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Abstract

Following Shannon's landmark paper, the classical theoretical framework for com-
munication is based on a simplifying assumption that all information is equally im-
portant, thus aiming to provide a uniform protection to all information. However,
this homogeneous view of information is not suitable for a variety of modern-day
communication scenarios such as wireless and sensor networks, video transmission,
interactive systems, and control applications. For example, an emergency alarm from
a sensor network needs more protection than other transmitted information. Simi-
larly, the coarse resolution of an image needs better protection than its finer details.
For such heterogeneous information, if providing a uniformly high protection level to
all parts of the information is infeasible, it is desirable to provide different protection
levels based on the importance of those parts.

The main objective of this thesis is to extend classical information theory to ad-
dress this heterogeneous nature of information. Many theoretical tools needed for
this are fundamentally different from the conventional homogeneous setting. One
key issue is that bits are no more a sufficient measure of information. We develop
a general framework for understanding the fundamental limits of transmitting such
information, calculate such fundamental limits, and provide optimal architectures for
achieving these limits. Our analysis shows that even without sacrificing the data-rate
from channel capacity, some crucial parts of information can be protected with expo-
nential reliability. This research would challenge the notion that a set of homogenous
bits should necessarily be viewed as a universal interface to the physical layer; this
potentially impacts the design of network architectures.

This thesis also develops two novel approaches for simplifying such difficult prob-
lems in information theory. Our formulations are based on ideas from graphical
models and Euclidean geometry and provide canonical examples for network infor-
mation theory. They provide fresh insights into previously intractable problems as
well as generalize previous related results.

Thesis Supervisor: Lizhong Zheng
Title: Associate Professor
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Chapter 1

Introduction

"We hold these truths to be self-evident, that all men are created equal..."

- Declaration of American Independence

This thesis addresses a problem of interest to communication scenarios ranging

from dynamic wireless networks to audio/video broadcasting to control systems: how

to communicate efficiently when some pieces of information are more important than

others and need better protection. We obtain the fundamental limits of protection

for communicating such heterogeneous information. No matter how smart the trans-

mitter and receiver are, these limits cannot be broken. We also provide the optimal

architectures for achieving these limits.

Classical information theory on the other hand, following Shannon's seminal paper

[1], has always assumed that all information is equally important. In the limit of

infinitely long codes, this homogeneity assumption is extremely powerful and gives rise

to the universal interface of bits, which is often viewed as Shannon's most significant

contribution. This interface is optimal for sending any information source over any

channel-provided the codelength is sufficiently large. This means that the source

encoder converts the incoming information to a set of bits. For example, an MP3

encoder converts audio waveforms into bits and a JPEG encoder converts pictures to



bits. The channel encoder can simply treat these bits as independent coin-flips. It

need not care what they mean or where these bits are coming from, they could be an

MP3 file or an JPEG image or something else. Such separation of source coding and

channel coding does not reduce efficiency in the infinite codelength limit.

However, when resources of delay and/or bandwidth are limited and codelength

cannot approach infinity, we need to break away from this homogeneous view of

information which oversimplifies the nature of information. With limited resources,

protecting everything equally well is either inefficient or infeasible-one needs to

prioritize. Now the heterogeneous nature of information should be leveraged for

designing better communication systems. In other words, we should take advantage

of the fact that not all information is created equal!

In the classical homogeneous view, any particular message being mistaken as any

other is viewed to be equally costly. With such uniformity assumptions, the relia-

bility of a communication scheme is measured by a single performance metric: the

probability of error over all possible messages (either average or the worst case). In

information theory literature, a communication scheme is said to be reliable if this

error probability can be made vanishingly small. However, for communication scenar-

ios ranging from wireless networks to video transmission to control applications, the

performance metric is more appropriately a combination of different kinds of error

probabilities. For example,

* Consider transmission of a multiple resolution source code like a JPEG image

or a MPEG video. The coarse resolution needs a smaller error probability than

the finer resolution, even though both resolutions are contained in the same file.

This better protection ensures that at least the crude reconstruction is recovered

after bad noise realizations.

* In a wireless network, protocol information like power control, channel state, and

frequency allocation is often a precursor to delivering the payload data. Hence

error probability for the protocol information should be smaller than the payload

data. Thus even though the final objective is delivering the payload data, the

physical layer should provide a better protection to the protocol information.



Similarly for the Internet, packet headers are more important for delivering the

packet. Internet's TCP protocol falls apart without these headers1 . Hence they

should be protected better to ensure that the actual data gets through. In general,

any layered architecture like the Internet, highlights the heterogeneous nature of

information. A richer interface to the physical layer is needed which addresses

this heterogeneous nature.

* Controlling unstable plants over noisy communication links [33] and compressing

unstable sources [34] are further examples where different parts of information

need different reliability.

For such situations of special bits, unequal error protection (UEP) is a natural gen-

eralization to the conventional content-blind information processing. However, when

our goal is providing better protection to special parts of information, these parts of

information need not be only bits. At finite codelengths, bits no longer suffice as a

universal measure of information. Perhaps this was one of the major reasons why

essentially no fundamental limits for UEP were previously known. A general formu-

lation in this situation requires some additional notions for measuring information.

Instead of some bits being special, some messages could be special.

To clarify this concept, consider a channel encoder which takes the input of k

information bits, b = [bl, b2 ,... bk]. This k-bit situation is equivalent to a random

variable M taking values from the set {1, 2, 3,..., 2k}. Each element in this message

set corresponds to a particular value of the bit-sequence b. This set of possible values

of M are referred to as messages. For transmission, a message is encoded into its

corresponding codeword and sent over the channel. A decoding error is defined as the

event that the receiver decodes to a message other than the transmitted message. In

most information theory texts, when a decoding error occurs, the entire bit sequence

b is rejected. That is, errors in decoding the message and in decoding the information

bits are treated similarly.

Existing literature on unequal error protection only deals with special bits; infor-

'The packet header is analogous to the address label on a postcard. If the address label is wrong,
the postcard is useless even if all other contents are correct.



mation bits are partitioned into subsets according to priority and decoding errors for

different subsets of bits are viewed differently. For example, we may want to provide

a better protection to the first bit bl by ensuring that errors in decoding bl are less

probable than the other bits in b. For one half of the 2k messages, bl equals 0 and

for the other half it equals 1. Better protection of bl demands that when a message

from one half is sent, probability of decoding to a message in the other half should

be minimized. This essentially means that codewords for the two halves should look

like two distant clusters, which ensures that jumping to the wrong cluster is unlikely.

We define such problems as "bit-wise UEP". Previous examples of packet headers,

multiple resolution codes, etc. belong to this category of UEP.

However, in some situations, instead of bits one might want to provide a better

protection to a subset of messages. For example, consider embedding a special mes-

sage in the k-bit vector b: out of the 2 k possible messages, say the first message

M = 1 is special and requires smaller error probability. For concreteness, let M = 1

correspond to b = 0 (the all zero bit-sequence). Note that the error event for this

special message is not caused by error in any particular bit; instead it corresponds to

the decoded bit-sequence being different from the all-zero sequence. To protect such

special message, essentially all other codewords should be far away from the special

codeword, which ensures that jumping towards other codewords is unlikely from the

special codeword. This intuition already suggests that protecting special messages

is quite different from protecting special bits (which required distant codeword clus-

ters). Borrowing from hypothesis testing, we can further define two kinds of errors

for special messages.

* We say that missed-detection of a message i occurs when that message is trans-

mitted, but the receiver misses it by decoding to some other message j # i.

Consider a special message indicating some system emergency which is too costly

to be missed. Clearly, such special messages demand a small missed-detection

probability. Note that the missed-detection probability of a message is the same

as the conditional error probability after its transmission.

* We say that false-alarm of a message i occurs when some other message j # i



is transmitted, but the receiver decodes it to message i. Consider the reformat

hard-disk command to a remote-controlled robot or satellite. False-alarm of such

a message causes irreparable damage such as a formatted disk. Such irreversible

instructions demand small false-alarm probability.

We denote such problems as "message-wise UEP". To illustrate the difference

between bit-wise and message-wise notions, consider a 100-bit data packet for con-

creteness. In a bit-wise UEP example, the first bit (called bl) of these 100 bits could

be special, which corresponds to a short but important packet header. In a message-

wise UEP example, the bit-sequence of 100 zeros could denote a special message,

which corresponds to a system emergency. This bit-sequence is more important than

all other 2100 - 1 bit-sequences or messages.

In the conventional framework, every bit is as important as every other bit and

every message is as important as every other message. In such a framework there is

no reason to distinguish between bit-wise or message-wise error probabilities because

message-wise error probability differs from bit-wise error probability by an insignifi-

cant factor. In the UEP setting however, it becomes necessary to differentiate between

message-errors and bit-errors. We will see that in many situations, error probability

of special bits and messages have very different behavior and it is usually much easier

to protect special messages compared to special bits.

The most general formulation of UEP could be an arbitrary combination of protec-

tion demands from messages, where each message demands better protection against

some specific kinds of errors. In this general definition of UEP, bit-wise UEP and

message-wise UEP are simply two particular ways of specifying which kinds of errors

are too costly compared to others. This thesis is restricted to these two notions of im-

mediate practical interest, although these insights and framework will be also useful

for addressing more general situations.



1.1 Previous work on UEP

There has been much work in UEP mechanisms from the coding theory perspective.

Of course, the simplest approach to UEP is just allocating separate channels for

different kinds of data. For example, many wireless networks allocate a separate

control channel for transmitting protocol information and another data channel for

sending payload data. However, a better performance is attainable by sending both

on the same channel, where the protocol information is embedded within the payload

data.

More systematic code designs on these lines can be found in the vast literature on

UEP, which goes back to at least 1958 [15]. The first linear code was proposed in 1967

by Masnick and Wolf [16]. Rate compatible codes came up in 1988 by Hagenauer [19]

and then multilevel codes came up from Calderbank and Seshadri [20]. Relatively

recently, priority encoded transmission was proposed by Albanese et al [17], which is

UEP for erasure channels like the internet. For high SNR wireless channels, diversity

embedded codes were proposed by Diggavi and Tse [23] a few years ago. Besides

the work mentioned here, numerous clever UEP code designs have been developed

not only in communications literature but also video, computer systems and signal

processing literature.

However, all these coding mechanisms were only focused on the notion of special

bits, special messages remaining almost unaddressed. More importantly, past work

was mostly about designing particular codes for specific channel models like Gaussian,

erasure and so on. Optimality of these designs was essentially unknown from an

information theoretic perspective. This seems to be partly due to the lack of a

general framework for characterizing the optimal performance and partly due to the

difficulty in proving converses, i.e., upper bounds on performance. A few exceptions

addressed the issue of information theoretic limits of bit-wise UEP for the specific

channel models they were considering, e.g., [21] for AWGN channels, [17] for erasure

channels and [23] for high SNR wireless channels. For general channel models however,

almost nothing was known.



Thus in short, for bit-wise UEP, essentially only coding theory results were known-

no information theory results. For message-wise UEP, no results in coding theory were

known and no results in information theory were known (with the sole exception of

a result in [22]). This calls for a general understanding of the fundamental limits of

unequal error protection, which hold true for a general channel model no matter how

smart the coding mechanism is. This thesis develops such fundamental limits as well

as optimal coding mechanisms for bit-wise UEP and message-wise UEP. These results

provide practical guidelines and benchmarks for designing practical UEP codes for

enhancing the overall bandwidth and/or energy efficiency.

1.2 Thesis Outline

Chapter 2 introduces classical error exponents (i.e., exponential error bounds) in

various information theory problems using a geometric approach. Our discussion of

these exponents [14] is based on a simple Pythagoras-like theorem in [35], which is

intuitive yet rigorous. These exponents have been long known [2, 3, 4], so the value of

our alternate derivations lies in their simplicity and the new geometric insights they

bring. This background is useful in Chapters 3 to 4, where we use error exponents

as a benchmark of protection. That is, the fundamental limits of UEP in those

chapters are given in terms of the best error exponents achievable for various parts

of information.

For conceptual clarity, Chapter 3 focuses on situations where the data-rate essen-

tially equals the channel capacity. This analysis will address UEP issues for scenarios

where data rate is a crucial system resource that cannot be compromised. In these sit-

uations, no positive error exponent in the conventional sense can be achieved. That

is, if we aim to protect the entire information uniformly well, neither bit-wise nor

message-wise error probabilities can decay exponentially fast with increasing code

length. We ask the question then "can we make the error probability of a particular

bit, or a particular message, decay exponentially fast with block length?"

For bit-wise UEP in this setting, we show even a single bit cannot achieve any



positive error exponent. Thus the data-rate must back off from capacity for achieving

any error exponent even for a single bit. On the contrary, in message-wise UEP,

positive error exponents can be achieved without giving up any data-rate. If only one

message in a capacity achieving code is special and demands a (missed-detection) error

exponent, its optimal value is equal to a new fundamental channel parameter called

the Red-Alert Exponent. We then consider situations where an exponentially large

subset of messages is special and each message in it demands a positive error exponent.

Surprisingly, it turns out that these special messages can achieve the same exponent

as if all the other (non-special) messages were absent. In other words, a capacity

achieving code and an error exponent-optimal code below capacity can coexist without

hurting each other. These results also shed a new light on the structure of capacity

achieving codes.

These insights for the case without feedback become useful in Chapter 4, where

we investigate similar problems assuming perfect causal feedback from the receiver to

the transmitter. Such feedback creates some fundamental connections between bit-

wise UEP and message-wise UEP. Now even for bit-wise UEP, positive error exponent

can be achieved at capacity. Now a single special bit can achieve the same exponent

as a single special message-the Red-Alert Exponent. When the number of special

bits increases, their error exponent decays linearly from Red-Alert Exponent to 0 as

their rate increases from 0 to channel capacity. A successively refinable version of

this linear tradeoff is also achievable when there are multiple levels of specialty -

most-special bits, second-most-special bits and so on.

Although the error exponent for a single special bit increases from 0 to the Red-

Alert Exponent due to feedback, the error exponent for a single special message

exponent cannot increase beyond the Red-Alert Exponent in spite of feedback. Then

we address the case of exponentially many messages. Many special messages obviously

cannot achieve a better exponent compared to a single special message. However, we

show that at rates beyond certain threshold, the special messages can achieve the same

error exponent with feedback as if all other messages were absent. We also address

the best false-alarm exponent for a special message (like a disk-format command).



In Chapter 5, we treat data rates strictly below capacity. Sacrificing the data-rate

from capacity should provide additional reliability. Here the question of interest is

the optimal tradeoffs between the reliability of the crucial parts of information vs.

that of the ordinary parts. We formulate this question in two ways. This chapter

addresses the first formulation, which is based on error exponents as in the Chapters

3 and 4-what are the optimal error exponents achievable simultaneously for different

parts of information? Many of the same questions in bit-wise and message-wise UEP

for rates approaching capacity are revisited here. For example, we generalize the

classical sphere-packing exponent for bit-wise UEP situations. We also extend the

notion of Red-Alert Exponent for rates below capacity.

In Chapter 6, the case of rates below capacity is addressed from a different

viewpoint-network information theory. In earlier chapters, a point-to-point channel

is considered and UEP was used for extra protection for the crucial parts against

large deviations of the channel noise. In other words, UEP was aimed at providing

better error exponents for those crucial parts. Alternatively, UEP can be used in a

broadcast network where the crucial parts should be protected against channel fading

or movements of users. That is, the crucial parts should be received by all users, in-

cluding those far from the base station or those with bad fading. However, the better

off users (which are near the base station or experiencing little fading) should be able

to decode the ordinary parts as well. Chapter 6 mainly focuses on the bit-wise notion

of UEP for networks. This problem is equivalent to the network information theory

problem of broadcast with degraded message sets [42].

Although this problem has been long open in general, we show how ideas from

graphical models and Euclidean geometry can provide fresh insights by simplifying the

problem. In particular, we first show that the simplification with Euclidean geometry

becomes useful for "very noisy" situations discussed in [48],[44]. This demonstrates

how the Euclidean approach can provide canonical problems for information theory

which are easy to solve but still shed light on some general issues. For situations that

are not very noisy, the simplification via graphical models becomes useful. Graphical

models provide a framework to systematically think about broadcast situations. They



enable us to solve some new classes of broadcast networks, which generalize many

previously solved networks. At the end of Chapter 6, we briefly discuss message-

wise UEP over networks. This problem is shown to be connected to the problem of

compound channel capacity. A few simple analogs of earlier results in error-exponent

formulation are also discussed briefly.

We conclude in Chapter 7 by discussing some future directions and implications

of our results for network architectures.



Chapter 2

Error Exponents in Information

Theory: A Geometric Introduction

"Those unversed in geometry shall not enter."

- engraving on the entrance of Plato's Academy

This chapter introduces a geometric approach for analyzing error exponents in var-

ious information theory problems. Our approach [14] is based on a simple Pythagoras-

like theorem called I-Projection and hence more intuitive than classical algebraic

derivations [2]. By illuminating on the hidden geometrical structure, it also clarifies

the distribution of the log likelihood for correct and incorrect codewords.

A large number of information theoretic problems can be written as optimization

of Kullback-Liebler (KL) divergence. This includes most calculations of channel ca-

pacities, rate-distortion functions, and error exponents. With a handful of famous

exceptions, most of these calculations can only be carried out numerically. Especially,

the results of many multi-user information theory problems are given in the form of

multi-dimensional optimizations, with little effort spent in finding the structure of

their solutions.

As an example of such divergence minimization problems, the calculation of the

error exponent is known to have two different (but equivalent) forms of solutions.



The original solutions by Gallager et al [2, 3] were derived using techniques similar

to the Chernoff bound. Those solutions take the form of optimization over the input

distribution and a scalar parameter p. While these results are concise and relatively

easy to compute, it is hard to capture the intuition behind their derivations.

In comparison, Csisz&r and Korner took a conceptually more tractable approach.

They used large deviations to study decoding errors in a discrete memoryless channel

(DMC) and provided error exponents in the form of KL divergence minimizations.

The solution to these minimization problems has an important operational meaning-

they characterize the typical error event. This approach is much more intuitive and

hence widely used in a variety of information theory problems. However, instead of

a scalar parameter, such solutions require a high dimensional optimization over the

space of channel realizations, which is often harder to compute.

Forney analyzed this problem [5] for symmetric channels like the Binary Sym-

metric Channel (BSC). The optimizations over the space of channel realizations are

very clean and intuitive there, because one only needs to focus on noisier versions

of the original BSC. Non-symmetric realizations of the channel do not matter. Thus

we only need to focus on a single dimensional family of noisier channel realizations-

BSCs with increasing crossover probability.

For a general DMC however, it is not clear which single-dimensional family of

'noisier' channels should be considered for calculating error exponents. Our analysis

answers this in terms of a single dimensional exponential family defined later. For

a BSC, this exponential family is equivalent to the family of noisier BSCs. Thus an

exponential family generalizes the notion of 'noisier BSCs for general DMCs.

It is worth pointing out that most of the results we derive can also be obtained

from direct algebraic calculations. Thus much of the value of our approach lies in

the simplicity of the solution and the new geometric insights it brings. Now we will

discuss the Pythagoras-like theorem for KL divergences--the I-Projection theorem.

It will be our main tool for deriving error exponents in this chapter. As a warmup

before the channel coding exponents, we will analyze error exponents in Chernoff

bound and binary hypothesis testing.



2.1 Preliminaries

We first introduce the notions of a linear family and an exponential family of prob-

ability distributions. These two families happen to be orthogonal to each other in

a certain sense. Later, this orthogonality property called I-projection becomes very

useful. We will use h(n)-g(n) to denote exponential approximation at large n.

log h(n) log g(n)h(n)--g(n) lim = lim logg(n)n-+oo n n--+oo n

This means that h(n) and g(n) are equal up to a sub-exponential factor in n. To

illustrate the - approximation, we now describe Stein's lemma for the binary case.

Consider a random binary sequence Zn = (Z1,... Zn) be drawn i.i.d. with distri-

bution (p, 1 - p). The probability of the empirical output distribution, i.e., output

type being (q, 1- q) equals (,n)pnq_(1 p)n(1-q). Here (n) is the number of sequences

having nq ones and pnq( 1 - p)n(1-q) is the probability of each such sequence. This

probability of output type (q, 1 - q) can be upper and lower bounded as follows using

bounds on (n) in [4].

(n + 1)-2enH(q)6 -n(D(q|lp)+H(q)) < ( p ()pq(- p)n(l-q) < enH(q)e -n(D(qllp)+H(q))

Here H(q) denotes the entropy of distribution q and D(qllp) denotes the KL divergence

between q and p. Hence the probability of observing output type q is -e - nD(ql p)

Similar result holds for non-binary alphabets as well.

2.1.1 Orthogonality of linear and exponential families

Consider a discrete random variable' Z taking values from the finite set Z. Given

a function f : Z --- RK and a constant a E RK, a family £f,c, of probability

1Unless mentioned otherwise, random variables are denoted by capital letters and their values by
small letters.



distributions of Z is defined as:

{f,a I Z-q  q(z) f (z) Eq [f(Z)] = a (2.1)

where Eq [f(Z)] denotes the expectation of f(Z) under distribution q. In other words,

Cf,a is the set of q satisfying K linear (i.e., expectation) constraints. This family is

called the linear family2 of distributions in which the expected value of f (Z) equals

a. Since C£f,o satisfies K expectation constraints as well as the probability simplex

constraint, it is a IZI - K - 1 dimensional hyperplane contained in the probability

simplex in RIZI. For a /3, the £f,, and £Cf, hyperplanes are related by a parallel

shift.

For the same function f(.) and a given probability distribution p, the correspond-

ing exponential family £f,p is defined as:

p(z) . exp (K 1 9fi (z)
SEf,P q q(z) = k(9) e (2.2)

where fi(.) denotes the i'th component of f(.) and k(9) = ( Zp(z) exp 1i fi(z)

is the normalization factor to ensure Z, q(z) = 1. The parameter 0 corresponding to

a point (i.e., distribution) in Sf,p is called the exponential parameter of that point.

Since 9 E RK, note that Sf,, is a K-dimensional surface contained in the probability

simplex in R7II.

For a given p and a linear family £f,,, define q* as the projection of p on £f,a.

q* arg min D(q jp)qE ,-f,

We can now state the I-projection theorem (see [35] for a proof) which is illustrated

in Fig. 2-1.

2The term linear should not be interpreted in the algebraic sense of linearity. It only indicates
that Lf,a satisfies the linear constraints in (2.1) because Eq [f(Z)] is linear in q.



Theorem 1 For any q E £f,,,

D(qljp) = D(qllq*) + D(q*llp)

Moreover, the projection q* lies on the exponential family: q* E £y,p.

p

gf,f

-f,p

Figure 2-1: The exponential family and the corresponding linear family are 'perpen-

dicular' to each other in terms of minimizing KL divergence. Note that although

If,p is illustrated as a straight line, it is not straight (or flat) in the Euclidean sense.

Recall that Lf,4 is a IZI - K - 1 dimensional hyperplane.

Since Sf,p is a K dimensional surface, Fig. 2-1 depicts the case of K = 1. This

case of K = 1, i.e., a scalar f, is particularly useful for analyzing error exponents. In

this case, I-projection reduces the divergence minimization problem into a search over

a scalar parameter 0. The following example shows that the Chernoff bound, which

often shows up in Gallager's derivations of the error exponents, is directly related to

this geometric picture.

Example: Chernoff Bound

Let Z n = (Z 1,..., Zn) be drawn i.i.d. from distribution p. Consider the event

{E ~=1 f(Zi) 2 a}, which can be rewritten as Zn taking an empirical distribution q

such that Eq[f] > a. By Sanov's theorem [35], this probability decays exponentially

in n as follows:

Pr (i f(Zi ) _ - exp -n min D(q|Ip)

The above optimization over q differs slightly from the I-projection theorem in Fig.

2-1. The inequality constraint means we are projecting q on the half-space to the



right of Lf,, in Fig. 2-1 instead of just projecting it on the If,,a. For the moment,

we assume that the two optimizations are equivalent and the optimum q* lies on £f,,

in both of them. For this to happen, the average Eq[f] should be monotonic along

£f,p and moreover, the divergence D(qllp) should be monotonically increasing as move

away from p along Sf,p. Both of these facts will soon be clear in the next sub-section.

Now by the I-projection theorem, q* E Sy,p,

q*(z) = p(z) - eef(z)

k(O)

where 0 is chosen to satisfy Eq. [f] = a, i.e., q* E Cf,.

Now D(q*llp) = Eq. [log p(Z)

= Eq. [Of(Z)] - log k(O)

= a- log P(z). eef(z))

which gives the same exponent as the familiar Chernoff bound. This shows that,

although an upper bound in general, Chernoff's bound is exponentially tight.

2.1.2 Binary hypothesis testing

In the rest of this section, we will focus on a particular kind of exponential family,

one connecting two given distributions. This exponential family can be thought of as

a "line" connecting the two distributions. We then apply this concept to understand

error exponents for binary hypothesis testing.

Consider a sequence Zn of n discrete random variables. Under hypothesis H0, Zn

is drawn i.i.d from distribution Po and under hypothesis H1 , it is drawn i.i.d. from

pl. The MAP test makes the decision by comparing the average log-likelihood ratio

(LLR) _ EnL L(Zi) (where L(z) = log pl(Z) to a threshold a. For LLR less than a,

it chooses Ho and vice versa. If Ho is the true hypothesis, this threshold test makes



an error when

1 L(Zi) Eq[L] > a
i=l

where q denotes the output type observed. Similarly, if H1 is the true hypothesis, an

error happens if Eq[L] is less than a. For applying the I-projection theorem, we now

define f(z) to be the LLR L(z). The two types of error events have probability

Pr(Ho H1) exp n mmin D(qlpo) (2.3)

Pr(H1 -- Ho) " exp -n E[]in D(qp)) (2.4)

The I-projection theorem implies that the optimum q for each of the two optimizations

above lies on EL,po and £L,pi respectively. Since L(.) is the LLR function between pi

and Po, these two exponential families are in fact the same. With slight abuse of

notation, let po,p, denote this exponential family connecting po and pl.

o,, = pt p(z) = po(z) exp[tL(z)] p P(z)pl-t(z)
EPO'Pi = Pt Pt(Z) k(t) k(t)

where t is the scalar exponential parameter 0 E R. Thus the solutions of (2.3) and

(2.4) are indeed the same distribution pt*, where t* is chosen so that3 Ep,, [L] = a.

The two exponents are then given by D(pt. IlPo) and D(pt* Ilpi), respectively. For con-

venience, we usually limit the range of t to be within [0, 1]. Clearly, t = 0 corresponds

to Po and t = 1 to pi. We can thus visualize the exponential family as a straight line

segment connecting po and pi.

There are four quantities that are particularly important for this family:

- t, the exponential parameter (the same as 0 before) preveious

- _ log k(t) = log ••z pt(z)po-t(z), the log normalization factor4

- r Ep, [L], the average log-likelihood ratio (between pl and Po) at Pt

- D(pt lpo), the K-L divergence corresponding to pt.

3 Note that we have again used the I-projection theorem for the inequality constraint.
4This parameter is directly related to the free energy in statistical physics [40].



The following relations between these quantities are easy to check. They are depicted

in Figure 2.1.2, where 4 and r are plotted as functions of t E [0, 1].

0D t
at

OD(pt IPo)

07l
= t

t - =D(pt lpo) + V D(ptljpo)=t) -'

Similarly, we have D(ptllpl) = (t- 1)7-

(2.5)

(2.6)
(2.7)

(2.8)

Note from (2.6) that the exponential parameter t signifies the sensitivity of divergence

w.r.t. average log-likelihood ratio 77.

-D(pt Ipo,

)(Pt I[pi) )(Ptllpi)

Figure 2-2: The top curves denote 0 and the bottom curves denote their derivative
77 as a function of t. The intersects of the tangent to 0(t), at t = 0 and t = 1, give
exponents of the two errors in hypothesis testing.

In the left figure, shaded area denotes 0(t), which is the integral of 77 w.r.t. t. It is the
net sum of the negative area below the t-axis and the positive area above the t-axis.
In the right figure, shaded area (gross) denotes D(ptl Po), which is the integral of t
w.r.t 7r. It is the gross sum of shaded area below the t-axis and the shaded area above
the t-axis. Net addition of the shaded regions in these two figuress gives a rectangle
of area t -7 = 0 + D(pt llpo) because the shaded area below t-axis cancels out.

The Fisher information for this one-dimensional exponential family Ep0,p, param-



eterized by t is:

gt = Ept logpt(Z) = variance of L(Z)

One can also check that the derivative of 7r(t) is equal to gt. This shows that r(t) is

increases monotonically along the exponential family-a fact we assumed previously

in discussing the Chernoff bound.

at2 at a Ap(z))L(z) t=g

and similarly 80D(Pt2  = = D1/gt.

This gives a simple relation between D(pt Ilpo) and the Fisher information as

D(pt po) = 1 didi = sgds (2.9)

Similarly, we get D(Ptl pl) = j(1 - s)gads (2.10)

The double integral also demonstrates that D(pt lpo) increases with t, i.e., the diver-

gence increases as we move farther on the exponential family. This also proves the

fact used earlier: Replacing the inequality constraint in the I-projection theorem by

an equality constraint does not change the optimum solution.

Remarks: Similar to the results in [39], (2.9) gives a relation between an information

theoretic quantity and an estimation theoretic quantity. However, this result involves

a double integral. We do not expect any close connection between the two results.

The simplest case of (2.9) is when gt remains constant (say at g) along gpo,pl.

Such constant is approximation of gt is good when po is very close to pl, which

corresponds to very noisy hypothesis testing problems. The double integral yields a

simple quadratic relation now.

1 1
D(ptllpo) = gt, D(ptllpl) = -g(1 - t)2  (2.11)

2 2



We will revisit this relation when deriving the error exponents for very noisy channels.

2.2 Random Coding exponent for DMC

Now as a more advanced application of I-projection, let us consider the random

coding exponent for a DMC. Error exponents for discrete memoryless channels with

random coding were analyzed in the seminal work of Gallager [38] and later in [4], [6]

and others. More recently, [7] derived these results using large deviation theory and

Lagrange multipliers. We use the same random i.i.d. coding formulation5 as in [7].

A random i.i.d. code of length n and rate R (nats/symbol) consists of [e"n ] code-

words of length n. For transmitting message k E {1, 2... , [e" ] }, the corresponding

codeword denoted by tn(k) -- (2(k), 22(k) ... ,n(k)) is transmitted. The symbols

of every codeword "n(k) are chosen i.i.d. with distribution Px. The output of the

channel takes values from the finite set Y. The channel transition probability is de-

noted by Wylx, i.e., Wvlx(ylx) gives the probability of observing output y E Y for

input x E X.

Without loss of generality, we assume that message 1 was transmitted. Channel

memorylessness implies that the probability of output sequence yn conditioned on

n" (1) is

n

Pr(ynl" (1)) = IvWyix(yi Ii(1)) (2.12)
i=1

n n

=- Pr(yn,.n(1))) = ) =(Px(.i(l)).Wyix(yii(l))) Pxy(ii(1), yi) (2.13)
i=1 i=1

where Pxy denotes the joint XY distribution PxWyix of this channel. The last

step followed because symbols in tn(1) are generated i.i.d. with joint distribution

Px. Hence the pair (±n(1), yn) of the correct codeword and the output sequence is

an i.i.d. sequence generated with distribution Pxy. Let the corresponding marginal

5Although we only consider random i.i.d. codes here, error exponents for randomly chosen fixed
composition codes can be also obtained on similar lines using I-projection. Similarly, error exponents
for List-of-L decoding can also be obtained .



distribution of Y be denoted by Py

Py(y) = Pxy (x, y)
xEX

We can also write Pxy as PyPxly, where Pxly = x denotes the reverse channel

from Y to X.

Since the codewords are generated independently, the output sequence is indepen-

dent of any incorrect codeword Z"(j), where j = 1. Hence the pair (tn(j), yn) of the

incorrect codeword and the output sequence is an i.i.d. sequence generated by the

independent distribution PxPy.

Pr(2'(j), y') = JPx((i(t)) Py(yi)
i=l

2.2.1 Error exponent conditioned on the output type

We now analyze the error probability when the output sequence yn has a given type

Qy. This analysis will give us the error exponent E,(R, Qy) at rate R conditioned

on the output type Qy. Since the number of output types is polynomial in n, the

overall error exponent can be obtained later by a minimization over Qy.

When the received output type is Qy, our space of possible joint (X, Y)-types is

all the distributions which ensure that the marginal distribution of Y is Qy. It is

easy to check that this space of distributions is a linear family. With little abuse of

notation, we denote this family of joint distributions by LQ,.. Any point in this family

has the form QyQxly for some reverse channel type Qxly. The divergence between

a point in this family and the distribution Pxy (related to the correct input-output

pair) is equal to



D(QyQxly IPxy) Qy(y)Qxly(x y)
= vQy(y)Qxiy(xly)log y(xy)

Pxy (x, y)

= QY(y)QxIv(xIY) log Q (Y) QXIY(Xly)
,Y PY(Y) PXIY(2xy)

= D(QyllPy) + D(QyQxvIYJQYPxIY)

> D(QyllPy)

The last step is met with equality when QxiY = Pxly. Hence, the projection of Pxy

on this linear family is given by QYPxly. Thus only the marginal distribution is

changed from Py to Qy but the reverse channel type is the same as Px1y.

On similar lines, the divergence between a point in this family and the distribution

PxPy (corresponding to an incorrect input and output pair) equals

D(QyQxIYIIPyPx) = D(Qy||Py) + D(QYQxIYIIQYPx) Ž D(QYIlPy) (2.14)

Thus the projection of PyPx on LQy, is given by changing the Y-marginal to Qy and

keeping the reverse channel type the same as the (trivial reverse channel) Px.

Now we show that Maximum-Likelihood decoder can also be thought as a Maximum-

LLR decoder. This is because for given output sequence Yn of type Qy, the decoded

message 7h. by the ML decoder is

fm = arg max
1<k< [enRl

= arg max
1<k< [enRl

= arg max
1<k< [e"l]

P(ynjl"( k))

Z log Pylx(yil ~i(k)) (memorylessness)
i=1

n log Pxly((k)Yi) (Baye's rule)
E. Px (.i(k))

n Pxiy(±i(k)Iyi) Qy(yi)
= arg max log

1<k<[enR] 1 Px (i(k)) QY(yi)



Dividing this by n gives

rm==arg max QYv(Y)Qxly(xIy) log QY(y)PxY(xly)
1<k<Q[enR] QY(y)Px(x)

x,y

where QyQl Y denotes the joint type of the k'th codeword and the output sequence

("n(k), yn). Thus ML decoding is equivalent to decoding the codeword with the

largest normalized log-likelihood-ratio between the two distributions QyPxly and

QYPx. Recalling the notation in the previous section, let the joint distribution

QYPxIY be denoted by pi and let QyPx be denoted by Po. Their log-likelihood

ratio can be denoted by L(x, y).

p(x, y) PxIy(x y) Wylx(ylx)
L(x, y)= log P(-Y= log -XX) = log y(-

Po (X, y) Px( PY(y)

Notice that L(x, y) only depends on the channel WYix and the input distribution

Px, so it is independent of the observed channel type. The LLR decoder chooses the

codeword with the largest LLR score.

fn = arg max EQyk [L(X, Y)] =- arg max Sk
1<k<enRl -] xY 1<k<[enRl

where Qly is the reverse channel type for pair (±n(k), y") and Sk = EQQ,, [L(X, Y)]

is the LLR score of the k'th codeword. Note that each score Sk is a random vari-

able depending on the channel noise and codeword f"(k). An error happens if and

only if the score S1 of the correct codeword is less than the score Sj of any incorrect

codeword. To analyze the error exponent, we should know the distribution of these

score variables. We need to find the reverse channel type Qkl which is the dominant

cause of errors.

