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Abstract
Wireless mesh networks promise cheap Internet access, easy deployment, and extended
range. In their current form, however, these networks suffer from both limited through-
put and low reliability; hence they cannot meet the demands of applications such as file
sharing, high definition video, and gaming. Motivated by these problems, we explore an
alternative design that addresses these challenges.

This dissertation presents a network coded architecture that significantly improves
throughput and reliability. It makes a simple yet fundamental switch in network design:
instead of routers just storing and forwarding received packets, they mix (or code) pack-
ets' content before forwarding. We show through practical systems how routers can ex-
ploit this new functionality to harness the intrinsic characteristics of the wireless medium
to improve performance. We develop three systems; each reveals a different benefit of
our network coded design. COPE observes that wireless broadcast naturally creates an
overlap in packets received across routers, and develops a new network coding algorithm
to exploit this overlap to deliver the same data in fewer transmissions, thereby improv-
ing throughput. ANC pushes network coding to the signal level, showing how to exploit
strategic interference to correctly deliver data from concurrent senders, further increasing
throughput. Finally, MIXIT presents a symbol-level network code that exploits wireless
spatial diversity, forwarding correct symbols even if they are contained in corrupted pack-
ets to provide high throughput reliable transfers.

The contributions of this dissertation are multifold. First, it builds a strong connec-
tion between the theory of network coding and wireless system design. Specifically, the
systems presented in this dissertation were the first to show that network coding can
be cleanly integrated into the wireless network stack to deliver practical and measurable
gains. The work also presents novel algorithms that enrich the theory of network coding,
extending it to operate over multiple unicast flows, analog signals, and soft-information.
Second, we present prototype implementations and testbed evaluations of our systems.
Our results show that network coding delivers large performance gains ranging from a few
percent to several-fold depending on the traffic mix and the topology. Finally, this work
makes a clear departure from conventional network design. Research in wireless networks
has largely proceeded in isolation, with the electrical engineers focusing on the physical
and lower layers, while the computer scientists worked up from the network layer, with
the packet being the only interface. This dissertation pokes a hole in this contract, dispos-
ing of artificial abstractions such as indivisible packets and point-to-point links in favor
of a more natural abstraction that allows the network and the lower layers to collaborate
on the common objectives of improving throughput and reliability using network coding
as the building block. At the same time, the design maintains desirable properties such



as being distributed, low-complexity, implementable, and integrable with the rest of the
network stack.
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CHAPTER 1

Introduction

Wireless, in its various forms, is an increasingly dominant communication medium. It

provides the means for mobility, city-wide Internet connectivity, distributed sensing, etc.

Most wireless networks, however, offer only one hop wireless connectivity through ac-

cess points, which have to be connected by wired links to the Internet. Hence, to achieve

blanket coverage, entire buildings and neighborhoods have to be wired, which is typically

quite expensive and hard to maintain.

Wireless mesh networks have been proposed to achieve the vision of wireless every-

where. In mesh networks, multiple radios are deployed in a neighborhood or a building.

The radios connect to each other via wireless links to form a multi-hop wireless network,

with a few of them acting as gateway nodes that connect the wireless network to the Inter-

net. Packets traverse multiple wireless links before reaching the gateway and finally the

wired Internet. Mesh networks extend the coverage area without expensive wiring, offer-

ing cheap and moderately fast connectivity, sufficient for accessing the Internet assuming

normal browsing habits.

Next generation applications, however, are highly demanding. Consumers expect to be

able to access video over the Internet, share large files, ship high definition multimedia to

entertainment devices in their homes, among other things. These activities require high

throughput, which current wireless mesh networks struggle to provide.

Motivated by these problems, in this dissertation, we propose a new design to build

high performance wireless mesh networks. The key idea underlying our design is to give
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routers the ability to "code" packets before forwarding them, i.e., to perform network cod-

ing. Traditionally, routers operate using a "store and forward" approach; they buffer re-

ceived packets and forward them unmodified to the next router along the path. In this

dissertation, we break this convention. Routers could, if they wish, combine information

from different packets at the packet, symbol, or signal level. We show that this simple yet

fundamental shift in router operation can yield large throughput gains over the current

state of the art.

Our work builds on the theory of network coding. Network coding was first intro-

duced in a landmark paper by Ahlswede et al. [2], which showed that having the routers

mix information in different messages allows the communication to achieve multicast ca-

pacity. Subsequent work demonstrated that, for multicast traffic, linear codes are suffi-

cient to achieve the maximum capacity bounds [85], and developed polynomial time al-

gorithms [63] as well as distributed random linear codes [58] for encoding and decoding.

This work as well as more recent papers on attack resilience [62, 76, 56], and coding graphs

that minimize a cost metric [90, 91] have theoretically established that network coding

improves network throughput and reliability.

To ensure analytical tractability, however, prior work tends to ignore practical con-

straints. The usual approach is to model the network as a graph and assume multicast

communications (since network coding for unicast is a largely unknown territory). It is

also common to assume that the senders and receivers are fixed and given, and that the

traffic rates are known, and do not change. In this framework, prior work shows how to

run a min-cost flow optimization to find the optimal subgraph (say one that minimizes

the number of transmissions) [91, 100, 90]. The subgraph dictates the coding: each node

generates linear combinations of the packets on its incoming edges and broadcasts them

to neighbors on the outgoing edges.

Unfortunately, the reality of wireless mesh networks is quite different. First and most

importantly, traffic is unicast. Second, senders and receivers are unknown a priori; they

do not signal their desire to communicate, but just start sending packets. Traffic is usually

bursty, and the sending rate is unknown in advance even to the sender itself, and varies

over time. Also, connectivity in a wireless network is highly variable due to changing

channel conditions and interference from nearby transmitters. Thus, in practice, the wire-

less medium is highly unpredictable and inhospitable to applying the existing analytical
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network coding algorithms.

This dissertation provides a practical design for wireless network coding. The key dif-

ference from past work is to take an opportunistic approach to algorithm and system de-

sign. We design new network coding algorithms that are opportunistic, i.e., they make no

assumptions on the traffic or the underlying topology, but identify coding opportunities

as they arise, and exploit them to increase throughput and reliability. Unlike most prior

work, the algorithms are designed for unicast flows. Being opportunistic, our algorithms

can cope with changing traffic and medium state, and handle applications with varying or

bursty sending rates.

We introduce three new systems: COPE, ANC and MIXIT. COPE is a novel packet-

level network coding technique that opportunistically exploits the shared redundancy

created by wireless broadcast to compress transmissions and hence increase throughput.

ANC performs network coding on analog signals, showing that interference need not be

harmful, and can rather be harnessed to increase throughput. Finally, MIXIT introduces a

symbol-level network coding technique that takes advantage of wireless spatial diversity

to perform opportunistic routing on symbols, increase concurrency, and thereby deliver

high throughput without compromising end-to-end reliability.

The systems in this dissertation make a strong case for network coding as an alternative

design for wireless mesh networks, a design that can deliver significant throughput and re-

liability gains. We show that network coding can be seamlessly integrated into the current

network stack at various layers. COPE introduces a coding shim between the IP and MAC

layers, while MIXIT is a cross-layer approach where the physical and network layers co-

operate using clean interfaces to build a symbol-level wireless network. ANC shows how

to push network coding all the way to the analog domain, operating over signals instead

of bits. All three systems were implemented and evaluated in actual wireless testbeds, and

our experimental results demonstrate that they deliver large gains in practice. We describe

each of them briefly below.

0 1.0.1 COPE

First, COPE, the subject of Chapter 3, designs a new packet-level network coding technique

that improves the throughput of wireless mesh networks with multiple unicast flows. With

COPE, a router uses network coding to perform in-network compression of packets in its
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Figure 1-1: A simple example showing how COPE increases throughput. It allows Alice and Bob to ex-

change a pair of packets using 3 transmissions instead of 4 (numbers on arrows show the order of trans-

mission).

outbound queue; it intelligently combines packets using the simple XOR operator and

broadcasts the coded packet to multiple next hops in a single transmission. The next hops

decode the coded packet and repeat the same process until each packet reaches its destina-

tion. The key insight behind this technique is that, due to multi-hop routing and the broad-

cast nature of wireless, nodes surrounding a router may have already overheard many of

the packets in the router's queue, creating a pool of shared redundancy in that neighbor-

hood. The router can exploit this shared redundancy to perform in-network compression

of outgoing packets, delivering multiple packets in a single transmission and consequently

increasing throughput.

COPE is best demonstrated through an example. Consider the scenario in Fig. 1-1,

where Alice and Bob want to exchange a pair of packets via a router. In the current for-

warding architecture, Alice sends her packet to the router, which forwards it to Bob, and

Bob sends his packet to the router, which forwards it to Alice. This process requires four

time slots. COPE employs network coding to reduce the number of time slots needed to

deliver the two packets. In COPE, Alice and Bob send their packets to the router, one after

the other. The router bit-wise XORs the two packets and broadcasts the XOR-ed version.

Alice and Bob obtain each other's packet by XOR-ing the coded packet received from the

router with the packet they transmitted earlier. This process requires three time slots in-
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Figure 1-2: A simple example showing how ANC increases throughput. It allows Alice and Bob to exchange

a pair of packets in two time slots instead of the four time slots needed in the current approach (numbers

on arrows show the order of transmission).

stead of four. The freed slot can be used to send new data, increasing wireless throughput.

Chapter 3 generalizes this idea to arbitrary topologies and traffic patterns and integrates

it into the current network stack, showing even larger throughput gains than are apparent

from this simple example.

M 1.0.2 ANC

The second system in this dissertation, presented in Chapter 4, is Analog Network Cod-

ing (ANC), which improves network throughput by increasing the number of concurrent

transmissions. ANC uses the wireless channel itself to perform network coding over ana-

log signals, thus encouraging certain nodes to transmit concurrently and strategically in-

terfere. Routers themselves do not attempt to decode packets from the interfered signal,

but amplify the interfered signal and forward it. At the destinations, nodes use a novel

decoding algorithm that exploits network-layer information to cancel out the interference

and recover the signal the node wants, and consequently the packet.

We demonstrate the operation of ANC with the same example we used for COPE,

shown in Figure 1-2. As discussed above, Alice and Bob wish to exchange a pair of pack-

ets, and they require four time slots with the current architecture and three with COPE.

ANC does even better; it accomplishes the exchange in two time slots. In ANC, Alice and

Bob transmit their packets simultaneously, allowing their transmissions to interfere at the

router. This consumes a single time slot. Due to interference, the router receives the sum

of Alice's and Bob's signals, which it cannot decode. The router simply amplifies and for-

wards the received interfered signal. This consumes a second time slot. Since Alice knows

4i---
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Figure 1-3: A simple example showing how MIXIT increases throughput. The source, S, wants to deliver
a packet to the destination, D. The figure shows the receptions after S broadcasts its packet, where dark
shades in a packet refer to erroneous bits. The best path traverses all routers R1, R2 and R3. Traditional
routing makes R1 transmit the packet ignoring any opportunistic receptions. Packet-level opportunistic

routing exploits the reception at R2 but ignores that most of the bits have made it to R3 and D. MIXIT
exploits correctly received bits at R3 and D, benefiting from the longest links.

the packet she transmitted, she also knows the analog signal corresponding to her packet.

She can therefore subtract her known signal from the received interfered signal to recover

Bob's signal, and then decode Bob's packet. Bob can similarly recover Alice's packet. Thus,

compared to the traditional approach, ANC reduces the required time slots from four to

two, doubling the wireless throughput.

Chapter 4 transforms this idea into a practical design, addressing the problems of chan-

nel distortion and the lack of synchronization between Alice's and Bob's transmissions. It

actually exploits the asynchrony that naturally exists between concurrent senders to es-

timate wireless channel distortion and compensate for it before disentangling interfered

signals. Chapter 4 also extends the idea to more topologies and traffic patterns and pro-

vides a prototype implementation and a testbed evaluation.

U 1.0.3 MIXIT

The third system in this dissertation, presented in Chapter 5, is MIXIT, which improves

network performance by exploiting wireless spatial diversity. In both traditional routing

protocols as well as more recent opportunistic approaches [65, 12, 18], each intermediate

node forwards a packet only if it has no errors. In contrast, MIXIT takes a much looser

approach, a forwarding node does not attempt to recover from any errors, or even bother

to apply an error detection code (like a CRC). Instead MIXIT uses physical layer hints [65]

(these hints reflect the PHY's confidence in its demodulation and decoding) to filter out

incorrect bits in a received packet, and opportunistically route the correctly received bits

to their destination. Thus, surprisingly, in MIXIT, the destination can receive a fully correct

packet even though no intermediate node may have received the packet correctly.
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MIXIT is best demonstrated through an example. Consider Fig. 1-3, where a source,

S, tries to deliver a packet to a destination, D, using the chain of routers R1, R2, and R3.

It is possible that when the source broadcasts its packet, R1 and R2 hear the packet cor-

rectly, while R3 and D hear the packet with some bit errors. Traditional routing ignores the

"lucky" reception at R2 and insists on delivering the packet on the predetermined path,

i.e., it makes R1 forward the packet to R2 again. In contrast, recent opportunistic routing

protocols [12, 18] capitalize on such lucky receptions (at R2) to make long jumps towards

the destination, saving transmissions. However, by insisting on forwarding fully correct

packets, current opportunistic protocols miss many opportunities to save transmissions

and increase throughput. In particular, they do not take advantage of the correct bits that

already made it to R3 and even to the destination, D. Note that because of spatial diver-

sity [96, 124], the corrupted bits at R3 and D are likely in different positions. Thus, in

MIXIT, R3 only transmits the bits that D did not receive correctly, delivering the entire

correct packet to D with far fewer transmissions. MIXIT therefore significantly increases

throughput without compromising end-to-end reliability.

The principal component of MIXIT is a new symbol-level network code that operates on

small groups of bits called symbols. This new code allows the network to route groups

of bits to their destination with low overhead. It also works as an error correcting code,

enabling the destination to correct any incorrect bits that might seep through.

Chapter 5 describes the design and implementation of MIXIT, including the symbol-

level network code and new MAC and forwarding protocols built on the symbol-level

substrate. It also provides a prototype implementation in software radios and a testbed

evaluation.

1 1.1 Contributions

The high-level contribution of this dissertation is to build a strong connection between

theoretical network coding and wireless systems, with novel algorithms that strengthen

the theory as well as prototype implementations and evaluations that deliver large gains

in practice. The specific contributions of this dissertation highlight different aspects of this

connection and are described below.
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E 1.1.1 Network Coding: An Alternative Design for Wireless Mesh Networks

This dissertation establishes network coding as a basic building block for an alternative

design of wireless mesh networks. The systems in this dissertation demonstrate how net-

work coding provides a framework to exploit the fundamental properties of wireless sys-

tems. For example, in COPE, network coding gives us the ability to exploit the shared

redundancy created by broadcast. In ANC, analog network coding provides the engi-

neering tools needed to take advantage of strategic interference. Finally, in MIXIT, our

symbol-level network code enables us to leverage wireless spatial diversity at a low over-

head. Further, our implementations and evaluations in actual testbeds demonstrate the

large gains network coding provides in practice, making a strong case for network coding

as an elegant and practical engineering tool for designing wireless mesh networks.

* 1.1.2 Novel Network Coding Algorithms

The systems in this dissertation present novel opportunistic network coding algorithms

that enrich the existing theory. We highlight the main algorithmic contributions below:

* COPE introduces a general algorithm for network coding multiple unicast sessions.

It shows that a simple yet effective technique to build network coding algorithms for

multiple unicast sessions is to ensure that every coded packet can be decoded at its

next hop. This avoids the problem of data from independent sessions getting mixed

up and being undecodable eventually at the destination.

* ANC extends network coding to the signal-level, providing a practical decoding al-

gorithm to disentangle interfered signals. It shows that interference can often be

viewed as a network code, which we can decode using network-layer information.

The key insight behind the decoding algorithm is that asynchrony between transmit-

ters is a blessing in disguise, and could be exploited to estimate channel distortion

and disentangle signals.

* MIXIT introduces new network coding algorithms that take advantage of soft infor-

mation, allowing the physical and network layers to cooperate instead of working in

isolation. Previous network coding techniques work on correctly decoded packets.

MIXIT extends network coding to work on likely-correct high-confidence symbols
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without compromising end-to-end reliability. Furthermore, MIXIT shows how net-

work coding ideas can be used to bring the theoretical ideas of co-operative diver-

sity [79] and backpressure routing [123] to practice.

0 1.1.3 Integration of Network Coding Into the Network Stack

This dissertation shows how network coding can be integrated into the current network

stack at different layers. COPE inserts a coding shim between the routing and MAC layers

to exploit wireless broadcast. The shim is transparent to layers above and below. ANC

on the other hand works at the signal level below the physical layer. Finally, MIXIT is

a cross-layer approach where the physical and network layers collaborate on improving

throughput and reliability.

Our work gives network designers the flexibility to deploy network coding at various

granularities depending on their constraints. If they are designing networks using off-the-

shelf 802.11 hardware, where only the layers above the MAC are at their control, they can

deploy network coding at the packet level [72, 18] (like in COPE) to take advantage of

wireless broadcast. If the link layer can be modified, MIXIT can be deployed at the symbol

level to harvest higher gains. Finally, if the wireless hardware itself can be modified, or if

the PHY layer is implemented in software, network designers can deploy ANC to exploit

strategic interference, as well as the other two techniques at the higher layers. Generally,

higher flexibility in network design provides better performance, but even when network

coding can only be deployed in software at the packet level, the gains are significant.

U 1.1.4 Practical Evaluations Demonstrating Large Gains

All three systems presented in this dissertation have been deployed and evaluated in ac-

tual testbeds. The evaluations reveal that each system provides large throughput increases,

but the exact gain depends on the topology and traffic mix. We summarize the major ex-

perimental contributions below:

We evaluate COPE in a 20-node 802.11 testbed and find that COPE largely increases

network throughput. The gains vary from a few percent to several fold depending on

the traffic pattern, congestion level and transport protocol used. When the wireless

medium is congested and the traffic consists of many random UDP flows, COPE

increases the throughput of our testbed by 3 x -4x. With TCP, however, hidden
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terminals create a high collision rate which prevents TCP from sending enough to

utilize the medium and thus does not create coding opportunities. With no hidden

terminals, TCP's throughput increases by an average of 38%.

* We evaluate ANC in a testbed of GNURadio [41] software radios. Empirical results

show that our analog network coding technique decodes interfered signals with an

average bit error rate as low as 2 - 4%, which is masked by the use of error-correcting

codes. As for throughput, it increases by 70% in comparison to traditional wireless

routing.

* We evaluate MIXIT using a GNURadio [41] software radio implementation on a 25-

node testbed running the Zigbee (802.15.4) protocol. The experiments show that

MIXIT provides a 2.8 x gain over state-of-the-art packet based opportunistic routing

protocols [12,18] under moderate load and 2.1 x gain under light load. The gain over

current routing is even higher and reaches 3.9x.

U 1.2 How to Read This Dissertation?

This dissertation can be divided and read along multiple axes depending on what the

reader is looking for. The chapters themselves have been ordered from a pedagogical point

of view. We start with COPE, described in Chapter 3, which contains a simple, elegant idea

and offers a gentle and intuitive introduction to wireless network coding. ANC, described

in Chapter 4, presents a similar idea but at the level of signals, and introduces the reader

to the intricacies of wireless signal processing. Finally, MIXIT, described in Chapter 5, is a

sophisticated system that marries the concepts of network coding, opportunistic routing,

flexible MAC protocols, and soft information into a single complete system.

The same systems can be viewed through a network coding lens as inter-flow and intra-

flow coding techniques. COPE is an inter-flow network coding technique that sheds in-

sight on the problem of applying network coding to multiple unicast sessions. ANC has

both intra and inter-flow network coding, and further extends network coding to the sig-

nal level. Finally, MIXIT is an intra-flow network coding technique that leverages physical-

layer soft information. Further, the chapter on MIXIT shows how ideas from co-operative

diversity and backpressure routing can be naturally combined with network coding to

improve performance.



SECTION 1.2. HOW TO READ THIS DISSERTATION?

The dissertation caters to both the theoretician and the practitioner. Chapter 3 develops

a new network coding algorithm which has connections to the index coding problem [5]. It

also provides new problems for theoretical investigations, especially the question of capac-

ity scaling when network coding is used. At the same time, the idea of shared redundancy

presented in the chapter is quite general, and can be found in a variety of practical set-

tings [36], where systems designers could possibly use the COPE coding algorithm with

some modifications. Chapter 4 has a capacity analysis that sheds light on the theoretical

improvements possible with analog network coding, as well as gives insight to system de-

signers on the practical situations where analog network coding is beneficial and where it

is not. Chapter 5 has a multitude of ideas which draw inspiration from theoretical litera-

ture and applies them to practical settings. It uses a new load-aware routing algorithm that

has connections to theoretical work on congestion control and backpressure [28]. Further,

the error correcting code used is based on fairly recent theoretical techniques built on rank

distance codes [118].
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CHAPTER 2

Background

In this chapter, we provide an overview of network coding and current wireless mesh net-

work design. We begin in Section 2.1 with an introduction to network coding. Section 2.2

discusses the benefits of network coding, while Section 2.3 discusses prior work in net-

work coding relevant to this dissertation. Section 2.4 discusses the present architecture of

wireless mesh networks and how they are built. It also describes prior work on improving

performance at various layers in the mesh network architecture.

U 2.1 What is Network Coding?

All communication networks today make a basic assumption that information is separate.

Thus, whether it is packets in a network, or signals on a phone network, information is

transmitted in the same way as cars share a highway or fluids share pipes. That is, inde-

pendent data streams may share network resources, but the information itself is separate.

Routing, data storage, error control and generally most network functions are based on

this assumption.

Network coding breaks this assumption. Instead of just storing and forwarding data,

nodes may combine several input packets into one or several output packets. Network

coding is best demonstrated through the famous butterfly example shown in Figure 2-1.

The source S1 wants to deliver a packet P1 to both D 1 and D2, and source S2 wants to

send packet P2 to the same two receivers. Assume all links have a capacity of one packet
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2

P2 z=l P1

Figure 2-1: A simple scenario showing how network coding improves throughput. All links have a capacity
of one message per unit of time. By sending the XOR of P1 and P2 On the middle link, we can deliver two
messages per unit of time to both receivers.

per second. If routers R 1 and R2 only forward the packets they receive, the middle link

will be a bottleneck. The two routers, for every second, can either deliver P1 to D2 or P2

to D 1. In contrast, if the router feeding the middle link XORs the two packets and sends

P1 e P2 (or any linear combination of P1 and P2), as shown in the figure, both receivers can

obtain both packets. D1 would get P2 by XORing packet P1 which it received on the direct

link from S1 with P1 e P2 and similarly D2 recovers P1 . Thus, network coding can obtain

a multicast throughput of two packets/second, strictly better than the routing approach

which can at best achieve 1.5 packets/second.

Linear network coding, is in general, similar to this example, with the difference that

the XOR operation is replaced by a linear combination of the data, interpreted as numbers

over some finite field. This allows for a much larger degree of flexibility in the way packets

can be combined. Thus, routers instead of forwarding packets, create linear combinations

of incoming packets to create coded packets and then forward them on their outgoing

links. We briefly describe the encoding and decoding process in the following sections.
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* 2.1.1 Encoding

Assume that each packet consists of L bits. When the packets to be combined do not have

the same size, the shorter ones are padded with trailing Os. We can interpret a consecutive

bits of a packet as a symbol over the finite field F28, thus each packet is a vector of L/s

symbols. With linear network coding, outgoing packets are linear combinations of the

original packets, where addition and multiplication are performed over the finite field F28.

