
Agent Problem Solving by Inductive and Deductive

Program Synthesis

by

Harold Fox

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2008

@ Massachusetts Institute of Technology 2008. All rights reserved.

Author ...
Department of Electrical Engineering and Computer Science

July 28, 2008
. 1

Certified by....
Howard E. Shrobe

Principal Research Scientist
Thesis Supervisor

Accepted by

MASSACHUSETTS INSTiTUTE
OF TECHPYNOLO^

OCT 2 2 2008

LIBRARIES

..

Terry P. Orlando
Chairman, Department Committee on Graduate Students

ARCHIVES

Agent Problem Solving by Inductive and Deductive Program

Synthesis

by

Harold Fox

Submitted to the Department of Electrical Engineering and Computer Science
on July 28, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

How do people learn abstract concepts unsupervised? Psychologists broadly recognize
two types of concepts, declarative knowledge and procedural knowledge: know-what
and know-how. While much work has focused on unsupervised learning of declara-
tive concepts as clusters of features, there is much less clarity on the representation
for procedural concepts and the methods for learning them. In this thesis, I claim
that programs are a good representation for procedural knowledge, and that program
synthesis is a promising mechanism for procedural learning. Prior attempts at AI pro-
gram synthesis have taken a purely deductive approach to building provably corrent
programs. This approach requires many axioms and non-trivial interaction with a
human programmer. In contrast, this thesis introduces a new approach called SSGP
(Sample Solve Generalize Prove), which combines inductive and deductive synthesis
to autonomously synthesize programs with no extra knowledge outside of the program
specification. The approach is to generate examples, solve the examples, generalize
from the solutions, and then prove the generalization correct.

This thesis presents two systems, Spec2Action and HELPS. Given a logical speci-
fication, Spec2Action determines the relations to change to perform simple operations
on data structures. The main part of its task is to uncover the recursive structure
of the domain from the purely logical input spec. HELPS generates sequential pro-
grams with loops and branches using STRIPS actions as the primitive statements. It
solves generalizations of classic AI tasks like BlocksWorld. The two systems use SAT
solving and other grounded reasoning techniques to solve the examples and generalize
the solutions. To prove the abstracted hypotheses, the systems use a novel theorem
prover for doing recursive proofs without an explicit induction axiom.

Thesis Supervisor: Howard E. Shrobe
Title: Principal Research Scientist

Acknowledgments

I want to thank my advisor, Howard Shrobe. He gave me the freedom to pursue this

research, despite my difficulty at articulating its vision and purpose at the beginning.

He always let me work on the problems that I thought were important in the long

run, even when they seemed odd and unrelated to my long term objectives.

I also want to thank my colleagues, Max Van Kleek, Gary Look, Alice Oh, Aaron

Adler, and Jacob Eisenstein. They were always there to provide help and psycholog-

ical support during the arduous task of finishing the system and writing the thesis.

I want to thank my thesis committee, Gerald Sussman and Patrick Winston, who

were always able to provide a breath of fresh air and a dose of reality.

I finally want to thank my parents Siegrun Freyss and Charles Fox. They were

very supportive of my decision to pursue a PhD in artificial intelligence, a leap into

an unknown, but fascinating area from my undergraduate study in applied math and

my brief career at an internet start-up.

Contents

1 Introduction

1.1 M otivation ..

1.1.1 Procedural Knowledge vs. Declarative Knowledge

1.1.2 Programs as Procedural Knowledge

1.1.3 Program Synthesis by SSGP: Samp]le,

.

Solve, Generalize,

... °°.....

..........

..........

...... °.,..

....... ,..

..........

......... ,.

..........

...........

.

.

Prove

1.2 The SSGP Systems.....

1.2.1 Introduction

1.2.2 Representations ...

1.2.3 HELPS

1.2.4 Spec2Action.....

1.2.5 Form2Grammar ...

1.3 Related Work

1.3.1 Foundations

1.3.2 Generalized Planning

1.3.3 Program Synthesis .

1.4 Thesis Organization.....

2 Representations of Worlds, Formulas, and

2.1 W orlds .

2.2 Quantified Formulas

2.2.1 Syntactic Sugar

2.2.2 Subsumption and Simplification .

7

Problems

°.

•.. °

. . .

and

• . .

. . .

. . .

. ,.

47

47

49

53

.°........

...... °...

..........

..........

..........

..........

.°........

....... °..

..........

...........

.

2.3 Sets, Properties, and Partitions 55

2.4 Size Possibilities 57

2.5 Problem Specifications 58

3 Form2Grammar 61

3.1 Grammar Representations 61

3.2 Challenge Problems 65

3.3 Form2Grammar Architecture 68

3.3.1 Overview . 68

3.3.2 Sampling instances 69

3.3.3 Example Decomposition 72

3.3.4 Decomposition Unification 75

3.3.5 Assigning constraining formulas to non-terminals 80

3.3.6 Proofs: Simplification 88

3.3.7 Simplification Theorem Proving 92

3.3.8 Theorem Proving by Abstract Induction 99

3.4 Conclusion . 109

4 Spec2Action 111

4.1 Introduction . 111

4.2 Challenge Problems 115

4.3 Representations 118

4.4 Spec2Action Architecture 122

4.4.1 Solving Examples Simply and Consistently 123

4.4.2 Propagating action templates forward 125

4.4.3 Simplification 127

4.4.4 Recursive Set Builder 128

4.4.5 Partition Mapping 132

4.4.6 From partition maps to programs 136

4.5 Conclusion 141

5 HELPS

5.1 Introduction

5.2 Representations

5.2.1 Primitive Actions

5.2.2 Programs

5.3 Challenge problems

5.4 HELPS Architecture

5.4.1 Partial programs

5.4.2 Transforming partial programs

5.4.3 Example: Clearing a Block ..

5.4.4 Change Propagation

5.4.5 Finding Loop Invariants . . .

5.5 Results and Discussion

5.5.1 Introduction

5.5.2 Clearing a block

5.5.3 Moving one block onto another

5.5.4 Putting all blocks in a tower .

5.5.5 Putting one block directly onto

5.6 Conclusion

.......

.°. ..

.°

.

6 Conclusion

143

143

145

145

147

149

152

152

154

165

168

173

175

175

177

179

184

187

196

199

List of Figures

1-1 Operations to stack A directly onto B 19

1-2 Specification to stack A directly onto B 19

1-3 Solution to block stacking problem 19

1-4 Invariants for the block stacking program 21

1-5 Sample environment for BlocksWorld 24

1-6 Actions for BlocksWorld 25

1-7 Specification for inserting an element into a sorted list 26

1-8 Inserting block b into a sorted list 27

1-9 Relations to change (the action) for the insert sorted problem 27

1-10 The list partitioned into sets A and B 27

1-11 Clearing a block: the canonical generalized planning example 34

3-1 One breakdown or decomposition of a grammar for a singly linked list 63

3-2 Specification for a marked list 66

3-3 Grammar for a marked list 66

3-4 Constraining formulas for the marked list grammar 67

3-5 The architecture of Form2Grammar 68

3-6 Two samples to break down 73

3-7 An example breakdown for the pivot p = A1 73

3-8 The two simplest sample break-downs. The first takes pivots from the

front. The second takes pivots from the rear. 76

3-9 All marked lists of size 4 with their decompositions represented as state

machines. 77

3-10 Sample breakdown unification step-by-step. The output machine has

tw o states ... 78

3-11 An example interface partition for an unmarked list. The constraining

formula is defined in terms of Q1, Q2, and an external term h, which

is eliminated in the final constraining formula. 83

3-12 Three partitions of an unmarked list that is a sub-instance of a marked

list. The interface partition {Q1, Q2} is used to define the constraining

formula. {p, P1, P2}is the breakdown partition in the sample decom-

position. {Q', Q'} is the interface partition of the smaller instance

P1 U P2. The samples are used to determine the relationships among

these partitions. In this case, Q' = P1 n Q2. Q' = P2 Q2- Q1 = (P}.

Q2 = (Q1 n P1)U(Q n P2). 85

3-13 Ssubsumption rules 94

3-14 The first pass of the deep simplification algorithm 97

3-15 The full deep simplification algorithm 98

3-16 A sample of size 4 x, y, z, w and its abstraction. y, z, w is abstracted

into the wildcard A. 101

3-17 A portion of an extension-abstraction tree showing how node 1 becomes

a dead-end. 107

4-1 The relations to change when removing the marked element from a list 113

4-2 The steps to remove an element from a binary search tree. The re-

cursive merging of sub-trees is too complex to represent as an action

template. 117

4-3 The recursive set build-up for the action template partition {A, B, C}

from the grammar produced by Form2Grammar 121

4-4 The Spec2Action Architecture 122

4-5 Sets A and B for inserting an element a at the end of a list 129

4-6 Sets A and B built recursively from the grammar breakdown {p, P1, P2 }

and A' and B' of the sub-list L'. There are two cases for when L'is or

is not 130

4-7 The five satisfying recursive partition mappings for the different ways a

marked list breaks down and the ways the sub pivots could recursively

map to {A', B', C'} 132

4-8 The three partition mappings for the ways an unmarked list breaks

down and maps to {A, B, C} from {A', B', C'} 133

4-9 The four partition mappings for inserting an element at the end of a list137

5-1 Unlike other general planning systems, there is no separate notion of

clear or atop. (clear A) = Vx --(on x A). (atop

Vy -(on B y) V (on y C)
Problem: clearing block A

Problem: moving block A onto block B

Problem: moving A directly onto B.......

Problem: stacking blocks in a table in one stack

Problem: sorting a list of elements

Problem: setting a row of switches

Problem: navigating a grid

Problem: picking up an object and moving it ..

B C) = (on B C) A

......... . .. 144

............ 150

............ 150

............ 150

............ 150

............ 151

............ 151

. 151

. 151

5-10 Partial programs consist of a chain of transformed problems. The

output program is constructed from the top down.

5-11 Loop invariants must hold at the beginning and end of every loop. ..

5-12 A too narrow loop invariant search can yield a never-ending set of

counter-examples, like these on loops

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

154

164

175

Chapter 1

Introduction

1.1 Motivation

What is procedural knowledge? Imagine a chef who never graduated high school but

who has been working in restaurants for thirty years. Then consider her apprentice,

who graduated from the top cooking school, but who has never had any practical

restaurant experience. Despite the schooling difference, the experienced chef can pre-

pare meals much more efficiently and consistently than the apprentice. How could one

represent the master's knowledge? Each kitchen situation is unique with an uncertain

flow of orders each night. Somehow the master has learned general procedures and

strategies for interacting with the world that are not explicitly written down in all of

the apprentice's books and classes.

How could a computer represent procedural knowledge? How could it learn pro-

cedural concepts in a hands-on way by interacting with the world, reflecting on its

experience, and generalizing solutions to day-to-day problems? This thesis will con-

sider programs as a promising form of procedural knowledge. Programs are attractive,

because they are provably correct, widely applicable, and robust to certain types of

failure. Specifically, the thesis focuses on program synthesis as a core mechanism for

procedural knowledge learning. The key thesis contribution is a new philosophy for

program synthesis called SSGP for Sample Solve Generalize and Prove. To synthesize

a program, an SSGP system generates examples and uses the examples to hypothe-

size general solutions to a program specification. Using SSGP, two systems have been

developed, Spec2Action and HELPS, that can synthesize programs with considerably

less knowledge and more autonomy than prior artificial intelligence synthesis systems

which relied entirely on deductive synthesis.

1.1.1 Procedural Knowledge vs. Declarative Knowledge

Concept learning is a core area of cognitive science research. A concept, vaguely

defined, is some symbolic entity of knowledge, often referred to by a word, such

as "chair" or "fire". How do humans segment the vast, undifferentiated stream of

sensory input and bodily impulses into discrete concepts? Humans certainly learn

in a consistent way, because they are able to acquire language. Babies get very few

examples of each word learned side-by-side with the word's referent, so it is generally

accepted that humans do a considerable amount of unsupervised concept acquisition.

How and why these concepts are learned and represented is a fundamental question

in human psychology.

Concepts, and knowledge in general, can be divided into two types, declarative

or descriptive knowledge and procedural knowledge: "know-what" and "know-how"

[1]. Declarative knowledge represents concepts according to their observed features.

A declarative representation of a chair would be an object consisting of a seat, legs,

and a back in the chair configuration. Procedural concepts are represented by their

role in accomplishing certain goals and tasks. A procedural representation of a chair

is something to sit on.

Many cognitive architectures (systems seeking to model the complete human

mind) explicitly model the two types of knowledge and their acquisition. Anderson,

a cognitive scientist and computer scientist, implements the two structures explicitly

in the Act-R cognitive architecture [2]. The system acquires procedural knowledge

through "learning by doing". As it solves problems, it generalizes from its solutions

and memorizes them for future use.

In computer science, there have been several interesting frameworks for the unsu-

pervised learning of declarative concepts. Unsupervised clustering algorithms, Latent

Dirichlet allocations, and version spaces are some examples [5, 23]. On the other

hand, there is generally much less clarity on the proper representation for procedural

knowledge and the theoretical frameworks for learning it.

However, an argument can be made that procedural knowledge is more fundamen-

tal in human concept learning and knowledge representation. Social scientists who

have studied education have discovered that humans learn concepts most effectively

when they acquire those concepts in the process of accomplishing some goals that are

relevent to them. This is "learning by doing" in contrast to "learning by studying."

John Dewey, a progressive philosopher in the early 20th century, is an early and out-

spoken critic of disciplinary, fact-based education. He advocates natural learning and

a non-adversarial approach to school [8].

Schank, a computer scientist turned education researcher, takes this idea further

[29]. Students learn most effectively when they have a goal in mind. When they are

motivated by the right goals, they naturally acquire the concepts they need to learn.

In this theory of mind, the learning process consists of integrating one's current goals

with past goals, and generalizing the common parts of the solutions. Schank calls

these commonalities scriptlets, small strategies that participate in solving a general

task. Schank's computer science work is in case-based reasoning, a problem solving

technique similar to the caching and basic generalization of STRIPS plans.

1.1.2 Programs as Procedural Knowledge

There are several good potential representations for procedural knowledge. What

makes programs unique and the focus of this thesis is that they are both provably

correct and widely applicable. An alternative representation is a cached plan. The

original STRIPS planning system stores the solutions to all of the problems it solves.

Then, if one of these problems comes up as a sub-problem of a subsequent problem, the

stored solution is substituted and the sub-problem is solved with no further reasoning.

These cached plans are called macro-operators, since they are sequences of primitive

operators. Cached plans are the representation for procedural knowledge in Act-R,
Soar, and case-based reasoning [17, 2, 28].

Cached plans are valuable, because they are provably correct. Assuming that the

world behaves as modeled by the STRIPS actions, if a cached plan is applied to a

situation where it is applicable, then the subsequent state of the world is guaranteed

to be exactly as desired. The problem with cached plans is that each one only applies

to a narrow situation. A plan to clear a block A with two blocks on top of it could

not be used if there are three blocks on top of A.

Another good procedural knowledge representation is a policy, acquired by rein-

forcement learning as an MDP or a POMDP [161. Policies are decision procedures

that can apply to any situation in a particular domain. The correct decisions for

particular states are learned by maximizing utility on particular examples and gen-

eralizing. While policies are robust and widely applicable, they are not provably

correct. That is, since a policy is learned on data and depends on various statistical

assumptions, if a policy is moved into a new domain, there is no way of knowing if

the policy will be successful or not. In other words, when a policy makes a decision,

it cannot provide good reasons as to why it made that decision and what assumptions

that decision was based on.

So, uniquely among these representations, a program constructed by program

synthesis is both provably correct and widely applicable. Consider the problem of

stacking block A directly onto block B shown in Figure 1-1. This problem is specified

in Figure 1-2 with a program spec consisting of a start formula (assumptions about

the world before the program is run) and a goal formula (the desired state of the

world).

The specification is shown in Figure 1-2.

The Start specification states that the on relation is anti-symmetric, transitive,

and that for all blocks x and y in one column, either x is on y or y is on x. Using

STRIPS actions as the primitive operations, the program to solve this is in Figure

1-3

The program means: while there is something on A, move the top of the stack

on A to the table. Then, while there is something on B, move the top of the stack

on B to the table. Then, move A onto B. This program works for any configuration

A~i8;~

Figure 1-1: Operations to stack A directly onto B

Start = VxVy (on x y) =+ -(on y x)

A VxVyVz (on x y) A (on y z) = (on x z)

A VxVyVz (on x z) A (on y z) (on x y) V (on y x)
A VxVyVz (on z x) A (on z y) (on z y) V (on y x)

A --(on B A)

A --(on A B)

Goal = (on A B)

A Vx (-(o n A x)V -(on x B))

Figure 1-2: Specification to stack A directly onto B

if -,(on A B)
while 3x (on x A)

(moveTable x) :
while 3x (on x B)

(moveTable x):

(moveBlock A B)

x such that (on x A) A Vy -,(on y x)

x such that (on x B) A Vy -,(on y x)

Figure 1-3: Solution to block stacking problem

I

n

of blocks. Using cached plans, there would have to be separate plans for when there

is one element on B and one element on A, two elements on B and one on A, one

element on B and two on A, etc. In addition to its applicability to many situations,

a program is also provably correct through its construction by program synthesis.

When program synthesis operates on a program spec, it produces more than the

code. It also produces all of the supporting infrastructure needed to know why a

program is correct and what it accomplishes with each step. This infrastructure

consists of invariant statements that can be counted on to hold at each step of the

program if the starting assumptions were true. The invariants for the block stacking

program are shown in Figure 1-4. (Readers shouldn't worry about the meaning of the

logic or the theorem proving mechanisms at the moment. All of the representational

and logical details are explained in later chapters.)

Given an invariant on one line combined with the action on the next line, the

computer can automatically prove that the next invariant is true. Stepping through

the whole program from the start to the end, the invariants comprise the proof that

the program is provably correct.

When any program synthesis system produces a program, it also produces a cor-

rectness proof as a byproduct. Proof of correctness is the only way a program search

knows it has a valid answer. The correctness proof has another benefit besides check-

ing the produced program. It provides a continual consistency run-time check during

the execution of a program. If the world ever changes in an unpredicted way, the

program executor or controller will notice the change when the current statement

invariant does not hold. In that case, the executor can trace backward through the

program statements until it finds an invariant that does hold. The executor can then

restart program execution at that point.

Because of the unique properties of provable correctness and wide applicability,

this thesis investigates programs as a representation for procedural knowledge and

program synthesis as the key mechanism in procedural knowledge learning. In the

remainder of the thesis, it will be assumed that a general program specification has

been provided a priori. However, a fully autonomous program learning agent would

Start

1: if --,(on A B)
-,(on A B)

2: while 3x (on x A) {
S := x such that (on x A)

T := x such that --,(on x A)
3x E S Vy -(on y x)

3 : (moveTable x) : x such
3x E S -(on x A)
Vx E T -,(on x A)

that (on x A) A Vy -(on y x)

}
Vx -(on x A)
4: while 3x (on x B) {

S := x such that (on x B)

T := x such that -'(on x B)

3x E S Vy -(on y x)
5 : (moveTable x) : x such that (on x B) A Vy -,(on y x)

3x E S -(on x B)
Vx e T -(on x B)

Vx -'(on x B) A Vx -(on x A)
6: (moveBlock A B)

(on A B) A Vx -(on x B)
(on A B) A Vx (--(on x B) V -(on A x))

Figure 1-4: Invariants for the block stacking program

need to generate the spec as well as synthesize the program. Spec synthesis is a

problem for future work. Further arguments for programs as procedural knowledge

are contained in Schmid [31].

1.1.3 Program Synthesis by SSGP: Sample, Solve, Generalize,

and Prove

The contribution of this thesis is a method for doing program synthesis from a spec

without any interaction or any additional domain theory. The technique that enables

this is called SSGP. It samples examples satisfying the start formula, solves them,

generalizes the solution, and then proves the generalization correct. SSGP is used in

two systems, Spec2Action and HELPS, that each synthesize different types of pro-

gram. Prior systems that have sought to do program synthesis in artificial intelligence

have used purely deductive synthesis.

Because the search space of potential programs is so large, generated examples

can serve to guide the search, meaning that the synthesis systems can generate more

sophisticated programs than prior art. They further require neither human interac-

tion nor any guiding domain theory of lemmas and axioms. In particular, due to a

novel logical representation and theorem prover, Spec2Action and HELPS can reason

about synthesis problems without an explicit induction axiom. I believe that the

ability to develop recursive structures and unbounded iterative procedures from first

principles and examples is a more cognitively plausible model for how humans learn

such structures and procedures in early learning.

1.2 The SSGP Systems

1.2.1 Introduction

To study program synthesis in AI and the efficacy of SSGP, two systems have been de-

veloped, Spec2Action and HELPS. Both systems use the same logical representations

for worlds, and they share many common algorithms. For both systems, facts about

worlds are represented with quantified formulas. These are very similar to first-order

logic formulas with some subtle, but critical distinctions.

In general, it is assumed that a program operates on a world with a fixed set of

objects and changing relations. Programs are specified with two quantified formulas,

a start formula and a goal formula. A correct program applied to a world that satisfies

the start formula will result in a world that satisfies the goal formula.

Spec2Action, given a program spec, determines the relations to change to satisfy

the goal. Since the relations can be changed in any order, Spec2Action programs have

no time component. The major concern with Spec2Action is determining the struc-

ture of worlds satisfying the start formula and the roles of the objects in them. For

each program, Spec2Action determines what the roles are, hpothesizes a program on

top of that, and then proves that such a program always works. The exercising exam-

ples for Spec2Action are simple operations on data structures, such as inserting into a

linked list or inserting into a binary tree. A major subcomponent of Spec2Action is a

system called Form2Grammar, which determines a recursive structure or grammar for

worlds satisfying any particular start formula. Both Spec2Action and Form2Grammar

use examples to guide their search for a program and grammar respectively.

The second synthesis system, HELPS, builds an iterative program using STRIPS

actions. Since STRIPS actions have preconditions and they change many relations at

a time, the correct sequencing of the actions is a critical concern. HELPS programs

use loops, conditions, and let environments to control the actions. The exercise

problems for HELPS are generalizations of classic AI problems such as BlocksWorld

and other planning tasks.

Given a spec, Spec2Action determines "what to do," the relations that must change

to take the start to the goal. HELPS, on the other hand, determines "how to do it,"

how to take the start formula to the goal formula using available actions.

1.2.2 Representations

To formalize program synthesis, we need precise definitions for environments, formu-

las, and programs. These are formalized fully in Chapter 2. When a program is

(on C A) -,(on D A)
(on D B) -(on A D)

--(on A C) -,(on B C)
-,(on B D) -(on C B)
-,(on D C) -,(on A B)
-,(on C D) -.(on B A)

Figure 1-5: Sample environment for BlocksWorld

executed, it is applied to a concrete environment. An example environment is shown

in Figure 1-5 for BlocksWorld. An environment consists of a set of objects O, as

well as an instantiation of a set of relations R over O. In the case of Figure 1-5,

O = {A, B, C, D} and R is the binary relation {(on ?1 ?2)}. To reason about sets

of environments, we use quantified formulas. Quantified formulas are extensions of

first-order logic with a few subtle, but important differences. An example formula is

VxVy -(on x y) V -'(on y x). This means that for any two blocks x and y, if x is on

y, then y is not on x. A formula precisely defines a set of environments for which it

holds. Given any environment, it is always easy to check whether a particular formula

is true.

Quantified formulas are used to specify programs: the starting condition and the

goal condition. They specify the sets of environments that are valid start and goal

states. Quantified formulas are also used to define actions: their preconditions and

postconditions. The formulas specifying the block stacking problem are shown in

Figure 1-2. The actions for moving a block to the table and for moving one block

onto another are shown in Figure 1-6:

Programs are constructed using formulas and invocations of primitive actions.

A program consists of five kinds of statements: primitive action calls, sequences of

statements, if-then-else statements, while loops, and let environments. The sequence,

(moveTable a)
precondition:
postcondition :

(moveBlock a b)

precondition:

postcondition :

A

Vx

Vx

:= x s.t. (on a x)

-(on x a)
E A -(on a x)

A := x s.t. (on a x)

B :=x s.t. (on b x)

Vx -(on x a)

Vx -(on x b)

--(on a b)

-,(on b a)

Vx E A -,(on a x)

Vx E B (on a x)

(on a b)

Figure 1-6: Actions for BlocksWorld

if-then-else, and while statements work the same as they do

Java. The conditions in the if statement and while statement

The program in Figure 1-3 contains all of these structures.

in a language like C or

are quantified formulas.

1.2.3 HELPS

This thesis demonstrates three sub-systems, Form2Grammar, Spec2Action, and HELPS,

each of which solves problems of differing complexity. Because program synthesis is

an inherently undecidable task, none of these sub-systems have any guarantees of

correct termination. However, if they do terminate, the solution is guaranteed to be

correct. However, if a solution exists to a particular problem, there is no guaran-

tee that these systems will find it. The systems are evaluated using a diverse set of

exercise problems designed to reproduce the most difficult types of problems such a

system might encounter in a real application.

The most advanced system is the STRIPS program synthesizer, HELPS, Hallucinated-

Example Led Procedure Search. The synthesizer takes a start and goal formula as a

specification and produces a complete program. The search works by applying various

Start = VxVy (< x y) V -(< y z)

A VxVy (< x y) V(< y x)

A VxVyVx (< x y)V (< y z) V (< x z)
A Vx EL Vy EL (< x y) 4 (connected x y)

A Vx E L --(connected x b) A -(connected b x)

Goal = VE L U {b} (< x y) 4 (connected x y)

Figure 1-7: Specification for inserting an element into a sorted list

tactics to a program specification to generate sub-problems with smaller and simpler

specifications. The search algorithm samples or hallucinates problem instances, solves

the instances, and uses these instance solutions to decide which sub-problems look

promising to pursue further. HELPS is described in Chapter 5.

1.2.4 Spec2Action

At present, HELPS can only solve problems with relatively short and simple goal for-

mulas. The second system, Spec2Action, makes different assumptions about the final

program format, and it solves a different set of problems. Reasoning about achiev-

ing a complex goal from STRIPS actions is difficult, because of the need to reason

about side-effects and preconditions. With a complex goal formula, it is necessary

to separate reasoning about relations that need to change from reasoning about how

to use actions to change those relations. Spec2Action is a system that synthesizes

programs to determine these relations to change. Currently, Spec2Action and HELPS

are independent systems. However, the two systems are designed to complement each

other, and future plans call for integrating them.

Spec2Action turns a program spec into an action schema, which describes the roles

of the objects in the world, the relations to change on those roles, and the recursive

construction of those roles on a world's grammar.

Consider the problem of inserting a block into a sorted list. This problem is shown

in Figure 1-8. The specification is shown in Figure 1-7.

The start formula means that the elements are well ordered, and that the set L is

L

b

Figure 1-8: Inserting block b into a sorted list

L = {A,B}
A := x : (< xb)

B := x : (< bx)
Change := (connected A b)

(connected b B)

Figure 1-9: Relations to change (the action) for the insert sorted problem

sorted according to this order. The goal formula means that L U x must be a sorted

list. The goal formula is not specific about how the world should change. It only

specifies that the final list should be sorted. Spec2Action takes this goal formula and

produces the action solution in Figure 1-9.

The action specification divides the set L into two sets, A and B, pictured in

Figure 1-10. A is the set of elements in L less than b and B is the set of elements

greater than b. The elements of A are connected to b, and b is connected to the

elements of B.

A B

F-i
b

Figure 1-10: The list partitioned into sets A and B

In general, given a start formula and a goal formula, Spec2Action partitions the

object set into disjoint sets {S1,..., S,}with relations to change defined on these

sets. Each relation to change changes in the same way for all elements of a particular

set Si. Spec2Action determines sufficient quantified formulas for the sets Si, and it

produces recursive formulas to construct them Si from the grammar produced by

Form2Grammar.

Simple operations on data structures have interesting actions, since they require

uncovering the recursive structure of the data structure from the structure's logical

description. Actions have been synthesized for a number of simple operations on data

structures. Examples include inserting into a sorted list, inserting into a circularly

linked list, and inserting into a binary tree.

Spec2Action uses SSGP. It synthesizes examples of the start formula and deter-

mines relations to change to satisfy the goal formula. Then, it generalizes from the

solutions to these examples, trying to find the minimal action that works for all of

the examples. Spec2Action then tries to prove that the chosen action works. It finds

minimally sufficient conditions that the partition sets must satisfy, and it shows that

such a partition can always be constructed out of an environment satisfying the start

formula. Spec2Action is described in detail in Chapter 4.

1.2.5 Form2Grammar

Form2Grammar is the last subsystem, used by Spec2Action to prove the existence of

a partition satisfying particular conditions. It takes an input formula and produces a

recursive grammar that all environments satisfying the input can be decomposed into.

For example, a grammar for the sorted list is shown below. The grammar is needed to

produce a structure on environments satisfying a particular formula. The structure

allows Spec2Action to find its partition by recursively processing the partitions of

sub-environments and proving the existence of the partition by structural induction.

Like Spec2Action, Form2Grammar works by sampling, generalizing, and then

proving the correctness of its generalization. It generates examples of the given for-

mula, and then tries to build a minimal recursive structure to describe those examples.

It proves the generalization correct by finding minimally sufficient conditions for any

particular non-terminal production. It then proves these minimally sufficient condi-

tions by structural induction. Form2Grammar is described fully in Chapter 3.

All three SSGP subsystems work by a combination of inductive synthesis and

deductive synthesis. They use examples to generate possible solution schemas. The

systems then apply various automated reasoning algorithms to fill in the details of

the schemas, so that the finished program works in all cases. This synthesis strategy

is the main contribution of this thesis in comparison with previous work, which will

be described and discussed in the following section.

1.3 Related Work

1.3.1 Foundations

The formalization of STRIPS planning originally came from the desire to produce

a computer program that could respond flexibly and robustly to a wide range of

situations. Newell and Simon's General Problem Solver(GPS), one of the earliest and

most celebrated programs in AI, has the ambition to formalize a representation for all

problems and all heuristic techniques for solving them [25]. Green equates problem

solving with automatic theorem proving [15]. He shows how goals in the world can

be achieved by treating actions as axioms, and repeatedly resolving them with the

state.

This action representation led to STRIPS planning [11], the dominant formali-

sation used today in standard planning. Every primitive action has a precondition

and a postcondition. The precondition defines the propositions that must hold for an

action to be valid, and the postcondition defines the action's outcome. The planner

uses search heuristics to efficiently find a sequence of primitive actions to make the

goal true, given the initial starting state.

1.3.2 Generalized Planning

Abstracting Sequential Plans

There have been several attempts to create more expressive plans or to make planning

solutions more reusable for later problems. One of the first extensions to the original

STRIPS system is the concept of Macrops, macro operators [10]. Whenever a plan

is made for a particular problem, all of the sub-sequences of the plan are converted

into abstract, macro operators that can be used like ordinary, primitive actions. The

preconditions and postconditions for this macro-action can be determined easily, and

the macro-action can further be parameterized by removing any free variables. Macro

operators are a simple, but powerful way to incorporate procedural knowledge into a

problem-solving system.

Sussman extends generalized planning, and further articulates the vision of prob-

lem solving as automatic programming and debugging[38]. Sacerdoti introduces the

idea of non-linear planning [27]. He analyzes the actions in a plan and determines

which groups of actions can be run independently of each other in any order. This

produces a plan that is a directed, acyclic graph. At any time, the plan executor may

have a choice of a number of primitive actions to perform. Non-linear plans permit

more modularity, and they allow the system to make a more informed decision about

which sub-plans are useful to cache.

Contingency Plans

The need to cope with uncertainty when executing a plan in the real world has been

the major driving force in the recent work on making plans more expressive and

flexible. A contingency plan, introduced by Pryor and Collins, is a plan that can

cope with uncertainty in the outcome of actions [26]. The world is assumed to be

fully observable, but actions are non-deterministic. The set of possible world states

that an action can change the world to is assumed to be known beforehand and is a

small subset of all possible worlds.

Pryor and Collins extend partial-order planning [22] to plans with contingencies.

They define decision actions, which are capable of observing particular random vari-

ables at run-time. The values of these random variables determine the contingency,

so they allow the plan executor to choose the proper path through the partial-order

plan. In this algorithm, planning consists of heuristic search through the space of

partial plans. At each step, a partial plan has an open condition satisfied, it has an

unsafe link protected, or it has a random variable observed. A plan is complete when

all conditions are satisfied in all contingencies, and there are no unsafe links.

Another variant of uncertain planning is conformant planning. In this case, the

start state comes from a set of initial states, actions are non-deterministic, and the

state is completely unobservable. The planner must produce a sequential plan that

will work under all possible cases. This is essentially ordinary planning where the

states are sets of possible worlds, elements of the power set of the original state

universe. A set of states is called a belief state. Cimatti et al use binary decision

diagrams to efficiently represent belief states and non-deterministic actions[6]. They

then use symbolic model checking to explore all possible belief states that can reach

the goal belief state. Symbolic model checking works for searching an exponential

space of possibilities because it automatically exploits the wide range of symmetries

inherent in most problems.

Bertoli et al extend symbolic model checking to partially observable planning [4].

Here, actions are non-deterministic and the initial configuration is one of a set of

possibilities. However, at each stage, the state of the world is partially observable, so

that the plan executor can choose alternate actions depending on the observations.