Consider a sub-family of £CQ where the expectation of L(X, Y) equals rq. This is

a linear family within CQy and we denote it by CQ,,,. It corresponds to the dashed

line in Fig. 2-3. Applying the I-projection theorem, we see that the projection of Po

(or pi) on CQ,,n is given by QyP ) for some t [0, 1], where the reverse channel
,XY- x]Y oetE[, ] leete ees hne



D(QYI PI )
Py P. 0 ..........

... . .. . . . . . ..

QY P.

D(QO1 PY )

Figure 2-3: The rectangular frame represents the linear family £Q,, which is the set
of all joint XY distributions for which the Y marginal distribution equals Qy. The
dashed line represents £Q,,, although note that £Q,,, need not be single dimensional.

P(t) for each y E Y is

h Y (xly)

where k,(t)

Pk y((xIy)Pk:t (x)
k (t)

= S Pi~y(x y)Pj-(x)
xEX

The superscript t of P~ y(xly) is parenthesized to distinguish it from Ply(xly)

the tth power of PxlY(xly). Conditioned on output type Qy, an incorrect codeword

is generated i.i.d. with distribution Px. Hence applying Sanov's's theorem and I-

projection gives the following exponent for the score Sj of a wrong codeword exceeding

j. It is obtained by optimizing the reverse channel type Q'x 1, to the j'th codeword.

lim log Pr(SA t 71 Qy)
n--soo n

where t satisfies 7=

min D(QyQjxlyliPo)
Y:xly:Sj>_

D(&QyP.y liPo) (by I-projection)

D(QvPt)q QYPx)

EQx I [L(X, Y)] - q (t)

(2.17)

(2.18)

(2.19)

(2.20)

Thus, given output type Qy, the dominating manner in which a wrong codeword's

(2.15)

(2.16)

QYPX

.... ·.......



score Sj crosses 7r is when the joint type of ("n(j), yn), given by QYQ~Y', lies on the

exponential family EQ, defined as

, = {QVPjy for t [0, 1]}

This family connects QyPxly and QYPx within £Q,. It is illustrated in Fig. 2-3 as

a straight line connecting QYPxIY and QyPx (although note that it is not straight

in the Euclidean sense).

Similar steps can be repeated for the score S1 of the correct codeword. Condi-

tioned on the output type Qy, symbols of the correct codeword are chosen i.i.d. with

distribution Pxly. Again apply Sanov's theorem and I-projection to optimize the

reverse channel type Q1, to the correct codeword "n(1).

lim log P(S= • qQ(t)I Qy) = min D(QyQ1xyJJp1 ) (2.21)

= D(QyPiyIIpi) (2.22)

= D(QyP(tyIIQYPxIY) (2.23)

Thus given output type Qy, the dominating manner in which the correct codeword's

score S1 is smaller than 7 is when the joint type of (fn(1), yn), given by QyQ ly, lies

on the same exponential family SQ.-

By the union bound, the exponent of the probability that one or more wrong code-

words have a score crossing the threshold l r, (t) is given by6 [D(QyP(t)I QyPx) -

R]+, where [x]+ = max{0, x}. Since all codewords, are drawn independently of

each other, the exponent E(t, R, Qy) for the joint probability of S1 < 7rlQ(t) and

Sj > r7Q, (t) (for some j Z 1) is the sum of the exponents for these independent

events.

6Since all codewords are drawn independently of each other, this exponent of union the bound is
precise. This follows by standard arguments like Chebyshev's inequality as in [41].



E(t, R, Qy)

-im log P(S1 < 77Q,(t), 3j - 1 s.t. Sj Ž rlqQ(t)l Qy)
n- n+ [D(QP

= D(QyPyt|IyQyPxly) + [D(QyPxy /IQyPx) - R] +

(2.24)

(2.25)

(2.26)

The error exponent Er(R, Qy) conditioned on Qy is obtained by minimizing the

above expression over the LLR r/Qy(t) or equivalently minimizing it over t. This

minimization corresponds to finding the LLR which dominates the error event for

this Qy.

Using (2.7) and (2.8), we can prove the following:

D(QyPXyIllQyPx) = D(QyP)Iyllpo) = t7Qy(t) - OQ,(t)

where /Q,(t)-- E Qy(y)logky(t)
yEY

Similarly, D(QyPtl I |QyPxvy)= D(QyP jy|IPi)

=(t - 1)lQY (t) - oQy (t)

(2.27)

(2.28)

(2.29)

(2.30)

Recall that for each y, k,(t) is the normalization constant for reverse channel P(t) .

Now we will minimize E(t, R, Qy) in (2.26) over t to obtain Er(R, Qy). Let t be

the solution to the following equation

D(Qy)I ('D ) PIpo) = RD(Qj-P~jyjjYyXx = D(QYP~jy (2.31)

For any t < i, the exponent E(t, R, Qy) > E(i, R, Qy). This is because the first term

in (2.26) increases with decreasing t and the second term will remain at 0 for t < t.

Hence the optimum solution lies in [i, 1]. Since D(QyPI|YI QYPx) > R for t E [t, 1],

[D(QyP (t ) I Q x) - R]+ = D(QyP ~xllQPx) - R

# E(t, R, Qy) = D(QyPJtlyIQyPxiy) + D(QyP•IyIQyPx) - R

= (2t - 1)?Qy (t) - 2'iQ, (t) - R (from (2.27) and (2.30))



Differentiating this w.r.t. t and equating it to 0 gives,

(2t - 1)gQy(t) + 2r7Qy(t) - 2 ) = 0

=' (2t - 1)gQy(t) = 0 (because QY = 7Q (t))

Since the Fisher information gQy (t) is strictly positive, the optimum t* = 1, provided

1 1e [t, 1]. Otherwise, if 2 < i, then E(t, R, Qy) is strictly increasing in [t, 1] because

its derivative (2t - 1)gQ,. (t) is always positive. Then the optimum t* equals t. The

optimum t* > 1 in either case. This phenomenon reflects the union bound constraint

of p < 1 in Gallager's analysis. In fact the p in that analysis and t in this analysis

are related as t = 1/(1 + p).

Thus we get the error exponent conditioned on output type Qy as follows:

Er(R, Qy) = D(QyP(yIIQyPxvy) if i

= D(QyP 1Q ||QyPxy)+ D(QP Qy IQYP) -Y)

+ D D(1/Xly)IlQyPx) - R

1>-
-2

if t<
-2

(2.32)

(2.33)

(2.34)

where i is the solution to D(QyP(iyj QyPx) = R. This solution is depicted in the

figure below.

t=t*
R -t* Er(R,Qy)

Qy P Q P (t)

(a) tV = >

Q=1/2

Y X Q ~Y PXly P1

Er (RQy) =D1 +II -R

(b) V' =1>

Figure 2-4: Geometric interpretation of error exponent conditioned on output type
Qy. The rectangular frame in each figure denotes the linear family CQy. The solid
line in it represents the exponential family EQy. The distance between two points
corresponds to their KL divergence (in appropriate order).



Note from (2.31) that t increases with R. Hence the case of t >1 corresponds-2

to high (enough) rates R and vice versa. Thus the equations above (re)derive the

following phenomenon in [5]:

1. The dominant cause of error for high (enough) rates (i.e. t >_ ) is when a large

number of incorrect codewords can be confused with the correct one.

2. The dominant cause of error for lower rates (t < ½) is when a single incorrect

codeword is confused with the correct one.

The expression in (2.32) also provides an upper bound to the actual random coding

exponent E,(R, Qy). This bound is related to the sphere-packing exponent. This

expression is an upper bound because it is equivalent to relaxing the minimization

constraint t* > 1/2 (or p < 1) and assuming t* always equals t.

Remark 1: Note that for each output letter y, the dominant reverse channel type

Qxlly(.ly) lies on the exponential family (in the space of distributions on X) connect-

ing Px(.) and Pxly(.Iy). Analysis in this section, based on the spaces of joint XY

distributions, trivially shows the following coupling phenomenon between the domi-

nant reverse channel type for all output letters y. The exponential parameter t is the

same for the reverse channel type from each letter y, which creates a coupling between

these reverse channel-types. Thus the dominant reverse channels for all output letters

are equally tilted, where t corresponds to the common tilt parameter.

2.2.2 Optimizing over output types

Previously we found the error exponent E,(R, Qy) for a given output type Qy. Since

the output sequence is generated i.i.d. according to Py, Stein's lemma implies that

exponent of observing type Qy equals D(QyjIPy). Hence the overall exponent of

error corresponding to output type Qy is given by

E,(R, Qy) + D(QyJIPy)



The effective error exponent is given by minimizing the above expression over all Qy.

E,(R) = min D(Qy (Py) + Er(R, Qy) (2.35)
QY

Let the optimum (or dominating) Qy be denoted by Q*. For a symmetric chan-

nel (like the BSC) with uniform input distribution Px, conditional error exponent

Er(R, Qy) is independent of Qy. Hence the Q* equals Py. Thus previous subsection

is enough to understand the symmetric channel case.

However, for non-symmetric channels, the optimum Q* need not be simply Py.

Let the joint type which dominates the error event be given by Q P(*), where Qy

optimizes (2.35) and conditioned on Q*, the reverse channel type P(, achieves

E(R, Q,) in (2.32,2.33). We saw previously that dominating error event conditioned

on the output type happens when the reverse channel type lies on the exponential

family {P( ) for t E [0, 1]} of reverse channels. This family connects the trivial re-

verse channel Px and actual reverse channel Pxiy. It turns out that the dominating

output type Q* also has such interpretation in terms of a certain exponential family.

Refer to Appendix A for a simple proof based on I-projection.

Theorem 2 Consider the exponential family connecting pi = Pxy to Po = Q Px.

The joint type QP(t*) dominating the error event lies on this exponential family (see

Fig. 2.2.2).

t* t*

(y)PX1y(xIy) = k(t*)

where k(t*) = ZApt1*(xy)PO1t*(x'y )
x,y

The interesting part of this theorem is although Q* need not be the Y-marginal

throughout this exponential family in space of joint XY distributions. Nonetheless,

it is indeed the Y-marginal at the optimum t* on this exponential family: optimality

guarantees consistency. Also note that reverse channel at any t on this exponential

family is the same as P(t) as before. Recall that P(t) was the reverse channel seen in



previous subsection (where Y-marginal was fixed to Qy) for exponential family Qy,

connecting QyPx and QyPxly.

Figure 2-5: Geometric interpretation of the dominant Qy and the random coding

exponent E,(R). Here plane of the paper represents the space of all joint distributions.

The solid line in each figure represents the exponential family connecting its two ends

(although it is not straight in the Euclidean sense).

The distance between two points corresponds to their KL divergence and the shaded

ball in Figure (a) denotes all joint distributions within KL divergence R from Q;*Px.

As an aside, Figure 2.2.2(a) is very similar to the figure in [14] for the source-coding

error exponent. That source-coding exponent is obtained similarly by I-projection on

a divergence ball.

Q

t=1/2
D I  D2

R-

x;1 2) P'y

E (R )=D 1 + D, -R
r

(b) R< R

(a) R > Rc
The distance between two points corresponds to their KL divergence and the shaded
ball in Figure (a) denotes all joint distributions within KL divergence R from Q* Px.
As an aside, Figure 2.2.2(a) is very similar to the figure in [14] for the source-coding
error exponent. That source-coding exponent is obtained similarly by I-projection on
a divergence ball.

Recalling P (*)Pxy) (XIY))Px-*(X) from (2.15) and plugging this in the above



theorem gives

(Qg;(y)),*

=y Q;y (y)

(by Baye's rule)

oc (Py(y))t*k,(t*)

c Py(y). kt* (t*)

= Py(y). P IY(xIy)PF '(x))

= PX•X)P;xX(y•x)( )1X
This is the same solution as [7] for the dominant output type Q* for error events. To

emphasize the dependence of Q* on t*, let it be denoted by Q *). The optimum t*

equals 1 for rates below the critical rate given by2

Rc = D(Q(12) p (1/ 2) 1/2)P)
R,ý=: Y XlY QY ) X )

(2.40)

For higher rates, t* is the solution to

D(QP(t*) II(t*> GQy(t*QPx) = R (2.41)

Since t* and Qt) are dependent on each other through (2.39) and (2.41), a closed

for expression cannot be given for either of them. However, iterating between (2.39)

and (2.41) converges to the optimum t* and Qt*). This gives an algorithm similar to

Blahut-Arimoto for calculating error exponents at R > R,.

To summarize, we derived the random coding error exponent:

E,(R) D D(Q1/2)px(1/2) XY) +
-D(QCll2)PyIIPxy) +

D(Q 1/2) 1/2)y 1/2)pX) - R for R <R,

= (Q(t*)P( xIPxy ) for R > Rc

(2.42)

(2.43)

(2.44)

(2.36)

(2.37)

(2.38)

(2.39)



2.2.3 Very noisy channels

We define a very noisy channel as a channel for which the distribution Px is very

close to Pxly(.Iy) for each given y E Y. Thus the conditional distributions PxlY(.IY),

denoted in short as PxiY=,, are very close to the unconditional distribution Px.

Equivalently for each y E Y, the Fisher information gy(t) is constant7 for the

exponential family of X-distributions joining Pxl=,y and Px. Let this constant Fisher

information for output y be denoted by gy. For a given output type Qy this implies

D(QyP yIIQyPx) = Z Qy(y)D(P j|y4iPx)
yEY

= Qy (y) -2 (using (2.11))
yEY

-t2CQy

where CQ, is a shorthand for Q((y)g ). Substituting t = 1 shows that CQ,

equals D(QyPxIyvIQyPx). Similarly using (2.11), we can show that

D(QyPt) jQYPxly) = E Qy()D(P I PxY=y)
yEY

= (1 - t)2CQY

Recalling that the error exponent conditioned on output type Qy for R > R, equals

E,(R, Qy) = D(QyP4~yIQPxly) = (1 - t)2CQ

where t satisfies, R = D(QyP yIIQyPx) = t2CQ_

7This happens when the channel's conditional output distributions Wylx('Ix) for different x E X
are very close. That is, for some probability distribution qy, Gallager defines [2]

Wylx(ylx) = qy(y) + T(x, y) (2.45)

where E tends to zero in the very noisy limit and T(-, -) is a fixed matrix. Every row of T sums
to zero to ensure that Wyix(-lx) remains a valid distribution. The channel capacity and Fisher
Informations gy(t) are of the order O(E2 ) in this setup. Up to this order, the Fisher information
gy(t) remains constant in the range of interest for t.



Eliminating t from the two equations gives,

E(R, Qy) = CQY(1 - Y 2 = (

VRIC+y = /Q _ /)
The overall error exponent is obtained by optimizing over the output type

E,(R) = mmin D(QyjjPy) + Er(R, Qy) = min D(Qy IPy) + (VC - V/-R) 2

QY QY

Choosing Qy = Py for the capacity achieving Py gives the approximate solution in8

[2].

For the above minimization over Qy, since ET (R, Qy) depends on Qy only through

its effect on CQY = EQY [gy/2], the optimum Q* will be on the exponential family

Sf,Py of y-distributions going through Py for f(y) = gy = 2D(PxlY=y IPx) (due to the

very noisy assumption). This family is denoted by g,,,py (see Fig. 2-6). I-projection

theorem implies the optimum Q* is of the form

1
Q*(y) = ) Py (y) exp(0gy)

for some 0 E 1R where k(O) is the normalization constant. A general (not very noisy)

channel need not have Q* of this form.

I~j

9

q*'

Figure 2-6: The space of Y-distributions:
S,,,py and dashed line shows an orthogonal

solid line shows the exponential family
linear family £ ,,9 = {QyI EQ, [gy] = r7}.

8In fact, for the very noisy channel in [2], this substitution gives the right answer in the E
2 scaling

of interest as e in (2.45) tends to zero.



2.3 Error exponent of the expurgated ensemble

Snce I-projection gives us a tool to address high-dimensional optimizations, let us

analyze the error exponent of Gallager's expurgated ensemble. We first create an

i.i.d. random code of rate R, generated using input distribution P. With some abuse

of notation, let zx denote the correct codeword T"(1) and let zn denotes an incorrect

codeword f"l(i). Let Qxz denote the joint type of (xz, zn) and let Qylxz(.Ixz) denote

the conditional output type of y" where the correct input is x and the incorrect input

is z.

From this random code, let us throw away the "bad" codeword pairs which are "too

close". More specifically, we expurgate codeword pairs such that D(QxzlIP0P) > R,

where P 0 P denotes independent X and Z, with marginal distribution P for both.

Since the fraction of such codewords will be exponentially small, this rule guarantees

that the rate of the expurgated code is not smaller than R. After expurgation all

codeword pairs will satisfy D(Qxz IP 0 P) K R. The error exponent Ee,(R) of this

expurgated code equals

Eex(R) = min Ex(Qxz) + (D(QxzllP 0 P) - R) (2.46)
Qxz: D(QxzllIPP)<R

where Ex(Qxz) denotes the error exponent for a codeword pair with type Qxz. The

second term is due to the union bound9 and the fact that the exponent of observing

the joint type Qxz in an i.i.d. random code equals D(QxzllP 0 P). Now let us

analyze Ex(Qxz), which is given by this minimization over conditional types Qyixz.

Ex(Qxz) = mi Z Qxz(x, z)D (QYIxz(- xz)| Wy1x(.-x)) (2.47)
QYixz: error

where Wyix(.Ix) denotes the actual channel distribution from the correct input and

error happens when log-likelihood of the correct codeword is smaller than that of the

9As seen earlier, this term of union bound is precise since all codewords are drawn independently
of each other. This follows by standard arguments like Chebyshev's inequality as in [41].



wrong codeword, that is,

SQxz(z, z)QyIxz(ylxz) log WYx(yjx) < 0 error (2.48)
XIZIY WY1x(ylz )  _
xz,y

i.e. EQxzQYixz [L(YIX, Z)] < 0 € error (2.49)

where L(ylx, z) is a shorthand for the log-likelihood ratio log W.yx(ylX) Thus calculat-Wyx(yIz) *
ing Ex(Qxz) involves minimizing a weighted average of D (Qy1xz(-xlz)IIWYlx(-Ix))

in (2.47) under the constraint (2.49) on the weighted average of log-likelihood ratio.

In this optimization for Ex(Qxz), I-projection implies that optimum conditional

type Qylxz(I xz) for any pair (x, z) lies on the exponential family {p(t)x : t [0, 1]}

connecting the channel from correct input WYlx(.Ix) to the channel from incorrect

input WYix(.Iz):

Pt)xz(-Ixz) oc Wlx(.Ix) .WWx(.jz) V , z

Similar to Remark 1, the exponential parameter t is the same for each pair (x, z) E

X x X. Hence finding E(Qxz) only needs a scalar optimization:

E(Qxz) = min E Qxz(x, z)D (P(xz("(xz)I Wyx(.|x)) (2.50)
t:error

X,z

where error happens for t, i.e., EQxzP),xz(Ylxz) [L(YIX, Z)] < 0.

Let us compare this approach to Gallager's analysis of the expurgated ensemble in

[38]. There the error probability for codeword pair (xn, z') is bounded as follows:

Pr(error from x' to zn) = Wy1x(ynlxn)
y": 1J4 x (ynJlz7,)> _Wy lx (yn• x

" )

Wvyx(yndn) yrliW ix)(y ni)

where Wy x(y"lXn) is used as a shorthand for IIWy1x(yiJxz), the conditional proba-



bility for this channel Wyix.

An exercise in [4] also starts with the same square-root trick and gets the same

error exponent as in [38]. This trick is equivalent to substituting t = 1 as the minima

in (2.50). It is not clear why the minimum should always be attained at 1

However, at R = 0, the expurgation constraint D(Qxz IIP 0 P) < 0 implies

Qxz = P 0 P, which is a symmetric distribution in (x, z). It is easy to see that

S= should attain the minimum in (2.50). It follows since for a symmetric Qxz,

Sis the smallest i where the error constraint in (2.49) is satisfied (with equality).2

For the minimization in (2.50), we should choose the smallest possible t as WYix(-lx)

corresponds to t = 0.

For R > 0 however, it is not as obvious. Nonetheless, even for R > 0, it can be

shown that the minimum must be attained at 1. This follows by noticing that the

overall optimization problem for Eex(R) over Qxz and Qylxz:

Eex(R) = min min (Ex(Qxz) + D(Qxzl|P 9 P) - R)
Qxz:D(QxzlIP®P)<•R QYIxz: error

where, error = EQxzQyxz [L(YIX, Z)] < 0

Note that for a fixed Qyixz, this problem is a convex minimization in Qxz and

vice versa. Now fixing t = 1means fixing Qvyxz to be p(./ 2) For this fixed choice of

QyIxz, the above minimization over Qxz yields an optimal Q*z which is symmetric10

in X and Z. As we discussed before, if we change the order of minimization by fixing

this symmetric Qz and then optimizing over Qylxz, we get t = 1 as the optimum

choice.

The above discussion shows how t = 2, i.e., QYixz = P YIXZ and the corresponding

optimal Q}*z are a stationary pair for the minimization for Ee (R). Convexity of that

minimization in its arguments implies the optimality of this pair. This concludes

the argument for optimality of Gallager's square-root trick. This proves that his

expurgated bound was tight for the expurgated ensemble and further strengthens the

10This follows since if an assymetric Q'X, is feasible, then interchanging X with Z in Q'xz also pro-

vides a feasible XZ distribution. Denote this flipped distribution by Q'xz and note that ,'z is

symmetric, feasibile, and gives smaller E, (R) than Q'xz or Q'xz due to convexity of KL divergence.



conjecture in [3] about tightness of expurgated bound for an arbitrary code (at small

enough R).

2.4 Concluding remarks

A similar analysis can be used for more high-dimensional problems such as expurga-

tion for List-of-L decoding. It also clarifies what it means for a tuple of codewords

to be "too close" to each other, i.e., which codeword-lists are likely to cause errors.

Consider the List-of-2 decoding for example. If (xn , zn , if) denotes the correct code-

word and two incorrect codewords, we will expurgate all codeword triads for which

the joint type Qxz2 satisfies D(Qxz2IIPx 0 Px 0 Px) 5 2R. This is on similar lines

of the expurgation constraint D(QxzllPx 0 Px) < R in the last section. Again this

expurgation step has no effect on the rate of this randomly generated code.

One interesting difference now is we need to consider the exponential family be-

tween three distributions as opposed to two. Intuitively, it corresponds to the "tri-

angle" connecting these three distributions instead of the "straight line" connecting

two distributions. There are some curious similarities between properties of this tri-

angle with that of an Euclidean triangle. In particular, one can create an analogue

of the elementary geometry theorem that 'all perpendicular bisectors of a triangle

coincide at a point and its distance from all corners of the triangle equals the circum-

radius'. Figuring out the details of this theorem's analog is left as an excercise". This

circum-radius also has an operational meaning. It is related to the error exponent

for List-of-two decoding in a ternary Hypothesis-Testing problem, where under each

hypothesis, the observed Y" is distributed i.i.d. according to one of the corners of

the triangle.

Now let us move to a rich class of error exponent problems that arise in unequal

error protection scenarios.

"Hint: The the sides of the triangle are certain exponential families and their perpendicular
bisectors are certain linear families.





Chapter 3

Unequal Error Protection near

Capacity

This chapter discusses error exponents for UEP in a point-to-point channel without

feedback. We will focus on situations where the data-rate is essentially at channel

capacity'. Now exponential reliability becomes a luxury which is not available for

all information. We will answer whether and how at least some special bits or some

special messages can achieve exponential reliability.

We start by defining the channel model and some basic definitions in Section 3.1.

Our results on UEP exponents for bit-wise UEP and message-wise UEP for block

codes are discussed in Section 3.2. After discussing each theorem, we provide a brief

description of the optimal strategy. Proof details can be found in Section 3.3.

3.1 Channel Model and Notation

3.1.1 Channel Model and Block Codes

We will consider a discrete memoryless channel WyIx, with input alphabet X =

{1, 2,..., IXI} and output alphabet y = {1, 2,..., IYI}. As earlier, this means that

the conditional distribution of output Y when the channel input X equals x E X is
1This chapter and the next chapter is joint work with Baris Nakiboglu (in addition to Lizhong

Zheng) and these results were reported first in [10, 11].



denoted by Wylx (. x). We assume that all the entries of the channel transition matrix

are non-zero, that is, every output letter is reachable from every input letter. This

assumption is indeed a crucial one and many results will change when some channel

transitions have zero probability.

A length n block code without feedback with message set M = {1,2,..., IM|}

consists of an encoder and decoder. The encoder assigns a length n codeword t (k) -

(t 1(k), I 2(k) ..- ,.n(k)) for each k E M, where tt(k) denotes its input at time t. At

time zero, the transmitter is given the message M, which is chosen uniformly from

M. In the following n time units, it sends the corresponding codeword "'(M). After

observing yn, the receiver chooses the decoded message M (yn).

The average error probability Pe and rate R of the code is given by

Pe - Pr [_A= M] and R logl (3.1)

3.1.2 Different Kinds of Errors

In message-wise UEP, we will consider the conditional error probability for a partic-

ular message i E M:

Pr [ il M = i]. (3.2)

Recall that this is the same as the missed-detection probability for message i.

On the other hand when we are talking about bit-wise UEP, the overall message

is composed of two components, M = (M1 , AM2), where Mi is chosen uniformly from

message set Mi. For example, Al may correspond to the high-priority bits while AM2

corresponds to the low-priority bits. Note that now the message set M is equal to

the Cartesian product M 1 x M 2. The error probability of decoding AMj is given by

Pr[ # MA] j=1,2 (3.3)

Note that the overall message M is decoded incorrectly when either MAl or NM2 or

both are decoded incorrectly. The goal of bit-wise UEP is to achieve the best possible

Pr [Al 1 =, M1] while still ensuring vanishingly small overall Pe = Pr [A•'I MA].
I ] I



3.1.3 Reliable Code Sequences

For our discussion of error exponents while reliably approaching capacity, we use the

notion of code-sequences to simplify our discussion without losing its rigor.

A sequence of codes indexed by code-length is called reliable if and only if

lim P (n) = 0 (3.4)
n---00

For any reliable code-sequence Q, its rate RQ is given by

RQ - lim lOglM()l (3.5)

Throughout this thesis, rates will be defined in terms of lim,,, as above and we will

solely focus on Q for which this limit exists. The (conventional) error exponent of a

reliable sequence is defined as

EQ - liminf - lo° Pe" )  (3.6)

Thus the number of messages in Q grows as " enRQ and its average error probability

decays as Pe(n) = e- nEQ, where - denotes equality in the exponential sense. More

precisely, for a sequence a(n)

at") - e"nF 
'= F = lim inf loga(n) (3.7)n-+oo n

For cleaner expressions, we will omit the sequence index (n) in the superscript when-

ever possible. Now let us define error exponent E(R) in the conventional sense, as in

[2],[3],[4],[5],[7].

Definition 3 For any R < C the error exponent E(R) is defined as

E(R) _ sup EQ (3.8)
Q:RQ>R

As mentioned previously, we are interested here in UEP when operating at capacity.



We already know that E(C) = 0, [3], i.e. the overall error probability cannot decay

exponentially at capacity. In the following sections, we will show how certain parts

of information can still achieve a positive exponent at capacity. In doing that, we

will be solely focusing on the reliable Q's whose rates are equal to C. We will call

such reliable code sequences capacity-achieving sequences. This definition is especially

useful since capacity is defined as the supremum of all achievable rates and the notion

of operating at capacity needs to be formalized carefully. With the above definition

of a capacity-achieving sequence, we can transmit reliably at capacity2.

Adhering to earlier notation, the KL divergence between two distributions ax (.)

and x x(-) is denoted by D (ax (.)J Ox()) or D (axII /3x) in short.

D (ax ()Il xix()) = ax (x) log ax(x)
xEX

The conditional KL divergence between WYIx(.I.) and VYlx(-I-) under Px(.) will be

denoted by D (Wylx(-IX)II Vyx(.IX) Px). This is the same as the divergence be-

tween the joint XY-distributions PxWyix and PxVylx.

D (Wy 1x(-X)j Vy1x(.X)I Px) E Px(x)D (Wylx( -Ix) lVyx(.Ix))
xEX

= Epx [D (Wylx(.-X)JI VYix(-.X))]

An input distribution that achieves capacity will be denoted by Pý. The correspond-

ing output distribution will be denoted by Pr.

2Recall that in conventional definitions [2), the message set grows as IM(")J = [exp(nR)] at data
rate R. In that setup, reliable communication at R = C may not be possible. However, with our

definition, the message set of a capacity achieving Q could grow as IM('")I e= pR) 1 for example.

This decrease in JM(')J by a sub-exponential factor allows reliable communication at capacity for
our definition.



3.2 UEP Exponents for Block Codes

3.2.1 Special bit

We first address the situation where one particular information bit (say the first) out

of the total log2 IMJ information bits is a special bit-it needs a much better error

protection than the overall information. For example, this special bit may be thought

as the shortest possible packet header. If this first bit is denoted as bl and its decoded

value is denoted by b1, we require the error probability for bl to decay exponentially

while still ensuring reliable communication at capacity for the remaining bits.

In the Cartesian-product terminology, the single special bit scenario is equivalent

to defining M 1 = (0, 1}, from which M1 is chosen uniformly-it denotes the special

bit bl. The overall message equals lM = (4 1, M2), where AM2 is independent of M11

and chosen uniformly from M 2. The optimal error exponent Eb for the special bit is

be defined as follows3 .

Definition 4 For a capacity-achieving sequence Q with message sets M (") = M 1 x

M() where M 1 = {0, 1}, the special bit error exponent is defined as

Eb,Q - lim inf - log Pr [  ]  (3.9)
n--oo n

Then Eb is defined as Eb = supQ Eb,Q.

Thus if Pr [b, # b] --- exp(-nEb,Q) for a reliable sequence Q, then Eb is the

supremum of Eb,Q over all capacity-achieving Q.

Since E(C) = 0, it is clear that the entire information cannot achieve any positive

error exponent at capacity. However, it is not clear whether a single special bit can

steal a positive error exponent Eb at capacity.

Theorem 5 Eb = 0
3Appendix B discusses a different but equivalent type of definition and shows its equivalence to

this one. In that definition, we first define the best single bit exponent achievable while communi-
cating reliably at a. data-rate below capacity, R < C. Then the single bit exponent at capacity is
defined as the infimum of these single bit exponents over R E [0, C). These two types of definitions
are equivalent for all the UEP exponents we discuss.



b = 0
Impossibl=

Impossible!

Figure 3-1: Splitting the output space into 2 distant enough clusters.

This implies that if we are aiming to protect a single bit with exponential reliability,

the data-rate must be strictly less than capacity. Section 3.3 contains a detailed proof

of this theorem.

Intuitive Interpretation: Let the shaded balls in Fig. 3-1 denote the smallest

decoding regions of the - enc messages for ensuring reliable communication. These

decoding regions essentially denote the typical noise-balls [9] around codewords, which

ensure reliable communication.

The decoding regions on the left of the thick line corresponds to b1 = 1 and those

on the right correspond to the same when b1 = 0. Each of these halves includes half

of the decoding regions.

For achieving a positive error exponent for the special bit, the codewords in the

two halves should be sufficiently separated from each other as seen in Fig. 3-1. Such

separation is necessary to ensure exponentially small probability of landing in the

wrong half. However, the above theorem indicates that such a thick patch takes too

much volume, and is impossible when we have to fill - enc typical noise balls in this

output space.

Remark: This theorem for a single special bit immediately implies that no positive

exponent is possible for multiple special bits when the data-rate is approaching ca-

pacity. This is helpful for characterizing the effectiveness of codes when the packet

header is very short compared to the total packet length. In many communication



protocols, such short headers are protected by simply using some low-rate code. Such

a low-rate header code can achieve a good (positive) error exponent in terms of its

own length. However, often the header code is simply concatenated with the code

for ordinary bits and the length of the header code is negligible compared to the

code for ordinary bits. Hence if the code for ordinary bits is approaching capacity,

the concatenated code also approaches capacity. Since the length of the header code

becomes a negligible fraction of the overall codelength, the special bits in the header

cannot achieve any error exponent in terms of the overall codelength. Theorem 5

implies that no other scheme can achieve a better error exponent for the special bits4

in terms of the overall codelength.

3.2.2 Special message

Now consider situations where one particular message (say M = 1) out of the en c

total messages is a special message-it needs a superior error protection. The missed-

detection probability for this 'emergency' message needs to be minimized. A popular

approach in many network protocol is to simply add a flag bit to indicate this special

message. This flag bit is 1 when the special message is to be sent and 0 otherwise.

The special message is then protected by protecting this special flag bit better than

other bits. However, this approach cannot provide a positive exponent for the special

message due to the previous negative result for a special bit, Eb = 0. Hence some

different approach needs to be used. Let us now define the best missed-detection

exponent Emd on similar lines of Eb.

Definition 6 For a capacity-achieving sequence Q, the missed-detection exponent is

defined as

Emd,Q -- liminf-log Pr [#Jl M= ]  (3.10)
n---oc n

Now define Emd = supQ Emd,Q.

4However, this simple concatenation scheme may not be optimal when the overall data-rate is
not approaching capacity. The UEP exponents for the case of rates below capacity are discussed in
Chapter 5.



Compare this with the situation where we aim to protect all the messages uni-

formly well. If all the messages demand equally good missed-detection exponents,

then no positive exponent is achievable at capacity. This follows from the earlier dis-

cussion about E(C) = 0. The theorem below shows the improvement in this exponent

if we only demand it for a single message instead of all.

Definition 7 The parameter ERed is called5 the Red-Alert Exponent of a channel.

ERed = maxD (P*(-) I WYIx('-Z)) (3.11)
xEX

We will denote an input letter achieving above maximum by x,.

Theorem 8 Emd = ERed

Notice the relation between ERed and C: the arguments to KL divergence are

flipped. It is because Karush-Kuhn-Tucker (KKT) conditions for achieving capacity

imply the following expression for C [4].

C= maxD (Wyix(.Ix)II P(.)) (3.12)
xEX

Capacity C represents the best possible data-rate for a channel, then Red-Alert Ex-

ponent ERed represents its best possible protection for a message while achieving

capacity.

It is worth mentioning here the "very noisy" channel in [2]. As discussed later

in Chapter 6, the KL divergence is symmetric for very noisy channels. This means

D (P(.)IIJ Wyxx(-li)) - D (Wyix(-li)JJ P (-)), which implies the Red-Alert Exponent

and the capacity are essentially equal. For a symmetric channel like the BSC, every

input x E X achieves the maximum in Eq. (3.11) and hence can be chosen as Xr.

Since Pý is the uniform distribution for these channels, ERed = D (P (.)II WYIx(-.x))

for any input letter x. This also happens to be the sphere-packing exponent E,,sp(0)

of this channel [3] at rate 0.
5Thanks to Krishnan Eswaran of UC Berkeley for suggesting this name.