Let P1, P2,..., Pn be the n original packets generated by one or several sources. In linear

network coding, each packet X in the network is associated with a vector of coefficients

j = g(1), g(2) ... g(n) in F2. called the code vector. The code vector tells us how packet X

can be derived form the original packets,

n

X = g(i)Pi (2.1)
i=1

The summation has to occur for every symbol position, i.e., X(k) = CnE g(i)Pi(k)

where Pi(k) and X(k) are the k'th symbols of Pi and X respectively. In the example of

Figure 2-3, the field is F2 = {0, 1}, a symbol is a bit, and the linear combination sent by R1

after receiving Pi and P2 is P1 D P2. The code vector is carried in the header of the encoded

packet X. The vector is used by recipients to decode the data, as explained later.

Encoding can be performed recursively, namely, with already encoded packets. Con-

sider a node that has received and stored a set ('i, X1),..., ('m, Xm) of encoded packets

where yj is the code vector for packet Xj. This node may generate a new encoded packet

(gf, X') by picking a set of coefficients h = h(1),..., h(m) and computing the linear com-

bination X' = Em=l h(j)Xj. The corresponding code vector g' is not simply equal to h,

since the coefficients are not with respect to the original packets P1, ... , Pn; but with some

straightforward algebra we can see that it is given by gf = Ejml, h(j)'i. This operation may

be repeated at several nodes in the network.

M 2.1.2 Decoding

The destination receives coded packets, X1,..., Xm with the corresponding code vectors

gi,..., 'm. As discussed before, each coded packet is a linear combination of the original

packets. Hence, in order to retrieve the original packets, it needs to solve the system of
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equations:
n

xj = Egj(i)Pi (2.2)
i=1

where the unknowns are the original set of packets Pi. This is a linear system with m

equations and n unknowns. As long as m > n and there are at least n linearly independent

combinations, then the system of equations is solvable and the original packets can be

decoded. Hence, the network has to ensure that it delivers at least n linearly independent

packets to the destination. This is easy to ensure, as we discuss next.

U 2.1.3 How to select the linear combinations?

The problem of network code design is to select what linear combinations each node of the

network performs to ensure that the destination node receives at least n linearly indepen-

dent combinations from which it can decode the original packets. A simple algorithm is to

have each node in the network select uniformly at random the coefficients over the field

F28, in a completely independent and decentralized manner [58]. With random network

coding there is a certain probability of selecting linearly dependent combinations [58]. This

probability is related to the field size 28. Simulation results indicate that even for small field

sizes (for example, s = 8) this probability becomes negligible [133].

Alternatively, we can use deterministic algorithms to design network codes. The

polynomial-time algorithm for multicasting in [63], sequentially examines each node of

the network, and decides what linear combinations each node performs. Since each node

uses fixed linear coefficients, the packets do not need to carry the code vector. There also

exist deterministic decentralized algorithms that apply to restricted families of network

configurations.

N 2.1.4 Practical Issues

Decoding

Decoding requires solving a set of linear equations, which can be accomplished efficiently

using Gaussian elimination. A node stores the code vectors it receives as well as the cor-

responding packets, row by row, in a so-called decoding matrix. Initially, this matrix is

empty. When an encoded packet is received, it is inserted as the last row into the decod-

ing matrix and Gaussian elimination is performed to transform it to a triangular matrix.
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Figure 2-2: Decoding Network Codes. The destination performs Gaussian elimination on the m > n re-

ceived coded packets. When the code vector portion of the packet has been transformed to a unit vector,
the corresponding original packet is recovered.

A received packet is called innovative if it increases the rank of the matrix. If a packet is

non-innovative, it is reduced to a row of Os by Gaussian elimination and is ignored. As

soon as the code vector part of the matrix contains a row of the form ei (a unit vector with

a single one at the i'th position), this node knows that X is equal to the original packet

Pi. This occurs at the latest when n linearly independent code vectors are received. Note

that decoding does not need to be performed at all nodes of the network, but only at the

receivers. Figure 2-2 shows how Gaussian elimination transforms the m received coded

packets into the original n packets.

Batches

For practical purposes, the size of the matrices with which network coding operates has to

be limited. This is straightforward to achieve by grouping packets into batches, and man-

dating that only packets in the same batch can be combined. The size of the batch has an

impact on the performance of network coding, and is related to the size of the finite field.

Typically, a small finite field increases the probability of non-innovative transmissions and

reduces performance. But for almost all practical systems where the typical field size is

256 (i.e., each finite field element is a byte in a packet), batch size is not a concern.

Finite-field operations

Network coding requires operations in F2s , i.e., operations on strings of s bits. Addition is

the standard bitwise XOR. For multiplication, one interprets a sequence b0 ,..., b, of s bits
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as the polynomial bo + bix + ... + bs-lx s- 1. Then one picks a polynomial of degree s that

is irreducible over F2 (there are several of them, and each gives a different representation

of F2s). Multiplication is obtained by first computing the usual product of two polynomi-

als (which gives a polynomial of degree possibly larger than s), and then computing the

remainder modulo the chosen irreducible polynomial. Division is computed by the Eu-

clidian algorithm. Both multiplication and division can be implemented efficiently with s

shifts and additions.

If s is small (e.g., s = 8), a faster alternative is to use discrete logarithms. In a finite

field there exists at least one special element a, called generator (for example, a = 1 + x

is a generator in Rijndael's representation of F28), with the property that any non-zero x

can be written in a unique way x = alog(x); where log(x) is called the logarithm. Since

log(xy) = log(x) + log(y), multiplication and division can be implemented by looking up

the two tables that map x to log(x) and vice versa. For s = 8 these are two tables of size

255 bytes each.

* 2.2 What are the Benefits of Network Coding?

Network coding can be applied to a wide variety of scenarios, from static wired/wireless

networks to ad-hoc mobile wireless networks. It provides provable throughput benefits,

and also achieves those gains with distributed algorithms which simplify network opera-

tion.

* 2.2.1 Theoretical Throughput Gains

Network coding achieves the optimal network capacity for multicast flows. Specifically,

consider a network that can be represented as a directed graph (typically, this is a wired

network). The vertices of the graph correspond to nodes, and the edges of the graph corre-

sponds to links. Assume that we have N sources, each sending information at some given

rate, and M receivers. All receivers are interested in receiving all packets. Ahslwede et

al. [2] showed that network coding gives the following powerful guarantee "assume that

the source rates are such that, without network coding, the network can support each receiver in

isolation (i.e. each receiver can decode all sources when it is the only receiver in the network). With

an appropriate choice of linear coding coefficients, the network can support all receivers simultane-
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ously."

In other words, when the N receivers share the network resources, each of them can

receive the maximum rate it could hope to receive, even if it were using all the network

resources by itself. Thus, network coding can help to better share the available network

resources. There exist directed graphs where the throughput gains of network coding for

multicasting can be very significant [115]. However, in undirected graphs (e.g., a wired

network where all links are full-duplex) the throughput gain is at most a factor of two [20].

Network coding may offer throughput benefits not only for multicast flows, but also

for other traffic patterns, such as unicast. Consider again Figure 2-1 but assume now that

source S1 transmits packets to destination D2 and S2 to D1. We can use the same network

code as in the multicast example to achieve a unicast rate from each source to its corre-

sponding receiver of 1 packet/second. Without network coding, sources can only transmit

at a rate of 1/2 packets/second to their corresponding receiver.

An interesting point is that network coding allows to achieve the optimal throughput

when multicasting using polynomial time algorithms. In contrast, achieving the optimal

throughput with routing (which is often far less than the optimal throughput achievable

with network coding) is NP-complete: this is the problem of packing Steiner trees [35].

Thus, even when the expected throughput benefits of network coding are not large, we

expect to be able to achieve them using simpler algorithms. We expand on this point in the

following.

M 2.2.2 Robustness and Adaptability

The most compelling benefits of network coding might be in terms of robustness and

adaptability. Intuitively, we can think that network coding, similar to traditional coding,

takes information packets and produces encoded packets, where each encoded packet is

equally important. Provided we receive a sufficient number of encoded packets, no matter

which, we are able to decode. The new twist that network coding brings, is that linear com-

bining is performed opportunistically all over the network, not just at the source node, and

thus it is well suited for the (typical) cases where nodes only have incomplete information

about the global network state.

Consider the scenario in Figure 2-3 where the basestation S is broadcasting packets to

A and B. Assume that A and B may go into sleep mode (or may move out of range) at
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Figure 2-3: A simple scenario showing how network coding improves robustness. The access point can

keep transmitting linear combinations of Pa and Pb until both A and B decode, simplifying network oper-

ation.

random and without notifying the base station S. If the base station S broadcasts Pa (or Pb),

the transmission might be completely wasted, since the intended destination might not be

able to receive. However, if the base station broadcasts Pa e Pb, or more generally, random

linear combinations of the two packets, each transmission will bring new information to

all active nodes.

Simplified Content Distribution

The previous example also applies in a general network setting. Consider a Bittorrent net-

work, where a group of nodes want to download a file. The file is split into O(n) packets,

and for simplicity, lets say there are n nodes interested in downloading the file. This is

related to the classic coupon collector problem [30] in theoretical literature. With a central-

ized design, the optimal protocol can distribute the entire file to all nodes in O(n) rounds.

A decentralized approach, however, would need 0(n log(n)) rounds. The extra log(n) fac-

tor is due to the fact that a specific message may become rare, i.e., hard to find. Instead,

if nodes use network coding and transmit linear combinations of packets, all packets are

equal and it is sufficient for each node to receive any n coded packets. Hence, with network

coding we can distribute the entire file in 0(n) rounds. The key point here is how network

coding simplifies network operation, achieving the optimal performance of a centralized

approach using a simple decentralized algorithm.
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Figure 2-4: Network Coding combats packet loss. A wishes to send packets to C through the router B. The
links AB and BC have packet loss probabilities of CAB and eBC respectively. With network coding we
can achieve a throughput of min{(1 - EAB), (1 - eBC)}, while an ARQ or source coding approach achieves
(1 - CAB)(1 - -BC).

Combating Packet Loss

Network coding optimally combats packet loss. Consider the example in Figure 2-4, where

the source A intends to transmit packets to destination C with the help of router B. The

links are not perfect, link AB drops packets with probability EAB and link BC drops pack-

ets with probability eBC. Using end-to-end FEC (like fountain codes [13]) or an ARQ

protocol like TCP, the source can achieve a maximum throughput of (1 - EAB)(1 - EBC)

(assuming each link can transmit one packet per second). Intuitively, the throughput is the

probability that a transmitted packet is not lost on either of the two links before it reaches

the destination.

Network coding improves throughput in this case by decoupling the links. If we allow

the router B to use network coding, i.e., send random linear combinations of the packets

it receives from A, we can achieve an end-to-end throughput of min{(1 - EAB), (1 - EBC)}

which is higher than the FEC or ARQ based approaches. The reason is that instead of a lost

packet having to be retransmitted all the way from the source, all router B has to ensure

is that it delivers a sufficient number of linear combinations for the destination to decode.

This scheme in its full generality can be applied over an arbitrary network topology, and

with diverse traffic loads (multicasting, unicasting, broadcasting, etc.) [99, 90].

I 2.3 Subsequent Work on Network Coding

Network coding has been an active area of research since its inception. In this section,

we discuss prior work in network coding relevant to this dissertation. Specific differences

with different components of the dissertation are discussed in the corresponding chapter.

As discussed before, the basic notion of network coding, i.e., of performing coding op-

erations on the contents of packets throughout the network, is attributed to Ahlswede

et al. [2]. This was quickly followed by other work, by Li et al. [85], and by Koetter
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and Medard [77], that showed that codes with a simple linear structure were sufficient

to achieve capacity in the multicast problem. This result put structure on the codes and

paved the way for subsequent practical capacity achieving network code designs.

The subsequent growth in network coding was explosive. Practical capacity achiev-

ing codes were quickly proposed by Jaggi et al. [63], Ho et al. [58], and Fragouli and Sol-

janin [39]. A wide variety of applications including network management [57], network to-

mography [37], overlay networks [47, 64, 138] and wireless networks [49, 73, 114, 135, 134]

were studied. The capacity of random networks [108] and undirected networks [87, 88]

were investigated, and security aspects were evaluated [10, 14, 34, 56, 61]. Also exten-

sions of network coding to non-multicast problems were proposed [29, 94, 83, 113] and

further code constructions based on convolutional codes and other notions were pro-

posed [22, 31, 32, 38, 54, 81]. On the systems side, network coding has been adopted as

a core technique in Microsoft's Avalanche project [47], a replacement for content distribu-

tion systems like Bittorrent.

Lun et al. [90] analyzed network coding from a theoretical networking perspective.

They present a theoretical network coding framework which introduces the notion of cost

(in terms of number of transmissions). They proposed minimum cost network coding al-

gorithms, similar to shortest path routing algorithms for non network coded systems. An-

other significant thread of work concerns network coding and security. Network coding

is vulnerable to corruption attacks, where a rogue router mixes corrupt data with correct

packets, rendering subsequent decoding erroneous. Ho et al. [56] showed how such modi-

fications can be detected. Subsequently, Jaggi et al. [62] designed polynomial time network

codes which were optimally resistant to such jamming attacks, allowing destinations to re-

cover original packets even if they were mixed up with corrupted data. Koetter et al. [76]

studied the same problem from a geometric perspective, proposing elegant Reed-Solomon

style codes which worked on vector spaces to combat adversarial errors.

E 2.4 Wireless Mesh Networks

A wireless mesh network is a network of wireless routers connected to each other via

multi-hop wireless links. Typically, they are self-organized and adaptive, using distributed

algorithms to maintain mesh connectivity. A packet on a mesh network travels multiple
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Figure 2-5: Typical Mesh Architecture. Routers form multi-hop wireless paths leading to the gateway
which is connected to the Internet. Clients connect to the closest wireless router. Dashed lines represent
wireless links and solid lines represent wired links.

wireless links before reaching a gateway node, which is connected to the wired Internet.
The major appeal of mesh networks is that because of their multi-hop nature, they can
achieve the same coverage as single-hop access point based networks, either with much
lower transmission power or significantly lower deployment costs (since wiring every ac-
cess point is often expensive and hard to maintain). Figure 2-5 shows the typical architec-
ture of mesh networks.

The wireless routers in a mesh network form the backbone for clients. Though, clients
can also work as routers and help in forwarding packets, typically they are end-user nodes
with simpler wireless hardware and software. Because of their attractive properties: low
up-front costs, easy network maintenance, robustness, bigger coverage area etc., a num-
ber of research and commercial mesh networks have been deployed [1, 60], with the goal
of offering cheap and moderately fast Internet connectivity. But mesh networks figure
to be even more ubiquitous in the future, promising completely unwired homes, high
throughput city-wide Internet connectivity and fast, self-forming local ad-hoc networks
of personal devices, among other things.
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* 2.4.1 Physical Layer

The physical layer of most mesh networks have been built using standard off-the-shelf

802.11 hardware. These radios are able to support multiple transmission rates by a combi-

nation of different modulation and coding rates. The original 802.11 standard [24] speci-

fied Direct Sequence Spread Spectrum radios that operate at 1 megabit in the 2.4 gigahertz

frequency range. 802.11b added additional higher bit-rates, and 802.11g added bit-rates

that used Orthogonal Frequency Division Multiplexing (OFDM). 802.11a allows use of fre-

quencies at 5.8 gigahertz using only the OFDM bit-rates.

Prior work [11] has looked at providing adaptive error resilience using bit-rate adap-

tation algorithms. Complementary work includes channel selection algorithms [74] to

balance load and avoid inter-cell interference. Recent research has also followed a par-

allel thread of investigating new hardware level techniques such as MIMO smart anten-

nas [124], interference cancellation [124] and ultra-wide band (UWB) [6] to support high

throughput. Although some of these physical-layer techniques have already been de-

ployed in wireless access points, it is a more challenging problem to adapt these tech-

niques for mesh networks. For example, mesh networking among multiple nodes intro-

duces complicated interactions between links, making the system model much more com-

plicated than that of a conventional MIMO system in wireless LANs or cellular networks.

M 2.4.2 Link Layer

The MAC layer for wireless mesh networks is harder to design than ones for conventional

wireless access point based networks. Present MAC protocols for mesh networks are based

on the standard IEEE 802.11 MAC which was designed for access points. The protocol is

based on Carrier Sense (CS) with collision avoidance. Nodes perform carrier sense to check

if a transmission is active in the medium, and if not, they go ahead and transmit. They also

expect to receive a synchronous Ack from the receiver, and if they don't, they assume that

the packet has been lost (either due to a bad channel or collision from an interfering trans-

mission) and back off and retransmit. A large body of work has investigated adapting the

CSMA/CA protocol for mesh networks. Typical research [9] in this space has included ad-

justing MAC parameters such as contention window size, backoff windows, carrier sense

thresholds etc. However, all these solutions still achieve relatively low throughput since

the carrier sense mechanism is not very adept at either detecting hidden terminals, or op-
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portunities for concurrent transmissions.

Recent research has proposed a number of new MAC protocols. CMAPS [127] pro-

poses a MAC protocol which builds a distributed map of possible concurrent transmis-

sions based on empirical, online packet loss measurements. Physical layer techniques such

as interference cancellation [48, 52] have been proposed to disentangle collisions into their

constituent packets. Such techniques enable higher concurrency, but building a practi-

cal MAC protocol based on these physical layer techniques still remains an open problem.

Prior work [23] has also examined systems equipped with directional antennae. This capa-

bility reduces exposed terminals assuming perfect antenna beamforming. However, due

to directional transmissions, more hidden nodes are produced. These schemes also face

other difficulties such as cost, system complexity, and practicality of fast steerable direc-

tional antennas. Prior work [66] has also looked at MAC protocols which employ power

control. This reduces exposed nodes, especially in a dense network, and thus improves

the spectrum spatial reuse factor in mesh networks. However, the issue of hidden nodes

may become worse because a lower transmission power level reduces the possibility of

detecting a potential interfering node.

0 2.4.3 Network Layer

Routing in mesh networks is complex due to the subtle interactions between adjacent links.

Routing has been an active area of research and a large number of protocols have been

proposed which we review below.

Routing Protocols with Various Performance Metrics

These are link-state routing protocols which differ in the way they compute the link metric.

Typical metrics include hop count, expected transmission count (ETX) [27], per-hop RTT

etc. The expected transmission count (ETX) for a link is defined as the inverse of the packet

delivery probability on the link. The ETX for a path is the sum of the ETX values for the

constituent links. The routing protocols then compute the shortest paths between all pairs

of nodes according to the corresponding metric. Prior work [105] has shown that the ETX

metric performs best for stationary mesh networks.
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Multi-path Routing

The main objectives of using multi-path routing are to perform better load balancing and

to provide high fault tolerance. When a link is broken on a path due to a bad channel etc.,

another path in the set of existing paths can be used. Thus, without waiting to set up a

new routing path, the end-to-end delay, throughput, and fault tolerance can be improved.

However, the improvement depends on the availability of node disjoint routes between

source and destination. Another drawback of multi-path routing is its complexity.

Ganesan's braided multi-path routing [45] identifies multiple routes, using one as a pri-

mary and switching if the primary fails. Opportunistic Multipath Scheduling (OMS) [17]

splits traffic over multiple paths, adaptively favoring paths that provide low delay or high

throughput. Tsirigos and Haas [125] propose sending erasure-coded fragments of each

packet over disjoint paths in a mobile ad-hoc network, in order to tolerate loss of some

fragments due to fading or node movement.

Opportunistic routing protocols such as ExOR and MORE [12, 18] exploit wireless spa-

tial diversity to perform opportunistic multi-path routing. In these schemes, the choice

of the next hop is made after the packet transmission. ExOR [12] chooses this next hop

based on expected distance from the destination. MORE [18] uses a similar approach,

but employs packet-level network coding to remove the co-ordination overhead. These

protocols are related to theoretical work on exploiting co-operative diversity in wireless

networks [79]. The focus in co-operative diversity is to improve end-to-end reliability, and

hence nodes forward every packet they overhear. Thus reliability is high, but there are a

lot of wasted transmissions.

Geographic Routing

Compared to topology-based routing schemes, geographic routing schemes forward pack-

ets by only using the position information of nodes in the vicinity and the destination

node [75]. Thus, topology change has less impact on geographic routing than other routing

protocols. Early geographic routing algorithms were a type of single-path greedy routing

schemes in which the packet forwarding decision is made based on the location informa-

tion of the current forwarding node, its neighbors, and the destination node. However, all

greedy routing algorithms have a common problem, i.e., delivery is not guaranteed even if

a path exists between source and destination. In order to guarantee delivery, planar-graph
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based geographic routing algorithms [68] have been proposed recently. However, these al-

gorithms usually have much higher communication overhead than the single-path greedy

routing algorithms.

0 2.4.4 Transport Layer

Traditionally, TCP and UDP are used for the transport layer without any modifications.

But wireless networks pose a number of challenges which has necessitated research on

modified transport protocols [19]. TCP cannot distinguish between congestion and non-

congestion losses. But, due to the high BER, non-congestion losses are quite common in

wireless. This results in TCP backing off, reducing network throughput. Further, wireless

mesh paths can be asymmetric due to asymmetric channels and interference, which affects

Ack delivery and consequently TCP performance. A large body of prior work [4, 3,110, 92]

has proposed a variety of mechanisms to improve TCP performance in wireless networks.
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CHAPTER 3
COPE: Packet-level Network Coding

This chapter describes the design, implementation and evaluation of COPE, a new for-

warding architecture that uses packet-level network coding to significantly improve wire-

less throughput. COPE inserts a coding shim between the IP and MAC layers, which

identifies coding opportunities and benefits from them by forwarding multiple packets in

a single transmission.

COPE takes advantage of the broadcast nature of the wireless medium, which for free,

allows multiple nearby nodes to overhear a packet when it is broadcast from a node. This

has been typically considered harmful, since neighboring nodes have no use for the over-

heard packets not meant for them and have to simply throw them away, wasting band-

width. The broadcast nature has been considered to be one of the primary scaling limita-

tions of multi-hop wireless networks [84, 50].

Instead we show how network coding can be used to profitably exploit the broadcast

nature to increase network throughput. Due to the broadcast nature, wireless networks ex-

hibit significant redundancy, i.e., there is a large overlap in the information available to the

nodes. First, as a packet travels multiple hops, its contents become known to many nodes.

Further, wireless broadcast amplifies this redundancy because at each hop, it delivers the

same packet to multiple nodes within the transmitter's radio range. COPE exploits this

redundancy to compress data, increasing the information flow per transmission, and thus

improves the overall network throughput. We demonstrate COPE's operation through a

simple example.
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Figure 3-1: A simple example showing how COPE increases throughput. It allows Alice and Bob to ex-

change a pair of packets using 3 transmissions instead of 4 (numbers on arrows show the order of trans-

mission).

Consider the scenario in Fig. 3-1, where Alice and Bob want to exchange a pair of pack-

ets. Since they are not within hearing range of each other, the router in the middle assists

them by forwarding their packets to their respective destinations. In the current forward-

ing architecture, Alice sends her packet to the router, which forwards it to Bob, and Bob

sends his packet to the router, which forwards it to Alice. This process requires 4 transmis-

sions.

COPE employs network coding to reduce the number of transmissions needed to de-

liver the two packets. In COPE, Alice and Bob send their respective packets to the router in

separate time slots. The router, instead of forwarding the two packets separately, applies

network coding on them. The coding operation is a simple bitwise XOR of the two packets.

The router now broadcasts the XOR-ed packet in a single transmission to Alice and Bob.

Note that Alice and Bob already have the packets they transmitted initially to the router.

Hence, they can obtain each other's packet by XOR-ing the received packet from the router

with the packet they initially transmitted. COPE thus delivers the two packets to Alice and

Bob in three time slots, as opposed to the four needed by the current architecture. Saved

time slots can be used to send new data, increasing the wireless throughput.

In fact, COPE leads to larger bandwidth savings than are apparent from this example.