The problem set-up is equivalent to contingency planning, but it explicitly separates

the two sources of uncertainty in plan execution: uncertainty in the outcome of actions

and uncertainty in the perception of the world. Bertoli et al represent a conditional

plan of length n as an and-or tree of height n. An or node corresponds to all of

the possible actions that can be taken at time t. An and node represents all of the

possible states that the world could go to at time t + 1 following the action at time

t. To make a plan of size n, the problem is to find assignments of actions at each or

node so that the and-or tree evaluates to true.

Bertoli et al represent belief states and plans as binary decision diagrams. As

before, they use model checking to search all possible belief states, for which an

and-or tree leads to the goal.

All of the above contingency and conformant planners are strong planners. That

is, they work in all possible situations, and they do not assume any probability dis-

tribution over states and state transitions. Thus, the plans produced are provably

correct, and so they fit into our requirements of provability and generality.

Plan Repair

Another way to deal with uncertainty in the world is to give the plan executor the

capability of recovering from failure. When it executes a plan, it observes the world

at each step. Whenever the observation does not match the plan's assumptions, the

executor attempts to repair the plan. That is, it takes various steps to modify the

existing plan so that it achieves the goal from the current state. Most planning

algorithms can be modified to also perform plan repair [40]. Plan repair has been

found to be a more efficient and stable way to recover from error than replanning

from scratch [13].

Recursive Planning

Beyond contingency planning, a few researchers have attempted to construct plans

with loops, called iterative planning or recursive planning. Plans with loops are

considerably more difficult than plans with contingencies alone. First, there is the

problem that the loop may never terminate. Proving that a loop does not terminate

requires some form of automatic proof by induction. Second, it is difficult to reason

about the preconditions and postconditions for a loop. Finding a precondition requires

determining some type of loop invariant that will hold at the beginning and end of each

loop iteration. Finding a postcondition requires finding a fixed point that remains

true after any number of loop steps.

Deductive Synthesis over Plan Theory Manna and Waldinger is the first sys-

tem in our survey that attempts true program synthesis [201. Previously, these authors

had developed a deductive tableau program synthesis system. This system synthesizes

a program as the output of a theorem prover. The theorem prover is given an input

condition, Start and a goal condition, Goal. It attempts to show by construction that

there exists a function f, so that for every I such that Start(I) holds, Goal(f(I))

holds. That is, the theorem prover constructs a functional program which satisfies

the specification: Start(.) and Goal(.).

To use deductive program synthesis in planning, Manna and Waldinger create a

plan theory, which allows them to do reasoning over functions of states. With each

deduction rule, the plan becomes filled in, while the goal gets closer to True. Some

rules introduce conditions to unify two plans with different assumptions. Others

introduce action invocations applied to specific functions of the state. To perform

recursive calls, there is an induction axiom and there are domain specific axioms to

define a well-founded ordering on objects within states or on states themselves.

By treating general planning as functional deductive program synthesis, the au-

thors must address many complex issues. One of these is the frame problem of

situational calculus. How can a synthesis system reason about the facts of the world

that remain unchanged after an action as well as the facts that do change? Another

question is how can invariants be inferred that are strong enough to pass through

an indeterminate number of recursive calls to a subroutine? In their system, the

invariants must be axiomatized explicitly in the order relations.

Manna and Waldinger's system needs an extensive domain theory to produce even

simple plans, such as clearing a block in BlocksWorld (shown in Figure 1-11). Thus,

it is similar to an interactive theorem prover in which a human planner must provide

most of the logical insight. In the conclusion, they argue: "We might speculate

that human beings never completely prove the correctness of the plans they develop,

relying instead on their ability to draw plausible inferences and to replan at any time if

trouble arises...While imprecise inference may be necessary for planning applications,

fully rigorous theorem proving seems better-suited to more conventional program

A

Figure 1-11: Clearing a block: the canonical generalized planning example

synthesis." Given the difficulties they have encountered, they conclude that fully

general, provably correct program synthesis is too difficult to be practical.

This is overly pessimistic. First, functional programs and first-order logic are

poor representations for program synthesis in AI. An iterative program captures the

process of state change more naturally, it represents loops more explicitly, and it can

keep track of necessary invariants at each statement more easily. Second, Manna and

Waldinger try to generate a plan purely through deductive reasoning. This process

quickly generates a very large search space of assertions to resolve. By combining in-

ductive generalization with deductive reasoning, the proof search space can be focused

in the most promising directions. Third, by assuming that a world consists of a finte

set of objects with changing relations, the quantified formulas of Spec2Action and

HELPS are simpler and easier to reason over. By using a general theorem prover,

Manna and Waldinger lose many of the special-purpose algorithms and structures

that can be devised for this problem.

Recursive Nonlinear Planning Ghassem-Sani and Steel demonstrate a working

system, RNP, that is capable of automatically generating recursive plans[14]. They

make the reasoning tractable by limiting the types of plan programs they represent.

First, as HELPS does, they represent actions as STRIPS actions, thus eliminating

the need for explicit frame axioms. Second, they assume a specific, yet common type

of recursive subroutine. They assume there is a well-formed partial order on the

objects in the world for a particular state of the world. They also assume a well-

ordered reduction function Reduce and a base case Base, so that Vx -nBase(x) --

Reduce(x) < x. Plans consist of nodes in a partial order, which are primitive

actions, conditions, procedures, and procedure calls.

Ghassem-Sani and Steel produce their plans using a partial-order planning algo-

rithm: iteratively resolving conditions and protecting links. They include steps for

adding cases and instantiating and performing recursive subroutines. That is, when

they notice a goal G(x) with a derived precondition of G(Reduce(x)), they instantiate

a procedure node, whereby G(Reduce(x)) is solved with a recursive call.

Their logic is much simpler than Manna and Waldinger's plan theory, but it

still enables the authors to automatically solve many important problems, such as

clearing a block or reversing a list. However, too many details have been left out of

the paper, so it is not clear what implicit assumptions they are making about the

actions, order relations, and reductions. For example, it seems that the Base, Reduce,

and < operators must remain invariant across all recursive calls, yet the authors make

no mention of this, nor do they indicate how they would automatically prove it. Thus,

they may have surmounted the difficulties with Manna and Waldinger's plan theory

by simply ignoring them.

Furthermore, in order for the planner to properly recognize a recursive precondi-

tion, it needs a well-informed domain theory including the ordering relation and re-

duction operator. Their block-clearing solution, for example, needs axioms about the

hat(x) operator (the block immediately above x) and the clear(x) predicate (whether

or not x is clear).

Temporal Planning Logic Stephan and Biundo also use deductive methods to

generate a plan as a side effect of proving a theorem [37]. However, their system does

not attempt to infer recursive plans or develop new loops from scratch. Instead, they

assume that a schema for the problem solution has been provided from the user or

from a plan library. Planning consists of refining the solution schema for a particular

instantiation of the start and goal formulas. It basically consists of executing the

abstract program schema in one particular world instantiation.

In this way, they separate the hard deductions from the easy deductions and as-

sume that the hard deductions have been done off-line by the user with an interactive

theorem prover. They argue that full plan generation including deducing recursive

structures and induction proofs "is an interactive process with non-trivial inferences

that in our opinion, which is shared by other authors as well, cannot be carried out

in a fully automatic way."

Recursive Plans in Linear Logic Cresswell has the most recent and most ex-

tensive work on recursive planning in this survey [7]. He treats recursive planning as

theorem proving in linear logic. Linear logic (Girard) is an interesting new represen-

tation for implication and inference. The logic introduces the notation A -- B . This

means that the propositions in A can be used to show the propositions in B. However,

each proposition of A must be used exactly once. The propositions of A are treated

as resources that are consumed by B. For example, have_coin -o have_soda means

that the proposition have-coin leads to havesoda, but havecoin is no longer

available. Duplicate propositions in the precondition are not redundant, so one could

write havecoin, havecoin --o havechips, havesoda.

Certain common planning actions can be represented in linear logic quite naturally.

For example, picking up a block b from on top of a can be written

handempty, clear(b), on(b, a) -o holding(b), clear(a)

Conversely, putting down a block b onto block c can be represented as: clear (c),

holding(b) -o on(b, c), hand_empty. For a STRIPS action to be representable in

linear logic, all of its preconditions must be negated following the action. Also, any

postconditions that are not negations of a precondition must be positive propositions.

In this way, two actions that consume different resources can be executed in parallel

without interfering with each other. Linear logic deals with the frame problem and

the hazards of conflicting actions very elegantly. It seems to be a much more suitable

logic for reasoning about plans than the situational calculus used by Manna and

Waldinger.

Linear logic fits Green's idea of planning as theorem proving very directly and

naturally. The theorem prover uses deduction steps of the form

S' i- G'
S F- G

This means that if G' can be produced by consuming S', then G can be produced

by consuming S. Cresswell extends linear logic planning with some additional proof

axioms that allow him to represent goals and conditions with disjunctions and univer-

sal quantifiers. He also creates induction axioms for a variety of recursive structures

including towers of blocks, lists, and trees. As with deductive program synthesis,

the plan is built directly out of each deduction step. The plan potentially contains

conditions and recursive calls. Cresswell's theorem prover uses deduction steps in the

form above with rewrite rules to equate equivalent functions of the state.

With this system, Cresswell is able to solve some interesting general problems such

as reversing a tower, clearing a block, or moving blocks from one room to another

with a robot. However, there are big differences between AbstrAct's approach and

Cresswell's. First, actions of linear logic are a strict subset of STRIPS actions. Linear

logic seems well-suited to tasks that have a clear flow of activity: one action directly

consuming the result of the previous action. Such tasks are natural in manipulating

physical objects in the world. However, it is less clear how linear logic could represent

tasks such as sorting a list or setting the bits on a bit counter. Second, Cresswell

takes a fully deductive approach to producing generalized plans. He has to produce

induction axioms for each new domain that he studies. He also has to define a

recursive structure for the object groups that he studies: towers, lists, trees, etc.

And, he has to produce rewrite rules that allow him to equate recursive functions of

the state.

Basically, Creswell, like the two other generalized planners, takes a knowledge-

intensive, deduction-based approach to solving problems. He states, "Generally, the

modelling of the problem in a suitable form in linear logic was found to be a diffi-

cult process...The difficulty involved in constructing reasonable formulations for the

domains cannot easily be separated from the difficulty of solving them." In con-

trast, Spec2Action and HELPS combine exploration-based, inductive synthesis with

deductive synthesis to solve problems with much less information provided a priori.

Distill The last three systems in this survey do not attempt full recursive or iterative

planning. Instead, they focus on generating specific types of commonly occuring loops

to make more generally applicable plans. Distill, from Winner et al, is a system to

build a library of domain-specific planning algorithms 141]. That is, instead of finding

one program a priori to provably solve all instances from a domain, they find a

program that is capable of solving all previously solved instances. Their contribution

is the Distill algorithm, which compactly combines these plan solutions into one large

condition statement. This learned program can also acquire a limited type of loop.

Whenever a solved instance has a sequence of identical, independent subplans, this

subplan is generalized into a loop. For example, loading a set of packages from a

truck to a warehouse is a set of tasks independent of each other that can naturally be

put into a loop. Unstacking a tower of blocks is not independent, because the blocks

must be unstacked in a particular order.

Distill has a similar strategy as AbstrAct for building a plan program: learning

from a set of examples. However, Distill does not attempt to solve the whole planning

problem from these few examples or do any sort of reaoning/theorem proving. So, its

general applicability is restricted to what it can safely generalize from the individual

examples it has seen thus far.

KPlanner KPlanner is another approach to generating plans with loops and condi-

tions [18]. The demonstration example is chopping down a tree. The system performs

the chop action until it observes that the tree is down. The key enabler for these plans

is a planning parameter F, which often corresponds to the maximum number of loop

iterations. The user provides a generating bound and a testing bound for the plan-

ning parameter. In the chopping problem, F is the number of chops needed to fell a

tree. The generating bound is a small number, just large enough for the system to

recognize an unrolled loop. The testing bound is a safety value to ensure that the

completed plan will terminate in all cases.

With the generating bound, the planner finds a contingency plan that works under

all circumstances. KPlanner then performs pattern matching, looking for the format

of an unrolled loop, which it then rolls up. Finally, it tests the proposed plan against

the testing bound. AbstrAct works like KPlanner in that it attampts to derive a

general loop body from looking at example instances. However, AbstrAct works

with more general problems with harder plans to prove. KPlanner problems are

fundamentally the same as the ones given to the contingency planners above. The

number of objects is known, but the actions and the initial state are non-deterministic.

Thus, for example, KPlanner could not be used to produce a general plan for clearing

a block.

Abstraction for Generalized Planning Srivastava et al present preliminary work

using abstraction to do generalized planning [36]. Their approach is to combine a set

of objects into a larger super-object, called a role, where all of the objects in the

role satisfy the same unary predicates. For example, in BlocksWorld, the base object

forms one role, the topmost object forms another role, and the middle objects form the

third role. The authors then use a complicated set of rules to determine what meta-

relations hold between roles in individual instances, and how those meta-relations

change on the application of particular actions. By keeping track of the sizes of roles,

the system is able to reason inductively over actions that move individual objects from

one role to another. With these finite number of roles, the authors create a transition

graph with primitive actions among all possible world abstractions. Planning then

consists of finding a path in the graph from starting roles to goal roles and recursively

finding conditions on the sizes of the roles at each step so that the path was correct.

The process can infer loops similar to KPlanner by noticing when a particular path

repeats itself. Then, the condition for a looped path is the union of the conditions

for all numbers of cyles through that loop. Planning finishes when there are no more

paths or when union of the conditions on the sizes of the roles at the start state

becomes True.

Abstracting objects into sets and reasoning about the sets and the sizes of sets

is a very promising direction. It forms a major component in many of Spec2Action

and HELPS algorithms as well. In our systems, however, the roles are not fixed a

priori, and they are discovered by looking at examples. Thus, the SSGP systems need

less information, and are applicable to a wider range of problems. In particular, in

the BlocksWorld representation, there is no top block and no base block. The only

relation is (on x y). Srivastava et al's system would not be able handle this situation.

1.3.3 Program Synthesis

Program synthesis or automated programming is a large and dynamic area of research

in software engineering [12]. Many of the strategies from this field carry over to pro-

grams in the planning domain. Program synthesis is generally done as an interaction

between the user and a reasoning system. The user provides the high-level direction

for solving the problem, and the synthesis system fills in the details. The motivation

is to have an efficient way to allow expert users to produce provably correct programs.

There are broadly three styles of program synthesis. Deductive synthesis generates

a functional program as the byproduct of a resolution theorem proof. Schema-guided

synthesis uses a program template and reasons over the synthesis problem to find

constraints on the parameters of the template. It then tries to find concrete functions

to meet those constraints. Inductive synthesis uses a set of example problems and tries

to find a program that fits all of the examples. Pure inductive synthesis is different

from the other two, because it does not seek a provably correct program. In fact,

an inductive synthesis system generally does not even have any logical description of

what "correct" means. It is essentially a learning task.

Deductive Synthesis

Deductive synthesis is a simple and elegant way to generate pure functional programs.

Manna and Waldinger provide a readable and comprehensive overview of their system

[21]. The system takes as input a start predicate, S(.) and a goal predicate G(.). The

system then uses a theorem prover to prove the theorem 3P such that Vx S(x) -+

G(P(x)). The proving takes place over a 3-column deductive tableau. The tableau has

assumptions in the first column, goals in the second column, and partial programs in

the third column. Different rows are resolved together using standard resolution and

unification techniques. There are simple rules for combining the program skeletons

of each row. There is typically an induction axiom which creates a corresponding

recursive program. The synthesis finishes when an assumption column becomes False,

or a goal column becomes True. Manna and Waldinger have been able to synthesize

some interesting programs such as factorial and a square root algorithm.

Schema-Guided Synthesis

While deductive synthesis is an elegant technique, it doesn't scale well to larger prob-

lems. In this case, to make synthesis tractable, users provide a skeleton of the solution,

and domain-specific synthesizers can fill in the gaps. An important example is the

Cypress system for generating recursive divide-and-conquer programs [321. A divide-

and-conquer program has three components: a base case for dealing with the simplest

inputs, a splitting function for dividing an input into smaller pieces, and a combining

function for merging the solutions of the previous steps. Cypress uses the problem

specification to find minimally sufficient conditions that each of the components must

satisfy. It then uses a set of domain-specific axioms to generate functions satisfying

each of these conditions. An example problem it solves is MergeSort. The base

case is an empty or singleton list. The splitting function is just splitting the list in

two. The combining function is the merge operation. The merge operation is itself

a divide-and-conquer operation, whereby the smallest element of two lists is split off

and added to the merge of the rest of the two lists.

Smith et al combine Cypress and several other tactical synthesizers into the pro-

gram synthesis package Kids [331. Specware is the Kestral Institute's next generation

follow-up system to Kids[35]. It consists of a language for the formal specification of

programming problems as well as a way to define domain theories consisting of ax-

ioms and theorems about a particular class of problems. Part of Specware is a formal

semantics for specifications that describes how specs can be combined and refined

into operational programs. The user constructs a program by manipulating these

specs. Each refinement of a logical spec into a more operational procedure produces

proof obligations that are automatically proved by a theorem prover (Isabelle/HOL

by default).

An important application of Specware is a theory for generating domain-specific

planners called Planware. Based on examples from transportation scheduling, Plan-

ware contains theories and specifications for solving general classes of scheduling

problems. When solving a specific scheduling problem, the Planware user invokes

the tactics that they feel are relevant, and Planware produces a scheduling program

specific to the user's constraints. On test examples from military logistics, the schedul-

ing programs produced by Planware run significantly faster than a general-purpose

scheduler. Planware illustrates the potential for program synthesis in problem solving.

While there are difficult theorems to be automatically proven up-front, the resulting

program works much better when applied to concrete examples. Any general think-

ing and reasoning that could be done has been factored and abstracted away into

problems that only need to be solved once.

Meta-Amphion, from NASA Ames Research Center, is a similar knowledge-based

software engineering system [19]. It combines a deductive synthesis system with a

library of previously solved general problems and search tactics. The resulting system

generates correct programs much faster than a deductive synthesizer alone.

Another NASA synthesizer is AutoBayes, a domain-specific engine that constructs

an algorithm for learning the parameters of a Bayes Net graphical model. Algorith-

mically, parameter learning is an optimization problem, so AutoBayes analyzes the

structure of the model specification to select the fastest, most appropriate optimiza-

tion algorithm.

A final schema-based system is SKETCH, a synthesis plug-in designed to integrate

more closely with existing programming languages such as C [34]. In this system, the

user writes a program template, which includes the basic variables and expressions

that need to be used, without specifying how they should be combined together.

The user also writes a test function that is a simple, logically correct version of the

function, potentially with an inefficient implementation. The test function serves as

the specification, so the user does not need to think about writing abstract logical

formulas. The synthesis problem boils down via syntactic sugar into a problem of

finding a vector of constants to make the sketched program logically equivalent to

the test program. The synthesizer iteratively guesses values of these vectors, and a

model checker finds a counterexample input to make the hypothesized sketch function

not equal to the test function. The system then finds new constants to fit every

counterexamples seen thus far. The loop continues until the model checker agrees

that the two functions are logically equivalent.

Deductive and schema-guided synthesis are both knowledge-intensive automatic

programming methods. They rely on the user to provide the high-level intuition for

solving the problem, and the synthesizer fills in the individual details that humans

find tedious and error-prone. In contrast, this thesis investigates whether a computer

is capable of learning this knowledge from scratch. So, while the SSGP systems in

general work on simpler problems, they do so with much less guidance and certainty.

Inductive Synthesis

Inductive synthesis is a family of techniques to learn a program from a set of examples.

In general, the goal is to find the smallest, simplest program that still fits all of

the examples. Like version spaces, inductive synthesis is often touted as a means

for computers to learn symbolic concepts. Inductive Logic Programming is one of

the most popular techniques [24]. Given a set of example concrete relations (e.g.

(mother Jane Joe) (sister Mary Joe), (aunt Jane Mary)) and a target relation

(e.g. (aunt ?1 ?2)), ILP tries to find a minimal set of Horn clauses to properly

infer the target. There are many fast algorithms for doing ILP, and Horn clauses are

a good knowledge representation: efficient to use, but expressive enough for many

tasks.

A complementary technique is explanation-based learning [9]. Here, the system

knows the whole dynamics of the universe encoded in a domain theory (e.g. all the

moves of Chess). However, this domain theory may be too complex to reason over

efficiently. Using a training example, the system finds the smallest set of rules in the

domain theory to prove the example, i.e. the explanation (e.g. explaining a cerain

arrangement of pieces that define a checkmate). From seeing many examples, the

system learns simple rules that are useful in explaining the common things it may

see. Acquiring these simple rules is a type of procedural concept learning. Indeed,

explanation-based learning can be used to describe any problem where all the knowl-

edge is available before-hand, but the goal is to turn that knowledge into simpler rules

that are more useful.

Program synthesis by SSGP is thus a type of explanation-based learning. The

world and its actions are fully specified in high-level logic, but they are too uncon-

strained a priori. SSGP uses examples to narrow the search for a provably correct

program.

A popular application of inductive programming is programming by example.

This is a technique application designers use to allow non-expert end-users to create

simple programs. Users create examples of what they want their program to do, and

the application uses an inductive synthesis algorithm specialized to the task at hand

to find a match.

Another interesting approach to inductive programming is the L* algorithm of

Angluin [3]. The algorithm learns a finite state automaton to describe a set of input

strings. For training, the algorithm can query an oracle about any hypothesized input

string. L* continually builds its state set and example set until all of the examples

can be assigned to a state such that all of the examples assigned to the same state

behave consistently thenceforth.

Schmid presents an inductive synthesis algorithm for the explicit purpose of learn-

ing a generalized plan from examples [30]. Each example is a STRIPS planning prob-

lem. She solves each one individually and combines the solutions into a generalized

plan, potentially with recursion and conditions. This is the same approach that as

SSGP, and her motivations for program synthesis as procedural knowledge learning

are the same as the motivations of this thesis. In describing recursive schemas, she

argues: "We believe that our approach mimicks certain aspects of human (novice)

programmers." In another paper, she directly argues that general program synthesis

out of specific examples should be the model for procedural knowledge acquisition in

mimicing human intelligence [31].

HELPS goes beyond Schmid's recursive schemas, because in addition to general-

izing a program, it reasons that it is correct. My view is that deduction of correctness

from a high-level logical description of a problem is as important as bottom-up in-

duction from examples, and the two approaches should complement each other.

1.4 Thesis Organization

Chapter 2 covers the representation for worlds and quantified formulas. It also covers

some basic formula transformations. The next three chapters cover the three SSGP

systems, Form2Grammar, Spec2Action, and HELPS. The simplest systems are cov-

ered first. This will allow a clear, measured introduction to each of the algorithms

and strategies involved. Each system is evaluated independently by a small set of

example problems, and so each of these three chapters has its own results section.

Chapter 3 covers Form2Grammar, the system for discovering a recursive structure

for worlds satisfying a particular logical formula. Chapter 4 covers Spec2Action, the

system for converting a program spec into a more understandable action specification.

Chapter 5 covers HELPS, the system for learning and proving general STRIPS plans

with conditions and loops. Chapter 6 concludes with proposals for future work.

Chapter 2

Representations of Worlds, Formulas,

and Problems

2.1 Worlds

This chapter makes precise all of the concepts that we will use in developing and

explaining the SSGP systems, Form2Grammar, Spec2Action, and HELPS. Most of

the definitions and theorems are straightforward and intuitive. First-time readers can

skim the chapter and refer back to it to clarify any ambiguous concepts.

The representation of worlds and formulas is the same for all of the SSGP systems.

A world, also called a state or an environment, contains all of the concrete information

that a plan executor cares about at a particular point in time. Intuitively, a world is

a finite network of objects and relations. Formally, a universe of worlds 0 is defined

by a relation template set R. Each relation template R E R defines a type of relation

between objects in the world. It is essentially a function that takes objects of the

world as parameters and returns True or False. The arity of a relation is the number

of parameters that it takes.

For example, in BlocksWorld, there is one relation template (on ?1 ?2), which has

arity 2. R = {(on ?1 ?2)}.

Worlds can be described by quantified formulas, which are a straightforward ex-

tension of first-order logic that make it easier to reason about finite models. That

is, for a world w E 7(R) and a quantified formula f over R, f(w) deterministally

evaluates to T or F according to the semantics of f, which we will describe below.

Critically, a quantified formula does not allow any relation to refer to an object twice

(e.g. (on x x)). This is the one major difference between quantified formulas and stan-

dard first-order logic, and it critically effects the theorem provers and other reasoning

algorithms.

Formally, a world w is an R-structure. It consists of a finite object set O and an

interpretation I, which assigns each possible relation R over O to T or F.

We will now define all these concepts precisely.

Definition A relation template R is a pair (name, arity) where name E Text is a

text string and arity E N is a natural number

Definition A model 0 C Text is a set of objects, also called terms. Each term is

identified by a text string. A finite model is a finite set of terms.

Definition An interpretation IR,O for a model O and a relation template R with
k

arity k is a function I:0 x ... x O (T, F}.

Definition An R-structure is a tuple (A, IR1,o, IR2 ,O, ... , IRm,O) consisting of a finite

model A and an interpretation IRi,O for each relation template Ri E R.

A world, state, environment, and R-structure are all equivalent concepts. From now

on, we will think of a world as having only one interpretation I : Ri x Ok , which maps a

relation symbol and a tuple of terms to T or F. I(Ri, x 1,... ., ki) = IRi,O(x 1, ... ,XZk)-

Definition The universe Q2(R) for a relation template set 7 is the set of all worlds

over R. Q(R, O) C Q(R) is the set of worlds over R whose object set contains

O.

For reference, the above definitions are all standard notation of finite model theory

[39].

2.2 Quantified Formulas

Quantified formulas are the way we reason about sets of worlds. Quantified formulas

are the basis for specifying problem specifications, primitive actions, and programs.

The following section defines the syntax and semantics of quantified formulas precisely.

The notation can be skimmed on a first reading.

Definition A quantified formula 0 over a relation template set R and a model O is

a function 0 : 9 -- {T, F}, where Q is the set of all worlds w(O') over R whose

model 0' D O contains O.

Now, a language will be defined for quantified formulas, so that a formula can be

easily evaluated on any given world w. First, the syntax is defined:

QF

Conj

Disj

Quantified

Quantifier

Quantity

Expression

Relation

Conj I Disj I Quantified I Expression T I F

QF A QF A ... A QF

QF V QF V ... V QF

Quantifier Term QF

AtLeast(Quantity) I AtMost(Quantity)

Nat l AllBut(Nat)

Relation I -" Relation

(Name Term ... Term)

That is, a quantified formula is a conjunction of sub-formulas, a disjunction of

sub-formulas, a quantification, a primitive expression, trivially true, or trivially false.

A quantified formula can be thought of as a tree with primitive expressions or trivial

booleans at the leaves. A primitive expression is either a relation or the negation of a

relation. A quantification is a generalization of the V and 3 quantifiers of first-order

logic. Nat is the natural numbers. With the extended notation, it is possible to

specify that there exist more than one of a particular term and that there are at most

a certain number of terms satisfying a particular sub-formula.

Before the semantics of sentences in the above grammar can be formally defined,

we must first define the relation template set R and model 0 over which it works.

The relation template set of a quantified formula 0 is the set of all relations used in

all of the leaves of the formula.

Rels(4) = case 4 of

01 A ... A qk

41 v... v 4k

(Name xl ...

I'(N
T, F

Xk)

ame x1... xk)

Uj Rels(0b)

Uj Rels(0j)

SRels(O)

(Name, k)

-4 (Name, k)

- {}

The free variables of a formula

that are not quantified variables of

4 are defined to be the variables of leaf relations

an outer quantification.

Frees(O) = case 0 of

451 V... V qk

(Name X1 ... Xk)

-(Name X1 ... Xk)

T, F

- Ui Frees(4i)

- Uj Frees(4i)

-+ Frees() - {x}

- {Xi ... ,Xk}

-•i{x,...,Xk}

The substitution notation is as follows: 0' = ¢[x/x'] for x E Frees(O) means that

0' is produced from q by replacing x with x' in all relations where x occurs free in ¢.

x' must be a fresh variable, i.e. not used as a variable in any quantification of 0.

Now the semantics of a quantified formula 0 can be defined over a world w = (0, I),

which must be defined over the relation templates Rels(k) and which must contain

I

the objects Frees(q). O(w) is always defined with respect to an object set A C O,

where A is the subset of objects that can be substituted into a quantification.

(w) IIAII = case 0 of

41 V... V ¢k

AtMost(n) x

AtMost(AllBut(n)) x

AtLeast(n) x

AtLeast(AllBut(n)) x

(Name Xl ... Xk)

--(Name 1 ... Zk)

A2 €(w)IIAII

Vi Oi(w)IIAII

- AA'EChoose(A,n+1)

VX'•A, -1(w)[x/x']jlA - {x'}jj

- AA'eChoose(A,IAl-n+1)

V2'EA' -l(W)[x/x']AII - {x'}ll

VA'eChoose(A,n)

A~'EA' ,(w)[xix'] IA - {x'}II

" VA'eChooSe(A,maz(O,J AI-n))

AX'EA', (w)[Z/x']jIA - {x'}ll
-- I(Name, Xl, ... ,Xk)

-4 I(Name, xl, ... , k)

Choose(A, n) is defined as {A' E Pow(A).IA'j = n}. It is the subsets of A of size

n. For the top-level formula, we define:

O(w) = O(w)11o - Frees(O)II

AtMost(n) O(x) and AtLeast(n) O(x) have a meaning that should be familiar.

AtMost(1) x ¢(x) is equivalent to Unique x q(x) and AtLeast(1) x ý(x) is equivalent

to 3x O(x) for example. Uniqueness does not imply existance. It means there is zero or

one x satisfying 4(x). The AllBut(n) quantities define maxima and minima relative

to the size of the set A. For example, AllBut(O) refers to the entire set. So, the

Vx O(x) quantifier is defined as AtLeast(AllBut(O)) x O(x). From now on, the V, 3,

U, and N(None) quantifiers will have this syntactic sugar.

Vx ¢(x) '• AtLeast(AllBut(O)) x ¢(x)

3x ¢(x) = AtLeast(1) x (x)

Ux (x) = AtMost(1) x (x)

Nx 4(x) • AtMost(O) x (x)

What is unique about quantified formula semantics relative to first-order logic

is the set A in the above formula, which specifies the objects of a world that are

valid substitutes for the variables of a quantification. This construct allows makes it

natural to express rules about relations between different objects without worrying

about equality. Consider the formula VxVy -,(on x y) V -i(on y x). This means that

"For all x, for all y not equal to x, x on y implies that y is not on x." When calculating

quantified formula semantics, any two terms in a leaf relation will be distinct from

each other. This fits into the intuitive model of worlds as graphs of objects and

relations without the need to worry about odd special cases of self-directed edges

(e.g. (on x x)). Under these semantics, any self-edge is meaningless.

Quantified formulas are not a new type of logic. Any quantified formula can be

translated into a sentence of first-order logic with equality. However, algorithmically,

quantified formulas are much easier to reason with and automatically prove theorems

on. The algorithms that have been developed for SSGP depend heavily on these

semantics. One immediate consequence of this choice is that inference using reso-

lution and unification is difficult if not impossible. Free variables cannot be unified

with anything, because of the possibility that two free variables in the same relation

will become equal. Hence, the theorem provers and simplifiers of SSGP do not use

resolution or unification to make inferences.

2.2.1 Syntactic Sugar

This section will introduce some further notation for dealing with quantified formulas.

First, it will be shown that the negation of a quantified formula exists and is easy to

compute.

Theoretically, the negation -i of a quantified formula 0 is the function on w E

Q(Rels(k), Frees(q)) such that (-)(w) = -((w)). Operationally,

1 kA... A Ok

AtLeast(n) x

AtLeast(AllBut(n)) x

AtMost(n) x

AtMost(AllBut(n)) x

(Name xl ... Xk)

-(Name x1 ... Xk)

- AtMost(n - 1) xq$

-- AtMost(AllBut(n + 1)) x

-- AtLeast(n + 1) x q

AtLeast(AllBut(n - 1)) x

--+(Name xl ... Xk)

-(Name xl ... Xk)

Using formula negation, it is possible to remove all AtMost quantifiers from a

formula while maintaining equivalence. This is due to the following equation.

AtMost(n) x = AtLeast(AllBut(n)) x

AtMost(AllBut(n)) x = AtLeast(n) x -iq

Therefore, in future algorithms, it will be assumed that the quantified formulas

have only AtLeast quantifiers and no AtMost quantifiers.

Two other standard logical operators, =(implication) and 4= (equivalence) are

defined in the standard way.

-1 = case 0 of <

4 2= 1 2 2 1)

For concreteness, consider one example, the specification for a linked list:

VxUy (precedes x y)

A VxVy (connected x y) + (precedes x y)V

(3z (connected x z) A (connected z y))

A VxVy (connected x y) --(connected y x)

precedes means that there is a direct link between object x and object y. connected

means that there is a path of links from x to y. The first sub-formula means that any

object x can only link to at most one other object y. The second sub-formula defines

connected to mean a path between x and y. The third sub-formula establishes that

paths are anti-symmetric. There is always a path between x and y or between y and

x, but there is only a path in one direction. There are many other ways to logically

define a list, but this is the one shall be used throughout this thesis.

2.2.2 Subsumption and Simplification

These =* and <=- operators introduce the important concepts of subsumption and

simplification.