Optimal strategy: The codeword for the special message can be optimally chosen

as a repetition sequence of the input xr. Its decoding region G(1) contains every

output sequence whose empirical distribution, i.e., type is not (approximately) P*.

For ordinary messages, codewords of a capacity achieving code will be used. The

receiver uses maximum-likelihood (ML) decoding over the ordinary codewords for

output sequences outside 9(1).

Intuitive Interpretation: The missed-detection exponent for the special message

corresponds to having a large decoding region G(1) for the special message. This

ensures that when the special message is transmitted, the probability of landing

outside 9(1) is exponentially small. In a sense, Emd indicates how large g(1) could

be made, while still filling - enc typical noise balls in the remaining space. The red

region in Fig. 3-2 denotes such a large region. Note that the actual decoding region

!(1) is much larger than this illustration, because it consists of all output types except

P*, whereas the ordinary decoding regions only contain the output types close6 to

Pý .

Figure 3-2: Avoiding missed-detection

The utility of this result is two fold: first, the optimality of such a simple scheme
6 To be precise, this is the following set of output types Q

{Q : maxljQ(Y) - Pj(y)ll <  /1-/n}
This set of Q close to P

This set of Q close to Pý is denoted by [P1'4.



was not obvious before; second, protecting a single special message can be a key

building block for many other problems when some feedback is available, for example7

[30, 31]. We also use this building block in Chapter 4.

BSC Case Study: Consider a binary symmetric channel of capacity .9 bits/symbol.

Its crossover probability is around 0.012, which implies its red alert exponent equals

1.48. It means even for modest codelength like 2000, as in some Ethernet stan-

dards, the missed-detection probability of the special message is around 10-1250! Thus

missed-detection probability for the special message is orders of magnitudes smaller

than the overall error probability at these codelengths, which is around 10- 15 at best.

This example also demonstrates how a positive exponent translates to extremely small

error probabilities. Although these calculations provide good guidelines for system

design, they should taken with a pinch of salt. It is because these error probabilities

in practice may be dominated by other reasons such as outages.

Also remember that the scheme to achieve this error probability was simple-just

append your favorite capacity-achieving code (say an LDPC code) with the special

codeword (Xr, X, .... , r). The decoder applies its favorite decoding rule between

ordinary messages (say message-passing) if the output sequence is typical and chooses

the special message otherwise.

3.2.3 Many special messages

Now consider that instead of a single special message, exponentially many of the total

- enC messages are special. Let M~ ) c (n) denote this set of special messages

with a given rate r:

lim log rM~[ = r (3.13)
1n-oo

Thus the number of special messages is - en. For example, .Mj) may be equal to

{1, 2,..., e"r}. The best missed-detection exponent, achievable simultaneously for all

7Thanks to Anant Sahai, who recently pointed us to these works.
8Even assuming a symbol per pico-second, this probability means one missed-detection in several

centuries.



these special messages, is denoted by Emd(r)-

Definition 9 For a capacity-achieving sequence Q, the missed-detection exponent for

special messages in M C) C M(n) is defined as:

- log max Pr [flKilM=i]
Emd.Q = liminf n

n--oo n

where IM8)I - e" ' as in (3.13). We define Emd(r) - supQ Emd,Q.

Essentially, Emd(r) is the best value for which the missed-detection probability of

every special message is " exp(-nEmd(r)) or smaller. Note that if the only messages

in the code are these - enr special messages (instead of M ") - enG total messages),

their best missed-detection exponent equals the classical exponent E(r).

Theorem 10 Emd(r) = E(r) V r E [0, C).

Thus we can communicate reliably at capacity and still protect the special mes-

sages as if we are only communicating the special messages. Note that the classical

error exponent E(r) is yet unknown for rates below critical rate (except zero rate).

Nonetheless, this theorem says that whatever E(r) can be achieved for only - en

messages, can still be achieved when there are - enC additional ordinary messages re-

quiring reliable communication. Thus two points on the optimal error exponent curve

E(R) can be achieved simultaneously. The first point is at capacity corresponding to

the ordinary messages and the second point is at rate r corresponding to the special

messages. Using a different approach, Csiszir had shown a closely related result in 9

[35]. It showed that multiple points on the random coding exponent curve can be

achieved simultaneously.

Optimal strategy: Start with an optimal code-book for e" ' messages which

achieves error exponent E(r). These codewords are used for the special messages.

Now the ordinary codewords are added using random coding. The ordinary codewords

9This paper with a somewhat unrelated name was recently pointed out to us by Pulkit Grover
of UC Berkeley.



which land close to a special codeword may be discarded without essentially any

effect on the rate of communication. At the decoder, a two-stage decoding rule is

employed. The first stage decides that some special codeword was sent if at least one

of the special codewords is 'close enough' to the received sequence. Otherwise, the

first stage decides that an ordinary codeword was sent. Depending on the first stage

decision, the second stage ignores all codewords of one kind and applies ML decoding

to the rest.

The overall missed-detection exponent Emd(r) is bottle-necked by the second stage

errors. This is because the first-stage error exponent is essentially the sphere-packing

exponent Esp(r), which is never smaller than the second stage error exponent E(r).

Intuitive Interpretation: This means that we can start with a code of - e"'

messages, where the decoding regions are large enough to provide a missed-detection

exponent of E(r). Consider the balls around each codeword with sphere-packing

radius (see Fig. 3-3(a)). For each message, the probability of going outside its ball

decays exponentially with the sphere-packing exponent.

Although, these - ear balls fill up most of the output space, there are still some

cavities left between them. These small cavities can still accommodate - enc typical

noise balls for the ordinary messages (see Fig. 3-3(b)), which are much smaller than

the original - enr balls. This is analogous to filling sand particles in a box full of

large boulders. This theorem is like saying that the number of sand particles remains

unaffected (exponentially) in spite of the large boulders although the boulders fill up

all the space exponentially.

Remark for r = 0: It is worth commenting on this case, which corresponds to sub-

exponentially many special messages. The best missed-detection exponent Emd (0) =

E(0) is smaller than the best missed-detection exponent Emd = ERed for a single

special message. Consider the BSC for example where ERed equals the sphere-packing

bound at rate 0 and is strictly larger than E(0), which equals [3] the expurgated bound

at rate 0. To understand this discontinuous behavior of missed-detection exponents,

note that missed detections in case of sub-exponentially many special messages are



(a) Exponent optimal code (b) Achieving capacity

Figure 3-3: "There is always room for capacity!"

dominated by errors between different special codewords. Obviously, these errors are

absent for the case of a single special message.

3.2.4 Allowing erasures

In some situations, A decoder may be allowed to declare an erasure when it is not

sure about the transmitted message. These erasure events are not counted as errors

and are usually followed by a retransmission using a decision feedback protocol like

Hybrid-ARQ. This subsection extends the earlier result for Emd(r) when such erasures

are allowed.

In decoding with erasures, in addition to the message set M, the decoder can map

the received sequence Yn to a virtual message called "erasure". Let Perasure denote

the average erasure probability of a code.

Perasure = Pr [1r = erasure]

Previously when there were no erasures, errors were not detected. For errors

and erasures decoding, erasures will be detected errors, and the remaining errors

will be undetected errors. Pe will denote the undetected error probability. Thus the

undetected error probability (averaged over messages or conditioned on a message) is



respectively given by

Pe = Pr [fi M, Mif erasure] and Pe(i) = Pr [if M, Ai erasure M = i

An infinite sequence Q of block codes with errors and erasures decoding is called

reliable, if its average error probability and average erasure probability, both vanish

with n.

lim P,() = 0 and lim P( ) =- 0 (3.14)and nli Perasure
n-*+oc n--'oo

If the erasure probability is small, then the average number of retransmissions needed

is also small. Hence this condition of vanishingly small Pe~nsur ensures that the effec-

tive data-rate of a decision feedback protocol remains unchanged in spite of retrans-

missions. We again restrict to reliable Q whose rate RQ equals C.

For such decision-feedback (DF) scenarios, we could now redefine all previous

exponents for reliable codes with erasure decoding. For example, on similar lines

with Emd(r), let us define E~d,Q(r) as the best missed-detection exponent achiev-

able uniformly over the special messages. Intuitively, we want to have large "gray

regions" around the special codewords when an erasure is declared. In contrast to a

large decoding region, landing in this large gray region causes an erasure but avoids

undetected errors.

Definition 11 For a given r < C, let Ed,(r) denote the missed-detection exponent

of a capacity-achieving sequence Q which is achieved uniformly over messages in

M n) cM (n)
- log max Pr [A.Ifi,Af:erasure|M=i]

Ed,f (r) = lim inf M(3.15)

where IMi~)I er". Now define Efd(r) = supQ Emd, (r).

The next theorem shows that compared to Emd(r) in the no-erasure case, allowing

erasures increases the missed-detection exponent for r below critical ratel0

10In all the previous problems, the provision of erasures with vanishing probability does not
improve the achievable exponents. This implies that decision feedback protocols such as Hybrid-
ARQ cannot improve Eb and Emd by allowing erasures.



Theorem 12

E'd(r) Ž E8p(r) V r E [0, C).

The coding strategy here is similar to the no-erasure case. We first start with an

erasure code in [8] for special messages. Then we add randomly generated ordinary

codewords. Again a two-stage decoding is performed where the first stage decides

between ordinary and special codewords using a threshold distance. If this first stage

chooses special codewords, the second stage applies the errors-and-erasures decoding

rule in [8] amongst special codewords. Otherwise, the second stage chooses the ML

ordinary codeword.

The overall missed-detection exponent Edfd(r) is bottle-necked by the first stage

errors. This is because the first-stage error exponent Ep,(r) is smaller than the second

stage error exponent Esp(r) + C- r. This is in contrast to the case without erasures.

3.3 UEP Exponents for Block Codes: Proofs

Let us first prove that Eb = 0 for even a single bit.

3.3.1 Proof of Theorem 5

Proof In order to prove that Eb = 0, we will first show that any capacity-achieving

sequence Q with Eb,Q can be used to construct a capacity-achieving sequence Q',

whose elements are all fixed composition codes with Eb,Q, = E . In the second

part, we complete the proof by showing that Eb,Q, = 0 for any capacity-achieving

sequence which contains only fixed composition codes.

The proof of the second part is heavy in calculations, but the main idea is the

"blowing up lemma" [4]. Conventionally, this lemma is used for strong converses for

various capacity theorems. It is also worth mentioning that the conventional converse

techniques like Fano's inequality are not sufficient to prove this result. Intuitively,

the blowing up lemma implies that if we try to add slight extra thickness to the left

cluster in Fig. 3-1, it blows up to occupy almost all the output space. This strange



phenomenon in high dimensional spaces leaves no room for the right cluster to fit.

The infeasibility of adding even a slight extra thickness implies zero error exponent

for the special bit.

Conversion to fixed composition codes: Consider a general capacity-achieving

sequence Q. Let the codebooks be arranged such that the top-half codewords rep-

resent messages where the special bit is 0, i.e., messages of the form M = (0, M2).

Similarly, the bottom half represents messages of the form M = (0, 21A 2).

For the length n code from this code sequence, let A denote the set of the top 7/8 of

the codewords according to increasing conditional error probability. The conditional

error probability for codewords in A will be at most 8Pe(n ), where P,(") denotes the

overall average error probability of the original code.

Now let B denote the set of the top 7/8 of the codewords according to increasing

error probability for the special bit. Again, the special bit error probability for every

codeword in B will be at most 8 Pr [A1  hlM ], where Pr [Ml MI1] denotes the

average error probability for the special bit.

The number of codewords in the set An B will be at least 6/8 of the original code.

Hence from the original code, at least half the top half and and half the bottom half

is contained in A n B. We will keep only half the codewords in each half which were

contained in A n B and expurgate all other codewords from the original code. This

also ensures the size of each half is the same after expurgation.

This expurgated code will achieve capacity since its size is 1/4 of the original

code-insignificant in the exponential scale. Moreover, every codeword in it will

achieve special bit error probability exponent Eb,Q. Let us define the message set of

this expurgated code as M(-) = {0, 1} x M )••

In this expurgated code, if we group the codewords for the messages of the form

M1 = (0, AM2) according to their empirical distribution at least one of the groups will

have more than IM(n±1)I messages. This is because the number of different empirical

distributions for elements of X' is less than (n + 1)lXl. Let us choose the first +M2

of the codewords of the this most crowded type of the first half and denote them by

A(-) and throw away all the other codewords. We can do the same for the messages



of the form M = (1, Al2) and denote the corresponding codewords by t2(.).

Now let us consider the following length 2n code with message set M (2n) = {0, 1} x

S(n) X (n) where "2n) An) = 1,2,..., ( If M = (0, M2 , M13) then

2(M) = "4t(M2)7B(M 3). That is, concatenate a codeword in the top half with a

codeword in the bottom half of the original code. These codewords are used when

the special bit equals 0. Similarly if M = (1, A12, 1M3) then 2(M) = £t (M2).t (M3).

That is, concatenate a codeword in the bottom half with a codeword in the top half

of the original code. These codewords are used when the special bit equals 0.

This construction is analogous to a length two code of two codewords, where

codeword "01" conveys message 0 and codeword "10" conveys message 1. Our con-

struction replaces the "0" and "1" (respectively) by codewords in the top half and

the bottom half of our original code.

The decoder of this new code of length 2n will separately decode y" and y2n_1

using two copies of a decoder for the original length n code. If the concatenation

of these decoded codewords (of length n each) corresponds to a valid codeword for

some i E M (2n), then MA = i. Otherwise, assume an error and decode to an arbitrary

message. This happens when the two decoded codewords of length n correspond to

the same half in the original code.

By the union bound, the overall error probability of this length 2n code is at

most twice the overall error probability of the original code. Furthermore, bit error

exponent of the new code is half the bit error exponent of the original code. This is

because now block length is twice the old block length.

Thus using these codes one can obtain a capacity-achieving sequence Q' whose

every element is a fixed composition code and EbQ, I- EQ . In the following discus-

sion we will focus on capacity achieving Q's whose members are fixed composition

codes and show that Eb,Q = 0 for any such code. The discussion above will then

imply Eb = 0.

Eb = 0 for fixed composition codes: We will call the empirical conditional

distribution of a given output sequence yn, given the codeword t"(i), the conditional

type of yn given message i and denote it by V(yn, i). Furthermore we will call the set



of y"'s whose conditional type with message i is V as the V-shell of i and denote it

by Tv (i). Similarly we will denote the set of output sequences y" with the empirical

distribution Qy, by TQ,.

For codelength n, we denote the fixed empirical distribution of the codewords by

P(x) and the corresponding output distribution by Py), i.e.

p(n) (.) = Wylx(|x)P (n) (x).
xEX

Whenever the value of n is unambiguous from the context, we simply use Px and Py.

Furthermore Py (-) will denote the probability measure on yn such that

n

P" (yn)= PY (Yt).
t=1

We will denote the set of y" such that A•1 = 0 and V(y", M(y")) = V by S•.

o",V - {y" :V(y", I(yn)) = V and M (y") = (O,j) for some j E M 2} (3.16)

Note that since for each y" there is a unique M(yn ) and for each y" and message

i EM there is unique V(y", i); each yn belongs to a unique S(n) or Sn) i.e. -(n)'s

and S(" 's are disjoint sets that collectively cover the set Y".

Let us define the typical neighborhood of WYix as [W]

[W] - {VyIx : IVylx(Yx)Px")(x) - WyIx(ylx)P(" (x)lI < 1/-f/n Vx,y} (3.17)

Let us denote the union of all S")'s for typical V's by S< = U Sn. We wil
VE[W]

establish the following inequality (3.18) later. Let us assume for the moment that it

holds.

n (s)) > C-n(R(") - lg - PXI(YI

- Y(S'(.) < C- R (n)-1 ~log - -Pe) (3.18)



Since P( ) -- 0 and 1 -+ 0, the last term on the RHS above tends to l log(!)

which vanishes with n. Hence the RHS above vanishes with n because R (n) tends to

C for a capacity-achieving sequence Q. This shows that Pn (So)) does not approach

0 exponentially. This fact allows us to apply blowing up lemma [4, Ch. 1, Lemma

5.4, page 92] to So(n). It implies that for any capacity-achieving sequence Q, there

exists a sequence of (4n, Un) pairs satisfying limn_, 7~, = 1 and limn-,,, - = 0 such

that

pn (S (So))) 0 na (3.19)

where F'"(A) is the set of all yn's which differs from one or more elements of A in at

most e, places. Clearly one can repeat the same argument for Fr (S~")) and thus

Note that if y" E Fr i (S(n)), then there exist a y" E Tp, that differs from yn in at

most (IY llXn 3/4 + n) placeS11-the IYI IXn3/4 term arises due to our definition of

the typical neighborhood [W] and the £, term arises due to the blowing up lemma.

Thus we can upper bound its probability by,

y" e •"n(Sn)) => P~ (yn) e-nH(Py)-(IYllXln 3/4 • n)1ogA (3.20)

where A = ming,y Wylx(ylx). Thus we have

e"n (Son) f 1n (S"))I Ž (2n, - 1)enH(Py)+(IYIIXIn3/4+en) og (3.21)

Note that we also know that, if y" E pn (S )) Fn E"(S1~) ) then there exist an y" E

Tw (i) for a i of the form i = (0, M2 ) which differs from yn in at most (Iy IXln 3/4 +n)

places12. Thus we can lower bound the probability of yn under the hypothesis M1 = 0

as follows

Pr [yfl M1 = 0] > e-n (H (W yixl Px )+ R (' ))+ (l yll Xjn3/4 + In)log A

"1A small caveat here is due to the integer constraint, Tp, might actually be an empty set. If
so we can make a similar argument for the U; which minimizes Ej Uy (j) - Py(j)|. However this
technicality is inconsequential.
12The integer constraint here is also inconsequential.



Clearly the same holds for Al = 1 too and thus

Pr [y] All = 1] > e - n (H (W y ix P x )+ R (n ) )+ ( lY I IXl n3/ 4 + ) log A

Consequently

Pr [^A ] > M 1 min(Pr [yI MIr
SPr [j ý A[l l ] 1y --

yn

>1
-2 E

= 0], Pr [Y"I M1 = 0])

e-n(H(WYIx IPx)+R(n))+(IYIIXln
3/4+±") logA

yf"EFer (S )*) N ren (S(-))

1> 1(2r_ - 1) enH(Py )+(Il l IXln 3/4 +n) log Ae-n(H(WY IX IPx)+R(n))+(ylI IXln 3/4+en) log A

= (?n - )e n(I(Px
W )- R(n))+2(IY|IX n3/4 +n) log A

S1- ) -nR(n)Pe(n)+2(|YIIXn 
3 /4 +en) logA

where in the last step we have used Fano's inequality. Thus we have

lim -logPr [A.f-M 1y] 0
n--+o0 n

The only thing remaining is to establish inequality (3.18). One can write the error

probability of the nth code of Q as

(1 - I {(yn)=,i) Pr [y"l M = i]pe'.) =(
iEM(n)

S(1- i(y)=i )e -n(D(VIx(X) WyIx(-X) Px)+H(V Px)+R(n
iEM V ynETv(i)

= , e~n(D(Vyx(-IX)I WVyx(X)IPx)+H()+H(I'IxIPx)+R(")) f( (y)=-)
V iEM ynETv(i)

=- e- n (D( VyI x (-jX) IWyIx(IPX)IPx)+H(Vyx IPx)+R(•))(Qo0,v Q1,V) (3.22)
V

where Qk.V = E (1 - I{if(y,)=i}) for k = 0, 1.
i=(k,j) yn ET (i)
jEM2

Note that Qk,v is the sum, over the messages i for which M1 = k, of the number



of the elements in Tv (i) that are not decoded to message i. In a sense it is a measure

of the overlap in the V-shells of different codewords. We will use equation (3.22) to

establish lower bounds on P"] (S~ ) 's.

Let us denote Ex Px(x)Vy x(.Ix) by (PV)y(.), then all elements of S(•n have the

same probability under P' (.). Thus

PI So(n)) = (") le-n(D((PV)y0,11, V OVI (3.23)

As a result of convexity of the KL divergence we get

Pn > IS nlle-n(D(o( ),- x(. X) WMiylx(- X) Px)+H((PV)y))

= (n) e -nI(Px,Vyix)e-n(D( VYx(-. X) Wryx(.IX) Px)+H(Vy1 xlPx))

> ( ) S e-(nC-n(D( lVyx(.IX)I Wrx(.IX)Px)+H(VylxlPx))

Note that

SOV = IM ")( Tv (i) - Qo.v = T (i) e"" - Qo,v

Using M 2 ~= we get,

(3.24)

- Qo) en(D(yix(IX) Wx(-X) Px)+H(yxPx))

(3.25)

Recall that S() 's are disjoint and consequently the inequality (3.25) implies,

enR(l) - Qoyv) -n(D(VyI x(.x) IWyix(-IX) Px)+H(Vix Px))
pnY (S~"n) Vc[]C(vE [W]

> e n R(") -Q

> e n(R()-C)

> en(R
('))-

C)

(VE[Whz, i Ie-n(D(iVl-x(-IX4IIIyix(- X)IPx)+H(VylxIPx))

1( W]
2(<

E
y- GTv (i)

Pr y" h nM=i1) ! )

(1 1 Pe)

()||Py())+H((PV)y))

Fn S(n) >-nC (1 Jv () enRO
Y ( O V ) - 2 I



where the last inequality follows from the Chebyshev's inequality.

3.3.2 Proof of Theorem 8

Achievability: Emd > ERed

Proof For each block-length n, the special message is sent with the length-n repeti-

tion sequence '"(1) = (xr, x. - - , x,) where x, is an input letter satisfying

D (Pf (.) 11Wyx(ix,)) = max D (P (.)| Wv x(. x)) = ERed.xCX

The remaining IAM(") I - 1 ordinary codewords are generated randomly and indepen-

dently of each other using a capacity achieving input distribution Pý i.i.d. over time.

Let us denote the empirical distribution of a particular output sequence yn by

Q, (y'). The receiver will decide that the special message was sent only when the

output distribution is not close to Pt . More precisely,

9(1) = {y" : IIQ (y") (i) - Pj(i)11 > V1/n for some Vi E Y}

Let us denote the set of output sequences close to Pý by [Pt]. Since there are at

most (n + 1)lyI different empirical output distribution for elements of Y"i we get,

Pr [y" G(1)I M = 1] < (n + 1)IYl -nminQ [ ] D(QY( ')I]WYIx(Ixr,))

Thus limr,,, -IogPr [yg (1)OM=1] = D (Pf(-.)) Wyix (- xr)) = ERed.

Now the only thing we are left to prove is that we can have low enough probability

for the remaining messages. For doing that we will first calculate the average error

probability of the following random code ensemble. Each entry of the code-book will

be generated by using a capacity achieving input distribution Pý, independent of all

other entries of the codebook. Thus the (conditional) error probability will be the

same for all i # 1 in AM(1'). Hence without loss of generality, let us calculate the error



probability of the message M = 2.

Assuming that the second message was transmitted, Pr [yn E G(1)1 M = 2] is van-

ishingly small. This is because the output distribution for the random ensemble for

ordinary codewords is i.i.d. P;. Chebyshev's inequality guarantees that the proba-

bility of the output type being outside a (/i7n ball around P , i.e., outside [Pr], is

of the order V/1/n.

If the second message was transmitted, Pr Ey" E Ui>2G(i) I M = 2] is vanishingly

small by the standard random coding argument for achieving capacity [1].

Thus for any Pe > 0, for all large enough n, the average error probability of the

code ensemble is smaller than Pe. Hence we will have at least one code with that P,.

For that code, the error probability of at least half of the codewords will be less then

2P,. *

Converse: Emd 5 ERed

In the next chapter, we will prove that even with feedback and variable decoding

time, the missed-detection exponent of a single special message is at most ERed. Since

feedback can only help, Emd 5 ERed.

3.3.3 Proof of Theorem 10

Achievability: Emd > E(r)

Now we prove the achievability part of missed-detection exponents for e"nr special

messages. The case of a general DMC is considered here, although, some readers may

prefer to first read the proof for a BSC in Appendix C. On similar lines to [5], that

analysis is based on Hamming distances, which could make it easier to visualize. The

general DMC considered here essentially replaces those Hamming distances with KL

divergences.

Proof Let us start by choosing the codewords for special messages.

Special codewords: At any given block length n, we start with a optimum code-



book (say Cspecial) for JM8)I messages. Such an optimum code-book achieves error

exponent E(r) for every message.

Pr [k - iM = i] - e - nE(r) ViE M

Since there are at most (n + 1)1x l different types, there is at least one type, say Px,

which has .v or more codewords. Throw away all other codewords from Cspiai

and denote call the remaining fixed composition code-book as Cpeciai. Code-book

Cspecia is used for transmitting the special messages. Let the message set correspond-

ing to these codewords be denoted as JýM

As shown in Fig. 3-3(a), let the ball for special message i be denoted by Bi. These

balls need not be disjoint. Now let B denote the union of these balls of all special

messages.

B= U Bi

If the output sequence Y" lies in B, the first stage of the decoder decides a special

message was transmitted. The second stage then chooses the ML candidate amongst

the messages in Ms.

Let us define Bi precisely now.

Bi = {y : V(yn, i) E W(r + c,, Px)}

where W(r + En, Px) = {VYx : D (Vx(- IX)II Wylx(-IX)| Px) < Esp(r + En; Px)}

is the set of channel types within divergence r + E, from the actual channel WIyx.

Here E, is a non-negative sequence which vanishes to zero with n. Recall that the

sphere-packing exponent for input type Px at rate r, Esp(r; Px) is given by,

Ep (r; Px) = min D (VYix(-.X)|J Wylx(-IX) Px)
VyIx:D(VY Ix (-IX) II (PV)y (-)Px)•r

The constraint for optimization above is that the mutual information of channel VyJx

under input distribution Px is than r, since (PV)y denotes the output distribution



of channel Vylx(.I. ) for input distribution Px.

Ordinary codewords: The ordinary codewords will be chosen by random coding,

i.i.d. Pý over time, where P}. This is the same as Shannon's construction for

achieving capacity. The random coding construction provides a simple way to show

that in the cavity Bc (complement of B), we can essentially fit enough typical noise-

balls to achieve capacity. This will avoid the complicated task of carefully choosing

the ordinary codewords and their decoding regions in the cavity space BC.

If the output sequence Y' lies in the cavity 13c, the first stage of the decoder

decides an ordinary message was transmitted. The second stage then chooses the ML

candidate from ordinary codewords.

Error analysis: First, consider the case that a special codeword z"(i) is transmitted.

By Stein's lemma and definition of Bi, the probability of Y'" Bi has exponent

Esp(r + En; Px). Hence the first stage error exponent is at least Esp(r + n,; Px).

Assuming correct first stage decoding, the second stage error exponent for special

messages equals E(r). Hence the effective error exponent for special messages is

min {E(r), Esp(r + En; PX)

Since E(r) is at most [6] the sphere-packing exponent Esp(r; Px) and En vanishes to

0, the missed-detection exponent of each special message equals E(r).

Now consider the situation of a uniformly chosen ordinary codeword being trans-

mitted. We have to make sure the error probability is vanishingly small now. In this

case, the output sequence distribution is i.i.d. Pý for the random coding ensemble.

The first stage decoding error happens yn lies in U Bi. Again by Stein's lemma, this



exponent for any particular Bi equals Eo:

Eo = min D (VyIx(-X) P(-)I Px)
i.V x EW

Smm D (Vylx(- X)I (PV)y(-) Px) + D ((PV)y(.)| P())
Vy IxEW

> (r + E~) + D ((PV)•I()| P (-))

> r + E,

The first step follows since the actual output distribution in this case is i.i.d. P¶. The

second step follows by multiplying and dividing by (PV),(-) in the log terms in the

summed to get D (Vyix (.X) P (-)j Px) The third step follows from the definition

of E p(r + E, -qx). The forth step is simply the non-negativity of the KL divergence.

Applying the union bound over the special messages, the probability of a first-

stage decoding error after sending an ordinary message is at most - exp(nr - nEo).

We have already shown that Eo > r + 6e, which ensures that probability of first

stage decoding error for ordinary messages is at most - e-"'" for the random coding

ensemble. Recall that for the random coding ensemble, average error probability

of the second-stage decoding also vanishes below capacity. To summarize, we have

shown these two properties of the random coding ensemble:

1. Error probability of first stage decoding vanishes as a(n) - exp(-nen) with n

when a uniformly chosen ordinary message is transmitted.

2. Error probability of second stage decoding (say b(")) vanishes with n when a

uniformly chosen ordinary message is transmitted.

Since the first error probability is at most 4a(") for 75% of the codes in the random

ensemble, and the second error probability is also at most 4b(") for some 75% of the

codes, there exists a particular code which satisfies both these properties. The overall

error probability for ordinary messages is at most 4(a(") +b(")), which vanishes with n.

We will use this particular code for the ordinary codewords. This de-randomization

completes our construction of a reliable code for ordinary messages to be combined



WITH LIle COG6 L*s ecial for speclai messa

ges.

Converse: Emd d< E(r)

The converse argument for this result is obvious. Removing the ordinary messages

from the code can only improve the error probability of the special messages. Even

then, (by definition) the best missed-detection exponent for the special messages

equals E(r).

3.3.4 Proof of Theorem 12

Let us now address the case with erasures. In this achievability result, the first stage

of decoding remains unchanged from the no-erasure case.

Proof We use essentially the same strategy as before. Let us start with a good

code for IMi•~) I messages allowing erasure decoding. Forney had shown in [8] that an

error exponent equal to Ep(r) + C - r is achievable while ensuring that the erasure

probability vanishes with n. We can use that code for the special codewords. As

before, for Y" E Ui Bi, the first stage decides a special codeword was sent. Then

the second stage applies the erasure decoding method in [8] amongst the special

codewords.

With this decoding rule, when a special message is transmitted, the error proba-

bility of the two-stage decoding is bottle-necked by the first stage: its error exponent

E,,(r + En) is smaller than that of the second stage (Esp (r) + C - r). Since En vanishes

to 0, the special messages can achieve E,,(r) as their missed-detection exponent.

The ordinary codewords are again generated i.i.d. Pý. If the first stage decides

in favor of the ordinary messages, choose the ML ordinary codeword. If an ordinary

message was transmitted, we can ensure a vanishing error probability as before by

repeating earlier arguments for no-erasure case. *

~_~~ _~___~_1





Chapter 4

Unequal Error Protection Near

Capacity: Feedback Case

In the last chapter, we analyzed UEP problems for fixed length block codes without

feedback. In this chapter, we will revisit the same problems for variable-length block

codes with perfect feedback. Again the focus is on situations where the data-rate

is essentially at channel capacity. We will answer whether and how feedback can

improve the achievable exponents in various UEP situations seen earlier.

We start by explaining variable-length block codes for channels with feedback in

Section 4.1. Our results on UEP exponents are discussed in Section 4.2. Then Section

4.3 addresses message-wise UEP situations where special messages (like the reformat-

disk command) demand protection against false-alarms instead of missed-detections.

We first address false alarms with no feedback and then with full feedback. This

discussion for false-alarms was postponed to the end of this chapter to avoid confusion

with earlier results on missed-detection.

.. As in the previous chapter, after discussing each theorem, we briefly describe the

optimal strategy. Further proof details can be found in Section 4.4, which contains

proofs of the results in Section 4.2. Section 4.5 contains proofs for the false-alarm

results in Section 4.3.



4.1 Variable-Length Block Codes with Feedback

A variable-length block code with feedback is composed of a coding algorithm and a

decoding rule. The decoding rule determines the decoding time and the message that

will be decoded then. Possible observations of the receiver can be seen as the leaves

of a IYI-ary tree, as in [28]. In this tree, all nodes at length 1 from the root denote

all possible Yly outputs at time t = 1. All non-leaf nodes among these will split into

further IYI branches at the next time t = 2 and the branching of the non-leaf nodes

will continue like this ever after. Each node of depth t in this tree corresponds to a

particular sequence, yt, i.e. a history of outputs until time t. The parent of node yt

is its prefix yt-1. Leaves of this tree are like a prefix free source code, because the

decision to stop and complete decoding should to be a causal decision. In other words

the event {t = t} will be measurable in the a-field generated by Yr. In addition, we

have Pr [7 < oc] = 1 and thus T will be a Markov stopping time with respect to the

received outputs.

The encoding algorithm on the other hand will assign an input letter, Xt+1 (Yt; i),

to each message, i E M, at each non-leaf node, Yt, of this tree. The encoder stops

transmission of a message when a leaf has been reached and the decoding is complete.

The codes we consider are block codes in the sense that transmission of each

message (packet) will start only after the transmission of the previous one has ended.

The error probability and rate of the code will be defined by

Pe = Pr [AI# M] and, R -log (4.1)

where E [7] is the average decoding time when the messages are chosen uniformly

from M. A more thorough discussion of variable-length block codes with feedback

can be found in [27], [28].

A reliable sequence of variable decoding time codes with feedback, Q, will be any

countably infinite collection of codes indexed by integers, such that

lim P,(") = 0 (4.2)
DC-- OC



For defining the rate RQ and exponent EQ of such a sequence, simply replace block-

length n for the no-feedback case by the average decoding time E [T(")] for the K'th

element of this code sequence.

RQ lim loM('~ and EQ = liminf -°•oP'

A capacity-achieving sequence with feedback will mean a reliable sequence of variable-

length block codes with feedback whose rate equals C

It is worth noting the importance of our assumption that all the entries of the

transition probability matrix Wylx are positive. For any channel with a Wyjx which

has one or more zero probability transitions, it is possible to have error-free codes

that achieve capacity [27]. Then all the exponents discussed below become trivially

infinite.

4.2 UEP at Capacity: Variable-Length Block Codes

with Feedback

4.2.1 Special bit

Let us consider a capacity-achieving sequence Q whose message sets are of the form

M(t) = M 1 x M(') where M 1 = {0, 1}. Then the error exponent of MI, i.e., the

initial bit bl, is defined as follows.

Definition 13 Let a capacity-achieving sequence Q with feedback have message sets

M(K) of the form M(K) = M 1 x M(2) where M 1 = {0, 1}. The special bit error

exponent is defined as
Ef -logPr [fIiMi(

Eb,Q = liminf E[(#)] (4.3)
b -+oo E T(h)]

Then E' = supQ EQ

Theorem 14 E- = ERed.



Section 4.4 contains a detailed proof of this theorem. Recall that without feedback,

the single bit could not achieve any positive error exponent at capacity, i.e., Eb = 0.

The following strategy shows how feedback connects message-wise UEP with bit-

wise UEP: the strategy for protecting a special message becomes useful for protecting

special bits. This special message is used to indicate incorrect decisions at the receiver

(on similar lines of [30, 31]).

Optimal strategy: We achieve this exponent using the missed-detection exponent

of ERed for a special message (see Fig. 4-1). This special message notifies the receiver

when its tentative estimate of MAl is incorrect. More specifically, we use a code of

length K + , followed by decoding with erasures. The transmitter first transmits

A1M using a short repetition code of length VK. If the temporary decision about Al,

called M1l, is correct after this repetition code, the transmitter transmits M12 with a

capacity-achieving code of length K. If •l1 is incorrect after the repetition code, the

transmitter will transmit the symbol x, for K symbols where xr is the input letter i

maximizing the D (W/yx(-li) P(.-)). This is a special buzzer codeword to indicate

an error in •l1.

If the decoder detects a buzzer over these iK symbols, an erasure is declared. The

same message is retransmitted by repeating the same strategy afresh. If no buzzer is

detected, the receiver uses an ML decoder to chose M12 and declares = (A 1 , MI2).

