordno+nwordnum) ;
nwordnum = nwordnum+tmp;

end

tr = struct(’cs’,{cs}, ’cetrs’,centers’);

end

B.3.3 Converting Motions Into Words

function [art] = mnbf2art(nbf,voc,
% nbf: features vectors
% voc: motion vocabulary

% art: motion word articles

n=size(nbf,2);
art=zeros(1,n);
for i=1:n,
% convert a(:,i) into words ; a int32

sample=nbf (:,1i);

cnode = vocC;
while isfield(cnode,’cs’)==1,

% search for the leaf that contains the feature vector °

‘sample’’
dists=[];
for j=1:size(cnode.cetrs, 2),

dists = [dists norm(sample-cnode.cetrs(:,j))];

81

end
cnode = cnode.cs{ find(dists==min(dists)) };

end

wordno = cnode.wordno;
art (i)=wordno;
end

end

B.3.4 Using Vector Space Model

Obtaining Term-frequency Matrix

% make TF matrix

% art: article of words, nfxl

% c¢l: clip lens, nx1 mat

% return tf matrix: tf(i,j) word j in document i;

function [tf] = mktfmatrix_gen (wn, art, cl),

tf = zeros(size(cl,1), wn);

size (tf);

% make tf matrix

p=1;

for i=1:size(cl,1), % every clip

for j=1:cl(i),

tf(i, art(p)) = tf(i, art(p))+1;

% article i has word art(p), art(p) is a word in article i
p=p*1;

end

end

82

for i=1:size(cl,1),
tf(i,:) = tf(i,:) / cl(i);

end

end

Obtaining Inverse-document-frequency Vector

% make idf vector

function [idf] = mkidf (tf),

size(tf);

D = size(tf,1);

nW = size(tf,2);

idf=zeros(nW,1);

for i=1:nW,

tmp = size(find(tf(:,i)7=0));

tmp = prod(tmp);
if tmp==0,
idf (i) = 0; % useless word

continue;

end

idf (i) = log(D/tmp);

end

end

83

Obtaining TF-IDF Weights Document Vectors

% tv to tfidf weighted tv

% function [titv] = t2t (tf,idf),
b titv(i,j): doc i word j

% NO TV anymore

function [titv] = t2t (tf,idf),
wn=size(tf,2);

n=size(tf,1);

assert (wn==1length(idf));

titv=zeros(n,wn);

for i=1:size(tf,1),

titv(i,1:wn) = t£(i,:) .* idf’;

% normalize it

titv(i,1:wn) = titv(i,1:wn) / norm(titv(i,1:wn));
end

end

From TF-IDF Vectors To Similarity Matrix

% tv to similarity matrix by L2 norm
% function [smcs] = sm (tv),
YA
function [smcs] = sm (tv),
n=size(tv,1);
smcs=[] ;
for i=1:n,
for j=1:n,
smes(i,j)= tv(i,)*tv(j,:)’ /norm(tv(i,:)) /norm(tv(j,:));

end

84

end

end

From Similarity Matrix to Return Lists

% similarity matrix to retrieval matrix
function [rm] = f(sm),
rm={};

n=size(sm,1);

for i=1:n,
ws = sm(i,:);
ws = sortrows([ws’ (1:n)’]1,[-11);

rm{i} = ws(:,2)’;
rm{i} = rm{i} (find(rm{i}~=1i));
end

end

85

86

Bibliography

1]

2]

[3]

[4]

[5]

9l

[10]

Okan Arikan and David A. Forsyth. Interactive motion generation from exam-
ples. ACM Transactions on Graphics, 21(3):483-490, July 2002.

Okan Arikan, David A. Forsyth, and James F. O’Brien. Motion synthesis from
annotations. ACM Transactions on Graphics, 22(3):402-408, July 2003.

Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information
Retrieval. ACM Press / Addison-Wesley, 1999.

Stefan Carlsson. Combinatorial geometry for shape representation and indexing.
In Object Representation in Computer Vision, pages 53-78, 1996.

Chih-Yi Chiu, Shih-Pin Chao, Ming-Yang Wu, Shi-Nine Yang, and Hsin-Chih
Lin. Content-based retrieval for human motion data. J. Visual Communication
and Image Representation, 15(3):446-466, 2004.