COPE exploits the shared nature of the wireless medium which, for free, broadcasts each
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packet in a small neighborhood around its path. Each node stores the overheard pack-

ets for a short time. It also tells its neighbors which packets it has heard by annotating

the packets it sends. When a node transmits a packet, it uses its knowledge of what its

neighbors have heard to perform opportunistic coding; the node XORs multiple packets and

transmits them as a single packet if each intended nexthop has enough information to de-

code the encoded packet. This extends COPE beyond two flows that traverse the same

nodes in reverse order (as in the Alice-and-Bob example), and allows it to XOR more than

a pair of packets.

Designing a network coding based forwarding architecture poses several challenges

beyond designing an efficient coding and decoding algorithm. First, to code the right set of

packets together, nodes have to learn what packets its neighboring nodes have overheard

without incurring excessive overhead. Second, since a coded packet is intended for at least

two next hops, the node has to ensure reliable delivery of their respective information to

all the next hops. Getting link-layer feedback on lost/delivered packets from each next

hop can get expensive, hence, we have to design an efficient acking and retransmission

scheme which take into account the fact that lost information can be coded together again

during retransmissions. This chapter tackles these challenges and makes the following

contributions:

1. We present the first system architecture for packet-level wireless network coding.

This chapter articulates a full-fledged design that integrates seamlessly into the cur-

rent network stack, works with both TCP and UDP flows, and runs real applications.

2. COPE's coding technique provides a fresh angle for attacking the open theoretical

problem of network coding in the presence of multiple unicast sessions. The key in-

sight behind COPE is local network coding, where routers locally mix packets such that

they can be decoded when the paths of the unicast flows diverge. This ensures that

information not intended for a particular part of the network does not get forwarded

there and avoids wasting capacity.

3. We present an implementation of the new forwarding architecture in the Linux ker-

nel and the Roofnet platform [1]. The implementation is deployed on a twenty node

wireless testbed, creating the first deployment of network coding in a wireless net-

work.
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4. We present a detailed evaluation of the performance of COPE in a twenty node wire-

less testbed. The evaluation reveals interesting interactions between COPE and the

physical, routing and higher layer protocols. Our findings can be summarized as

follows:

* Network coding does have practical benefits, and can substantially improve

wireless throughput.

* When the wireless medium is congested and the traffic consists of many random

UDP flows, COPE increases the throughput of our testbed by 3-4x.

* If the traffic does not exercise congestion control (e.g., UDP), COPE's through-

put improvement may substantially exceed the expected theoretical coding

gain. This additional gain occurs because coding makes a router's queue

smaller, reducing the probability that a congested downstream router will drop

packets that have already consumed network resources.

* For a mesh network connected to the Internet via an access point, the through-

put improvement observed with COPE varies depending on the ratio between

total download and upload traffic traversing the access point, and ranges from

5% to 70%.

* Hidden terminals create a high collision rate that cannot be masked even with

the maximum number of 802.11 retransmissions. In these environments, TCP

does not send enough to utilize the medium, and thus does not create coding

opportunities. With no hidden terminals, TCP's throughput increases by an

average of 38% in our testbed.

From a design point of view, COPE disposes of the point-to-point abstraction of the

wireless link and embraces the broadcast nature of the medium. Historically, network

designers abstracted the wireless channel as a point-to-point link (a holdover from the

design of the wired Internet), and adapted forwarding and routing techniques designed

for wired networks for wireless. In contrast, COPE exploits the broadcast property of

radios instead of hiding it under an artificial abstraction.

The rest of this chapter proceeds as follows. Section 3.1 describes the high level design

of COPE, while Sections 3.2 and 3.3 present the detailed architecture and implementation

of COPE. Section 3.4 presents a theoretical analysis of COPE, while Section 3.5 presents a
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Term Definition
Native Packet A non-encoded packet
Encoded or XOR-ed A packet that is the XOR of multiple native packets
Packet
Nexthops of an Encoded The set of nexthops for the native packets XOR-ed to gener-
Packet ate the encoded packet
Packet Id A 32-bit hash of the packet's IP source address and IP se-

quence number
Output Queue A FIFO queue at each node, where it keeps the packets it

needs to forward
Packet Pool A buffer where a node stores all packets heard in the past T

seconds
Coding Gain The ratio of the number of transmissions required by the cur-

rent non-coding approach, to the number of transmissions
used by COPE to deliver the same set of packets.

Coding+MAC Gain The expected throughput gain with COPE when an 802.11
MAC is used, and all nodes are backlogged.

Table 3-1: Definitions of terms used in this chapter.

detailed practical system evaluation. Section 3.7 summarizes the take-away lessons and

concludes.

i 3.1 High Level Design of COPE

COPE is a new forwarding architecture for wireless mesh networks built around network

coding. It inserts a coding layer between the network and link layers, which detects cod-

ing opportunities and exploits them to forward multiple packets in a single transmission.

Before delving into details, we refer the reader to Table 3-1, which defines the terms used

in the rest of the chapter.

COPE's modular design allows network designers to experiment with a variety of rout-

ing protocols, as well as underlying physical layer hardware. COPE can work with a vari-

ety of routing protocols, the only condition it imposes is that the forwarding node knows

the next hop of each packet in its forwarding queue. Further, some network designers may

wish to modify the routing [116], or transport [106] layers to increase coding opportunities

and further increase network throughput.

In this section, we describe COPE's high level operational design. COPE has three main

components in its operation which can be succinctly summarized as: listening, coding and
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Figure 3-2: Example of Opportunistic Coding. Node B has 4 packets in its queue, whose nexthops are
listed in (b). Each neighbor of B has stored some packets as depicted in (a). Node B can make a number
of coding decisions (as shown in (c)), but should select the last one because it maximizes the number of
packets delivered in a single transmission.

learning. The following subsections describe each one of them in detail.

M 3.1.1 Listening

COPE requires nodes to listen and store packets that can be potentially used later for de-

coding coded packets. There are two sources for such packets:

1. Packets the node itself broadcast. For example, in the Alice-Bob example in Fig-
ure. 3-1, Alice and Bob keep a copy of the packets they transmitted to the router.
They use these packets later for decoding the coded packet from the router.

2. Packets the node overheard. Since wireless is a broadcast medium, it creates many
opportunities for nodes to overhear packets when they are equipped with omni-
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directional antennae. Packets are usually addressed to a single next hop, and nodes

throw away packets which they overhear but aren't meant for them. In COPE how-

ever, nodes are kept in promiscuous mode, and they snoop on all communications

over the wireless medium and store the overheard packets for a limited period T.

The value of T should be larger than the maximum one-way latency in the network

(the default is T = 0.5s).

U 3.1.2 Coding

COPE allows nodes to code packets together to maximize throughput. Each node maintains

a FIFO forwarding queue, where it keeps the packets that it is supposed to transmit to the

next hop. When the wireless channel signals an opportunity to send a packet, the node

picks the packet at the head of the queue, and checks whether the packet can be coded

with other packets in the queue. The key question is: what packets to code together?

The choices a node faces are best illustrated with an example. In Fig. 3-2(a), node B

has 4 packets in its forwarding queue p1, p2, p3, and p4. Its neighbors have overheard

some of these packets, which they have stored in their respective Packet Pools. The table in

Fig 3-2(b) shows the nexthop of each packet in B's queue. When the MAC permits B to

transmit, B takes packet pl from the head of the queue and attempts to code it with other

packets from the forwarding queue. Note that both coding and decoding are simple XOR

operations. Assuming that B knows which packets each neighbor has, it has a few coding

options as shown in Fig. 3-2(c)

1. Send pl P2. Since node C has pl in store, it could XOR pi with pl @ P2 to obtain

the native packet sent to it, i.e., P2. However, node A does not have P2, and hence

cannot decode the XOR-ed packet. Thus, sending pl e p2 allows only one neighbor

to benefit from the transmission.

2. Send pl E p3. Both next-hops, C and A can decode and obtain their intended pack-

ets from a single transmission, since they have the other packet in their Packet Pool.

This is a better option than the first one, since two neighbors benefit from a single

transmission.

3. Send pi E p3 E p4. All three next hops, A, C and D, will be able to recover the packet

meant for them, since they have the other two packets in their Packet Pool. For exam-
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pie, node A can XOR the received coded packet with p3 and p4 from its Packet Pool

to recover pl, the packet meant for it. This is the best option, since three neighbors

benefit from a single transmission.

The example gives us intuition on which option to pick. To maximize throughput a

node should aim to maximize the number of native packets coded in a single transmission, with

the constraint that each intended nexthop has enough information to decode the packet meant for it.

This intuition is formalized in the following rule:

To transmit n packets, pl, ..., pn, to n nexthops, rl, ..., rn, a node can XOR the n

packets together only if each next-hop ri has all n - 1 packets pj for j 0 i.

The rule also starkly illustrates the difference between theoretical network coding [77]

and COPE's coding algorithm. Packets from multiple unicast flows may get encoded to-

gether at some intermediate hop. But their paths may diverge at the nexthop, at which

point they need to be decoded. If not, unneeded data will be forwarded to areas where

there is no interested receiver, wasting bandwidth. Hence COPE's coding algorithm en-

sures that all nexthops of an encoded packet can decode their corresponding packet. Tra-

ditional network coding theory advocates randomly combining all packets, which renders

them undecodable at the next hop. Therefore traditional network coding has to restrict

coding only to packets belonging to the same flow. COPE extends network coding to mul-

tiple unicast flows.

U 3.1.3 Learning

To implement the coding algorithm described above, nodes in COPE need to know what

packets their neighbors have in their Packet Pools. COPE achieves this through two mech-

anisms:

1. Reception Reports: Nodes broadcast reception reports to tell their neighbors which

packets they have stored in their Packet Pool. Reception reports are sent by annotating

the data packets the node transmits. A node that has no data packets to transmit

periodically sends the reception reports in special control packets.

2. Guessing: If a node hasn't received a reception report for a particular packet in its

forwarding queue, it guesses whether a neighbor has it. To guess intelligently, we
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leverage the routing computation. Wireless routing protocols compute the delivery

probability between every pair of nodes and use it to identify good paths. For e.g.,

the ETX metric [27] periodically computes the delivery probabilities and assigns to

each link a weight equal to 1/(delivery probability). These weights are broadcast to all

nodes in the network and used by a link-state routing protocol to compute shortest

paths. We leverage these probabilities for guessing. In the absence of deterministic

information, COPE estimates the probability that a particular neighbor has a packet

as the delivery probability of the link between the packet's previous hop and the

neighbor.

Guessing allows COPE to operate efficiently when reception reports get lost or are late.

For example, at times of severe congestion, reception reports may get lost in collisions,

while at times of light traffic, they may not arrive before a node has to make a coding deci-

sion on a particular packet. COPE is not handcuffed in such situations, since the guessing

method gives a fairly accurate picture of neighbor state. Occasionally, a node may make

an incorrect guess, which causes the coded packet to be undecodable at some nexthop. In

this case, the relevant native packet is retransmitted, potentially encoded with a new set of

native packets.

* 3.2 System Architecture

In this section, we aim to make practical, the high-level overview in Section. 3.1. As men-

tioned before, COPE makes no changes to the network layer above or the link layer below.

The COPE layer has four major components: coding/decoding, reliability, listening and guess-

ing modules. We describe each of them in detail below.

* 3.2.1 Design Goals

To build a practical system, we have to make a few design decisions.

1. Transparency: COPE does not expect or make any changes in the layers above or

below. A primary design goal is to plug in seamlessly into any network stack. Specif-

ically, this means that though there are minor benefits to be had from modifying the

routing or physical layers [116], COPE chooses not to do so in the interests of modu-

larity and simplicity.
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2. No extra delay: As we will see below, COPE can increase throughput by delaying

packets in its queues. But to avoid unintended consequences on applications expect-

ing a certain best-effort behavior from the network, COPE never intentionally delays

a packet.

3. Reliable delivery: COPE strives to guarantee the same level of reliability to every

packet which is part of a coded packet, as if the packets were transmitted separately.

In the following sections we will see how these design goals affect the design of COPE.

E 3.2.2 Coding/Decoding Module

The coding/decoding module handles the job of identifying opportunities to code

multiple packets together and send them in a single transmission. It also decodes coded

packets on the receiving side. It maintains a FIFO output queue, where received uncoded

and decoded packets are added. When the MAC layer signals an opportunity to send,

if possible, it picks packets from the output queue to code together, and transmits the

packet. The primary question for the coding module is: What packets to code together from

the output queue? Recall from Section 3.1 that to code n packets together, a node has to

ensure that each of the n next-hops has the remaining n - 1 packets apart from the one

intended for it. But the choice of packets is more nuanced due to three factors: design goals,

probabilistic neighbor state and variable packet sizes. We discuss each of them below.

Code opportunistically:

One of the design goals is to not delay packets intentionally. Hence, in COPE, whenever

the wireless channel is available, the node takes the packet at the head of its output

queue, checks which other packets in the queue may be encoded with this packet, XORs

those packets together, and broadcasts the XOR-ed version. If there are no encoding

opportunities, our node does not delay the packet to wait for the arrival of another packet

which could be coded together with the packet at the head of the queue. COPE therefore

lets the node opportunistically overload each transmission with additional information

when possible, but does not wait for additional codable packets to arrive.

Code to maximize decoding probability:
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COPE tries to ensure that each neighbor to whom a packet is headed has a high probability

of decoding its native packet. In particular, suppose the node encodes n packets together.

Let the probability that a nexthop has heard packet i be Pi. Then, the probability, PD, that

it can decode its native packet is equal to the probability that it has heard all of the n - 1

native packets XOR-ed with its own, i.e.,

PD=P1 xP 2 x ... x Pn-1.

Consider an intermediate step while searching for coding candidates. We have already

decided to XOR n - 1 packets together, and are considering XOR-ing the nth packet with

them. The coding algorithm now checks that, for each of the n nexthops, the decoding

probability PD, after XOR-ing the nth packet with the rest stays greater than a threshold G

(the default value G = 0.8). If the above conditions are met, each nexthop can decode its

packet with at least probability G. Finally, we note that for fairness we iterate over the set

of neighbors according to a random permutation.

Thus, for each packet in its output queue, we estimate the probability that each of its

neighbors has already heard the packet. The coding/decoding module consults the Learn-

ing Module for this probability. The probability value can be computed from two sources:

1. Reception Reports: When the learning module has heard a reception report from a

neighbor about a particular packet, or if that neighbor was the previous hop of that

packet, then the guessing module can be certain that the neighbor has the packet.

Hence, in this case the probability value is 1.0.

2. Guessing: When the learning module doesn't have deterministic information, it

guesses. For this, it leverages the delivery probabilities computed by the routing

protocol. It estimates the probability the neighbor has the packet as the delivery

probability between the packet's previous hop and that neighbor. It reports this de-

livery probability to the coding module, which uses them to ensure that encoded

packets are decodable by all of their nexthops with high probability.

An interesting consequence of the above condition is that COPE will never code together

two or more packets headed to the same nexthop, since the nexthop will not be able to decode

them. Hence, while coding, we only need to consider packets headed to different nexthops.
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Code packets of similar lengths

COPE gives preference to XOR-ing packets of similar lengths, because XOR-ing small packets

with larger ones reduces bandwidth savings. Empirical studies show that the packet-size

distribution in the Internet is bimodal with peaks at 40 and 1500 bytes [119]. We can

therefore limit the overhead of searching for packets with the right sizes by distinguishing

between small and large packets. We might still have to XOR packets of different sizes.

In this case, the shorter packets are padded with zeroes. The receiving node can easily

remove the padding by checking the packet-size field in the IP header of each native

packet. COPE therefore maintains two virtual queues per neighbor; one for small packets

and another for large packets (The default setting uses a threshold of 100 bytes). When

a new packet is added to the output queue, an entry is added to the appropriate virtual

queue based on the packet's nexthop and size.

Data Structures and Coding Algorithm

Formally, each node maintains the following data structures.

* Each node has a FIFO queue of packets to be forwarded, which we call the output

queue.

* For each neighbor, the node maintains two per-neighbor virtual queues, one for small

packets (e.g., smaller than 100 bytes), and the other for large packets. The virtual

queues for a neighbor A contain pointers to the packets in the output queue whose

nexthop is A.

* Additionally, the node keeps a hash table, packet info, that is keyed on packet-id. For

each packet in the output queue, the table indicates the probability of each neighbor

having that packet.

Whenever the MAC signals a sending opportunity, the node executes the procedure illus-

trated in Alg. 1.

Searching for appropriate packets to code is efficient due to the maintenance of virtual

queues. When making coding decisions, COPE first dequeues the packet at the head of

the FIFO output queue, and determines if it is a small or a large packet. Depending on
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the size, it looks at the appropriate virtual queues. For example, if the packet dequeued

is a small packet, COPE first looks at the virtual queues for small packets. COPE looks

only at the heads of the virtual queues to limit packet reordering. After exhausting the

virtual queues of a particular size, the algorithm then looks at the heads of virtual queues

for packets of the other size. Thus for finding appropriate packets to code, COPE has to

look at 2M packets in the worst case, where M is the number of neighbors of a node.

Another concern is packet reordering. We would like to limit reordering packets from

the same flow because TCP mistakes it as a congestion signal. Thus, we always consider

packets according to their order in the output queue. Still, reordering may occur because

we prefer to code packets of the same size. In practice, this reordering is quite limited be-

cause most data packets in a TCP flow are large enough to be queued in the large-packet

queue, and thus be considered in order. We will see in Section 3.2.3, however, that reorder-

ing might arise from other reasons, particularly the need to retransmit a packet that has

been lost due to a mistake in guessing what a neighbor can decode. Thus, we choose to

deal with any reordering that might happen inside the network at the receiver. COPE has

a module that puts TCP packets in order before delivering them to the transport layer as

explained in Section. 3.2.3.

Decoding Algorithm

Packet decoding is simple. When a node receives an encoded packet consisting of n native

packets, the node goes through the ids of the native packets one by one. In this set, there

are n - 1 packets apart from the one addressed to it. It attempts to retrieve these n - 1

packets from the Listening Module, and XORs the n - 1 packets with the received encoded

packet to retrieve the native packet meant for it. If the listening module doesn't have the

n - 1 packets, the coded packet is dropped. Note that some optimizations are possible,

where a presently undecodable packet may get decoded later when more information is

available, but for reasons of simplicity, COPE chooses to drop the packet.

0 3.2.3 Reliability

COPE strives to provide the same level of reliability to both coded as well as native packets.

We will first discuss how 802.11 wireless systems provide link-layer reliability and then

show why that isn't sufficient for COPE. We will then explain our solution and discuss
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1 Coding Procedure
Pick packet p at the head of the output queue.
Natives = {p}
Nexthops = {nexthop(p)}
if size(p) > 100 bytes then

which.queue = 1
else

which.queue = 0
end if
for Neighbor i = 1 to M do

Pick packet pi, the head of virtual queue Q(i, which.queue)
if Vn E Nexthops U{i}, Pr[n can decode p E pi] > G then

P = pG pi
Natives = Natives U{pi}
Nexthops = Nexthops U{i}

end if
end for
which.queue = !whichlqueue
for Neighbor i = 1 to M do

Pick packet pi, the head of virtual queue Q(i, which.queue)
if Vn E Nexthops U{i}, Pr[n can decode p B pi] > G then

p = p( Pi
Natives = Natives U{pi}
Nexthops = Nexthops U{i}

end if
end for
return p

other issues.

How 802.11 provides reliability?

The 802.11 MAC has two modes: unicast and broadcast. Specifically, in the 802.11 unicast

mode, packets are immediately ack-ed by their intended nexthops. The 802.11 protocol

ensures reliability by retransmitting the packet at the MAC layer for a fixed number of

times until a synchronous Ack is received. Lack of an Ack is interpreted as a collision

signal, to which the sender reacts by backing off exponentially, thereby allowing multiple

nodes to share the medium.

In contrast, 802.11 broadcast lacks both reliability and backoff. A broadcast packet has

many intended receivers, and it is unclear who should ack. In the absence of the Acks,

the broadcast mode offers no retransmissions and consequently very low reliability. Addi-

tionally, a broadcast source cannot detect collisions, and thus does not back off. If multiple
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backlogged nodes share the broadcast channel, and each of them continues sending at the

highest rate, the resulting throughput is therefore very poor, due to high collision rates.

Problem

COPE broadcasts encoded packets to their next hops, the natural approach would be to use

broadcast. But as discussed before, the broadcast mode in 802.11 lacks both reliability and

backoff. Ideally one would design a new MAC suitable for broadcast communication, but

we are interested in an implementation of COPE that can be deployed in the near future

using off-the-shelf 802.11 products.

A potential solution would be to use the 802.11 unicast mode, which provides syn-

chronous acks, retransmissions and backoff. While this is sufficient for uncoded packets,

a coded packet should be delivered reliably to two or more next hops. The 802.11 unicast

mode can ensure reliability to only one of them. Hence we need an alternative mechanism

to ensure reliability.

COPE solves this problem by two mechanisms: Pseudo-broadcast and Asynchronous Acks

and Retransmissions. We discuss both of them below.

Solution

Pseudo-broadcast: The first part of the solution is pseudo-broadcast, which piggybacks on

802.11 unicast and benefits from its reliability and backoff mechanism. Pseudo-broadcast

unicasts packets that are meant for broadcast. The link-layer destination field is set to

the MAC address of one of the intended recipients. An XOR-header is added after the

link-layer header, listing all nexthops of the packet. Since all nodes are set in the promis-

cuous mode, they can overhear packets not addressed to them. When a node receives a

packet with a MAC address different from its own, it checks the XOR-header to see if it is

a nexthop. If so, it processes the packet further, else it stores the packet in a buffer as an

opportunistically received packet. As all packets are sent using 802.11 unicast, the MAC

can detect collisions and backoff properly.

Pseudo-broadcast is also more reliable than simple broadcast. The packet is retransmit-

ted multiple times until its designated MAC receiver receives the packet and acks it, or

the number of retries is exceeded. A desirable side effect of these retransmissions is that

nodes that are promiscuously listening to this packet have more opportunities to hear it.
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Pseudo-broadcast, however, does not completely solve the reliability problem, which we

address in the next section.

Asynchronous Acks and Retransmissions: Encoded packets require all nexthops to

acknowledge the receipt of the associated native packet for two reasons. First, encoded

packets are headed to multiple nexthops, but the sender gets synchronous MAC-layer

acks only from the nexthop that is set as the link layer destination of the packet (as

explained in the previous section). There is still a probability of loss to the other nexthops

from whom it does not get synchronous acks. Second, COPE may optimistically guess

that a nexthop has enough information to decode an XOR-ed packet, when it actually

does not.

The standard solution to wireless losses is to mask error-induced drops by recovering

lost packets locally through acknowledgments and retransmissions [3, 102]. COPE too

addresses this problem using local retransmissions; the sender expects the nexthops of an

XOR-ed packet to decode the XOR-ed packet, obtain their native packet, and ack it. If any

of the native packets is not ack-ed within a certain interval, the packet is retransmitted,

potentially encoded with another set of native packets.

How should we implement these hop-by-hop Acks? For non-coded packets, we simply

leverage the 802.11 synchronous Acks. Unfortunately, extending this synchronous Ack

approach to coded packets is highly inefficient, as the overhead incurred from sending

each Ack in its own packet with the necessary IP and WiFi headers would be excessive.

Thus, in COPE, encoded packets are ack-ed asynchronously.

When a node sends an encoded packet, it schedules a retransmission event for each of

the native packets in the encoded packet. If any of these packets is not ack-ed within Ta

seconds, the packet is inserted at the head of the output queue and retransmitted. (Ta is

slightly larger than the round trip time of a single link.) Retransmitted packets may get

encoded with other packets according to the scheme in Section. 3.2.2.