The erasure probability is vanishingly small, which ensures E [r] is essentially

equal to K•s+V-•. Hence the effective rate of communication still approaches capacity in

spite of such retransmissions. A decoding error for Al1 happens only when the buzzer

message is not detected. This probability is - exp(-K-ERed) - exp(-E [7] ERed).

Remark: Note that when the receiver detects a buzzer indicating incorrect MI, the

whole block is retransmitted instead of simply flipping the tentative MA1. This is

because if we simply flip the earlier decision, the special bit will be in error even

when A1 is correct but the receiver erroneously detects a buzzer and flips Al1. Our

retransmission based strategy avoids this drawback.



send M1 in 9 symbols.

M1 decode,

send M2 (remaining bits)

output type Pý

Decode remaining bits Declare erasure. Repeat afresh.

Figure 4-1: Sending a special bit using a special message

4.2.2 Many special bits

We now analyze the situation where instead of a single special bit, there are approx-

imately E [T] r/ In 2 special bits out of the total E [7] C/l In 2 (approx.) bits. Here we

again consider capacity-achieving sequences with feedback having message sets of the

form AMt ) = M4K) x M2") . Now unlike the previous subsection where the size of

AM( ) was fixed at 2, the size varies with the index of the code. We assume that the

size of A4• • grows exponentially at rate r:

Slog I.M)I
K-oo E 1-( '0

This simply says that the rate of special bits equals r. It is worth noting at this point

that even when the rate r of special bits is zero, the number of special bits might

not be bounded, that is, limK_ A4( M) ) might be infinite. For example, IM4 ) could

grow polynomially with E [r(")]. The error exponent Ebits, Q for the special bits at

rate r is defined as follows,

Definition 15 Let a capacity-achieving sequence Q with feedback have message sets



M (•" ) of the form M4(t) - M ) x M 2), where rQ = li•,00 lg ( Then
.. E[T- log Pr [ M

EbitsQ = liminf -ogPr[h i] (4.4)

Now define Ebits(r) = sup Efbits,Q
Q:rŽ>r

We show next that this exponent decays linearly with the rate r of the special

bits.

Theorem 16

its(r )  (1 - ) ERed

Notice that for r = 0, the same exponent, ERed, as the single bit case in the previous

subsection could be achieved, although here the number of bits can be growing to

infinity with E [T]. This linear tradeoff between rate and reliability reminds us of

Burnashev's result [27]. Of course, in contrast to Burnashev's result, here the special

bits are achieving Efbits(r) in spite of the sum data-rate approaching capacity.

Optimal strategy: Like the single bit case, we use a fixed length erasure code, where

erasures are used to initiate retransmissions. In the first phase, transmit M 1 using a

capacity-achieving code of length -,. If the temporary decision Al1 is correct after

this transmission, the transmitter sends AM2 in the second phase using a capacity-

achieving code of length (1 - ')K. Otherwise, the transmitter sends a buzzer in these

(1 - -L)T symbols by repeating the symbol x.

If the decoder detects a buzzer in these last (1 - -)tK symbols, an erasure is

declared. The same message is retransmitted by repeating the same strategy afresh.

If no buzzer is detected, the receiver uses an ML decoder to chose Ml2 and declares

M= (M1, Mf2).

Similarly to the single bit case, the erasure probability remains vanishingly small

and channel capacity is achieved in spite of retransmissions. A decoding error for M1

happens only when an error happens after the first phase and the buzzer message

sent in the second phase is not detected. The probability of the later event is -



exp(-E [7] (1 - L)ERed). The factor of (1 - -) arises because the buzzer is only sent

in that fraction of the entire block.

4.2.3 Multiple layers of priority

We can generalize this result to the case of multiple levels of priority, where the

most important layer contains E [r] ri/ ln 2 bits, the second-most important layer

contains E [7] r2/ln 2 bits and so on. Hence for an L-layer situation, we consider

the capacity-achieving code sequences with message sets of the form M(K) = M••) x

A4(K ) x ... x A ) . We assume that the order of importance of the Mi's will be

M1l >- A12 >- . >- ML. Hence we require that PeM1 < Pe 2 < ... < PeAI L .

For any L-layer capacity-achieving sequence with feedback, we can define the error

exponent of the sth layer as

- log Pr [11! 0Ms]
Ebits,s,Q = liminf Elr[M)] (4.5)

The achievable error exponent region of L-layered capacity-achieving sequences with

feedback is the set of all achievable exponent vectors (Eits,l,Q,f Eits,2,Q,.. , Eits

The following theorem determines that region.

Theorem 17 Consider L-layered capacity-achieving sequences with feedback whose

rate vectors (ri, r2 ,..., rL) satisfy ZjL=1 rj = C. Achievable error exponent region

for the L - 1 most important layers is composed of (El, E 2,..., EL-1) satisfying the

following condition,

E < ( 1 -- E , ) ERed ViE {1,2,...,(L- 1)} (4.6)

Note that the least important layer cannot achieve a positive error exponent since we

are communicating at capacity.

Optimal strategy: We first transmit the most important layer using a capacity-

achieving code of length 1r. If it is decoded correctly, then transmit the next layer



with a capacity-achieving code of length L-. Otherwise, start the 'buzzer' with input

x, till the end of this i symbol block. Repeat the same strategy for all future layers

too (except the last): start buzzer if wrong, next layer if right.

After this block of r, symbols is received at the decoder, it successively looks for

the buzzer from the end of each sub-block to the end of the r, symbols. If a buzzer is

detected in any of them, the entire transmission is repeated afresh.

This decoding strategy is equivalent to peeling an onion layer by layer and checking

if it was rotten after peeling each layer-we decode layer after layer till a buzzer is

detected after some layer. After decoding each layer (except the least important),

the receiver decides whether a buzzer was sent after that layer. Each layer is decoded

if no buzzer is detected after its transmission and an erasure is declared otherwise.

Thus layer after layer is decoded till either a buzzer has been detected or all layers

have been decoded. If a buzzer has been detected, the whole block is retransmitted

from scratch.

Thus for each layer i, we can achieve the same exponent as if there were only two

kinds of bits (as in Theorem 16):

* Bits in layer i and more important layers k < i are special and

* bits in less important layers than layer i are ordinary.

Hence this could be considered as a successively refinable version of Theorem 16.

Figure 4-2 shows these simultaneously achievable exponents across layers. This is a

successively refinable version of the linear tradeoff Emd(r) = (1--r/ C) ERed in Theorem

16.
Note that the most important layer can achieve an exponent close to ERed if its

rate is zero. As we move to layers with decreasing importance, the achievable error

exponent decays gradually.

4.2.4 A special message

Now consider one particular message, say M = 1, which requires a small missed-

detection probability. Similar to the no-feedback case, define Emd as its missed-
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Figure 4-2: Successive refinability for multiple layers of priority

detection exponent at capacity.

Definition 18 For a capacity-achieving sequence Q with feedback, the missed-detection

exponent for the special message is defined as

E d lim inf - log Pr [Mf 1 IM= 1]
7 K--00 E T(K)

(4.7)

Now define Emd _ supQ Ed,Q.

Theorem 19 Feedback does not improve the missed-detection exponent of a single

special message: Emnd = Emd = ERed.

Proof of this theorem is provided in Section 4.4. Since the Red-Alert Exponent

without feedback is the best protection of a special message achievable at capacity

without feedback, this result could be thought of as an analog to "feedback does not

increase capacity" for the Red-Alert Exponent. Also note that with feedback, Efnd

for the special message and Eb for the special bit become equal.



4.2.5 Many special messages

Now let us consider the problem where an exponentially large subset M,") C M(n")

of messages is special.

log | (n) Ilim n r ••(4.8)
n---oo

Unlike the previous problems, now we also impose a uniform-expected-delay con-

straint as follows.

Definition 20 For a reliable variable-length block code with feedback,

p -- maxiEM E[rlM=i] (4.9)S E[f]

A reliable sequence with feedback Q is called a uniform-delay reliable sequence with

feedback if lim~~, r(") = 1.

This means that the average decoding time E [TI M = i] for every message i is

essentially equal to E [T] (if not smaller). This uniformity constraint reflects a sys-

tem requirement for ensuring a robust delay performance, which is invariant of the

transmitted message'. Let us define the missed-detection exponent Emd (r) under this

uniform-delay constraint.

Definition 21 For a uniform-delay capacity-achieving sequence Q with feedback, the

missed-detection exponent for special messages in M() is defined as:

- log max Pr [•i•ijM=i]

Ef Q lim inf iEM(i
)

dQ - E [7(K)]

where IM |)I - exp(E [(-")] r) as in (4.8). We define E d(r) - supQ Ed,.

The following theorem shows that the special messages could achieve the minimum

of the Red-Alert Exponent and the Burnashev's exponent at rate r.

'Optimal exponents in all the previous problems (i.e., E , Ebits(r), and Emd) remain unchanged
irrespective of this uniform-delay constraint.



Theorem 22

Emd(r) = min { ERd, (1 -- )Dmax},, , Vr < C.

where Dmax - max,,X2 D (WVx(. x1) WYIX('IX 2)).

For r at which ERed < (1 - r )Dmax, all [eE[,]r] special messages achieve the best

missed-detection exponent ERed for a single special message. Since ERed denotes the

best missed-detection exponent for a single special message, no better exponent could

be achieved for multiple special messages. For larger r where ERed > (1 - r)Dmax,

the special messages achieve Burnashev's exponent as if the ordinary messages were

absent. Since Burnashev's exponent is the best error exponent when there are only

[exp(E [7] r)] messages, no better exponent could be achieved when the additional

- exp(E [7] C) ordinary messages are also present.

The optimal strategy is based on transmitting a special bit first. It again shows

how feedback connects bit-wise UEP with message-wise UEP. In the optimal strategy

for bit-wise UEP with many bits a special message was used, whereas now in message

wise UEP with many messages a special bit is used. The roles of bits and messages,

in two optimal strategies are simply swapped between two cases.

Optimal strategy: We combine the strategy for achieving ERed for a special bit

and the Yamamoto-Itoh strategy for achieving Burnashev's exponent [29]. In the

first phase, a special bit b is sent with a repetition code of v symbols. This is an

indicator bit for special messages: it is 1 when a special message is to be sent and 0

when an ordinary message is to be sent.

If b is decoded incorrectly as b = 0, the buzzer is sent with input x, for the

remaining , symbols. If it is decoded correctly as b = 0, then the ordinary message

is sent using a capacity-achieving code of length K. If the receiver detects no buzzer

in these / symbols, it chooses the ML ordinary message. Otherwise, an erasure is

declared and the entire block of length K + V1/ is retransmitted afresh.

If b is decoded correctly as b = 1, then a two-phase scheme of length K is used

to convey the particular special message. This scheme is exactly the same as the



Yamamoto and Itoh scheme in [29].

Yamamato-Itoh Scheme: First, the communication phase of this scheme takes

place. A length -1 capacity-achieving code (without feedback) is used to send the

special message. Then the control phase of this scheme starts. An accept letter Xa

is repeated for (1 - .!)K, symbols if the special message was decoded correctly after

the communication phase. Otherwise, a reject letter Xd is repeated for (1 - L)r

symbols. If the empirical distribution in the control phase has type Wy1x(- xa),

then the special message decoded at the end of the communication phase is finalized

as Al. Otherwise, an erasure is declared and the entire block of length r + v is

retransmitted afresh. The accept letter Xa and reject letter Xd are chosen such that

Dmax = D (Wy1x('Ixa)f IVYIx('.Id)).

4.3 Avoiding False Alarms

4.3.1 Block Codes without Feedback

We now study the scenario where the false-alarm of a special message is a critical

event. The false-alarm probability Pr [. = 1i = j] for this message should be

minimized for j Z 1. In classical error exponent analysis [2], the error probability for

a given message usually means its missed-detection probability. However, examples

such as "reboot" and "format" necessitate this notion of false-alarm probability.

Definition 23 For a capacity-achieving sequence Q, the false-alarm exponent is de-

fined as

S liminf -log maxjoZ Pr [i= IAM=j]Ef - lim if E[r]

Then Ef, is defined as Efi supQ Ef,,Q. The supremum is taken over all Q

which ensure vanishingly small conditional error probability for the special message:

limnoo P(n) (1) = 0.

The last clause in the definition is to ensure that whenever the special message is

sent, it is recovered reliably. Without such a reliability constraint, the definition of



Efa is not very sensible.

Theorem 24

Ela Efa Ea (4.10)

The upper and lower bound to the false-alarm exponent are given by

E = max min D (Vyx( X) Wyx( |X)I P) (4.11)Efa VyIx:

_X PFI(x)VY x('x)=Wv x('P)

E" - maxD (1W•x( . ) Wyx( . X) P}) . (4.12)
2EX

For conciseness, define V2 to be the set of channels Vyjx in (4.11) for which input dis-

tribution Pý induces output distribution Wylx(-Ix). Now if the input letters achieving

the maximum in the above optimizations are denoted by x, and x, (respectively),

E = mmin D (Vyjx(-IX) WUy1x(.IX)| P1 k) (4.13)
VIy x:VIX

Efa = D (Vylx(.|Ix) W x(. X) IP) . (4.14)

The strategy for achieving this lower bound is briefly described here and the upper

bound is proved in Section 4.5. Section 4.5 contains detailed proofs of these bounds.

Achieving the Lower Bound: The codeword for the special message M = 1 is a

repetition sequence of input letter xz. Its decoding region G(1) is the typical 'noise

ball' around it, i.e., the output sequences of type close to Wylx (. I|x). For the ordinary

messages, we use a capacity-achieving code-book where all codewords have the same

empirical distribution (approx.) Pý. Then for y" ý g(1), the receiver uses ML

decoding amongst ordinary codewords.

Note the contrast between this strategy for achieving EL and the optimal strategy

for achieving Emd. For achieving Emd, output sequences of any type other than Pý

were assigned to G(1), whereas for achieving Efa only the output sequences of type

close to WVVYIx(-.x) are in G(1).
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Figure 4-3: Avoiding false-alarm

Intuitive Interpretation: A false-alarm exponent for the special message corre-

sponds to having the smallest possible decoding region G(1) for the special message

subject to its missed-detection probability Pe(n)(1) vanishing to 0. This ensures that

when some ordinary message is transmitted, the probability of landing in G(1) is

exponentially small. We cannot make g(1) too small though, because when the spe-

cial message is transmitted, the probability of landing outside it should be small

too. Hence 9(1) must contain essentially the typical noise ball around the special

codeword. The blue region in Fig. 4-3 denotes such a region.

Note that EL is strictly larger than channel capacity C due to the convexity of

KL divergence.

Efa = max min D (Vy 1x(-.X)ll WYx(-.X)j Pý)
xEX VyIxEV k

>max minD Pý(k)Vy x(- k) J P(k')Wyix(- k')
xEX VyIxE 

k
= maxD ( Wyx(. x)| P* (.)) (definition of Vx)

xEX

= C (KKT conditions for achieving capacity [2])

Now we can compare our result for a special message with the similar result for the

classical situation where all messages are treated equally. It turns out that if every

message in a capacity-achieving code demands equally good false-alarm exponent,

then this uniform exponent cannot be larger2 than C. This result seems to be directly

2This curious fact follows simply by writing the overall average error probability Pe in terms of



connected with the problem of identification via channels [26]. We can prove the

achievability part of their capacity theorem using an extension of the achievability

part of Efa. Perhaps a new converse of their result is also possible using such results.

Furthermore we see that reducing the demand of false-alarm exponent to only one

message, instead of all, enhances it to at least Ea-.

4.3.2 Variable-Length Block Codes with Feedback

Recall that feedback did not improve the missed-detection exponent for a special

message. On the contrary, we will see that the false-alarm exponent for a special

message can be improved when feedback is available. We again restrict to uniform-

delay capacity-achieving sequences with feedback, i.e., capacity-achieving sequences

satisfying lim F(") =- 1 for F(") in (4.9).

Definition 25 For a uniform-delay capacity-achieving sequence Q with feedback, the

false-alarm exponent is defined as

Slim-inflog Pr [M=1I M 1]
fa,Q liminf E[-K]

Then Ea is defined as Ef _ sup E'a,. The supremum is taken over all Q

which ensure vanishingly small conditional error probability for the special message:

limKo, Pe ()(1) = 0.

Theorem 26 E = Dmax max 2,2 D (WyIx(-.Ixz1) WyIx(.1x2))

Since Dmax > Efu, Efa, feedback strictly improves false-alarm exponent, Ef, > Efa.

Note that Dmax also equals the best exponent for binary hypothesis testing with (or

without) feedback [28].

Optimal strategy: We use the strategy employed in proving Theorem 22 in subsec-

tion 4.2.5. In the first phase, a length • code is used to convey whether M = 1 or

the sum of false-alarm probabilities of all messages. A larger than C false-alarm exponent for every
message would imply a positive classical exponent at capacity.



not. As before, we use a special bit b which is 1 if M = 1 and 0 otherwise. After the

first phase:

* If b is decoded correctly as b = 0, use a length K capacity-achieving code to

convey the ordinary codeword. If b is decoded incorrectly as b = 0, send a

length r buzzer by repeating input x,.

* If b = 1, use a length r code having two codewords: The "Accept" code-

word (Xa, Xa, ... ,a) and the "Reject" codeword (Xd, Xd,... ,Xd). The receiver

finalizes decoding to the special message if the output sequence in the second

phase has type WyIx(-IXa). This is the same as the confirmation phase in the

Yamamato-Itoh strategy described earlier.

If a buzzer is detected after b = 0 or if a "reject" codeword is detected after b = 1,

an erasure is declared and retransmission starts afresh. Notice that this strategy

will simultaneously achieve the best missed-detection exponent ERed and the best

false-alarm exponent Dma, for this special message.

4.4 Variable-Length Block Codes with Feedback:

Proofs

This section presents detailed proofs of the results in Section 4.2, that is, Theorems

14, 16, 17, 19 and 22.

4.4.1 Proof of Theorem 14

Achievability: E, > ERed

As mentioned earlier, this single bit exponent is achieved using the missed-detection

exponent of a single special message, indicating a decoding error for the special bit.

The decoding error for the bit goes unnoticed when this special buzzer message is not

detected.



Proof We prove Efb > ERed by constructing a capacity-achieving sequence with

feedback, Q, such that Et,Q = ERed. Let Q' be a capacity-achieving sequence of block

codes without feedback which achieves the Red-Alert Exponent Emd,Q, = ERed. The

message sets for Q' are denoted as M '("). We first construct a two phase fixed length

block code with feedback and erasures. Then Q is created from this fixed length block

code by allowing retransmissions.

In the first phase, the transmitter uses a length [v-] code of two messages for

sending the special bit M1 . At the end of this phase, the receiver forms a temporary

decision, Mf1. Note that as a result of [2, Theorem 5.7.1, page 153]

-_VfEez-, In 8Pr [ 1 1= M] e ' (4.15)

where Eex() stands for the expurgated exponent. Thus the error probability of the

temporary decision is vanishingly small.

In the second phase, the transmitter uses a length a, code in Q'. The message in

the second phase, V, will be determined by M2 based on whether Al equals M1 or

not.

M1 #• 1 = l V4 = 0 (special message)

M1y = l1 and 2 = i V9 = i Vi E MN

At the end of the second phase, the receiver decodes d using the decoder of Q'.

If it decodes the special message 0 = 0, an erasure is declared. Otherwise, the

temporary decision M1• for the special bit is finalized (M1 = M1 ) and the ordinary

bits are decoded as f2 = i.

Note that the erasure probability for the two-phase fixed-length block code is

upper bounded as

Pr 0 = O] Pr [l 1  Mi] + Pr [9 = 01 54 0]

_v- -Ee. 4 In 4 I

Se () + i Pe'(K) (4.16)TM (-,



where Pe'(") is the error probability of the K th element of Q'. Hence the overall erasure

probability vanishes with K.

Similarly we can upper bound the (undetected) error probabilities of the two-phase

fixed-length block code as follows:

Pr [•Ai1 A~1, 0 o] < Pe'")(0) (4.17)

Pr [A1I AJ, 0 < oPe] )  P<'(L)(1) (4.18)

where Pe'() (O) is the conditional error probability of the special message, i.e., the

message 0 in the Kth code in Q'.

If there is an erasure the transmitter and the receiver will repeat what they have

done again, until they get d 7 0. If we sum all the error probabilities in each step of

repetition we get;

- Pr [iWoIl, 01]

Pr •• ] < (4.19)
1-P'A ]=o]

[er 10 #M, t40]Pr # M O]< (4.20)

Since the number of retransmissions is a geometric process, the expected decoding

time of the code equals

E+[7] < r+ F (4.21)
1 -Pr[O=0]

Using equations (4.16), (4.17), (4.18), (4.19), (4.20) and (4.21) one can con-

clude that the resulting sequence Q of variable-length block codes with feedback

is a capacity-achieving sequence and E(bQ = ERed. 0

Converse: E( < ERed

We will use a converse result we have not proved yet, namely the converse in Theorem

19 for the single special message exponent Efmd with feedback. We now show that

error exponent for a special bit cannot be larger than that for a special message. This

is done by converting a code for a single special bit into a code for a single special



message.

Proof Consider Q, a capacity-achieving sequence with feedback whose message sets

are of the form Mt() = {0, 1} x M('). Using Q we construct another capacity-

achieving sequence with feedback Q, which has a special message 0. Message sets for

are of the o form M ) = {0} U M2(, , which is essentially half the size of the message

sets for Q. We will show that this special message in Q can achieve the same missed-

detection exponent as the special bit in Q: Emfd,Q > E1,Q. Consequently Efmd> E1.

Since Emd • ERed from Theorem 19, Efb ERed.

To avoid confusion, let us denote message in Q by M and message in Q by V9.

The rth code in Q works as follows. If the message of Q is not 0, i.e. t9 f 0 then

the transmitter uses the codeword for M = (1, 9d) to convey V9. If 9 = 0 transmitter

picks a (dummy) A12 with uniform distribution on M(' ) and uses the codeword for

M = (0, KA2) to convey that d9 = 0. Receiver makes decoding using the decoder of Q.

If M! = (1, k) it declares i = k. If M1 = (0, k), it declares the special message V = 0.

Essentially, the special bit in Q is being used to convey the special message in Q:

this special bit is 0 when special message is to be sent and 1 when some ordinary

message is to be sent. This converse argument is essentially the reverse of the optimal

strategy for achieving Efb = ERed, where a special message was used to send a special

bit. This further emphasizes how feedback connects message-wise and bit-wise UEP.

Let E [T(K)] denote the average decoding time for Q assuming uniformly chosen

messages from {0, 1} x M~" ). Then by definition of Et,Q), the probability of decoding

A!1 = 1 when A 1 = 0 has exponent = exp(-E [rT()] Ef,Q), which is the same as the

missed-detection probability of the special message in Q. *

4.4.2 Proof of Theorem 16

Achievability: Ebfits(r) Ž (1 - -) ERed

Proof We construct the capacity-achieving sequence with feedback Q using a capacity-

achieving sequence (without feedback) Q', which achieves Emd,Q, = ERed. Again M/'( )



denotes the message sets for this code sequence Q'. This strategy is similar to our

achievability proof for Theorem 14 for a single special bit. Each code of in Q uses 2

codes from Q': one of length [r,/C] and the other of length [(1 - r/C)K ].

We again construct a two phase block code with feedback and erasures. Consider

the method for creating the sth element of the code sequence Q. In the first phase,

the transmitter uses the length [rr/ Cl code in Q' to convey M 1. At the end of

this phase, the receiver makes a temporary decision, M1 1. In the second phase, the

transmitter uses the length [(1 - r/C),] code in Q' to convey A12 with a special

message if M1  # M1. It uses a mapping similar to the one in the proof of Theorem

14. As before, let ?9 denote the message in the second phase.

Ml # AM1 =M 79 = 0 (special message)

S= M and M2 = = i i M

This construction gives

IM |J = 4M'(FrK/c) 1 and IMKI = M'((1-rIC)l) - 1

for the code sequence Q. Applying a similar decoding algorithm as in the proof of

Theorem 14 and repeating essentially the same analysis, we get that Q is a capacity-

achieving sequence with Ebits,Q = (1 - -) ERed and rQ = r as the rate rate of special bits.

Converse: Ebits(r) • (1 - g) ERed

This converse is based on a technique previously used in [28] and a lemma proved later

in the converse part of Theorem 8. For this proof as well as other converse proofs

in this chapter, we need to analyze the conditional entropy of messages given the

receiver's observations. In such analysis, we use the following notation for conditional



entropy and conditional mutual information,

-((My"n) = - Pr [M = i y] InPr [M = i y"]
iEM

Z(M; Y,+1 lyn) = 7_((Myn) - Pr [Yn+ = Yn+lI y"] -(Mly", yn+1 )
Yn+1EY

= -(Y,•+Y") - Pr [Ah = ii y"] 7(Yn,+lly, M = i) and
iEM

Z(Xn+; Y+i lyn ) = -t(Yv+lly ) -, Pr [X,+ = xn,+1 y"] -(Yn+l yn, z,+l).
Xn+iEX

These quantities should be thought as random variables and as functions of the his-

tory yn. It is worth noting that this notation is different than the widely used

notation, which includes a further expectation over the conditioned variable. The

term "H(MIY n = yn')" in conventional notation means just 7-t(M yn) in our notation

and "H(MIY")" means E [J-(MIY")], where the expectation is taken over yn. Note

that applying memoryless property of the channel to the last two equations above

implies

I (M; Y,,, ly") I (X,+l; Yn+l ly").

Proof Consider any variable-length block code with feedback whose message set M

is of the form M = M 1 x M 2 . Let t& be the first time instance that an i E M 1

becomes more likely than (1- 6) given the observations so far and let T- = min{t6 , 7-}

where r is the decoding time.

For each possible y76 we divide the message set M into IM 21 + 1 subsets called

.Fo(y),,1 (y),( ,)iM 2 I-)(Y A(). For £ = 1 to JM2 1, subset FT is composed of the

message (M1 (Yr), £), where MA (Y 5) is the most likely message given Y". The

remaining subset Fo is composed of the rest of the messages, i.e., all messages of the

form (i, j) where i - YA (YTr).

The index £ for which FT(Yr5) contains the transmitted message M is defined

as the axillary-message 19(Y-5). Essentially, it denotes a quantization of the ordinal

message M. The index k for which .Fk(Y76 ) contains the final decoded message M(Y')



is defined as the decoded 0(Y'), i.e.,

7(Y T) = k # M (Y') E Fk(Y rb) (4.22)

With these definition we get

Pr (Y') M Y" r [(Y) M Y Pr (Y') 1 9(Y ") Y"r] (4.23)

Pr [A 1(YT) A,1 Y7] > Pr [(Y-) 01 V(Y" ) = 0, Y"r ] Pr [0(Yr ) = 0 Y r ]

(4.24)

Now, we apply Lemma 27, which will be proved in the the converse proof of

Theorem 19. For the ease of notation, define the shorthand:

P,1 (Y7r) = Pr [ý(Yr) 5 9(YTr) y r6]

Pe9 (0, yrT ) = Pr [ý(YT) # 0 V(Yra) = 0, Y7-]

((Yv) = Pr [(Yr6) = 01 Y"]

From Lemma 27, for each realization of Y`6 such that rT < 7,

(1-((Yr")-P (Yr6)) In  < ln 2+E [r - r Y'-] j -)-in 2- P(Ya ) In nM 21)

where J (R) denotes the best missed-detection exponent for a special message while

ensuring reliable communication are rate R < C. It is a generalization of the Red-

Alert Exponent ERed for rates below capacity (see Chapter 5). More details and its

precise formula can also be found in Section 4.4.4 ahead. At this moment, we only

need the fact that it is a decreasing concave function.

If we multiply both sides of this inequality by the indicator function 1~ ,<r,}, the

expression we get holds for all Y". Thus

I{r<r}(1 -_(yr) - Pe (Yr)) In 1
pe (OIY 6) -

RfI6<tr} In 2 + E [-r - Tr6 Y'6] ((6Y) ID IM21



Now take the expectation of both sides over Y"T

L.H.S. = E [•r{,<,}(1 - (Y") - P (Y',)) , In )]
(a) E <r (1-(Y9)-Pef (Y'-))]> E [R{Tr<,} (1 - V(YT ) - p;9 (Yr6))] inE (1-(Y)-P (Y))P (,Y)

(1-56

(1--6

in E [Ir 6<,} (1-ý(Y"6 )-P,,(Y-6 ))Pa (O.Y-6)]

i 1n(,, <r ( 1-Vy')-P,B(O-6))pe8(oOla1

where A - minij Wilx(i j). Step (a) follows from log sum inequality. Steps (b) and

(c) follow because the log term in (b) is positive and

E [1{,T<,-}(1 - ((Y 6 ) - P' (yT'))] > (1 - - 6).

Now note that

E [~~,4,}(1 - P(Ye)- P (() Y,•))PO (0, YT6)] •

Thus

(4.25)

For the right hand side expectation, we use the fact that J (R) is a decreasing concave

function of R to get,

R.H.S.= E [(ln2 + H(1VtjYT6)-1n 2Pt9(Yr6) In IM2I'1 1 1
E[-r--r6IY

T ,5 , {T<7-}

S1n2 + E [E [7 -r T 6 Y ] ( (IY6)-In2-P(Y6)nIM2)_< ln2 +E [E[T -- jY'[ Y]] ) 14E-,5 <r},

< n2 + E [r- 7-] 7

< ln2 + E [r - -6] 3

(E [II<6 R(V9Y T6) -ln 2-P1(Y'6) In IM2 1

E[T---In,] IM )

Now lower bound E EI[{ff<,5,}H(V9YTr)] in terms of E [NH(M|YT6)]. Note that for any

(4.26)

L.H.S. > - In 2 - (1 - fe - 6) In peef

E [T - Til Y] j



realization of Y-5 we have

R7(MIY "̀) = 7-(V YT 6 ) + Pr [M - fI (YT 6 ) Yr6] 7-(MIMI # M1 (Y 8 ), YT " )

5 R( IIYT ) + Pr [MA1 # •i(Y 6 )1 YTK] In(•lM iM 21) (4.27)

Furthermore for all Y'6 such that 7 > T-, we have Pr [Af (Y" = M1) Y'] > (1-6).

This gives,

E [ (I{<,~-}7-(,Y•6)] _ E [I{R<,}}(Rt(M IYT ) - 61n IA11IM2 )]

- E [(1 - IR=,_})?i(MIY6)] - 6ln .MI IM21

> E [7(MIY16 )] - Pr [-j = T] In IM|IIM 21 - 61n(IM IIM1 2 )

(4.28)

Note that Pr [-T = 7] < P . Inserting this together with equation (4.28) in the in-

equality given in (4.26).

] E )]- +6 In jMiM 2 -In 2Pe n M 2

E[?-(MI
T
6)- ~i--6

< n 2+ E [T7- T3] (n IIMiIIM 2 (
A6 cSPe) - E[-r8]-ln2

E[r-r 6]

Now using a result from [28],

E[ W(M|lYo)-H(M Y)]
E[E [7- ]

< C

Since J (.) is a decreasing function we get,

R.HInIM iM 21 1- C -2-Pe) -E[r-]C-6]n2R.H.S. < In 2 + E [-r - ]\E

(4.29)

(4.30)

R.H.S. < In 2 + E [7 -



Note that Va > ,b> 0, C> 0,

S-J( 

a-(x) 

__-x

d(bd - )x)J (a-Cx) x=xo = (a- Cxo) -( - Cxo d-ý J (X) I a-Cxo < 0
= b-xo

Thus replacing E [7r] with a term lower than E [rT] itself will increase the value of

the expression given in (4.30). Now using (4.29) and the fact that ((M 1 Y'6) <

In 2 + (6 + - ) In I i11 in (4.30),

S1--6-P InM21-Pel IM-21• I1n2
R.H.S. <1n2+ (E[T]- (1 -6 6 )PnIM11 ( I n IM l11

• E[r]- (1-5--b) C•

(4.31)

Using this with (4.25) and choosing 6 = V implies EFitsQ < (1 --) (C). Since

J(C) = ERed this proves Ebits(r) < (1 - ) ERed

4.4.3 Proof of of Theorem 17

Achievability

Proof This argument is almost identical to the achievability proof for Theorem

16. The capacity-achieving Q with feedback is created from a capacity-achieving

sequence (without feedback) Q' for which Eb,Q = ERed. Each code of capacity-

achieving sequence with feedback Q uses L codes from Q' as follows.

For the Kth element of Q, transmitter uses the length F[rl/ C] code in Q' to send

the first part of the message M1 . Later, every phase 1 > 2 uses the length [Fr1 / Cl
code in Q'. The special message in phase 1 denotes an error event in previous phases.

( ,.., (1) (M, ...,A M(-1)) := d = 0 (special message)

(AI,""",M(/-1))= (AI1, 1-, (1-1)) * 7l = All



Thus I|MK)i = M '([rs / c~) and IMj  K)I = M'(FK/C - 1. If dl -# 0 for all

1 E {2, ... , L}, the receiver finalizes temporary decisions in all the phases. Otherwise

an erasure is declared and a retransmission is initiated. We skip the error analysis

because it is essentially identical to that of Theorem 16.

Converse

Proof This simple converse is proved by contradiction. Since we have,

max{Pem' , p .2 P., }

SPe

due to assumption of better

think of two super messages

< plM .... < PeI + PeA +2 +

< Pe 2 1 .2 . .. l, _ eiP (since PeA"' < P-A2 < ... <

error probability for more important layers. Now if we

as follows,

1 = (=I1, I2, ... , A) and d2 (MA+., i+2 ... i N) (4.32)

Then di achieves error exponent E, and has rate T'=l rj. Now if there exists a

scheme that can reach an error exponent vector outside the region given in Theorem

17, there will be at least one E, > (1 - 1CJ )ERed. This contradicts Theorem 16 for

two layers where td corresponds to special bits and 92 corresponds to ordinary bits. *

4.4.4 Proof of Theorem 19

Achievability: Emd > ERed

Since a fixed length block code without feedback is a special case of variable-length

block codes with feedback, we get End > Emd. Using the capacity-achieving sequence

Q' without feedback that achieved the Red-Alert Exponent proves Emd > ERed-



Converse: Efd ERed

Now we prove that even with feedback and variable decoding time, the best missed-

detection exponent of single special message is at most ERed. Since feedback can only

help, this also implies Emd < ERed for the no-feedback case and proves the converse

for Theorem 8 in the previous chapter.

Before proving this converse part of Theorem 19, we prove the following lemma.

Lemma 27 For any variable-length block code with feedback with |M I messages with

initial entropy T(AlYo) - log IM (since Yo means no observations) and with av-

erage error probability Pe, the conditional error probability of each message is lower

bounded as follows,

[ i ] _ 1 ((log IM -h(P.)-P, log(lMI-1))E[r]+log2)
Pr [tl M = i >_ e 1-Pr[M=i]-P J E[r] E[]+g2

(4.33)
where h(.) denotes the binary entropy function and J (R) is given by

J (R) :max E> ax(j)D ((PxWyix)y(.) Wyjx (.-j))X p l .pX2 ý .... p XI.V 1: jeX

-jEx a•x(j)I(Pkj
-iX)>R

where acx and {P~ } are distributions over X. It is worthwhile remembering the

notation we established previously:

(PxWvyx)(-) = Z P(x)Wvyx(-x) and
xCX

k W (pWylx)Y(Y)
xEX,yEY

Note that J (R) is concave and strictly decreasing in R for R < C. Considering

the achievability proof of Theorem 8 and the following converse proof, one can see

that J (R) is the best exponent of a special message in a reliable code sequence of

rate R. However, we will only need that fact for R = C. i.e., (C) = ERed-

Proof of Lemma 27: For upper bounding the error probability of the special



message, let us consider the following stochastic sequence which is a function of the

output sequence Y'.