Definition Given quantified formulas q1 and 02, 01 subsumes q2 iff for all w E 2,

1 (w) =* 2 (w). This is also true iff 01 = k2

Definition For quantified formulas ¢1 and 02, ¢1 is equivalent to 02 iff for all w E Q,

01(w) =* 02 (w). This is also true iff 01 '= .2-

Definition The size or complexity of a quantified formula is the number of relation

nodes in the formula tree plus the total number of quantifiers.

Definition For formulas q1 and 0 2, 0 1 is a simplification of 0 2 iff 0 1 4' 02 and

size(•l) < size(q2).

Definition For a given formula G and two formulas 01 and 02, we say that 01 24 G ¢2

iff I1AG 4 ¢2AG. We say 0 1 is equivalent to 02 given G. If size(€2) < size(q1),

02 is a simplification of q 1 given G.

If G =; q1 then 01 4 G T and 01 simplifies to T given G. Many of the algorithms

have a complexity that is dependent on the size of a quantified formula 0. Thus, it

is important to have procedures for testing subsumption and for performing simplifi-

cation. In general, testing if 01 subsumes 02 is a problem in first-order logic theorem

proving and is undecidable in general. Nevertheless, for the examples encountered in

practice, many theorem proving algorithms are practical. A fast and deep prover and

simplifier are critical bits of infrastructure in the SSGP systems.

2.3 Sets, Properties, and Partitions

Definition A property is a relation with only one argument.

Another way to think about a property P in a world w(O, I) is as the subset A = {x E

O.(P x)}, the elements of O under which P is true in interpretation I. Sometimes

it is useful to think about properties as sets and vice versa. In particular, we often

want to write quantified formulas that are quantified over a particular set A. The

following equations define quantified formulas over sets. (Here, the same notation A

is used for the set and its property.)

AtLeast(n) x:A O(x) = AtLeast(n) x (A x) A O(x)

AtLeast(AllBut(n)) x:A O(x) = AtLeast(AllBut(n)) x -(A x) V O(x)

Definition A partition on a world w(0) is a group of sets, A,..., Ak such that

Al U... UAk = O and Ai n As = 0 for i - j.

Partitions are very important for analyzing the roles of a world and finding recursive

structure. In analysis, there will often be quantified formulas over unions of disjoint

sets, and an algorithm will want to use facts it knows about the individual sets

themselves. The following equations make this possible.

AtLeast(n) x:A 1 U ... U Ak O(x) =

AtLeast(AllBut(n)) x:A 1 U ... U Ak O(x) =

V
nl+...+nk =n

A AtLeast(ni) x:Ai O(x)

(2.1)

V (2.2)
nl+...+nk=n

A AtLeast(AllBut(ni)) x:Ai 4(x)

Definition A quantified formula is normalized if all of the sets in its quanitifications

intersect at most one partition element. Equations 2.1 and 2.2 show how to

convert an unnormalized formula into a normalized one.

The following example shows how this works for existence and uniqueness:

3x:A 1UA 2 O(x)

Ux:A 1UA 2 O(x)

= (3x:A1 O(x)) V (3x:A2 O(x))

= ((Nx:A1 O(x)) A (Ux:A 2 O(x))) V

((Ux:Ai O(x)) A (Nx:A 2 O(x)))

Throughout the following sections, we will often talk about quantifying a formula

over a partition (T 1,..., Tk}. This means finding all quantifications Q x O(x),

changing them to Q x:{(T U ... U Tk} O(x) and then normalizing.

Frequently, we have to deal with quantified formulas that are quantified over multi-

ple overlapping partitions {Si} and {Tj}. In this case, the normalized quantifications

have the form Q x:Si n Tj O(x).

A special kind of partition and normalization occurs when we need to isolate an

individual object a out of a formula. In this case, the partition is {{a}, O- {a}}. This

is called breaking out an element. The following two equations show how breaking

out is done with existential, universal, and uniqueness quantifiers. Note that the logic

of quantified formulas makes this easy to do.

3x O(x) -- q (a) V 3x O(x)
Vx O(x) - O q(a) A Vx O(x)
Ux O(x) - (-'(a) A Ux O(x))

V (q(a) A Nx O(x))

If a quantified formula is already quantified over one or more partitions {T}, to

break out an element a, one must know which sets of the partitions it belongs to. For

example, if one has the formula 0 = Vx:A 3y:A (connected x y) V3y:B (connected x y),

one has to know whether a belongs to A or B. If a E A, then the breakout becomes:

Vx:A ((connected x a) V 3y:A (connected x y)) V 3y:B (connected x y)

A (3y:A (connected a y) V 3y:B (connected x y))

If a E B, the breakout becomes:

Vx:A 3y:A (connected x y) V (connected x a) V 3y:B (connected x y)

2.4 Size Possibilities

An interesting class of quantified formulas are ones where a trivial formula (T or F)

appears inside a quantification. Consider the formula AtLeast(n) x:A T. If JIA, the

size of A, is at least n, than this statement is true(T). If IAI < n, then it is false(F).

This is equivalent to stating that the set A has at least n elements. A short-hand

notation for this is (AtLeast(n) A). Another such formula is AtLeast(AllBut(n)) x:

A F. If ISI > n , than this statement is equivalent to F. If (A(• n, than it is T. So

the formula means that A has at most n elements. It is written (AtMost(n) A). Thus,

these types of quantified formulas can be used to express any kind of size constraints

on individual sets. The following table summarizes this and defines a few common

size constraints that will be used.

AtLeast(n) x:A T

Atleast(AllBut(n)) x:A T

AtLeast(n) x:A F

AtLeast(AllBut(n)) x:A F

(AtMost(O) A)

(AtLeast(1) A)

(AtMost(1) A)

(Exists A) A (Unique A)

= (AtLeast(n)

= T

- if n = 0 then T else F

= (AtMost(n) A)

= (None A)

= (Exists A)

= (Unique A)

= (Defined A)

When the quantifier is over the entire state (i.e. not just a set A), we will write

(Exists) or (Defined) (meaning the state has at least one element or the state has

exactly one element).

2.5 Problem Specifications

Now that there is a common notation and semantics for worlds and quantified formu-

las, program specifications can be specified precisely for the SSGP systems to solve.

The output program is unique to each system, so the description of the representation

and semantics of the output programs is deferred for each chapter.

Form2Grammar takes a single quantified formula S. Its purpose is to produce a

recursive grammar that characterizes all worlds that satisfy S. This grammar can

then be used to prove properties of worlds satisfying S by structural induction.

Spec2Action takes two quantified formulas, S and G. S, the start formula, is a

quantified formula describing all the worlds that could be presented as input to the

action program. It is like a precondition. G is the goal formula or postcondition. The

purpose of Spec2Action is to find an action template for manipulating a subset of the

relations of the world. For any world satisfying S at the beginning, after the manip-

ulations have been performed, the new world will satisfy G. Spec2Action uses the

structure of Form2Grammar to prove by structural induction that its manipulations

can always be done.

HELPS also takes two quantified formulas, S and G. However, it cannot manipu-

late individual relations freely and independently. It can only manipulate the relations

through a set of primitive actions ACT. Chapter 5 will describe the representation

for primitive actions, as well as the programs to solve them. These structures all use

quantified formulas as the basic components.

Chapter 3

Form2Grammar

Form2Grammar is the first SSGP system that will be examined. It takes a quantified

formula and finds a recursive structure that all worlds satisfying the formula must

decompose to. Previous program synthesis and general planning systems have taken

the recursive structure of their input domains as a given. This is a somewhat unre-

alistic assumption for many autonomous agents, and so it is important that an agent

be able to discover recursive structure from a purely logical formula.

This chapter begins with the representation for a grammar, and then it shows

an example of an input formula for a marked list with a correct output grammar.

The next section describes the example problems that have been used to evaluate the

system. Section 3 presents the complete architecture for the system with demonstra-

tions from the marked list example. The formal notation and definitions for all of

the concepts can be difficult to understand on a first reading. A recommended way

to read the chapter is to focus on the provided examples and skim the explanations

with full generality.

3.1 Grammar Representations

The overall format of a grammar is similar to the Backus-Naur grammars that are

standard in compilers and natural language processing. It consists of non-terminals

which are either disjunctions of other non-terminals, decompositions, or E, the empty

world.

NT ::= NTINT21... INTk

NT ::= Piv;{{AUl,...,Alkl} -NTl,...,{Aml,...,Amkm --+ NTm};X

NT ::=

A grammar is defined over a relation template set 'R. Each non-terminal NT

defines the set of worlds w E 2(RQ) that it produces. In turn, each grammar has a top

non-terminal, Top, which defines the worlds w that are produced by the grammar as a

whole. A decomposition is the most interesting non-terminal, because it defines how

larger worlds are produced from smaller ones. In a decomposition, there is a pivot

point Piv and one or more sub-productions, NT 1 ,..., NTm. Each sub-production

NTi in turn partitions into ki subsets, {Ail,...,Aik }. The last component of a

subproduction is its composing interpretation or cross relation set X. This is a function

that assigns T or F to all relations between the sub-productions and the pivot and

all relations between different sub-productions. The subsets Aij let us compactly

represent X since all relations between Aij and the pivot have the same truth value,

and all relations between Aij and Akl of different sub-productions (i 4 k) will have the

same truth value. That is, for a binary relation R, x((R Piv Aij)) and x((R Aij Piv))

are well-defined, as are x((R Aij Akl)) and x((R Akl Aij)) when i 54 k. The composing

interpretation is only defined between sub-productions and between sub-productions

and the pivot. It is not defined within the sub-productions. The interpretation of

relations within a sub-production comes entirely from that sub-production itself.

For clarity, consider the simple example of a grammar for a linked list. The logical

definition of a list, already defined in Chapter 2, is

VxUy (precedes x y)

A VxVy (connected x y) a (precedes x y)V

(3z (connected x z) A (connected z y))

A VxVy (connected x y) € -n(connected y x)

(precedes x y)

(connected x y)

Figure 3-1: One breakdown or decomposition of a grammar for a singly linked list

One grammar for the list is:

L ::= PIE

P ::= p; {{A 1, A 2} -- L}; {(precedes p A1), -(precedes A1 p), (connected p A1),

-(connected A1 p), -(precedes p A2), (precedes A 2 p), (connected p A 2),

-(connected A2 p)}

A list has two relations (precedes ?1 ?2) and (connected ?1 ?2) defining a link and a

path of links respectively. The grammar specifies a list as (None) or a decomposition.

In the decomposition, the pivot is the first element of the list and there is one sub-

production, which is the rest of the list. The rest sub-list partitions into two sub-sets,

the first of which links directly to the head and the second of which is only connected

to the head. An illustration of the list break-down, p, A A, A2 for a list of four elements

is shown in Figure 1.

A list has only one sub-production, which is the rest of the list. An example

structure with two sub-productions would be a tree, which has one sub-production

for the left branch and one sub-production for the right branch.

To be precise, the semantics of a grammar can be defined. This will be done via

production rules (i.e. what larger worlds (O, I) can be produced from smaller worlds

{(Oi, Ii)}). The three production rules are:

NT ::= E

NTi • (Oi, Ii)NT ::= NTII ... (NTk
NT - (Oi, Ii)

NT::= Piv; {{Aij} -- NT4}; x

NT - (01,A11I) ... NTk - (Ok,Ik) ... Oi = Qil U... U Qin...
NT -•- ({Piv} U 01 U ... U Ok, Lift(x, {{Qij}}, II,..., Ik))

Lift is a function to produce an interpretation on {Piv} U U2 Oi from the smaller

interpretations I1,..., Ik, the composing interpretation, and an arbitrary set of par-

titions on the sets 01,... , Ok. Let L = Lift(x,{{Qij}, I1,..., Ik). Let R =

(Name T1 ... Tn). If {Tj} C Oi, then L(R) = Ii(R). That is, the relation is en-

tirely within one sub-world (Oi, Ii), so L defers to that world's interpretation. Oth-

erwise, let Tj E Qijlj. To count the pivot, let Qoo = Aoo = {Piv}. In this case,

L(R) = x((Name Al,,... Aj 1,)). The lifted interpretation value comes from the

cross-relation evaluated with the composition interpretation X.

Note that the partition {{Qij}} of the sub-productions is arbitrary, and it may

have nothing to do with the decomposition of the sub-productions themselves. This

is a problem for inductive reasoning. And, the sets of worlds w that are produced

by a grammar of this kind is too big. Thus, we augment the grammar so that each

non-terminal NTi is also associated with a constraining quantified formula ¢,. Any

world that does not satisfy ¢iis not produced by NTi. We call such a grammar a

constraining grammar. We can easily rewrite the grammar productions above to

incorporate formulas.

(NT,) ::=NT ({},I)

(NT,) ::= NTi ... JNTk
NT) (OPv; I NT

(NT,) ::= Piv; {{Aij} -- NTi }; X

...NTj -- (O, Ij) ... Oi = QIlU ... U Qin ... q.(O, L)
NT -* (O = {Piv} U O U ... U Ok, L = Lift(x, {{Qj}}, li,..., Ik))

Now we can formally state the goal of Form2Grammar. Given a quantified formula

S, find a constraining grammar that produces exactly those worlds w that S satisfies.

That is, find Gram = {(Top, S), (NTI, 1),..., (NTk, Ok)} so that (Top c- (0, I)) if

and only if S(O, I) = T. All of the example problems studied have had relations of

arity at most 2. Thus, the Form2Grammar system only works on worlds with such

relations. Furthermore, Form2Grammar only works on quantified formulas without

free variables. that is, every evariable in every formula must be quantified in some

way.

3.2 Challenge Problems

The exercising problems for Form2Grammar are basic data structures: lists, trees,

etc. Even though the ultimate purpose of the SSGP systems is not software pro-

gram synthesis, data structures provide good coverage of interesting states with a

lot of recursive structure. They best illustrate the difficulties and challenges that

Form2Grammar must deal with. The structures considered are:

* singly linked list

* doubly linked list

* sorted singly linked list

* singly linked list with one marked element

* circularly linked list

* circularly linked list with one marked element

* binary search tree

VxUy (precedes x y)
A VxVy (connected x y) , (precedes x y) V (3.1)

(3z (connected x z) A (connected z y))
A VxVy (connected x y) '* --(connected y x)

A Dx (marked x)

Figure 3-2: Specification for a marked list

L ::= MIr M2

M ::= p; {{A, A2} -+ L}; -(marked p), (precedes p A1), (connected p A1),
(connected p A2)

M2 ::= p; {({A, A 2 } -- N}; (marked p), (precedes p A1), (3.2)
(connected p A1), (connected p A2)

N ::= EIN'
N' ::= p; {{AI, A 2} -- N}; -(marked p), (precedes p Al), (connected p A1),

(connected p A 2)

Figure 3-3: Grammar for a marked list

* min heap

* BlocksWorld

These cases will be examined in detail in the results section including their full logical

specifications. For illustration, consider an example of moderate complexity, a singly

linked list with one marked element. The logical specification is shown in Figure 3-2.

D is the Defined quantifier, meaning Exists and Unique. This is the same spec

as the ordinary linked list (Equation 3.3) with one added condition: there is one

element x which is Marked. This data structure is used to specify programs that

will manipulate one element in a list, such as removing the element from the list or

moving the element to the front.

A grammar for this shown in Figure 3-3

Wherever we have omitted some cross relations such as -(connected A2 p), these

relations are by default false.

eL = listDef A Dx (marked x)
ON = listDef A Vx -,(marked x)
ON' = ON : {A 1, A 2 } A -(marked p) A Vy : Ai(precedes p y)

A Vy : Al(connected p y) A Vy : A2(connected p y)
A Vy : A 1-(precedes y p) A Vy : Al,(connected y p)
A Vy : A 2- (precedes y p) A Vy : A2•-(connected p y)
A Vy : A2-'(precedes p y)

OM,= - L : (A 1, A 2} A (marked p) A Vy : Al(precedes p y)
A Vy : Al(connected p y) A Vy : A2(connected p y)
A Vy : Al-(precedes y p) A Vy : Al-(connected y p)
A Vy : A 2-(precedes y p) A Vy : A2- (connected p x)
A Vy : A2 1(precedes p y)

qM 2 = 4N :{A1, A2 } A (marked p) A Vy : Ai(precedes p y)
A Vy : Al(connected p A1) A Vy : A2(connected p y)
A Vy : Al(precedes y p) A Vy : Al(connected y p)
A Vy : A2•(precedes y p) A Vy : A2 (connected y p)
A Vy : A 2-(precedes p y)

Figure 3-4: Constraining formulas for the marked list grammar

Let listDef be

listDef = VxUy (precedes x y)

A VxVy (connected x y) 4* (precedes x y) V (3.3)

(3z (connected x z) A (connected z y))

A VxVy (connected x y) '• -(connected y x)

The constraining quantified formulas associated with each non-terminal are in

Figure 3-4.

eL : {A 1, A2 } and ON : {A 1, A2 } represent the formulas qL and ON respectively

quantified over the disjoint set union A1 U A2. In the next section, we will see how

such constraints are generated and why they appear as they do.

Each grammar production (disjunction, decomposition, and null) corresponds to

a quantified formula. Thus, the productions, together with the constraining formulas,

provide a set of proof obligations that the theorem prover can then tackle. The next

section shows how grammars are produced inductively and then how their correctness

Figure 3-5: The architecture of Form2Grammar

is proved.

3.3 Form2Grammar Architecture

3.3.1 Overview

The components of Form2Grammar are shown in Figure 3.3.1. For the starting

formula S, a set of examples is generated of various sizes. These examples are then

broken down by a greedy algorithm that looks for pivot decompositions that are simple
and consistent. The output is the most consistent decomposition among all of the
examples. Then, the decompositions are unified to produce a hypothesis grammar.

With the candidate grammar, a set of constraining formulas are produced to make a
hypothesis constraining grammar.

Finally, Form2Grammar must show that the hypothesis constraining grammar is
correct. Certain non-terminals must show that their constraining formulas deduce the
formulas defined by their decompositions. So, each non-terminal generates a proof
obligation. This proof proceeds in three stages. First, minimally sufficient conditions
are found for the pivot point and the sub-production partition sets Aij. This produces
a smaller, simpler formula to prove. Second, the sets Aij are replaced with properties,
and the result formula is simplified further. Finally, the resulting formula is proven T

or there is a further proof to perform. This is done by the abstract induction theorem

prover, a novel algorithm developed for the SSGP systems. This algorithm can prove

theorems that need proof by induction, but it does not require any domain-specific

induction rule.

Each component of the system will now be analyzed in turn. To manage the

complexity of the algorithms great detail, all of the components will be demonstrated

on the example of the marked linked list above.

3.3.2 Sampling instances

The goal of this component is to take a formula S and produce a random set of worlds

wl,... , k of various sizes that all satisfy S. First, all satisfying examples wl, ... , wm

with sizes between 0 and 3 are generated to get full coverage of all of the small cases.

Then an additional N worlds are chosen wm+l,... , Wmf+N of random larger sizes. We

assume that the desired number N is a provided system parameter (N is typically

between 5 and 10). For each larger sample w, a random number s is chosen uniformly

between 1 and r, where r is another system parameter (typically r = 5). The sample

size is then size = s + 3.

Now the problem is: given size, generate a random world w of that size. The way

to do this is to generate a propositional formula that is a concrete representation of

S. Then, a SAT solver can be used to find one or all solutions to that formula. For

example, consider the formula Dx (marked x). If size = 3, then Form2Grammar

would first create objects O = {x 1, x2, x3 }. Then, it would instantiate the formula:

(marked xl) V (marked x2) V (marked x3)

A -n(marked xl) A -(marked x 2)

V -'(marked xi) A -i(marked x3)

V -(marked x2) A -(marked x3)

The SAT Solver would find three solutions.

(((marked xi) -(marked x2) -(marked x 3)},

{-1(marked x1) (marked x2) -(marked x 3)},

{--(marked xl) -(marked x2) (marked x3)}}

All of these are equivalent to each other. Two worlds wl and w2 are equivalent

when wl can be produced from w2 by just renaming the objects in the object set.

As an aside, Form2Grammar has a simple utility to test whether two worlds are

equivalent. Essentially, this is a problem of graph isomorphism. While there are no

polynomial-time algorithms to do graph isomorphism, in practice the worlds that are

compared can be equivalence-tested very quickly.

Generating a random world involves a slight modification to the SAT algorithm

to search for a random satisfying assignment. Instead of choosing a proposition and

the value to set it to (True or False) according to some heuristic, the proposition's

value is chosen randomly. The modified SAT algorithm is in Algorithm 1.

Random SAT is much slower than ordinary SAT, because ordinary SAT uses

powerful heurstics to choose whether to set a proposition true or false. Therefore,

once a proposition value has been set, ordinary SAT is run on the new assignment

set to see if the assignment set can be made satisfiable and if the random SAT should

continue down its path.

Let us proceed with the marked list example. The sample generator produces all

six marked lists of sizes between 0 and 3 (6=3+2+1). Additionally, it produces 5 lists

of sizes 7,8,5,6, and 8 respectively. The marked element occurs at positions 7,2,1,6,

and 1 respectively. The next section shows how to hypothesize a grammar from these

11 examples.

Algorithm 1 Augmentation of SAT to return a random satisfying assignment
RandomSATSolve(PropositionalFormula, Assignments) {
if (IsImpossible(PropositionalFormula, Assignments)) {
return null;

}
if (AllPropositionsAssigned(PropositionalFormula,

Assignments)) {
return Assignment;

}
Prop = ChooseUnassignedProposition(PropositionalFormula,

Assignments);
PropValue = ChooseRandom({True, False});
Test = SATSolve(PropositionalFormula, Assignments +

{Prop=PropValue});
if (Test != null) {

return RandomSATSolve(PropositionalFormula, Assignments +
{Prop=PropValue});

}
else {
return RandomSATSolve(PropositionalFormula, Assignments +

{Prop=!PropValue});
}

}

Algorithm 2 Decomposition Search
DecompositionSearch(Samples) {

Nbest := {({},Samples));
while (HasDecompositions(Nbest)) {

NextNbest := {};
for (PartialDecomposition=(Pivots, SubSamples) in Nbest) {
WorstSample = findWorstSample(PartialDecomposition);
for (Term in Objects(WorstSample)) {

(PivotDecomposition, SubWorlds) = Decompose(Term,
WorstSample);

NextPartialDecomposition = (Pivots + PivotDecomposition,
SubWorlds + SubSamples - {WorstSample});

NextNbest := NextNbest + NextPartialDecomposition;
}

Nbest := Top(N, NextNbest);

return Top(Nbest);

3.3.3 Example Decomposition

The strategy underlying inductive grammar synthesis is to find the simplest grammar

that explains all of the examples. Thus, it looks for pivots that produce simple

decompositions. Also, each decomposition yields smaller worlds that need to be

further decomposed. So, the decomposition algorithm additionally searches for pivots

that are consistent with previous decompositions. The search is an N-best beam

search. At any point in the algorithm, there are N partial decompositions. Each

partial decomposition contains all of the samples, partially broken down into pivots.

In one search iteration, for each partial decomposition, the worst sample sub-

world is chosen, the one with the worst pivots. All possible pivots are evaluated

on this worst world, producing a set of candidate next-level partial decompositions.

Then, the best N next-level partial decompositions are chosen from among these new

possibilities. The search continues until all examples have been fully decomposed.

Then, the best decomposition from the final N-best list is returned.

The algorithm is summarized here:

___ T___~c~-------------~:
~A2 A3

-------------- ---------

(precedes x y), B ------
B1 (connected x y)

Figure 3-6: Two samples to break down

A,

Figure 3-7: An example breakdown for the pivot p = A,

Imagine that Form2Grammar starts with 2 samples ofConsider an example.

length 4 lists, shown in Figure 3-6.

Let N=2. An example decomposition with the pivot p = A, is shown in Figure

3-7.

At first, Form2Grammar considers every term as a potential pivot. In total, there

are six possible pivot decompositions among the eight terms.

p = A1 ({-(marked p); (precedes p Pi); (connected p Pi);

(connected p P2)}

p = B 1 = ((marked p); (precedes p Pi); (connected p Pi);

(connected p P2)}

p A4 , = A B4 = {-(marked p); (precedes P1 p); (connected P1 p);

(connected P2 p)}

(3.4)

p = B 2 = {-(marked p); (precedes P1 p); (connected P1 p);

(precedes p P2); (connected p P2); (connected p P3)}

p = A 2 = {(marked p); (precedes P1 p); (connected P1 p);

(connected P2 p); (connected p P2); (connected p P3)}

p = A 3,p = 33 = ({-(marked p); (precedes P1 p); (connected P1 p);

(connected P2 p); (precedes p P3); (connected p P3)}

When p = A1, the decomposition sets P1 and P2 are {A2} and {A 3 , A4}. The

interior terms are considered worse pivots, because they break the example down into

3 groups instead of the 2 groups that the head and tail terms do.

The worst sample is the one that has the worst best pivot. Since A and B both

have 2-group pivots, both of them are considered worst. Then, the two head terms

and the two tail terms all become next decompositions, and the next N-best list has 4

partial decompositions. The N-best list can have more than N partial decompositions

if there are ties.

In the next round, consider the partial decomposition for p = A1 3.4. List A has

a pivot, the second element a2, which breaks down identically to the first pivot. List

B does not have such a pivot. Therefore, B is the worst sample. Its two best pivots

are bl, the head of the list and b4, the tail. After all level-1 partial decompositions

have been considered, there are 4 level-2 partial decompositions that go to the next

round.

At the end of the search, when all objects have been made into pivots in the

candidate decompositions, there are 2 best decompositions: one that breaks down

the lists from the front and one that breaks down the lists from the back. Both of

these are equivalently simple, so the algorithm could return either one.

To summarize the search heuristics, pivot x > pivot y if the breakdown induced

by x has already been made before, or if x's breakdown is smaller than y's. Sample

X > sample Y if the best pivot in X is better than the best pivot in Y. If the

best pivots are the same, X is better than Y if X is smaller than Y. Decomposition

P1 > decomposition P2 if P1 has fewer sub-components than P2. If the number of

sub-components is the same, P1 > P2 if the pivots of P1 are better than the pivots of

P2 starting with the worst pivots.

For the 11 marked list examples above, 11 decompositions are produced. The best

decomposition is either the one that chooses pivots from the front of each sub-list, or

the one that chooses pivots from the rear. These are the two decomposition schemes

in Figure 3-8. For the rest of this section, we will work with the decomposition that

starts from the front.

3.3.4 Decomposition Unification

Once a candidate decomposition has been made for the examples, the decompositions

must be unified to produce a single grammar. This is the step of Form2Grammar that

requires the largest inductive leap. There are potentially many different grammars

that could all produce the decompositions seen in the examples. We want to choose

a grammar that is simple and generic, but we don't want to pick a grammar that is

too general and would admit too many worlds.

The algorithm consists of first building a finite-state machine to represent all of

the examples. The nodes of this machine are the sub-instances of the world decom-

positions. The arcs connecting the nodes are labeled by the type of pivot break-

down they represent. If a world O breaks into more than one subset, by breakdown

b = (piv; A 1,..., Ak) e.g., each Ai is a separate node and the link from O to As is

labeled (b, i).

r=A1,PI={A 2}, P2={A3,A4}

q=A2,Q1={A 3},Q2={A 4}

p=A 3,P 1={A4},P2={}

p=A4 1,P={}.P 2={}

I=B1,Q1={B2,Q 2={B 3,B4}

p=B2 1,P={B 3},P2={B 4}

p=B31,P1={B41,P2={

P=B4,P1={}.P2={}

Breakdowns
(precedes x y) p: (precedes p P1); (connected p P,); (connected p P2)------ q: (marked q); (precedes q P1); (connected q P1); (connected q P2)(connected x y)

=A4, R1={A 3}, R2={A1 ,A2}

r=A3,R1={A 2}, R2={A1}

s=A2,S ,= {A,)},S 2={

r=A , R, ={}.R 2={}

=B4,RI=({B3},R2= {B ,B2}

r=B3,R ={B2},R2={B1}

r=B2,P1={B1},P2={}

s=B, Sl={},S2={)

Breakdowns
(precedes x y) r: (precedes R1 r); (connected R, r); (connected R2 r)

------ . s: (marked s); (precedes S, s); (connected S, s); (connected S2 s)(connected x y)

Figure 3-8: The two simplest sample break-downs. The first takes pivots from the
front. The second takes pivots from the rear.

``

Samples Sample
--------- Breakdowns

---- - --I

n
I '2 3

'.,t

U T
LI L J - U I10 L).

K
-,,C[j C2 C3 4

D D2 03 D4
fIN)

Breakdowns
U: (precedes p P1); (connected p P,); (connected p P2)
M: (marked p); (precedes p P1); (connected p P1); (connected p P2)

Figure 3-9: All marked lists of size 4 with their decompositions represented as state

machines.

In the algorithm, the nodes of the finite-state machine are continually merged and

unified by a set of unification rules until there are no more rules to apply. For example,

consider the marked lists in Figure 3-9. These are all of the lists and sub-lists for

the examples of size 4. There are two breakdown types, one where the pivot is the

marked item and one where the pivot is not marked. These correspond to the dashed

and the solid arcs respectively. We label them M and U. The empty sub-instance is

marked with a double circle.

Unification of the nodes in the finite-state machine is the main operator in the

algorithm. Two nodes A and B are unified by merging them into a common node

AB. All arcs that led to either A or B now point to AB. Furthermore, any nodes

pointed to by the same type of arc from A or B are recursively unified in turn. Figure

3-10 shows the unification process step by step. First, nodes A and B are unified.

U M end -----

Figure 3-10: Sample breakdown unification step-by-step. The output machine has
two states.

Then, because C and D are both pointed at by a dotted arc, they are unified in turn.
Note that if there is an arc from A to B, when they are merged, the arc becomes a
self-arc. If either of A or B are end nodes, the merged node AB is an end node.

At the beginning of grammar unification, the start nodes for each of the examples
are all unified together. Panel I of Figure 3-10 shows the unified state machine for
the marked lists of Figure 3-9. To decide which nodes to unify further, we select a
look-ahead parameter k. A production string starting at node A is a sequence of arcs
obtained by following a path in the finite state machine. The production string is
the sequence of breakdown types for the arcs on the path. To handle termination, we
create a supplementary node -. All end nodes have an arc to - with the arc type

end.

We denote Prod(A, d) to be the set of production strings starting at A which

(AYJIIWf2\ A>

Algorithm 3 Unification
Unify(InMachine, k) {

OutMachine := InMachine;
while (true) {

(A,B) = argmax ((Nodel, Node2) in (OutMachine, OutMachine)
with Nodel != Node2,

sim(Nodel, Node2));
if (sim(A,B) <= k) {
break;

}
else {
OutMachine := Unify(OutMachine, A, B);

}
}
return OutMachine;

have length d or which terminate at -. For example, in Panel II of Figure 3-10, all

production strings from node 48C of length 2 are {MU, UU, UM}. For every pair of

nodes A and B, we calculate the maximum look-ahead similarity sim(A, B). This is

the maximum d such that Prod(A, d) = Prod(B, d). It is the maximum d so that A

and B are the same looking ahead d steps. sim(A, B) can be infinite.

The unification algorithm, given look-ahead parameter k, is to find nodes A and B

with the largest sim(A, B) for which sim(A, B) > k and merge them. The algorithm

does this until there are no more nodes to merge.

The output is a small finite-state machine that is consistent with the decom-

position discovered for the samples. With this finite-state machine, it is simple to

construct a grammar corresponding to it. (A brief note: while the set of text string

languages producable with grammars is strictly larger than the set of languages prod-

ucable with state machines, for our logical worlds, grammars and state machines can

produce the same world sets).

Consider our marked list example. When we run the unification algorithm with

k = 2, it produces the state machine shown in Figure 4 with two states A and B.

We associate these states with two non-terminals Ai, and Bi,. Ai, is the top non-

terminal. It can be broken down by breakdown M or U. Thus, we define AM --+

(M, Bin) and Au -- (U, Ain). When A breaks down by M, the next node is B, so

AM's sub-production is Bin. Similarly, when A breaks down by N, the sub-production

for Au is Ainagain. Ain is produced as the disjunction of AMand Au. B is either e

or it breaks down via U into B again. Thus, Bin is a disjunction of Bu and C. Bu, in

turn, breaks down via U into Bi,. All of this is summarized in the grammar below,

including the breakdown information. Only the true relations of the breakdown are

shown:

Ain ::= AM I A

AM ::= piv; {P1, P2) -i Bni; {(marked piv), (precedes piv P1),

(connected piv P1), (connected piv P2)}

Au ::= piv; {P1 , P2) - Ain; {(precedes piv Pi), (connected piv P1), (3.5)

(connected piv P2)}

Bin ::= Bu I

Bu ::= piv; {P1 , P2} -- Bin; {(precedes piv P1), (connected piv P1),

(connected piv P2)}

This is the same grammar as Formula 3.2. So, for this example, grammar induction

by unification proved correct. Now, we can assign constraining quantified formulas to

the non-terminals, and thus prove its suitability to represent the marked list quantified

formula 4.1.

3.3.5 Assigning constraining formulas to non-terminals

Left-side formulas

Form2Grammar assigns formulas to both the left-hand non-terminals and the right-

hand productions. Then, through a sequence of automatic proof steps, the system can

show that any formula on the left-side can be produced by the corresponding formula

on its right side. Producing the constraining quantified formulas for non-terminals

in the grammar is a complex process whose workings are not necessary for a good

understanding of the system. This section can be skimmed on a first reading.