K. Forbes and E. Fiume. An efficient search algorithm for motion data
using weighted pca. In SCA ’05: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 67-76, New
York, NY, USA, 2005. ACM.

W. T. Freeman and E. H. Adelson. The design and use of steerable filters. IEEE
Trans. Pattern Analysis and Machine Intelligence, 13(9):891-906, 1991.

Kristen Grauman and Trevor Darrell. The pyramid match kernel: Discrimina-
tive classification with sets of image features. In ICCV ’05: Proceedings of the
Tenth IEEFE International Conference on Computer Vision, pages 1458-1465,
Washington, DC, USA, 2005. IEEE Computer Society.

Kristen Grauman and Trevor Darrell. Approximate correspondences in high di-
mensions. In B. Scholkopf, J. Platt, and T. Hoffman, editors, Advances in Neural
Information Processing Systems 19, pages 505-512. MIT Press, Cambridge, MA,
2007.

C. Harris and M. Stephens. A combined corner and edge detection. In Proceedings
of The Fourth Alvey Vision Conference, pages 147-151, 1988.

87

1]

21]

[22]

Eugene Hsu, Sommer Gentry, and Jovan Popovi¢. Example-based con-
trol of human motion. In SCA '04: Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 6977, Aire-
la-Ville, Switzerland, Switzerland, 2004. Eurographics Association.

Eamonn Keogh, Themistoklis Palpanas, Victor B. Zordan, Dimitrios Gunopu-
los, and Marc Cardle. Indexing large human-motion databases. In vldb’2004:
Proceedings of the Thirtieth international conference on Very large data bases,
pages 780-791. VLDB Endowment, 2004.

Lucas Kovar and Michael Gleicher. Automated extraction and parameterization
of motions in large data sets. ACM Transactions on Graphics, 23(3):559-568,
August 2004. In Press.

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion graphs. ACM
Transactions on Graphics, 21(3):473-482, July 2002.

Harold W. Kuhn. The hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2:83-97, 1955.

CMU Graphics Lab. Cmu graphics lab motion capture database.

Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S.
Pollard. Interactive control of avatars animated with human motion data. ACM
Trans. Graph., 21(3):491-500, 2002.

Yi Lin. Efficient human motion retrieval in large databases. In GRAPHITE
'06: Proceedings of the 4th international conference on Computer graphics and

interactive techniques in Australasia and Southeast Asia, pages 31-37, New York,
NY, USA, 2006. ACM.

Feng Liu, Yueting Zhuang, Fei Wu, and Yunhe Pan. 3d motion retrieval with
motion index tree. Comput. Vis. Image Underst., 92(2-3):265-284, 2003.

Guodong Liu, Jingdan Zhang, Wei Wang, and Leonard McMillan. A system for
analyzing and indexing human-motion databases. In SIGMOD ’05: Proceedings
of the 2005 ACM SIGMOD international conference on Management of data,
pages 924-926, New York, NY, USA, 2005. ACM.

David G. Lowe. Object recognition from local scale-invariant features. pages
1150-1157, 1999.

Meinard Miiller, Tido Roder, and Michael Clausen. Efficient content-based re-
trieval of motion capture data. ACM Transactions on Graphics, 24(3):677-685,
August 2005.

Juan Niebles, Hongcheng Wang, and Li Fei-Fei. Unsupervised learning of hu-
man action categories using spatial-temporal words. International Journal of
Computer Vision.

38

[24] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. pages
II: 2161-2168, 2006.

[25] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval
with large vocabularies and fast spatial matching. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2007.

[26] Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of speech recognition.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[27] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic
indexing. Commun. ACM, 18(11):613-620, 1975.

[28] Gerard Salton, Edward A. Fox, and Harry Wu. Extended boolean information
retrieval. Commun. ACM, 26(11):1022-1036, 1983.

[29] Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to
object matching in videos. In ICCV “03: Proceedings of the Ninth IEEFE Interna-
tional Conference on Computer Vision, page 1470, Washington, DC, USA, 2003.
IEEE Computer Society.

89