A nexthop that receives an encoded packet decodes it to obtain its native packet, and

immediately schedules an Ack event. Before transmitting a packet, the node checks its

pending Ack events and incorporates the pending Acks in the COPE header. If the node

has no data packets to transmit, it sends the Acks in periodic control packets-the same

control packets used to send reception reports.
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Transport Layer Reliability

Asynchronous acks can cause packet reordering, which may be confused by TCP as a sign

of congestion. Thus, COPE has an ordering agent, which ensures that TCP packets are

delivered in order. The agent ignores all packets whose final IP destinations differ from

the current node, as well as non-TCP packets. These packets are immediately passed to

the next processing stage. For each TCP flow ending at the host, the agent maintains a

packet buffer and records the last TCP sequence number passed on to the network stack.

Incoming packets that do not produce a hole in the TCP sequence stream are immediately

dispatched to the transport layer, after updating the sequence number state. Otherwise,

they are withheld in the buffer till the gap in the sequence numbers is filled, or until a timer

expires.

0 3.2.4 Listening Module

The goal of the listening module is to store packets which might be useful for decoding

coded packets later. There are two classes of packets:

1. Transmitted packets: These are packets which the node itself transmitted previously.

2. Overheard packets: The node keeps its wireless card in promiscuous mode and over-

hears and stores packets transmitted from other nodes.

The packets have to be kept as long as they are useful for decoding. This duration

is hard to determine exactly, but it is upper-bounded by the maximum end-to-end delay

in the mesh network. To simplify design, we keep these packets for 500 ms (which is

larger than the end-to-end delay of typical mesh network deployments). Finally, when

the listening module overhears a packet, it also broadcasts a reception report informing its

neighbors that it has this packet.

The packets are kept in a hash table keyed by a unique id. We use the source IP address

and the IPID combination as the unique identifier for the hash table. Further, the listening

module exports a lookup call API to the coding module. The function takes the source

IP address and IPID as arguments and returns the corresponding packet if the listening

module has it.
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Packets XOR-ed
together

Reception
Reports

ACK Block

ENCODEDLNUM
PKTID NEXTHOP

REPORT-NUM

SRCIP JLAST PKTJ Bit Map

ACiQNUM
LOCALPKLSEQNUM

NEIGHBORLASTACK Ack Map

MAC Header

Routing Header
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Figure 3-3: COPE Header. The first block identifies the native packets XOR-ed and their next hops. The

second block contains reception reports. Each report identifies a source, the last IP sequence number re-

ceived from that source, and a bit-map of most recent packets seen from that source. The, third block

contains asynchronous acks. Each entry identifies a neighbor, an end point for the Ack map, and a bit-map

of ack-ed packets.

N 3.2.5 Learning Module

The function of the learning module is to keep track of what packets a node's neighbors

have stored in their listening module. This information is necessary to make the right

coding decision as discussed in Section 3.2.2. The learning module uses two mechanisms

to keep track of this neighbor state:

1. Deterministic information: If a neighboring node sent a reception report about a

packet or was the previous hop on that packet's route, then the learning module is

certain that the neighboring node has that packet.

2. Probabilistic information: When the learning module doesn't have deterministic in-

formation, it guesses. For this, it leverages the delivery probabilities computed by

the routing protocol. It estimates the probability the neighbor has the packet as the

delivery probability between the packet's previous hop and that neighbor.

The learning module also exposes a lookup API to the coding module. It takes as input

the packet id (source IP+IPID), and the neighbor identifier (MAC address) and returns

the probability that the neighbor has that particular packet. It keeps this information in a

two-level hash table keyed first by the packet id and then by the neighbor id.
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Figure 3-4: Flow chart for our COPE Implementation.

U 3.3 Implementation Details

COPE adds special packet headers and alters the control flow of the router to code and

decode packets. This section describes both parts.

N 3.3.1 Packet Format

COPE inserts a variable-length coding header in each packet, as shown in Fig. 3-3. If the

routing protocol has its own header (e.g., Srcr [27]), COPE's header sits between the rout-

ing and the MAC headers. Otherwise, it sits between the MAC and IP headers. Only the

shaded fields in Fig. 3-3 are required in every COPE header. The coding header contains

the following 3 blocks.

(a) Ids of the coded native packets: The first block records meta-data to enable packet

decoding. It starts with ENCODED.NUM, the number of native packets XOR-ed together.
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For each native packet, the header lists its ID, which is a 32-bit hash of the packet's source

IP address and IP sequence number. This is followed by the MAC address of the native

packet's Nexthop. When a node hears an XOR-ed packet, it checks the list of Nexthops

to determine whether it is an intended recipient for any of the native packets XOR-ed

together, in which case it decodes the packet, and processes it further.

(b) Reception reports: Reception reports constitute the second block in the XOR header,

as shown in Fig. 3-3. The block starts with the number of the reports in the packet,

REPORT.NUM. Each report specifies the source of the reported packets SRC.IP. This is fol-

lowed by the IP sequence number of the last packet heard from that source Last.PKT,

and a bit-map of recently heard packets. For example, a report of the form { 128 . . 1. 9,

50, 10 0 0 0 0 01} means that the last packet this node has heard from source 128.0.1 . 9

is packet 50, and it has also heard packets 42 and 49 from that source but none in be-

tween. The above representation for reception reports has two advantages: compactness

and effectiveness. In particular, the bit-map allows the nodes to report each packet multi-

ple times with minimal overhead. This guards against reception reports being dropped at

high congestion.

(c) Expressing asynchronous Acks compactly and robustly: To ensure Ack delivery with

minimum overhead, we use cumulative Acks. Since they implicitly repeat Ack infor-

mation, cumulative Acks are robust against packet drops. Each node maintains a per-

neighbor 16-bit counter, called NeighborSeqno.Counter. Whenever the node sends a

packet to that neighbor, the counter is incremented and its value is assigned to the packet

as a local sequence number, LocalPKTSEQNUM. The two neighbors use this sequence

number to identify the packet. Now, a node can use cumulative Acks on a per-neighbor

basis. Each coded packet contains an Ack header as shown in Fig. 3-3. The Ack block starts

with the number of Ack entries, followed by the packet local sequence number. Each Ack

entry starts with a neighbor MAC address. This is followed by a pointer to tell the neigh-

bor where the cumulative Acks stop, and a bit-map indicating previously received and

missing packets. For example, an entry of {A, 50 , 01111111 } acks packet 50, as well as

the sequence 43-49, from neighbor A. It also shows that packet 42 is still missing. Note that

though we use cumulative Acks, we do not guarantee reliability at link layer. In particular,

each node retransmits a lost packet a few times (default is 2), and then gives up.
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* 3.3.2 Control Flow

Fig. 3-4 abstracts the architecture of COPE. On the sending side, (shown in Fig. 3-4(a)),

whenever the MAC signals an opportunity to send, the node takes the packet at the head

of its output queue and hands it to the coding module (Section 3.2.2). If the node can en-

code multiple native packets in a single XOR-ed version, it has to schedule asynchronous

retransmissions. Either way, before the packet can leave the node, pending reception re-

ports and Acks are added.

On the receiving side, (shown in Fig. 3-4(b)), when a packet arrives, the node extracts

any Acks sent by this neighbor to the node. It also extracts all reception reports and up-

dates its view of what packets its neighbor stores. Further processing depends on whether

the packet is intended for the node. If the node is not a nexthop for the packet, the packet

is stored in the Packet Pool. If the node is a nexthop, it then checks if the packet is encoded.

If it is, the node tries to decode by XOR-ing the encoded packet with the native packets it

stores in its Packet Pool. After decoding, it acks this reception to the previous hop and

stores the decoded packet in the Packet Pool. The node now checks if it is the ultimate des-

tination of the packet, if so it hands the packet off to the higher layers of the network stack.

If the node is an intermediate hop, it pushes the packet to the output queue. If the received

packet is not encoded, the packet is simply stored in the Packet Pool and processed in the

same fashion as a decoded packet.

1 3.4 Understanding COPE's Gains

How beneficial is COPE? Its throughput improvement depends on the existence of cod-

ing opportunities, which themselves depend on the traffic patterns. This section provides

some insight into the expected throughput increase and the factors affecting it.

* 3.4.1 Coding Gain

We define the coding gain as the ratio of the number of transmissions required by the cur-

rent non-coding approach, to the minimum number of transmissions used by COPE to

deliver the same set of packets. By definition, this number is greater than or equal to 1.

In the Alice-and-Bob experiment, as described in Figure 3-1, COPE reduces the number

of transmissions from 4 to 3, thus producing a coding gain of 4 = 1.33.
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Figure 3-5: Simple topologies to understand COPE's Coding and Coding+MAC Gains.

But what is the maximum achievable coding gain, i.e., what is the theoretical capacity

of a wireless network that employs COPE? The capacity of general network coding for

unicast traffic is still an open question for arbitrary graphs [86, 122]. However, we analyze

certain basic topologies that reveal some of the factors affecting COPE's coding gain. Our

analysis assumes identical nodes, omni-directional radios, perfect hearing within some

radius, and the signal is not heard at all outside this radius, and if a pair of nodes can hear

each other the routing will pick the direct link. Additionally, we assume that the flows are

infinite and we only consider the steady state.

Theorem 3.1 In the absence of opportunistic listening, COPE's maximum coding gain is 2, and it

is achievable.

Proof. We first prove the upper bound of 2. Note that if the intermediate node codes N

native packets together, these packets have to be to N different next-hops, by the coding

rule of Section 3.1. In the absence of opportunistic listening, the only neighbor that has a

packet is the previous hop of that packet. Suppose the intermediate hop codes > 2 packets

from the same neighbor. All other neighbors must have < N - 2 packets in the encoded

packet, which violates the coding rule. As a result, the intermediate hop can code at most

one packet from a neighbor. Without opportunistic listening, this is the only native packet

__
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in the encoded packet that this neighbor has. Invoking the coding rule, this implies that the

intermediate hop can code at most 2 packets together. This implies that the total number

of transmissions in the network can at most be halved with coding, for a coding gain of 2.

Indeed, this gain is achievable in the chain of N links in Fig. 3-5(a). This topology is

an extension of the Alice-and-Bob example where N = 2. The no-coding case requires a

total of 2N transmissions to deliver a packet from Alice to Bob, and vice-versa. On the

other hand, in the presence of coding, each of the N - 1 intermediate nodes on the path

can transmit information simultaneously to neighbors on either side by coding the two

packets traversing in opposite directions, for a total of N + 1 transmissions. The coding

gain in this case is J., which tends to 2 as the chain length grows. U

While we do not know the maximum gain for COPE with opportunistic listening, there

do exist topologies where opportunistic listening adds to the power of COPE. For example,

consider the "X"-topology shown in Fig. 3-5(b). This is the analogy of the Alice-and-Bob

topology, but the two flows travel along link-disjoint paths. COPE without opportunistic

listening cannot achieve any gains on this topology. But with opportunistic listening and

guessing, the middle node can combine packets traversing in opposite directions, for a

coding gain of 4 = 1.33. This result is important, because in a real wireless network, there

might be only a small number of flows traversing the reverse path of each other A la Alice-

and-Bob, but one would expect many flows to intersect at a relay, and thus can be coded

together using opportunistic listening and guessing.

The "X" and Alice-and-Bob examples can be combined to further improve the benefits

of coding, as in the cross topology of Fig. 3-5(c). Without coding, 8 transmissions are

necessary for each flow to send one packet to its destination. However, assuming perfect

overhearing (N1 and n4 can overhear n3 and n5, and vice versa), N2 can XOR 4 packets

in each transmission, thus reducing the number of transmissions from 8 to 5, producing a

coding gain of 8 = 1.6.

We observe that while this section has focused on theoretical bounds, the gains in prac-

tice tend to be lower due to the availability of coding opportunities, packet header over-

heads, medium losses, etc. However, it is important to note that COPE increases the actual

information rate of the medium far above the bit rate, and hence its benefits are sustained

even when the medium is fully utilized. This contrasts with other approaches to improving
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wireless throughput, such as opportunistic routing [12], which utilize the medium better

when it is not fully congested, but do not increase its capacity.

U 3.4.2 Coding+MAC Gain

When we ran experiments with COPE, we were surprised to see that the throughput im-

provement sometimes greatly exceeded the coding gain for the corresponding topology.

It turns out that the interaction between coding and the MAC produces a beneficial side

effect that we call the Coding+MAC gain.

The Coding+MAC gain is best explained using the Alice-and-Bob scenario. Because it

tries to be fair, the MAC divides the bandwidth equally between the 3 contending nodes:

Alice, Bob, and the router. Without coding, however, the router needs to transmit twice as

many packets as Alice or Bob. The mismatch between the traffic the router receives from

the edge nodes and its MAC-allocated draining rate makes the router a bottleneck; half the

packets transmitted by the edge nodes are dropped at the router's queue. COPE allows

the bottleneck router to XOR pairs of packets and drain them twice as fast, doubling the

throughput of this network. Thus, the Coding+MAC gain of the Alice-and-Bob topology

is 2.

The Coding+MAC gain assumes all nodes continuously have some traffic to send (i.e.,

backlogged), but are limited by their MAC-allocated bandwidth. It computes the through-

put gain with COPE under such conditions. For topologies with a single bottleneck, like

the Alice-and-Bob's, the Coding+MAC gain is the ratio of the bottleneck's draining rate

with COPE to its draining rate without COPE.

Similarly, for the "X" and cross topologies, the Coding+MAC gain is higher than the

coding gain. For the "X", the Coding+MAC gain is 2 since the bottleneck node is able to

drain twice as many packets, given its MAC allocated rate. For the cross topology, the

Coding+MAC gain is even higher at 4. The bottleneck is able to send 4 packets out in

each transmission, hence it is able to drain four times as many packets compared to no

coding. This begs the question: what is the maximum Coding+MAC gain? The maximum

possible Coding+MAC gains with and without opportunistic listening are properties of

the topology and the flows that exist in a network. Here we prove some upper bounds on

Coding+MAC gains.

Theorem 3.2 In the absence of opportunistic listening, COPE's maximum Coding+MAC gain is
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2, and it is achievable.

Proof. As proved above, in the absence of opportunistic listening, a node can code atmost

2 packets together. Hence, a bottleneck node can drain its packets atmost twice as fast,

bounding the Coding+MAC gain at 2. This gain is achieved even in the simple Alice-and-

Bob experiment as explained above (longer chains result in the same Coding+MAC gain).

Theorem 3.3 In the presence of opportunistic listening, COPE's maximum Coding+MAC gain is

unbounded.

Proof. Consider the wheel topology with radius r in Fig. 3-5(d) with N nodes uniformly

placed on the circumference, and one node at the center of the circle. Assume that when

a node transmits, all other nodes in the circle overhear this transmission, except for the

diametrically opposed node (i.e., the radio range is 2r - e, where e : 0). Suppose now that

there are flows between every pair of diametrically opposed nodes. Note that nodes on

either end of a diameter cannot communicate directly, but can communicate using a two-

hop route through the middle node. In fact, this route is the geographically shortest route

between these nodes. In the absence of coding, a single flow requires 1 transmission from

an edge node, and 1 transmission from the middle node. This adds to a total of 1 transmis-

sion per edge node, and N transmissions for the middle node, across all packets. Since the

MAC gives each node only a 1 share of the medium, the middle node is the bottleneck

in the absence of coding. However, COPE with opportunistic listening allows the middle

node to code all the N incoming packets and fulfill the needs of all flows with just one

transmission, thereby matching its input and output rates. Hence, the Coding+MAC gain

is N, which grows without bound with the number of nodes. U

While the previous example is clearly artificial, it does illustrate the potential of COPE

with opportunistic listening to produce a several-fold improvement in throughput, as in

Section 3.5. Table 3-2 lists the gains for a few basic topologies.
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Topology Coding Gain Coding+MAC Gain
Alice-and-Bob 1.33 2

"X" 1.33 2
Cross 1.6 4

Infinite Chain 2 2
Infinite Wheel 2 00

Table 3-2: Theoretical gains for a few basic topologies.

M 3.5 Experimental Results

This section uses measurements from a 20-node wireless testbed to study both the per-

formance of COPE and the interaction of network coding with the wireless channel and

higher-layer protocols. Our experiments reveal the following findings:

* When the wireless medium is congested and the traffic consists of many random

UDP flows, COPE delivers a 3-4x increase in the throughput of our wireless testbed.

* When the traffic does not exercise congestion control (e.g., UDP), COPE's throughput

improvement substantially exceeds the expected coding gain and agrees with the

Coding+MAC gain.

* For a mesh network connected to the Internet via a gateway, the throughput im-

provement observed with COPE varies depending on the ratio of download traffic

to upload traffic at the the gateway, and ranges from 5% to 70%.

* Hidden terminals create a high loss rate that cannot be masked even with the maxi-

mum number of 802.11 retransmissions. In these environments, TCP does not send

enough to utilize the medium and does not create coding opportunities. In environ-

ments with no hidden terminals, TCP's throughput improvement with COPE agrees

with the expected coding gain.

The evaluation section demonstrates the three factors that the gains of COPE depend

on

* Topology Topologies that have multiple flows going through a router show higher

gains.

* Traffic Networks where the traffic is not uni-directional can achieve significantly

higher gains.
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Figure 3-6: Node locations for one floor of the testbed.

* Transport Protocol The gains also depend on the interaction between the congestion

control protocol employed by the flows and the underlying MAC protocol. When

the flows employ TCP, the gains are consistent with the coding gain for the corre-

sponding topology defined in Section 3.4. With UDP that doesn't employ congestion

control, the gains are higher and correspond to the Coding+MAC gain.

0 3.5.1 Testbed

(a) Characteristics: We have a 20-node wireless testbed that spans two floors in our build-

ing connected via an open lounge. The nodes of the testbed are distributed in several

offices, passages, and lounges. Fig. 3-6 shows the locations of the nodes on one of the

floors. Paths between nodes are between 1 and 6 hops in length, and the loss rates of links

on these paths range between 0 and 30%. The experiments described in this chapter run

on 802.11a with a bit-rate of 6Mb/s. Running the testbed on 802.11b is impractical because

of a high level of interference from the local wireless networks.

(b) Software: Nodes in the testbed run Linux. COPE is implemented using the Click

toolkit [78]. Our implementation runs as a user space daemon, and sends and receives

raw 802.11 frames from the wireless device using a libpcap-like interface. The implemen-

tation exports a network interface to the user that can be treated like any other network
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Figure 3-7: CDF of throughput gains obtained with COPE, for long-lived TCP flows.

device (e.g., eth0). Applications interact with the daemon as they would with a standard
network device provided by the Linux kernel. No modifications to the applications are
therefore necessary. The implementation is agnostic to upper and lower layer protocols,

and can be used by various protocols including UDP and TCP.

(c) Routing: Our testbed nodes run the Srcr implementation [27], a state-of-the-art rout-
ing protocol for wireless mesh networks. The protocol uses Djikstra's shortest path algo-
rithm on a database of link weights based on the ETT metric [27]. Router output queue is
bounded at 100 packets.

(d) Hardware: Each node in the testbed is a PC equipped with an 802.11 wireless card
attached to an omni-directional antenna. The cards are based on the NETGEAR 2.4 & 5
GHz 802.11a/g chipset. They transmit at a power level of 15 dBm, and operate in the
802.11 ad hoc mode, with RTS/CTS disabled.

(e) Traffic Model: We use a utility program called udpgen from the Click [78] software
package to generate UDP traffic, and t tcp [98] to generate TCP traffic. We either use long-
lived flows, or many shorter flows that match empirical studies of Internet traffic [103, 101],
i.e., they have Poisson arrivals, and a Pareto file size with the shape parameter set to 1.17.
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Figure 3-8: CDF of throughput gains obtained with COPE, for UDP flows.

0 3.5.2 Metrics

Our evaluation uses the following metrics.

* Network Throughput: The measured total end-to-end throughput, i.e., the sum of the

throughput of all flows in the network as seen by their corresponding applications.

* Throughput Gain: The ratio of the measured network throughputs with and without

COPE. We compute the throughput gain from two consecutive experiments, with

coding turned on, then off.

* 3.5.3 COPE in gadget topologies

We would like to compare COPE's actual throughput gain with the theoretical gains de-

scribed in Section 3.4, and study whether it is affected by higher layer protocols. We start

by looking at a few toy topologies with good link quality (medium loss rate after MAC

retries < 1%), and no hidden terminals.

Long-Lived TCP Flows

We run long-lived TCP flows over 3 toy topologies: Alice-and-Bob, the "X", and the cross

topologies depicted in Figs. 3-1 and 3-5. Fig. 3-7 plots the CDFs of the TCP throughput

4 5
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gain measured over 40 different runs. For the Alice-and-Bob topology the gain, shown

in Fig. 3-7(a), is close to the theoretical coding gain of 1.33. The difference of 5 - 8% is

due to the overhead of COPE's headers, as well as asymmetry in the throughput of the

two flows, which prevents the router from finding a codemate for every packet. Similarly,

for the "X"-topology, the gain in Fig. 3-7(b) is comparable to the optimal coding gain of

1.33. Finally, Fig. 3-7(c) shows the throughput gain for the cross topology with TCP. The

gains are slightly lower than the expected coding gain of 1.6 because of header overhead,

imperfect overhearing, and a slight asymmetry in the throughputs of the four flows.

The above experimental results reveal that when the traffic exercises congestion control,

the throughput gain corresponds to the coding gain, rather than the Coding+MAC gain.

The congestion control protocol, built into TCP, naturally matches the input rate at the

bottleneck to its draining rate. When multiple long-lived TCP flows get bottlenecked at the

same router, the senders back off and prevent excessive drops, leaving only pure coding

gains.

UDP Flows

We repeat the above experiments with UDP and evaluate the throughput gains. Fig. 3-8

plots a CDF of the UDP gain with COPE for the Alice-and-Bob, the "X", and the cross

topologies. The figure shows that the median UDP throughput gains for the three topolo-

gies are 1.7, 1.65, and 3.5 respectively.

Interestingly, the UDP gains are much higher than the TCP gains; they reflect the Cod-

ing+MAC gains for these toy topologies. Recall from Section 3.4 that the coding gain arises

purely from the reduction in the number of transmissions achieved with COPE. Addition-

ally, coding compresses the bottleneck queues, preventing downstream congested routers

from dropping packets that have already consumed bandwidth, and producing a Cod-

ing+MAC gain. In Section 3.4, we have shown that the theoretical Coding+MAC gains for

the above toy topologies are 2, 2, and 4 respectively. These numbers are fairly close to the

numbers we observe in actual measurements.

One may wonder why the measured throughput gains are smaller than the theoretical

Coding+MAC gain bounds. The XOR headers add a small overhead of 5-8%. However,

the difference is mainly due to imperfect overhearing and flow asymmetry. Specifically, the

nodes do not overhear all transmitted packets. Further, some senders capture the wireless
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channel sending more traffic in a particular direction, which reduces coding opportunities

and overall gain.

In practice, traffic is a combination of congestion-controlled and uncontrolled flows.

Further, most TCP flows are short-lived and do not fully exercise congestion control dur-

ing slow-start.Thus, one would expect COPE's gains to be higher than those observed

with long-lived TCP and lower than those observed with UDP. Indeed, we have run ex-

periments for the Alice-and-Bob scenario with short-lived TCP flows with Poisson arrivals

and Pareto transfer size. Depending on the flow inter-arrival times, the measured through-

put gains vary between the coding gain and the Coding+MAC gain.

U 3.5.4 COPE in an Ad Hoc Network

How does COPE perform in a wireless mesh network? We have advocated a simple ap-

proach to wireless network coding where each node relies on its local information to detect

coding opportunities, and when possible XORs the appropriate packets. However, it is

unclear how often such opportunities arise in practice, and whether they can be detected

using only local information. Thus, in this section, we run experiments on our 20-node

testbed to gauge the throughput increase provided by COPE in an ad hoc network.

TCP

We start with TCP flows that arrive according to a Poisson process, pick sender and re-

ceiver randomly, and transfer files whose sizes follow the distribution measured on the

Internet [101].