Let us first consider how the left-hand formulas are made. To prove a grammar

correct, one only needs to produce left-hand formulas for in non-terminals. These

are the non-terminals that a decomposition production would reference to produce a

component in its breakdown. The top non-terminal is also an in non-terminal. In

our marked-list grammar, there are two in non-terminals, Ain and Bin.

For the top non-terminal, the constraining quantified formula is S, the given for-

mula that Form2Grammar is trying to model. In the marked list case, the constraining

formula for Ain is equation 4.1, which will be called OA. For a non-top in non-terminal

NTn,, Form2Grammar augments the production in a specific way to connect it back

to the top non-terminal. That is, it finds a fixed, concrete set of objects X so that

X in combination with NTin is the top non-terminal Topin. In our example, Bin is

a production rule for a list with no marked elements. It can be turned into a list

with a marked element by adding one object at the front of the list. Formulaically,

the concrete set X is made by finding the shortest derivation of the top non-terminal

Topin from a non-top non-terminal NTin.

In our example, the derivation of an Ain from a Bin occurs in the following way:

Ain AM

AM +- {(marked p), (precedes p P1), (connected p P1), (connected p P2)}

{P1,P2 Bin

So, the constraining quantified formula for Bin is then the formula qBsuch that

qB: {P 1, P2} A (marked p) A Vy : P1 (precedes p y)A = qA: {p, Pi, P2}

Vy : P 1(connected p y) A ... A Vy : P2-i(connected y p)

That is, 'B must be the formula over {(P, P2} so that when 'B is combined with

the 9 breakdown formulas of M, the resulting formula satisfies OA over {p, P1 , P2}.

To derive OB, the formula for the unmarked remainder list, we start with OA

and break out the concrete object p. Breaking out points from formulas is dis-

cussed in Section 2.3. We also quantify OA into the disjoint set partition P1 and

P2. Form2Grammar adds the breakdown formulas relating p to P1 and P2 and

then simplifies. Finally, all of the formulas containing p are removed, replaced with

T. The result is OB. This derivation will be examined in detail for the formula

Vx AllBut(1) y --(precedes x y). This is the same as VxUy(precedes x y). Taking

out p yields

A Vx:{P1,P2}

AllBut(1) x: {P1 , P2} -(precedes p y)

(--(precedes x p) A

AllBut(1) y: {P1, P2 1 -(precedes x y))

V ((precedex x p) A Vy : {P 1 , P2 } -(precedes x y))

When the breakdown formulas

{(precedes p P1), -(precedes p P2), a(precedes P1 p), -(precedes P2 p)}

are added and simplified, this formula becomes:

(Unique P1)

A Vx: {P 1, P2} AllBut(1) y: {P 1, P2} (precedes x y)

(Unique P1) means that Plhas at most one element. Doing this derivation for the

entire marked list formula OA, one obtains this formula for 'B:

(3.6)

Figure 3-11: An example interface partition for an unmarked list. The constraining
formula is defined in terms of Q1, Q2, and an external term h, which is eliminated in
the final constraining formula.

(Unique Q1)

A Vx : Q23Y : {Q, Q2} (connected y x) (3.7)

A Vx : {Q1, Q2} -(marked x)

A listDef : {Q1, Q2}

listDef is the list formula, formula 3.3, quantified over the set partition {Q1, Q2},

which has been renamed from {P1, P2}. Note that this formula is still defined with

respect to Qland Q2. Q1 and Q2 are called the interface partition to non-terminal

Bin. A picture of the interface partition for a list with no marked elements is shown

in Figure 1.

For non-in non-terminals (e.g., AM, Au, Bu), the left-side formula is copied from

the right side formula. Thus, there is nothing to prove for non-in non-terminals.

Mapping Interface Partitions

Interface partitions add a level of subtle complexity to the grammar induction. Inter-

face partitions occur any time there is a data structure which does not decompose into

smaller versions of itself. For examples, lists and trees both decompose into smaller

lists and trees. However, circularly linked lists and marked lists both decompose into

structures that are not circularly linked lists or marked lists.

F"-~-l~"'i
:· i

;.......~~.....~_.._.-...;I NONE

Let us consider how to prove a constraining grammar correct. When the in non-

terminals on the left side of the grammar have formulas, we must produce formulas

to indicate that the right side productions are possible. The theorem provers must

then show that the formula on the left implies the formula on the right. The most

complex non-terminal production is a decomposition. Recall that the general form

for a decomposition is:

NT ::= piv; {{Afi} A NTi, ... , {Amj} 4 NTm}; (R piv Aij), (R Aij Akj)

Let 4i be the left-side formula for non-terminal NTi, let PNT be the left side non-

terminal for the whole production, and let X be the formula that is the conjunction

of the cross relations between piv and Aij, and between Aij and Akj in different sub-

productions. The goal is to show that for any world satisfying CNT, there exists a

partition {piv, AiJ} such that kRIGHT: {piv, Aij} = 1 : {Aj} A...A qm : {Amj}AX:

{piv, Aij} holds.

A technical issue is to map the interfaces of formulas ¢i with the interface for

kRIGHT- qi may be defined with some interface partition {Q'} and kRIGHT may be

defined with respect to another interface partition {Qi and there is no way to know,

a priori, how these interfaces relate to each other. Without knowing this relationship,

it is impossible to prove that ORIGHT implies Oi.

In the marked list example, Bu is recursively defined in terms of Bin. The quanti-

fied formula Osis OB for some partition {Qf, QL}. Meanwhile, Besis also defined by

CB but over a different partition {QR, QR}. The problem is to relate these interfaces

together, along with the breakdown partition {p, P1, P2} which might be different
from {Qn, QR}.

To establish this relationship, Form2Grammar makes a guess based on the exam-

ples. Each sub-instance in the sample decomposition is broken up into its interface

partition. This interface partition is compared with the breakdown partition in the

parent node and the interface partition of the parent sub-instance. An example is

A l A AA 4

--------------p
p=A1 A2 tJl 1j]

P1 P2

L,
Figure 3-12: Three partitions of an unmarked list that is a sub-instance of a markedlist. The interface partition {Q1, Q2} is used to define the constraining formula.{p, P1 , P2}is the breakdown partition in the sample decomposition. {Q', QQ2} is theinterface partition of the smaller instance P1 U P2. The samples are used to determinethe relationships among these partitions. In this case, Q' = P1 n Q2. Q2 = P2 n Q2.1 ={p}. Q2 = (Q1 n P) U (Q, n P2).

shown in Figure 3-12.

The assumption is that each Qfin the interface partition for a parent node YNT can
be represented as the union of sets {QR n P }. Furthermore, each sub-interface QR is
assumed to be representable by sets {QL n P}. For example, in the Bu decomposition,
using examples, Form2Grammar discovers QL = {p} and QL = P1 n QR U P2 n QR.
In the sub-production, QR = QL n P1 and QR = QL n P2. The assumption that
interface partitions relate this way is strong, but it holds for all of the example cases
that have been considered.

From now on, when considering right-side formulas qRIGHT and i4, it will be as-
sumed that the interface partition sets of 4i will have been replaced with intersections
of breakdown partition sets Aij and left-side interface partition sets QL.

Building Right-Side Formulas

The decomposition proof obligations show that a formula satisfying ONT breaks down

into a partition {piv, Aij} such that kRIGHT : {piv, Aij} holds.

To turn this partition existance statement into a quantified formula suitable for a

theorem prover, Form2Grammar first changes the sets Aijin ORIGHT into properties

(relations of arity 1). Section 2.3 discusses how sets and properties are equivalent

to each other. Then, the properties (Aij x) are replaced with the formula relating

Aijwith the pivot point piv. For example, in the marked list example, (P1 x) and

(P2 x) would be replaced with:

(P1 x) = (precedes p x) A (connected p x) A -(precedes x p) A

-(connected x p)

(P2 x) = -(precedes p x) A (connected p x) A -(precedes x p) A (3.8)

-(connected x p)

After the Aij definitions have been substituted, the new formula ''RIGHT no longer

has any references to sets A23.

Finally, the pivot point is quantified, so that 3piv 0'RIGHT is the formula that

needs to be proven. Now, all of the sets and free variables of k'RIGHT relate to sets

and free variables in the left side constraining formula •NT, and the theorem prover

can be invoked.

The right-side formula for a disjunction is simple to state. If NT is produced

as NT 1 I ... I NTm, let ¢1,..., m be the corresponding left-side formulas for

NT 1, ... , NTm. (If a non-terminal is not an in non-terminal, then its left-side formula

is its right-side formula.) The right-side formula for NT, ONT = 01 V ... V Om-.

The right-side formula for the c non-terminal is the size-possibilities formula

(None).

Let us compute right-side formulas for the marked list example. Refer to grammar

3.5. Form2Grammar will first form the right side for Au. bA is the left-side formula

for Ai,. Then,

A - 3p Ai~n {P, P2}X : {p, Pi, P2},

where 'Ain is OA,, quantified over {P1, P2} with P1 and P2 replaced with their

definitions according to equation 3.8. X• is defined similarly for the relations between

p and {P1 , P2}. However, with equation 3.8, most of the relations cancel each other

and X• simplifies to -n(marked p).

Similarly,

OAM = 3p B : {P 1, P2} A (marked p)

CBu = 3p 'B, n {Q = Q n P1 = Q n P2} A --(marked p)

In this equation, the formula 0',. must have its interface partition {Qf, QR}
mapped to{Q P1, QL P2 }, where {Qf, QL} is the interface partition for the left

side sBi,.

The right-side of A,qinHT = qAM V qA." The right side of Bin is BinGHT

qBu V (None). All of the constraints have now been defined. Now, Form2Grammar

must prove that every left-side formula implies every right-side formula.

As a note, producing constraining formulas for grammars is a technically and

logically complex process, whose working is not necessary for an understanding of

Form2Grammar. The purpose of the constraining formulas is to produce a conjecture

to prove. The conjecture is that the left side of a non-terminal breaks down according

to the rule in the grammar.

3.3.6 Proofs: Simplification

Let us summarize where we are. Using examples, Form2Grammar has produced a

simple grammar that fits all of them. The previous section shows how Form2Grammar

assigns constraining quantified formulas to the non-terminals of the grammar and how

interface partitions are related if they exist. The hypothesis, which Form2Grammar

needs to prove, is that any world w which satisfies the constraining formula, bNT on

the left side of a non-terminal NT can be broken down according to the production

rule on the right side. The decomposition production rule demands the existence of

a suitable pivot as well as the satisfaction of constraining formulas on the partitioned

subsets of w, which will be called iD.

Overall, the proof of the correctness of the grammar is by structural induction.

We assume by induction that CD properly breaks down according to its non-terminal,

NT. So, by induction w breaks down according to the production rule of NT, and

this production rule accounts for every object and every relation in w. Thus, if

Form2Grammar can prove that the left-side formula implies the right-side formula,

then it will have shown that the constraining grammar is fully correct. In the case of

the marked list, there are two proof obligations to perform:

OA = (3p •i :{P 1, P2} A (marked p)) V

(3p 4" : {P1, P2} A (marked p))

B = (3p O : {Pi, P2} A -(marked p)) V

(None)

From a practical perspective, however, trying to prove these theorems in one step

is intractable. The formulas 0' and 04', when written out, are quite large. To prove

the theorems in a reasonable amount of time, Form2Grammar first needs to do a

simplification and then prove the existence of the pivot p.

Consider OA : {P 1, P2,p}, i.e. before P1 and P2 are converted to properties. A

large part of this formula is the definition of a list over {P1 , P2, P. - A : {P1, P2} has

the same list axioms over P1 and P2. There are thus many redundant requirements

in OA : {P 1 , P2} that can be removed. So, to start the proof, Form2Grammar first

simplifies OA : {P 1, P2 AXU : {p, P1 , P2} given OA : {Pi, P2, p}. Then, Form2Grammar

takes out P1 and P2 and add 3p. In practice, simplification often yields tremendous

reductions in the complexity of formulas to be proved.

In general, Form2Grammar needs to show ORIGHT = cNT1 : (Aj} A ... A eNTm:

{Amj}A X : {piv, Aij} for some partition {piv, A2j}. To make this easier, Form2Grammar

simplifies qRIGHT given ONT : {Aij, piv}. That is, we take the given formula qNT and

expand it over the partition {Aij, piv}. The expansion-over-partition procedure is

described in section 2.3.

If ONT has interface partition sets, these sets are replaced with the appropriate

union of intersections from Aij n Q', the breakdown partition and sub-production

interface partition sets.

In the marked list example, there are three breakdown decompositions, AM, Au,

and Bu. For AM, the task is to simplify qB : {Q1 = P1 , Q2 = P2} A XM: {p, P1 , P2}

given OA : {P1 , P2,p}. For Au, Form2Grammar needs to simplify OA : P1 , P2} A

xu : {p, P1, P2} given OA : P1 , P2,p). For Bu, Form2Grammar needs to simplify

B : {QR= P p, QR _= P2} A Xu 1" P 1, P2} given B : {Qf = {p}, QL P1 U P2}.

The simplifications come out to:

simp(OA A) Vx : P2-(connected x p)

A Vx : P,(precedes p x)

A Vx: P2 ,(precedes p x)

A Vx: P2-'(marked x)

A Vx : Pi-(marked x)

simp(¢AU) = Vx P2-1(connected x p)

A Vx : Pi(precedes p x)

A Vx : P2-(precedes p x)

A 3x: Pi(marked x) V 3x: P2(marked x)

simp(OBu) = Vx : P2-(connected x p)

A Vx : P (precedes p x)

A Vx :P 2-(precedes a x)

Note the extraordinary degree of simplification that can be achieved in this exam-

ple. Such reduction is typical for the problems that have been encountered. Much of

the redundancy has been reasoned out of the formulas, and now the existence of the

pivot p can be proven tractably.

In fact, however, there can be even further simplification. For the decomposition

production, Form2Grammar expands out the breakdown sets {P1 , P2} in terms of

their pivots and then simplifies the expansion given the left-hand formula. In the

marked list example, Pland P2 expand out via equation 3.8 for all three productions

AM, Au, and Bu. For example, Vx : Pl-(marked x) would expand to:

Vx --(P1 x) V -(marked x) Vx-=(precedes p x) V (precedes x p) V

-7(connected p x) V (connected x p) V

-(marked x)

To ensure correct, the expansion must also include the expansion of the partition

clause:

VX (P1 X) V (P2 Z) = Vx ((precedes p x) A -(precedes x p) A (connected p x) A

n(connected x p))

V Vx (-(precedes p x) A -(precedes x p) A (connected p x) A

-(connected x p))

Form2Grammar then simplifies expandp1 ,p2 (simp(AM)) given OA : p, -P},

expandp,,p 2 (simp(A) given A" : {p, -ep}, and expandp1 ,p2 (simp(s B)) : {IQ'}

given sB : {(Q = {p}, Q'}. OA : p, -p) means OA with the pivot point broken out

as in formula 3.6. For Bu, the interfaces have been matched to that the pivot point

is assumed to be in QL of the left-side interface partition.

The second simplification yields the following formulas for AM, Au, and By.

simp2 (OAM) =

simp2(Au) =

simp 2(BU) =

Vx •(marked x)

A Vx -i(connected x p)

3x (marked x)

A Vx

Vx

-(connected x p)

2QL -(connected x p)

Now, the formulas are in a form where Form2Grammar can attempt to prove the

existence of p given the left-side formula. In the marked list example, there are now

two theorems to prove:

iA A (3p Vx -(marked x) A Vx -(connected x p))
V (3p 3x(marked x) A Vx --(connected x p))

B: {Q , QL} = (3p : Q VXZ : Q -(connected x p))

v ((None QL) A (None QL))

Finally, the simplification algorithm is run one last time to extract the last bits of

redundancy. This yields the following obligations:

OA] 3pVx-(connected x p)
B : {QL, QL} 3p : QL Vx : QL-(connected x p) V (None QL) (3.9)

The first obligation states that there must exist an element in the marked list

that is the first element, one that nothing else is connected to. The second obligation

states that an unmarked sub-list is either null, or it has one element in the QL

interface partition set that nothing else is connected to. Both of these obligations are

facts that can only be proven by mathematical induction. That is, pure first-order

logic techniques like resolution are not sufficient. Section 3.3.8 will present a general

purpose theorem prover that is capable of proving the above two theorems without

any special rules or induction axioms.

3.3.7 Simplification Theorem Proving

As can be seen in the above marked list example, the simplification routines are

extremely important and powerful, incorporating some deep reasoning and chaining.

This section describes the simplification algorithms used to make the final theorem

proving more tractable. They include a shallow subsumption algorithm, a shallow

first-pass simplifier and a deep simplifier that can do complex inferences including

rule chaining.

One critical restriction is that, because of the quantified formula representation,

Form2Grammar cannot use resolution and unification. Because of the implicit not-

equal assumptions in formulas such Vx-(connected x p), one cannot simply replace

the quantified variable x with a free variable ?x that could then be unified to any-

thing else. Unification is not necessarily impossible, but the bookkeeping becomes

exceedingly complex, and the benefits of resolution are outweighed by the costs. The

deep simplifier thus does simplification by tree pruning, which is a technique that can

perform many of the inferences that the resolution rule can do.

Subsumption

The central mechanism in all of the simplifiers is a fast subsumption test. Given two

formulas p and q, the subsumption function tests whether p =4 q. If the function

returns True, then p => q. However, if it returns False, there is no guarantee that

p # q. Let t-+denote the subsumption operator. In the case statement in Figure 3-13,

the first rule that matches p and q on the left side is the one that is applied. & and

II are the boolean AND and OR operators respectively. The last rule is a catch-all

for formula pairs that do not match.

In quantified formulas p(x) and q(y), the substitutions p[xlz] and q[ylz] refers to

the new term z, which is a fresh term not contained anywhere in p or q. Subsumption

can be applied to quantified formulas quantified over sets. When this happens, the

subsumption can include a size possibilities context derived from neighboring formulas

(e.g. whether a certain set A has at least one element, which is derived from a formula

like 3x : A (marked x)).

To improve performance, the subsumption function includes a cache of the most

recently solved subsumptions. This makes the function fast and predictable.

Shallow simplification

Shallow simplification is denoted by p/q, which means the simplification of p given q.

p/q travels through the tree of p and eliminates branches that are subsumed in some

way by q. If q ý- p, then p/q = T. If q -+ p, then p/q = F. The complex cases are

F -q
p T

p p
p ý (qi A... A qm)

(pl V... Vpk) - q

(pl A... A pk)-• (q V ... v qm)

(pl A... A Pk) 4 q
p ý(q V ... V qm)

AtLeast(n) x : A p(x)

AtLeast(m) y: B q(y)

AtLeast(AllBut(n)) x: A p(x)

AtLeast(AllBut(m)) y: B q(y)

AtLeast(AllBut(n)) x : A p(x) 4

AtLeast(m) y: B q(y)

AtLeast(n) x : A p(x)

AtLeast(AllBut(m)) y: B q(y)

p 4q

= True

= True

= True

= (p qH)& ... &(p ý qm)

= (p, - q)&...&(Pk H q)
= (pl A... A P 1 q,)ll... II(p, A ... A Pk ý q nm)II

(pl - ql V ... V qm) I I ... (Pk 1 ql V ... V qm)

= (p, * q) ... (pk - q)
= (P Hq .-) ... I (p - q-m)
= > m & A C B & p[xlz] - q[yz]

Sn >_ m & A D• B & p[x z] F q[y z]

= > n + m & AC B & p[xpz] F-q[yz]

= A n+ m & A 2 B & p[xsz] q[yjz]

= False

Figure 3-13: Ssubsumption rules

when p is an and, an or, or a quantification.

First, let p = pi A ... A pk. The procedure is as follows:

si := Pi

for i= 1...k {

s := pil(q A A s)
jrA.

return s, A ... A Sk

For each conjunct pi, the given formula q is first simplified relative to pi's neigh-

boring conjuncts. Then, pi is simplified relative to the new q'. This complication is

added to allow for a first level of inference. For example (R A S)/(-R V S) = R.

Similarly, let p = pi V ... V Pk. Then, the procedure is:

si := Pi

for i= 1...k {

si := Pilq A A--sj

}
return S V ... V Sk

For a quantification, Qx : A p(x)/q = Qz : A (p[xlz]/extract(q, A, z)). extract

is a utility function that finds and conjoins all of the Vy : B r(y) sub-formulas in

q where B D A. It removes the V and replaces y with z. extract can pull out

sub-formulas that are under other quantifiers. For example, extract(Vx : AVy :

A-'(precedes x y) V (connected x y)) =

Vy : A (precedes z y) V (connected z y)

A Vx: A: (precedes x z) V (connected x z)

Like subsumption, shallow simplification also caches recently solved reductions, so

that the function can take advantage of memoization. Shallow simplification usually

finishes in a short amount of time.

Deep Simplification

Once shallow simplification has taken the most obvious redundancies out of a formula,

deep simplification can run. This usually takes all redundancies out that can be

deduced using standard logical inference. However, because it can chain indefinitely,

it can sometimes take a considerable amount of time to finish. We denote the deep

simplification operation as p 0 q. Deep simplification actually works by simplifying

both p and q at the same time. An intermediate product, called the attachment, qCEp,

is the joint simplification of q A p. If q E p = q' A p', then p 0 q = p'

When a single formula p needs to be deep simplified, this is p 0 T.

These are the rules:

If q Hp, qEp=q. If q -p, q p = F.

For conjunctions, q e (P1 A ... A Pk) = (q E pl) D (P2 A... A Pk).

For every other formula type, disjunctions, quantifications, and ground relations,

the attachment may proceed through several rounds. Each round produces a hypoth-

esis formula h, which might be simplified further.

Consider p = p1 V ... V Pk. Form2Grammar initializes si = pi. Then, it sets

Sk = Pk 0 (q E DS1 0 ... D --Sk-1)-

Similarly, it sets Sk-1 = Pk-10 (q E 1 s D ... (Sk-2 (--Sk). In a loop, it then sets

si down to sl = pi 0 (q E -1s2 E... (Sk). The candidate output is then s V ... V Sk.

The fact used to simplify the disjunction is that whenever one wants to simplify pk,

one can assume that -p' A ... A --Pk-1, because any truth outside of this negation is

hypothesizeSimplification(p V ... V pk, q)

si = Pi

done = false

while (-,done) {

Si := Si

done = true

for i= 1...k {
s ' := (q E -sl si l s Si+E s D ... E) s')

if s • si

done = false

}
si := si

h := sl V... V Sk

Figure 3-14: The first pass of the deep simplification algorithm

handled by the other formulas in the disjunction pl V ... V Pk-1. The si are used to

make sure that truth overlaps are only applied one way. p2 can remove the common

part pi A P2, but pi must retain this overlapping piece.

For an example, consider the simplification of p V p. The second p assumes -'p.

Thus, s2 = F. Thus, the first p is simplified given -F = T. Thus, the output is

pV F = p.

If si 94 pi, then in some way, si has become weaker. For example, if pi was

originally X A Y and si became X, then si is a weaker condition. At the end of the k

simplifications, if one of the si has become weaker, the loop is run again. Potentially,

information has been gained that could further simplify some sj coming after si. The

loop is run until every s st i 's e. The method is summarized in Figure 3-14.

If p is a quantification Qx : A p(x), then h = Qz : A (p[xlz] 0 extract(q, A, z)). If

p is a primitive relation, then h = p.

For all formula types, once the hypothesis h has been proposed, the given formula

q is shallow simplified relative to h, producing q' = q/h. This simplification has the

p 0 q(subsumeOkay) {

h = hypothesizeSimplification(p, q, subsumeOkay)
q' = q/h

if q 44 q' {
r = q' 0 T(true)

return h 0 r(false)

}
else {

return h

}
}

Figure 3-15: The full deep simplification algorithm

potential to strengthen q, i.e. q ~'4 q'. If q -+ q', then deep simplification is done:

q' A h = q e p and h = p 0 q. Otherwise, if q' is stronger than q, h potentially can be

simplified further.

First, q'must be re-simplified by itself, r = q' 0 T. Then, h is re-simplified,

producing r e h and h 0 r as the attachment and the deep simplification respectively.

The whole algorithm is summarized in Figure 3-15.

The indefinite rebuilding and resimplification allows the algorithm to follow an

arbitrary-length chain of rules. It also means that the function can take an unpre-

dictably long time to terminate. Thus, deep simplification is only practical when the

formula p is small.

Certain cases require special care. For example, consider p = (Exists) and q

(None) V 3x (start x). Initially, p cannot be simplified, so the first hypothesis h =

(Exists). Then, the simplification of q given h, q' = q/h = 3x (start x). But, then

(Exists) 0 3x (start x) = T. This is an incorrect simplification, because q =# p. The

resulting q@p = 3x (start x) is correct, but p0q, calculated in the naive way, is wrong.

Thus, deep simplification has the additional context parameter subsumeOkay. If the

hypothesis h strengthens the given q to q', then it is not allowed for q' to replace any

branches of h to T. It can only set branches to F. That is, q' is only allowed to

strengthen h. It cannot weaken it in any way.

To make deep simplification tractable, the algorithm contains many engineering

heuristics and short-cuts. Mainly, it tries to re-use computation as much as possible

by caching solutions in a canonical form. Also, when producing r, the rebuilt q', deep

simplification re-simplifies only those branches of q' that have been strengthened.

3.3.8 Theorem Proving by Abstract Induction

The previous two sections have shown how Form2Grammar can perform standard

first-order reasoning over quantified formulas without the need for unification and

reasoning about equality. The marked list example has shown that deep simplification

can reduce a very complicated theorem obligation into a more manageable one. One of

these obligations is, given the formula for a marked list, prove 3pVx-(connected x p).

This is a formula that cannot be proven using ordinary first-order reasoning. It is a

fact that is only true for finite models of the marked list formula, and thus it must

be proven by some type of mathematical induction.

In this section, we will introduce the final theorem prover, which is capable of

discharging this last proof obligation. This theorem prover uses a novel technique

which is called abstract induction. It is capable of proving theorems like OA •=

3pVx-(connected x p) with no additional information. That is, it does not need any

special induction axioms, and it does not rely on any knowledge base. This makes it

ideal for automatic structure learning and other parts of automatic program synthesis.

Proving that a theorem p =- q is equivalent to proving that p A -nq is impossible.

That is, there is no world w such that (p A -q)(w) = T. To disprove p A -q, abstract

induction exhaustively searches all possible worlds by forming world abstractions and

evaluating them. The logic of abstract induction is complex, so it is important to

keep in mind the intuition. To falsify a formula, small worlds are created, and for

each world, the theorem prover shows that the world w cannot be a subset of a world

satisfying pA -q. That is, the world w cannot be extended to a larger world satisfying

p A -q. Worlds are shown to be impossible to extend when the process of extending

them to satisfy p A -iq results in an infinite loop. The infinite loop is discovered by

making abstractions of worlds and showing that the abstractions repeat forever.

This intuition is demonstrated in Section 3.3.8 with the example of falsifying

AA Vp3x (connected x p). To understand how abstract induction works, this is

the only thing to understand. The intricate logical mechanics below just make this

intuition precise.

Definition A world abstraction, a is a triple (O, A, I) consisting of a set of concrete

terms O, a set of wildcards A, and an interpretation I.

Abstractions correspond to sets of a world wof size at least 2. The interpretation

assigns truth values to relations among concrete terms and abstractions. However,

instead of taking values True and False, the interpretation takes values All, None,

or Exists for any given relation R(a, o).

A world abstraction a = (O, A, I) is a valid abstraction for world (0', I') iff the

following hold: O C O'. There exists a surjective(onto) mapping 0 : 0' - 0 -- A

such that 91-1(a)l > 2. That is, every o E O'that is not in O maps to some wildcard

a E A. Every wildcard a E A corresponds to a set of objects in O' - O of size at least

2. Finally, let R(al,..., a,) be a relation of a.

I(R(al,...,an)) = All Vx - alVx2 - a2 ...

Vx, -- anI'(R(xI, x 2, ... , xn)) = T

I(R(al,..., a,)) = None + Vx1 -• al ... Vx -* anI'(R(xl,..., z,)) = F

I(R(al,..., an)) = Exists 3x,1 - al ... xn -- aI'(R(xl, x 2 , ... , n)) = T &

3x, - a1 ... 3 -+ anI'(R(xl,..., x,)) = F

Relations in the interpretation I can be between concrete terms and wildcards,

wildcards and wildcards, or entirely among concrete terms. For any given world

w = (0', I') and a term-wildcard pair (O, A) with O' -+ (O, A), there exists a unique

interpretation I to make a = (O, A, I) an abstraction for w. To clarify notation, x -- a

if a is a wildcard and 0(x) = a or if a is a concrete term and a = x. For example,

100

-- ------- --- --

L------L precedes (ALL)
o .* precedes (EXISTS)

----------------- "\ ------- - connected (ALL)

---.--- + connected (EXISTS)

Figure 3-16: A sample of size 4 x, y, z, w and its abstraction. y, z, w is abstracted into
the wildcard A.

consider the concrete world in Figure 3-16. It is a marked list with the first element

marked. An abstraction for the list is shown below it. The abstraction consists of one

concrete term x which is the marked first element. The wildcard consists of the rest of

the list a = {y, z, w}. The interpretation I is defined as follows: I((precedes x a)) =

Exists, I((precedes a x)) = False, I((connected x a)) = True, I((connected a x)) =

False, I((precedes a a)) = Exists, I((connected a a)) = Exists. Note that wild-

cards have well-defined self-relations, since two objects mapping to the same wildcard

will be related in a well-defined way.

Two abstractions al = (01, A7, I1) and a 2 = (02, A 2, '2) are considered to be

equivalent iff there is a bijection f : 01 + A --+02+ A 2 such that Ii(R(ai,..., an)) =

I 2(R(f(al), f(a 2), ... , f(an)) for all relations R(al,... , an). alis considered to be a

subset of a 2, written al _ a 2 iff there is an injection, a one-to-one map f : 01 + A -4

02 + A2 where Ii(R(al,..., an)) = I2(R(f (a),.., f(an)). a 2 is called an extension

of a1 .

For any abstraction a, we denote Q(a) to be the set of worlds w for which a is an

abstraction.

The semantics of q distinguish between All and Exists. In the former case,

0(a) = All if q[X - A](w) = T for all valid substitutions X for the free wildcard

variables A. 0(a) = Exists if for all worlds w E Q (a), there exists a valid substitution

X -- A such that O[X - A](w) = T. A substitution X is valid if it ensures that

there are no duplicate terms created. That is X does not intersect the free terms of 0

101

and every distinct pair of free wildcard variables al and a2 is mapped to by distinct

terms xland x2 of w. There are four types of information that can be gathered from

a quantified formula q(a).

All(€(a))

None(€(a))

ExistsT(q(a))

ExistsF(¢(a))

SVwE E (a) VX

V Vw e (a) VX

SVw e Q(a) 3X

V Vw e (a) 3X

Frees(C) ¢[X](w)

- Frees(4) ¢[X](w)

Frees(O) ¢[X](w)

Frees(q) q[X](w)

From these four bits of information, there are six possible semantic values that

O(a) can take on. The first case on the left side that matches O(a) determines its

semantic value.

ExistsT(k(a)) A

All(q(a))

ExistsF(¢(a))

ExistsT ((a))

ExistsF(¢(a))

None(q(a))

T

0 4(a)
¢(a)

¢(a)
O q(a)

O q(a)

O q(a)

= All

= ExistsTF

= ExistsT

= ExistsF

= None

= Unknown

The top-level formula ¢, which the prover tries to prove, has no free wildcard

variables, so it can only evaluate to All, None, or Unknown.

Definition A covering set for a quantified formula € is a set of abstractions A =

{a 1,..., a,} such that every possible world w E 2(4) has an abstraction a for

which ai < a and ai E A.

Definition A dead-end for a quantified formula ¢ is an abstraction a such that every

extension ae,, a is false. That is, 0(a,~) = None for ae > a.

102

The abstract induction theorem prover shows that a quantified formula 0 is impossible

by producing a covering set A = {al,..., a,} in which every ai is a dead-end. In this

way, every world w E P(O) will have abstractions a and ai where w E Q(a), ai E A,

and a, < a. Thus q(a) = F and thus O(w) = F. So, if the abstract induction

theorem prover can find a dead-end covering set A for quantified formula q, then it

has proven that 0 is impossible.

With the semantics properly grounded, it will now be shown how the theorem

prover shows that a particular abstraction a is a dead-end. For a concrete example,

consider proving 3zVx -(connected x z) given the list axioms. The negation of this

formula is Vz3x (connected x z), which is added to the hypothesis formula (equation

4.1).

Calculating O(a)

First, it will be shown how to compute q(a). Abstract induction tries to keep as

much information as we can, so the logic is quite complicated. Howver, the mecha-

nism for computing q(a) is not important for the rest of the theorem prover. This

section should be skipped on a first reading. Let a = (O, A, I). Since k(a) is a

logical quantity, operationally, abstract induction computes 0*(a), which is a conser-

vative approximation to O(a) that can quickly be computed from the information at

hand. The six semantic values {All, ExistsTF, ExistsT, ExistsF, None, Unknown}

are abbreviated to {A, ETF, ET, EF, N, U}.

A conservative definition for boolean operations on {T, F, ETF, ET, EF, U} is the

following. The first pattern that matches is the rule that is applied.

103

NAx

AAx

EFAx

ETF A x

yAx

AVx

NVx

ETVx

ETF Vx

-T

-F

-'ETF

-EF

-ET

IU

= N

- x

=EF

=EF

= U

= A

-x

=ET

=ET

= F

= T

=ETF

=ET

=EF

=U

When q is a leaf relation R(al,..., a,), then the evaluation is straightforward.