Sn Sn(Y") = In Pr[Y,,]=i] E In P Ir[Y'=i,- yt-1 (4.34)
t=1

where the expectation is taken over Yt for a fixed yt-1. Note that E [S+ 1 Y"] = S,,

which implies S,, is a Martingale process. Now recalling A - min IWy lx(i j) implies

IS,1 - S,| < 2 In . Furthermore since E [T] < oc, we can use [32, Theorem 2 p

487], to get

E [S,] = So = 0. (4.35)

This is essentially Doob' optional stopping time Theorem. Thus

E [In Pr[ '=i] = [ E In Pr[Y ji ,I 1y-1 (4.36)

< E j ( ( X t ; Y t t=lyt-1)) (4.37)

Note that the inner conditional expectation in the RHS of (4.36) equals

D(Pr [Yt yt-l] | Pr [Yl M = i, y'-1] yt-1).

If t2,(i) denotes the input at time t for message i and output history Yt-, this KL

divergence is equal to D(Pr [YtI y-1] II1Ylx(Ytl t(i)) IYt -1). Now (4.4.4) follows by

definition of J (-) and noting that To see that, choose distribution ax to have all its

mass at b - Tt(i), the t'th symbol of i'th codeword E" (i). Now the second argument

of the KL divergence term equals Pr [YtI Al =i, Y t-] = Wyix(- b). Choosing Pb =

Pr [Xt] yt-1 completes the argument for step .

Let G(i) = {y'r: n(y') = i} denote decoding region for Mf = i and let G(i) denote



its complement. As a result of the data processing inequality for KL divergence,

E [In Pr[Y' = Pr [G(i)] In Pr[g(i)l + Pr In PrF[g =ijPr[Y7-M=i] Pr[9(i)lM=i] Pr[VWM=i]

> -h(Pr [(i)]) + Pr [(i) in 1

Using h(Pr [G(i)]) 5 In 2 and equation (4.4.4) we get

Pr [-(i)] In 1
Pr(i] P i)IM=i]

<ln2 + E In Pr[=i]

_<In2+E 1E
1t=1 J (I (Xt; Yt

Pr G(•0 Pr [-WI) M = i] Pr[M = i] + Pr [(i) M i] Pr [M i]

S(1 - Pe - Pr [M = i])

Using concavity of fJ (.) along with (4.38) and (4.39) gives

Pr [f il M = i]
1 ((EE Z Xt;YtY

e-Pe-Pr[M=i] E[] E[r]+1n 2
e (4.40)

Since J (R) is decreasing in R, only thing left to be shown is

E (X; Y
t=1

> li(MIYO) - h(Pe) - Pei ln(IM - 1) (4.41)

For that consider the stochastic sequence,

V, = -(MIY n) + I (Xt; Yt IYt-')
t=1

Clearly E [Vn+11 Yn] = V, and E [jV,[] < oo, thus {V,} is a martingale. Furthermore

IV,,+ - VJ < K for some finite K and E [T] < 00. Now using a version of Doob's

Note that

IYt-1))] (4.38)

(4.39)



optional stopping theorem [32, Theorem 2 p 487],

Vo = E [V] = = E [-(MY T)] + E [TI (Xt; Yt Yt-1) (4.42)

One can write Fano's inequality for every Y7 as follows,

7i(MAY') < h (Pr [MI(Y') = M I Y'r) + Pr [AM(Y') M I Y'] ln(IMI - 1)

Taking average over Y',

E [7-(MIYr)] < E [h (Pr [M(YT) = M Y])] +E [Pr [Ml(Y') Ml Y]] ln(IMI-1)

Using convexity of binary entropy,

E [F(MIY')] < h(Pe) + Pe ln(M I - 1) (4.43)

Using (4.42) and (4.43), we get the desired condition in (4.41). *

Having proved Lemma 27, we are ready to complete the converse for Theorem 19.

Converse part of Theorem 19: To prove Emd _ ERed, first recall our assumption of

uniformly chosen messages from M(t ), i.e., Pr [AlM = i] = 1 The error probability

Pe(i) = Pr [Mf iIM = i] for any i can be bounded as

In P(i) 1(- (, ( In I.M(')l-h(Pe.(K))-Pe(•) In(IM(Kr)I-1) In 2 (4.44)

Thus for any message i in a capacity-achieving sequence with feedback

lim - l < j (C) = ERed (4.45)

4.4.5 Proof of Theorem 22

In this subsection, we show how the strategy for sending a special bit can be com-

bined with the Yamamoto-Itoh strategy when many special messages demand a



missed-detection exponent. However unlike previous theorems, we add the additional

uniform-delay constraint now3

Clearly capacity-achieving sequences in general need not be uniform delay. Many

messages can have an expected delay, E [T| M = i] much larger than the average

delay, E [7]. This in return can decrease the error probability of these messages.

The potential drawback of such codes is that their average delay is sensitive to the

assumption of uniformly chosen messages. The expected decoding time, E [r], can

increase a lot if messages are not chosen uniformly.

It is worth emphasizing that all previously discussed exponents (single message

exponent Emd, single bit exponent Ef, many bits exponent Ef(r) and achievable

multi-layer exponent regions) remain unchanged whether or not this uniform-delay

constraint is imposed. Thus the flexibility to provide different expected delays to

different messages does not improve these exponents.

However, this is not true for message-wise UEP. Removing the uniform-delay

constraint can considerably enhance the protection of special messages at rate higher

than (1 - ERe) C. In fact, all special messages can achieve ERed then. The flexibility

of providing more resources (decoding delay) to special messages achieves this gain.

However, we do not discuss those cases here and stick to uniform-delay codes.

Achievability: E d(r) > min{ERed, (1 - C)Dmax}

The optimal scheme here reverses the trick for achieving Ef: now a special bit tells

the receiver whether the message being transmitted is special or not. This further

emphasizes how feedback connects bit-wise and message-wise UEP.

Proof Like all the previous achievability results, we will construct a capacity-achieving

sequence Q. To create the ath code in Q, a multi-phase fixed-length code with era-

sure decoding will be used. The first phase uses a length [ v'] non-feedback code

with two codewords, to tell whether M lE or not. Let b -= ]IM )} denote the

3 Recall that for any reliable variable-length block code with feedback F = maxIE[rIMl =i and

uniform-delay codes are those which satisfy limK, rF) = 1.



indicator bit for special messages. As a result of [2, Theorem 5.7.1, page 153]

- lEe In8\Pr [b 1 b = 1] = Pr [b 0 b = 0] ) (4.46)

where Ee, (.) stands for the expurgated exponent.. This probability vanishes with n.

In the second phase, one of two codes is used depending on b.

* If b = 0 after the first phase, the transmitter will use the length , code in a

capacity-achieving sequence (without feedback) Q' such that Emd,Q, = ERed.

The message, 0 for Q' will be decided according to the following mapping:

AMEl A )  = 0 (buzzer message)

M (KI d = M - JM(K)

The receiver decodes 0 at the end of the second phase. If 0 = 0, then an erasure

is declared. If 0 / 0, then A^i = 0 + M )I . Since Q' achieved ERed, we get

Pr [A- M(K) A EM )1 - exp(-,ERed) (4.47)

* If b = 1 after the first phase, the transmitter uses a two phase code of length K,

as in the Yamamoto-Itoh scheme [29]. The two phases of this code are called

communication and control phases, respectively. First, the length [rKi/C] code

in Q' is used to convey the particular special message if AM Ee ) . The last

codeword in this code is used when AlM M A ). Thus the message 0 in the

second phase is given by

MAIM, M = M

MsAt the end of the communication phase the rece )ver forms a temporary decision

At the end of the communication phase, the receiver forms a temporary decision



9 using ML decoding. Using [2, Corollary , page 140] implies

Pr 0 = i < 4e-E•- ~ -- C  (~)1+ 1(4 .4 8 )
Pr $ý 19,dd 11 <~ 4 c,-K r( Vi <i < IM 1

where r g(M +ll) denotes the exact rate of the codebook for 19. In the

control phase, temporary decision 9 = 19, is confirmed by sending accept symbol

xa, for n - [c ] time units, and is rejected by sending reject symbol Xd instead.

If bc = I{•}, then confirmation codeword corresponds to bc = 0 and the

rejection codeword corresponds to b, = 1. The receiver decodes b = 0 if the

output type of the confirmation phase is Wylx(- xa) and b, = 1 otherwise. This

ensures

Pr 1b =0 bc =l] exp(-K(1 - r/)Dmai ) (4.49)

If b~ = 0, then receiver finalizes 1 = 1 and otherwise an erasure is declared.

If 1 = IMs + 1 or an erasure is declared for 9, we declare an erasure for the

whole block and initiate retransmission afresh. Otherwise, the final message is

decoded as Ml = 1.

Thus a special message Al is decoded wrongly to another special message when

b, = 0. Hence the exponent of erring to between two special messages equals

(1 - r/C)Dmax-

Eq. (4.47) and (4.49) show that each special message achieves a missed-detection

exponent of min{ERed, (1 - r/C)Dmax}. Moreover, the overall erasure probability of

this scheme also vanishes, and hence capacity is achieved in spite of retransmissions. *

Converse: E d(r) < min{ERed, (1 - --)Dmax}

Proof Consider any uniform-delay capacity-achieving sequence with feedback Q.

Excluding all ordinary messages from the original s'th code in Q gives a code with

IM"()I = [eE[(')]l] messages. Its average error probability Pe'(-) and average delay



E [T7'(")] satisfy,

P,'<Pr [ $ MMeMII)S

E [7'(r)]< F(K)E T (K")

Consequently,
- In Pr [AI MI AIEM In P ) (4.50)

E[' ()] 7((K) (4.50)

Remember that by the uniform-delay assumption, p(' ) tends to 1 when K goes infin-

ity. Hence the right hand side above tends to error exponent of a feedback code of

rate r. This exponent is at most [27] the Burnashev exponent (1 - I)Dmax. Since

limit of left hand side is at most Efd(r) by definition, we get Emd(r) < (1 - T)Dmrx.

Similarly by excluding all but one of special messages in M4, we get Efld(r) < ERed. *

4.5 Avoiding False Alarms: Proofs

4.5.1 Block Codes without Feedback: Proof of Theorem 24

Lower Bound: Efa > ELa

Proof As a result of the coding theorem [4, Ch. 2 Corollary 1.3, page 102 ] we know

that there exits a capacity-achieving sequence Q' of fixed composition codes (without

feedback). Let P(i") denote the composition of the length n code in this sequence,

which satisfies

xEX

We use the codewords in this length n code in Q' as the codewords for ordinary

messages in the length n code in Q. For the special message, we use the length n

repetition sequence t"n(1) = (x 1, .. - , z).

The decoding region G(1) for the special message will be essentially the bare
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minimum. We include the typical channel outputs within the decoding region of the

special message to ensure small missed-detection probability for the special message,

but we do not include any other output sequence.

g(1) = {yf: 1 Q, (y') (i) - Wyix(ilxi) < ý }
iEY

Note that this definition of G(1) itself ensures that the special message is trans-

mitted reliably when it is sent, P,(")(1) 0.

The decoding regions of an ordinary message j E {2, 3,..., •M(")} is simply its

corresponding decoding region in Q' which lies outside of G(1). Thus the fact that

Q' is a reliable sequence will imply.,

lim Pr [ ' C Uj i } G(j) iM = i = 0.

Consequently the only thing we are left to prove is that decay rate of the Pr A = 1 = I 1]

is fast enough. Note the probability of a V-shell of a message i is equal to given by,

Pr [Tv (i)l M = i] = e- n D ( VY' x ( 'lX ) IW l x (.IX )l P "))

Note that also that 9(1) can be written as the union of V-shells of a message i as,

9(1) = U Tv (i) Vi 1
VyIx EV(n)

where V(n) is the set of channel types VyIx whose corresponding marginal output

distribution (Px')Vy1x)y is close to W/VyIx(.Ixt).

vc •) = {Vy1 x: : Vyx(j)Pk)P(k) - Wyx(jlx)l < /I}.
j k
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Note that since there are at most (1 + n) xilYI different conditional types.

Pr [G(1) M = i] < (1 + n)IxiiYI max
1", xEV(r)

Pr [Tv (i) Al = i]

Thus for all i =# 1,

lima -togPrD[(1)=i]= mm D (Vyix ( . X) 11 1ixV(-|X ) P)
n-,oc vlvlx: Ey P; (j) ,x(-lj)=Wrylx(-(z1)

Upper Bound: Efa < Eua

Proof The data processing inequality for KL divergence implies

Pr [y"j M = 1] log Pr[y•,~I=1] > Pr [g(1) I = 1] log Pr[g(1)IM-l]

yn Eyn

+ Pr [G(1• M= 1] log Pri (4.51)

> - In 2 - Pr [G(1) | M = 1] log Pr [G(1)1 M ( 1]

(4.52)

Using the convexity of the KL divergence we we get

Pr [y'l A = 1] log Pr[y l] < i=2MI1
i=2 ,,yn Y"

Pr [yl M = 1] log Pr[yl =

IMI

i=2 I ye1 L
i=2 yn EY

n
Pr [y" lM = 1]

k=1

logPr[yk l,,y
k - ]

Pr ykIAIinyA -'i]

= E
k=1 i=2

(4.53)

where 2k(i) denotes the input letter for codeword of message i, at time k.

Let PXk denote the empirical distribution of 4k(i) for a fixed time k.

Pxk () -= iM I (, Vx E X
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It is the fraction of codewords whose input at time k equals i. Using equation (4.52)

and (4.53) we get

Pr [G(1)j 1M $ 1] 1 Pr[g(1 1] ( --1 kD(WyIx(
'I- k(1)) WYIX('IXk)jPxk)-ln2

We show below that for all capacity-achieving codes, Pxk for almost all the k's is

essentially equal to Pj. For that purpose, let us first define the set P, and 6(f).

PE {Px: I(Px, WYvx) Ž C- Ec and 6(E) - max
Px ERP

Px(i) - PM(i)

Note that lim,•-o (E) = 0.

Let us now show that Pxk is essentially Pý for almost all of the k's. First, note

that as a result of Fano's inequality we get,

I(M, Y n ) > nR(")(1 - Pe) + In 2 (4.55)

On the other hand using standard manipulations on mutual information we get

n

I(M; Y") I(Xk, Yk)
k=1
n

= E I(Pxk, WYIx)

< nC- CZ {pXEP.I

k=1

Inserting this in to equation (4.55) we get,

{pxP <- n (C-R(")(1-Pe)-ln2/n)

k=1

(4.56)

Thus the fraction of time-indices at which Pxk is not P,(.) goes to 0 as E(n)

Let us chose E(n) = /(C - R(n) (1 - Pe) - In 2/n). Then for any capacity-achieving
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sequence limn-_, e(n) = 0. Moreover,

E E {fpXk (n)} < (n) (4.57)
k=1

Note for any Px E P(,,) we have

D (WY1x(.lk(1)) YlYx(-Xk) I Px) < D (14W'YIx(- Zk(1)) Wylx('IX)I Pý) + *((n))Dmax

SEf + 6(E(n)))Dmax (4.58)

where Eu = maxjcx D (Wylx(. )I) Wy1 x(-. X)I Pi).

Using equations (4.57) and (4.58)

D (Hy jx ( -jxk(1)) |k WYx ( - Xk) PxJ) < n(Efa + 6(O("))Dmax + F(")Dmax) (4.59)
k

Inserting this in equation (4.54) gives

lim -1ogPr[g(1)jA1] < E< U (4.60)
n----oo n

because Pr [G(1) M = 1] tends to 1 to ensure vanishing conditional error probability

for the special message. It remains to show how this upper bounds Efa which is defined

in terms of the worst case false-alarm probability ordinary messages. By Baye's rule

and assuming uniformly chosen messages from /M,

4.5.2 Variable-Length Block Codes with Feedback:

Proof of Theorem 26

Achievability: Ea > Dmax

Proof We construct a capacity-achieving sequence with feedback Q, by using a

construction similar to the one achieving Efd (r). In fact with this scheme, the special
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message achieves the false-alarm exponent Dm,, simultaneously with the best missed-

detection exponent ERed. The Kth element of the code is formed as follows.

First, use a fixed length two code with erasure decoding. In the first phase of the

code, a length [.1 code of two messages is used to convey whether M = 1 or not. Let

b = I{M=l} denote a special bit which is an indicator of the special message. Using

[2, Theorem 5.7.1, page 153],

-VrEvee (In8)
Pr [b 1 b=1] =Pr[b# O b = O] < e ,-) (4.61)

where Eex() stands for the expurgated exponent. This error probability vanishes

with n.

In the second phase, one of two codes will be used depending on b.

* If b = 0, transmitter uses the length a, code in capacity-achieving sequence Q'

such that Emd,Q, = ERed. This code conveys the particular ordinary message

to transmitted or a buzzer message indicating missed-detection of the special

message. If 0 denotes the message for this code in Q',

Sb = 1 = I V = 0 (buzzer message in Q')

6b=b=O d -=M

If a buzzer is detected after the second phase, 0 = 0, an erasure is declared and

a retransmission is initiated afresh. Otherwise, it declares M as hi = '. This

strategy achieves ERed as the missed-detection exponent for the special message.

Pr 11 Ml = = 1 exp(-nERed).

* If 6 = 1 after the first phase, transmitter uses a length a repetition code to

confirm whether M = 1 or not. If M = 1, transmitter sends the codeword

(xa, xa, . , Xa). If M = 1, transmitter sends the codeword (Xd, Xd, . . ., Xd).

Confirming M = 1 only if the output type of the second phase is Wyix(.Ixa)
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ensures

Prf = M l 1] ' exp(-nD(WyIx( zxa) WY x(. Xd))) = exp(-6Dmax)-

An erasure is declared for all other types of the second phase and a retransmis-

sion is initiated afresh.

As in earlier proofs, the overall erasure probability vanishes and Q achieves capacity

in spite of the the retransmissions.

Converse: Ef < Dmax

Proof Let G(i) denote the decoding region of each message i:

g(i)= {y : = i}

As result of convexity of KL divergence,

E [log pr[y•IM-=1] I= 1> Pr [9(1) Ml = 1] log [ ( + Pr

> - In 2 + Pr [G(1) M = 1] log Pr[g(1)II]

M = 1 log Pr
Pr [g-(1)AI1

(4.62)

It has already been proved in [28] that,

E log Pr[
Pr[y'rjMi,:A ]

AM= 1] <Dmax E [T M = 1] (4.63)

As a result of definition of F we have E [7 M = 1] < E [7] F. Combining this with

(4.62) and (4.63) gives,

In 2+FDmaxE[7]

Pr [ M(1) l # 1] > e- Pr[G(1)IAI=1]

Since F tends to 1 due to uniform constraint on Q, we get Ef Q < Dmax.
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Chapter 5

Unequal Error Protection at Rates

Below Capacity

In this chapter, we relax the constraint of overall data-rate approaching capacity.

Sacrificing the data-rate from capacity should provide additional reliability. Now we

are interested in optimal tradeoffs between reliability of the crucial parts of informa-

tion vs. reliability of its ordinary parts. We formulate this question in two ways.

This chapter addresses the first formulation, which is based on error exponents as in

Chapters 3 and 4. The second formulation is based on network information theory

and is postponed till the next chapter.

For data rates strictly below capacity, even the ordinary parts of information

can achieve a positive error exponent. One can tradeoff this exponent for a better

exponent for special information. To understand this tradeoff, we analyze the optimal

region of exponent pairs (Especiai, Eordinary), where Especial is the exponent for special

information and Eordinary is the same for ordinary information. Contrast this with the

case of operating at capacity, where we only focused on finding the maximum Especia

exponent for the special parts because Eordinary waS always zero. Since even ordinary

information can achieve a positive exponent at rates below capacity, the number of

UEP problems becomes much bigger now. We will analyze only a representative

sample of this rich set of UEP problems. In particular, we will revisit a few UEP

scenarios from Chapters 3 and 4.
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Throughout this chapter, we assume that the overall data rate equals R < C. In

Section 5.1, we discuss the case of block codes without feedback. We first consider

a bit-wise UEP scenario where the special bits have rate rl and the ordinary bits

have rate r2 - R - rl. We obtain upper bounds on achievable exponents which are

similar to sphere-packing bounds for classical error exponents. We also obtain lower

bounds using random-coding arguments. The upper and lower bounds match in the

high rate region for symmetric channels like the BSC and very noisy channels'. We

then consider the message-wise problem of a single special message and calculate the

generalization of the Red-Alert Exponent for rates below capacity-the best missed-

detection exponent for a special message while ensuring reliable communication at

rate R.

In Section 5.2, we discuss the case of variable-length block codes with feedback.

We revisit the bit-wise UEP scenario where the special bits have rate rl and the

ordinary bits have rate r2 = R - rl. An achievable bound on error exponents is

provided using a simple retransmission based protocol. Section 5.3 contains proof

details for all results in this chapter.

5.1 UEP Exponents for Block Codes

5.1.1 Many special bits

We first analyze the situation where out of the total nR/ In 2 (approx.) bits, approx-

imately nrl/ In 2 bits are special. For that purpose, consider a reliable code sequence

Q with message sets of the form M (n ) = -•
n) x M• • ) , where the cardinality of MJ(n)

and •n) grows exponentially at rate rl and r2 - R - rl , respectively. This simply

says that the rate of special bits and ordinary bits equals ri and r2, respectively.

The error exponent pair (Ebits,1,Q, Ebits,2,Q) for such a code-sequence Q is defined as

follows.

Definition 28 Consider a reliable code sequence Q with message sets of the form

1These bounds on UEP exponents do not match at low rates, but remember that even the classical
error exponents are still unknown at low rates.
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M ( ) = Mj n)x M ), where

rl,Q =- lim '°•log l lgJM")
rl,n ' r2,Q = lira ) n

n-"oo n--oo

Then the pair of exponents for special bits and ordinary bits is defined as,

Ebits,1,Q = limil ogPr M1]bits,2Q = liminf-logPr (5.1)n--oo n--oo

Now the achievable error exponent region at rate-pair (rl, r2) is defined as2 the set of

all achievable exponent pairs:

(ra, r2) - {(Ebits,,Q,, Ebits,2,Q) 3 Q s.t. rl,Q > r1 and r2,Q r2}.

In the following, we first discuss a converse result based on sphere-packing arguments.

These bit-wise UEP exponents are stated assuming our channel WyIx to be a binary

symmetric channel of crossover probability p. Similar results can be stated for any

symmetric channel WYix for which X = Y, all off-diagonal entries of WyIx are equal

to each other, and all diagonal entries are equal to each other. The reason for focusing

on these channel classes is their simplicity-such channels are completely described

by a single scalar parameter denoting their noise-level.

After discussing the BSC case, we describe a similar converse result for very noisy

channels as in [2] and Chapter 6. The expressions for UEP exponents are particularly

simple for such channels. These expressions generalize the classical sphere-packing

exponents for very noisy channels in [2]. These expressions also provide an intuitive

interpretation of UEP exponents where the pie of channel resources is first divided

between the special bits and ordinary bits. Each type of bits can then separately

decide the utilization of its piece of pie for its rate and error exponent.

After discussing the converse results for the BSC and the very noisy channels, we

discuss their achievability results based on superposition coding. For these channels,

2All exponents and exponent regions in this chapter will have a bar on top (e.g., Ebits,1,Q and
9(r1, r2 )) to emphasize the rate below capacity.
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these achievability results match the converse results in the high rate region. This is

similar to classical error exponents where the sphere-packing upper bound matches

the random coding lower bound at high rates. For more general channels, similar

converse and achievability results can be stated. However, they need not match even

in the high rate region.

Binary Symmetric Channel: Converse

Instead of describing the best error exponent pairs achievable for a given (rl, r 2), we

will describe the best possible (rl, r 2 ) for a given pair (E 1, E 2) of error exponents.

Here El and E 2 are non-negative numbers and denote the exponent required for

special bits and ordinary bits, respectively. To describe this converse, let us define

the achievable rate region RZ(E 1, E 2) for given exponent pair (El, E 2). This is defined

on similar lines of the exponent region 9(rl, r2) for given rate pair (rl, r 2 ).

R(E1, E 2) = {(rlQ,r72,Q) : Q s.t. Ebits,1,Q > El and Ebits,2,Q 2 E 2}.

We will upper bound this rate region in terms of the capacity region of a certain BSC

broadcast channel3 . This broadcast channel has two users and the channel for user

j E {1, 2} is a BSC with crossover probability p3 > p. This crossover probability pj

is defined as follows in terms of Ej.

Db(p1 lp) = E1 , Db(P211p) - E 2  (s.t. p < Pl ,P2) (5.2)

where Db(hllg) denotes the KL divergence between two Bernoulli distributions of

parameters h and g.

By Stein's lemma, Db(plllp) equals the exponent of the observed crossover proba-

bility being pi or more when p is the crossover probability of the actual channel Wyrx.

Since ensuring better exponent for special bits implies El Ž E2, we have p < p2 < pl.

3 Such a connection between the UEP problem and the broadcast channel was also used in [18]
to analyze the rate-region of priority encoded transmission [17] over erasure channels.
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Theorem 29 Consider a broadcast channel where channel for user i is a BSC of

crossover probability pi. If Cbroadcast(pl1, P2) denotes the capacity region of this channel,

R7(E 1, E 2) C Cbroadcast(P1, P2).

Equivalently, if a rate-pair (rl, r2) is not achievable over this broadcast channel, it

is also not achievable in our bit-wise UEP problem. This converse is a generalization

of the sphere-packing bound for classical error exponents [3]. It follows because the

classical sphere-packing bound can be stated as an upper bound on the achievable

rate when the (classical) error exponent should be at least E. To be precise, define

p > p as the crossover probability which satisfies Db(pIIp) E- . If Cb(.) denotes

the capacity of a BSC as a function of its crossover probability, the achievable rate

with error exponent E is at most Cb(3) = rsp(E). This result can be recovered by

substituting E = ~2 = E in Theorem 29.

Now we describe a weaker analogue of the Eb = 0 result at capacity in Chapter

3. Assume rl, r2 > 0 and say that even the ordinary bits demand the sphere packing

exponent at sum rate R. Equivalently, the sum rate R equals rSp(E 2).

E2 = Esp(R) R = rsp(E 2)

This is the best E2 at sum rate R since the exponent for special bits is at least E2.

Under this constraint on B2, Theorem 29 implies that El for special bits cannot be

larger than E 2 for any ri > 0. Thus Theorem 29 essentially generalizes the single

special bit result in Chapter 3 for the case of many special bits (of rate rl). However,

it does not imply that even a single special bit cannot achieve any higher exponent

than E2 = Esp(R) = Esp(r2).

Very Noisy Channel: Converse

In a very noisy channel [2], the conditional output distributions {Wyjx(.Ix) : z E

X} are 'very' close to each other. This implies that every Wylx(.Ix) is also 'very'
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close to the capacity achieving distribution Q~ (-), which is a convex combination

of {Wyvx('-x) : x E X}. To be precise, a channel Wyjx is very noisy if it has the

characterization below and E tends to 0.

Wylx(.Ix) = Qr(.) +Oylx(-Ix) where E yIx(ylx) = 0

WYlx = 1'Q* + E)ylx where EYxl' = 0O'. (5.3)

Here Ey x denotes the perturbation matrix, 1' denotes a column vector of all ones,

and 1'Qy denotes the matrix whose every row equals Qy. Thus each Wylx(.Ix) is

obtained by perturbing Q*(-) along direction EOix(.Ix). Such very noisy channels

are also discussed in Chapter 6 in more detail.

Theorem 30 Consider a very noisy channel of capacity C and two given exponents

E1 , E 2 < C. In the very noisy limit, every achievable rate pair (rl, r2 ) E 7(E 1 , E 2)

must satisfy ( ,- l2 +  ,,- 2 <

Thus the converse bound for a very noisy channel only depends on its channel capacity.

This bound generalizes the classical sphere-packing bound [2] for a very noisy channel:

•1,

where r denotes rate and E < C denotes the classical error exponent. In the upper

bound for UEP in Theorem 30, we had one such term for the special bits and another

such term for ordinary bits.

Pretending this sphere-packing bound to be tight, Theorem 30 can be interpreted

as splitting the unit resource of the channel in two parts: a (say) for the special bits

and (1 - a) for the ordinary bits. The special bits can then subdivide their piece into

rl and El provided 92 < C and
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Similarly, the ordinary bits can sub-divide their piece in into r 2 and E 2 provided

E2 < C and )-<i -- a.

Binary Symmetric Channel: Achievability

We use a superposition coding strategy similar to [48] for encoding and use successive

cancelation for decoding. One key difference in our strategy is we use random fixed

composition codes as opposed to i.i.d. random codes in [48]. This difference is crucial

for achieving the sphere-packing bound in the high-rates region, which cannot be

achieved with i.i.d. random codes in [48].

Superposition Coding: First choose an auxiliary variable U satisfying the Markov

chain U - X - Y. For the BSC, it suffices to for U to be binary uniform and Pxil to

be another BSC of some crossover probability t. The corresponding X distribution

is also uniform. The channel from U to Y is now a cascade of two binary symmetric

channels of crossover probabilities p and t. Let t 0 p - (1 - t)p + (1 - p)t denote

the effective crossover probability from U to Y. The capacity of this BSC equals

Cb(t 0 p) = In 2 - h(t 0 p), where h(.) denotes the binary entropy function.

Message AM (i.e., the special bits) are conveyed by the U-codeword (cloud center)

and M2 (i.e., ordinary bits) are conveyed by the X-codewords (satellites) around this

U-codeword. Hence the number of total U-codewords equals IM 11 and the number of

X-codewords around each U-codeword equals IM 2 1. At the receiver, 1ll is decoded

first by ML decoding over the U-codewords-choose the U-codeword nearest to the

received sequence. Then M2 is decoded by successive cancelation, that is, by choosing

the ML candidate from the satellite X-codewords around the decoded U-codeword.

By fixed composition codes, we mean that all IM11 U-codewords have the same

type Pu. Moreover, in a particular cloud around a U-codeword, all IM 2 1 X-codewords

have the same conditional type Pxlu. That is all U-codewords and all X-codewords

have type (1/2, 1/2). Moreover, all X-codewords around a particular U-codeword

differ from that U codeword in t fraction of the code-length.
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The purpose of choosing fixed composition codes was to avoid large deviations in

the artificial 'channel' from U to X. This only leaves us with large deviations in the

actual channel from X to Y, which are beyond our control. Choosing i.i.d. codes in

superposition codes causes large deviations in both these channels, U to X and X to

Y. The unnecessary large deviations of the artificial channel from U to X makes it

impossible at low rates to achieve the sphere-packing bound with i.i.d. codes.

Theorem 31 For rate-pair (rl,r 2), the following (E1,E 2) is achievable, i.e., con-

tained in E(rl, r2) for any given t E [0, 1/2].

El = min Db(OIIp) + [Cb(t O)-rl] +

OE[p,1/2]
min Db( IIp) + [Ie(U; Y) - rl]+

0e[p,1/21

and E2  = minn{E 1 ,E 2} where,

E 2 = min Db(O9p) + [h(t G 9) - h(O) - r2]+
OE[p,1/2]

min Db(O1p) + [Io(X; YIU) - r2] +
0E[p,1/2]

In this scalar optimization, parameter 0 denotes the empirical crossover probability

from X to Y. Note that Io(U;Y) and Io(X;YIU) denote mutual information be-

tween U and Y when the empirical crossover probability from X to Y equals 0. The

conditional mutual information le(X; Y IU) is defined similarly.

It is easy to verify that for high enough (ri, r 2 ), these achievable exponents match

the sphere-packing bound for BSC seen earlier. It follows since at high rates, the [.]+

terms are equal to 0. Assuming E1 > E2, it implies

El = Db(OllP) for 91 s.t. 10 (U; Y) = T1

and E 2 = E 2 = Db(0211p) for 81 s.t. 102 (X; YIU) = r2

This precisely matches the sphere packing bound in Theorem 29, because the above

pair of (rl, r2) lies on the capacity region of broadcast over BSC channels of crossover

probabilities 01 and 02.

Remark: For some (rl, r2), the achievable exponents in Theorem 31 could be im-
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proved by replacing successive cancelation decoding by its modification in [43] based

on joint decoding of (Mi, M2).

Very Noisy Channel: Achievabiltiy

Consider the very noisy channel WYix = 1'Q* + ' EyIx seen earlier, where Q* is the

capacity achieving output distribution. Assume that we are operating at rate pair

(rl, r2) -= 2(il, 2). Let the capacity of this channel be C = E2C for E tending to

0 and let Pý denote the capacity achieving input distribution. We will again use

random fixed composition coding for this result.

Superposition Coding: Similar fixed composition coding is used as seen earlier

for BSC. First, we need to choose auxiliary variable U satisfying U - X - Y. For

the auxiliary variable U, we choose the same alphabet X as the input X. Moreover,

we choose the marginal distribution for both U and X is chosen to be the capacity

achieving input distribution, Pu = Pý. The channel PxvU is chosen such that the

effective channel from U to Y, which is the cascade of Pxlu with WyIx, equals

Wy x -= 1'Q* + eP/eylx for some 0 <3 < 1. (5.4)

This channel from U to Y is obtained by 'shrinking' (see Fig. 5-1) the original channel

Wyix by a factor of 0. This shrinking is performed by treating Q* as the origin.

Wlx(- 12)

SW xlx(-13)

WYiX(- 1)

Figure 5-1: Channel W3Ix is obtained by shrinking original Wylx by factor 3 with
Q* as the origin.
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In the very noisy limit, capacity of W3ix is simply 32C = 32E20 (see Chapter 6).

The capacity achieving input distribution for W'ix is the same as Pý for the original

WYIX-

Now we are ready to state the achievable error exponents.

Theorem 32 For rate-pair (rl, r2) = E2(ri, p2), the following (E1 , E 2 ) is achievable,

i.e., contained in E (ri, r2) for any given 3 E [0, 1].

lim El = min (1 - 7) 2 0 + [y2 320 -_ 1]+
E-*0 E2  -ye[O,1]

and E 2 = min{E1, E2} where,

lim =2 min (1 - y)2C + [72(1 - 02)C _ ý2]+
E--O E2 yE[o,1]

In this simple quadratic optimization, parameter 7 denotes the empirically observed

shrinking factor, that is, WT1x denotes the empirically observed channel type from

X to Y. Smaller the value of y, noisier is the observed channel type.

Also note that 7y2020 and 72(1 -_ 2)C in above theorem respectively correspond

to I(U; Y) and I(X; YIU) when the empirical shrinking factor equals 7. It is be-

cause the empirical channel from U to Y is a cascade of IWV7x with W'7 x, the ef-

fective shrinking factor from U to Y is py. Hence the mutual information I(U; Y)

for this empirical channel equals E2 (y2 2C). Similarly, for this empirical channel,

I(X; YjU) = I(X; Y) - I(U; Y) equals e2(72 - 7y2322).