Surprisingly, in our testbed, TCP does not show any significant improvement with cod-

ing (the average gain is 2-3%). The culprit is TCP's reaction to collision-related losses.

There are a number of nodes sending packets to the bottleneck nodes, but they are not

within carrier sense range of each other, resulting in the classic hidden terminals prob-

lem. This creates many collision-related losses that cannot be masked even with the max-

imum number of MAC retries. To demonstrate this point, we repeat the TCP experiments

with varying number of MAC retransmissions with RTS/CTS enabled. Note that disabling

RTS/CTS exacerbates the problem further. Fig. 3-9 plots the end-to-end loss rates for TCP

flows as a function of the number of MAC retransmissions. These experiments have COPE

turned off. Even after 15 MAC retries (the maximum possible) the TCP flows experience
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Figure 3-9: End-to-end loss rate and average queue size at the bottlenecks for the TCP flows in the testbed.
Loss rates are as high as 14% even after 15 MAC retries; TCP therefore performs poorly. The queues at the
bottlenecks almost never build up resulting in very few coding opportunities and virtually no gains.
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Figure 3-10: COPE provides 38%
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increase in TCP goodput when the testbed topology does not contain

14% loss. As a result, the TCP flows suffer timeouts and excessive back-off, and are unable

to ramp up and utilize the medium efficiently. Fig. 3-9 plots the average queue sizes at

the bottleneck nodes'. The bottleneck nodes never see enough traffic to make use of cod-

ing; most of their time is spent without any packets in their queues or just a single packet.

Few coding opportunities arise, and hence the performance is the same with and without

coding.

Collision-related losses are common in wireless networks and recent work has studied

their debilitating effect on TCP [42, 21]. Making TCP work in such a setting would imply

solving the collision problem; such a solution is beyond the scope of this thesis.

1 The few nodes connecting the two floors are where the flows intersect; they are the main bottlenecks in
our testbed.
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Figure 3-11: COPE can provide a several-fold (3 x -4x) increase in the throughput of wireless mesh

networks. Results are for UDP flows with randomly picked source-destination pairs, Poisson arrivals, and

heavy-tail size distribution.

Would TCP be able to do better with COPE if we eliminated collision-related losses?

We test the above hypothesis by performing the following experiment. We compress the

topology of the testbed by bringing the nodes closer together, so that they are within car-

rier sense range. We artificially impose the routing graph and inter-node loss rates of the

original testbed. The intuition is that the nodes are now within carrier sense range and

hence can avoid collisions. This will reduce the loss rates and enable TCP to make better

use of the medium. We repeat the above experiment with increasing levels of congestion

obtained by decreasing the inter-arrival times of the TCP flows. Fig. 3-10 plots the network

TCP goodput with and without COPE as a function of the demand. For small demands,

COPE offers a slight improvement since coding opportunities are scarce. As the demands

increase, network congestion and coding opportunities increase, leading to higher good-

put gains. As congestion increases beyond a certain level, the throughput levels off, reflect-

ing the fact that the network has reached its capacity and cannot sustain additional load.

At its peak, COPE provides 38% improvement over no coding. The medium loss rates

after retransmissions are negligible. The TCP flows are therefore able to use the medium

efficiently, providing coding opportunities which result in throughput gains.
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Figure 3-12: Percentage of packets coded in the testbed due to guessing, as a function of offered load, for
the set of experiments in Fig. 3-11.

UDP

We repeat the large scale testbed experiments with UDP. The flows again arrive according
to a Poisson process, pick sender and receiver randomly, and transfer files whose sizes fol-
low the distribution measured on the Internet [101]. We vary the arrival rates of the Poisson
process to control the offered load. For each arrival rate, we run 10 trials, with coding on
and then off (for a total of 500 experiments), and compute the network throughput in each
case.

Fig. 3-11 shows that COPE greatly improves the throughput of these wireless networks,
by a factor of 3-4x on average. The figure plots the aggregate end-to-end throughput as a
function of the demands, both with COPE and without. At low demands (below 2Mb/s),
coding opportunities are scarce, and COPE performs similar to no coding. As demands
increase, both network congestion and the number of coding opportunities increase. In
such dense networks, the performance without coding deteriorates because of the high
level of contention and consequent packet loss due to collisions. In contrast, coding re-
duces the number of transmissions, alleviates congestion, and consequently yields higher
throughput.

It is interesting to examine how much of the coding is due to guessing, as opposed to
reception reports. Fig. 3-12 plots the percentage of packets that have been coded because of
guessing for the experiments in Fig.3-11. It is calculated as follows: If n packets are coded
together, and at most k packets could be coded using reception reports alone, then n - k
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Figure 3-13: Distribution of number of packets coded together in the test bed at the peak point of Fig. 3-11.

packets are considered to be coded due to guessing. The figure shows that the benefit of

guessing varies with demands. At low demands, the bottleneck nodes have small queues,

leading to a short packet wait time. This increases dependence on guessing because re-

ception reports could arrive too late, after the packets have been forwarded. As demands

increase, the queues at the bottlenecks increase, resulting in longer wait times, and con-

sequently allowing more time for reception reports to arrive. Hence, the importance of

guessing decreases. As demands surge even higher, the network becomes significantly

congested, leading to high loss rates for reception reports. Hence, a higher percentage of

the coding decisions are again made based on guessing.

Let us now examine in greater detail the peak point in Fig. 3-11, which occurs when

demands reach 5.6 Mb/s. Fig. 3-13 shows the PDF of the number of native packets XOR-

ed at the bottleneck nodes (i.e., the nodes that drop packets). The figure shows that, on

average, nearly 3 packets are getting coded together. Due to the high coding gain, packets

are drained much faster from the queues of the bottleneck nodes.

N 3.5.5 COPE in a Mesh Access Network

There is growing interest in providing cheap Internet access using multi-hop wireless

networks that connect to the rest of the Internet via one or more gateways/access

points [1, 8, 129]. We evaluate COPE in such a setting, where traffic is flowing to and from

the closest gateway. We divide the nodes in the testbed into 4 sets. Each set communicates
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Figure 3-14: COPE's throughput gains as a function of the ratio of uplink to downlink traffic in a congested

mesh access network.

with the Internet via a specific node that plays the role of a gateway. We use UDP flows 2,

and control the experiments by changing the ratio of the upload traffic to download traffic.

Fig. 3-14 plots the throughput gains as a function of this ratio.

The throughput gain increases as the fraction of uplink traffic increases. When the

amount of uplink traffic is small, gains are correspondingly modest; around 5 - 15%. As

uplink traffic increases, gains increase to 70%. COPE's throughput gain relies on coding

opportunities, which depend on the diversity of the packets in the queue of the bottleneck

node. For example, in the Alice-and-Bob topology, if only 10% of the packets in the bottle-

neck queue are from Alice and 90% from Bob, then coding can at best sneak 10% of Alice's

packets out on Bob's packets. Hence, as the ratio of uplink traffic increases, the diversity

of the queues at bottlenecks increases, more coding opportunities arise, and consequently

higher throughput gains are obtained.

Fairness

The access network experiment above illuminates the effect fairness has on coding op-

portunities. An important source of unfairness in wireless networks is the comparative

quality of the channels from the sources to the bottleneck, usually referred to as the capture

effect. For example, in the Alice and Bob experiment, if the channel between Alice and the

2As mentioned earlier, in the uncompressed testbed, TCP backs off excessively because of collision-based
losses from hidden terminals, and does not send enough to fully utilize the medium.
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Figure 3-15: Effect of unequal channel qualities on coding opportunities and throughput gain in the Alice-
and-Bob topology. COPE aligns the fairness and efficiency objectives. Increased fairness increases coding
opportunities and hence improves the aggregate throughput.

router is worse than that between Bob and the router, Alice might be unable to push the

same amount of traffic as Bob. Although the 802.11 MAC should give a fair allocation to all

contenders, the sender with the better channel (here Bob) usually captures the medium for

long intervals. The routing protocol tries to discount the capture effect by always selecting

the stronger links; but in practice, capture always happens to some degree.

We study the effect of capture on COPE by intentionally stressing the links in the Alice

and Bob topology. We set it up such that both Alice and Bob are equidistant from the

router, and compute the total network throughput. We then gradually move Alice's node

away from the router, and repeat the experiment and the measurements.

Fig. 3-15 shows the network throughput as a function of the ratio of Alice's and Bob's

distance to the router. It also shows the percentage of coded packets and the fairness in-

dex, computed as the ratio of Alice's throughput to Bob's. As Alice moves further away,

Bob increasingly captures the channel, reducing fairness, coding opportunities, and the

aggregate network throughput. Interestingly, without coding, fairness and efficiency are

conflicting goals; throughput increases if the node with the better channel captures the

medium and sends at full blast. Coding, however, aligns these two objectives; increasing

fairness increases the overall throughput of the network.

U 3.6 Related Work

In this section we discuss the related work for COPE. Related work can be divided into

three parts: first, how traditional network coding compares to COPE; second, theoretical

I
.., ..............
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work on multiple unicasts and network coding; and finally, further work by researchers

that built on COPE. We review each of them in separate paragraphs below.

As discussed before, traditional work on network coding started with a pioneering pa-

per by Ahlswede et al. [2], who showed that having the routers mix information in dif-

ferent messages allows the communication to achieve multicast capacity. This was soon

followed by the work of Li et al., who showed that, for multicast traffic (e.g., the butterfly

scenario), linear codes are sufficient to achieve the maximum capacity bounds [85]. Koetter

and M6dard [77] presented polynomial time algorithms for encoding and decoding, and

Ho et al. extended these results to random codes [58]. Some recent work studied wireless

network coding [40]. In particular, Lun et al. studied network coding in the presence of

omni-directional antennae and showed that the problem of minimizing the communica-

tion cost can be formulated as a linear program and solved in a distributed manner [91].

All of this work is primarily theoretical and assumes multicast traffic. Further, it assumed

fixed rate traffic, known topology and idealized congestion control algorithms.

Recent work has also looked at the problem of improving the throughput of multi-

ple simultaneous unicast sessions with network coding. The problem is similar in spirit

to the one addressed by COPE (since it too addresses multiple unicast sessions), but the

techniques are quite different. However, performing inter-session coding is difficult. To

perform inter-session coding optimally, linear coding operations are not sufficient [86],

and, even if we limit ourselves to particular class of linear coding operations, deciding

what operations to perform is an NP-hard problem [86]. A number of papers have ex-

amined sub-optimal, yet improved, methods for inter-session coding [122], most of which

are based on remedies for decoding packets which got encoded with packets from other

flows. Most of these algorithms are variations built on top of the simple design presented

in this chapter. COPE, and in general this thesis, has a mix of conceptual and practical

focus, designing simple algorithms and demonstrating that they are practical by building

a real implementation and testing them in a real setting.

Subsequent work after the first publication of COPE has focussed on two aspects: mod-

ifying the different layers to suit COPE's coding capabilities and analyzing the capacity

gains of COPE. Rayanchu et al. [116] have proposed to modify the routing layer to increase

coding opportunities and consequently throughput. Further work by the same group

has looked at making the COPE layer loss-aware and how that can be used to improve
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throughput. Both these approaches involve modifying network layers to work in concert

with COPE. Our work consciously chose to avoid changes in any other layer and it was a

first-class goal to make the COPE layer a plug-and-play module. A large body [89, 116] of

theoretical work has also analyzed the capacity bounds of COPE. Jiu et al. [89] show that

COPE can asymptotically provide a factor of two gain over traditional routing.

Finally, a rich body of systems research has tackled the problem of improving the

throughput of wireless networks. The proposed solutions range from designing better

routing metrics [27, 105] to tweaking the TCP protocol [110], and include improved rout-

ing and MAC protocols [12, 75, 55]. Our work builds on these foundations but adopts a

fundamentally different approach; it explores the utility of network coding in improving

the throughput of wireless networks.

I 3.7 Discussion

Finally, we would like to comment on the scope of COPE. The present design targets sta-

tionary wireless mesh networks where the nodes are not resource-constrained. More gen-

erally, COPE can be used in multi-hop wireless networks that satisfy the following:

* Memory: COPE's nodes need to store recently heard packets for future decoding.

Only packets in flight are used in coding; there is no need to store packets that have

already reached their destination. Consequently, the storage requirement should be

slightly higher than a delay-bandwidth product. (For e.g., an 11 Mb/s network with

a 50ms RTT has a delay-bandwidth product of 70 KB.)

* Omni-directional antenna: Opportunistic listening requires omni-directional antennas

to exploit the wireless broadcast property.

* Power requirements: Our current design of COPE does not optimize power usage and

assumes that the nodes are not energy limited.

The ideas in COPE may be applicable beyond WiFi mesh networks. Note that COPE

can conceptually work with a variety of MAC protocols including WiMax and TDMA. One

may envision modifying COPE to address the needs of sensor networks. Such a modifica-

tion would take into account that only a subset of the sensor nodes is awake at any point of

time and can participate in opportunistic listening. Sensor nodes may also trade-off saved
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transmissions for reduced battery usage, rather than increased throughput. Additionally,

COPE may be useful for cellular relays. Deploying cellular base stations is usually expen-

sive. A cheap way to increase coverage is to deploy relay nodes that intervene between

the mobile device and the base station [33], creating a multi-hop cellular backbone. COPE

would allow cellular relays to use the bandwidth more efficiently. Indeed, after the pub-

lication of COPE, we have learned that Ericsson has independently proposed a design for

cellular relays with a subset of COPE's functionality, where the cellular relay XORs only

duplex flows, as in the Alice-and-Bob scenario [33]. This scheme can be extended to make

full usage of the ideas embedded in COPE.

Our community knows a few fundamental approaches that can improve wireless

throughput, including more accurate congestion control, better routing, and efficient MAC

protocols. We believe that COPE is an important step forward in our understanding of the

potential of wireless networks because it presents a new orthogonal axis that can be manip-

ulated to extract more throughput; namely, how to maximize the amount of data delivered

in a single transmission. This is coding, which is an old theme, traditionally used at the

physical and application layers. But COPE and a few other recent projects [18, 67] intro-

duce coding to the networking community as a practical tool that can be integrated with

forwarding, routing, and reliable delivery.



CHAPTER 4

ANC: Analog Network Coding

Wireless interference is considered harmful. Interference creates collisions, prevents re-

ception, and wastes scarce bandwidth. Wireless networks strive to prevent senders from

interfering. They may reserve the medium for a specific node using TDMA or probe for

idleness as in 802.11. This fear of interference is inherited from single-channel design and

may not be the best approach for a wireless network [26, 117]. With bandwidth being

scarce in the frequencies allocated to wireless networks, enabling concurrent receptions

despite interference is essential.

This chapter introduces Analog Network Coding (ANC). Instead of avoiding inter-

ference, we exploit the interference of strategically picked senders to increase network

throughput. When multiple senders transmit simultaneously, the packets collide. But

looking deeper at the signal level, collision of two packets means that the channel adds

their physical signals after applying attenuations and time shifts. Thus, if the receiver

knows the content of the packet that interfered with the packet it wants, it can cancel the

signal corresponding to the known packet after correcting for channel effects. The receiver

is left with the signal of the packet it wants, which it decodes using standard methods.

In a wireless network, packets traverse multiple hops. When packets collide, nodes often

know one of the colliding packets by virtue of having forwarded it earlier or having over-

heard it. Thus, our approach encourages two senders to transmit simultaneously if their

receivers can leverage network-layer information to reconstruct the interfering signal, and

disentangle it from the packet they want.
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Note the analogy between analog network coding and its digital counterpart, COPE.

In COPE, senders transmit sequentially, the routers mix the content of the packets and

broadcast the mixed version. In analog network coding, senders transmit simultaneously.

The wireless channel naturally mixes these signals. Instead of forwarding mixed packets,

routers forward mixed signals.

We build on prior work on the capacity of the 2-way relay channel [117, 95] and a recent

paper on physical network coding [137]. Prior work, however, is focused on theoretical

bounds and thus allows impractical assumptions. First, it assumes that the interfering

signals are synchronized at symbol boundaries. Second, it assumes the channel functions

are known a priori and do not change. We make no such impractical assumptions. We

further implement our design in a software-radio testbed, showing the practicality of our

approach.

ANC was the first work to present a full-fledged implementable design that exploits

analog network coding to increase network capacity. Our contributions can be summa-

rized as follows:

* We present a practical approach to perform analog network coding within a flow,

and across different flows that intersect at a router.

* In contrast to prior work which assumes synchronized signals, our design exploits

the lack of synchronization between the interfering signals to facilitate decoding.

* We implement our approach in software radios, proving its practicality.

* We evaluate analog network coding in a testbed of software radios. Empirical results

show that our technique decodes interfered packets with an average bit error rate

as low as 2-4%. As for the throughput, it increases by 70% in comparison with no-

coding, and by 30% in comparison with traditional network coding.

N 4.1 Illustrative Examples

We explain the benefits of analog network coding using two canonical topologies, common

in a mesh network. These two examples constitute building blocks for larger networks.

(a) Flows Intersecting at a Router: Consider the canonical example for wireless network

coding which we described in Chapter 3. Alice and Bob want to send a message to each
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other. The radio range does not allow them to communicate without a router, as shown

in Fig. 4-1(a). In the traditional approach, Alice sends her packet to the router, which

forwards it to Bob, and Bob sends his packet to the router, which forwards it to Alice. Thus,

to exchange two packets, the current approach needs 4 time slots. COPE achieves the same

goal, but with fewer transmissions. In particular, Alice and Bob send their packets to the

router one after the other; the router then XORs the two packets and broadcasts the XOR-

ed version. Alice recovers Bob's packet by XOR-ing again with her own, and Bob recovers

Alice's packet in the same way. Thus, COPE reduces the number of time slots from 4 to 3.

The freed slot can be used to send new data, improving wireless throughput. But, can we

reduce the time slots further? Can we deliver both packets in 2 time slots?

The answer is "yes". Alice and Bob could transmit their packets simultaneously, allow-

ing their transmissions to interfere at the router. This consumes a single time slot. Due to

interference, the router receives the sum of Alice's and Bob's signals, SA(t) + SB(t). This is

a collision and the router cannot decode the bits. The router, however, can simply amplify

and forward the received interfered signal at the physical layer itself without decoding it.

This consumes a second time slot. Since Alice knows the packet she transmitted, she also

knows the signal SA(t) corresponding to her packet. She can therefore subtract sA(t) from

the received interfered signal to get 8 B (t), from which she can decode Bob's packet. Bob

can similarly recover Alice's packet. We call such an approach analog network coding. It

is analogous to the network coding employedin COPE, but is done over physical signals

in the wireless channel itself. As a result, we reduce the required time slots from 4 to 2,

doubling the wireless throughput.

(b) Flows in a Single Direction: Analog network coding also applies to new scenarios to

which traditional network coding (like COPE's codingtechnique) did not apply. Consider

the chain topology in Fig. 4-2(a), where a single flow traverses 3 hops. The traditional

routing approach needs 3 time slots to deliver every packet from source to destination.

Digital network coding cannot reduce the number of time slots in this scenario, but analog

network coding can.

Analog network coding improves the throughput of the chain topology in Fig. 4-2(a) be-

cause it allows nodes S and R2 to transmit simultaneously and have their packets received

correctly despite collisions. In particular, let node R1 transmit packet Pi to R2. Then, S

transmits the next packet Pi+l, whereas R2 forwards Pi to D. These two transmissions
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happen concurrently. The destination, D, receives only Pi because it is outside the radio

range of node S. But, the two packets collide at node R1. With the traditional approach,

R1 loses the packet sent to it by S. In contrast, in our approach, R1 exploits the fact that it

knows the data in R2's transmission because it forwarded that packet to R2 earlier. Node

R1 can recreate the signal that R2 sent and subtract that signal from the received signal.

After subtraction, R1 is left with the signal transmitted by S, which it can decode to obtain

packet Pi+l. Thus, instead of requiring a time slot for transmission on each hop, we can

transmit on the first and third hops simultaneously, reducing the time slots from 3 to 2.

This creates a throughput gain of 3/2 = 1.5.
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B) Analog Network Coding (ANC)

Figure 4-2: Chain Topology: Flows in one Direction. Nodes S and R2 can transmit at the same time. R1
gets an interfered signal, but can recover S's packet because it already knows the content of the interfering
signal sent by R2. This reduces the time slots to deliver a packet from 3 to 2, producing a throughput gain
of 3/2 = 1.5

In practice, the throughput gain of the chain topology may be even higher. Without

analog network coding, the nodes need an added mechanism to handle the hidden ter-



minal problem in Fig. 4-2(a). They use either RTS-CTS or a statistical method like the

exponential backoff built into the 802.11 MAC. Both methods incur a cost and reduce the

achievable throughput [1]. With our approach, hidden terminals are harmless, and there is

no need for an additional synchronization mechanism beyond carrier sense. Analog net-

work coding therefore solves the hidden terminal problem for chain topologies with both

uni-directional as well as bi-directional traffic. The hidden terminal problem persists in

networks with multiple interacting chains and general ad-hoc networks. Addressing the

hidden terminal problem in these latter cases is beyond the scope of this thesis.

The description above has intentionally ignored important details. For analog network

coding to become practical, we need to address important challenges.

* The wireless channel distorts the signals, and hence Alice and Bob cannot simply

subtract the signal they sent from the one they received to obtain each other's packet.

They need to compensate for channel effects before they can cancel the interfering

signal.

* Also, it is impossible for Alice's and Bob's transmissions to be fully synchronized.

Thus, there will be a time shift between the two signals. A practical design has to

work despite lack of synchrony between the interfering signals.

Thus, to implement a proof of concept of analog network coding, we have to dive into

the physical layer and adapt channel acquisition, modulation, clock recovery, and other

signal processing techniques to this new environment, namely, we need to design a new

communication system from the ground up.

U 4.2 Scope

Analog network coding is a general technique, independent of the underlying wireless

technology. It is applicable in a wide variety of scenarios, with 802.11 mesh networks

being an obvious example. Cellular networks and underwater acoustic wireless net-

works [121] are also possible examples. In particular, cellular networks deploy inexpen-

sive bi-directional relays to expand their coverage area. These nodes intervene between

the mobile device and the base station. They simply amplify and retransmit the signal

they receive, which is exactly the functionality they need to implement analog network

coding [33].
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Figure 4-3: Example MSK modulation. MSK represents a bit of 1 as a phase difference of 7r/2 over an
interval T. It represents a a bit of 0 as a phase difference of -7r/2 over T.

Our goal is to design and implement a proof of concept of ANC. Since ANC works at

the signal level, this implies designing an entire communication system from the ground

up. Hence, we have to make a number of design choices at the physical layer. Most im-

portantly, we have to choose a modulation/demodulation scheme. We want a modulation

scheme that is widely used in many wireless technologies because it is infeasible to try the

myriad of possible modulation schemes.

To this end, we choose phase shift keying (PSK), which is widely used in modem com-

munication systems. For example, 802.11 uses Binary and Quadrature Phase Shift Keying

(BPSK/QPSK) and GSM, a widely used cell-phone standard, uses a variant of Minimum

Shift Keying (MSK), which is another form of phase shift keying. Our implementation

uses MSK. MSK has very good bit-error properties, has a simple demodulation algorithm

and excellent spectral efficiency. But the ideas we develop in this chapter, especially Sec-

tion 4.4.1, are applicable to any differential phase shift keying modulation scheme.

I 4.3 Background: Single Signal Case

Before talking about disentangling interfering signals, we need to explain how a single

signal is transmitted and received over the wireless channel. For the sake of simplicity,

we will intentionally gloss over some details that are unnecessary for understanding the

technical ideas proposed in this chapter (e.g., pass-band vs. base-band, error correction,

upconversion, and downconversion). We will describe how MSK transmits and receives a

packet of bits.