I(R(ai,. . .. , a,)) = All

I(R(ai, ... , an)) = None

I(R(ai, ... , a,)) = Exists

S~¢*(a) = A

= ¢*(a)= N

= ¢*(a) = ETF

When Ois a conjunction or disjunction, (q1 A ... A 0, or 01 V ... V 0,), then

* = 0 A ... A 0* or 0* = 0* V ... V 0*. Evaluating quantifications is compli-

cated. While adding up the effects of each possible substitution, the prover must

104

keep track of eight integer quantities, one for each element of the set Count =

({min, max}, {minSub, maxSub}, {T, F}). The max values can be oo. Assume

0 = AtLeast(n) x O(x). Then,

(min, maxSub, T) > n A

(min, minSub, T)

(max, maxSub, T)

(max, minSub, T)

(min, maxSub, T)

(max, minSub, T)

< n

> n

<

¢ *(a>)

¢ *(a)

¢ *(a)

S *(a)

S *(a)

A

N

ETF

ET

EF

U

In the other case, assume ¢ = AtLeast(AllBut(n)) x O(x). Then,

(max, maxSub, F)

(min, minSub, F)

(min, maxSub, F) > n A (max, minSub)

(max, minSub, F)

(min, maxSub, F)

Sn

> n

S<n

< n

¢ *(a)
¢ ~*(a)

¢ *(a)

¢ *(a)

= * (a)

= 0*(a)

= ETF

= ET

= EF

= U

The theorem prover keeps track of these eight quantities for each substitution

z - x of z E 0 - Frees(q) and for each wildcard a E A. For the wildcard, a fresh

wildcard variable a0is created and substituted for x to distinguish it from the other

variables for a in ¢. Here are the equations to update Count when the concrete term

z is substituted. There are 6 possible values * [xlz](a) can take on.

105

:>

¢*[x z](a) = A

N

ETF

ET

EF

U

S(x, y,T) ++

S(x, y,F) ++

= (max, y, z) -++

(min, maxSub, T) = (min, minSub, T) + 1;

(min, maxSub, F) = (min, minSub, F) + 1

= (max, y, z) ++; (min, mazSub, T) = (min, minSub, T) + 1

= (max, y, z) -++; (min, maxSub, F) = (min, minSub, F) + 1

= (max, y, z) ++

The other possible substitution is with a wildcard variable a0o. One must be careful

about counting if this is the third substitution of a variable for the wild card a. In

that case, none of the (min, x, y) counts can be incremented. However, the usual case

is:

**[zxa](a) = A

N

ETF

ET

EF

U

(max, y, T) = oc; (min, y, T) -H-

= (max, y, F) = co; (min, y, F) ++

= (max, y, z) = oc; (min, maxSub, T) = (min, minSub, T) + 1;

(min, maxSub, F) = (min, minSub, F) + 1

= (max, y, z) = ; (min, maxSub, T) = (min, minSub, T) + 1

(max, y, z) = oo; (min, maxSub, F) = (min, minSub, F) + 1

= (max, y, z) = oc

Finding a dead-end covering set

Abstract induction proves a formula qimpossible by exhaustively enumerating all

world abstractions. The worlds are built as a tree called an extension-abstraction

106

precedes (ALL)

Sprecedes (EXISTS) 1. L
------- connected (ALL)

2.-------------------- ----
Abstraction

L Nodedead end

4 . n .
6.xa

7. 08.

Figure 3-17: A portion of an extension-abstraction tree showing how node 1 becomes
a dead-end.

tree. A portion of a tree is shown in Figure 3-17. Nodes in the tree are abstractions.

For each tree node a, the extension children are all of the extensions of a made by

adding a single concrete term and forming relations to each of a's existing objects

and wildcards. The abstraction children are all of the different mergers that can be

made between two objects, an object and a wildcard, or between two wildcards. Only

those abstractions that are determinable, i.e. that evaluate to N are considered. If

any node ever evaluates to A, then a counter-example has been found, and this is

returned as a proof failure.

A node on the extension-abstraction tree is proven a dead-end if all of its extensions

are dead-ends, or if one of its abstractions is a dead-end. There are two ways to

prove that an abstraction ais a dead-end for a formula ¢. The first and easiest

way is to reason about the formua directly to show that no possible extensions to

a can ever result in truth. For example, in the marked list example, consider the

world w = {(connected x y), (connected y x)}. No matter how many objects or

wildcards are added to w, it will always violate the constraint VxVy-i(connected x y) V

-'(connected y x). So, for any abstraction, there is a function called Impossible(o, a),

107

which checks for violations of AtLeast(AllBut()) quantifiers that would prevent any

extension of afrom ever becoming true.

Because Impossible abstractions can be checked and discarded easily, the extension-

abstraction tree only includes extensions that are not obvious dead-ends. Further-

more, the tree only includes those extensions that satisfy an immediate need of the

formula. That is, for an abstraction a that is not impossible, O(a) = N because

there is some AtLeast() quantification that is not being satisfied. There is a function

called Extensions(0, a) which returns a list of pairs < (z, {R}) > that could tackle

the open quantification. z is a fresh term to represent the new extension object, and

R is a set of relations on z to fix the open quantification. By focusing on a specific

issue in the formula and ignoring all extensions that are impossible, the number of

extensions to a given abstraction is generally small, so that the exhaustive search is

generally tractable and fast.

When a is not obviously impossible, the way to prove it a dead-end is to discover

loops in the extension-abstraction tree. A loop occurs when an abstraction child of a

node P is equal to an ancestor of that node Q. This is shown in Figure 3-17. In this

case, P terminates in a valid abstraction for ¢ if and only if Q terminates as well.

Thus, there is no benefit in continuing to expand P. P is called a node dead-end from

Q. This does not necessarily mean that ap is a dead-end, but any satisfying extension

of ap from P would be found from Q. We also say that P is a node dead-end for any

parents of Q, Q. Let R be an extension parent of P. If all of R's, extensions become

loops like this, then R is a node dead end from Q. If R is an abstraction child of a

more concrete node Ro, then R' is also a node dead-end from Q.

By finding loops, the algorithm produces node dead-ends throughout the extension-

abstraction tree. A particular abstraction a becomes invalid if there is a sub-tree

rooted at node P with ap = a and all sub-trees of P are node dead-ends from P.

Intuitively, this means that all extensions of a must loop forever without ever satis-

fying the formula ¢. In this way, the extension-abstraction tree eventually gets fully

pruned, there are no more nodes to explore, and the algorithm has found a dead-end

covering set.

108

Let us examine how this works in the marked list example. Call the axiom formula

OA, written in Equation 4.1. The goal is to prove 3zVx-n(connected x z). So, the

abstract induction theorem prover must show that OA A Vz3x (connected x z) is

impossible to satisfy. The tree building algorithm builds all non-impossible instances

of size 3. One of these instances is shown as node 1, P1, in Figure 3-17. This instance

evaluates to N, because, among other reasons, the first element does not have an

object connected to it. The world is abstracted to the two element abstraction in

node P2. This evaluates to N for the same reason. At this point, the algorithm

forms all of the extensions to the abstraction that are not impossible and that satisfy

(connected z x). There are two such extensions, one where (precedes z x) and one

where -(precedes z x). Note that (connected z A) must evaluate to All. By the

transitivity rule of the list definition, if (connected x A) is All, then if (connected z A)

is not All, the formula OA becomes impossible. The two nodes P3 and P4 merge into

abstractions P5 and P6 in Figure 3-17. The first abstraction P5 is exactly the same

as node P2. Therefore, P5 is a node dead-end from P2. Now, P6 expands in two ways

to satisfy 3zVx-(connected x z). These two extensions are abstracted into nodes P9

and P10. P9 is identical to nodes P5 and P2. P10 is identical to node P6. Since they

are both dead-ends from P2, P6 is a node dead-end from P2. Thus, the abstraction

ap2 and the abstraction ap1are all dead-ends. In a similar manner, the whole tree is

explored, and the formula OA A Vzx3 (connected x z) is eventually proven false. No

abstraction larger than 3 elements is ever examined in the search.

The mechanics of the search uses a priority queue. Abstractions are extended one

at a time, and smaller abstractions are placed at the head of the queue. To conclude

the marked list example, the two proof obligations in Equation 3.9 are presented to

the abstract induction prover, and they complete in under a minute.

3.4 Conclusion

This chapter has presented the first of the three SSGP systems, Form2Grammar.

While the task is the simplest, the techniques used to solve the problem are the same

109

as those in the other two systems. The core technologies of deep simplification and

abstract induction are used heavily in Spec2Action and HELPS. More fundamentally,

Form2Grammar demonstrates the effectiveness of using examples to reason about a

complex logical domain. The examples are produced and solved in a simple, con-

crete, propositional domain, and the generalization of the example solutions forms

the hypothesis to be proved by the higher-level deduction system.

The task of Form2Grammar is to take a quantified formula S and produce a

recursive constraining grammar that produces exactly those worlds that satisfy S.

Using examples, Form2Grammar produces a hypothesis constraining grammar. To

prove the grammar correct, Form2Grammar must show that the left side constraining

formulas of this grammar imply the right side breakdown formulas.

To generate the hypothesis, Form2Grammar generates example worlds of S, and

it finds a consistent set of breakdowns that work for all examples. These breakdowns

are then unified together to produce a finite state machine with the states representing

grammar non-terminals and the arcs representing breakdowns. From the finite-state

machine, the hypothesis grammar is created. Then, using S as the top constraining

formula, constraining sub-formulas are produced for all of the in non-terminals of the

grammar. These sub-formulas may be defined in terms of a special interface partition.

To properly reason about the formulas, Form2Grammar uses the examples to guess

a mapping from the interface partition of the left-side formula to combinations of the

breakdown partition and the interface partitions of the sub-productions.

Once the constraining formulas are in place and the interface partitions mapped,

Form2Grammar produces proof obligations. It must show that the constraining left-

side formula implies the right-side production. It first simplifies the right-side pro-

duction in terms of the breakdown partition. Then, it substitutes pivot relationships

for the breakdown sets to simplify the right side even further. Finally, the resulting

simple expression is passed to the abstract induction theorem prover. This theorem

prover assumes the hypothesis and negates the formula to be proved. It shows that

all worlds are impossible by showing that a search for a satisfying counter-example

must necessarily loop forever.

110

Chapter 4

Spec2Action

4.1 Introduction

The second SSGP sub-system is called Spec2Action. It is the first actual program

synthesis system that will be examined. It takes the specification of a program as

two quantified formulas, a start S and a goal G. The output is a description of the

relations that need to change in a world w to make G hold. This relation change set is

called an action. This is a simpler problem than full program synthesis with STRIPS

actions. A STRIPS action has preconditions, and its effect is generally to change

more than one relation. In STRIPS planning, one must pay very close attention to

the order of actions, as the side-effect of action A may negate the desired effect of

action B (like the Sussman anomaly). Also, due to pre-conditions, a given STRIPS

action can only be run under special circumstances.

Because each relation is changed individually and independently, there are no

constraints on the order in which the individual relations are changed. Thus, in

Spec2Action, the programs synthesized have no sense of timing. The goal is to take

two formulas S and G and produce a set of relations. More broadly, Spec2Action is

designed to be a subsystem for the more general HELPS application. When given a

program synthesis problem, Spec2Action determines what to do, what facts about the

world need to change to satisfy the goal. The higher-level HELPS must then determine

how to use STRIPS actions to set the relations established by Spec2Action.

111

The exercising test cases to guide Spec2Action development are operations on data

structures. These are problems where determining the relations to change is non-

trivial, so they serve as good tests of the system's algorithms and representations.

Figuring out the relations to change from the logical spec requires uncovering the

recursive structure of worlds satisfying the goal formula, uncovering specific roles

that are filled by particular objects, and figuring out how the worlds change with

respect to those roles.

For example, consider removing a marked element from a linked list. The start

formula S is the marked list specification studied extensively in Chapter 3. Repeated

for clarity, it is:

VxUy (precedes x y)

A VxVy (connected x y) 4* (4.1)

(precedes x y) V (3z (connected x z) A (connected z y))

A VxVy (connected x y) : -i(connected y x)

A Dx (marked x)

The goal is to change the relations so that all of the elements except the marked

one form a list.

Vx -(marked x) == Uy -(marked y) A (precedes x y) (4.2)

A VxVy (-(marked x) A -(marked y)) •

((connected x y) <-*

(precedes x y) V (Bz -(marked z) A (connected x z) A (connected z y))

A VxVy ((marked x) A •(marked y)) =* (connected x y) 4 -(connected y x)

There are many solutions to this problem, including obliterating all existing rela-

112

-- -. - -- --

- -- --------- - -- -A

SB
!4-, -

(precedes x y)

(connected x y)

Figure 4-1: The relations to change when removing the marked element from a list

tions, and then resetting them in the desired configuration. However, Spec2Action's

goal, more specifically, is to change as few relations as possible to make the goal

true. A general solution to remove the marked element is shown in Figure 4-1. The

two elements B and C on either side of the marked element are picked out, and the

relation (precedes B C) is set between them.

In particular, Spec2Action only produces a certain type of relation change set. It

finds a partition of the world, and the relations to change are set relations between

the sets of the partition. A set relation R(A 1, A 2 ,..., A,) defines the set of relations

R(al,..., an) for ai E Ai. For a program of set relations {R} to be correct, every

world w satisfying the start formula S must break up into a partition {A 1,..., An}

such that R applied to this partition changes the world to satisfy the goal formula.

The fixed set partition {A 1,..., An} determines the roles of the different objects in a

program.

For example, in the marked list case, the partition is {A, B, C}, where B is the

singleton set of the element before the marked element, C is the singleton set of

the element after the marked element, and A is the rest. B and C may be null if

113

the marked element is at the beginning or end of the list respectively. The changed

relation is {(precedes B C)}.

As a second example, consider the problem of inserting an orderable element a

into a sorted linked list. The sorted linked list has these axioms:

VxUy (precedes x y)

A VxVy (connected x y) =

(precedes x y) V (3z (connected x z) A (connected z y))

A VxVy (connected x y) - -(connected y x)

A VxVyVz (< x y) A (yz) = ((< xz)

A VxVy (< x y) ---(< y x)

A VxVy (< x y) = (connected x y)

The set partition is {A, B, C, D} where B and C are singleton (or null) sets rep-

resenting the elements of the total ordering just before a and just after a respectively.

The relations to change are:

{(precedes B a), (precedes a C), -(precedes B C), (connected A a),

(connected B a), (connected a C), (connected a D), -(precedes a B),

-(precedes a A), -(precedes A a), -(connected a A), -(connected a B),

-(precedes C a), -(precedes a D), -(precedes D a), -(connected C a),

-(connected D a)}

Since a is being inserted, all of its relationships with each of {A, B, C, D} must

be established. The sorted list brings up an issue. Only certain types of relations are

changeable. The precedes and connected relations are structural relations of the list,

and can be changed at will. However, the < relation is a fundamental property of

114

the list elements and must not be changed.

The types of programs that can be represented well in this framework is limited.

Section 4.3 will argue why this program representation is a fundamental one, and

why the program synthesis performed by Spec2Action is an important foundation

step for more complex forms of synthesis. First, Section 4.2 will describe the set

of challenge problems that guide the development. Section 4.4 then describes the

detailed architecture and implementation of Spec2Action.

The SSGP design philosophy of combining inductive and deductive reasoning to

solve problems guides this architecture. Given start and goal formulas S and G,

Spec2Action generates sample starting states. It then solves these starting states in

the most general and consistent way. Then, it forms a hypothesis program consisting

of the roles and the relations to change. It then absorbs these changes into the start

formula and simplifies the goal formula given the changed start. The relation changes

are then pulled backward from this simplified goal. The resulting formula is then a

set of conditions that the partition must satisfy. At this point, the goal is to show

that any world satisfying the start formula S can be broken down into a partition,

such that the simplified and transformed goal holds true. Finally, the role partition

is built up from the grammar of S discovered by Form2Grammar. This algorithm is

called the set partition builder. If all goes well in this stage, then the partition exists

and the hypothesized program is correct and well defined.

4.2 Challenge Problems

This section describes the test problems have been used to guide development. All

of these problems are simple operations on data structures. As mentioned above,

these operations are appealing, because they cover a variety of non-trivial logical

situations, and they exercise the expressive power of the Spec2Action representations

and algorithms. Also, data structures are natural to conceive of as networks of objects

and relations. Operations on data structures are natural problems in changing the

relations of the network.

115

The problems to be considered are:

1. Inserting an item into a linked list

2. Inserting an item into a doubly linked list

3. Removing an item from a linked list

4. Inserting an item into a binary search tree

5. Removing an item from a binary search tree

6. Inserting an item into a circularly linked list

7. Removing an item from a circularly linked list

8. Inserting an item into a min heap

9. Removing an item from a min heap

10. Inserting an item into a sorted list

11. Moving the minimum item of an unsorted list to the front

This list of challenges provides a wide coverage of the types of complications that

arise in specifying the relations to change in a program synthesis problem. Some

of the problems, such as problems 1 and 5, consist entirely of adding relations to a

world. An item is added to a linked list at the end and to a binary search tree at

the bottom. Other problems, like 3 and 6, require negating relations in the existing

structures of the directed linked list and the circularly linked list respectively.

The most complex problems are 5, 8, and 9. In fact, in these three cases, there

does not exist a general solution template made of set relations over a set partition.

That is, the Spec2Action program representation cannot represent a solution to these

problems, and the program synthesis must always fail. However, in each of these cases,

the natural solution involves a recursion down the branches of a tree. For example,

removing an item from a binary search tree involves merging two trees together,

116

10

812

8

10

EFJEFJ
Figure 4-2: The steps to remove an element from a binary search tree. The recursive
merging of sub-trees is too complex to represent as an action template.

which requires recursively merging two sub-trees (see Figure 4-2). The functionality

of the recursive step is to take two trees T1 and T2 such that (_ T1 T2) and produce

three smaller trees Si, S2, and S3 and an element r such that (< S1 S2), (• S2 S3),

(left S1 r), (right S2 r), and (right S3 r).

Thus, while the algorithm as a whole does not fit into an action template, the key

recursive step does fit into an action template. Similarly, the key recursive steps of

programs 8 and 9 also fit into action templates. Thus, all of the problems on the list

have action representations as core parts of the solutions. So, while Spec2Action does

not have the full power to solve any kind of programming problem, its capabilities

serve as an important foundation step to solving more complex problems.

117

~

4.3 Representations

Before discussing the architecture of Spec2Action and its results, the representation of

actions must be precisely defined. An action is the output that Spec2Action produces,

given the start and goal formulas S and G.

Definition A set partition template is an abstract set of n set terms T',..., T n.

Definition A set builder a for a set partition template {Ti}n and a universe Q is a

function from a world w E Q to a partition of w {o(w, Ti)}.

Definition A set relation R(PI, . . ., Pk) is defined on set templates of a set partition

template, Pj E {Tf}. For a given world w and a set builder a R(PI,..., Pk) is

the set of relations R(ol,...,ok) where oj E a(w, Pj) and such that oi z oj for

Definition An action template is a set partition template T, ... , T' and a set of

set relations {R(PI,..., Pk)}, where Pj E {Ti}.

Definition An action consists of an action template along with a set builder for the

set partition template.

The goal of Spec2Action is to take a start and goal quantified formula S and G and

produce an action. There are thus two things Spec2Action must do: produce the

action template, and then produce the set builder on this template. The set builder

is defined recursively over the grammar for S as produced by Form2Grammar.

That is, every in non-terminal NT is assumed to have a set builder oNT(w, Ti) C

w. Let a grammar decomposition look like the following:

NT ::= piv; {{Aj} -+ NTj}; x(piv, A3j)

For a world w, let {piv,...,wi = Uj wij,...} be a correct parse for this decom-

position. Then, UNT(w,Ti) is defined to be a union of sets from {piv,...,wij n

118

aNT (wi),...}. That is, the set partitions are built up from intersections of set parti-

tions of sub parses with the parse components. The function must be defined so that

{aUNT(w, Ti)} is a disjoint partition of w.

Definition A recursive set builder is a set builder defined over a grammar 9 so that

there is a set builder for each non-terminal, defined as the union of intersections

of parse components and the output of the sub production set builders.

Thus, the output of Spec2Action is an action template and a recursive set builder

defined over the grammar of the start formula g(S).
Let us consider a simple example, insertion into a linked list. The start formula

S is:

VxUy (precedes x y)

A VxVy (connected x y) y

(precedes x y) V (3z (connected x z) A (connected z y))

A VxVy (connected x y) # -,(connected y x)

A Vz -(precedes a x) A z(precedes x a) A -(connected a x) A -(connected x a)

The goal formula G is:

VxUy (precedes x y)

A VxVy (connected x y) y

(precedes x y) V (3z (connected x z) A (connected z y))

A VxVy (connected x y) * (connected y x)

Since the marked element a is free in S and not free in G, it is assumed to be part

of the final list and not part of the starting list. For the example solution, the set

partition template is {A, B, C} and the action template is

119

{(precedes A B), (connected A B), (connected A C)}

The program inserts the element a at the front of the list. So, A consists of the

singleton set {a}. B consists of the first element of the starting list, and C is the rest

of the starting list. The grammar for the starting formula is the following:

Mi ::= p; P1 -- Lin}; --(precedes p PI); -(precedes Pi p); -(connected p PI);

-(connected P1 p)

Li, ::= Lo c

Lo ::= p; {{P1 , P2 } -4 Li.}; -(marked p); (precedes p Pi); (connected p PI);

(connected p P2); -(precedes P1 p); -(connected P1 p); -(precedes p P2);

-(precedes P2 p); -(connected P2 p)

In Mi, the pivot is the element to be inserted a. Li, represents the existing list.

The pivot is the first element of the list, Pi is the second element (or null), and P2 is

the rest.

The recursive set builder is:

UfMh = {A= {p},B= aO,(PI).B,C= aL(Pl).C}

ULi n = ifc then {A = {},B = {}, C = {}}

else if L {A = {}, B = {p}, C = Li({P1, P2}).B U L,({Pi, P2}).C}

That is, B, the first element of the list consists of the the pivot point p. C, the

rest of the list, consists of the head of the sub-list unioned with the rest of the sub-

list. The build-up is shown in Figure 4-3. The next section will show how the action

template is created and how the recursive set builder is defined so that the action

template combined with the recursive set builder, applied to a world satisfying the

start formula, will satisfy the goal formula.

120

___________C___ ____ ___C-

8 L

A

B

C

L4 p=X4

Figure 4-3: The recursive set build-up for the action template partition {A, B, C}
from the grammar produced by Form2Grammar.

121

Sample Solve Generalize

Sample Find consistent changed Build action
worlds {}", solutions reations template

actiontemlate

change(
start 0 to prove

I ormrammar _.

assumption,
to prove

_Prove

Figure 4-4: The Spec2Action Architecture

4.4 Spec2Action Architecture

The Spec2Action architecture is shown in Figure 4-4. As in Form2Grammar, the

system works by generating examples, solving the examples, generalizing from the

solution, and then proving the solution correct. For the example set, it generates

a consistent, simple set of solutions for all examples. The generalization of these

solutions consists of the action template, a set partition of roles, and a set relations

between the roles.

To prove this generalization correct, there is a module, the Change Manager, that

propagates the action through the start formula, producing a formula that is true

after the action has been performed. Then, the goal formula is simplified relative to

this transformed start. This provides a set of conditions on the set partition needed to

satisfy the goal formula. Finally, the Change Manager propagates the action backward

by reversing the effects of the action on the partition conditions. This produces a set

of conditions on the partition roles that must be true at the start of the program.

At this point, the goal of the system is to show that the partition satisfying the

transformed goal conditions exists. This satisfying partition is built up by structural

122

recursion
constraint.

f
I

I

recursive
set builder

induction over the grammar of the starting formula !(S) by the Partition Mapper

algorithm. For a given non-terminal NT, it assumes that the role conditions are

true for the sub-production non-terminals. Then, the Partition Mapper generates a

propositional formula that contains all of the constraints on the recursive set builder

to make the goal conditions for NT true. This propositional formula is tested with

a SAT solver, and a correct solution fully defines the recursive set builder. Now,

Spec2Action has an action template and a recursive set builder, and it is done.

The functioning of these components will now be examined in detail. To explain

the system, there will be one example problem throughout the exposition: removing

an element from a linked list. The start and goal formulas are given in Equations 4.1

and 4.2 respectively. This example has the marked linked list as the start formula,

which was studied in depth in Chapter 3. It has the grammar given by 3.5.

4.4.1 Solving Examples Simply and Consistently

To generate a wide set of examples of the start formula, Spec2Action uses the same

example generator as discussed in Section ?? for Form2Grammar. In the case of

removing the marked element, the same examples that were generated for the marked

linked list can be used.

The simplest solution is judged to be the one with the smallest set partition and the

fewest set relation changes within it. Given a set of examples wl, ... , w,, a maximum

partition size d and a maximum number of relation changes r, Form2Grammar tries

to find an action template and an assignment for the objects o E wi to a partition set

Aj such that the goal formula holds in the transformed world.

All of these constraints are put into a propositional formula, which is then solved

by a SAT solver. Form2Grammar increases d until a particular action template works.

Then, it uses binary search on the maximum relation number r to find the absolute

simplest action template that is possible for the examples. The Spec2Action system

currently uses the zchaff SAT solver.

Consider a simple example. Consider the five-element marked list in Figure 4-2.

The middle element needs to be deleted. This can be accomplished by partitioning

123

the list into three sets A, B, and C with the set relation change (precedes B C).

There are several types of proposition that go into the action template constraint

formula. First, there is the instantiation of the goal formula (Equation 4.2) over the

elements el, ... , e5 . Furthermore, each element is constrained to lie in exactly one of

the partition sets: e.g.

(A el) V (B el) V (C ei)

A -(A el) V -(B el)

A -(A ei) V "(C el)

A --(B el) V -(C el)

Then, each set relation has two propositions, only one of which can be true:

(set (precedes B C)) and (unset (precedes B C)). If both of these propositions are set

to false, then the (precedes B C) set relation is not changed. For (set (precedes B C))

to be a correct set relation for two elements e and f with (B e) and (C f), then it

must be the case that --(precedes e f). Similarly, to apply (unset (precedes B C)),

then (precedes e f) must be true. That is, a set relation change must actually change

all of the relations for which it is applied. This restriction is captured in constraints

such as:

--(B el) V -(C e2) V -(set (precedes B C))

Because (precedes el e2), if (B el) and (C e2), then (precedes B C) cannot change

to true. In a similar way, there is a proposition

-,(B el) V -(C e2) V -(unset (precedes C B))

(precedes e2 el) cannot be changed to false, because it already is false.

For a relation such as (precedes el e2) to be true after the action templates have

run, then (unset (precedes B C)) must not be the set relation when (B el) and

124

(C e2). The rule here is:

-(B el) V -(C e2) V ((unset (precedes B C)) 4 -i(precedes el e2))

Finally, there are propositonal rules to make the number of relation changes at

most r. All of these constraints are put into a large formula, which is then solved

by SAT. The satisfied assignment for the smallest r for the smallest d becomes the

hypothesized solution. In the case of the list removal, the three-set partition {A, B, C}

is hypothesized with the single changed set relation (precedes B C).

4.4.2 Propagating action templates forward

With the hypothesized action template ({Ti}, R), the problem is now to show that

the action template works for all start and goal formulas S and G. To do this, we

must show that a partition {Ti} exists such that, after the set relation changes R

are run, the resulting world satisfies the goal G. To do this, the start formula S is

first broken down over the partition {Ti}. Then, it is assumed that the changed set

relations R are false, F, in the partitioned formula S: {Ti}. This simplifies S: {T i}

slightly. Finally, the relations R are added as universally quantified formulas over

{Ti}. Consider list removal as an example.

Look at the formula VxUy (precedes x y). This is broken up over the partition

125

Vx : A (Uy

V(Uy

V(Uy

A Vx: B (Uy

V(Uy

V(Uy

A Vx:C (Uy

V(Uy

V(Uy

that -'(precedes B C) is applied before the action is run, this

Vx : A (Uy

V(Uy

V(Uy

A Vx : B (Uy

V(Uy

A Vx :C (Uy

V(Uy

V(Uy

(precedes x y) A Vy : {B, C} -,(precedes x y))

(precedes x y) A Vy : {A, C} -(precedes x y))

(precedes x y) A Vy: {A, B} -(precedes x y))

(precedes x y) A Vy: B -(precedes x y))

(precedes x y) A Vy : A -(precedes x y))

(precedes x y) AVy: {B, C} -(precedes x y))

(precedes x y) A Vy : {A, C1} -(precedes x y))

(precedes x y) A Vy : {A, B} I(precedes x y))

All instances of expressions of the form (precedes B C) are set to F. All such

formulas in 4.2 are simplified to produce the transformed start formula S'. The re-

sulting formula now has no expressions (precedes B C). So, when the action template

126

{A, B, C} as

(precedes

(precedes

(precedes

(precedes

(precedes

(precedes

(precedes

(precedes

(precedes

{B,C}

{A,C}

{A, B}

{B,C}

{A, C}

{A,B}

{B,C}

{A, C}

{A, B}

-"(precedes

-"(precedes

-,(precedes

-"(precedes

-(precedes

-,(precedes

-"(precedes

-,(precedes

-(precedes

y))

y))

y))

y))

y))

y))

y))

y))

y))

When the fact

simplifies to:

is applied, none of the other expressions or relations are affected. The above simpli-

fied formula for VxUy (precedes x y) over {A, B, C} is true before the action is run

and after it. To complete the transformation, S' is augmented with the set relation

formula Vx : BVy : C (precedes x y). S' is true both before and after the action run.

However, S' A Vx : BVy : C (precedes x y) is only true after the action run.

The transformation of a formula S through an action template ({Ti}, R) is denoted

TR(S).

4.4.3 Simplification

Once the start formula has been transformed by the action template ({Tt}, R) to

create rR(S), the goal formula G : {T)} is partitioned over T' and simplified, given

the transformed start. The simplification consists of shallow simplification followed

by deep simplification, as described in Section 3.3.7.

Usually this simplification simplifies the goal considerably. In the marked list

example, the simplified goal is denoted it by G'. It is, with some consolidation,

roughly:

Vx : B Vy : C (-(marked x) A -(marked y)) =* (connected x y)

A Vx : {A, B, C}Vy : {A, B, C} (-(marked x) A -(marked y) A

(connected x y) A -'(precedes x y)) =*

3z : {A, B, C} -(marked z) A (connected x z) A (connected z y)

A AllIBut(1) x : C (marked x)

V Vx : B (marked x)

A Vx : C (marked x)

V Vx : B Vy : {A, B} (-(marked x) A -(marked y)) •= -'(precedes x y)

The goal is to show that there exists a partition {A, B, C} of TR(S) such that

G' holds. This is equivalent to showing that there exists a partition {A, B, C} of S

127

such that G' A Vx : BVy : C-7(precedes x y) holds. The proof of the existence of this

partition is made by reasoning over the grammar for S, g(S).

4.4.4 Recursive Set Builder

Now, the problem is to construct a partition {Tk} of a particular formula S such that

a set of conditions G' holds over {Tk}. This is proven by induction over the grammar

g(S). Consider a particular non-terminal rule with a pivot piv, sub-productions NTi

and cross relations X(piv, Ai):

NT ::= piv; {{Aij} -* NTj}; x(piv, A ij)

Assume by induction that the sub-productions NT1 correctly break up into a

partition {Tk} over the subset {Aij} satisfying some portion of the goal formula G'

which depends on the non-terminal type of NTi. Using the information from the

induction hypothesis, as well as the pivot cross relations X, Spec2Action constructs

the satisfying partition {T i } out of all of these sub-partitions.

The key general algorithm to make this possible is the Partition Mapper, which

will be described in the next section. Given an initial formula S quantified over a

partition {T i} and a desired formula G quantified over a second partiton {UJ}, the

partition mapper finds a mapping p {: T i } - Uj} such that S => G : {p-1 (U) }.

That is, S and {T'} can be used to construct a partition {U j } such that G : {U}.

Consider a simple example from inserting an element into an ordinary linked list,

which has a simpler grammar and simpler sufficient conditions than the program

of removing an element from a linked list. The grammar for the unmarked list is

(omitting negative pivot relations):

Li ::= LsIc (4.3)

Ls ::= f {{(P1 , P2 } - Li,}; (precedes p P1), (connected p P1),

(connected p P2)

128

A

B
(precedes B a)

a (connected B a)
(connected A a)

Figure 4-5: Sets A and B for inserting an element a at the end of a list

The goal is to insert a single element a at the end of this list. The action template

to make this happen is:

{A, B}; (connected A a), (precedes B a), (connected B a)

Using the simplification method of the previous section, the simplified conditions

for A and B are:

v: {A, B} = Vx : A 3y: {A, B} (connected x y) (4.4)

A Vx : B Vy: {A, B} - (precedes x y)

That is, every element of A is connected to something later on in the list and there

is no element after the singleton set B. This is shown in Figure 4-5. How would one

prove the existence of the partition {A, B} for all lists, and would one construct the

partition? Both questions are answered by induction.

The base case is when Lin = c. This clearly breaks into A and B that satisfy the

conditions. Then, to prove Ls breaks down properly, assume that the sub-production

Lin breaks down into A' and B' satisfying 4.4. Call this induction formula v : {A', B'}

and call the pivot cross-relation production formula X : {p, P1 , P2}. So, we have to

construct A and B satisfying v : {A, B} out of the overlapped partition {{p},P1 n

A', P2 nA', P1 n B', P2 n B'} and given

v: { A' n (P U P2), B' n (P U P2)} A X : {p, PI n {A', B'}, P2 n {A', B'}}.