It is easy to verify that for high enough (V1, r 2), these achievable exponents match

the sphere-packing bound seen earlier. This is because in the optimization for E1 and

E 2, the arguments of [-]+ terms in Theorem 32 are equal to 0 for high enough rates.

Hence for high enough (l, r2),

21 ( __ 2 and lim- 2
2 2lim• = 1- and lim 2 = 1- 2

E (1 - 2 C and E2 (1- 2C
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Recall that a P, b denotes lim,,o 2 = 1. Eliminating 32 from these equations, in the

limit of vanishing c we get:

)+ =1
_ _(_ 2 2c-- -/- VE2

This is exactly the sphere-packing bound seen earlier.

5.1.2 Single special message

Now consider the missed-detection exponent for one special message (say M = 1)

while reliably communicating the remaining - enR ordinary messages. Recall that

reliable communication means overall error probability tends to 0 with increasing

codelength. Now let us define the best missed-detection exponent Emd(R) of the

special message for date rate R < C.

Definition 33 For a reliable code sequence Q of rate RQ, the missed-detection expo-

nent is defined as

Emd,Q = lim inf n gPr (5.5)

Then define Emd(R) = suPQ:RQ>R Emd,Q-

Now we recall the function J (R) defined in Chapter 3 for reading convenience.

J (R) = max ax(j)D ((PxWylx)y(-)ll Wyix(.Ij)) (5.6)
ax, , '"I!x ,r j jE1 X

jix ax (j)I(PX,Wvix)>R

where ax and {Pk} are distributions over X.

Theorem 34 '4 Emd(R) = J (R)

For R = C, this implies Emd(C) = ERWd. Thus this theorem generalizes the

notion of Red-Alert Exponent for data rates strictly below capacity. It will interesting

to extend this result when all the ordinary messages also demand a positive error
4This theorem and Theorem 36 in the next section is joint work with Barl§ Nakiboglu.
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exponent Eordinary. The above theorem only addresses the special case of this problem

where Eordinary = 0. This is because all we require is reliable communication for

the ordinary messages. The machinery of Renyi-Divergence [36, 37] instead of KL

divergence could be useful for this purpose.

Optimal strategy: Consider the ax, P, Px,..., pIXI which achieve the maximiza-

tion in the definition of J (R). Now the codelength n is divided into IXI contiguous

blocks. The first block consists of the first [nax(1)] symbols, the second block con-

sists of the next [nax(2)] symbols and so on. The length of the last block is chosen

so that total codelength equals n.

The special codeword is simply obtained by repeating input letter j E X in block j.

For ordinary codewords, we use blockwise i.i.d. random coding as follows. For every

ordinary codeword, choose the symbols in the j'th block by i.i.d. Pk distribution.

At the decoder, a two stage decision rule is employed. If output type in any block

j is not (Pj Wylx)y, the special message is chosen: M1 = 1. Otherwise, the ML

candidate amongst the ordinary codewords is chosen as Al.

5.2 Variable-Length Block Codes with Feedback

This section discusses an achievable result for a bit-wise UEP scenario without proving

its optimality. For other scenarios of message-wise and bit-wise UEP with feedback,

similar achievable results can be provided.

5.2.1 Many special bits

We now address the situation where out of the total E [T] RI In 2 (approx.) bits, ap-

proximately E [-] rl /In 2 bits are special. Again we consider reliable code sequences

with feedback with message sets of the form M(•) = MK) x M2), where the cardi-

nality of M(') and M2) grows exponentially at rate rl and r2  R - rl , respectively.

This simply says that the rate of special bits and ordinary bits equals rl and r2

respectively. We will focus on the case when the ordinary bits require the best pos-

sible exponent at sum rate R, i.e., the Burnashev exponent at rate R. Under this
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requirement, the best error exponent for special bits, fit, is defined as follows:

Definition 35 Consider a reliable sequence Q with feedback, with message sets M(K)

of the form M(K) = M(- ) x M('), where

rl, lim log•(2, =lim r2 l
K-+00 E[-(K),] , r2, 0-lim Lg• E T()]

Then the exponents for special bits and ordinary bits are defined as,

E , -fi - logPr j Ai] f Mf- log Pr M2 #M&2
bits,l,Q = lim inf E[,] Ebits,z2Q = lim inf l

Poo E[7(K) K.-CO E[r()]

Now define Eits,1 = sup Ebiu,l,Q, where F is set of reliable code sequences Q for
QEF

which rl,Q > rl, r2,Q > r2 and Eits,2,Q = (1 - R/C)Dmax

Theorem 36

E•its1  (1 - DDmax + ERed

Thus while ensuring that ordinary bits achieve the Burnashev exponent, the exponent

for special bits can exceed the Burnashev exponent by ERed. Contrast this with the

no-feedback case, where we saw that special bits could not achieve any better exponent

that the ordinary bits if ordinary bits were to achieve the sphere-packing exponent

at sum rate R.

Optimal strategy: We concatenate the buzzer strategy for many special bits from

Chapter 4 with the Yamamoto-Itoh strategy for achieving Burnashev's exponent [29].

As in earlier feedback schemes, we use a fixed length erasure code where erasures are

used to initiate retransmissions.

This strategy works in three phases: first stage is of length EL, second phase is

of length 1K and third phase is of length (1 - rl)+r . In the first phase, transmit

M1 using a capacity achieving code of length ,tK. If the temporary decision 1M11 is

correct after this transmission, the transmitter sends M2 in the second phase using a
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capacity achieving code of length !n. Otherwise, the transmitter sends a buzzer in

these Ur symbols by repeating the symbol x,.

In the third phase of length (1 - r2 ) symbols, Yamamato-Itoh scheme is used

for accept or reject previous temporary decisions. If both the temporary decisions

M1 and 1M2 in first two phases were correct, repeat accept letter xa. If either MI or

M, was wrong, repeat reject letter Xd.

An erasure is declared and retransmission is initiated if the decoder detects a

buzzer in the second phase (1 - L)K symbols or a reject codeword in the third phase.

Otherwise the receiver finalizes its temporary decision (f 11, 1ý2) based on ML decod-

ing over first two phases.

The Yamamato-Itoh scheme in the third phase ensures that Burnashev exponent

is achieved for M2. For M 1, an error happens only if the receiver misses the buzzer

in the second phase and the reject message in the third phase. The exponent for the

first event equals Z ERed and that for the second event equals (1 - 1+ 2 )Dmax. Hence

the error exponent for M1 equals (1 - 'D`r2 ) Dmax + M ERed. We omit other simple proof

details of this achievability result because they are very similar to the achievability

proofs in Chapter 4.

5.3 Rates Below Capacity: Proofs

5.3.1 Proof of Theorem 29

We use a genie to prove this converse. Assume that for all channel types besides two, a

genie provides the exact M1I 1 and A1 2 to the receiver. The two channel types for which

the genie does not help are binary symmetric channels with crossover probability pi

and P2 satisfying:

Db(pl Ip) - 1, Db(p2 lip) - E 2  (s.t. p <_ P1, p2) (5.7)

Thanks to the genie, we can assume that the channel type can only be a BSC of

crossover probability pli or P2.
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Hence we can consider the corresponding broadcast channel where channel to user

j E {1, 2} is a BSC of crossover probability pj. We need to ensure that M2 is reliably

decoded at user 2 and M1 is reliably decoded by the (degraded) user 1. Since P, Ž P2,

user 2 can also decode message M1 for the degraded user 1.

If a rate pair (rl, r2) is outside the capacity region of this broadcast channel, then

in spite of the genie above, that pair is infeasible for the UEP problem.

5.3.2 Proof of Theorem 30

The proof for the very noisy channel is very similar to the BSC. Again we assume a

genie which provides exact M1 and M2 to the receiver for all channel types besides

two. The two channel types for which the genie does not help are shrunk versions

(see Fig. 5-1 and Eq. (5.4)) of the original channel, Wy' x and Wx. Parameter

?1 < 'Y2 are fixed so that

(1 - 1 )2C=E 1 and (1 - 72)2C =E 2

y1 = 1 - /I/C and -y2=1- v-/C

(5.9)

Recalling WYIX = 1'Q* + e-y eY x implies W•x is a degraded version of WY yx
That is, we can find a channel Q such that channel Wy x could be thought as channel

W2x cascaded by channel Q:

W w,2 ~t for 0 = + (1 - ) .1'Q*

where I denotes the identity matrix. This Q is mixture of a noiseless channel with

probability 1 and a trivial channel 1'Q with probability (1 - ).
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Capacity achieving distribution for both W" x and W x is the same in the very

noisy limit. For such degraded broadcast channels, [44] showed that time sharing

between its two users achieves the entire capacity region. Since capacity of WYIX

equals 72C in the very noisy limit, this capacity region is given by all (rl, r 2 ) pairs

satisfying
rl r2+ <1

Substituting 71 and 72 from (5.8) completes the proof of this sphere packing bound.

5.3.3 Proof of Theorem 31

Consider the set of all binary sequences of empirical distribution5 Pu. For the BSC,

we choose Pu to be the uniform binary distribution. Each of the enr' U-codewords

is chosen uniformly from this set of fixed composition sequences. Let the i'th U-

codeword be denoted by uf"(i).

For each i E M = { 1, 2,..., e"'"}, consider the set of X-sequences whose em-

pirical channel from ufi(i) is Px1c. For the BSC, remember that our choice of PxIc

was a binary symmetric channel of crossover probability t. Each of the e" r2 X-

codewords (satellites) around u"i(i) (cloud center) is chosen uniformly from this set

of X-sequences. Notice that empirical distribution of every X-codeword will also be

uniform binary.

Let the X-codewords around ,"n(i) be denoted by n(i, j), where j E M2 =

{1, 2,..., e" 2 } denotes the ordinary message. For sending M = (M1 , M2), the encoder

transmits n(llM, AM2). The decoder first decodes MIf as the nearest U-codeword

assuming a memoryless channel Pylu from U to Y. This PYIu is the cascade of Pxlv

followed by WyIx. For our BSC case, this rule for choosing Ml1 is equivalent to nearest

neighbor decoding over fn (i) codewords.

Al1 = arg min IY n E Ufn(i)IH
iEM1

5This means that each input letter u E U except the last appears [nPu(u)] times. The last letter
appears for the remaining number of symbols out of n.
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where D denotes element-wise XOR of two binary sequences and -I H denotes the

Hamming weight of a sequence.

After decoding MI, it performs successive cancelation for decoding M2. That is,

it chooses M2  as the ML candidate from {fr(Mi,j) : j E M42}, i.e., the cloud of

codewords around uin(M•11). For our BSC case, this rule for choosing M2 is again

equivalent to nearest neighbor decoding over ýtn(Ml1 , j) codewords.

Ml2 = arg min I e y Dn(M1, j)lH.jEM2

We first prove the achievability of El for special bits. Without loss of gener-

ality, we can assume MA = 1. For simplicity of analysis, we can pretend that

"in(1) = (0, 0,..-, 0). Now in our fixed composition construction, every satellite

n (1, j) around uin(1) will be chosen uniformly from the sequences of Hamming weight

nt.

If the empirical channel from X to Y acts like a BSC of crossover probability

0, every n (1,j) leads to an output sequence of Hamming weight n(t 90). By

Stein's lemma, the exponent of observing such a BSC of crossover probability 0 equals

Db(9 1p). Now an error happens in decoding M1 if some other i,"(i) for i = 1 is closer

to yn than n(t 0 0). Since the u"i(i) sequences are chosen uniformly from binary se-

quences of weight n/2, for any given output sequence yn, ynEiin(i) is also distributed

uniformly over binary sequences of weight n/2. Hence the exponent of Y" ( un(i)

having Hamming weight less than n(t 09) equals

Db(t G 0IIl) = Cb(t ® O)

By union bound, the exponent of this happening for at least one i 4 1 is given by

[Cb(t 0 9) - rl]+ . Thus the overall error exponent for AMh by observing crossover

probability 0 equals:

Db(Ollp) + [Cb(t O0) - rl]+

Since the number of possible empirical crossover probabilities at length n is just n+ 1,
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the overall error exponent for M1 is obtained by minimizing the above expression over

all 0 E [p, 1/2]. This completes the achievability of E l.

Now for achievability of E2, we first show that assuming M1 was decoded correctly,

the exponent of for decoding f/ 2 equals E2. Then (pessimistically) assuming that an

incorrect M1 leads to incorrect AM2 in our successive cancelation decoder, M2 can

achieve E2 = min{ El, E 2}.

Now we only need to prove that k 2 is error exponent for decoding AM2 when Ml1

is correct.

Again without loss of generality, assume that (M1 , M2) = (1, 1) was transmitted.

If the empirical crossover probability of the channel is 0, the Hamming weight of Y"

is n(t 0 9) and the Hamming distance of Y" from P"(1, 1) is nO. Now lM2 is decoded

incorrectly if some incorrect Z (1, j) lies within distance nO of Y".

Recall that each .r(1,j) is chosen uniformly from binary sequences of weight nt.

The number of sequences x" of Hamming weight nt which are also within distance

nO from given Y * is - exp(nh(t) + nh(8) - nh(t 89)). To see this, consider the

set K: defined as all (x", yn) sequences where the hamming weight of x" is nt and

the empirical channel from X to Y has crossover probability 0. Size of this IC is

= e n h(t)+nh(O). Since the number yn sequences of Hamming weight n(t08) is - enh(t®O),

restricting the yn part to observed Y" gives - enh(t)+nh(O)- nh(tOe) elements in K. The

x" part of each such element is the possible set of xn of Hamming weight nt and is

within distance nO from observed Y " .

Now since any wrong " (1, j) for j = 1 is chosen uniformly from the set of se-

quences of Hamming weight nt, the probability any weight nt to be chosen as tn(1, j)

is r e-nh(t). Hence the probability that a wrong t"(1,j) lies within distance nO of

yn is
enh(t)+nh(e) - n h (t )  nh(O)nh(tO )enh(0)-nh(te

6
)

enh(t)

Thus the exponent of a particular tn(1, j) being within nO of Y" equals h(t®O)-h(O).

By union bound, the exponent of this event for some j Z 1 is given by [h(t 0 8) -

h(9) - r2]+ = [Ie(X; YIU) - r2]
+ . Again recalling that exponent of the empirical
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crossover probability 0 is Db(Olip) and minimizing over 0 implies that

E2 = nun Db(Ollp)+ [IO(X; YIU) - r2]OE[p,1/2]

equals the error exponent for M2 when M1 is decoded correctly.

5.3.4 Proof of Theorem 32

For a general DMC Wylx, we can repeat the same fixed composition argument as for

the BSC and achieve the following exponents for any given choice of Pu and Pxlu

used for superposition coding.

E1 = min D(VylxllWylxlPx) + [Ivlx(U; Y) - rl]+  (5.10)
vyIx

and E2  = min{Ej, E 2} where, (5.11)

E2 = D(VyixlWyx lPx) + [IVyIx(X;YIU) - r2]+  (5.12)

Here Ivyi x (U; Y) denotes the mutual information between U and Y when the channel

from X to Y is VWlx. This implies the channel from U to Y is a cascade of Pxlu with

VyIx. Similarly, Ivl x (X; YIU) denotes the conditional mutual information between

X and Y for the channel Vylx.

In the remaining proof of the theorem, we will analyze E 1 and E 2 in (5.10) (5.11)

and show their equivalence to their corresponding expressions in Theorem 32.

Let us first focus on El in (5.10). Recall our choice of Pxlu, which ensures the

channel from U to Y is a shrunk version of the channel from X to Y by a factor of

,3. As we will see in Chapter 6, in the very noisy limit, the KL divergence between

two nearby distributions, say P and Q, behaves as

SE (Q(i) - P(i))2
D(PIQ) 2P(i) (5.13)

See 6.1 in Chapter 6 for more details. Here P and Q are related as P(-) = Q(-)+eT(.)

for some direction T along the probability simplex. Since mutual information can
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be expressed as a convex combination of KL divergences between conditional and

marginal distributions, this quadratic approximation of KL divergence implies that

mutual information of the shrunk channel from U to Y is 02 times mutual information

of the channel from X to Y.

Hence for our fixed composition codes having Px = Pý, E1 in (5.10) can be

written as

E • min D(VyjxlWVyjixIPý) + [/32Iv,,x(X; Y) - rl] +

VYlx

= min D(Vyx |IWyVxlPE) + [O2D(Vyvxjj(PVviyx)yvIP) - rT] +  (5.14)
VYlx

where the second step follows by writing IVvi x (X; Y) in terms of KL divergences.

From the discussions in Chapter 2, optimum Vylx for such optimizations lies on

the exponential family connecting the true channel WYlx to the trivial channel 1'Q*.

Hence the optimum Vylx('Ix) are of the form:

Vx, Vylx(yUx) =
(Wylx(ylx))-,(QY(Y)x))'-Y

where -y is the exponential parameter and kx(7) is the normalization factor to ensure

a valid probability distribution.

Now we will use the very noisy assumption to show that this exponential family

of channels is the same as the shrunk versions of Wyix. Since WYix(yix) = Q*(y) +

eOYi x (ylx), Taylor's approximation implies

(Wyix(ylx))' = (Q;,(y) + e~ylx(yIx))p
= (Q,*(y))'~ + E Y8X(Yx))Q (

S(Q*,(y)) 1 + eY Eg x(ylx)
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Substitute this in the exponential family of Vylx to get

Q* (y) + 7)ylx(yiZx)Vx, Vy x(yl ) P k,(.y)

The normalization factor kx(-y) is simply one because the numerator sums up to 1

anyway over y. Thus Vylx = W•lx and the exponential family is the same as the

family of shrunk versions of Wylx. As discussed earlier, for shrunk Vyix = W)1x
mutual information Ivlx (X; Y) , 2 y2 Iw,,x (X; Y). Since we are using the capacity

achieving input distribution, Iw x (X; Y) = C = •2 implying

IVYIx (X; Y) E 22 y2 .

Let us now simplify D(Vyix||Wyix Pj) = D(Wj x IjWyIxlP;) in (5.10) using the

quadratic approximation of KL divergence in (6.1). Using the definition of W Ix,

WYix - W>x = (1 --)e~vlx = (1 - Y)(WYix -W Ix)

=• D(W x||WyIx|Pý) (1 - Y)2D(W 1x|IIWyIxIPx)

= (1 - 7)2D(QIl WyixlPý)

where Wylx is the completely shrunk channel 1'Q*. In the very noisy limit, KL

divergence becomes symmetric in its arguments (see Chapter 6) and hence the RHS

above equals (1 - 7)2D(WylxllQ* |Pj). By definition of mutual information, this

equals (1-y) 2IWlx (X; Y) = (1-'y) 2C. This shows that the divergence term in (5.10)

equals (1 - y)2E2C in the very noisy limit. Substitute this along with Ivylx (X; Y) ,

2 720 in (5.14) to complete the proof for E1 in Theorem 32.

Let us now analyze E 2 in (5.12). First note that Ivyx, (X; YIU) = Iyvlx,(X; Y) -

IvrIx (U; Y) by chain rule. Since mutual information between U and Y is 32 times the

mutual information between X and Y, we get Ivvlx(X; YIU) = (1 - f 2)Ivvx (X; Y).

Substituting this in the optimization in (5.12) for E2,

E2 = min D(VYIx Wyix Pj) + [(1 - / 2)Iv (X; Y) - r2]+
VYIx
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This is simply the expression in (5.14) for El but with 32 is replaced by (1 - 32).

Thus all the arguments for El can be repeated to prove E 2 in Theorem 32.

5.3.5 Proof of Theorem 34

The achievability proof follows on similar lines of the achievability proof in Chapter

3 for Emd _ ERed at capacity.

Achievability: Emd(R) J (R)

For each block-length n, the special message is sent by repeating input j in the j'th

block of length nax(j). The remaining IM(n)| - 1 ordinary codewords are generated

with i.i.d. Pk symbols in block j.

Let the empirical output distribution in block j be denoted by Q3Y. The receiver

decides that the special message was sent only when no Q• is close to (P&xWYIx)y.

To be precise, the decoding region of the special message is given by:

(1) = {y" : 3j s.t. IQj(i) - (PxWyIx)y(i)l 2 /1/n for some Vi E Y}

Error happens after sending the special message if type Q3 in every block j is close

to (PjxWylx)y in the sense above. By Stein's lemma, the exponent of this event for

block j equals ax(j)D((PjWyix)y(.)IIWylx(.Ij)), where the ax(j) factor arises due

to length of block j. Memoryless property of the channel implies the missed-detection

exponent for the special message is obtained by the summation

o x(j)D((P xWylx)y(-.) Wylx(.Ij)),

which by definition is equal to J (R).

Now the only thing left to prove is that we can have vanishing error probability

for the ordinary messages at rate R. For that purpose, we first calculate the average

error probability of their (blockwise) i.i.d. code ensemble described above. For that

i.i.d. ensemble, the conditional error probability will be same for all i # 1 in M (n")
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Hence without loss of generality, let us calculate the error probability of the message

M = 2.

Assuming that the second message was transmitted, Pr [yn E G(1)j M = 2] is van-

ishingly small. It is because, the output distribution for the random ensemble for

ordinary codewords is i.i.d. (PxWylx)y in block j. Chebyshev's inequality guaran-

tees a vanishing probability for the output type Q, of block j being outside a •i1/n

ball around (P xWyix)y, i.e., outside [P;]. More precisely, this probability is of the

order •-/n. By union bound, the probability of this event for some block j is of the

order IX1/VA5, which still vanishes with n.

If the second message was transmitted, Pr [y" e Ui>2G(i) I Al = 2] is also vanish-

ingly small by the standard random coding argument for rate R. This error proba-

bility of erring to another ordinary codeword is small because mutual information for

this (blockwise) i.i.d. code ensemble exceeds R due to definition of J (R):

E ax(i)I(Pý, Wyix) > R
iEX

Thus data rate R can be achieved with vanishing error probability using this block-

wise i.i.d. ensemble for ordinary codewords.

Converse: Emd(R) • j(R)

This converse is a corollary of Lemma 27 proved earlier in Chapter 4. This proof

simply follows by substituting i = 1 for the message index in Lemma 27. Note that

in a length n block code without feedback, the average decoding time E [7] is trivially

equal to n. The converse is completed by noting that 7I(MIYo) = nR (n) , where R(' )

of the code sequence Q tends to RQ > R.
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Chapter 6

Rates Below Capacity: Network

Information Theory Approach

Now we will address the case of rates below capacity using a different approach than

all previous chapters. In previous chapters, we considered a point-to-point channel

and UEP was used for extra protection for the crucial parts against large deviations of

the channel noise. In other words, UEP was aimed at providing better error exponents

for those crucial parts. Alternatively, UEP can be used in a broadcast network where

the crucial parts should be protected against channel fading or movements of users.

That is, the crucial parts should be received by all users, including those far from the

base station or those experiencing bad fading. However, the better off users (which

are near the base station or experiencing little fading) should be able to decode the

ordinary parts as well.

This chapter primarily focuses on the bit-wise notion of UEP for networks. This

problem is equivalent to the network information theory problem of broadcast with

degraded message sets [42]. Let us describe this problem where transmitter X is

broadcasting to K receivers denoted by Yo,, 1, - , YK -1. The network is memoryless

and completely characterized by the network transition matrix WYoy,...YK_i 1 X. The set

of all K receivers is denoted by S1. All users in S1 want to decode M1 , which denotes

the special (crucial) bits needed by everyone. There is a subset of users So C S1 and

all users in So want to also decode Mo0, which denotes the ordinary bits. The overall
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message at the transmitter is (Mo, M1), the Cartesian product of ordinary bits and

special bits.

X
0

Figure 6-1: Broadcast with 2 degraded message sets: users in S 1 want message M1

and those in So want M0 too.

Let Ri, i E {0, 1} denote the rate of Mli. That is, Mi is chosen uniformly from the

set {1, 2, ..- , [enRi] } where n denotes the code-length. A rate pair (Ro, R 1) is said to

be achievable if a sequence of codes exists for which users in S1 can decode M1 with

vanishing error probability and users in So can also decode Mo with vanishing error

probability. The capacity region of this broadcast network is defined as the closure

of all achievable rate-pairs (Ro, R 1). This region captures the rate tradeoff between

ordinary bits and special bits.

In general, there could be multiple speciality levels (say L > 2). This corresponds

to L nested subsets of users So C S1 ... SL-2 C SL-1, where SL-1 is the set of all users.

Users in set Sk, 0 < k < L - 1 demand to reliably decode messages (Mk, ... , ML-1).

Now the L-dimensional capacity region is the closure of all achievable rate-tuples

(Ro, R2 - " " , RL-1) with vanishing error probability.

Section 6.1 discusses the simplification with Euclidean geometry which applies to

"very noisy" versions of this problem. For situations that need not be very noisy, Sec-

tion 6.2 shows how the simplification via graphical models becomes useful. Graphical

models provide a framework to systematically think about such broadcast situations.

They enable us to solve some new classes of broadcast networks, which generalize

many previously solved networks1.
1Preliminary versions of results in Section 6.1 appeared in [13]. Results in Section 6.2 were first

reported in [45] and are a joint work with Mitchell Trott (in addition to Lizhong Zheng).
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Finally in Section 6.3, we briefly discuss the notion of message-wise UEP for

networks, which is quite straightforward compared to bit-wise UEP for networks.

Instead of degraded message sets, the message-wise UEP problem corresponds to the

capacity of compound channels. We also discuss some relations between the network

information theory formulation and the error exponent formulation.

6.1 Euclidean Information Theory

Many problems in information theory, including broadcasting with degraded message

sets, involve optimizing the KL divergence between probability distributions. Un-

derstanding the structure of the optimum solution is helpful for characterizing the

achievable regions as well as the converse bounds. For example, this could be helpful

in converting a multi-letter characterization of a capacity region into a single-letter

characterization. Moreover, even when a single-letter characterization is available, it

is often implicit in the form of an optimization in the space of distributions. Knowl-

edge of these optimum distributions gives additional insights into the capacity region

and design of good codes.

However, there is no systematic approach for finding the optimum solutions in

general. Since KL divergence is difficult to analyze, these optimizations are often

intractable. A main source of difficulty is that the KL divergence is not a metric

in the space of probability distributions. Another source of difficulty is that the

dimension of these optimizations can be unbounded in multi-letter characterizations,

which makes them even harder.

We simplify these problems by assuming the distributions of interest to be close

to each other. After restricting our attention to a local neighborhood of distribu-

tions, the KL divergence behaves like a squared Euclidean distance and the manifold

of distributions behaves like a Euclidean space. We demonstrate that, with this ap-

proach, new insights can be obtained on the structure of the optimal solutions for

such optimizations. Specifically, this simplification completely solves the multi-letter
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optimizations arising in broadcast with degraded message sets in very noisy networks2.

First we obtain a simple upper bound on the KL divergence between two distri-

butions P and Q of a discrete random variable Z, which takes values from a finite

alphabet Z. We think of P and Q as IZI-dimensional row-vectors and assume all

their elements to be strictly positive, P, Q > 0. Using ln(1 + t) t -t2( Q(z) U P(z )
D(PIIQ) = - P(z) ln + Q( P(z)

zEZ P()

< - p(Q(z) - P(z) (Q(z) - p(z))2
zEZ P(z) 2P(z)2

0 + E (Q(z) - P(z))2

zEZ 2P(z)
1- llIIQ-PIlI
2
= I[P- 1/2](Q - p)'11 2

2

where (Q - P)' denotes the transpose of row-vector (Q - P) and Ilali denotes the

squared norm of a weighted with b as its weight vector: Ila •1 i Z i ) for b > 0.

Matrix [p-1/2] is a diagonal matrix whose i'th diagonal entry equals 1/P(i).

The above bound on D(PIIQ) becomes tight when P and Q are close, i.e.,

P=Q+ET for E--,O

and the perturbation direction T is a fixed row-vector along the probability sim-

plex satisfying Ei T(i) = 0. With this assumption, the divergence bound becomes

D(PIIQ) 5 T-IITII2p. Using In(1 F t) < t - t + i, it turns out that difference between

D(PIIQ) and -IITI12 is of the order e3.

E2  1 (P(z) - Q(z))3 I 3  T(z) 3  3)

IITj P - D(P IQ)I < P(z)2  3L P(z)
z z

Hence up to order E2, we have D(PIIQ) y I IT Ip. The • sign is used as a shorthand

2Additional applications of this Euclidean approach to other problems in source coding and not
very noisy situations can be found in [13].
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for equality up to E2 order:

f 9 ~ f=g+o(g2 )
f g <- lim -=lim f = g + (2E-'O E2  C-+0 E2

Note that the approximation D(PIIQ) ; 2 EIT112p is valid even if the subscript

P in IITII2 (the weight vector for the squared norm) is changed to another nearby

distribution P with strictly positive components3 .

E2 ITI12 = I _Q-PII2 11Qpfi2

where P = P+ET for E T(i)=O.

Thus we can view the weight vector as only dependent on the neighborhood of distri-

butions. The divergence between any pair of distributions in this neighborhood has

the same weight vector for its Euclidean approximation. In particular, this implies

D(PIIQ) "- D(QIIP) = JIP - QJI2 when P = Q + ET (6.1)

With this simplification, we first visit the degraded broadcast channel problem

[54, 48]. Our solution will shed some new light on this already solved problem. We

will then move to the broadcast problem with degraded message sets [42] for two or

more users. We obtain some new insights on the capacity region of such problems in

terms of the singular value decomposition (SVD) of certain matrices, which depend

on the channels involved.

6.1.1 Euclidean Approximation

Now let us write mutual information in this approximation. Let X, Y be a pair of

discrete random variables with marginal distributions Px, Py . Let Wyix denote the

probability transition matrix of a very noisy channel, which means that all conditional

output distributions WYIx(.Ix) are close to a fixed output distribution Qy(.). Think

3Note that since P is assumed to have strictly positive components, any 1 in a small enough
neighborhood of P will also have strictly positive components.
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of these distributions as nearby points on the probability simplex in the neighborhood

of Qy(.).

Wyrx(.-x) = Qy(-) + eOyIx(.Ix) where Oyix(ylx) = 0 (6.2)
y

WyIx = 1'Qy + ceyx where Eyxl' = 0'. (6.3)

where E8yx denotes the perturbation matrix, 1' denotes a column vector of all ones,

and 1'Qy denotes the matrix whose every row equals Qy. Thus each Wyix(-Ix)

is obtained by perturbing Qy(.) along direction Oylx(.Ix). The marginal output

distribution Py = PlWYlx is a convex combination of {Wylx(-Ix),x E X}, so it is

also close to Qy(.). Using (6.1) and the definition of I(X; Y),

I(X; Y) = Ep, [D(WyIx(-IX)((Py(-))] (6.4)

1

" 2 E-p [|| Wy x(.IX) - Py(-)II) ] (6.5)
S1 E ip [Q1 1 ( ( X) - Py(.))'112 (6.6)

Since Py(.) is the average of Wylx(.IX) under Px, the above approximation for

mutual information in (6.5) looks like (half of) the 'variance' of4 the conditional

distributions {Wylx(-Ix),x E X}. Although, remember that instead of the usual

Euclidean norm, we are taking the weighted Euclidean norm according to Qy.

Remark: The capacity achieving output distribution P; (-) now has a very intuitive

geometric interpretation now. Recall that for every input x used in the capacity

achieving distribution, D(WYix(.-Ix)jjllP()) equals capacity [2]. Under our simplifi-

cation, this means that (half of) the weighted squared Euclidean norm IIWyxx(-Ix) -

P0(.)I)•Y equals capacity for all those inputs. Thus P; is the "circum-center" of the

polygon formed by various Wyx(.IJx) and the channel capacity equals half the squared

"circum-radius" of this polygon. The quotation marks are to emphasize that instead

of the standard Euclidean squared norm, we take a weighted squared norm according

4 To physicists, this looks like the squared radius of gyration of IXJ point masses in lyl dimensional
space, where point x is located at Wylx(-Ix) and has mass Px(x).
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to Qy. However, if Qy is the uniform distribution, then the weighted squared norm

is simply a multiple of the standard (unweighted) Euclidean norm and the channel

capacity is related to the standard Euclidean circum-radius of this polygon. Figure

6-2 shows this result for a channel with a ternary input alphabet X = {1, 2, 3}.

Wylx

WY1x(.1"

Wylx(-13)

Figure 6-2: Geometric interpretation of channel capacity. Capacity achieving P; is
"equidistant" from every conditional output distribution-it is the "circum-center"
of the channel and half of its squared circum-radius equals the channel capacity.

6.1.2 Degraded broadcast channel

Now we consider the physically degraded broadcast channel (Fig. 6-3) from X to

Y and Z. Let Wylx and Ozly denote the channels from X to Y and from Y to Z,

respectively.

? WyIx QZIY
U -- X - - ---Y - Z

Vzlx = WyJxQzlY

Figure 6-3: Physically degraded broadcast channel

It is known [48] that the achievable rates are R, = I(U; Z) for common information

(i.e., crucial bits) to both receivers and R0 = I(X; YIU) = I(X; Y) - I(U; Y) for

private information (i.e., ordinary bits) to Y, where U satisfies the Markov relation

U - X - Y - Z. The capacity region is given by the following optimization over joint

137



(U, X) distributions.

R max I(U; Z) (6.7)
Pvx: I(X;YIU)>Ro

= max I(U; Z) (6.8)
Pux: I(U;Y)•<I(X;Y)-Ro

In the following, we fix the X distribution at Px and only focus on optimizing the

choice of U. Hence I(X; Y) - Ro is a fixed constant (say y) and I(U; Y) < 7y.

To apply the Euclidean approach, we assume channel Wylx to be very noisy. This

implies that all Y distributions of interest are close to each other, in the neighborhood

of Qy.

IWylx = 1'Qy + EOyx

and Vzlx = WyIxRZIy = 1'QyQZly + EOylXZly

= 1'Qz + E(EOYlXZljy )  where Qz E QyzIly

Thus the very noisy nature of Wyix implies that Vz x is also very noisy and all Z

distributions are in the neighborhood of Qz.

Now instead of directly calculating the optimum distribution (U, X), we first calcu-

late the optimum (U, Y) distribution for a given Px. The optimum (U, X) distribution

can be easily obtained from this optimum (U, Y) distribution. The complete capacity

region is obtained by repeating these steps for every Px and taking the closure of all

those solutions. We only focus on the optimization for a given Px henceforth.

Define our optimization variables as

Py(u(.ju) - Py(.) - cE,

where Py is the fixed output distribution corresponding to given Px. We only need

to choose the optimum PYIU for this Py. Equivalently, we only need to optimize the

perturbations {0,}. Now note that physical degradedness implies,

Pzlu(.lu) - Pz(-) = (PyIu(.u) - Py(.))Qz ly = EOUszlIY
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We can now rewrite the optimization in (6.8) using the Euclidean approximation in

(6.6).

max E U [ /2](OUZiy)2 C2
max Ep ' 'U (6.9)

Pyu,0: EPU [11 [QYg2].-,||2] <2y/E2 2

Performing a change of variables, define column vector ,, - [Qy 1/2]Os and ' - y/E2.

This converts (6.9) to the following optimization for R*:

-R = -Imax Epu [| B -O|2] (6.10)
E2  2 PU, Uy: Epu[ll|ull 2]<2 E (6.10)

where B [Q1/2] [Q/ 2] • I(X; Y) - Ro (6.11)

We call B the divergence translation matrix, since it transforms the divergence be-

tween Y distributions to that between Z distributions. If Qy and Qz are uniform

distributions, then this matrix is equivalent to QZ,, the (transposed) channel matrix

itself. This optimization is a standard problem in linear algebra. Its solution de-

pends on the SVD of B, which has the following property due to the data-processing

theorem.