01 i1 0 i 1 10 0 0_ _

I i i i
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* 4.3.1 Wireless Communication Systems

A wireless signal is usually represented as a complex function of time. Thus, the signal

transmitted by the sender, which we annotate with the subscript s, can be represented as:

s(t) = As(t)eios(t),

where As (t) is the amplitude of the waveform and 0s (t) is its phase. To transmit a stream of

bits, we need to map "0" and "1" to two different complex functions. Then, we divide time

into consecutive slots of duration T. During each slot, we transmit the complex function

corresponding to "1" or "0", depending on the bit value we want to transmit.

Although the transmitted signal is a continuous function, modern communication sys-

tems are digital. They produce discrete samples of the continuous signal. The wireless

transmitter interpolates the samples to generate a continuous signal, which it transmits

over the wireless channel. Thus, for the rest of this chapter, we will talk about complex

samples, of the form As [n]eis [n].

* 4.3.2 The Sender Side

Say that we have a packet to transmit over the wireless channel. As said above, we need to

map "0" and "1" into two different complex representations. This is called modulation. In

particular, the MSK modulation represents bits by varying the phase difference between

consecutive complex samples. A phase difference of 7r/2 represents "1", whereas a phase

difference of -7/2 represents a "0".

To see how MSK works, let us go through an example. Assume the data being sent is

1010111000, then the phase of the signal would vary as seen in Fig. 4-3. The signal itself

is the complex function whose phase changes as shown in the figure. Initially, at time

t = 0, the signal is Ase io. Since the first bit is a "1", the signal sample at time t = T should

be Ase i (" / 2) . The second bit is a "0", hence the signal sample at time t = 2T should be

Asei (
7

/ 2-
r
/ 2) = Ase io. This is repeated for all the bits. Note that in MSK, the amplitude of

the transmitted signal, As, is a constant. The phase embeds all information about the bits.
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M 4.3.3 The Receiver Side

How does the signal look like at the receiver, after traversing the wireless channel? The

received signal is also a stream of complex samples spaced by T. But these samples differ

from the transmitted samples, both in amplitude and phase. In particular, if the transmit-

ted sample is A, [n]ei6s In] the received signal can be approximated as:

y[n] = h As[n]ei(e [n]+')),

where h is channel attenuation and y is a phase shift that depends on the distance between

the sender and the receiver. The receiver needs to map the received complex samples back

into a bit stream.

Demodulation is the process of mapping the received signal to the transmitted bits.

For MSK, this amounts to discovering the phase differences between consecutive complex

samples separated by T, and then mapping that phase difference back to a bit value.

Calculating phase differences of the complex samples is simple. Recall that in MSK, the

amplitude of the samples is fixed and does not change from one signal sample to the next.

Consider the following consecutive complex samples h A, ei(O,[n + ±11+Y) and h As ei(oa[n]+ y).

First, we calculate the ratio of these complex numbers,

h A= ei(Os[n+l]+7) ei(,s[n+l]-0,[n]). (4.1)
h As ei(e,[n ]+y)

To demodulate, we simply compute the angle of the complex number r, which gives us the

phase difference, i.e., arg(r) = 0,[n + 1] - 0,[n], where arg(x) is the angle of the complex

number x. We map these phase differences to "0" and "1" bits using a simple rule. A

positive phase difference is a "1" whereas a negative phase difference is a "0".

The most important fact about the computation in Eq. 4.1 is its invariance to both the

channel attenuation h and the channel phase shift y. This makes MSK demodulation very

robust because the receiver does not need to accurately estimate the channel. Phase mod-

ulation schemes like MSK are therefore very attractive and are widely used in cellular

communications and other networks.
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N 4.4 Decoding Interfered MSK signals

So, how does Alice (or Bob) decode the interfered signals? The first step in answering

this question is to understand what Alice receives. As described earlier, when Alice and

Bob transmit simultaneously, the router receives the sum of their signals, amplifies this

composite signal, and broadcasts it to Alice and Bob. Thus, Alice receives an interfered

signal, yA(t) + YB(t). However, yA(t) and yB(t) are not the two signals Alice and Bob

have sent. Rather, they are the two transmitted signals after they traversed the channels

from their corresponding senders to the router and the channel from the router to their

corresponding receivers. The effect of the wireless channels can be approximated by an

attenuation and phase shift [124]. Thus, the signal that Alice receives is:

y [n] = YA [n]+ YB[n]
y[n] = h'Asei(s [n]+Y') + hIBseei(s [n]+y ' ),

where 9, refers to the phase of the signal transmitted by Alice and 4, refers to the phase of

the signal transmitted by Bob, whereas As and Bs are the amplitudes at the transmitter.

Note that we use the subscript s to refer to the transmitted signal as opposed to the

received signal, for which we use no subscripts. Note also that n refers to the index of the

received sample; it is not the index of the bit transmitted by Alice or Bob1.

At first, it seems that to decode the interfered signals, Alice should estimate the channel

parameters h' and y'. Once she knows these parameters, Alice recreates the version of

her signal that interfered with Bob's signal, and subtracts it from the received signal. The

result is YB [n], a sampled version of Bob's signal that Alice can decode using the standard

method described in 4.3.

In practice, however, this subtraction method is not robust since it depends on the errors

in Alice's estimate of the channel parameters. Though we tend to think of those parameters

as constant, they do vary with time. Further, the channel model is approximate. There are

other sources of noise that add up to the estimation errors.

We need a more robust method. Indeed, the main reason for the robustness of MSK is

that demodulation does not require estimating the channel. Specifically, Eq. 4.1 computes

'Our design does not assume synchronization of Alice's and Bob's signals. We will talk about that issue in
detail in 4.5.2
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the phase difference without worrying about the exact values of -y and h. This gives us a

hint of how to design a more robust demodulation scheme for interfered signals. In par-

ticular, one should focus on discovering the phase differences for the two signals, namely

AO and A0. It is phase differences that carry all the information about Alice's and Bob's

bits, not the values of the phases themselves.

Thus, in the rest of this section, we will develop an algorithm that allows Alice to decode

the phase differences between the consecutive samples of Bob's signal. For simplicity of

notation, we will represent the received signal at Alice as:

y[n] = Aeie[n] + Bei¢[n],  (4.2)

where A = h'As, B = h"Bs, 0 [n] = 0 [n] + y', and q[n] = s, [n] + -y".

How do you calculate phase differences when two signals interfere and you know the

phase differences of one of the signals? We will use a two-step process. First, Alice uses her

received signal to calculate pairs (AO, AO) that could have produced the observed signal.

Next, Alice uses her knowledge of her phase difference AOs to pick the most likely pair.

This gives Alice an estimate of A0, Bob's phase difference. Based on this estimate Alice

decides whether Bob sent a "0" or a "1".

U 4.4.1 Possible Phases of Both Signals

Say that Alice receives the interfered signal in Eq. 4.2, can she tell the values of 0 [n] and

0[n] just by analyzing the received signal? The answer is "No"; without extra information,

Alice cannot tell the exact phases. She can, however, calculate possible values for those

phases. First, we prove the following lemma.

Lemma 4.1 If y[n] is a complex number satisfying Eq. 4.2, then the pair (0[n], 0[n]) takes one of

the following two values.

9[n] = arg(y[n](A+ BD±iBV1-D)) (4.3)

0[n] = arg(y[n](B + AD: TiAV-D2)) (4.4)

where, D = •y[n12-A 2-B 2 ly[n] is the norm, and arg is the angle of the complex number.2AB

Proof. Since,
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y[n] = Aei°[n] + Be'i [n]  (4.5)

the square of the magnitude of y[n] is given by,

ly[n]|2 = A2 + B2 + 2AB cos(0[n] - 0[n]) (4.6)

Let us denote cos(0 [n] - q[n]) by D. Hence, D can be computed as,

D = cos(0[n] - [n]) = y[n2 - A 2 -B 2  (4.7)

We use D, to separate out the two phases 0[n] and 0[n] into separate independent ex-

pressions. For brevity, we only show the computation for 0[n], the analysis for 0[n] is

similar.

From Eq. 4.5, we can rewrite ei° [n] as

eioln] _ y[n](A + Be-i([][n] 0[n]))
A' + B2 + 2AB cos([n] - 0[n])

The complex number's phase is 0[n], which is the quantity of interest. Hence all we

have to do is compute the phase of this complex number,

O[n] = arg(y[n](A + Be-i([n]-[n])))

0[n] = arg(y[n](A + Bcos(4] -[n]) (4.8)

-iBsin(¢[n] - 0[n])))

where arg(x) represents the phase of the complex number x.

Notice that we already know cos(o[n] - 0[n]) = cos(O[n] - 0[n]) = D. We can use this to

compute sin( [n] - 0[n]).

sin(q[n] - 0[n]) = FT v1 -D 2  (4.9)

Substituting in Eqn. 4.8 we get two solutions for 0[n],

0[n] = arg(y[n](A + BD ± iBV1 --D2)) (4.10)

Similarly we can compute 0[n] as,

0[n] = arg(y[n](B + Acos(4[n] - 0[n]) + iAsin( [n] - 0[n])) (4.11)

Thus, we get two corresponding solutions for 0[n] as well,
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Figure 4-4: Geometric representation of the phase computation. The received complex sample y[n] is the

sum of two complex numbers u and v. The length of the first complex number is A and the length of second

is B. There are exactly two pairs of such complex numbers (u, v) that sum up to y[n]. Thus, two solutions

exist for the pair (0[n], 0[n]).

0[n] = arg(y[n](B + AD ± iA1 -TD2)) (4.12)

Note that for each solution to 0[n], there is a unique solution for 0[n]. Thus, when

0[n] = arg(y[n](A + BD + iBVTi-D)), the corresponding solution is 0[n] = arg(y[n](B +

AD - iAvT/-D7)). The solutions come in two pairs. The intuition underlying the proof

can be explained geometrically. As a complex number, y[n] can be represented with a

vector, as in Fig. 4-4. According to Eq. 4.2, y[n] is the sum of two vectors, which have

lengths A and B respectively. Thus, we want to find a pair of vectors, (u, v), that sum up to

the received complex sample, y[n]. The constraint is that the first vector is of length A and

the second of length B, i.e.,the two vectors lie on two circles with radius A and B. From

the figure, there are only two such pairs of vectors. Therefore, there are two solutions for

the pair (0[n], [n]).

0 4.4.2 Estimating the Amplitudes A and B

If Alice knows the amplitude of the two signals, i.e., A and B, she can substitute those

values and the received complex sample ly[n] I into the equations in Lemma 4.1 to calculate

:eived complex sample
Two solutions for [n]
rwo solutions for qp[n]



the phases. In fact, Alice can estimate A and B from the received signal. Since she has two

unknowns (A and B), she needs two equations.

The first equation for computing A and B comes from the energy of the received signal.

When two signals interfere, their energies add up. In particular, the energy is:

E[ly[n]12] = E[A2 +B 2 + 2AB cos(0[n] - [n])],

where E[.] is the expectation. The value of E[cos(O[n] - 0[n])] ; 0 for a random bit se-

quence. To ensure the bits are random, we XOR them with a pseudo-random sequence at

the sender, and XOR them again with the same sequence at the receiver to get the original

bits. Hence,

E[jy[n]j2] = A 2 +B 2.

Alice estimates the expectation by averaging the energy of the complex samples over a

window of size N.
N

S= Y ly[n] 2 = A2 + B2 . (4.13)
n=1

Alice still needs a second equation to estimate A and B. She computes the following

quantity.
S=2 [n1 2.

ly[n]•2>

Said differently, Alice computes the average energy in samples whose squared norm is

greater than the mean energy M. We can show that a can be reduced to,

a = A 2 + B 2 + 4AB/r. (4.14)

Proof. From our definition,
o = ly- E ]|2 (4.15)

Ii[n]12>11

where •p is A 2 + B 2. Essentially we are calculating the expectation of those y [n]12s which

are greater than A2 + B2. From Eq. 4.6 we have,
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ly[n] 12 = A2 + B 2 + 2ABcos(O[n] - 0[n]) (4.16)

Thus, in the computation of oa we are using only those Iy[n] 12 which have cos(0[n] - q[n])

greater than zero. Hence, we can rewrite or as

E(|y[n]12 Icos(0[n] - ¢[n]) > 0)

= E(A 2 + B 2 + 2ABcos(O[n] - 0[n]) Icos(O[n] - 4[n]) > 0)

= A 2 + B 2 + 2AB E(cos(O[n] - 0[n]) Icos(O[n] - 0[n]) > 0)

Assuming that we are sending random bit patterns, we can derive E(cos(O[n] -

¢[n])|cos(0[n] - 0[n]) > 0) as 2/ir by taking the average of a cosine over its positive lobes.

Thus, finally we get

a = A 2 + B 2 + 4AB/Ir (4.17)

Given Eqs. 4.13 and 4.14, Alice has two equations with two unknowns and can solve

for A and B.

0 4.4.3 Estimating Phase Differences for Bob's Signal

Alice's next step is to estimate the phase differences of Bob's signal, i.e., 0[n + 1] - 0[n].

She uses the phases from Lemma 4.1 to calculate phase differences of both her signal,

0 [n + 1] - 9 [n], as well as Bob's signal q[n + 1] - q [n]. There is, however, ambiguity in these

calculations because this lemma gives two solutions for each phase, at any sample time n.

Alice cannot tell which of the two solutions is the correct one.

Alice therefore computes all possible phase differences based on Lemma 4.1. Let us

denote the two solutions pairs as (01[n], l [n]) and (02 [n],2 [n]). Then, Alice has the fol-

lowing four possible phase difference pairs:

(A0xy[n],Az y =[n]) = (Oz[n+ 1] -y[n], x[n+ 1] - 4y[n])
(4.18)

Vx,y E {1,2}

Next, Alice has to pick the right phase difference pair from the four choices in Eq. 4.18.

This is where she leverages network layer information. Alice knows the signal she transmit-

ted earlier, and which interfered with Bob's signal. Thus, she knows the phase difference
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of her transmission AOs [n]. Phase differences are fairly robust to channel distortion (if you

take the phase difference the 3y term cancels out). Thus, she can use the known AL8 [n] to

pick the correct AOy.

Alice calculates the error for each of the four choices she got from Eq. 4.18.

errXy = IAOxy[n] - AOs[n]| ,Vx,y E {1,2} (4.19)

Alice picks the AOy [n] that produces the smallest error errxy. She finds the matching

A4xy [n] phase difference for Bob's signal. Alice repeats this for all values of n, to estimate

the sequence of Bob's phase differences. She uses these estimated phase differences to

decode Bob's bits.

M 4.4.4 Obtaining Bob's Bits

Recall that MSK modulation maps "1" to a phase difference of ir/2 and "0" to a phase

difference of -7r/2. In the last step above, Alice has an estimate of the phase differences of

Bob's signal, A4[n]. She now maps them back to bits. Because of estimation errors and the

distortion of the received signal, the phases that Alice estimates do not match exactly the

phases sent by Bob. Thus, Alice follows a simple rule.

if A:[n] > 0, the nth bit is "1", else it is "0".

N 4.5 Practical Issues

Is the scheme described above feasible in practice? The short answer is "yes". Building an

operational communication system, however, involves many practical challenges.

* 4.5.1 How Does Alice Detect Interference?

We begin with the most basic question: How does Alice detect a packet transmission? This

is a standard problem in communication systems. To detect a transmission, Alice looks at

the energy in the received signal. During transmission the energy level is much higher

than the noise energy.

Next, how can Alice tell whether a packet has been subjected to interference? If it is an

interfered packet, Alice needs to run the interference decoding algorithm described in 4.4;
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otherwise, Alice runs standard MSK decoding.

To answer this question, Alice uses the variance in the energy of the received signal.

Recall that, in MSK, the transmitted signal amplitude is constant; MSK encodes the bits in

the phase, not the magnitude of the complex sample. Hence, the energy of a non-interfered

MSK signal is nearly constant 2. Packet interference destroys this property of nearly con-

stant signal energy. When two packets collide, the signals interfere with each other in

a random fashion. The constant energy property of MSK no longer holds. We use this

insight to detect interference. We quantify this variation in energy by measuring the vari-

ance in the energy of the received samples. If the variance is greater than a threshold, Alice

detects interference and applies the decoding algorithm from 4.4.

We calculate energy and energy variance over moving windows of received samples.

Our detection algorithm declares occurrence of a packet if the energy is greater than 20dB,

which is a typical threshold. It detects interference if the variance in the energy is greater

than 20dB. This threshold is picked because when two MSK signals interfere, the energy

of the interfered signal varies from (A + B) 2 to (A - B)2, depending on whether they

interfere constructively or destructively. Thus, the variance is on the order of ((A + B)2 -

(A - B)2) 2 = 16A 2B 2, which is greater than the energy of either of the signals constituting

the interfered signal (i.e., greater than A2 and B 2).

M 4.5.2 How Does Alice Deal with Lack of Synchronization?

In an ideal world, Alice's and Bob's signals arrive at the router at the same instant, and

interfere exactly at the beginning of the two packets. In reality, there is a time shift between

the two signals. This time shift complicates our algorithm described in 4.4. In particular,

the algorithm needs Alice to match the phase difference of the signal she sent against four

possible solutions, in order to pick the right one. But without synchronization, Alice does

not know the index of the first interfering sample.

Interestingly, our solution to the problem leverages the lack of complete synchroniza-

tion. Since packets do not interfere perfectly, there are parts at the start and end of the

received signal which do not have any interference. For example, assume Alice's signal ar-

rived before Bob's. Then, the first few bits of Alice's packet are interference free. Assuming

Alice and Bob have similar packet sizes, the last few bits of Bob's packet are also interfer-

2The energy of a complex sample Ae ie is A2
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Figure 4-5: Aligning known phase differences with received signal. Alice finds where her packet starts

using the pilot bits at the beginning of the packet, which are interference free. Bob, whose packet starts

second, uses the pilot bits at the end of the packet and runs the alignment process backward.

ence free. Indeed, our approach enforces this incomplete overlap between the two packets

to ensure that there are a few bits at the beginning and end of the interfered signal that are

interference free, which can be used to synchronize. Specifically, we use a randomization

scheme similar to 802.11 MAC. Nodes start their transmission after a random delay. They

do this by picking a random number between 1 and 32, and starting their transmission

in the corresponding time slot. The size of the slot is dependent on the transmission rate,

packet size, modulation scheme used, etc.

Our solution attaches a known pilot bit sequence to the beginning of each packet. It also

attaches a mirrored version of the pilot sequence to the end of the packet. The pilot is a

64-bit pseudo-random sequence. It is used to detect when exactly the known signal starts

showing in the received signal.

We describe our solution assuming Alice's packet starts first. Bob's decoding algorithm

is described in Sec. 4.5.4. Alice first detects the beginning of a packet using the energy de-

tector from 4.5.1. She then looks for the known pilot sequence in the interference free part
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of the signal at the start of the packet. She decodes this part using standard MSK demodu-

lation. Fig. 4-5 displays the matching process that Alice performs over the received signal.

After decoding the interference free part, she tries to match the known pilot sequence with

every sequence of 64 bits. Once a match is found, she aligns her known signal with the

received signal starting at that point, i.e., starting at the end of the pilot. If Alice fails to

find the pilot sequence, she drops the packet.

At the end of the pilot sequence, Alice starts applying the algorithm in 4.4 which detects

the two interfering signals. By then Bob's signal might not have started yet. Despite this

Alice can still apply our decoding algorithm from Section 4.4. The values for the initial

estimated phase differences, Ao[n] could be random and dependent on the noise since

Bob's signal might not have started yet. Once Bob's signal starts, the estimated phases

differences Ao[n], will correspond to the pilot sequence at the start of Bob's packet. At that

point, Alice detects the beginning of Bob's packet.

Thus, the pilot sequence helps Alice align her own sent signal with respect to the re-

ceived signal. It also helps her detect the beginning of Bob's signal in the received signal.

0 4.5.3 How does Alice know which packet to use to decode?

Alice keeps copies of the sent packets in a Sent Packet Buffer. When she receives a signal that

contains interference, she has to figure out which packet from the buffer she should use

to decode the interfered signal. Hence, we add a header after the pilot sequence that tells

Alice the source, destination and the sequence number of the packet. Using the decoded

header information, Alice can pick the right packet from her buffer to decode the interfered

signal and get Bob's packet.

* 4.5.4 How does Bob decode?

Bob's signal starts second in the interfered signal. Thus, he cannot blindly use the same

decoding algorithm as Alice. Bob instead decodes the packet by running the decoding

procedure backward. More precisely, he stores the received complex samples until the end

of the packet, i.e., until the energy drops to the noise level. Then he runs the algorithm

starting with the last sample and going backward in time. Our packets have the header

and the pilot sequence both at the beginning and end, as shown in Fig. 4-6. Bob starts from

the end of the packet, decodes the header and the pilot sequence there, discovers which
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Figure 4-6: Frame Layout for Analog Network Coding

packet in his sent packet buffer to use to cancel the interference, and decodes Alice's packet

backwards, using the interference decoding algorithm.

0 4.5.5 What does the router do?

In the Alice-Bob experiment, the router has to amplify the interfered signal it receives from

Alice and Bob, and broadcast it. But in the chain topology, the router, N2, has to decode the

packet itself. Thus, the router needs to make a decision about what to do with an interfered

signal. The router uses the headers in the interfered signal to discover which case applies.

If either of the headers corresponds to a packet it already has, it will decodes the interfered

signal. If none of the headers correspond to packets it knows, it checks if the two packets

comprising the interfered signal are headed in opposite directions to its neighbors. If so, it
amplifies the signal and broadcasts the interfered signal. If none of the above conditions is
met, it simply drops the received signal.

Finally, Alg. 2 summarizes the interference decoding algorithm.

* 4.5.6 How to get the right packets to interfere?

We want to encourage interfering transmissions, from the right senders, i.e., those whose
interfered signal can be correctly decoded at both destinations. To do so, we design a sim-
ple trigger protocol. To "trigger" simultaneous transmissions, a node adds a short trigger
sequence at the end of a standard transmission. The trigger stimulates the right neighbors
to try to transmit immediately after the reception of the trigger.3 For example, in the Alice-
Bob topology, the router adds the trigger sequence to the end of its transmission, triggering

3The nodes still insert the short random delay mentioned in 4.5.2.

I I
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2 Pseudocode for the Interference Decoding Algorithm
Use energy detector from 4.5.1 to detect signal reception
if Signal detected then

Use variance detector from 4.5.1 to detect interference
if Interfered Signal then

Decode start and end of received signal to get both headers
Discover whether my known signal starts first or second using the headers
Lookup known packet from the headers
Match phase differences of known signal with received signal using algorithm from
4.5.2
Decode packet using algorithm from 4.4
Collect the decoded bits and frame it into a packet and pass it to the upper layers

else
Decode signal using normal MSK demodulation
Collect the decoded bits and frame it into a packet and pass it to the upper layers

end if
end if

both Alice and Bob to transmit. Alice and Bob respond by transmitting as soon as the trans-

mission from the router ends. In the chain topology in Fig. 4-2, node N2 triggers nodes N1

and N3 to transmit simultaneously by adding the appropriate trigger sequence to the end

of its transmission. Thus, the triggering mechanism encourages positive interference that

we can exploit to increase network capacity.

Clearly, for a node to trigger its neighbors to interfere, it needs to known the traffic flow

in its local neighborhood. We assume that this information is provided via control packets

that the nodes exchange.

In our context, the "trigger" protocol provides a simplified MAC for ANC. Designing

a general MAC protocol for ANC depends on the environment in which it is used. For

example, cellular networks already have strict scheduling-based MAC protocols (TDMA,

CDMA etc). The trigger protocol for ANC in these networks can be easily integrated into

the scheduling mechanism. In contrast, 802.11 wireless mesh networks use random access.

In this case, short control sequences may be used as triggers. However, customizing the

MAC protocol for ANC in 802.11 or other networks is beyond the scope of this thesis.