129

a

A

B
(precedes B a)
(connected B a)
(connected A a)

'--------------------~-------~---------- ------------- ------- ----------

L p=x4 a

L'

Figure 4-6: Sets A and B built recursively from the grammar breakdown {p, P1 , P2}and A' and B' of the sub-list L'. There are two cases for when L'is or is not e.

When A' and B'are empty, v : {A, B} is true when B = {p} and A = {}.Otherwise, it is true when B = (B'n P1)U(B'nP2) and A = {p} U(A'nP1)U(A'nP 2).That is, if A'and B'are null, then B, the new end of the list is the pivot point p. IfA' and B'are not null, then A consists of the old A' and the pivot, while B consistsof the old B'. These combinations are shown in Figure 4-6.
Now, for a general case, there is a grammar decomposition production rule:

NT ::= p; {{Aij} -+ NTi}; X(p; Aij)

To show the existence of a partition {Tk} satisfying a formula vNT, Spec2Action
assumes that some version of the formula VNT, holds over a partition {(U} of asub-production {Aij} -+ NTj. This induction hypothesis is overlaid with the crossrelations of g over the partition {Aij, {p}}. The partition mapping algorithm then

130

L

L,

finds a mapping p: {p, Aij n Uk } - {Tk}.

Determining the induction hypothesis 11NT for each breakdown non-terminal is

similar to the way we constructed the non-terminal's constraining formula in Section

3.5. If a non-terminal does not come from the top non-terminal, a small number of

extra terms {a+} are connected to the interface partition of NT. For example, in

an unmarked list, a single marked element a can be added to the front to produce a

marked list. The induction assumption lgNT, then consists of v, quantified over the

interface partition {Q1, Q2}, with the added front element broken out. Recall that Q1

is the singleton set of the second element of the augmented list, also the first element

of the unmarked list. Q2 is the rest of the unmarked list. Since every relation between

a and Qi or Q2 is known, all of the elements containing a are set to T or F depending

on the relation with the interface partition. a does not appear in the final formula

VNT-

v, the induction hypothesis and the formula to prove, is already quantified over

the action template partition {T}. Therefore, to break out any extra terms a from v,

Spec2Action has to make a guess about which partition element Ti a belongs to. It

makes a guess and then attempt to do partition mapping. Often, partition mapping

will fail. In this case, the grammar sub-productions themselves need to be extended.

The grammar non-terminals can be extended indefinitely. Pivot terms are continually

broken out of the sub-productions until a partition is produced that maps correctly

to the goal partition and formula.

Thus, action template proving proceeds in a search tree. At each search node, a

grammar production is broken out or a guess is made for breaking out a free variable

into an action template partition element. The search tree is self-consistent if every

possible grammar production has a partition mapping and every free variable breakout

guess is justified by the partition mapping.

For removing from a linked list, there are eight final partition mappings in all.

These are shown in Figures 4-7 and 4-8. Note that three of these examples are

complete marked lists or unmarked sub-lists. Indeed, as the grammar breakouts

proceed to deeper depths, more and more full, small examples are created. Thus, if

131

p-*A

q--A1.

2.
p--A

q-+B

/p q --A'

Li]

MnA'->A

MAB'-*B

MAA'->A

MNB'-+B

MAC'--C

MNC'-*C

3. IP qTqA

\ U1

Ing R Up-*A

Figure 4-7: The five satisfying recursive partition mappings for the different ways
a marked list breaks down and the ways the sub pivots could recursively map to
{A', B', C'}.

there is a counter-example, it will eventually be discovered. In all of the example

problems have considered, the sample set was always comprehensive enough that

the hypothesized action template was correct. Theoretically, though, this counter-

example could be fed back to the solve/generalize phase described in section 4.4.1,

and a new action template could be hypothesized from the new knowledge.

4.4.5 Partition Mapping

The core of the recursive set builder is the partition mapper, a general algorithm

that could be applied in other types of theorem proving and automated reasoning.

Formally, it attempts to prove a particular goal formula G quantified over a goal

partition {Ti}. The partition mapper is given a formula S, which is quantified over

a different partition {Uj}. The mapper attempts to construct a mapping p : {Ui } -+

132

.
.

--------------·1_·---·- 1··-11

._.-...;-....~....~.~.~---^·I--··-·---··
G

I;·

1\

LE. p ------

Figure 4-8: The three partition mappings for the ways an unmarked list breaks down
and maps to {A, B, C} from {A', B', C'}

{Tj} such that S =- G: {p-l(TJ)}. As a simple example, consider the start and goal

formulas

= Vx : A -,(marked x) A Vx : B (marked x)

= Vx: P -(marked x) A Vx : Q •(marked x) A Vx: R (marked x)

The correct p in this case is p(P) = A; p(Q) = A; p(R) = B. When G is quantified

over p-1 = {P, Q, R}, the formula is

Vx : {P, Q} -(marked x) A Vx : R (marked x), which is the same as S. The

partition mapping algorithm traverses the goal formula and produces a propositional

formula defining all of the constraints that exist for mapping a set in S to a set in
G. This formula is then solved with a SAT solver to get all of the possible satisfying

mappings.

In the case of this example, the SAT formula for S to G would be:

-(R -+ A) A -(P - B) A (Q --+ B)

Furthermore, there is a SAT formula constraining that each set of S maps to

133

U 6 ' -

exactly one set of G. The formula for this is:

(R - A) V (R -- B)

A (R--+A) V (R -B)

A (P -*A) V(P -B)

A -(P *A) V- (P -+ B)

A (Q -A) V(Q -+ B)

A (Q- A) V (Q -B)

Together, these constraints force p to be the mapping above. The rest of this

section will discuss the rules for producing the full constraining formula from S : {Ui }
to G : {Ti}. Let -y(S, G) represent the partition map SAT formula. The first step is

to normalize S into a disjunction of sub-formulas S1 V S2 V ... V Sk. Then, there is

the constraint:

"-(Sl V ... V Sk, G) = -(S1, G) A ... A y(Sk, G)

There are two other simple boolean rules:

(S, G, A... A Gk) = 7y(S,Gi) A... Ay(S, Gk)

y(S, G, V ... V Gk) = y(S, G) V ... V Y (S, Gk)

The interesting case is when G is a quantification, AtLeast(n) x : T G(x) or

AtLeast(AllBut(n)) x : T G(x), and S = S1 A ... A Sk is a conjunction of quantifi-

cations over {Ui}. First, consider G = AtLeast(n) x : T Go(x). In this case, the

partition mapper looks at each combination from S of the form:

Si,... , = AtLeast(ni) x : U1 Sio(x) A ... AtLeast(nj) x : U1 Si(x)

134

such that nl + ... + n, > n . Usually, n = 1 and there is only one conjunction

from S that is used. Now,

-(Sil,...,il, G) = (Ul - T) A ... A (Ul --+ T) A 7(So A . . . A So, A UQ(UI, ... , UI), GO)

If S has any universal quantifications over the sets Uj (i.e. of the form Vx :

Uj Sjo(x)), these are also added to the conjunction, denoted by UQ(U1,..., U1). Also,

if a set Uj is deduced to contain at least m elements, then a statement of the form

AtLeast(AllBut(n)) x : Uj Sjo(x) is converted to AtLeast(m - n) x : U3 SjO(x), which

is added to the set of available conjuncts of S.

'y(S, G) is the disjunction of all of these possible combinations.

-(S, G) = V 7(Si,...,,,G)
i

When G = AtLeast(AllBut(n)) x : T G(x), there is a complementary strategy.

The partition mapper considers every combination from S of the form:

Sil,...,il = AtLeast(AllBut(nl)) x : U1 Sif (x) A... A AtLeast(AlBut(nl)) x : U1 Si (x)

such that nl + ... + n <K n. Unlike in the AtLeast(n) case, each set Uj is tested

and constrained. If Uj is not part of the combination, the partition mapper sets

Sj = True.

Then, yuj(Si,,...,i, G) = -(Uj -* T) V y(Si A UQ(Uj), GO). UQ is the conjunction

of universal quantifications over Up. The intuition is that for Uj to map to T, the

constraints necessary to have Sfi A UQ(Uj) == Go : {U} must hold. Now, each set's

constraints in the combination are conjoined together.

-(Si,,...,il, G) = yu, (Si, ... ,i , 7G) A ...A yu, (Sil,....i,, G)

135

Finally, all possible combinations are disjoined to produce the final constraint

formula

7(S, G) - V (Sil,...,i, G)
i

The usual case is n = 0, which is the universal quantifier V. In this case, there is

always only one possible combination.

When G is a grounded expression at the root of the tree, y(S, G) = True if S =- G,

and y(S, G) = False otherwise. In this way, a boolean satisfiability formula is created

describing all of the possible constraints on mapping from the sets of S, {U}, to the

sets of G, {T}. As mentioned above, the propositional formula is constrained so that

each U maps to exactly one T. If a satisfying mapping is found, then the partition

mapper has demonstrated a way to construct the set partition {T} such that the goal

condition G holds over this partition. In this way, Spec2Action is able to prove the

correctness of action templates by structural induction over the grammar of the start

formula.

4.4.6 From partition maps to programs

When the partition mapper finds a satisfying assignment for its constraint formula,

this assignment can be used to build recursive functions that build up the set partition

{T} of the action template. These recursive functions then become the parameters

for the action template, and the result is a fully operational, correct action. This

section examines how this works in the case of inserting an element into a list, and

the case for removing an element from a list.

Consider inserting into a list. Spec2Action need to produce the two sets A and B

to satisfy v, Equation 4.4. B is the singleton set of the last element of the list. A is

the rest of the list. The list has the grammar shown in Equation 4.3. There are two

possibilities at the top level Ls and c. If the list is e, A = {} and B = {}.

Otherwise, Spec2Action attempts to do partition mapping from {p, P1 n A', P1 n

B', P2 n A', P2 n B'} to {A, B}. The first attempt fails, so the non-empty production

136

2. .- ----

-L P-*A LfA'-A

4. p -+B q-B LfB'--B

Figure 4-9: The four partition mappings for inserting an element at the end of a list

is broken down into the three possibilities shown in Figure 4-9. The first case (#2 in

the figure) is the singleton list {p}. In this case, the partition mapping is {p} - B.

Thus, A = {} and B = {p}. In the second case (#3 in the figure), Spec2Action

has broken out a second free element q and two subsets P3and P4. This case also

guesses that q maps to A in the induction hypothesis on {q, P3, P4}. The broken-out

induction hypothesis is thus:

Vx : A' 3y : {A', B'} (connected x y)

A Vx: B' Vy: {A', B'} --(precedes x y)

A 3y:{A',B'}

This hypothesis is overlaid with the grammar cross relations on {p, q, P3, P4}.

(negatives omitted)

137

; p-·~

L 1 " .d

(precedes p q) A (connected p q)

A Vx : P3 (connected p x)

A Vx: P4 (connected p x)

A Vx : P3 (precedes q x)

A Vx : P3 (connected q x)

A Vx : P4 (connected q x)

In this case, the partition mapping succeeds. It is {p} -+ A, {q} A,A' n P3 -

A,A' n P4 - A, B' n P3 -* B, B' n P4 -- B. The third case (#4 in the figure) guesses

that q maps to B. The broken-out induction hypothesis, overlaid on the breakdown

{q, P3 , P4}, is:

Vx : A' 3y : {A', B'} (connected x y)

A Vx : B' Vy: {A', B'} -i(precedes x y)

A (None B' n P3)

A (None A'n P3)

The successful partition mapping for this case is {p} -- A,{q} -- B, A' n P4 -

A, B'nP4 _- B. This is a degenerate case where A'and B'are both empty and q is the

last element of the list. The algorithm doesn't know this, but it does find a partition

map that is logically correct. These four partition solutions now tell Spec2Action how

to produce a recursive function s to generate A and B given a list w.

The recursive function a is as follows

138

a(w) = case w of

B= {};
{p} -+ A = {};

B = {p};

{ p, q, P3, P3,}
if q e a({q, P3 , P4}).A then

A = {p, q, a({q, P3 , P4}).A};

B = {a({q, P3 , P4}).B};

else

{p, a({q, P3, P4 }).A n P4 ;

{q, a({q, P3 , P4}).B n P4};

Thus, partition mapping not only tells us that the partition to satisfy the action

template {A, B} exists, it contains the information necessary to build a recursive

function to generate that partition. The case for removal from a linked list is more

complex, but it follows the same pattern. The partition maps are shown in Figure

4-7. Recall that B is the singleton set of the element right in front of the marked

element to be deleted, C is the singleton set of the element after the marked one, and

A is the rest. The recursive function for {A, B, C} is:

139

u(w) = case w of

{p; (marked p)} -+ A = {p}; B = {}; C = {}

{p, q; -(marked p), (marked q)} --

A = {p, q};

B= {};
c= {};

{p, q, P3, P4; -(marked p), -,(marked q)} --

if q E a({q, P3, P4}).A then

A {p, q, a({q, P3, P4}).A};

B = f({q, P3, P4}).B;

C = a({q, P3, P4}).C;
else if q E o({q, P3 , P4}).B then

A {p, cr({q, P3, P4}).A};

B= q, a({q, P3, P4}).B;

C = -({q, P3 , P4).-C;

{p, q, r, P3 , P4; -(marked p), (marked q), -(marked r)} -

A= {P3, P4, q};

B = {p};

C = {r};

{p, q, P3, P4; (marked p), -'(marked q)}

A = {p,q, P3, P 4};

B= {};
C= {};

140

4.5 Conclusion

This chapter has introduced a system, Spec2Action that performs a specific type of

program synthesis. It takes a program specification in the form of a start formula S

and a goal formula G, and, with no further information, produces an action to solve

that program. The action is a special type of program that can represent the core of

many larger programs. It consists of a partition of the world into roles and a list of

set relations to change across those roles. The set relations are all of the relations to

change to satisfy the goal formula G.

This chapter has shown the universality of actions by showing how they can be

used to represent the core of a variety of simple data structure operations. In most

cases, the action performs the entire operation.

Spec2Action generates examples and hypothesizes the simplest action template

that solves all of the examples. It then tries to prove the action template correct by

structural induction over the grammar for S produced by Form2Grammar, discussed

in Chapter 3. Given the hypothesis action template, Spec2Action absorbs the changes

into the start S. Then, it deep simplifies G given S. This defines the set of conditions

that the action template set partition must satisfy. The goal of the prover at this

point is to prove the existence of the partition of any world wsatisfying S such that

the goal conditions hold.

This partition is constructed by structural induction over the grammar of S.

Spec2Action assumes the existence of the partition for the decompositions of the

grammar, and that it satisfies some condition v derived from the top condition and

the non-terminal type of the decomposition. The inductive partition of the decompo-

sition is then overlaid with the breakdown partition induced by the pivot decomposi-

tion rule itself. This overlay produces a class of building block sets, which can then

be mapped into the partition of roles Spec2Action is trying to create. In this way, by

induction, the action template is proven correct, and the partition can be constructed

by recursive functions over the grammar.

The key algorithm in this structural induction is the partition mapper. It takes a

141

given formula S quantified over one set partition {U} and a goal formula G quanti-

fied over another set partition {T}. By traversing through G, the partition mapper

produces a propositional formula constraining all of the possible transitions from U

to T that would make G true given S. The resulting proposition is run through a

SAT solver, and the satisfying assignment defines a set mapping p : {U} -4 {T} such

that S = G : {p-(T)}.

The ultimate goal of Spec2Action is to perform a high level, abstract kind of

program synthesis. Instead of worrying about the preconditions and side effects that

programming with STRIPS actions entails, Spec2Action just tries to determine the

relations of the world that need to change. It is assumed that the relations can

be changed at any time independently of each other. Thus, Spec2Action, given a

program specification, produces a template of what to change. It is then possible

for another module to determine how to effect those changes using primitive actions.

That is, Spec2Action is an important initial component in the full program synthesis

problem. The next chapter will discuss HELPS, the final program synthesis system.

While the initial version of HELPS does not directly use Spec2Action, the two systems

are complementary. Spec2Action determines the relations to change to satisfy a

specification, and HELPS sequences the primitive actions to make it happen.

142

Chapter 5

HELPS

5.1 Introduction

The final SSGP system is HELPS, which stands for Hallucinated-Example Led Pro-

cedure Search. It performs program synthesis of iterative programs using STRIPS

actions as the primitive elements. STRIPS actions have pre-conditions, and they

typically change more than one relation. Thus, the effects of one STRIPS action

can be negated by subsequent actions down-stream. For this reason, the order of

STRIPS actions within a plan or a program is very important. This contrasts with

the circumstances of Spec2Action, which only manipulates one relation at a time.

However, STRIPS actions are a more realistic representation for the types of

actions that an autonomous agent would have available to it. Like Form2Grammar

and Spec2Action, HELPS uses examples to guide its search for a correct program,

and it proves the programs' correctness with the same theorem provers described

in the previous sections. A program is specified using a start formula S, a goal

formula G, and a set of primitive actions. Example worlds w are produced satisfying

S. Then, HELPS uses a standard, grounded planner (SATPlan) to produce sample

programs that use primitive actions to transform the world w to a world w' that

satisfies G. HELPS reasons backwards from the goal formula G. Each iteration

has a pre-condition to satisfy and a partial program. At each search iteration, it

generates examples, solves the examples using ordinary planning, and generalizes a

143

w4

Figure 5-1: Unlike other general planning systems, there is no separate notion of clear

or atop. (clear A) = Vx -,(on x A). (atop B C) = (on B C)AVy -(on B y)V-(on y C).

program element to extend the current partial program. The search finishes when all

examples satisfy the current pre-condition, and the current partial program becomes

the hypothesis program. At this point, the theorem prover attempts to show that

the pre-condition is implied by the starting formula. Otherwise, it generates a set of

counter-examples, and the search begins again.

HELPS is capable of autonomously solving generalizations of some classic AI prob-

lems such as BlocksWorld and some other simple planning tasks. Because HELPS

uses examples to guide its search, it has no need for specific domain knowledge. In

the HELPS representation for BlocksWorld, there is one relation template (on ?1 ?2)

That is, there are no special relations (clear x) or (atop x y) to denote x as the top

block of a stack and to denote block x directly on top of block y, respectively (see

Figure 1). Furthermore, there are no special BlocksWorld axioms or domain knowl-

edge. All of the universe information comes from the specification of the problem and

the specification of primitive actions.

Completed programs consist of primitive actions, while loops, and if-then condi-

tions. The control formulas for the loop and the condition are standard quantified

formulas.

Finding a correct program is a search over partial programs. From a particular

partial program, the next step can be the invocation of a primitive action, the intro-

144

duction of a condition, the focusing of the goal onto a sub-problem, the introduction

of a fork, the closure of a fork, the breaking out of a specific term, the closure of a

term break-out, the introduction of a loop, and the closing of a loop by finding a loop

invariant. The next step to consider is determined by the format of the goal formula.

When a particular partial program satisfies all of the examples, HELPS tries to show

that the starting formula implies the precondition of the partial program. To do this,

it uses the deep simplification and abstract induction theorem provers discussed in

sections 3.3.7 and 3.3.8. Deep simplification reduces the problem by removing for-

mulas that could be proven by ordinary first-order logic rules. Abstract induction

proves the rest of the formula by using its counterexample search to prove facts that

are only true in finite models and require a mathematical induction argument.

5.2 Representations

5.2.1 Primitive Actions

Before considering an example, let us examine how primitive actions and programs

are represented. A primitive action is defined by its preconditions and its outcomes.

The preconditions and oucomes are quantified formulas over the action's parameters.

A parameter is either a single term or a set. An important restriction that HELPS

requires is that the parameters must be distinct, and they must partition the world.

This restriction significantly simplifies reasoning about actions. Also, it doesn't reduce

the expressive power of the actions. Any STRIPS action can be broken up into one

or more distinct HELPS actions that satisfy this constraint.

An action's precondition can be any quantified formula. However, the outcome

quantified formula can only consist of simple relations, conjunctions, and universal

quantifications. This enforces the constraint that actions be deterministic. Consider

the actions (moveTable a) and (move a b), which moves block a onto the table or

onto block b respectively. moveTable is parameterized by the single object a and two

sets A and B. A is the set of blocks under a, and B is all the other blocks in the

145

world. The precondition for moveTable is:

Vx -(on x a) (5.1)

A Vx:A (on a x)

A Vx: B -i(on a x)

The outcome of moveTable is

Vx: A -(on a x) (5.2)

That is, a is no longer on top of every element of A. It is no longer on anything,

having moved to the table. (move a b) is parameterized by two objects a and b and

three sets A, B, and C. A is the set of blocks under a. B is the set of blocks under

b. C is everything else. The precondition is:

-(on a b)

A Vx~ (onxa)

A Vx -(on x b)

A Vx:A (on a x)

A Vx:B(on b x)

A Vx : C (on a x) A -(on b x)

The outcome is

(on a b)

A Vx: A -(on a x)

A Vx: B (on a x)

146

a is removed from atop the tower of blocks A and moved onto the tower of blocks

B.

5.2.2 Programs

This section shows how primitive actions can be combined to make full programs.

There are five program elements: the primitive action call, the if-then statement, the

while loop, the let statement, and the sequence. The primitive action call instantiates

the parameter terms of an action with specific arguments. An argument is specified

as a quantified formula O(x) over a free term x. This means that any term a that

satisfies 0(a) could be applied as the argument to the action's parameter term. For

example, as part of clearing b, we want to move the top block on b to the table. This

is specified as (moveTable a) : (on a x) A Vy -,(on y a). The set parameters A and

B are defined by the precondition in terms of the argument a. When a hypothetical

program executor encounters an action call, it would search the current state for an

object satisfying the argument condition, and then it would execute the action on

that term.

Action calls are combined via sequences, if-then-else statements, let statements ,

and while loops. A sequence consists of two programs executed one after the other.

An if-then-else statement has two body programs and a condition quantified formula.

An executor would evaluate the condition on the current world. If the condition was

true, it would execute the first body program. Otherwise, if an else body exists, it

would execute that instead. If there is no body, it does nothing. The next program

component is a while loop. It consists of a quantified formula as a while condition

and a sub-program as a body. The executor would evaluate the condition formula. If

the condition held true, it would execute the body program. Then, it would evaluate

the loop condition again. The body gets executed until the loop condition becomes

false. Finally, there is a let statement, consisting of a parameter/argument list and

a body. It simply creates an environment defining parameter terms and parameter

sets which can be used in the body program. These statements are summarized in

the grammar below:

147

Prog ::= Call I If Then I Loop I Seq I Let

Loop ::= while(QF) Prog

If Then ::= if (QF) then Prog [else Prog]

Seq ::= Prog ; Prog

Call ::= Action(Arg,... , Arg)

Let ::= let P1 = Arg, ... , Pk = Argk in Prog

Arg ::= QF(x)

The specification for a program consists of a start formula S, a goal formula G,

and a set of action definitions. In all of the BlocksWorld examples, there is a common

start formula, constraining the relations among the blocks. This formula is:

VxVy (on x y) --(on y x) (5.3)

A VxVyVz ((on x y) A (on y z)) ((on x z)

A VxVyVz ((on xz) A (on y z)) (on x y) V (on y x)

A VxVyVz ((on z x) A (on z y)) = (on x y)V (on y x)

None of these formulas are redundant. They ensure that stacks of blocks cannot

form loops, and that for every pair of blocks x and y in a stack, either (on x y) or

(on y x). The goals for the three BlocksWorld problems of clearing block b, moving

block a onto b, and moving a directly onto b are, respectively:

148

Clear Block Goal = Vx -(on x b) (5.4)

Move Onto Goal = (on a b)

Move Directly Onto Goal = (on a b) A (Vx -(on a x) V -(on x b))

Put All Blocks in a Tower = VxVy -(on x y) V -(on y x)

5.3 Challenge problems

To test the system and guide development, the exercise problems are the BlocksWorld

applications above and a few other domains. They are general problems with simple

specifications from a wide range of situations. The variety of domains where this

type of program synthesis applies illustrates the power of the quantified formula

representations and reasoners. The following are the programs that HELPS has

sought to synthesize. They are illustrated in Figures 5-2 to 5-9.

1. Clearing a block b

2. Moving block a onto block b

3. Moving block a directly onto block b

4. Arranging all blocks into a single tower

5. Setting a row of switches: There are four primitive actions. Left and right

actions to move a cursor up and down the row. An up and down action to set

the current switch up or down respectively.

6. Moving across a two-dimensional grid. The primitive actions are moving up,
down, left, and right.

7. Picking up an object and moving it somewhere else on a one-dimensional line.

Primitive actions are left, right, pick-up, and drop.

149

A A

Figure 5-2: Problem: clearing block A

1B
0

A

B C .

Figure 5-3: Problem: moving block A onto block B

III
A

a C **

Figure 5-4: Problem: moving A directly onto B

Figure 5-5: Problem: stacking blocks in a table in one stack

150

! F-c10001 I-i

"
ii :: :--I_·_-

·· 8~~~. :-i

IO'·::a:F:;l

I- :

=--; ---~6

:~::

A B

Figure 5-6: Problem: sorting a list of elements

Figure 5-7: Problem: setting a row of switches

••••••••••••• @••

•• @ •

• •••• •••• •••
Figure 5-8: Problem: navigating a grid

Figure 5-9: Problem: picking up an object and moving it

151

All of these problems and their solutions can be represented naturally with HELPS

programs. The following section will show how programs can be synthesized by a

search over partial programs, guided by examples.

5.4 HELPS Architecture

Fundamentally, HELPS is an iteration over partial programs. HELPS starts with an

empty partial program with the specified start and goal formulas S and G. Through

partial program transformations, HELPS moves in the direction of a successful pro-

gram. This section describes the information in partial programs, and the transfor-

mations made on them.

5.4.1 Partial programs

Partial programs are incomplete programs 0 that are grown from the goal backwards

to the start condition. Every partial program has an open goal to be satisfied. Dur-

ing the search, a partial program has its goal transformed and structural program

elements are added. The initial partial program is an empty program with the goal

specification G as the open goal. The search finishes when it finds a partial program

whose open goal is implied by the initial start condition.

To understand the promise and complexity of an individual partial program, ex-

amples are used. A set of initial examples is generated using the start formula. The

example generation algorithm is the same as the one used in Section 3.3.2. Deeper

in the search, a partial program can acquire its examples in different ways depending

on the transformation. For each new partial program, HELPS uses ordinary STRIPS

planning on each example to produce the smallest example plan. The assumption is

that something similar to this example plan would be the output trace of the program

needed to complete the present partial program. The complexity of a partial program

is determined by the average length of its example plans.

To do the grounded planning, HELPS uses its own version of SATPlan. That is,

for a given example w, a goal formula G, and an integer n, a propositional formula

152

is produced constraining all of the possible plans of size at most n. This formula is

solved with a SAT Solver, and the solution contains the correct plan.

Some of the SATPlan constraints are that at most one action can be executed at

a time. To be executed, an action's preconditions must be satisfied. If an action is

executed, all of its outcome relations must change, and all of the other relations must

stay the same.

Using binary search on n, the plan length, a minimal plan is found, and this

becomes the guiding example plan.

Very often, the open goal for a partial program will be a conjunction of formulas

01 A 02. In this case, it is difficult to know which formulas to focus on. Do we solve q1

first or 0 2? The solution to one formula may conflict with the solution to the other,

so the two problems cannot be solved independently. This is known as the Sussman

anomaly[38]. However, HELPS cannot accurately guess a priori whether one of the

formulas should be the last one solved. A formula q is called a final sub-goal if it is

satisfied on the last step of a plan, but it is not satisfied on the pen-ultimate step,

time n - 1. For any minimal plan with n > 0 satisfying 01 A q2 , either 01 or 02 must

be a final sub-goal.

So, in addition to an open goal G, a partial program may also be constrained

by a final sub-goal FG. Each of the example plans must either be of length 0, or

they must not satisfy FG at the pen-ultimate step while satisfying it at the last step.

The SATPlanner is easily modified to constrain a plan to have both a goal and a

final sub-goal. Final sub-goals are an important concept. During the partial program

search, if a partial program has a final sub-goal in its open goal, then the search

chooses the partial program transformation based on the final sub-goal, not the goal

itself. However, the partial program transformation, when it runs, must operate on

and solve the whole goal, not just the final sub-goal.

In other words, the final sub-goal guides the solution search, but the total goal is

always the result that is sought.

To summarize, every partial program 0 has an open goal G, a set of starting

examples Q, and the incomplete program itself p. The partial program may have a

153

pJ3

Figure 5-10: Partial programs consist of a chain of transformed problems. The output
program is constructed from the top down.

starting formula which generated the examples, or the examples may be provided, as

they are done in the production of the bodies of loops. The partial program may also

have a final sub-goal.

5.4.2 Transforming partial programs

Program synthesis search proceeds by transforming partial programs 4, ultimately

searching for a partial program whose open goal is implied by the initial starting

condition. There are nine possible transformations: introducing an action call, intro-

ducing a final sub-goal, introducing a condition, introducing a fork, closing a fork,

introducing a free term, closing a free term, introducing a loop, and closing a loop.

These will now be examined in detail. A partial program maintains a link to the

previous partial program it was derived from. From this chain of links, HELPS can

derive a complete program, because each link in the chain knows how to produce a

program out of the program produced by its child. See Figure 5-10.

154

I

Introducing an action call

The production of action calls is provided by a module called the call mapper. An

action call is attempted if the current open goal is a single relation, or if the current

final sub-goal is a single relation. The call mapper attempts to match the goal G(1') of

the existing partial program 4 with the outcome of one of the primitive actions. The

precondition for the action then becomes the open goal of the new partial program

G'(7').

Recall that the outcome of an action consists entirely of conjunctions and universal

quantifications. Therefore, its changes can be represented as a list of set relations

over the action's parameter partition. Set relations are used to represent programs in

Spec2Action, where an action template consists of a partition and a set of change set

relations over this partition. The representation is discussed in Section 4.3. Basically,

a set relation represents the set of all relations between objects of different roles.

For example, in the moveTable action of BlocksWorld, the set relation outcome is

-,(on a A), where A is defined as the set of blocks that a is on before the moveTable

is invoked.

Using the set relations, HELPS analyzes the goal tree to determine a pre-action

formula G'. When the action (moveTable a) is applied to a world w'satisfying G', then

the subsequent state w must satisfy G. Finding G' is done by a special algorithm called

the Change Manager, which is discussed in the next section. The Change Manager

is able to propagate formulas forward and backward through actions. In this case, G

is propagated backward through the moveTable action to obtain a formula G' that

would produce G.

Because actions are defined over their parameter partition, the change-propagated

goal formula will contain action parameter terms and parameter sets. These must be

eliminated for the new pre-condition to make sense. Fortunately, parameters of an

action call can be eliminated from a formula in a straightforward and deterministic

way.

For example, consider the BlocksWorld goal formula G = Vx --(on x b). Propa-

155

gated backward through moveTable, this becomes:

G' = Vx : {A, BI} -(on x b)

A (A b) V Vx : {a} -(on x b)

{a} is the singleton set of the parameter term a. That is, every object besides the

parameter object a must not be on b. The parameter a must either not be on b, or b

must be a member of A, i.e. under a. This is a tautology, but the Change Manager

doesn't necessarily know it. Intruitively, for moveTable to solve this goal G, either

all blocks are already not on b, or there is exactly one block on b.

Eliminating the parameter sets is easy, because they are defined in the action

precondition. In the BlocksWorld example, A = x : (on a x). B = x : -(on a x).

When these are eliminated, the formula becomes

G' = Vx -(on x b)

A (on a b) V Vxz: {a} -(on x b)

Now, eliminating the parameter term a depends on whether a = b or a f b in the

call. Intuitively, a = b is a poor choice, since b is the block we are trying to clear in

the first place. a should be some block on top of b. However, HELPS doesn't know

this a priori, so it must consider both cases. When a = b, every occurrence of a can

be replaced with b. In this case, Vx : {a} -i(on x b) is trivially true, since its meaning

is for all x not equal to b in the set {a}, -,(on x b). Since there are no such x, the V

quantification is trivially true. G' = Vx -(on x b) A (F V T) = Vx -,(on x b). In the

case where a f b, G' = Vx -,(on x b) A ((on a b) V -'(on a b)) = Vx --(on x b). This

statement means for all x not equal to a, -,(on x b).

The action-transformed goal conditions must now be combined with the action's

precondition, Equation 5.1. With the set conditions removed, this precondition is

156

Vx -,(on x a). The precondition must incorporate the goal free variable b. If a = b,

the precondition is Vx -(on x b). If a 5 b, the precondition with b broken out is

Vx -(on x a) A --,(on b a). At this point, there are two new open goals, depending

on whether a = b or not. They are G' = Vx -(on x b) and G' = Vx -(on x a) A

--,(on b a) A Vx-1(on x b). Any a # b that satisfies this second condition can be used

to make the goal true. Hence, to finally eliminate a, we add an existential quantifier

to the front of G',

3a Vx -(on x a)

A -,(on ba)

A Vx-1(on x b)

Thus, there are now two action calls that can be used. One where a = b, and

the other one where a is the term such that G'2(a) holds. If both of these new goals

seemed like plausible paths, then we would create an if-then-else statement with two

calls. It would be:

if Vx --,(on x b) then

(moveTable b)

else

(moveTable a) : (G' a)

The new open goal would be G'VBa G'(a). However, since Vx --'(on x b) is the same

as the original goal condition, HELPS automatically prunes this path and returns

the more interesting single (moveTable a) call with the open condition 3a G2(a).