Lemma 37 Let al, a2 ... denote the singular-values of B in descending order and

the corresponding (right) singular vectors be vl, v2  . Then the largest singular-value

al is 1 and v1 = Q'_1/2, which denotes the element-wise square-root of vector Qy.

If there were no constraints on O, the optimal choice of each qu should be along

vl, the singular vector with the largest singular-value. This is essentially like multi-

antenna beamforming for maximum power gain-putting all the "power" along the

largest eigenvector.

However, it turns out that v, is an infeasible direction for ¢, = [Qi 1/2]0u, where

Ou = Pylu(.Iu) - Py(.). Note that 98 lies along the probability simplex, so it satisfies

0 V,( )= 0 [ v, [Q'= v'4,U = 0

-= vl 1 ~, E span(v2, v3 ... )
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This means that linear combinations of {v 2, v3 ... correspond to all feasible 0' di-

rections along the simplex. Since 0, E span(v2 , v3 -. ), the optimal 0, lies along v2,

the feasible direction with the largest singular value. This implies,

R* < o2 I(X; Y) - Ro
-2 2 2 F2

with equality achieved when Ro is close to I(X; Y) and 0, can be chosen entirely

along v2.

Thus ar equals the slope of the optimal R 1 vs. Ro curve at the R 1 = 0 intercept.

Note that a2 < 1 reflects the fact that the loss in Ro for the better user is not

completely compensated by the corresponding increase in R1 for the degraded user.

Perhaps it is surprising that this efficiency factor, i.e., the slope of the Ro vs. R1

curve depends on the degradation link Qz ly (its a2) but not at all on the channel

Wylx to the better user.

One can increase R 1 = I(U; Z) by extending 8, further along the direction corre-

sponding to v2 until Py lu(. u) reaches the boundary of its feasible set. This feasible

set is the convex hull of the channel {Wylx(-Ix),x E X}. Then to further increase

R 1, the choice of 08 will move along its boundary. The normalized rates (Ro, Rj) are

defined as

oo -dR 2i
0 -lim and Ril limR (R ) (RR)
e-0 E2  e-O E2

The resulting (Ro, i1) capacity region should hence be piecewise linear in shape. This

reminds us of some results in [44] where the rate region was a triangle.

It is more interesting to consider the multi-letter problem. In the following, we

study the 2-letter case and the general n-letter case follows on the same lines. Without

loss of optimality, we can fix the distribution of input pair (X 1, X 2) - X 2 to be i.i.d.

Px over time Px2 = Px 0 Px, which implies Py2 = Py 0 Py, Pz2 = Pz 0 Pz, where

0 denotes the Kronecker product. Even if X2 are not i.i.d, the difference between

Py12 and Py 0 Py will be of higher order than E due to the very noisy nature of the
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channel. It is because the two letter channel Wylx~ equals

WYX2 1x = Wyix 0 WYix = (1'Qy + evylx) 0 (1'Qy + eEYiX )

- WYl21x2 = 1Qy 0 1Qy E+ 1QY Y eYIX + EEyIX + 1lQY + O(E2) terms

Due to this property, any correlations between X1 and X2 are only reflected in the

O(e2) terms of Py12 = PX2Wy21X2 and similarly of P2? = Px2Vzlx2. In other words,

if two distributions PX2 and PX2 have the same marginal distributions of X 1 and X2 ,

then their corresponding Py2 and Py2 will be the same up to order e. Hence in our

scaling of interest, we might as well assume i.i.d. Xi. Remember that if the difference

between two distributions is O(E2), then the KL divergence between them is O(E4),

which is negligible in the E2 scaling of our interest.

Also note that the memoryless property of the channel implies Pz2IY~ = QZlY 0

OZlY. For the 2-letter case, we need to consider the 2-letter version of the optimization

in (6.8). This optimization is over joint distributions of (U, X 2) satisfying the Markov

chain U - X 2 - Z12 .

1
max I(U; Z2j) (6.12)

2 Ptx2: I(U;Y1
2)<2(I(X;Y)-Ro)

The initial factor of 1/2 is to normalize the rate per channel use and also the factor

of 2 in 2(I(X; Y) - Ro) arises due to two-channel uses.

Substitute E., = Py2,u(-Iu)-Py2 (.) as before and denote the i.i.d. Qy distribution

as Qy2. Similarly define Qz2. Again, with the local assumption on distributions and

substituting o, = [Q-1/2] •• we can rewrite this optimization

1
- max Epu [11 B(2) CUll ]

2 Pu,0u: EPU [ieu 112]<4-y

where B (2)  [Q-1/2 1(zlY zY) X/2 _

is the divergence translation matrix for this 2-letter case.

Lemma 38 Let vi and vj denote two singular vectors of B with singular-values ai
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and aj. Then vi 0 vj is an singular vector of B (2) and its singular-value is crij.

Again, the largest singular-value equals 1 corresponding to the (right) singular

vector vl 0 vl, which is an infeasible direction due to simplex constraint. The singular

vectors v1 0 v2 and v2 0 V1 correspond to the second largest singular-value a2.

Recalling vi = Q'y1/2 to notice that q, along v1 0 v2 translates to Ou along Qy 0 a,

where a = [Q1/ 2]v 2. Similarly, v2 0 vl translates to a 0 Qy. Thus the optimal

Py21U('Iu) for any u looks like

Py2 U(" u) - Py2+ EO.

(for some constant c1, c2) = Py 0 Py + EC1(Qy 0 a) + Ec2(a 0 Qy)

Py 0 PY + EC(Py ( a) + EC2(a Py) + O(2)

M (Py + cia) 0 (Py + Ec2a)

In the second last step, the error in replacing Qy by Py is O(e 2) since the difference

between Py and Qy is O(E). The last step follows by adding c2C1C2(a 0 a), which is

of smaller order than the other terms and is negligible in our scale of interest. These

O(E2) error terms can be ignored as mentioned earlier, since they cause a negligible

O(e4) difference in the KL divergences.

This analysis says that any optimal conditional distribution Py2lu(.Iu) is indepen-

dent over time in the scaling of our interest. The multi-letter this decomposes into

a sum of single-letter optimizations and hence i.i.d. replication of the single letter

solution becomes optimal. The final value to the 2-letter optimization is exactly the

same as the single-letter optimization seen earlier. This fact is proved in [48] under

general conditions using information theoretic technique of substitution of auxiliaries.

For any given number of letters n, the same results hold true when E goes to zero

and the multi-letter optimization becomes equivalent to the single-letter optimization.

It is worth mentioning that we are fixing the number of letters n and let e go to

zero. This is different from fixing E and letting n go to infinity, where the Euclidean

approximations are not clearly justified. Unfortunately, for proving rigorous converses

for these problems using Fano's inequality and related techniques, one needs to let n
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go to infinity first. Resolving this issue of the order of taking limits is an important

future direction. These comments also hold true for the next subsection.

6.1.3 Broadcast with degraded message sets

Now consider the situation when Z is not a degraded version of Y. For using our

Euclidean framework, we assume that WyIx and Vzlx are both very noisy. That is,

for every input x, the conditional distributions Wylx(.Ix) and Vzlx(.Ix) are close to

some Qy(.) and Qz(.), respectively. Following our earlier notation,

Wy x = 1Q'y + . & Vzx = 1Q'z + E (6.13)

where 1Q' denotes a matrix whose every row equals Qz and E and ) are fixed

matrices whose every row sums to 0.

? WyIX >Ily
U X-- Y --- Z

Figure 6-4: General two-user broadcast channel

Receiver Z wants to decode a common message (special bits) at rate R 1 and Y

wants to decode this common message as well as a private message at rate Ro. The

capacity region in this case is given by [42].

R* = max min{I(U; Z), I(U; Y)} (6.14)
U-X-(YZ): I(X;YIU)>Ro

As before, we fix the X distribution at Px and only focus on optimizing the choice

of U, which means that I(X; Y) - Ro is a fixed constraint (say y) on I(U; Y). Hence

it is sufficient to solve the following optimization.

max I(U; Z) (6.15)
U-X-(YZ): I(U;Y)<_-y
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Under the very noisy assumptions, this is equivalent to solving

- max Ep, [11 By-z - ul12] (6.16)2 Pr,,u: Epu[lie11u2]<2-y

where By-z = [Q 2  (V YxW N) " [QY2] (6.17)

As before, the divergence translation matrix By--,z has a singular-vector Q/y2 with

singular-value 1. However, since VzIxWy-I is not a (transposed) probability transition

matrix like Q'lY before, By-z could have singular-values larger than 1.

Assuming vi is such a singular vector of Byz with singular-value ai > 1, we

should choose 0, along vi for small enough y. The optimum I(U; Z) in this case

satisfies I(U; Y) • - <_ I(U; Z), so the common information R1 is bottlenecked at

R1 = I(U; Y). Hence for small enough R 1, the R 1-Ro tradeoff is R 1 + Ro = I(X; Y)

as Ro = I(X; YIU).

If all singular values of Byvz are upper bounded by 1 with al = 1, then the

common information is bottlenecked by Z and the slope of R1-Ro tradeoff for small

R1 equals a2, where a2 is second largest singular-value of By-z. We should mention

that even for a non-degraded broadcast channel, all singular values of Byvz could

upper bounded by 1. We will see soon see an example of this where WYix is a BSC

and Vzlx is an asymmetric binary channel.

Multi-letter case

Lets define the divergence translation matrices from X to Y and from X to Z.

Bx-y = [Q- I/2 W•. ix /2 Bx/2 x /2

and note that BY-z = Bx-zBxjy.

Let {Pl, 2 ... } and {v 1, v2 .. } denote the singular-values of Bx--y and Bxz

in descending order and let {g, g2 ... } and {hi, h2 .. } denote the corresponding

singular vectors (respectively). It can be verified that the largest singular values

p1 = vi = 1 and gl = hi = Pf1/2 . Moreover, since WYlx and Vzlx are very noisy as
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in (6.13), all other singular values are of the order O(E) and smaller.

For the 2-letter case, we can restrict to i.i.d. X,2 without loss of optimality as

discussed earlier for the physically degraded situation. This implies PX2 = PX 0 Px

and Py2 = Py 0 Py. Now using Lemma 45 for the 2-letter case, the singular-values

of B•2 , can be divided into three classes: I1A 1 = 1, {fipi = pi = O(E) for i = 1},

and {pipj = O(E2) for i,j J 1}. The corresponding singular vectors are gi 0 gi,

{gi 0 gi & gi 0 gi} and {gi gj }.

Choosing 0,(.) = Pxlu(.Iu) - Px2(.) in the direction corresponding to gl 0 gl

is infeasible due to the simplex constraint. Choosing O, along the direction corre-

sponding gl 0 gi and gi 0 gi causes an O(E) change in Py2lu(.Iu) and hence an O(E2)

change in I(U; Y). On the other hand, choosing Ou along the direction corresponding

gi 0 gjcauses an O(E2) change in Py2 u(. u) and hence an O(04 ) change in I(U; Y),

which is negligible for us.

Now the only relevant singular vectors, gi 0 gi and gi 0 gi, correspond to O, of the

form Qy 0 ao and ai 0 Qy, where ai - [Qy2 ]vi for i 1. Now as seen earlier for the

physically degraded case, the optimal Py21u(.Iu) looks like

Py2IU( Iu) = Py2 + ECl(Qy 0 ) + ECY2 (& Qy)

SPy 0 Py + ECl(Py 0 6) + Ec2 ( (& Py) + O(c2) terms

(Py + EC16) 0 (Py + Ec2&)

for some constant c1, c2. Here & and & are some linear combinations of {a 2, 3..." }.

As earlier, the second last step followed by replacing Qy by Py and last step followed

by adding E2C1C2 ( 0 6), which is of smaller order than the other terms.

Thus the conditional distribution Py2lu( ju) is independent over time; hence a

single letter solution is optimal even for this not physically degraded situation. The

same analysis for 2-letter case can be repeated for any n-letter case. Notice that all

this treatment is almost the same as the physically degraded situation, except that

now some singular values of Byz could be larger than 1.

For a general 2-user broadcast channel, the optimality of single-letter character-
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ization was proved in [42] using information theoretic techniques. Their technique

does not extend to more than 2 receivers for broadcast with degraded message sets.

However, our analysis can be applied for any number receivers as long as all channels

are assumed to be very noisy. However, as mentioned earlier, the weakness of this

technique is we cannot grow the code-length n to infinity first.

Three user example: Consider a broadcast channel where Wyrx, Vz ix,, and Vz21x

respectively denote channels to users Y, Z 1, and Z2. Users Z1 and Z2 want the common

message at rate R 1 and user Y wants the common message as well as a private message

at rate Ro.

? VZ1 Z1Vz1Ix Z1

U Y
Vz21X 2

Figure 6-5: General three-user broadcast channel

The R 1-Ro tradeoff achievable with superposition coding is obtained by solving,

max min{I(U; Zi), I(U; Z2)} where 7= I(X; Y) - Ro (6.18)
U-X-(YZi Z2 ): I(U;Y)<y

With Euclidean approximation, this simplifies to maximizing

min {Eqp [I1 By,--.z 1 O112], Ep [1j By-z 2 . Ou112 ]}

over the set: {Pu, ku : EP [llI f112] < 2y}

where By--z = [Q12] z Z(V ,lx ,w -[Q2

Here we have to choose a direction of 0, to maximize the minimum of two quadratic

forms. The solution need not be directly related to singular vectors of BY-,z and

BY--z 2 , nonetheless, it is just a quadratic optimization. It is particularly easy to solve

when the singular-vectors of By-,Z and By---,z 2 are aligned.

Binary example: User Y wants both private and common information and channel

to Y is a very noisy BSC: Wyix = [1/2 + e, 1/2 - E; 1/2 - e, 1/2 + E]. Let VzIlx =
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[0.03 + E/10, 0.97 - E/10; 0.03 - e/10, 0.97 + c/10] be an asymmetric binary channel

and let Vz21x = [0.97 + E/10, 0.03 - E/10; 0.97 - E/10, 0.03 + e/10] be its flipped

version.

Note that neither Vz11x nor Vz2lx are degraded versions of Wylx because there

is no stochastic matrix D which gives WylxD = Vzilx. However, for any Px, all

singular values of By-z, or BY-z 2 are not greater than 1. Hence the bottlenecks for

common information are Vz11x and Vzlx, not Wylx.

By symmetry between Vz, x and Vz2lx, its clear that the optimum Px is uniform

binary, which is also the capacity achieving distribution for WYlx. The entire capacity

region is obtained by superposition coding with binary uniform U where PxlU is a

BSC with parameter t, which needs to be optimized.

If we convert WYix to a noisier BSC, WYlx = [1/2 + c/10, 1/2 - e/10; 1/2 -

E/10, 1/2 + E/10], then for any Px, all eigenvalues of all singular values of ByZ,

or BY-.z 2 are not smaller than 1. Hence the bottlenecks for common information is

Y itself, not Z1 or Z2. The capacity region for this problem is simply the sum rate

constraint, Ro + R 1 = C, where C is the channel capacity of WYix.

6.2 Graphical Models: Multilevel Broadcast Net-

works

In this formulation, we represent the set of all receivers on a directed graph-called

degradation graph-based on the quality of their observations. Each receiver cor-

responds to a node in this graph. If receiver Z is a physically degraded version of

receiver Y, then node Z is a child of node Y in this graph which has a directed edge

from Y to Z to indicate degradedness. We will obtain upper and lower bounds on the

capacity region of such networks5 . The upper bounds are based on auxiliary variables,

5Throughout this chapter, edges in a degradation graph denote physical degradation. However,
the capacity regions for a degradation graph holds true even if its edges represent stochastic degra-
dation instead of physical degradation. It is because the capacity region of a broadcast network only
depends on the individual (marginalized) channels to the receivers-not the joint network channel.
The physical degradedness assumption is a nice technical trick for proving converses.
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whose structure is described by the mirror image of the channel's degradation graph.

A packet broadcast network is considered as an example.

A simple manner in which outputs at various receivers could be related to each

other is a Markov chain, which gives rise to the classical degraded broadcast channel6 .

X Yo Yo -- YJ -* - - - YL-1 (6.19)

For this channel with input X, amongst any two outputs Yk and Ym, one is a degraded

version of the other, that is, there exists a directed path between any two outputs.

To get rid of this limitation, we model the interdependence between various receivers

using a "degradation tree". See the graph in Figure 6-6 for example, which denotes

that the network channel WyVYY 2 Z1 Z2IX can be decomposed as follows:

WYoY 1Y 2z 1z 2 1x = WYOjXWYIY2 1YOliVZlvy1 Wz 21Y2  (6.20)

The root of this degradation tree denotes the input X, which is followed by a unique

output Yo. It is followed by its degraded versions Y1 and Y2, which in turn have their

own degraded versions Z1 and Z2. Note that here for example Z2 need not be a

degraded version of W1 since there is no directed path from Y1 to Z1.

Yi Z1

X

YO
Y2 Z2

Figure 6-6: An example of degradation graph.

This degradation graph could have various physical interpretations. For example,

it could represent users which are physically farther from the transmitter and hence

6With slight abuse of notation in earlier chapters, the subscript of Yk denotes user k as opposed
to output Y at time k.
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receive noisier observations. It could also represent users which only listen during

a fraction of the entire message transmission. In fact, even when there is only one

physical user, the degradation graph could be used to represent the possible channel

types due to large deviations of the channel.

One should be able to disseminate information such that even with partial obser-

vations, a user can receive some part of the transmitted information. Moreover, the

information received should grow as the quality of observations improves. To formal-

ize this notion of information dissemination, we can think of the degradation graph

as a sequence of multiple layers, where layer k denotes the set of nodes at distance

k + 1 from the root. Outputs received at a user in layer k + 1 is degraded versions of

at least one user in layer k. Assuming total L layers (indexed from from 0 to L - 1),

let the total information be split into L parts. In our formulation, even the last layer

users should get, the first part of this information (which is the most special part of

information). The second last layer users should get the first as well as the second

part and so on. Specifically, (last) layer L-1 should be able to decode message ML-1,

layer L - 2 should decode ML-2 as well as ML-1. In general', layer k should decode

lMk, lMk+1 ."' MIL-1.

For example in Fig. 6-6, Z1 and Z2 are in layer 2, W1 and W2 are in layer 1 and

Y is in layer 0. Hence both Z1, Z2 want message MA2; both Y1, Y2 want M1 and M2;

and Yo wants Mo, Al and AM2.

Previous works addressing similar concept of information dissemination include

multilevel diversity coding [50, 49] and priority encoded transmission [17], which can

be modeled with specific degradation graphs.

We assume that messages lMo, A 2 ... ML-1 are mutually independent. Message

Mk (0 < k < L - 1) is chosen uniformly from {1, 2..., 2 Rk }, where Rk denotes

the rate of message k and n denotes the block length. We want to characterize the

achievable rate region (Ro, R 2 ... , RL-1).

It is worth mentioning that although the degradation graph in Fig. 6-6 was a

7This implies that the messages are indexed with increasing priority level: AMo being least special
to .IL-1 being most special.
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tree, it is not necessary. A degradation graph is a directed acyclic graph in general,

which could have a node in layer k with multiple parents in layer k - 1 if it is a noisier

version of each parent. Thus a degradation graph has an edge directed from node A

to node B whenever B is a noisier version of node A.

Y1 Zi

X

z 2

Figure 6-7: A degradation graph which is not tree.

For example in Fig. 6-7, Z2 has two parents Y1 and Y2, thus Z2 can be thought

as a noisier version of Y1 or Y2. This generalization of allowing multiple parents is

useful for modeling packet erasure networks as we will see later8 .

The remaining section is organized as follows. Subsection 6.2.1 studies the classical

physically degraded broadcast channel. A converse was proved for the case of two

users in [48] and also [53]. We first prove the converse for L > 2 users using a method

similar to [48] for two users. As an example, we will consider broadcast over Binary

Erasure Channels. A simple scheme of time-sharing between some binary linear codes

can achieve the capacity region of this channel.

A channel with arbitrary degradation graph is studied in Section 6.2.2. An achiev-

able rate region is presented and two converses are proved, which are based on mirror

image of the degradation graph. This general converse follows on similar lines of

the converse for classical physically degraded situation. This converse is not tight

in general bit it converse gives the capacity region for a class of degradation graphs.

This capacity region generalizes the results in [46] for a wider class of networks. We

then study a packet erasure network as an example degradation graph, where our

achievable rate region calculated in closed form. This example demonstrates how

8It is also useful in addressing the Gaussian MIMO situations. Thanks to Tie Liu of Texas A&M
for pointing this out.
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various problems such as priority encoded transmission and multilevel diversity cod-

ing ([50, 49] and [17]) can be analyzed in the degradation graph framework.

6.2.1 Classical degraded broadcast channel with multiple re-

ceivers

In a physically degraded broadcast channel to L users (Yo, Y ... YL-1), the network

channel can be decomposed as

WYOY 1 ...YL--1 l = Wolx Wy11Yo . WYL-_1•YL- (6.21)

Thus this channel is fully described by the L probability transition functions Wyolx,

WYlro ... WYL,_ IYL-2 for this channel. The following achievable region was proved in

[54, 56] using superposition codes.

Consider a Markov chain

UL-1 - UL-2 - e1 - X - Yo - Y1 - YL-1 (6.22)

where UL-1,... U1 are called auxiliary random variables. The joint distribution of all

variables above is given by

(PUyL-2 ... U1X) (YO-Y...YL-11X)

where the second term is described by the channel as in (6.21). The first term denotes

the joint distribution of input X and auxiliary variables. It is chosen by the code

designer 9 and has a Markov structure:

PUL-1UL-2...UIX = PUL-1 PUk-iUk PX|U1  (6.23)

9Throughout this section, we will use P for distributions chosen by the code designer and P for
channel transition probabilities.
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Then rate tuples (Ro, R1 ... RL-1) satisfying following inequalities are achievable,

RL-1 I(UL-1;YL-1)

Rk I(Uk; YkIU+k) for k E [1 : L - 2]

Ro < I(X; YojU I)

Let Rp denote this rate region for a particular choice of P satisfying (6.22) and (6.23).

The achievable region is given by

RhlMarkov - COnV ( U Ep , (6.24)
\PEMarkov /

where the union is taken over all joint distributions P with a Markov structure in

(6.22,6.23) and conv(-) denotes the convex hull operation. Achievability of the convex

hull follows by standard time-sharing arguments.

One may wonder why is it necessary that the auxiliary variables should have

a Markov structure. The code designer could have chosen any joint distribution

PUL-,1L-2_...U1X which need not have a Markov structure. Using similar random coding

construction as [56], one can show that rate-tuples obeying following equation are

achievable with superposition.

RL-1 I(UL-1; YL-1)

Rk _ I(Uk;YkIUk1lUk+2...L-1) , k E [1: L- 2]

Ro < I(X;Yo IUU2...UL_-1)

We need to slightly modify the coding scheme in [56] for achieving the rates above.

Now the distribution of the Uk codebook for message Mk (for user Yk) depends on

all previous auxiliary codewords (in Uk,+1 Uk+2 ... UL-1) corresponding to messages

Mk+1, Mk+2" , ML-1 (for users Yk+, Yk+2'... YL-1, respectively). In [56], this only

depended on auxiliary Uk+ 1 codeword corresponding to message Mk+l for user Yk+l1

Similarly, now the distribution of X codeword for user Yo depends on all auxiliary
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codewords instead of just the auxiliary U, codeword corresponding to message M, for

user Y1.

Let the achievable region above be denoted by Rp*, where P could be any joint

distribution of auxiliary variables and the input variable. Since mutual informa-

tion can decrease or increase by conditioning, it is unclear whether the convex hull

cony (Up T•*) over all joint distributions P remains unchanged when P is restricted

to have a Markov structure. Next subsection clarifies this and proves the optimality

of Markov structure.

Converse for Classical Degraded Broadcast Channel

Now let us prove optimality of this achievable region on similar lines of Gallager's

proof for the two-user case'o [48]. This proof is also helpful when proving the converse

for general degradation graphs.

First, we define the following function over all non-negative (element-wise) vectors

AE = (,•1 A2, "' ,I-IkL-1) k 01

Cdegraded(A) = sup I(X; YoIUi) + AkI(Uk; YkU I k+) (6.25)
PEMarkov k=1

where the last term in the summation, I(UL-1; YL-11UL), is a shorthand for I(UL--; YL-1).

The supremum is over all Markov chains UL-1- UL-2 ... U1-X. Similar to [48], it can

be shown that the supremum above is unchanged even if we restrict the cardinality

of each Ui to that of X.

We will show that an achievable rate-tuple must satisfy

L-1

R(A) Ro + •j AjckRk : Cdegraded(A), V A > 0 (6.26)
k=1

More specifically, we show that if a rate-tuple disobeys the bound above for any

A > 0, then vanishing error probability cannot be achieved for all users. By con-

"1It should be mentioned that we could not extend the converse proof in [53] for more than two
users.
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vex programming (theory of Lagrange multipliers), this is the same as showing that

any point outside the achievable region conv (UPEMarkov RP) is not achievable, which

proves the optimality of the achievable region in [56]. The proof mainly follows from

the following lemma.

Lemma 39 Let Yk:n denote a shorthand for all outputs at user Yk from time 1 to n.

n.C(A) _ I(Mo; Yol:nj .1M I2.." -L - 1)  (6.27)
L-2

+ E AkI(Mk; Yk:nIj k+1Mk+2"" ML-1) (6.28)
k=1

+ I(ML_; ) (6.29)

Choice of auxiliaries: The proof of the lemma is in Appendix D but its main

component is our substitution of auxiliary random variable Uk at time t. It is defined

as the set of

1. Past symbols (up to time t - 1) observed at user Yk and

2. the messages for layer k and all further layers, i.e., lMkMAk+1 ..' ML-1. These

are all the messages that user Yk can decode.

This method for choice of auxiliaries is also useful for converses of general degradation

graphs. Now we state the precise statement of the converse.

Theorem 40 For some A > 0 c, > 0, if a rate-tuple satisfies

R(A) Ž e + C(A) (6.30)

then error probability cannot vanish for all users, because error probabilities (po, pi . PL-1)

of the L receivers satisfy

L-1

(1 + ponRo) + E Ak(1 + pknRk) > nE (6.31)
k=1
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Proof If (6.30) holds, then by Lemma 39,

nR(A) Ž nE + I(Mo; Yo:'"nI MM2 .. ML-1) (6.32)
L-2

+ E AkI(Mk; Ykl: Mk+lMk+2 .. ML-1) (6.33)
k=1

+ I(ML-; YLl) (6.34)

But each mutual information above can be bounded as:

I(Mki; Yk:n j•Mk+1A k+2 ... · L-1) H(MkAlk+lMk+2 ." ML-1) - H(MkIYn1k")

= nRk - H(Mk kl:)

> nRk - (1 + pknRk)

where the first inequality follows since conditioning reduces entropy, the second equal-

ity is due to independence of messages and the last step is due to Fano's inequality.

Rearranging this and substituting back (6.32) yields (6.31).

Case study: Binary Erasure Channels

Consider this simple achievable scheme for L binary erasure channels with erasure

probabilities el, e2 ." eL. The output block length n is divided into L separate blocks,

where block k has length nak. Receiver k's message of nRk information bits is con-

verted to nak coded bits. This can be done with a linear operation r = Ab, where b

denotes a vector of the nRk information bits, r is the vector of naCk coded bits and A

is a naOk X nRk generator matrix.

We can choose each entry of A independently with uniform binary distribution.

As block length n grows large, essentially any nRk rows of this matrix will be linearly

independent with high probability (i.e., probability tending to 1 with large n). Thus

with high probability, receiving any nRk elements of r is sufficient to decode b. Now

note that essentially (1 - ek)nak coded bits will reach unerased at receiver k. Hence

if ak(1 - ek) > Rk, then with high probability, receiver k can decode its message of
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nRk bits. Any receiver with smaller erasure probability will also decode this message.

Since sum of ak's is at most unity,

L L

Z Rk/(1- ek) •Zak<
k=1 k=1

This indeed is the capacity region for this broadcast channel given by superposition

coding in Eq. (6.24). The optimal structure of auxiliaries for this situation is a cascade

of binary symmetric channels from UL to X. Thus a simple scheme of dividing the

block-length amongst random linear codes achieves the capacity region here.

However, such simple schemes are not optimal in general and superposition coding

cannot be avoided.

6.2.2 Achievability and converse for general degradation graphs

Consider an arbitrary degradation graph (such as Fig. 6-6 or Fig. 6-7). Recall that

layer k denotes all nodes at distance k + 1 from the root node of input X. All nodes

in layer k of this degradation graph want to decode MAk, MAk+l ... AIL_1, where L is

the depth of the graph from the root node. The rate of message Mi is denoted by Ri.

We can use similar random coding construction as [56], which is based on super-

position. Using standard typicality arguments, we can prove the following achievable

rate region. For concreteness and clarity, we will state our the result for the partic-

ular degradation graph in Fig. 6-6. Similar rate-region can be written down for any

degradation graph.

As the degradation graph in Fig. 6-6 has L = 3 layers, we choose L - 1 = 2

auxiliary random variables U1, U2 such that joint distribution of all auxiliaries, input

X and all outputs has the following Markov structure.

Thus the joint distribution of all variables is given by Pu2uvXWyoyiy 2zzz2Ix, where

the second term is determined by the network channel as in (6.20). The first term is

chosen by the code designer and satisfies the Markov structure in above figure.

Theorem 41 For every choice of Pu2ux consistent with the Markov structure above,

156



Y1  Z1

U2  4 1 U X Yo

Y2 Z2

Figure 6-8: Markov structure for achievability

rate-tuples obeying following conditions are achievable:

R 2 < min(I(U2;Zi), I(U 2; Z2))

R1 , min(I(Ui; W1 IU2), I(U; W21U2))

Ro • I(X;YIUI)

Let Rp denote this region where P is joint distribution of (U1, U2 , X). Then any

rate-tuple in

RMarkov - COflV ( U U P
PE Markov /

is achievable where P denotes all distributions of the Markov structure in Fig. 6-8.

We initially believed that similar to the classical degraded broadcast channel, RIMarkov

provides the entire capacity region for a general degradation graph. However, a neat

counter-example has been provided recently in [47].

Similar to Subsection 6.2.1, one may wonder why restrict to a Markov chain for

auxiliaries. One can indeed choose Pu2 u 1 x which is not a Markov chain U2 - U1 - X.

By similar arguments as in Section 6.2.1, we get the following achievable rate region,

called as R1Z, for every joint distribution P on (U2, U1 , X).

R 2  _ min(I(U2;Zi),I(U2;Z 2))

R1 , min(I(U1;WIJU2),I(U1; W2U2))

Ro0 I(X; Y|UIU 2 )

That is, mutual information information between Uk and an output in layer k is
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conditioned on Uk+1Uk+2... UL-1 instead of just on Uk+1 as in the case of a Markov

chain.

Theorem 42 An achievable region is given by conv(Up Rl*Z), where the union is over

all joint distributions of auxiliaries and input X.

Mirror Image Converse

This converse uses a similar choice of auxiliaries as discussed earlier for the classical

broadcast channel. This choice of auxiliaries is described ahead precisely. For a user

A in layer' k > 1, its corresponding auxiliary variable A at time t (denoted by At) is

defined as the set of

1. Past symbols (up to time t - 1) observed at user A and

2. the messages for layer k and all further layers, i.e., MkMk+1 ... ML-1. These

are all the messages that user Yk can decode.

The proof of this converse is exactly analogous to the classical broadcast channel and

hence omitted. The only additional point to be noted is this choice of auxiliaries

satisfies the mirror image structure described ahead.

We consider the degradation graph in Fig. 6-7 for concreteness and converse for a

general degradation graph can be expressed similarly. Given the degradation graph,

its mirror image is created by placing a mirror between X and layer 0 (user Yo here)

as shown in Fig. 6-9.

The auxiliary variables ( 1, Yl2, Z 1, Z2) thus have the same degradation graph

as the channel outputs (Y1, Y2 , Z1, Z2 ). For example, Z1 is a degraded version of

Y1, whereas Z2 is a degraded version of both Y1 and Y2. For a distribution P on

(X, Yl, Y2, 2 1, Z2) satisfying the above mirror structure, define the following function

over all non-negative (element-wise) vectors A = (Ay,, Ay2, , Az2) > 0. This is

on similar lines of the function Cdegraded(-) for the classical degraded situation seen

earlier.

"There are no auxiliary variables for users in layer 0 which is at distance 1 from input X in the

degradation graph.
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Y, Z1

Z2 Y2 Y2

Figure 6-9: Upper bound with mirror image structure of auxiliaries

Cmirror (A) = sup [I(X; YollY 1Y 2 ) + Ay 1I(Yl; Y1 21, Z2) + y2I( 2; Y 2 1Z2 )
PEmirror

+ Az,I(z1; Z1) + Az2I(Z2; Z2 )]

The supremum is over all distributions of auxiliary variables and the input variable

which satisfy the mirror image structurel2

The general rule for defining Cmirror(A) is for each user A, there is a corresponding

AA which is multiplied by the mutual information between user A's output and its

mirror image auxiliary variable conditioned on all the children of the mirror auxiliary

variable in the mirror structure1". The achievable rate region is upper bounded as

follows in terms of Cmirror(A).

Theorem 43 Every achievable rate-tuple satisfies

R(A) - Ro + (Ay, + Ay,)R 1 + (Az1 + Az2)R2 • Cmirror(A), V A > 0 (6.35)

For defining R(A) in a general situation, each layer's rate is multiplied by the sum of

A coefficients of all users in that layer. Note that converse for the classical degraded

broadcast channel in (6.26) is a special case of this converse because mirror image

of a straight line is a straight line. This coincidence proved the optimality of the

12The cardinality of all auxiliary variables can be bounded within a finite size without loss of
optimality (this standard argument can be seen in [4, 53]).

13The A parameter for the best user (closest to X) is normalized to unity without loss of generality.
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achievable region [56], where a Markov chain of auxiliaries was used for superposition

coding.

Another Converse: Shifted Mirror Image

To construct the shifted mirror image, take the degradation graph and take its mirror

image by placing the mirror at X. Now chop off the last layer of auxiliary variables

in this mirror image. We demonstrate this in Fig. 6-10 for the degradation graph in

Fig. 6-7 and converse for a general degradation graph can be expressed similarly.

Y1i

Y, Z1~
YO Li

I') U

Figure 6-10: Upper bound with shifted mirror image structure of auxiliaries

The main difference of this structure with the mirror image seen earlier is now

we kept the mirror at X instead of putting it between X and layer 0. Moreover,

we chopped of the last layer of auxiliaries from the mirror image. This ensures the

correct number of layers of auxiliary variables.

The auxiliary variables (Yl, Y2 , Yo) are mirror image of (Yo0, 1, Y2). For a distri-

bution P on (X, Yo, Y1, Y2) satisfying the above mirror structure, define the following

function over all non-negative (element-wise) vectors A (Avy, Av2, Az2) 2 0.

mirror (A) = sup [I(X; YoYo) + AyI(Yo; YI'1) + Ay2(Y o;Y 2Y22)
PEmirror

+ Az I(Yi; Z1) + A 2 I(Y2; Z2)]

The supremum is over all distributions of auxiliary variables and the input variable

which satisfy the shifted mirror image structure The general rule for defining Cmirror(A)

is for each user A, there is a corresponding AA which is multiplied by the mutual

information between user A's output and the mirror image B of its immediate parent
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node B and conditioned on its own mirror image auxiliary variable A. Consider user

Y1 for example. We take the mutual information between Y1 and mirror image Y0 of

Y1's immediate parent Yo and condition it on Y1. As before, the A parameter for the

best user (closest to X) is fixed at unity. The achievable rate region is upper bounded

as follows in terms of C'irror(A).