* 4.6 Capacity Analysis

To estimate the throughput gains expected from analog network coding, we analyze the

capacity of the Alice-Bob network, shown in Fig. 4-1. We focus on the practical case, where
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Figure 4-7: Capacity bounds as functions of SNR, for half-duplex nodes. At high SNRs, analog network

coding doubles the throughput compared to traditional routing.

radios are half-duplex. The information theory literature refers to this network as a 2-way

half-duplex relay channel.

Note that the capacity of a general wireless network is an open problem in information

theory. In fact, the exact capacity of a 3-node relay network, that is, a source-destination

pair with a router in the middle, is itself an open problem. The standard approach is to

compute upper and lower bounds on the capacity of these networks, which is what we do

in this section.

We compare the capacity of the Alice-Bob network, under analog network coding and

the traditional routing approach. To do so, we compute an upper bound on the capacity

under the traditional routing approach, and a lower bound on the capacity with our ap-

proach. Channel capacity depends on the received signal strength in comparison to the

noise power at the receiver-i.e., a function of Signal-to-Noise Ratio (SNR). We compute

our bounds for a wireless channel with additive white Gaussian noise. For simplicity, we

assume the channel between Alice and the router is similar to the channel between Bob

and the router, and all nodes transmit at the same power. When the router receives the

interfered signal, it simply re-amplifies the signal and broadcasts it to Alice and Bob. We

prove the following theorem:

- Analog Net. Coding : Lower bound on capacity
- - - Traditional Approach: Upper bound on capacity

Ii .0.0
.0



Theorem 4.1 An upper bound on the capacity of the traditional routing approach is given by:

Ctraditional = a(log(1 + 2SNR) + log(1 + SNR)),

and a lower bound on the capacity of analog network coding is given by:

SNR 2

Canalog netcode = 4alog(1 + 3SNR 1

where a is a constant. Thus, the capacity gain of analog network coding over the traditional ap-

proach asymptotically approaches 2 as the SNR increases.

Proof. Let XA(1),...,XA(i),...,XA(m) and XB(1),...,XB(i),...,XB(m) be Alice and

Bob's complex symbols. We assume a line of sight channel which attenuates the signal

and the presence of white noise at the receiver. We also assume that all nodes transmit

with the same power P.

(1.) Routing: The Outer Bound

We first compute the outer bound for traditional routing. We assume that the network is

time-shared fairly between Alice and Bob's flows. We analyze the capacity of the relay

network using the cutset bound [26]. We assume that transmissions are asynchronous but

the channel gains are known. Then, the capacity from Alice to Bob is upper-bounded by

min{C1, C2}, where Ci and C2 are given by:

C1 = arg max log(1 + (h2AB hA)P) + log(1 (1 - p2)h2AB
p,O<_p<l (4.20)

C2 = arg max log(1 (hAB B)P + 2pP h2Bh2B) + log(1 + h2ABP)
p,0<_p< 1

Similar equations exist for Bob, with hRA and hRB interchanged.

(2.) Analog Network Coding: The Inner Bound

We compare the outer bound for traditional routing with an achievable inner bound for

ANC. In this case the signal received at the relay can be written as,

YR[n] = výhARXA [n] + V1hBRXB [n] + ZR[n] (4.21)

where hAR and hBR are the attenuations on the links Alice-Relay and Bob-Relay respec-

tively. P is the transmission power and ZR is the noise at the relay.
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The relay amplifies the signal and broadcasts it to Alice and Bob. Let the amplification

factor be A. The signal received at Alice is:

YA[n] = AhRAYR[n]+ ZA[n] (4.22)

= A(V2PhRA(hARXA[n] + hBRXB[n]) + hRAZR[n]) + ZA [n]

where ZA is the noise at Alice, and hRA is the attenuation on the link from the relay to

Alice. The amplification factor A is set such that the power is still equal to P. Therefore

A= /P/(PhAR + PhBR +1)

Assuming Alice perfectly knows the attenuations hRA and hAR, she can cancel her sig-

nal out and get:

YA [n] = AV hRAhBRXB[n] + AhRAZR[n] + ZA[n] (4.23)

For simplicity, we assume that all noise powers are the same and equal to 1. Thus, the

SNRs of the received signal at Alice and Bob can be computed as:

A2ph2 Rh2R - A2 ph2 Rh 2  (4.24)
SNRAlice = (A 2 hRA+ SNR ABob B (4.24)

Thus the total throughput of the system is given by,

1
Canc = - (log(1 + SNRAlice) + log(1 + SNRBob)) (4.25)2

Assuming symmetric channels, it can be shown [71] that the ratio Canc/,r, where C, is the

routing throughput tends to 2 as P -0 oc since the ratio logi ) 1 as zx -- .1

Fig. 4-7 illustrates the capacity bounds for analog network coding and the traditional

approach. The figure shows two SNR regions with different characteristics.

(a) Moderate to High SNR: At medium-to-high SNR, analog network coding almost doubles

the throughput when compared to the traditional routing approach. At these SNRs, the

gain is primarily dominated by the reduction in the number of time slots needed to send

the packets (from 4 to 2).

(b) Low SNR: In contrast, at low SNRs around 0-8dB, the throughput of analog network

coding is lower than the upper bound for the traditional approach. This is because when

the router amplifies and broadcasts the interfered signal to Alice and Bob, it also amplifies
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the noise that the channel adds to the interfered signal. At low SNR, this amplified noise

has a deleterious effect at Alice and Bob, since the transmission power is quite low.

Note, however, that practical wireless systems typically operate around 20-40dB. The

low SNR region is not used because it is hard to design practical receivers that decode at

such low power. For example, indoor WLANs typically operate at SNR around 15-40dB.

So, for most practical cases, analog network coding has a theoretical throughput gain of 2x

for the Alice-Bob network.

m 4.7 Implementation

We have implemented ANC using Software Defined Radios (SDR). SDRs implement all the

signal processing components (source coding, modulation, clock recovery etc) of a wireless

communication system entirely in software. The hardware is a simple radio frequency (RF)

frontend, which acts as an interface to the wireless channel. The RF frontend passes the

complex samples generated by the SDR to the Digital to Analog Converter (DAC), which

produces the analog signal. The upconverter converts the output of the DAC to the carrier

frequency and transmits it over the wireless channel. At the receiver side, the process is

inverted. First, the downconverter converts the received signal to its baseband frequency

and passes it to an Analog to Digital Converter (ADC). The discrete samples produced by

the ADC are converted into complex numbers and passed to the SDR software.

We use the Universal Software Radio Peripheral (USRP) [59] as our RF frontend. The

software for the signal processing blocks is from the open source GNURadio project [41].

USRP is a generic RF frontend developed specifically for the GNURadio SDR. The USRP

connects to the PC via USB 2.0. Thus, its throughput is limited to 32MB/s. This also limits

the bandwidth of the signal to at most 4MHz, which is enough for most narrowband data

transmission.

m 4.8 System Architecture

We export a network interface to the user, which can be treated like any other network

device (e.g., eth0). Fig. 4-8 abstracts the system below the network interface.

On the sending side, the network interface pushes the packets to the Framer, which

adds the pilot sequence and the header to the packet as described in 4.5.2 and 4.5.4, and
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Figure 4-8: Flow chart of our implementation.

creates a frame. The framer also stores a copy of the frame, which could be used later

for decoding interfered packets. Next, the modulator encodes the bit sequence to create

complex samples of the signal. It pushes the samples to the USRP RF frontend, which

transmits them on the channel.

On the receiving side, we continuously get complex samples from the USRP. The Packet

Detector checks whether the received samples constitute a packet or just noise. If a packet

is being received, the Interference Detector checks whether the packet has been subjected to

interference using the interference detection algorithm described in 4.5.1. If no interference
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is detected, standard MSK demodulation is performed to decode the bits. The bits are then

passed through the Deframer, which converts them into a packet and forwards the packet

to the network interface.

If interference is detected, the received complex samples are passed to the Header De-

coder which detects the pilot sequences and the headers at the start and end of the set of

complex samples constituting the interfered packet. From the headers it discovers which

two packets constitute the interfered packet and checks if it can be decoded or should be

re-amplified and broadcast. If it can be decoded, the complex samples are passed on to the

next module, the Phase Difference Matcher which looks up the known packet, and matches

the phase differences of the known packet with the received interfered signal. Once the

matching is done, the complex samples are passed through the ANC Decoder, which de-

codes the unknown bits out of the interfered signal. The bits are then passed through the

Deframer, which converts them into a packet and pushes the recovered packet out on the

network interface.

* 4.9 Experimental Evaluation

This section uses results from a software radio testbed to study the performance of our ap-

proach. We run our experiments on three canonical topologies: the Alice-Bob topology in

Fig. 4-1, the "X" topology in Fig. 4-11, and the chain topology in Fig. 4-2. These topologies

form the basis for larger networks and provide examples of both 2-way and unidirectional

traffic.

* 4.9.1 Compared Approaches

We compare ANC against two other approaches.

(a) No Coding (Traditional Routing Approach): We implement traditional routing but

with an optimal MAC, i.e., the MAC employs an optimal scheduler and benefits from

knowing the traffic pattern and the topology. Thus, the MAC never encounters collisions

or backoffs, and hence outperforms the conventional carrier sense based MAC.

(b) Digital Network Coding (COPE): We compare against packet-based network cod-

ing whenever applicable. We use the COPE protocol described in Chapter 3 as an example

network coding protocol. Again we implement an optimal MAC that schedules transmis-



sions knowing the traffic pattern and the topology.

Since the MAC is optimal for all three designs, the differences between them are due to

their intrinsic characteristics rather than a sub-optimal MAC.

0 4.9.2 Metrics

We use the following metrics.

* Network Throughput: This is the sum of the end-to-end throughput of all flows in

the network. Note that ANC has a higher bit error rate than the other approaches

and thus needs extra redundancy in its error-correction codes. We account for this

overhead in our throughput computation.

* Gain Over Routing: This is the ratio of the network's throughput in ANC to the net-

work's throughput in the traditional routing approach for two consecutive runs in

the same topology and for the same traffic pattern.

* Gain Over COPE: This is the ratio of the network's throughput in ANC to the net-

work's throughput in COPE for two consecutive runs in the same topology and for

the same traffic pattern.

* Bit Error Rate (BER): The percentage of erroneous bits in an ANC packet, i.e., a packet

decoded using our approach.

0 4.9.3 Summary of Results

Our experiments reveal the following findings:

* ANC provides significant throughput gains. For the Alice-Bob topology, ANC in-

creases the network's throughput by 70% compared to the traditional routing ap-

proach. Compared to COPE the throughput increases by 30%.

* ANC improves the throughput for the "X" topology by 65% when compared to the

traditional routing approach, and 28% when compared to COPE.

* For unidirectional flows in the chain topology, ANC improves throughput by 36%

when compared to the traditional routing approach. (COPE does not apply to this

scenario.)
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Figure 4-9: Results for the Alice-Bob topology: ANC has 70% average throughput gain over the traditional

routing approach and 30% over COPE. The average BER is around 4%, which can be easily corrected by a

small amount of error correcting codes.

* Differences between the theoretical gains of ANC and its practical gains are domi-

nated by imperfect overlap between interfering packets, where only 80% of the two

packets interfere on average.

* We evaluate ANC's sensitivity to the relative strength of the two interfering signals.

On URSP software radios, our decoding algorithm works with signal to interference

ratio as low as -3dB. In contrast, typical interference cancellation schemes require

a signal to interference ratio of 6dB [53]. (Note that these schemes do not use ANC

and cannot achieve our capacity gains, as explained in 4.11.)

123
SECTION 4.9. EXPERIMENTAL EVALUATION



M 4.9.4 Alice-Bob topology

We compare ANC to both the traditional routing approach and COPE over the Alice-Bob

topology in Fig. 4-1. Each run transfers 1000 packets in each direction, first using ANC,

then using the traditional routing approach, and last using COPE. We repeat the experi-

ment 40 times and plot the results in Fig. 4-9.

Fig. 4-9(a) plots the CDF of ANC's throughput gain over the traditional routing ap-

proach and COPE. The figure shows that ANC's average gain is 70% compared to the

traditional routing approach and 30% compared to COPE.

Our practical throughput gains are significant, but less than the theoretical optimum.

Theoretically, ANC doubles the throughput compared to routing and provides 50% gain

over COPE. Practical gains are lower due to two reasons. First, the theoretical computation

assumes that packets interfere perfectly, i.e., it assumes that Alice and Bob are perfectly

synchronized. In practice, the average overlap between Alice's packets and those from

Bob's is 80%. The imperfect overlap is due to the random delay our protocol introduces so

that the pilot sequences are interference free. Further, because our implementation runs in

user-space, there is significant jitter in how fast Alice and Bob transmit after receiving the

"trigger" from the router. We believe that with a kernel-space implementation, one could

get higher overlap in the packets and consequently higher gains.

The second factor affecting ANC's practical gains is the non-zero bit error rate.

Fig. 4-9(b) plots the CDF of bit error rates for Alice and Bob, when using our approach.

The bit error rate is computed by decoding the packet from the interfered signal and then

comparing it against the payload that was sent. The bit error rate for most packets is less

than 4%. To compensate for this bit-error rate we have to add 8% of extra redundancy

(i.e., error correction codes) compared to the traditional routing approach. This overhead

is another reason why the practical gains are a little lower than the theoretical gains.

* 4.9.5 "X" Topology

Next, we evaluate ANC over the "X" topology in Fig. 4-11. This topology is analogous to

the Alice-Bob, but in contrast to Alice who knows the interfering signal because she has

generated it, the receivers in the "X" topology know the interfering signal because they

happen to overhear it while snooping on the medium. In particular, S1 and S2 are sending

to D1 and D2, respectively. Node D2 can overhear Sl's transmission, and similarly D1
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Figure 4-10: Results for the X topology. Our approach provides an average of 65% gain over the traditional

routing approach and 28% over traditional network coding. It is slightly less than the Alice-Bob topology

due to packet losses in overhearing. The BERs for the experiments where there were packet losses in

overhearing is correspondingly higher.
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Figure 4-11: "X" topology with two flows intersecting at node R.

can overhear S2's transmission. Thus, we make S1 and S2 transmit simultaneously. The

router R amplifies and retransmits the interfered signal to the destinations D1 and D2. The

destinations use the overheard packets to cancel the interference and decode the packets
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they want.

Fig. 4-10(a) plots the CDF of throughput gains for the "X" topology. The figure shows

that ANC provides a 65% increase in throughput compared to the traditional routing ap-

proach, and a 28% increase in throughput compared to COPE.

As expected, practical gains are lower than theoretical gains. Theoretically, ANC dou-

bles the throughput when compared to the traditional routing approach, and increases

the throughput by 50% when compared to COPE. The reasons for the difference between

practical and theoretical gains are fairly similar to the Alice-Bob case. First, packets do

not overlap perfectly. Second, the decoded packets have a non-zero BER, hence extra re-

dundancy is required. There is, however, an additional error factor in the "X" topology,

namely, imperfect decoding of overheard packets. Theoretical gains assume that when S1

transmits, D2 overhears the packet and correctly decodes it. This is not always true and D2

sometimes fails in decoding the overheard packets, particularly because node S2 is trans-

mitting too; hence node D2's reception faces additional interference. When a packet is not

overheard, the corresponding interfered signal cannot be decoded either. The same reason

holds for node D1 overhearing S2's transmission. Hence, the throughput gain is slightly

lower.

* 4.9.6 Unidirectional Traffic: Chain Topology

Unlike COPE, analog network coding is useful even when the flows are uni-directional.

To demonstrate these gains, we evaluate our approach in the chain topology shown in

Fig. 4-2, where traffic is flowing from node S to node D.

Figure. 4-12(a) plots the CDF of the throughput gains with our approach compared to

the traditional routing approach. ANC increases the throughput by 37% on average.

Note that for the chain topology, the throughput gain is close to the theoretical pre-

diction. Theoretically, ANC has a gain of 50%, since it reduces the number of time slots

required to deliver a packet on average from 3 to 2. The slight loss in gain is due to the

same factors as before. Packets do not overlap perfectly and we have to provision for extra

redundancy to correct for the slightly higher bit error rate. But interestingly, the bit error

rate is lower for the chain than for the other topologies. Fig. 4-12(b) plots the BER CDF

at node R1. The average bit error rate is 1%, which is significantly lower than the 4% bit

error observed in the Alice-Bob topology. This is because in the chain, decoding is done
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Figure 4-12: Results for the chain topology. Our approach provides an average of 36% gain over the tra-

ditional approach. The average BER is 1.5%, which is lower than the Alice-Bob topology since here the

router directly decodes the interfered signal and does not amplify and broadcast it.

at the node that first receives the interfered signal. In the Alice-Bob case, the interference

happens at the router, but the router has to then amplify and broadcast the signal to Alice

and Bob. This also amplifies the noise in the interfered signal, resulting in higher bit error

rates at Alice and Bob.

U 4.9.7 Impact of relative signal strengths

Is ANC's decoding algorithm sensitive to the relative signal strengths of the interfering

signals? For example, does Alice's ability to decode Bob's packet depend on the relative

received strengths of Alice's and Bob's signals? We evaluate this by calculating the bit

error rate for the decoded packet as the relative signal strengths vary.

In order to quantify the relative signal strengths of Alice and Bob's signals we define
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Figure 4-13: BER vs. Signal-to-Interference Ratio (SIR) for decoding at Alice. Even for low SIR, i.e., when
the signal Alice wants to decode has relatively low signal strength, the BER is less than 5%.

Signal to Interference Ratio (SIR),

SIR = 10loglo( PBob) (4.26)
PAlice

where PBob and PAlice are the received powers for Bob's and Alice's signals respectively

at Alice. The intuition behind this definition is simple, since Alice wishes to decode Bob's

packet, her own signal which is mixed up with Bob's signal is treated as interference.

We vary Bob' transmission power, while Alice's power is kept constant. Fig. 4-13 plots

the BER of the decoded Bob's packet as a function of the received SIR at Alice. Even when

Bob's signal strength is half that of Alice's signal, i.e., for a SIR of -3dB, the BER is less

than 5%. When the signals are of equal strength (SIR = OdB), the BER drops to 2%. At the

other end of the spectrum, when Bob's signal is twice as strong as Alice's signal, the BER

drops to 0.

Hence, our approach works very well even when the relative signal strengths are vastly

different or the same. Prior work on blind signal separation usually works only when the

signal being decoded has a SIR of 6dB [53], i.e., the signal being decoded is four times

stronger than the signal interfering with it. On the other hand our ability to leverage

already known network level information allows us to decode signals that have very low

signal strength compared to the signal that is interfering with it.
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l 4.10 Extending ANC to Other Modulation Schemes

How can a node perform analog network coding with a different modulation scheme?

In this section we outline a general algorithm for disentangling a known signal from an

interfered signal which works for most of the commonly used modulation schemes. The

decoding algorithm can be summarized as follows: estimate the channel and system trans-

formation, apply the transformation to the known signal, subtract the transformed known

signal from the interfered signal and finally decode using a standard decoder. We describe

each component briefly below, using the same Alice and Bob example discussed earlier in

the chapter.

* 4.10.1 Estimating the Channel Transformation

Both Alice and Bob have to first estimate the channel parameters from the colliding

packet's preamble. We will focus on Alice; the discussion for Bob will be similar. We need

to estimate three values: the channel attenuation, the frequency offset and the sampling

offset.

Estimating Channel Filter

The preamble of a packet has a known pseudorandom sequence, the access code. We can

use the pattern to estimate the attenuation for Alice h'. The trick is to correlate the sam-

ples from the received preamble with the known sequence. This correlation C when the

sequences are perfectly aligned can be shown to be:

L

C = h'Z Is[i]12  (4.27)
i=1

Due to the property of pseudorandom sequences, the value of C will be maximum

when the known and the received sequences are perfectly aligned. Alice can use this to

estimate the correlation above, by simply trying different alignments and using the max-

imum value obtained. From there, she can easily compute h' since E"L Is[i] 2 is already

known.
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Estimating Frequency Offset

It is virtually impossible to manufacture two radios centered at the same exact frequency.

Hence, there is always a small frequency difference, 6f, between transmitter and receiver.

The frequency offset causes a linear displacement in the phase of the received signal that

increases over time, i.e.,

y[n] = h'x[n]ej2 rn 6fT + w[n] (4.28)

The frequency offset does not change significantly over the length of a packet. Traditional

decoders already use standard algorithms [97] to estimate this offset, we can leverage these

algorithms to get an estimate of the frequency offset at Alice, 6 fA.

Sampling Offset

The transmitted signal is a sequence of complex samples separated by a period T. However,

when transmitted on the wireless medium, these discrete values have to be interpolated

into a continuous signal. The continuous signal is equal to the original discrete samples,

only if sampled at the exact same positions where the discrete values were. Due to lack of

synchronization, a receiver cannot sample the received signal exactly at the right positions.

There is always a sampling offset, p. Further, the drift in the transmitters and receivers

clocks results in a drift in the sampling offset. Hence, decoders have algorithms to estimate

/p and track it over the duration of a packet. Alice can run the traditional decoder over the

uninterfered part of the signal to estimate iA, and use that estimate throughout the rest of

the packet.

0 4.10.2 Re-encoding the Known Packet

Once Alice knows the channel parameters, she uses them to apply the same transformation

to the known packet, to get an estimate of how the known packet would have looked like

after traversing the channel. She can subtract this estimate from the interfered signal, to

get Bob's signal.

There are three parts to the transformation: applying the channel filter, the frequency

offset and the sampling offset. Let zA [1], ... , XA [K] denote the original symbols in Alice's

known packet. Assuming we have estimated the channel filter h' and frequency offset 6fA,
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the original symbol zA [n] after being transformed can be estimated as

yA[n] = h'xA[n]ej 2• 6fAT (4.29)

But we still have to account for the sampling offset. Alice's ADC samples the interfered

signal PA seconds away from Alice's samples. Thus, given the samples yA[1], ..., yA[K],

Alice has to interpolate to find the samples at YA [1 + [A], ... , YA [K + PAA]. To do so, we

observe that real-world wireless signals are band-limited. Hence by Nyquist's theorem,

we can interpolate the signal at any point of time, using the sinc function as basis functions.

Specifically,
i=+00oo

yA[n + LPA] = YA[i]sinc(7(n + PA - i)) (4.30)
=-00oo

In practice, due to the decaying nature of the sinc function, we only need to take the sum-

mation over a few symbols around the neighborhood of the sample of interest.

* 4.10.3 Subtracting and Decoding

Once Alice has estimated her transformed known samples, the rest of the process is

straightforward. She subtracts the estimate YA[n] from the received interfered signal, and

passes the resulting signal through the normal decoder for the modulation scheme used

by Bob. Thus the decoder is a blackbox, and ANC operates independent of it. This also

implies that ANC can be used even if Alice and Bob use different modulation schemes.

U 4.11 Related Work

Prior work falls into three main categories: theoretical work on the capacity of the 2-way

relay, schemes for addressing interference, and traditional network coding.

(a) Theoretical Work on the Capacity of the 2-Way Relay Network: ANC builds on prior

work on the capacity of the 2-way relay channel (i.e., the Alice-Bob topology) [117, 95]

and a recent paper on physical network coding [137]. Prior work, however, is focused

on theoretical bounds and thus allows impractical assumptions. First, it assumes that the

interfering signals are synchronized at symbol boundaries. Second, it assumes the channel

functions are known a priori and do not change. Third, it assumes that different channels

do not introduce different phase-shifts, which is unlikely given the propagation delays in
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the channels. In contrast, ANC make no such assumptions. We further implement our

design in a software-radio testbed, showing the practicality of our approach.

(b) Addressing Interference: Typically, wireless networks try to avoid interference by

probing the medium for idleness [102], scheduling senders in different time slots [124], or

using small control packets called RTS-CTS [9]. Our work allows correct reception despite

interference.