Intuitively, this search direction means that to clear a block b, one must clear b of all

but one block.

As this example shows, dealing with free variables in the goal in combination

157

with an action's parameters can be tricky. Mapping action postconditions is one of

the cases where equality between terms must be considered. However, the different

equality mappings can be dealt with in a straightforward and consistent way. It

shows the robustness of the quantified formula representation, and the simplicity of

assuming that all terms are not equal to each other by default.

When considering a primitive action, the call mapper always ensures that the

action does something to reduce the goal. If the goal is passed through to become an

open goal of the new partial program, the action was considered to be ineffective, and

the new partial program is thrown out. Furthermore, the action must accomplish

something to reduce the final sub-goal if the current partial program has one. In

this way, the final sub-goal of a partial program serves to focus the attention of the

program search only on those actions that could make a difference to that sub-goal.

The transformed program has the old starting conditions and the new open goal.

The existing partial program produces its solution program from the solution of the

transformed program by appending the action call in a sequence. That is, p(A) =

Ap'(');(Action Call).

To summarize, the call mapper takes the goal and final sub-goal of an existing

partial program, and it tries to apply a primitive action to reduce this goal in some

way. The reduced goal, in combination with the precondition of the action then

become the next partial programs that are added to the search queue.

Introducing an if-then condition

For solving any partial program V, one can always assume that the open goal G(O)

is false at the beginning of execution. If the open goal were true, there is no need

to execute any actions, and execution can stop immediately. Thus, a simple partial

program transformation is to introduce the negation of the goal as an additional

starting condition. The solution from the new partial program is then wrapped with

an if-then statement with -G as the if-then condition.

For example, consider the goal G = Vx -,(on x b) with the start formula S. If

S :# Vx -,(on x b), then the transformed start condition is S' = 3x (on x b) A S. The

158

new partial program has start formula S'and goal G. If the current partial program

has no start formula, only starting examples w, each example w is tested on G. If

some of the examples satisfy G, a new partial program i' is created consisting only

of those examples not satisfying G.

The existing partial program produces its output solution from the new partial

program solution by wrapping an if statement around it. /i(o) = if -G then p'(0').

Introducing a final sub-goal

As mentioned previously, a final sub-goal serves to focus the attention of the program

search. When a partial program 4 has a final sub-goal FG, any action hypothesized

for the end of p(O) must make some progress against FG. So, if a partial program

V has a goal G = Gi A ... A Gk and no final sub-goals, then each example is tested

to see which goals Gi can be final sub-goals in their minimum plans. If there is one

conjunct Gi that is a final sub-goal for all examples, then this becomes the next

partial program, denoted G1 A ... A Gk; Gi.

On the other hand, if different samples have different final sub-goals, then a branch

or fork is introduced. For example, imagine if samples {wk1} had final sub-goal Gi

and samples {wmj } had final sub-goal GC. In this case, two sub-problems are created,

0' and 04. Gi A... A Gk; Gi with sub-goal G2 is the goal for V' with samples {wk } as

the given. G1 A ... A Gk; GC with sub-goal Gj is the goal for 5' with samples {wkj}as

the given. Note that introducing a fork produces two sub-problems with only samples

and no starting formulas. HELPS produces solutions to the two sub-problems that

solve the examples, but the solutions cannot be proven until the fork is closed back

up again.

Let pt be the solution to 4' with pre-condition 0' (that is, all the examples in 44
satisfy 0' and are solved by p') and /p be the solution to 04 with pre-condition 0•.

The resulting program is

159

p = if 0' then

else

if 0' then

A'2

The pre-condition for 0 is 0 = 0' V 0'. The output for more than two cases is

analagous.

Introducing and closing a branch

Branches can also be introduced if the goal or final sub-goal of a partial program is a

disjunction of the form G1 V ... V G, or G; (G1 V ... V G,,) respectively. In this case,

each sample is tested to see which goals Gi can be satisfied in the minimal sized plan.

If there is one goal Gi that all samples can satisfy, then the next partial program is

Gi or G A Gi respectively.

However, if different samples satisfy different Gi's in their minimal plans, then a

branch is introduced. The process is exactly analogous to the case when different

samples seek different final sub-goals when the goal is a conjunction. For example,

the sample set may be split into two groups {wk,) and {wk•) for two disjuncts Gi and

Gj which are part of the final sub-goal for the larger problem G; G1 V ... V G,. These

are put into two partial program problems 0i = ({wk~), GA Gi) and V$ = ({wkj), G A

Gj). If these two problems are solved with programs and pre-conditions '4 C ,0'f,O

respectively, then the program solution p for b is, just like with the branched final

sub-goal:

160

/' = if 0' then

I

else

if 0' then

The pre-condition is 0 = 0 v 0V .

Introducing and closing out a free term

Free terms are broken out whenever the goal or the final sub-goal is of the form

AtLeast(n) x O(x). An example such formula is 3x O(x). In this case, each object tij of

each sample wi is considered. If 0(t) can be solved by the minimum plan length, then t

is a candidate for being broken out. A candidate object ti is produced for each sample

wi. Then, a fresh term f is created and substituted into each sample, producing

w(= wi[tilf]. These samples lead to the next partial program V' = ({wi}, O(f)). If

3x O(x) is only a final sub-goal, where the goal is G = O A 3x O(x), then f must be

broken out of O, a process described in Section 2.3.

Let 1' and 0' be the program solutions and pre-conditions respectively for V'.

Then, the solution for 0 is:

= let f = f.O'(f)

The pre-condition 0 = 3f O'(f)

161

Introducing a loop

Loops are the most complex structural element to construct and reason about. A loop

is created to solve a goal or a final sub-goal with an AllBut quantification, usually

V. A sub-problem is created to fix each term not satisfying the quantification one by

one. The solution to this sub-problem becomes the body of the produced loop. More

preceisely, let the final sub-goal FG(O) = AllBut(m) x O(x) and G(O) = FG(b) A

OG(4). If there is no final sub-goal, OG(O) = T. HELPS creates an environment

with a new set partition of two sets A and B. A = x : O(x). B = x : -¢(x). The

new partial program has the goal G'(/') = Vxz: A O(x) A 3x: B O(x). That is, the

sub-program must find one term x in B for which it can reverse the value of O(x). At

the same time, the sub-program must not back-slide, so it must maintain that every

term in A continues to satisfy O(x). There are additional constraints to make sure

that OG(O) is true after the program as well.

Like branches and term introductions, loop body programs have no start formulas,

only examples which an output program must solve. The example problems w' for

O'come from the example problems wj of V). Each example plan is examined. Consider

a single plan pj with action sequence aj,1,..., aj, and intermediate state sequence

wj,0 ,..., wjp, w = w0. At time 0, there are a certain number of terms Xl,..., Xk which

satisfy --n(xi). At time n, at most m terms do. The example plan is analyzed to find

those times ti where a particular term xi changes from -'¢(xi) to q(xi) and continues

to satisfy q(xi) at all future times where a further i+l,... ZXk-m change from n-(x)

to O(x).

In this way, a list of example plans is created aj,t-_l+l,..., aj,t, with the example

sequences wj,ti_l,... ,j,tA. So, the example set for O'consists of {wj,t,_,} with the

goal G'(O') = Vx : A (x) A 3x : B O(x) A (OG(O) V 3x : B -0(x)). The examples

are augmented with the set partition {A, B}. That is, every every term x in every

example wj,t,_l is marked (A x) or (B x) depending on whether O(x) or -10(x). From

the perspective of 4',A and B are considered to be ordinary sets without any specific

meaning. The goal is defined in terms of A amd B, all of the examples are labeled A

162

and B, and that is all that 4' knows.

If the partial program produces an output program p'(i'), it is incorporated into

p(O) in the following way:

p(O) = while -nG(0)

let A = x : O(x), B = x : -i(x) in

Since ,' does not have a starting formula, only initial examples, it has no way of

knowing if it has found a correct program. All it can know is if its program solves

all of the examples or not. If its program does solve all examples, it potentially has

an effective loop body to be used in the wider loop, which in turn hopefully solves a

major part of the original goal of 4, G(0).

Jumping out of a loop

When a loop body is hypothesized as finished, the outer partial program must de-

termine what the loop, as a whole, accomplishes. Let the outer partial program be

0 and let the loop body partial program be 4'. The completed 0' has an open pre-

condition Go. This open precondition is satisfied by the examples of 4', but more

analysis is needed to determine a new precondition open goal G such that if €can

show a program ft that produces G, then f ; while -G(0) p'(4') is a program that

produces G(4).

Specifically, GO cannot necessarily serve as the precondition of the loop. Since

Gois the open goal for the loop body program, it must hold for every iteration of

the loop. So, it is not enough to ensure that Go holds before the first iteration. It

must hold every time the loop comes around. This is illustrated in Figure 5-11. The

problem is to find G such that GOV G(0) holds at each iteration. This is the problem

of finding a loop invariant. In general, this is a difficult logical problem without a

simple, algorithmic solution. HELPS makes various assumptions and approximations

163

while (-G){
Go .

Loop body
GovG --

Figure 5-11: Loop invariants must hold at the beginning and end of every loop.

to make the invariant finding possible.

A critical module in finding the loop invariant is the change manager. This routine

can propagate a quantified formula 9 forward and backward through a program p. We

denote T(p, 0) to be the forward formula and T-l(p, 9) to be the backward formula.

The forward propagation means that for any world w, if O(w) holds at a particular

time, and p is applied to w, then T((p, 9) holds on p(w). Backward propagation means

that for any world w satisfying _-1(p, 0), p(w) satisfies 9. 7-1(p, 9) is the formula

that must hold on w for 9 to hold when pis applied to w.

Now, the problem of finding a loop invariant can be stated as: find I such that

I =- T7-(p', I) A (Go V G()). Such an I either satisfies G' or G(Q9) at the beginning

of the loop. Furthermore, since it implies 7-1 (p' , I), we know that I holds after p'

is run. Therefore, I satisfies Go or G(O) at every iteration of the loop. Thus, I is

our candidate for 0. the goal of the loop invariant finder is to find the minimally

sufficient I satisfying the above implication.

The change manager module and the loop invariant finder are discussed in the

following section. They produce the open goal 0 of the pre-loop partial program 0.

0 satisfies G = T(-1(p', G) A (Go V G(O)). The starting conditions (examples and

potential formula) for ' are the same as the starting conditions for '9. If < produces

a solution program p, then the solution program for 4' is:

164

while -nG(4')

let A = x.¢(x), B = x.-'¢(x) in

Finishing the program

At some point in the program search, the initial partial program will have all of its

initial examples solved. The current partial program 0 will have the initial start

formula S and an open goal G, where every initial example satisfies G. At this point,

HELPS uses theorem proving to try to show that S •= G. It first deep simplifies C

given S. Then, it attempts to prove the deep simplified G by an abstract induction

counterexample search, described in Section 3.3.8. If the proof succeeds, then the

program search is complete. The solution for 4 is the empty program ; . This

solution is propagated downward through the chain of partial programs that led to 4.

The program produced at the end of this chain p is the output of HELPS, and this

program provably satisfies its spec. An example will now be shown to demonstrate

how the search elements work together.

5.4.3 Example: Clearing a Block

This example will show the program search for one of the simplest BlocksWorld

programs. Given a block b, remove all of the blocks on top of b. There is one action

available, moveTable, which has the precondition and outcome desribed in Equations

5.1 and 5.2. The goal G is Vx -(on x b). The starting formula S is Equation 5.3. The

BlocksWorld start formula consists of a set of rules that are always true no matter

which actions are run. Therefore, at every step, we can always assume S.

HELPS does not depend on the start formula being always true. Before it starts

searching, it propagates the start formula through every available action to try to

165

discover which parts of the start formula are universal rules. The algorithm to do

this is part of the loop invariant finder and will be described in that section.

The initial partial program b0 = (S, G) with examples {wo,i generated from S.

The next partial program is produced by negating the goal G- and adding it to

the start formula. This produces Vr) = (S A -1G, G) and new examples {wl,,} are

generated for this new starting formula. The next step introduces a loop to solve

Vx -,(on x b). It creates a set partition C = x.-1(on x b). D = x.(on x b). The

new goal, G2 = Vx : C --(on x b) A 3x : D --,(on x b). C and D satisfy their initial

definitions at the beginning of the loop body, but their meaning is unknown as soon

as the first action is executed. For partial program inside the loop body, C and D

are just ordinary sets. The next partial program z2 = ({w2, }, G2). The examples are

solution plan states that are determined to be at the beginning of the loop body, as

described above.

Since G2 is a conjunction, a final sub-goal is created to focus attention on one

of the conjuncts. The next partial program is ' 3 = ({w 2,i}, G2; 3x : D -,(on x b)).

Making an element of D not on b is the final sub-goal. In the next step, the moveTable

action is considered as a way to make progress on the final sub-goal 3x : B --(on x b).

moveTable has one parameter term a and two set parameter terms A and B with

A = x.(on a x) and B = x.--,(on a x). The outcome of moveTable is Vx : A -'(on a x).

To make progress on the final sub-goal, it must be that a E D and b E A. The new

goal condition is then Vx : C --(on x b) A (D a) A (A b) = Vx : C --,(on x b) A (D a) A

(on a b). This is combined with the moveTable pre-condition Vx -,(on x a) A-(on b a).

Combining the pre-condition with the goal condition produces the new open goal:

G3 = Vz : C -(on x b) A

3a : D Vx -(on x a)

A -,(on b a)

A (on ab)

166

The next partial program is 04 = ({w 2,i}, G3). The open goal for this partial

program G3 is satisfied by all of the examples. Thus, HELPS hypothesizes that the

loop is complete. Now, it tries to find a loop invariant for the hypothesized loop body

Ap3. The formula G3 has the sets C and D instantiated according to their pre-loop-

body definitions. We can do this, because G3 is the formula that must be true at the

beginning of each loop iteration. G3 with C and D taken out is:

G4= 3a Vx-z(on x a) A -(on b a) A (on a b)

The loop invariant module seeks a formula G5 such that G5 =: T'- (A3, G5) A (G4 V

Vx --(on x b)). This circumstance is actually a special case that does not require com-

puting T-1 . HELPS discovers that S =t G4 V Vx -i(on x b) using deep simplification

and the abstract induction theorem prover. Thus, G5 = G4 VVx --(on x b). This leads

to the last partial program 0 5 = (S A -1G, G4 V Vx -(on x b)). This partial program

is hypothesized to be complete, because its precondition is solved by all examples.

S =* G5 is then confirmed by the theorem provers. Now, the program is complete,

and it is constructed from the individual nodes.

A'0(k4)

A(02) = (moveTable a) : (D a) A Vx -i(on x a) A -(on b a) A (on a b)

p(01) = while 3x (on x b)

let C = x : -(on x b), D = x : (on x b)

p•(Po) = if 3x (on x b) then

The outer if statement on p(oo) is spurious, but it does no harm. This is the final

167

program. It is provably correct and generated fully autonomously.

5.4.4 Change Propagation

Reasoning about the changes to quantified formulas as they are passed through actions

is a critical necessity for HELPS. It is handled by the Change Manager module.

Dealing with all of the side-effects and changes is a classical problem in reasoning

about plans and programs in situation calculus. It is called the frame problem. In

HELPS, due to the precise restrictions placed on parameters and quantified formulas,

dealing with change is complicated, yet logical and deterministic.

This section will first show how a quantified formula can be propagated forward

and backward through an action. The next sub-section will show how the formula

can be propagated backward through a full program with if-then statements and

loops. HELPS needs to do forward propagation when it looks for universal rules at

the beginning of the synthesis. Thus, it only needs to consider forward propagation

through a single action. Backward propagation is an essential component of loop

invariant finding, so a backward propagation algorithm through all program types

is needed. To illustrate change propagation, a simple example will be considered:

propagating the formula 3x (on x b) through the moveTable action.

Propagating Through Actions

Change propagation operates recursively over a goal formula. First, the outcome of

an action is represented as a list of changed set relations. In the case of moveTable,

the changed relation is --(on {a} A). a is the object being moved to the table,

and A is the set of objects under a prior to the action. K(a, 4) denotes the forward

change propagation function for action a and quantified formula ¢. r,-l(a, 0) denotes

the backward change propagation. i(a, .), the action change manager, is different

from T(1, .), the program change manager. Specifically, i(a,.) and -l'(a, .) contain

references to the parameters of a, while T(p, ¢) contains only the sets and terms of

168

rI will now be analyzed in detail. The following basic boolean rules hold:

z(a, 01 A 42) = ,(a, 01) A (, 2)

(a, 1 V 02) = K v 01) V K(a, 2)

-l(a , 1 A 2) = --1(a , 1) A -1(a, 2)

K- (a, 1 V 02) = v-1(a, q1) V i-(a, 02)

The interesting case is when /is a quantification Qx : C O(x) for some set C. The

change manager considers all of the leaf relations of O(x), Each leaf relation OL has a

set relation made by replacing the variables of OL with the sets of the quantifications

from which those free variables came. For example, consider the quantification 3x :

D (on x b). b, as a free variable is constrained by no set. Its set is the ALL set,

denoted {*}. x has the set D. (on x b) is changed when x E {a} and b E A. Since

one can't know whether b E A or b ý A, the change manager considers both cases as

in 3x : D (onx b)A -(Ab) V 3x : D (onx b)A(Ab). When b A, (onx b) is

not affected, and i(ao, 3x : D (on x b) A -,(A b)) = 3x : D (on x b) A -"(A b). On the

other hand, when b E A, the formula 3x : D (on x b) A (A b) must be re-written as

(3x : D {a} (on x b) V 3x : D n -1{a} (on x b)) A (A b). Either x e {a} or x V {a},

so D is partitioned into D n {a} and D n -"{a}. The 3 quantification is broken up

over this partition in the way described in Section 2.3.

Now, when x E {a} and b E A, (on x b) is true before the action is run and it

is false after the action. So, K(a, 3x : D {a} (on x b)) = :x : Df {a} f -(on x b).

And -'(32x : D n {a} (on x b), a) = 3 : D n {a} F = F. For comparison 3x:

Dn f {a} -(on x b), propagated backward, would be

K-'(a, 3x : D n {a} -'(on x b) A (A b)) = 3x : Dn {a} T = (Exists D n {a})

In general, for a relation R, we denote R C RQ when the sets of the variables of

169

R are all subsets of a change relation R,. When R C Ro, then r'-1(a, R) = T, trivial

true. n(a, R) = F, trivial false, since there is no way that R can hold true before the

action is run. If (- R) C R,, then ,-l(a, R) = F, and i(a, R) = -R. Otherwise,

K-1(R, a) = R and ,(R, a) = R. For the sake of symmetry when (-iR) C R,, we

set r(a, R) = T. This is justified, because we append the outcome of a to ,(a, 0) at

the top level and thus avoid losing information. KTOP(a, q) = 0(a,) A aOUT. For

moveTable, aOUT = VX : A -(on a x).

Putting these rules together for the example, kand -lcome out to:

(,(a, Ez D (on x b)) = -(A b) A Vx: A -(on a x) A 3 : D (on x b)

V (A b) AVx : A (-(on a x) A (on a b)) A

(3x : Dn - {a} (on x b)) V (Exists D n {a})

K-'(a, x : D (on x b)) = x : D (on x b) A -(A b)

v ((3 : D n i{a} (on x b)) A (A b))

Propagating Backward Through Programs

r can model the effects of actions on quantified formulas, but it must leave the

parameter terms and parameter sets in the results, because it does not know how

these parameters will be instantiated. When a formula is propagated through a

program, the output must not have action parameters. However, when a formula is

propagated backward through 7- - 1, it is easy to eliminate these parameters, and so it

is possible to compute 7-1 for all program types.

First, 7-- will be shown for action calls, p = a(a, ... , ak). In this case, T-I(p, ¢)

begins with r-1 (a, 0). Since the parameters of a are defined before the action is

called, these parameter definitions can be plugged into n-l(a, ¢). The set parameters

can be plugged in directly. A parameter term a is defined as some arbitrary term

satisfying a quantified formula 6(a). a can be eliminated from a quantified formula

-y(a) with the following equation.

170

Elim = Va ---a(a) V '(a)

In words, if -y(a) is the formula that must hold on a state w so that q holds on a(w),

then any a E w that satisfies the a definition 6(a) must satisfy 'y(a). 9YElim reflects

this requirement. Another detail concerns free variables of 0. All of the possible ways

parameter terms could equal free variables must be considered and joined together in

a disjunction.

Consider ¢ = 3x : D (on x b) propagated backward through p = (moveTable a),where

a is defined by (D a) A Vx -(on x a) A (on a b). Because of this precondition, a f b,

the free variable. Applying the rules and simplifying,

7•'(p, u) = Va : D (3x (on x a) V -(on a b) V 3x : D (on x b))

This means that for all a E D, if Vx --(on x a) and (on a b), then there exists

x E D with x ý a such that (on x b). In other words, for 3x : D (on x b) to hold

after a moveTable call, before the moveTable call, there must exist two objects in D

that are on b.

Propagating backward through if-then statements is straightforward. Let p=

if -y then pl else p2. Then T`-l(, 0) = - A A-'l(pl, q) V -•y A T-1 (p2,).*

Propagating backward through a loop is closely related to finding a loop invariant.

In fact, the two procedures must call each other recursively. Let p = while(-') pl. Let

A(pl, ¢V7y) denote the loop invariant for the loop on formula ¢V-y. That is, A(pL, OV9Y)

is a quantified formula such that A(pl, ¢ V -) =- T- 1 ((p1, A(pI , V -y)) A (V 'y). Thus,

we immediately define T 1-(p, ¢) = A(pi, ¢ V 7). At the end of the loop body, either -y

holds, which means that the loop will be iterated one more time. Or, 0 holds. Thus,

the equation guarantees that 0 holds after the loop has run.

Propagating backward through a let environment is another straightforward pro-

cess. For example, imagine a let consists of a set partition of two sets A = x.O(x) and

B = x.-0(x).

171

p = let A = x.O(x), B = x.-9(x)

First the formula ¢ is broken out over the set partition {A, B} in the way described

in Section 2.3. Then, the broken out 0, labeled 0', is propagated backward through

p', T-1 (p,, ¢'). Then, the sets A and B are eliminated by substituting their definitions

into T- 1 (/', ').

Finding Universal Rules

The last use of change management is the finding of universal rules that can be

assumed at any time. For example, in BlocksWorld, the rules that hold at the start

(VxVy -(on x y) V -(on y x),etc) hold true no matter what actions are performed.

For a formula ¢, HELPS runs n(a, q). Then, it eliminates the parameters by finding

the strongest common formula that holds for each parameter partition element. For

example, consider ¢ = VxVy -(on x y) V -(on y x) run through the moveTable action.

r, breaks up 0 according to the moveTable parameter partition {{a}, A, B},where

A = x: (on a x) and B = x: -(on a x).

: {a} Vy : A -(on x y)

: {a} y : B -(on x y)
: A Vy: {a} -(on x y)

V -(on y x)

V -1(on y x)

V --(on y x)

Vx : A Vy: A -'(on x y) V -(on y x)

Vx : A Vy :

Vx : B Vy :

Vx : B Vy :

Vx : B Vy :

B -(on x y) V -(on y x)

{a} -(on x y) V -(on y x)

A -(on x y) V -,(on y x)

B -(on x y) V -(on y x)

172

=- VzV

A Vx

A Vx

Then,

(a, ¢) = Vx: {a} Vy : A -(on y x) A (on x y)
A Vx : {a} Vy : B (on x y) V -(on y x)

A Vx : A Vy : {a} (on x y) A (on y x)

A Vx: A Vy: A -(on x y) V (on y x)

A Vx: A Vy: B -n(on x y) V (on y x)

A Vx: B Vy : {a}l (on z y) V -(on y x)

A Vx: B Vy: A -(on x y) V (on y x)

A Vx: B Vy: B --(on x y) V -(on y x)

Only the occasions when x E {a} and y E A or x E A and y E {a} are affected.

When x E {a} and y E A, (on x y) is initially True, so --(on y x) must be True at the

start and it remains True through the action. Meanwhile, -(on x y) is set to True as

(on x y) is set to False. Nevertheless, the strongest inner formula among all partition

elements is -'(on x y)V--(on y x). Thus, rIElim(, q) = VxVy --(on x y)V--(on y x) = q.

To determine the universal rules, HELPS takes the starting formula S. It initially

sets u = S. It repeats the action u = rIElim(a, u) V u until KElim(a, U) => U. U is

then looped through every action so that KEvli,(,a, u) =* u for every available action

a. The resulting u is the universal rule.

5.4.5 Finding Loop Invariants

The last major HELPS module to be examined is the loop invariant finder. Consider

the loop p = while -y p1. As discussed before, given a formula 0 that must hold at

the beginning and end of every loop body, the loop invariant finder finds A(Q, I, ,)
such that A(y, pl,) =4 (V ---y) A T- 1(piI, A(y, pu1,)).

The loop invariant finder works by beginning with A0 = V "-y and iteratively

strengthening A until A' A u = T(-l(pl, A'), where u is the universal rule discussed

173

above. At each iteration, the invariant finder tries to prove Ai A u => -1T(pi, Ai).

It first tries to generate example worlds satisfying A A u A AA-1 (pl, A). If this fails,

it attempts a full-scale proof using deep simplification and abstract induction. The

theorem prover either returns success, or it returns a counterexample. So, at each

iteration i the invariant finder has a set of all of the counter-examples {v} seen so

far. It then constructs a formula c so that no counter-example v satisfies c. c(v) = F.

At the next iteration, Ai+l = A' A c, so a new counter-example must be found, or A' is

the returned loop invariant.

To construct c, the invariant finder merges the counter-examples into the simplest,

strongest formula, CSAT that satisfies each counter-example w. c is the negation of

this formula. c = -'CSAT. As an example, consider q = 3a Vx -(on x a) and pl =

(moveTable a). Imagine there was no universal rule, so u = T. In this case, initially,

A = 4. The first counter-example found is the world {x, y}: (on x y), (on y x)}. In

this case, CSAT = 3x3y (on x y) A (on y x), so c = VxVy -(on x y) V -(on y x), the

antisymmetric property of on. The next counter-example found is

{ x, y, z : {(on x y), (on y z), (on z x), -(on y x), -i(on z y), - (on x z)}

The counter-example to negate this is VxVyVz --,(on x y) V -(on y z) V -(on z x) V

(on y x) V (on z y) V (on x z). When this is simplified with respect to the previous

anti-symmetry counter-example formula, it becomes VxVyVz -'(on x y) V -(on y z) V

-(on z x). The next counter-example is { (x, y, z, w) : { (on x y), (on y z), (on z w), (on w x)}.

If we continue in the manner we have previously, we could be producing counter-

examples forever: all on loops of size n, as shown in Figure 5-12. To avoid this

circumstance, the invariant finder also has recourse to a set of positive examples,

namely the sample instances at the beginning and end of loops.

The positive examples are used to strengthen c such that c(v) = F for all counter-

examples v, but such that c(w) = T for all positive examples w. The invariant

finder looks for patterns in the counter-examples that are absent in the positive ex-

amples. In this way, for the example 0 = 3aVx-z(on x a), the transitivity formula

174

6

0S0

Figure 5-12: A too narrow loop invariant search can yield a never-ending set of
counter-examples, like these on loops

VxVyVz -(on x y) V -(on y z) V (on x z) is produced, which is satisfied by all of the

positive examples w and none of the negative examples v.

With the anti-symmetry axiom and the transitive axiom, the formula A is finally

invariant when passed through the program moveTable.

A = 3aVx -(on x a)

A VxVy -(on x y) V -(on y x)

A VxVyVz -(on x y) V -(on y z) V (on x z)

In summary, counterexamples are used to make formulas that outlaw precisely the

configuration of terms that cause problems with proving the invariant condition. The

invariant is repeatedly strengthened until no more counterexamples can be found and

(0 V -1) A c = Tr-(pl, (0 V --•y) A c. (0 V --y) A c is the returned loop invariant.

5.5 Results and Discussion

5.5.1 Introduction

To test HELPS and guide its development, I have sought to synthesize a variety of
generalizations of classic AI problems. There are seven problems in total, descirbed

175

'-5:
~~I~~

;i

isi

- '-'

-- ··

earlier in Section 5.3:

* Clearing a block

* Moving one block onto another

* Moving one block directly onto another

* Putting all blocks into a tower

* Setting a row of switches

* Moving a block into position with a robot arm

* Moving a cursor to a destination over a two-dimensional grid

While the problems are simple to specify, they have proven to be quite difficult to

synthesize. The main difficulties are time complexity and never-ending search. Time

complexity is an issue that has only been partially resolved. Some of these exercises

take hours to finish, and others take days. Problems such as moving a block with

an arm have a very large number of cases, and there need to be examples of each

case. Otherwise, a program is produced with too narrow pre-conditions. When these

pre-conditions are falsified with counter-examples, the whole search must begin again.

The more examples used, the slower the system gets, because it must do SATPlan for

every example on each iteration of the search. The example problems often require

more rounds of counter-examples than I first assumed. HELPS splits into branches

for conjunctions and disjunctions. Once a branch is made, the program synthesis

proceeds independently for each branch. Because of this, HELPS tends to need

examples of nearly every scenario. The lack of generalization across branches is a

considerable problem that needs to be addressed in later versions.

The other problem is program length. The more complex a solution program is,

the more complex the pre-condition produced at each iteration. Long formulas are

considerably more difficult for HELPS to reason about than short ones: deciding sub-

goals, proving theorems, propagating backward through loops and actions, etc. For

176

this reason, the recent version of HELPS aggressively seeks to simplify partial pro-

gram pre-conditions by strengthening them. It strengthens formulas by eliminating

components of disjunctions in the formula tree. A strengthened formula is hypothe-

sized as adequate if it is satisfied by the end states of all of the example plans for a

given partial program.

Strengthened formulas are essential to keep formula sizes from blowing up in the

course of a long search. However, the consequence of formula strengthening is that

programs are produced with pre-conditions that narrowly satisfy the particular set

of examples that were generated. Thus, HELPS needs to generate more rounds of

counter-examples, leading to longer synthesis times.

Even worse than time complexity is the possibility of a never-ending search. Such

a search can arise in a variety of ways. It is a natural consequence of working in a

high order of logic. Certain partial programs can imply a never-ending sequence of

actions. For example, to clear a block a, one must first clear the block directly above

a, then move a to the table. HELPS cannot reason about such recursions or prove

their termination, so it may produce a never-ending sequence of moveTable's. The

lack of reasoning about recursion, and program modularity in general, is a weakness

of HELPS that will be addressed in future versions.

Despite these caveats, HELPS can produce programs with a surprising degree of

complexity, able to handle a wide variety of input cases. Additionally, the abstract

induction theorem prover is often presented with considerably complex theorems to

prove in validating a finished program or proving a loop invariant. It has held up

in every case thus far, validating the generality of the technique. Certain theorems

sometimes take hours to prove, but no theorem has yet been presented that did not

terminate. The next sections will examine the BlocksWorld exercise problems in

detail.

5.5.2 Clearing a block

Clearing a block is the simplest program to synthesize. There is really only one

general case for this problem, and, in the test run, HELPS did not need to get any

177

more rounds of examples. The first hypothesized program was the correct one.

The start formula S is the BlocksWorld formula:

VxVy (on x y) = --(on y x)

A VxVyVz ((on x y) A (on y z)) • (on x z)

A VxVyVz ((on x z) A (on y z)) (on x y) V (on y x)

A VxVyVz ((on z z) A (on z y)) (on x y) V (on y x)

S has the free object b broken out of this formula. For example, VxVy (on x y) =

-'(on y x) becomes:

VxVy (on x y) => -,(on y x)

A Vy (on b y) = --,(on y b)

A Vx (on x b) = -(on b x)

The goal is Vx-(on x b). As developed in the architecture section, the solution,

found after only 6 steps is:

if 3x (on x b)

while 3x (on x b)

let E = x.-(on x b), D = x.(on x b)

lety=yED. Vz: E (onzb) A --,(on b y) A Vz- (on z y)

(moveTable y);

178

5.5.3 Moving one block onto another

The next BlocksWorld task is, given c and d, to place c onto d. There may be

intervening blocks between c and d. The start formula is the same BlocksWorld

condition S with the free terms c and d broken out of it. The goal G is (on c d).

This problem has a surprising amount of complexity. For example d can be on c. It

may be directly on c, or there may be intervening blocks between d and c. d may be

clear, or there may be other blocks on top of d. Getting the program right in this case

took 20 examples, which is three rounds of counter-examples. As with many of the

following examples, this program seems incredibly long compared to the program one

would write by hand. First, most of the following program is if-then conditions and

while conditions. This represents the splitting into various cases, and it typically is

the explicit pre-condition to that part of the program. Also, the program divides into

many cases that each do similar things. A human programmer would recognize the

ability to consolidate these sub-programs, but HELPS does not do so at the moment.

The cases have been commented for easy understanding.