Theorem 44 Every achievable rate-tuple satisfies

R(A) - Ro + (Ay1 + Ay2)R1 + (Az1 + Az2)R 2  i Crror(A) V A > 0 (6.36)

Proof This converse is based on a slight variation of previous choice of auxiliary

variables. This modified choice is more similar to the choice in [48].

Alternate choice of auxiliaries: Consider user A in layer k > 0 and let B denote its

its immediate parentl4. The auxiliary random variable for user A at time t, denoted

by Bt, is defined as the set of

1. Past symbols (up to time t - 1) observed at B

2. all the messages that user A can decode.

Thus the only difference with the earlier choice of auxiliaries is that now instead of

using A's past symbols , we are using the B's past symbols. This difference changes

the earlier auxiliary structure of mirror image to the shifted mirror image. An analog

of Lemma 39 is stated next, which converts the multi-letter information theoretic

problem to a single letter optimization in Cmirror (A).

The remaining proof of this converse is exactly analogous to the classical broad-

cast channel and hence omitted. The only additional point to be noted is this choice

of auxiliaries satisfies the shifted mirror image structure described ahead. *

Lemma 45 As earlier, let Z1:n denote a shorthand for all outputs at user Z 1 from

time 1 to n. Then we have,

14If a user has multiple parents, choose any one of them and ignore others.
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nCnirror(A) Ž> I(Mo; Y01 :"Ml M2) + 12yI(i;Y YI2)+ ylI(My; Y2 "M2)
+ AzI(M2; Zl n ) + Az2I(M2; Z1:")

Proof The proof is similar to the proof of Lemma 39. We only illustrate how

I(MI; Y,1:nI M2) can be bounded using the alternate choice of auxiliaries. The remain-

ing mutual information terms in RHS can be bounded similarly.

n.

I(Afl; Yll: M 2) n I I(All; Y1,t IA12, Y11:t - 1

t=1
n

- (H(Yi,tI M21 Y1l :t - 1) - H(Y1,t[5M,, M2 Y1:t-1))

t=1

< E (H(Yl,tIMA2 , y1:t - 1) - H(Yi,t AI, A12, y1:t-1 y01:t-1))

t=1
n

- (S(Yl,tl,t) - H(Yi,tI0,tfOt))
t=l

because conditioning reduces entropy and Yi,t (12, Y1
1:t-) and Yo,t (M1, A 2, Y0

1:t- 1)

in the alternate choice of auxiliaries. *

Complete Bipartite Networks

Consider a class of graphs is where all outputs in layer k are children of every node in

previous layer (see Fig. 6-11 for example). In this case, edges between two adjacent

layers form a complete bipartite graph. Network situations such as [52] fall into this

category of degradation graphs.

For such networks, we can prove optimality of superposition coding with Markov

auxiliaries. This generalizes results in [46], where the degradation graphs has only

two layers and one of the two layers has only one user.

We illustrate the result for the network in Fig. 6-11 and the same arguments

can be repeated for any complete bipartite network. Since this network has only two
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Y2 Z2
Figure 6-11: A degradation graph for which superposition coding is optimal.

layers, we will need only one auxiliary variable U behind X. First, on similar lines

of Cdgraded, Cmirror and Cmirror define the Cbipart over all non-negative (element-wise)

vectors A) (Avy2,Az 1, Az 2) > 0.

Cbipart(A) = sup (I(X; Y IU) + Ay2I(X; Y21U) + Az,I(U; Z) + Az,I(U; Z2))
PEMarkov

The supremum is over all distributions of (U, X) satisfying the Markov condition

U - X - (Y, Y2 Y3, Y4).

Theorem 46 Every achievable rate-tuple (Ro, R 1) satisfies

R(A) = Ro + Ay2Ro + (A 1 + Az2)R 1 - Cbipart(A), V A > 0 (6.37)

Thus capacity region of a complete bipartite network equals RMarkov, which is achiev-

able by superposition coding.

Proof Since achievability by superposition coding is straightforward, we only dis-

cuss the converse argument here. It is based on a simple choice of auxiliaries1 5:

Ut - (M1( , Z:-1, Z1,:t-1). In terms of this auxiliary substitution, will upper bound

I(Mo; Y,1 "M 1) and I(Mo; Y2 uj Mi) using conditioning reduces entropy.

15In general, the auxiliary variable for layer k > 1 is the set of messages decoded by that layer
and the past of all the users in that layer.
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I(Mi; Zj :") SE I(Mj; Zi,t|IZ: t'- )
t=1

SH(Zi,,t) -H(Zi,tMIM, Z:t-:, Z *:t-1)
t=1
n

E I(Ut; Zi,t) (definition of Ut)

E Il(Ut;Z2,t)
t=1

Now let us upper bound I(Mi; Zl:") and I(Mi; Z2~:" ) using physical degradedness.

I(Mo; Y1:nIM Al) S Iw(Mo;
t=1

= - H(Yi,t M, Yl:t-l, Z 1 :t-l, Z1 :t - l ) - H(YjtlMo, MI, Y1:t-l )

t=1
n

SH(YI,t MI(l, ZI:t-1, Z2:t -l) - H(Y,t AMo4, M1 , y:'-1:, Y2 :t-', Xt)
t=1

n

= H(Y1,t Mi, Zi:t- , Z :t1- 1) - H(Yi,t|Xt) (memorylessness)
t=1

= I•(Xt; Yi,tlUt)
t=1

(definition of Ut)

Similarly, one can prove I(Mo; Y2
1:~ M1) < En1 I(Xt; Y2,t Ut). These bounds imply

the following lemma.

Lemma 47

nCbipat(A) > I(1Mo; Y M1:njM1) + Ay2I(Mo; Y:I,) + Az l I(M1; Zh:n) + Az2I(Ml; Z1:")

The remaining proof follows as in earlier converses using Fano's inequality.

The above theorem provides the entire capacity region in terms of an optimization

over auxiliary variables. For discrete memoryless networks, these optimizations are
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over finite size auxiliary variables. However, for Gaussian networks such as [52], these

optimizations could be infinite dimensional and the optimality of Gaussian inputs (as

in [57]) is not clear. For analyzing whether or not Gaussian superposition coding is

optimal, techniques from [58] could be useful.

Case Study: Packet Broadcast Networks

As an application of the degradation graph framework, now let us consider a situation

where transmitter emits a fixed number L of n-bit packets. Each of these packets can

be either perfectly received or be erased completely. A user can receive any of the

2L-1 non-empty subsets of these L packets. We want to ensure that any user who gets

k number of packets can decode the k messages (ML-k, ML-k+1," " M•L-1). Earlier

problems of multilevel diversity coding [50, 49, 51] and priority encoded transmission

[17] can be modeled this way. Degradation graphs provide a common framework to

address them. In addition, this framework can be also used to model errors in packets

in addition to erasures.

Let us assume L = 3 packets are transmitted for simplicity, although similar

analysis can be performed for any L. The degradation graph in this situation is shown

below. The actual transmission is denoted as (XI, X 2, X 3) where each Xi represents

a bit from packet i. Various receivers receive all seven subsets of this transmission.

For better clarity, X123 is used to denote (X1X2X3 ) for example.

U2----U1----X1 23

X1

X2

X13

Figure 6-12: Solid lines show the degradation graph for packet erasure network. Dot-
ted lines show the auxiliaries U1, U2 for superposition coding in Theorem 41.

Degradation graphs can be also used to model asymmetric situations, where only

certain subsets of transmitted packets can be received. For example, there may not
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be any user who gets packets 2 and 3. This can be modeled by simply removing X23

from the degradation graph. These asymmetric situations seem particularly relevant

for distributed storage [51]. In a distributed storage system with L storage locations,

each user may have access to a certain subset of these locations. In fact, now the

effect of errors in stored data can also be analyzed using degradation graphs.

Now let us calculate the achievable region for Fig. 6-12 from Theorem 41. We

show that this achievable rate-region is given by R2 + R 1/2 + R 0/3 < 1, where Rk is

the rate of message Mk for layer k. From Theorem 41,

R2 • I(U 2; Xi), R2  2 I(U2; X 2) & R2 < I(U2; X3 ) (6.38)

R1 5 I(Ul;X 12 U2) (6.39)

R 1 < I(U1;X1 31U2) (6.40)

R 1 < I(UI;X 231U 2) (6.41)

Ro 5 I(X123;X 123 U1) = H(X 123 U1) (6.42)

Performing (6.38) x 2 + (6.39) + (6.40) + (6.41) + 2 x (6.42) implies 6R 2 + 3R 1 + 2Ro

is not greater than

2 z H(Xi) - 2 H(XIU2) - HX ) + (U2) + 2H(X 123 1) - H(XijlUI)
i=1 i=1 ifj i~j

First bracket above is at most 6, second bracket equals •ijj I(Xi; X IU2) and hence

non-negative. Third bracket equals -I(X 3; X1|X 2)-I(X 2; X13), which is non-positive.

Thus 6R 2 + 3R1 + 2Ro < 6. proving our achievable region.

For any L number of packets, similar analysis can be done to prove that achievable

region in Theorem 41 equals

L-1

E RI/(L- i) < 1
i=O

In fact, this achievable region was shown to be the entire capacity region in [49, 17]
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which implies optimality of superposition coding for this scenario'" .

6.3 Concluding remarks

6.3.1 Relations of Network Info. Theory to Error Exponents

The capacity region for broadcast with degraded message sets also provides insights

for bit-wise UEP exponents of a point-to-point channel. We demonstrate with the

example of the network in Fig. 6-1. Let the channel to user Yk be denoted by

WYkIX. In a point-to-point channel Wylx with input distribution Px, the exponent of

observing a channel type WYklx equals the conditional divergence D(WyklX |Wyjx IPx)

due to Sanov's theorem. Define this exponent of channel type being WYklx as Ek.

Let Eo0 denote the maximum exponent of observing a channel in layer 0.

Eo = max Ek
kESo

Similarly, let E1 denotes the maximum exponent of all Ek. Let R,,capacity denotes the

capacity region of this network for broadcast with degraded messages sets. In the

error exponent formulation, no rate-pair outside this capacity region can be achieved

if the special bits (which are demanded by all users) require at least an exponent E1

and the ordinary bits (which are only demanded by users in layer 0) require at least

an exponent of E 0. Otherwise, the capacity region for the broadcast problem will be

violated.

Thus capacity region for the network formulation provides an easy upper bound

for the achievable rates in the error exponent formulation. In fact, we already used

such an argument in the previous chapter for the case of symmetric point-to-point

channels. There we only needed the capacity region for the physically degraded

broadcast channel. However, for general point-to-point channels, using the capacity

region for broadcast with degraded message sets can be more powerful.

16In fact, as hinted by the linear nature of this region, much simple strategies based on time-sharing
between MDS codes are optimal.
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6.3.2 Message-wise UEP in networks

In the error exponent formulation in Chapter 3, we saw how the special messages

can be protected optimally without sacrificing the overall data-rate from capacity.

In particular, we saw that e"' special messages can achieve the best exponent E(r)

at rate r as if the - enC ordinary messages were absent. There was no tradeoff for

simultaneously transmitting the special messages and the ordinary messages. We will

now see an analog of this result in the network formulation.

Although this discussion can be extended to more general degradation graphs, we

consider the following simple two-user network for simplicity.

X - Yo - Y1

Let Ci denote the capacity of the channel to user Yi.

Ci = max I(X; Y)
Px

Adhering to the notation, let M denote the set of ordinary messages and let M~ C M

denote the set of special messages. If a special message from Ms is sent, both users

should decode it correctly with high probability (tending to 1). In contrast, when an

ordinary message is sent, only the better user Yo should decode it correctly. Assuming

IM, - e"' special messages and jMI - enR, we want to calculate the achievable rate

pairs (r, R).

This simple strategy shows how (Ci, Co) is an achievable (r. R). Thus there is

no tradeoff between the number os special messages and the number of ordinary

messages, the best r and R can be achieved simultaneously.

Optimal strategy: The first V•n symbols of the code are reserved for indicating

whether the message to be transmitted is special or ordinary. Using a simple repetition

code, this single bit of information can be transmitted reliably in this first phase to

both the users. When a special message is to be sent, send it in the remaining n- V-

symbols using a capacity achieving code for user Y1. User Yo can also decode this
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special message with high probability, since Y1 is a degraded version of Yo. When an

ordinary message is to be sent, send it using in these n- -~i symbols using a capacity

achieving code for user Yo.

Thus we can send as many special messages to both users as if the ordinary

messages are absent and as many ordinary message to Yo as if the special messages

were absent. Note what when an ordinary message is sent, although Y1 cannot decode

which particular ordinary message it is, it correctly knows (with high high probability)

that an ordinary message is being sent.

The same discussion of message-wise UEP can be extended for general networks

with multiple speciality levels (say L > 2). This corresponds to L nested subsets of

users So C S1 ... SL-2 C SL-1 where SL-1 is the set of all users17 . For this L layer

situation, the messages are divided into L sets: M 0 D MI D ... D .ML-1. Here

messages in ML-1 are most special (need to be decoded correctly by everyone and

messages in Mo are least special. In general, when a message in Mk is sent, all users

in set Sk should be able to decode it. This message-wise UEP problem can be called

as broadcast with nested message sets instead of broadcast with degraded message

sets, which corresponds to bit-wise UEP.

For this general problem, the optimal strategy again uses two phases as before.

In the first vi symbols, the speciality class, 0 < k < L - 1, of the chosen message

is conveyed reliably to everyone using some simple code of L codewords. In the

remaining n - V/n symbols, the particular message in Mk is sent to all the users in

Sk. Rate of each message set Mk can approach the capacity of a compound channel

[4] composed of all users in Sk.

Ck = max min I(X; Y2 )
Px iESk

This rate for message set Mk can be achieved with a capacity achieving code of

this compound channel. For every 0 < k < L - 1, this strategy can simultaneously

achieve rate Ck for message set Sk. Thus each message set achieves a rate as if all

17The users need not be related by any degradation graph in this general setup.
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other message-sets are absent.

It is interesting to note how the notion of compound channel capacity becomes

relevant for message-wise UEP in networks. In contrast for bit-wise UEP, the capacity

region for broadcast with degraded message sets was relevant. Even more interesting

is how message-wise UEP over general networks is completely solved due to simplicity

of this compound channel capacity, whereas bit-wise UEP over general networks is

wide open since capacity for broadcast with degraded message sets is very difficult.
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Chapter 7

Summary and Future Directions

7.1 Summary

We saw that when available resources (such as delay, bandwidth, and power) are

finite, information should be viewed as heterogeneous entity instead homogeneous.

Homogeneous bits no longer suffice as the universal interface of information in this

case. First, all bits need not be equally important; second, some messages could be

more important instead of bits. This heterogeneous nature information can be lever-

aged for protecting these crucial parts (special bits or special messages) of information

much better than its ordinary parts.

Special info.

Ordinary info.

Channel Special info.

- Ordinary info.

Figure 7-1: Architecture for Heterogeneous Information: The encoder jointly encodes
the special and ordinary information on the same channel resource. This achieves
better tradeoffs in general than sending the special and ordinary parts separately.

We also saw how error exponents can be used as a fundamental benchmark for

understanding fundamental limits of unequal error protection. They allow us develop

a general understanding of UEP which is not specific to the channel model or the

coding strategy being used. This understanding provides engineering guidelines for
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practical UEP designs-somewhat similar to how the notion of channel capacity pro-

vides guidelines and benchmarks for practical code designs. Here are some lessons we

have learned,

* Exponential reliability can be achieved for some special parts of information

without sacrificing capacity.

* Special messages are easier to protect than special bits in the no feedback case.

In many current communication protocols, a special message is protected using

a flag bit1 for that message. This essentially converts a special message situa-

tion to a special bit situation. This artificial conversion is very inefficient for

protecting the special message. Much better protection can be achieved for the

special message if it is communicated as a special message, e.g., with a special

(repetition) codeword.

* Feedback connects the bit-wise and message-wise notions of UEP in some fun-

damental ways. With feedback, schemes for one notion can be used for the

other.

* Red-Alert Exponent is a fundamental channel parameter for transmission of

heterogeneous information.

* Often optimal strategies for UEP require only some simple modifications to

conventional coding mechanisms. This implies we can leverage the development

of conventional code designs for UEP mechanisms too.

Fundamental limits of UEP were also analyzed in terms of some network information

theory problems (e.g., broadcast with degraded message sets and compound channel

capacity). We developed some new formulations for such problems using ideas from

Euclidean geometry and graphical models. These formulations allowed us to simplify

these difficult problems and also enabled us to think more systematically about net-

work situations. This analysis gave rise to new canonical examples which provided

fresh insights and also generalized some previous results.

1For example, the NACK message in network protocols.
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7.2 Future Directions

Besides extending our results for discrete memoryless channels to other channel mod-

els such as Gaussian channels, this thesis leads to many interesting problems in areas

ranging from coding theory to joint source-channel coding to network optimization.

7.2.1 Rates below capacity

Recall that only a few UEP scenarios were addressed in Chapters 5 and 6 for data-

rates below capacity. Fundamental limits in many more UEP scenarios below capacity

remain to be understood. Recall that even for data-rates at capacity, we had many

UEP scenarios to study. Since even ordinary information can achieve a positive

exponent for rates below capacity, the possible set of UEP problems becomes even

richer now. We can trade off the exponent of ordinary information in favor of special

information in a many ways.

7.2.2 Efficient coding

Designing practical codes which achieve our fundamental UEP limits gives rise to

many new problems in coding theory. For low computational complexity, one can use

the iterative coding approach as well as the algebraic coding approach.

In terms of fundamental limits too, almost every question for UEP error exponents

has an analogue in coding theory where we are interested in Hamming distances in-

stead of error exponents. These formulations demand better deterministic guarantees

for special information (in terms of normalized Hamming distances) instead of better

probabilistic guarantees (in terms of error exponents). For example, some such limits

were obtained in [24, 25] for bit-wise UEP.

For example, consider the following analogue for sending a special bit at channel

capacity. Given a code that achieves the Singleton bound, color half the codewords

blue and the remaining half as red. The cluster of blue codewords corresponds to the

special bit being 0 and that of red codewords corresponds to the special bit being

1. Is it possible to have a larger distance between the blue cluster and red cluster
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compared to the minimum distance of the code given by the Singleton bound? In

other words, we are again asking the feasibility of Fig. 7-2 seen earlier. Now however,

the small green balls are Hamming balls (of the Singleton radius) around codewords

instead of typical decoding balls.

61=0
b,= 1

Figure 7-2: Splitting the output space into 2 distant enough clusters.

One can also ask a deterministic version of the boulders-and-sand result for spe-

cial messages. In fact, an analogue of the error exponent result holds true and we

have been able to prove that multiple points on the Gilbert-Varshamov curve can be

simultaneously achieved. Thus more important messages can have larger Hamming

balls around their codewords without affecting the size or number (in exponential

scaling) of smaller Hamming balls.

Understanding the implications of allowing lists or erasures at the decoder is

also an open area. We briefly analyzed some implications of allowing erasures in

Chapter 3 but many questions remain unanswered. For homogeneous information,

such questions were analyzed in [8] in terms of error exponents. For heterogeneous

information, similar questions could be formulated again for various UEP situations.

We can also analyze these issues in terms of Hamming distances.

7.2.3 Joint Source-Channel Coding and Data Compression

Throughout this thesis, we focused on the channel coding component of communi-

cation. However, often the final objective is to communicate a source within some

distortion constraints. For heterogeneous information, some parts of the source may

demand a smaller distortion than other parts. For example, images with faces are
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more important than other images and may require better recovery across the noisy

channel2 . Understanding optimal methods for communicating such sources over noisy

channels present many novel joint-source channel coding problems. It will be inter-

esting if there are any separation theorems for UEP at the source level and UEP at

the channel level.

Even for pure source coding, finding efficient compression methods for better

recovery of important parts presents many new problems. Previous approaches to

this problem are based on multiple-description coding [59] and successive refinement

coding [60]. However, many other formulations yet remain to be analyzed. Another

scintillating problem is finding out a source coding analogue for the notion of message-

wise UEP in channel coding.

7.2.4 UEP in Networks

The notion of heterogeneous information becomes more exciting and even more preva-

lent for networks. We saw that a plethora of UEP problems had arisen even for

point-to-point channels. For multiuser situations, such as multiaccess and two-way

channels, the number of relevant UEP problems becomes much larger. Now each user

can demand various protections for various pieces of information and one can study

the achievable error exponent for these demands.

More importantly, we can actively use UEP in network protocols. For example, a

relay can forward some partial information even if it cannot decode everything. This

partial information could be characterized in terms of special bits as well as special

messages. Another example is two-way communication, where UEP can be used for

more reliable feedback and synchronization.

7.2.5 Coordination + Communication

In many scenarios, the final objective of communication is achieving some coordina-

tion between various agents [55]. We consider using the channel for a dual purpose--

communicate data as well as achieve coordination. For concreteness, consider broad-
2Thanks to Professor Greg Wornell for suggesting this motivation.
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casting to two mobile robots where usually we send normal data to them. However,

once in a while a coordination instruction is to be sent to both robots to perform

some crucial joint task. Assuming this joint task to be a crucial one, we need tp

protect the coordination instruction much better. What are the tradeoffs between

error exponents of this coordination and rates of the normal data to these users?

One can broadly think of UEP as a way to address a basic semantic aspect of infor-

mation (its heterogeneity) because classical framework ignores all semantic aspects.

These joint coordination-communication problems can be thought as addressing one

more semantic aspect of information.

7.2.6 Network Optimization

Information theoretic understanding of UEP also gives rise to some network opti-

mization problems. Essentially, the interface to physical layer is no longer bits as

in Fig. 7.2.6. Instead, it is a basket of various levels of error protection as in Fig.

7-4. The achievable channel resources of reliability and rate need to be efficiently

divided amongst these levels, which gives rise to many resource allocation problems.

Information theory tells what baskets are achievable and optimization theory can tell

which baskets should be used for maximizing some overall objective.

bits

Physical layer

Figure 7-3: Homogeneous interface to physical layer

Platinum info Gold info Silver info Economy info

Physical layer

Figure 7-4: Heterogeneous interface to physical layer. Upper layers choose the priority
levels for various parts of information.
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Appendix A

Proof of Theorem 2 in Chapter 2

The optimum output type is given by Q* and the error dominating joint type is

Q PxlY. Using (2.35), the error exponent is given by

E,(R) = D(Q IIPy ) + E(R, Q)

D(Q*,| Py) + D(Q•P JyllQYPxIy)

+ D(QP Pxy) - R] II

D(QP xIPxy) + D(Q tP*)IIQPx) - R

This is a non-decreasing function in D(QYP( IPxy) and D(Q,•Py) IIQPx). Sim-

ilar to previous subsection, we can show that a ML decoder is equivalent to a LLR

decoder for pi = Pxy to Po = QPx. Now assume to the contrary that the domi-

nating joint type QP(t*) does not lie on the exponential family joining pi and po.

Now move P(t*) to Q' (t) which is on the exponential family and has the same

expected LLR as Q;PY.y Thus by I-projection theorem

D(QtP'y t)jPxy) < D(Q P IIPxy)
and D YQ XIY P(") XIY

and D(QPxIYIQPx) < D(QP ;yIIQPx)

Moreover,

D(Q,'yP IIQyPx) = D(Q'yP lYQ'YPx) + D(Q'yIIQ;)

2 DQ (t')Q'YP 1 llQ1yPx)
S D(,Q'yP(t lQ'Px) < D(QP t* p IQ*Px)

Thus replacing QP(t by Q'. xP gives a smaller exponent, which contradicts the

optimality of Q* p(t*)
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Appendix B

Equivalent definitions of UEP exponents

We could define all the UEP exponents without using the notion of capacity-achieving

sequences. As an example, we will define the single-bit exponent in this alternate

manner. This alternative first defines Eb(R) as the best exponent for the special bit

at a given data-rate R, and then minimizes Eb(R) over all R < C to obtain Eb.

Definition 48 For a reliable code sequence Q of rate RQ, with message sets M (n ) =

M 1 x M n) where M 1 = {0, 1}, the exponent for the special bit error probability

Pr(n [A 1  M1] equals

Eb,Q = lim inf n-gPr[•i$AM] (1)
n---oo

Then define Eb(R) = supQ:RQ>R Eb,Q. Now the single bit exponent Eb is defined as

Eb = inf Eb(R)
R<C

This definition of says that no matter how close the rate is to capacity, the special

bit can achieve the exponent Eb. We now show briefly why this definition is equivalent

to the earlier definition in terms of capacity-achieving sequences.

Lemma 49 Eb = Eb

Proof of Eb < Eb: By definition of Eb, for any given 6 > 0, there exists a capacity-

achieving sequence Q whose single bit exponent Eb,Q satisfies,

Eb,Q > Eb - J.

We will use this capacity-achieving sequence Q to prove Eb _ Eb,Q > Eb - J. This
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is because rate of Q equals C by definition. Hence definition of Eb(R) implies

Eb,Q • Eb(R) for anyR<C

(Eb-S6 ) Eb,Q • Eb.

The proof follows by choosing arbitrarily small 6.

Proof of Eb _ Eb: First fix an arbitrarily small 6 > 0. In the table below, row k

represents a reliable code-sequence Qk at rate C - 1/k, whose single-bit exponent

EbQk Eb(R) - 6

Let Qk(l) represent length-i code in this sequence. We construct a capacity-

achieving sequence Q from this table as follows. This construction sequentially

chooses elements from rows 1, 2, - ..

Block-length

1 2 3 ................. n l ..... n2 .... n3

0Q(1)

Q2(1)

Q3 (1)

0 4(1)

01(2)

Q2(2)
Q3(2)

Q1(3)

02(3)
P1±'

Figure: Row k denotes a reliable code sequence at rate C - 1/k. Bold path shows
capacity-achieving sequence Q.

Initialize: For sequence Q1, let nl denote the smallest block length n at

which the single bit error probability satisfies

- log Pril)[MAA-] Eb(R) - 26 Pr (n ) [j"11 AM] < exp(-n(Eb(R) - 26))

Iterate: For sequence Qi+l, choose the smallest n+i+ Ž ni which satisfies

above equation.
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01(4)
• . .

''"
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'

· ·i
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'''
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Given the sequence, nl, n2, , from each row i, we will choose codes of length ni

to ni+l - 1, i.e.,

(Qi(ni), Qi(ni + 1) , 0Ql(ni+l - 1))

as members of the capacity-achieving sequence Q. Thus Q is a sampling of the

code-table as shown by the bold path in this figure. Note that this choice of Q is a

capacity-achieving sequence, moreover it will also achieve a single bit exponent

EbQ = inf {Eb(R) - 26} = Eb- 26
R<C

Choosing arbitrarily small 6 proves Eb > Eb.
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Appendix C

Proof of Theorem 10 for BSC

We will focus on a BSC with crossover probability p in this appendix. Before going

further, we state the following lemma for binary hypothesis testing (see [5] for exam-

ple). Consider binary random sequence Y" of length n. Under hypothesis H = 0, it

is i.i.d. over time with distribution Bern(p). Under hypothesis H = 1, it is i.i.d. over

time with distribution Bern(!). Here Bern(p) denotes the Bernoulli distribution with

parameter p.

Lemma 50 Let El denote the exponent for missed-detection probability Pr(H =

01H = 1) and Eo denote the exponent for false-alarm probability Pr(Hi = 1lH = 0).

The following implicit equation provides the optimal trade-off between these two expo-

nents, where Db(hllg) denotes the KL divergence between two Bernoulli distributions

with parameters h and g.

1
For some 6 < 1/2, let El = Db(5ll 1) = Eo 5 Db(S p) (2)

Moreover, this exponent pair is achievable by a threshold test on the Hamming weight

of Y", which chooses H = 1 if the Hamming weight of yn exceeds n6 and vice versa.

Note that if El = r, then Eo denotes the sphere-packing exponent at rate r and 6

denotes the Gilbert-Varshamov distance for rate r. To emphasize the dependence on

r, we will denote this Gilbert-Varshamov distance by 6Gv(r). Now we are ready to

prove the theorem.

Special codewords: At any given block length n, we start with a optimum code-

book (say Cspeci,,) for [enr] messages. Such optimum code-book achieves error expo-

nent E(r) for every message in it.

Pr [I iM =i] - exp(-nE(r)) Vi .M {1,2,-.. , [e-
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This code-book is used for transmitting the special messages. At the decoder, let B,

denote the set of output sequences within Hamming distance (D = n(6 Gv(r + E,) from

the i'th codeword "n(i). Here e, is non-negative sequence which vanishes to 0 with

increasing n.

Z3 = {Yn" : ly" - t"(i)JH < 4}

Thus Bi is a ball of radius 4I around codeword i as shown in Fig. 3-3(a). The radius

1 is essentially the sphere-packing radius. Hence these balls will not be disjoint. Now

let B denote the union of these balls around all special codewords.

B= U B3
iEMs

If the output sequence Yn lies in B, the first stage of the decoder decides a special

message was transmitted. The second stage then chooses the ML candidate in .M8,

i.e., the nearest special codeword from Y".

Ordinary codewords: The ordinary codewords will be chosen by random coding:

flipping a coin i.i.d. over time. This is the same as Shannon's construction for

achieving capacity. The random coding construction provides a simple way to show

that in the cavity space Bc (complement of B), we can essentially fit enough typical

noise-balls to achieve capacity. This will avoid the complicated task of carefully

choosing the ordinary codewords and their decoding regions in the cavity space.

If the output sequence yn lies in Bc, the first stage of the decoder decides an

ordinary message was transmitted. The second stage then chooses the ML (nearest)

candidate from ordinary codewords.

Error analysis: First, consider the case that a special codeword fJ(i) is transmitted.

Note that Y" E Bi if and only if Y' g ,n(i) weighs less than I. Here G denotes

element-wise XOR of two binary sequences. By Stein's lemma, the probability of

Y" V Bi has exponent Db(6GV(r + En)lII). It is because channel errors are i.i.d.

Bern(p). Since first stage error cannot happen for 1Y' E Bi, first stage error exponent

is at least Db(6GV(r + En)IIP) = Esp(r + En) when any special message is sent.

184



Assuming correct decoding in the first stage, the error exponent for the second

stage of decoding between [enr ] codewords equals E(r), which is at most the sphere-

packing exponent Es,(r) (see [3]). Since the first stage exponent equals Ep,(r + En),

the effective error exponent for special messages equals

min{E(r), Ep(r + EI)}

Since cn vanishes, the above two-stage decoding ensures a missed-detection exponent

of E(r) for each special message.

Now consider the situation of a uniformly chosen ordinary codeword being trans-

mitted. We have to make sure the error probability is vanishingly small now. In

this case, the output sequence distribution is i.i.d. Bern(!) for the random coding

ensemble. The first stage decoding error happens if one of the error sequences weighs

less (in Hamming weight) than the threshold 4. Since the outputs are i.i.d. Bern(!),

error sequence Yn D "~(j) corresponding to any special codeword tnr(j) is also i.i.d.

Bern(!). Since Y" E Bj if and only if Yn ( ~"(j) weighs less than 4, this probability

is at most

exp(-nDb(Gcv(r + E) II1/2)) = exp(-n(r + 'E)).

Applying union bound, the probability of Yn E U Bi is at most exp(-nen). This

probability of the first stage error hence vanishes for the random coding ensemble.

Recall that for the random coding ensemble, average error probability of the second-

stage decoding also vanishes below capacity. To summarize, we have shown these two

properties of the random coding ensemble:

1. Error probability of first stage decoding vanishes as a (n) - exp(-nEn) with n

when a uniformly chosen ordinary message is transmitted.

2. Error probability of second stage decoding (say b(n)) vanishes with n when a

uniformly chosen ordinary message is transmitted.

Since the first error probability is at most 4a (n ) for some 75% fraction of the random

ensemble, and the second error probability is at most 4b(") for some 75% fraction of the
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random ensemble, there exists a particular code which satisfies both these properties.

The overall error probability for ordinary messages is at most 4(a(n) + b(n)), which

vanishes with n. We will use this particular code for the ordinary codewords. This

de-randomization completes our construction of a reliable code for ordinary messages

to be combined with the code Cspecial for special messages.

For the special codewords, we had already shown that, probability of first stage

decoding error decays exponentially with exponent Esp(r). This completes the achiev-

ability proof for the BSC.

186



Appendix D

Proof of Lemma 39 in Chapter 6

We use Yk,t to denote output at user Yk at time t and Yk: t denotes its outputs from

time i to t. Thus subscript of a letter denotes the user index and its superscript

denotes the time index.

Lets first bound I(ML-1; Y:1_l). By chain rule,

I(ML_1; Yinl)) K

E Z (H(YL-I,t) - H(YL-1,.tIML 1Y'IL 1 )) = C I(YL-l,t; UL-1,t)
t=1 t=1

where UL-l,t is defined as

UL-,t AIL-YL:-1

We now get an upper bound on I(AIL-2; YLn2 IL-). First note that H(YL-2 L-MLL-IL 2)

equals

H(YL- 2,tj-ML- AL-2YL:t- 1)
t=1

(4)

H(YL-.,ML-2,tL-1ML-2YL 1 1-

t=l

since conditioning reduces entropy.

Now invoking the physical degradedness implies I(YLjTI 1 ; YL-2,tL-1YL 2-) = 0.

That is, yl:t-l, which is a noisier version of Y 1:t•l does not provide any additional

information about YL-2,t. This implies

H(YL- 2,t IALY-1lt 21) H(YL- 2,tIAIL-1Y1: t j 1 Yj- 1 )

K H(YL-2,tIMAL-Y t1--I)
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Combining (4) and (6) gives,

I(MIL-2; YL-2_ML1)

n

t=1
I(ML-2; YL- 2,tIML-1Y1-t2 1)

H(YL- 2,t ML-.1 ly:) -
-~L1 -1 )

n

Z H(YL- 2,t L-1 L-1 L-2 -2 1
t=1

Recalling (3) and defining

UL-2,t AIL-2 L-1Y 1-: 1

this bound equals

n

I(ML-2; YL•2 IML-1) I(UL-,; YL2,t IU-2,L-1,t)
t=1

Using similar substitution of auxiliary random variables, we get the following set of

upper bounds

n

I(.Allk; Yk I k + I ,llk + 2 -ML - 1) 1 Wk, t - Yk t I + 1,t)
t=1

for any 1 < k < L - 1, where Ukt is defined as

Uk,t A •Mk AMk+1 · MLY t-1

Choice of auxiliaries: Thus auxiliary random variable for certain user at time t is

defined as the set of

1. Past observations (up to time t - 1) of that user and

2. all the messages that user wants to decode.

Note that for any time t, our choice of auxiliary variables satisfies the Markov

structure in (6.22) due to physical degraded nature of the channel
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Combine all such upper bounds to upper bound the RHS of Lemma 39 by

n L-1

I(Xt; YoJtUI,t) + Ajl(Uj,t; Y t|U+,t)
t=1 i=1

which by definition is at most nC(A).
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