Since the solution is complicated, it will be written directly in the list format that

HELPS outputs instead of mathematical notation:

if !(on c d) {

// if something is on c or d

if (Or (Exists z (on z c))

(on c d)

(on d c)

(And (Or (Exists z (And (on d z) (on c z)))

(Exists z (on z d)))

(All y (Or !(on y d)

(Exists z (And (on y z) (on c z)))

(on d y)

(Exists z (on z y))

(on c y))))) {

// if d is either not on c or not directly on c

if (And ! (on c d)

(Or (And (All z !(on z c))

179

!(on d c)

(Or (And (All z (Or !(on d z) !(on c z)))

(All z !(on z d)))

(Exists y (And (on y d)

(All z (Or !(on y z) !(on c z)))

!(on d y)

(All z !(on z y))

!(on c y)))))
(Exists #1610 (And (on #1610 c) !(on c #1610) !(on d #1610)

(All y !(on y #1610))))

(And (on d c) (All y !(on y d))))) {

while (Or (Exists z (on z c))

(on c d) (on d c)

(And (Or (Exists z (And (on d z) (on c z)))

(Exists z (on z d)))

(All y (Or !(on y d) (Exists z (And (on y z) (on c z)))

(on d y) (Exists z (on z y)) (on c y))))) {

let (M=z !(on z c), L=z (on z c)) {

// if something is on c which is clear

if (And (All y:M !(on y c)) !(on c d)

(Exists #1610:L (And (on #1610 c) !(on c #1610)

!(on d #1610)

(All y !(on y #1610))))) {

let (#1610=#1610:L (And (All y:M !(on y c)) !(on c d)

(on #1610 c) !(on c #1610)

!(on d #1610) (All y !(on y #1610)))) {

(moveTable #1610);

// if something is on c that is clear and d is not on c

elseif (And (All y:M !(on y c))

!(on c d)

!(on d c)

(Or (And (All z (Or !(on d z) !(on c z)))

(All x !(on x d))

(Exists #1135:L (And (on #1135 c)

180

!(on d #1135)

!(on c #1135)

(All y !(on y #1135)))))

(And (Exists a (And (on a d)

(All y (Or !(on a y)

!(on c y)))

!(on d a)

(All z !(on z a))

!(on c a)))

(Exists #1135:L (And (on #1135 c)

!(on #1135 d)

!(on d #1135)

!(on c #1135)

(All y !(on y

let (#1135=#1135:L (And (All

!(on

(Or

#1135))))))) {

Sx:M !(on x c))

i c d) !(on d c)

(And (All x (Or !(on d x)

!(on c x)))

(All x !(on x d)))

(Exists a (And (on a d)

(All x (Or !(on a x)

!(on c x)))

!(on d a)

(All z !(on z a))

!(on c a))))

(on #1135 c) !(on #1135 d)

!(on d #1135) !(on c #1135)

(All y !(on y #1135)))) {

(moveTable #1135 K L);

}

// something is on d and c that is clear and d is on c

elseif (And (All y:M !(on y c))

!(on c d)

(Or (And (All z (Or !(on d z) !(on c z)))

(Exists #1374:L (And (All x !(on x d))

181

(on #1374 c)

(on #1374 d)

!(on d #1374)

!(on c #1374)

(All y !(on y #1374)))))

(And (Exists a (And (on a d)

let (#1374=#1374:L

(All y (Or !(on a y)

!(on c y)))

!(on d a) (All z !(on z a))

!(on c a)))

(Exists #1374:L (And (on #1374 c)

(on #1374 d)

!(on d #1374)

!(on c #1374)

(All y !(on y #1374))

(And (All x:M !(on x c)) !(on c d)

(Or (And (All x (Or !(on d x)

!(on c x)))

(All x !(on x d)))

(Exists a (And (on a d)

(All x (Or !(on a

!(on c x)))

!(on d a)

(All z !(on z a))

!(on c a))))

(on #1374 c) (on #1374 d) !(on d #1374)

!(on c #1374)

(All y !(on y #1374)))) {

(moveTable #1374);

}

// if d is on c and d is clear

elseif (And (All y:M !(on y c)) !(on c d) (on d c)

(All y !(on y d))) {

(moveTable d);

}

182

))))) {

x)

}

// if d is directly on c

elseif (And !(on c d) (on d c)

(Or (And (All y !(on y c))

(All y !(on y d)))

(Exists #896 (And (on #896 c) (on #896 d) !(on d #896)

!(on c #896)

(All y !(on y #896)))))

(All #24698 (Or !(on d #24698) (on c #24698) (on #24698 d)

!(on #24698 c)

(All #24697 (Or (on d #24697) (on c #24697)

(on #24698 #24697)

!(on #24697 d) !(on #24697 c)

!(on #24697 #24698)))))) {

// if d is not clear

if (Or (Exists y (on y c)) (on c d) !(on d c) (Exists y (on y d))) {

while (Or (Exists y (on y c)) (on c d) !(on d c) (Exists y (on y d))) {

let (F=y (on y c), G=y !(on y c)) {

// if there is a block on d and c that is clear

if (And (All y:G !(on y c)) !(on c d) (on d c)

(Exists #896:F (And (on #896 c) (on #896 d) !(on d #896)

!(on c #896) (All y !(on y #896))))) {

let (#896=#896:F (And (All y:G !(on y c)) !(on c d) (on d c)

(on #896 c) (on #896 d) !(on d #896)

!(on c #896) (All y !(on y #896)))) {

(moveTable #896);

// if there is a block on d and c that is clear and directly on d

elseif (And (All y:G !(on y c)) !(on c d) (on d c)

(Exists #655:F (And (All y !(on y d)) (on #655 c)

(on #655 d) !(on d #655)

!(on c #655)

(All y !(on y #655))))) {

183

let(#655=#655:F (And (All y:G !(on y c)) (All y !(on y d))

!(on c d) (on d c)

(on #655 c) (on #655 d) !(on d #655)

!(on c #655) (All y !(on y #655)))) {

(moveTable #655);

}

}

}

let (x=d, J=#2982 (on x #2982), K=#2982 !(on x #2982)) {

(moveTable d);

}

}

}

// if d is clear, c can be moved directly

if (And (All z (Or !(on d z) !(on c z))) (All z !(on z c))

(All z !(on z d)) !(on c d) !(on d c)) {

(moveBlock c d);

}
else {

// move c to the top element on d

let (y=y:H (And (on y d) (All z (Or !(on y z) !(on c z)))

(All z !(on z c)) !(on d y)

(All z !(on z y)) !(on c y)

!(on y c))) {

(moveBlock c y);

}

5.5.4 Putting all blocks in a tower

This program considers taking all of the blocks on the table and putting them in

one tower. Since this program has few cases and no free variables, its solution is

relatively simple. It may seem complex, but only because the conditions in the if,

184

while, and let statements are rather complex quantified formulas. The start formula

S is the standard BlocksWorld beginning. The goal G is VxVy (on x y) V (on y x).

The solution is:

if (Exists x (Exists y (And !(on x y) !(on y x)))) {

while (Exists x (Exists y (And !(on x y) !(on y x)))) {

let (A=x (Exists y (And !(on x y) !(on y x))),

B=x (All y (Or (on x y) (on y x)))) {

// #315 is a block which is the bottom of a stack

let(#315=#315:A

(Or (And (All y !(on #315 y))

(All y !(on y #315))

(Exists #406 (And (All

(All

z !(on z #406))

z:B (All a (Or (on z a)

(on a z))))

(All z:B (on #315 z))

(All z (Or !(on #315 z) !(on #406 z))))))

(And (All x:B (All y (Or (on x y) (on y x))))

(Exists z (on z #315))

(All z !(on #315 z))

(All z:B (on z #315))

(Exists #406 (And (All z !(on z #406))

!(on #406 #315)

(Exists z (And (All y (Or !(on z y)

!(on #406 y)))

!(on #315 z)

(All y !(on y z))

!(on #406 z)

(on z #315)))))))) {

while (Or (Exists y (And !(on #315 y) !(on y #315)))

(Exists x:B (Or (And !(on x #315) !(on #315 x))

(Exists y (And !(on x y) !(on y x)))))) {

let (E=y (And !(on #315 y) !(on y #315)),

F=y (Or (on #315 y) (on y #315))) {

// #406 is clear and not on the same stack as #315

let(#406=#406:E

185

(And (All z !(on z #406)) !(on #406 #315)

!(on #315 #406)

(All z:B (All a (Or (on z a) (on a z))))

(Or (And (All z:B !(on #406 z)) (None F)

(All z:B (on #315 z))

(All z (Or !(on #315 z) !(on #4

(All z !(on z #315)))

(And (All z:F (on z #315)) !(B #406)

(All z:B (Or (on z #315) (on #3

(All z:B !(on #406 z))

(Exists z:FnA (And (All y (Or !

! (on

(All

!(on

06 z)))

15 z)))

(on

!(on #4'

#315 z)

y !(on y z))

#406 z)))))))

Y)

06 y)))

{
// if #315 is cl

if

ear

(And (None F) (All z:B (on #315 z))

(All z:B !(on #406 z))

(All z:B (All a (Or (on z a) (

(All z (Or !(on #315 z) !(on #

(All z !(on z #406))

(All z !(on z #315))

!(on #406 #315) !(on #315 #406

(moveBlock #406 #315);

// if #315 is not clear, move #406 to the top block on #315

else {

let(x=#406,

y=y:P (And (All

(All

(All

(All

(All

(Or

(on

(All

z:F (on z #315))

z:B (Or (on z #315) (on #315

z:B !(on #406 z))

z:B (on y z))

z:B (All a (Or (on z a) (on

!(B y) (All a (on y a)))

y #315) (All z (Or !(on y z)

z !(on z #406)) !(on #315 y)

z)))

a z))))

!(on #406 z)))

186

on a z))))

406 z)))

)) {

z

(All z !(on z y)) !(on #406 y) !(on y #406))) {

(moveBlock #406 y);

I

}

}

5.5.5 Putting one block directly onto another

This is a program very similar to 5.5.3. The goal is G = (on c d) A (Vy -(on c y) V

--(on y d)). However, this program breaks into even more cases than 5.5.3, because

c can be on d with intervening elements, d can be on c, or they can be in different

stacks. The solution is:

if (Or !(on c d) (Exists x (And (on c x) (on x d)))) {

// if there is something on d or c

if (Or (Exists z (on z d)) (Exists z (And (on d z) (on c z)))

(Exists z (on z c)) (on c d) (on d c)) {

// if d is on c, or d is not on c and it is clear

if (And (Or (And (All z !(on z d)) (All z (Or !(on d z) !(on c z)))

(All z !(on z c)) !(on c d) !(on d c))

(And !(on c d)

(Or (And (on d c) (All y !(on y d)))

(And (Or (Exists #1541396

(And !(on #1541396 d)

!(on d #1541396)

(And !(on d #1541396) (on #1541396 c)

(on #1541396 d) !(on c #1541396)

(All y !(on y #1541396)))))

(Or !(on d c)

(And (Exists x (on x d))

187

(All y (Or (on d y) !(on c y)))))))))

(Or (on d c) (All #261768 (Or !(on #261768 d) (on #261768 c))))) {

while (Or (Exists z (on z d)) (Exists z (And (on d z) (on c z)))

(Exists z (on z c)) (on c d) (on d c)) {

let (B=z (Or !(on d z) !(on c z)), A=z (And (on d z) (on c z))) {

let (C=z (on z d), D=z !(on z d)) {

let (F=z !(on z c), E=z (on z c)) {

// if d is not on c

if (And (Exists E) !(on d c) (All y:D !(on y d))

(All y:F !(on y c)) !(on c d)

(Or (And (All y:B (Or !(on d y) !(on c y)))

(Exists #1541396:E

(And !(on #1541396 d) !(on d #1541396)

(on #1541396 c) !(on c #1541396)

(All y !(on y #1541396)))))

(And (All y:B (Or !(on d y) !(on c y)))

(Exists #1541396:E

(And !(on d #1541396) (on #1541396 c)

(on #1541396 d) !(on c #1541396)

(All y !(on y #1541396))))))) {

// move the top element on c to the table

let (#1541396=#1541396:E

(Or (And (All y:F !(on y c))

!(on #1541396 d) (All y:D !(on y d))

!(on d #1541396)

(All y:B (Or !(on d y) !(on c y))) !(on c d)

!(on d c) (on #1541396 c) !(on c #1541396)

(All y !(on y #1541396)))

(And (All y:F !(on y c)) (All y:D !(on y d))

!(on d #1541396)

(All y:B (Or !(on d y) !(on c y))) !(on c d)

!(on d c) (on #1541396 c) (on #1541396 d)

!(on c #1541396) (All y !(on y #1541396))))) {

(moveTable #1541396);

188

// if d is on c, it is clear, and there is something under c

else if (And (Exists A) (on d c) (All y:F !(on y c)) !(on c d)

(All y !(on y d))) {

(moveTable d);

}

// if d is on c, and it is clear

else if (And (on d c) (All y:F !(on y c)) !(on c d)

(All y !(on y d))) {

(moveTable d);

}

// if d is on c, and there is something on it

else {

let (#1207232=#1207232:E

(Or (And (All y:F !(on y c)) !(on #1207232 d)

(All y:D !(on y d)) !(on d #1207232)

(All y:B !(on c y)) !(on c d) (on #1207232 c)

!(on c #1207232) (All y !(on y #1207232)))

(And (All y:F !(on y c)) (All y:D !(on y d))

!(on d #1207232) (All y:B !(on c y)) !(on c d)

(on #1207232 c) (on #1207232 d) !(on c #1207232)

(All y !(on y #1207232))))) {

(moveTable #1207232);

}

}

}

}

}

// if c is on d, or c is not on d and d is not on c

else if (Or (And !(on d c)

(Exists #1260031 (And !(on d #1260031) (on #1260031 d)

!(on c #1260031)

(All y !(on y #1260031))))

!(on c d) (All #533948 !(on #533948 c)))

(And !(on d c) !(on c d)

189

(Or (Exists #743147

(And (Or (Exists y (And !(on d y) (on y d)

!(on c y)

(All z !(on z y))

(on #743147 y)))

(Exists y (And !(on d y) (on y d)

!(on c y)

!(on #743147 y)

(All z !(on z y)))

(on #743147 c) !(on #743147 d)

!(on c #743147) !(on d #743147)

(All y !(on y #743147))))

(Exists #743147

(And (Or (Exists y (And !(on d y) (on y d)

(And (Or (And (All

(All

(All

(And !(on

(Or

!(on c y)

(All z !(on z y))

(on #743147 y)))

(Exists y (And !(on d y) (on y d)

!(on c y)

!(on #743147 y)

(All z !(on z y)))))

(on #743147 c) (on #743147 d)

!(on d #743147) !(on c #743147)

(All y !(on y #743147))))))

!(on z d))

(Or !(on d z) !(on c z)))

!(on z c)) !(on c d) !(on d c))

d c)

(And (on c d) (All y !(on y c)))

(And

(Or (Exists #1260031

(And !(on #1260031 c)

!(on d #1260031)

(on #1260031 d)

!(on c #1260031)

(All y !(on y #1260031))))

190

))

(Exists #1260031

(And !(on d #1260031)

(on #1260031 d)

(on #1260031 c)

!(on c #1260031)

(All y !(on y #1260031)))))

(Or !(on c d)

(And (Exists

(All y

(Or (on c d) (All #533948 (Or

x (on x c))

(Or (on c y)

!(on d y)))))))))

(on #533948 d)

!(on #533948 c))))))

// if c is not on d, and d is not on c

if (Or (And !(on d c)

(Exists #1260031 (And !(on d #1260031) (on #1260031 d)

!(on c #1260031)

(All y !(on y #1260031))))

!(on c d)

(All #533948 !(on #533948 c)))

(And !(on d c) !(on c d)

(Or (Exists #743147

(And (Or (Exists y (And !(on d y) (on y d)

!(on c y)

(All z !(on z y))

(on #743147 y)))

(Exists y (And !(on d y) (on y d)

!(on c y) !(on #743147 y)

(All z !(on z y)))))

(on #743147 c) !(on #743147 d)

!(on c #743147) !(on d #743147)

(All y !(on y #743147))))

(Exists #743147

(And (Or (Exists y (And !(on d y)

(on y d)

!(on c y)

(All z !(on z y))

191

(on #743147 y)))

(Exists y (And !(on d y) (on y d)

!(on c y) !(on #743147 y)

(All z !(on z y)))))

(on #743147 c) (on #743147 d)

!(on d #743147) !(on c #743147)

(All y !(on y #743147))))))) {

// while there is something on c

while (Or (on d c)

(All #1260031 (Or (on d #1260031) !(on #1260031 d)

(on c #1260031)

(Exists y (on y #1260031))))

(on c d)

(Exists #533948 (on #533948 c))) {

let (X=#533948 !(on #533948 c), W=#533948 (on

// move the top element on c to the table

let (#743147=#743147:W

#533948 c)) {

(Or (And (All y:X !(on y c)) !(on d c) !(on c d)

(Or (Exists y (And !(on d y) (on y d) !(on c y)

(All z !(on z y)) (on #743147 y)))

(Exists y (And !(on d y) (on y d) !(on c y)

!(on #743147 y)

(All z !(on z y)))))

(on #743147 c) !(on #743147 d) !(on c #743147)

!(on d #743147) (All y !(on y #743147)))

(And (All y:X !(on y c)) !(on d c) !(on c d)

(Or (Exists y (And !(on d y) (on y d) !(on c y)

(All z !(on z y)) (on #743147 y)))

(Exists y (And !(on d y) (on y d) !(on c y)

!(on #743147 y)

(All z !(on z y)))))

(on #743147 c) (on #743147 d) !(on d #743147)

!(on c #743147) (All y !(on y #743147))))) {

(moveTable #743147);

192

}

// while there is something on d

while (Or (Exists z (on z d)) (Exists z (And (on d z) (on c z)))

(Exists z (on z c)) (on c d) (on d c)) {

let (BD=z (And (on d z) (on c z)), BE=z (Or !(on d z) !(on c z))) {

let (BF=z (on z c), BG=z !(on z c)) {

let (BH=z (on z d), BI=z !(on z d)) {

// if c is not on d

if (And (Exists BH) !(on c d) (All y:BG !(on y c))

(All y:BI !(on y d)) !(on d c)

(Or (And (All y:BE (Or !(on d y) !(on c y)))

(Exists #1260031:BH

(And !(on #1260031 c) !(on d #1260031)

(on #1260031 d) !(on c #1260031)

(All y !(on y #1260031)))))

(And (All y:BE (Or !(on d y) !(on c y)))

(Exists #1260031:BH

(And !(on d #1260031) (on #1260031 d)

(on #1260031 c) !(on c #1260031)

(All y !(on y #1260031))))))) {

// move the top element on d to the table

let (#1260031=#1260031:BH

(Or (And (All y:BI !(on y d)) !(on #1260031 c)

(All y:BG !(on y c)) !(on d #1260031)

(All y:BE (Or !(on d y) !(on c y))) !(on c d)

!(on d c) (on #1260031 d) !(on c #1260031)

(All y !(on y #1260031)))

(And (All y:BI !(on y d)) (All y:BG !(on y c))

!(on d #1260031)

(All y:BE (Or !(on d y) !(on c y))) !(on c d)

!(on d c) (on #1260031 d) (on #1260031 c)

!(on c #1260031) (All y !(on y #1260031))))) {

(moveTable #1260031);

193

// if c is clear and c is on d

else if (And (on c d) (All y:BI !(on y d)) !(on d c)

(All y !(on y c))) {

(moveTable c);

}

// if c is clear and c is on d, and there is something under d

else if (And (Exists BD) (on c d) (All y:BI !(on y d)) !(on d c)

(All y !(on y c))) {

(moveTable c);

}

else {

// if there is something on d that is clear, move it to the table

let (#1381120=#1381120:BH

(Or (And (All y:BI !(on y d))

!(on #1381120 c) (All y:BG !(on y c))

!(on d #1381120) (All y:BE !(on d y)) !(on d c)

(on #1381120 d) !(on c #1381120)

(All y !(on y #1381120)))

(And (All y:BI !(on y d)) (All y:BG !(on y c))

!(on d #1381120) (All y:BE !(on d y)) !(on d c)

(on #1381120 d) (on #1381120 c) !(on c #1381120)

(All y !(on y #1381120))))) {

(moveTable #1381120);

}

}

}

}

}

// if d is on c (this if statement is spurious)

else if (And (Or (And (All y !(on y d)) (All y !(on y c)) !(on c d)

(on d c))

(And !(on c d) (on d c)

(Or (Exists #1123137 (And !(on #1123137 c)

(on #1123137 d)

194

!(on d #1123137)

!(on c #1123137)

(All y !(on y #1123137))))

(Exists #1123137

(And (on #1123137 d)

(on #1123137 c)

!(on d #1123137)

!(on c #1123137)

(All y !(on y #1123137)))))))

(All #106462 (Or !(on #106462 c) (on c #106462)

(And (Or !(on d #106462) (on #106462 d))

(Or (on d #106462) !(on #106462 d)))

(All #106463 (Or (on #106462 #106463)

!(on #106463 #106462)))))) {

while (Or (Exists y (on y d)) (Exists y (on y c)) (on c d) !(on d c)) {

let (CA=y !(on y c), BZ=y (on y c)) {

let (CB=y (on y d), CC=y !(on y d)) {

let (#1123137=#1123137:CB

(Or (And (All y:CC !(on y d)) !(on #1123137 c)

(All y:CA !(on y c)) !(on c d) (on d c)

(on #1123137 d) !(on d #1123137) !(on c #1123137)

(All y !(on y #1123137)))

(And (All y:CC !(on y d))

(All y:CA !(on y c)) !(on c d) (on d c)

(on #1123137 d) (on #1123137 c) !(on d #1123137)

!(on c #1123137) (All y !(on y #1123137))))) {

(moveTable #1123137);

}

}

(moveTable d);

}

(moveBlock c d);

195

5.6 Conclusion

This chapter has introduced HELPS, the second of the two types program synthesis

systems covered in this thesis. While Spec2Action has the flexibility to change any

relation in any order, HELPS uses STRIPS actions as the primitive operation. These

actions change many relations at a time, and they can only be used when their

preconditions hold. Hence, building programs with STRIPS actions requires careful

sequencing of the operations. The resulting programs have loops, conditions, and

sequencing, all of the fundamental structures of an iterative program.

HELPS is capable of generating simple programs in the BlocksWorld domain, as

well as fundamental programs in other domains, such as navigation and object moving.

It generates these programs fully autonomously. That is, there are no special rules,

domain theories, or programmer interaction in the program synthesis process. A

problem is specified entirely by its starting formula, the primitive actions availble,

and the goal formula. To accomplish this, HELPS uses the solutions of examples

to guide its synthesis search. It also uses slightly non-traditional representations

for logical formulas and primitive actions, which make tractable inductive theorem

proving and reasoning about change. With these techniques, HELPS achieves a level

of autonomy not realized by previous generalized planning systems that only used

deductive synthesis.

HELPS does backward iteration from the goal, refining a partial program at each

step. Working backward from the goal, it invokes particular strategies that meet the

most important of the goal conditions. The strategies include invoking a primitive

action, introducing a loop, and introducing a final sub-goal. To generate provably

correct loops, HELPS has special modules to discover loop invariants and to reason

about program change.

In the bigger picture, it is my opinion HELPS comes closer than Spec2Action to

the ideal of procedural knowledge acquisition that was motivated in the Chapter 1

introduction. Unlike Spec2Action, whose example problems were rather abstract op-

erations on data structures, HELPS solves generalizations of many classical AI prob-

196

lems. However, Spec2Action is able to solve problems that have much more complex

goal specifications. Ideally, the two systems should work together. When given an

especially difficult goal problem, HELPS should invoke Spec2Action to determine a

successful action template. It is then the responsibility of HELPS to determine the

proper ordering and control flow of primitive actions to solve this action template.

Future extensions, such as combining HELPS with Spec2Action, are discussed in the

next chapter, the conclusion.

197

198

Chapter 6

Conclusion

This thesis has demonstrated two systems to do automated program synthesis in

worlds that are networks of objects and relations. These worlds are a natural and

flexible representation for many abstract concepts. So, reasoning about such worlds

is an important capability for any autonomous agent that wants to understand how

to act at a high level. The primary contribution distinguishing this work from prior

work is the use of inductive synthesis to complement deductive program synthesis.

By sampling problem instances and generalizing from the instance solutions, these

systems have demonstrated an unprecedented level of autonomy.

Form2Grammar is able to deduce a recursive structure for all worlds satisfying a

particular quantified formula. It does so by sampling worlds, breaking them down

in a consistent way, and hypothesizing a grammar for the breakdowns. This gram-

mar is then automatically proven by a combination of theorem proving techniques.

Spec2Action further pursues this idea to generate rather abstract programs to ma-

nipulate networks of objects satisfying some start state to satisfy some goal state. It

samples examples of the start state, discovers a consistent way to change them to

satisfy the goal, and then generalizes from these solutions. It then proves the correct-

ness of the hypothesized program by theorem proving and by automated structural

induction over the grammar discovered by Form2Grammar.

HELPS demonstrates the power of inductive and deductive synthesis with a more

concrete program type, iterative programs over STRIPS actions. HELPS searches by

199

building partial programs backward from the goal. Its search is guided by example

solutions. The example problems are sampled from the starting formula, and they

are solved using SATPlan.

The secondary contribution of this thesis are the representation and reasoning

algorithms to do deductive reasoning for the two systems and Form2Grammar. The

quantified formula knowledge representation assumes that any two objects in a rela-

tion are different from each other. Also, in quantified formulas, sets and partitions are

first class objects, so that a world is easily split into different classes of objects, and

each class can be reasoned about separately. The quantified formula representation

is a better representation for reasoning about finite networks of objects and relations

than first-order logic, which is better suited for the mathematical reasoning for which

it was designed.

In the related work most similar to this thesis, Cresswell has developed a deductive,

general planning system that has very similar goals as HELPS. His knowledge repre-

sentation is linear logic, which is similar to quantified formulas in being very physical

and computationally tractable. The broad conclusion is that, for the autonomous

problem solving domain, first-order logic is too abstract a knowledge representation,

and that there are better, more natural ways to represent general procedural knowl-

edge.

With our quantified formulas, the thesis has shown several novel theorem proving

strategies. The abstract induction method can prove quantified formula theorems

that would ordinarily require an induction axiom. Such an axiom is not forthcoming

in problem definitions. Any proof problem usually only has anti-symmetry and tran-

sitivity axioms for certain relation types. So, abstract induction proves theorems in

an alternative way. It negates the fact to be proved and shows that no finite world

could ever satisfy the formula, or it finds a counterexample.

Another special reasoning technique is partition mapping, which enables structural

induction over the grammar produced by Form2Grammar. Given formula P defined

over set partition A and a second formula Q quantified over partition B, the partition

mapper produces a SAT formula constraining all the ways that A can map to B so

200

that P proves Q. Finally, the constraint that HELPS parameters must fully partition

the world set enables very precise and straightforward reasoning about the effects

of actions on quantified formulas. This enables HELPS to automatically find loop

invariants, which is a formidable task in ordinary program analysis.

From a broder perspective, this thesis has sought to demonstrate that general

program synthesis is feasible and can serve as a form of procedural knowledge learning.

There are many forms of procedural knowledge learning, from low-level feedback

control systems to reinforcement learning. This thesis has shown that it is feasible

to do procedural knowledge learning at a high level of abstraction. At such a level,

procedural knowledge should be robust and provably correct, so that the knowledge

can be applied in the widest range of settings possible.

Programs and subroutines are the best representation for such knowledge, and

program synthesis is the process by which such knowledge can be acquired. The two

systems, Spec2Action and HELPS, demonstrate that program synthesis can be ac-

complished using inductive and deductive synthesis, once a problem has been suitably

isolated and specified.

There are several directions for future work. First, the capabilities of Spec2Action

and HELPS should be combined, and their individual strengths should be applied to

solving more complex problems. Second, this abstract procedural knowledge learning

should be shown to be a practical for an agent living in a lower-level sensor envi-

ronment. This means learning the effects of primitive actions and isolating abstract

problems out of lower level sensations. For example, a robot in a room should be able

to produce a network of objects and relations out of its observation at each (x, y)

point of the room. It should learn rules defining which configurations of objects are

possible, how its own actions affect this network, and how a concrete visualisation of

a goal can be turned into something more abstract.

201

202

Bibliography

[1] John R. Anderson. The Architecture of Cognition. Harvard University Press,

1983.

[2] John R. Anderson. The Adaptive character of thought. Erlbaum, Hillsdale, NJ,

1990.

[3] Dana Angluin. Learning regular sets from queries and counterexamples. Infor-

mation and Computation, 75:87-106, 1987.

[4] Piergiorgio Bertoli, Alessandro Cimatti, Marco Roveri, and Paolo Traverso.

Strong planning under partial observability. Journal of Artificial Intelligence,

170(4):337-384, 2006.

[5] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.

Journal of Machine Learning Research, 3:993-1022, January 2003.

[6] Alessandro Cimatti and Marco Roveri. Conformant planning via symbolic model

checking. Journal of artificial intelligence research, 159(1-2):127-206, 2004.

[7] Stephen Cresswell, Alan Smaill, and Julian Richardson. Deductive synthesis of

recursive plans in linear logic. In ECP '99: Proceedings of the 5th European

Conference on Planning, pages 252-264, London, UK, 2000. Springer-Verlag.

[8] John Dewey. Experience and Education. Simon & Schuster, 1938.

[9] Thomas Ellman. Explanation-based learning: a survey of programs and perspec-

tives. ACM Computing Surveys, 21(2):163-221, 1989.

203

[10] Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and executing

generalized robot plans. Artificial Intelligence, 3:251-288, 1972.

[11] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application

of theorem proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

[121 Pierre Flener. Achievements and prospects of program synthesis. In Compu-

tational logic: logic programming and beyond, essays in honour of Robert A.

Kowalski, pages 310-346. Springer-Verlag, 2002.

[13] Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina. Plan stability: Re-

planning versus plan repair. In ICAPS, pages 212-221, 2006.

[14] G. R. Ghassem-Sani and S. W. D. Steel. Recursive plans. In Proceedings of

the European Workshop on Planning EWSP-91, pages 53-63, St. Augustin, Ger-

many, 1991.

[15] Cordell Green. Application of theorem proving to problem solving. In Proceedings

of IJCAI '69, pages 219-239. Morgan Kaufmann, 1969.

[161 Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Plan-

ning and acting in partially observable stochastic domains. Journal of Artificial

Intelligence, 101(1-2):99-134, 1998.

[17] John E. Laird, Allen Newell, and Paul Bloom. Soar: An architecture for general

intelligence. Artificial Intelligence, 33:1-64, 1987.

[18] Hector J. Levesque. Planning with loops. In IJCAI, pages 509-515, 2005.

[191 Michael R. Lowry and Jeffrey Van Baalen. Meta-amphion: Synthesis of efficient

domain-specific program synthesis systems. Automated Software Engg., 4(2):199-

241, 1997.

[20] Z. Manna and R. Waldinger. How to clear a block: A theory of plans. Journal

of Automated Reasoning, 3(4):343-377, 1987.

204

[21] Zohar Manna and Richard Waldinger. Fundamentals of deductive program syn-

thesis. IEEE Transactions on Software Engineering, 18(8):674-704, august 1992.

[22] David McAllester and David Rosenblitt. Systematic nonlinear planning. In

Proceedings 9th National Conference on Artificial Intelligence (AAAI-91), pages

634-639, 1991.

[23] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[24] Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory

and methods. Journal of Logic Programming, 19/20:629-679, 1994.

[25] Allen Newell and H. A. Simon. GPS, a program that simulates human thought,

pages 279-293. MIT Press, Cambridge, MA, USA, 1995.

[26] Louise Pryor and Gregg Collins. Planning for contingencies: A decision-based

approach. Journal of Artificial Intelligence Research, 4:287-339, 1996.

[271 Earl D. Sacerdoti. A Structure for Plans and Behavior. Elsevier, 1977.

[28] Roger Schank. Dynamic Memory. Cambridge University Press, 1982.

[29] Roger Schank. Engines for Education. Lawrence Erlbaum Associates, Hillsdale,

NJ, 1995.

[30] Ute Schmid and Fritz Wysotzki. Induction of recursive program schemes. In

ECML '98: Proceedings of the 10th European Conference on Machine Learning,

pages 214-225, London, UK, 1998. Springer-Verlag.

[31] Ute Schmid and Fritz Wysotzki. Skill acquisition can be regarded as program

synthesis: An integrative approach to learning by doing and learning by analogy,
1998.

[32] Douglas R. Smith. Top-down synthesis of divide-and-conquer algorithms. Arti-

ficial Intelligence, 27(1):43-96, 1985.

205

[331 Douglas R. Smith. KIDS: A semiautomatic program development system. IEEE

Transactions on Software Engineering, 16(9):1024-1043, september 1990.

[34] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay

Saraswat. Combinatorial sketching for finite programs. A CM SIGPLAN Notices,

41(11):404-415, 2006.

[351 Yellamraju V. Srinivas and Richard Jullig. Specware: Formal support for com-

posing software. In Mathematics of Program Construction, pages 399-422, 1995.

[36] Siddharth Srivastava. Using abstraction for generalized planning. In ICAPS,

2007.

[37] Werner Stephan and Susanne Biundo. Deduction-based refinement planning. In

AIPS, pages 213-220, 1996.

[38] Gerald J. Sussman. A Computer Model of Skill Acquisition. Elsevier Science

Inc., New York, NY, 1975.

[39] Jouko Vdiiindinen. A short course on finite model theory.

[40] Roman van der Krogt and Mathijs de Weerdt. Plan repair as an extension of

planning. In Proceedings of the Fifteenth International Conference on Automated

Planning and Scheduling (ICAPS-05), pages 161-170, 2005.

[41] Elly Winner and Manuela M. Veloso. Distill: Learning domain-specific planners

by example. In ICML, pages 800-807, 2003.

206