Multiple access techniques like CDMA [104], FDMA [124], and spatial reuse [124] allow

multiple transmissions at the same time. These approaches, however, are simply means to

avoid interference in time, code, space, or frequencies. They just divide channel capacity

among multiple users. In contrast, analog network coding expands the capacity of the

network.

Co-operative diversity [80, 79] and MIMO systems [124] allow multiple concurrent

transmissions. There are two main differences between this work and analog network

coding. First, this work is for point-to-point communication (i.e., one-hop), while ours is

for a multi-hop network. Second, this work usually assumes antenna arrays and coherent

combining at the receiver. Our work makes no such assumptions.

Also some related work falls in the area of interference cancellation and blind signal

separation. These schemes decode two signals that have interfered without knowing any

of the signals in advance [126, 16, 53]. Practical work in this domain, however, is limited

to signals that differ significantly in their characteristics. They usually assume that the

wanted signal has much higher power than the signal they are trying to cancel out. Our

technique makes no such assumptions. Further, the prior work does not increase achiev-

able network capacity. Analog network coding increases the achievable capacity of the

network due to its ability to exploit network layer information.

(c) Traditional Network Coding: As discussed before, work on network coding started

with a paper by Ahlswede et al. which establishes the benefits of coding in routers and

bounds the capacity of such networks [2]. This work has been extended by papers on linear

network codes [85, 77, 63], randomized coding [58], wireless network coding [36, 107, 130,

100], and network coding for content distribution [47]. All of the above mix bits in routers

or hosts. In contrast, analog network coding makes the senders transmit concurrently and

has the wireless channel mix the analog signals representing the packets. We further show
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that analog network coding achieves higher throughput than traditional network coding

and applies to scenarios that cannot benefit from traditional network coding.

* 4.12 Discussion

Finally, we would like to comment on the scope of ANC. The present design targets sta-

tionary wireless mesh networks with a few hardware modifications, or ones with software

radios which usethe ANC software module. ANC does not need any modifications to the

major hardware components, such as the oscillator, ADC etc. It does require some memory

to store samples (on the order of a few KB), and modifications to the FPGA to execute the

ANC decoding algorithm.

One of the important observations from our work on ANC, is a different approach to

dealing with interference. Traditionally, radios have tried to decode interfered signals,

treating the interfering signal as noise, and giving up on the reception if the interfering

power is too high. ANC demonstrates that this is a pessimistic approach; often in wire-

less, due to broadcast and previous transmissions, nodes have side information about the

interfering signal. In ANC, this is in fact a clean copy of the packet corresponding to

the interfering signal. In many other scenarios, other forms of side-information could be

available, such as another collided packet with the same set of interfering signals [48], a

noisy version of the interfering signal etc. Smart decoding algorithms can exploit this side-

information to significantly improve their ability to decode interfered signals, and increase

throughput.

Subsequent work [48, 52] has applied the philosophy of analog network coding to deal

with hidden terminals in wireless networks. Those works are complementary to analog

network coding and they can be combined to provide higher throughput gains. Further,

this subsequent work also simplifies the MAC protocol design problem for ANC, since

receivers can decoded collided packets even if they do not already have one of the packets

making up the collision, albeit by either requesting that senders transmit at a lower rate or

requesting retransmissions.
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CHAPTER 5

MIXIT: Symbol-level Network Coding

After demonstrating how network coding at two extreme granularities- the packet and

the signal level - can be exploited to improve performance, this chapter takes the middle

ground. We present the design, implementation and evaluation of MIXIT, which uses

symbol-level network coding to build a system that significantly improves the throughput

of a wireless mesh network compared to the best current approaches. In both traditional

routing protocols as well as more recent opportunistic approaches [12, 18], an intermediate

node forwards a packet only if it has no errors. In contrast, MIXIT takes a much looser

approach: a forwarding node does not attempt to recover from any errors, or even bother

to apply an error detection code (like a CRC).

Somewhat surprisingly, relaxing the requirement that a node only forward correct data

improves throughput. The main reason for this improvement is a unique property of dense

wireless mesh networks: Even when no node receives a packet correctly, any given bit is likely to

be received correctly by some node.

In MIXIT, the network and the lower layers collaborate to improve throughput by tak-

ing advantage of this observation. Rather than just send up a sequence of bits, the PHY

annotates each bit with SoftPHY hints [65] that reflect the PHY's confidence in its demod-

ulation and decoding. The link layer passes up frames to the network layer with these

annotations, but does not try to recover erroneous frames or low-confidence bits using

link-layer retransmissions. Instead, the network layer uses the SoftPHY hints to filter out

the bits with low confidence in a packet, and then it performs opportunistic routing on
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groups of high confidence bits.

The core component of MIXIT is a new network code that allows each link to operate at

a considerably high bit-error rate compared to the status quo without compromising end-

to-end reliability. Unlike COPE and ANC, the network code operates at the granularity

of symbols 1 rather than packets: each router forwards (using radio broadcast) random

linear combinations of the high-confidence symbols belonging to different packets. Thus,

a MIXIT router forwards symbols that are likely to be correct, tries to avoid forwarding

symbols that are likely to be corrupt, but inevitably makes a few incorrect guesses and

forwards corrupt symbols.

MIXIT's network code addresses two challenges in performing such symbol-level op-

portunistic routing over potentially erroneous data. The first problem is scalable coordi-

nation: the effort required for nodes to determine which symbols were received at each

node to prevent duplicate transmissions of the same symbol is significant. MIXIT uses the

randomness from the network code along with a novel dynamic programming algorithm

to solve this problem and scalably "funnel" high-confidence symbols to the destination,

compared to a node co-ordination based approach like ExOR [12].

The second problem is error recovery: because erroneous symbols do seep through, the

destination needs to correct them. Rather than the traditional approach of requesting ex-

plicit retransmissions, MIXIT uses a rateless end-to-end error correcting component that

works in concert with the network code for this task. The routers themselves only forward

random linear combinations of high-confidence symbols, performing no error handling.

MIXIT incorporates two additional techniques to improve performance:

* Increased concurrency: MIXIT takes advantage of two properties to design a channel

access protocol that allows many more concurrent transmissions than CSMA: first,

entire packets need not be delivered correctly to a downstream node, and second,

symbols need to be delivered correctly to some downstream node, not a specific one.

* Congestion-aware forwarding: Unlike previous opportunistic routing protocols

which do not consider congestion information [18, 12], MIXIT forwards coded sym-

bols via paths that have both high delivery probabilities and small queues.

MIXIT synthesizes ideas from opportunistic routing (ExOR [12] and MORE [18]) and
1A symbol is a small sequence of bits (typically a few bytes) that the code treats as a single value.
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partial packet recovery [65], noting the synergy between these two concepts. Prior op-

portunistic schemes [18, 12] often capitalize on sporadic receptions over long links, but

these long links are inherently less reliable and likely to exhibit symbol errors. By insisting

on forwarding only fully correct packets, prior opportunistic protocols miss the bulk of

their opportunities. Similarly, prior proposals for exploiting partially correct receptions,

like PPR [65], SOFT [132], and H-ARQ [25], limit themselves to a single wireless hop, in-

curring significant overhead trying to make that hop reliable. In contrast, we advocate

eschewing reliable link-layer error detection and recovery altogether, since it is sufficient

to funnel opportunistically-received correct symbols to their destination, where they will

be assembled into a complete packet.

We evaluate MIXIT using our software radio implementation on a 25-node testbed run-

ning the Zigbee (802.15.4) protocol. The main experimental results are as follows:

* MIXIT achieves a 2.8x gain over MORE, a state-of-the-art packet-based opportunis-

tic routing protocol under moderate load. The gain over traditional routing is even

higher, 3.9x better aggregate end-to-end throughput. At lighter loads the corre-

sponding gains are 2.1x and 2.9x.

* MIXIT's gains stem from two composable capabilities: symbol-level opportunistic

routing, and higher concurrency, which we find have a multiplicative effect. For

example, separately, they improve throughput by 1.5 x and 1.4 x over MORE; in con-

cert, they lead to the 2.1 x gain.

* Congestion-aware forwarding accounts for 30% of the throughput gain at high load.

MIXIT is the first system to show that routers need not forward fully correct packets

to achieve end-to-end reliability, and that loosening this constraint significantly increases

throughput. MIXIT realizes this vision using a layered architecture which demonstrates

cross-layer collaborations using clean interfaces: the network code can run atop any radio

and PHY that provides SoftPHY hints, the system can run with any MAC protocol (though

ones that aggressively seek concurrency perform better), and the routers are oblivious to

the error-correcting code. This modular separation of concerns eases implementation.
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Figure 5-1: Example of opportunistic partial receptions: The source, S, wants to deliver a packet to the

destination, D. The figure shows the receptions after S broadcasts its packet, where dark shades refer

to erroneous symbols. The best path traverses all routers R1, R2 and R3. Traditional routing makes R1

transmit the packet ignoring any opportunistic receptions. Packet-level opportunistic routing exploits the

reception at R2 but ignores that most of the symbols have made it to R3 and D. MIXIT exploits correctly

received symbols at R3 and D, benefiting from the longest links.

* 5.1 Motivating Examples

This section discusses two examples to motivate the need for mechanisms that can operate

on symbols that are likely to have been received correctly (i.e., on partial packets). These

examples show two significant new opportunities to improve throughput: far-reaching

links with high bit-error rates that allow quick jumps towards a destination even when they

might never receive entire packets correctly, and increased concurrency using a more aggres-

sive MAC protocol that induces higher bit-error rates than CSMA. The underlying theme

in these examples is that one can improve throughput by allowing, and coping with, higher

link-layer error rates.

First, consider Fig. 5-1, where a source, S, tries to deliver a packet to a destination, D,

using the chain of routers R1, R2, and R3. It is possible that when the source broadcasts

its packet, R1 and R2 hear the packet correctly, while R3 and D hear the packet with some

bit errors. Traditional routing ignores the "lucky" reception at R2 and insists on delivering

the packet on the predetermined path, i.e., it makes R1 forward the packet to R2 again.

In contrast, recent opportunistic routing protocols (such as ExOR) capitalize on such lucky

receptions (at R2) to make long jumps towards the destination, saving transmissions.

By insisting on forwarding fully correct packets, however, current opportunistic proto-

cols miss a large number of opportunities to save transmissions and increase throughput;

in particular, they do not take advantage of all the correct bits that already made it to R3

and even to the destination, D. Moreover, because of spatial diversity [96, 124], the cor-

rupted bits at R3 and D are likely in different positions. Thus, R3 has to transmit only

the bits that D did not receive correctly for the destination to get the complete packet. A

scheme that can identify correct symbols and forward them has the potential to signifi-
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Figure 5-2: Concurrency example: The figure shows the receptions when the two sources transmit concur-

rently. Without MIXIT, the two sources S, and Sb cannot transmit concurrently. MIXIT tolerates more bit

errors at individual nodes, and hence is more resilient to interference, increasing the number of useful

concurrent transmissions.

cantly reduce the number of transmissions required to deliver a packet.

Next, consider an example with potential concurrency as in Fig. 5-2, where two senders,

S, and Sb, want to deliver a packet to their respective destinations, Da and Db. If both

senders transmit concurrently, the BER will be high, and no router will receive either

packet correctly. Because current opportunistic routing protocols insist on correct and

complete packets, the best any MAC can do is to make these senders transmit one after

the other, consuming two time slots.

But interference is not a binary variable. In practice, different routers will experience

different levels of interference; it is likely the routers close to Sa will receive packet, Pa,

with only a few errors, while those close to Sb Will receive packet Pb, with only some er-

rors. A scheme that can identify which symbols are correct and forward only those groups

of bits can exploit this phenomenon to allow the two senders to transmit concurrently

and increase throughput. It can then "funnel" the correct symbols from the routers to the

destination.

MIXIT aims to realize these potential benefits in practice. It faces the following chal-

lenges:

" How does a router classify which symbols in each received packet are likely correct?

" Given the overlap in the correct symbols at various routers, how do we ensure that
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routers do not forward the same information, wasting bandwidth?

* How do we avoid creating hotspots?

* When is it safe for nodes to transmit concurrently?

* How do we ensure that the destination recovers a correct and complete version of

the source's data?

The rest of this chapter presents our solutions to these problems in the context of the

MIXIT architecture, which we describe next.

i 5.2 MIXIT Architecture

MIXIT is a layered architecture for bulk transfer over static mesh networks. The layers

are similar to the traditional PHY, link and network layers, but the interfaces between

them, as well as the functions carried out by the network layer, are quite different. The

physical and link layers deliver all received data to the network layer, whether or not bits

are corrupted. Each packet has a MIXIT header that must be received correctly because it

contains information about the destination and other meta-data; MIXIT protects the header

with a separate forward error correction (FEC) code that has negligible overhead.

Rather than describe each layer separately, we describe the functions carried out at the

source, the forwarders, and the destination for any stream of packets.

E 5.2.1 The Source

The transport layer streams data to the network layer, which pre-processes it using an

error-correcting code as described in Section 5.7. The network layer then divides the re-

sulting stream into batches of K packets and sends these batches to the destination sequen-

tially. Whenever the MAC permits, the network layer creates a different random linear

combination of the K packets in the current batch and broadcasts it.

MIXIT's network code operates at the granularity of symbols, which we define as a

group of consecutive bits of a packet. The group could be the same collection of bits which

are transmitted as a single physical layer symbol (PHY symbol) by the modulation scheme

(e.g., groups of 4 bits in a 16-QAM scheme), or it could be larger in extent, covering a

small number of distinct PHY symbols. The Jth symbol in a coded packet, s-, is a linear
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combination of the jth symbols in the K packets, i.e., s' = Ei visji, where sji is the jth

symbol in the ith packet in the batch and vi is a per-packet random multiplier. We call

V = (Vl,..., vK) the code vector of the coded packet. Note that every symbol in the packet

created by the source has the same code vector.

The source adds a MIXIT header to the coded packet and broadcasts it. The header

describes which symbols were coded together. This description is easy to specify at the

source because all symbols in a coded packet are generated using the packet's code vector,

V. The header also contains an ordered list of forwarding nodes picked from its neighbors,

each of which is closer to the destination according to the metric described in Section 5.5.

U 5.2.2 The Forwarders

Each node listens continuously whenever it is not transmitting, attempting to decode

whatever it hears. When the PHY detects a packet, it passes the subsequent decoded bits

along with SoftPHY hints that reflect its confidence in the decoded bits. The network layer

gets this information and uses it to classify symbols into clean and dirty ones. A clean

symbol is one that is likely to be correct, unlike a dirty one. Section 5.3 describes how the

MIXIT network layer classifies symbols.

When a node gets a packet without header errors, it checks whether it is mentioned in

the list of forwarders contained in the header. If so, the node checks whether the packet

contains new information, i.e., is "innovative" [77]. A packet is considered innovative if its

code vector & is linearly independent of the vectors of the packets the node has previously

received from this batch. Checking for independence is straightforward using Gaussian

elimination over these short vectors [77]. The node ignores non-innovative packets, and

stores the innovative packets it receives from the current batch, preserving the "clean" and

"dirty" annotations.

When forwarding data, the node creates random linear combinations of the clean sym-

bols in the packets it has heard from the same batch, as explained in Section 5.4, and broad-

casts the resulting coded packet. It also decides how much each neighbor should forward

to balance load and maximize throughput, as described in Section 5.5.

Any MAC protocol may be used in MIXIT, but the scheme described in Section 5.6.1

achieves higher concurrency than standard CSMA because it takes advantage of MIXIT's

ability to cope with much higher error rates than previous routing protocols.
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Figure 5-3: Decision boundary for different mistake rates as a function of SINR. At high SINR (> 12dB), all

PHY symbols with Hamming distance less than 16 (the maximum possible in the Zigbee physical layer),

will satisfy the mistake rate threshold. But at intermediate SINRs (5-12 dB), the PHY symbols have to be

picked carefully depending on the mistake rate threshold.

0 5.2.3 The Destination

MIXIT provides a rateless network code. Hence, the destination simply collects all the

packets it can hear until it has enough information to decode the original data as described

in Section 5.7. Furthermore, MIXIT provides flexible reliability semantics. Depending on

application requirements, the destination can decide how much information is enough.

For example, if the application requires full reliability, the destination waits until it can

decode 100% of the original symbols, whereas if the application requires 90% reliability, the

destination can be done once it decodes 90% of the original symbols. Once the destination

decodes the required original symbols, it sends a batch-Ack to the source. The Ack is sent

using reliable single path routing, and causes the source to move to the next batch. For the

rest of the chapter, we will assume that the destination wants 100% reliability.

* 5.3 Classifying Received Symbols

MIXIT operates over symbols, which are groups of PHY symbols. A symbol is classified

as clean if none of the constituent PHY symbols are erroneous with a probability higher

than 'y. It is classified dirty otherwise. We call the threshold y, the mistake rate, and it

is a configurable parameter of the system. To satisfy the mistake rate threshold, MIXIT's

network layer picks a decision boundary on the soft values [65,132] of the PHY symbols. If

all constituent PHY symbols in our symbol have soft values below this decision boundary,

_~ ~_ __ _ _ _ __ ___ _ ___ _ __ _· _ ___ · _ · _



then the symbol is classified as clean, else it is dirty. The decision boundary depends on

the mistake rate as well as the channel SINR [132, 124].

Fig. 5-3 supports this argument. The figure is generated using a GNU software ra-

dio implementation of the Zigbee protocol (see Section 5.8). The figure plots the decision

boundary on soft values of PHY symbols for varying SINR at different mistake rates of

1%, 5%, 10% and 15%. Clearly, the boundary depends both on the mistake rate as well as

the SINR. The SINR measures the channel noise and interference, and hence reflects how

much we should trust the channel to preserve the correlation between transmitted and re-

ceived signals [132]. Factoring in the specified mistake rate, we can use the above map to

pick the right decision boundary to classify symbols.

MIXIT uses the SoftPHY interface proposed in [65, 132], which annotates the decoded

PHY symbols with confidence values and sends them to higher layers. We also augment

the interface to expose the SINR. The SINR can be estimated using standard methods like

that in [69]. The map in Fig. 5-3 can be computed offline, since the relationship between

SINR, the confidence estimate, and the decision boundary is usually static [93]. The MIXIT

network layer uses the PHY information to classify symbols as clean and dirty, and then

performs symbol-level network coding over the clean symbols as described in the next

section.

* 5.4 The MIXIT Network Code

When the MAC permits, the node may forward a coded packet. The symbols in a coded

packet are linear combinations of the clean symbols received in packets from the same

batch. To see how the coding works let us look at an example.

E 5.4.1 MIXIT in Action

Consider the scenario in Fig. 5-4, where the source S wants to deliver two packets, Pa

and Pb, to the destination. Let the bit error rate (BER) be relatively high such that when

the source S broadcasts Pa and Pb, the nodes in the network receive some symbols in

errors. The network layer at each node classifies the symbols as either clean or dirty using

the SoftPHY hints as described in Section 5.3. Fig. 5-4 illustrates the dirty symbols using

shaded cells.

143SECTION 5.4. THE MIXIT NETWORK CODE



.

m m.... 

C1

144CHPE5.MXTSYBLLVLNTOKCDGM ad a C'3 2---a1D11 21 ..... c, .....

Fa~aý ---- MaP. 1 c2 = aa 2+Pb 2r ,n %A n n

®Cb

d = aa2 +pb 2
d =a'a +d 2 ='ba'a

'a Solve linear
I equations

.... (a2,b2)

Figure 5-4: Example showing how MIXIT works: The source broadcasts Pa and Pb. The destination and the

routers, R1 and R2, receive corrupted versions of the packets. A shaded cell represents a dirty symbol. If

R1 and R2 forward the clean symbols without coding, they generate redundant data and waste the capacity.

With symbol-level network coding, the routers transmit linear combinations of the clean symbols, ensuring

that they forward useful information to the destination.

The objective of our symbol-level codes is to minimize the overhead required to funnel

the clean symbols to their destination. Specifically, most symbols are received correctly by

both R1 and R2. Hence, without additional measures, the routers will transmit the same

symbols to the destination, wasting wireless capacity. To avoid such waste, MIXIT makes

the routers forward random linear combinations of the clean symbols they received. As-

suming ai and bi are the ith symbols in Pa and Pb respectively, router R1 picks two random

numbers a and t, and creates a coded packet Pc, where the ith symbol, ci is computed as

follows:

oai + 3bi if ai and bi are clean symbols

ci = aai if ai is clean and bi is dirty

fbi if ai is dirty and bi is clean.

If both ai and bi are dirty, no symbol is sent. Similarly, R2 generates a coded packet Pd by

picking two random values a' and 3' and applying the same logic in the above equation.

Since R1 and R2 use random coefficients to produce the coded symbols, it is unlikely that

they generate duplicate symbols [58].

When R1 and R2 broadcast their respective packets, Pc and Pd, the destination receives

corrupted versions where some symbols are incorrect, as shown in Fig. 5-4. Thus the des-
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tination has four partially corrupted receptions: Pa and Pb, directly overheard from the

source, contain many erroneous symbols; and Pc and Pd, which contain a few erroneous

symbols. For each symbol position i, the destination needs to decode two original symbols

ai and bi. As long as the destination receives two uncorrupted independent symbols in lo-

cation i, it will be able to properly decode [58]. For example, consider the symbol position

i = 2, the destination has received:

c2 = aa2 + b2

d2 = a2.

Given that the header of a coded packet contains the multipliers (e.g., a and p), the des-

tination has two linear equations with two unknowns, a2 and b2, which are easily solvable

(the details of the decoder are explained in Section 5.7). Once the destination has decoded

all symbols correctly, it broadcasts an ACK, causing the routers to stop forwarding packets.

0 5.4.2 Efficient Symbol-Level Codes

The difficulty in creating a network code over symbols is not the coding operation, but in

how we express the code efficiently. The length of a symbol is small, one or a few bytes.

The MIXIT header in the forwarded packet has to specify how each symbol is derived

from the native symbols so that the destination can decode. If all symbols in a packet are

multiplied by the same number, then effectively we have a packet-level code, which can

be easily expressed by putting the multiplier in the header. However, in MIXIT we want

to code clean symbols and ignore dirty ones; i.e., only clean symbols are multiplied by a

non-zero number.

Consider a simple example where the batch size is K = 2 with the two packets; Pa

and Pb. Say that our forwarder has received two coded packets Pc = aPa + 3Pb and Pd =

0'Pa + 3'Pb. Now our forwarder picks two random numbers vi and v2 and creates a linear

combination of the two packets it received.

P = v1Pc + v2Pd = (vio + v2a')Pa + (vlP + V2/3)Pb
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Thus, the newly generated packet has a code vector il = (via + v2 a', vi + v2 0P'). This

vector would be sufficient to describe the whole packet if the forwarder received only

clean symbols. Specifically, the clean symbol in the jth position in packet P, called sj, is

coded as follows:

sj = vlcj + v2dj, where ci and dj are clean

(via + v2a')aj + (vP1 + v2P')bj

But because some received symbols are dirty, we need a more detailed description of

how individual symbols in the packet P are derived from the native symbols. Depending

on whether the forwarder has cleanly received the jth symbols in Pc and Pd, called cj and dj

respectively, the generated symbol sj might take one of four possible values, with respect

to the native symbols.

(via + v2a)aJ + (Vlf + v2P')bj cj and dj are clean

s l viaaj + vilPbj only cj is clean
Si = (5.1)

v2Iaaj + v2Plbj only dj is clean

0 x aj + 0 x bj cj and dj are dirty

Each different value of the symbol is associated with a different code vector, the header

has to specify for each symbol in a transmitted packet what is the symbol's code vector.

We address this issue using the following two mechanisms.

(1) Run-length encoding: Because wireless errors are bursty [96, 131], a sequence

of consecutive symbols will have the same code vector. We can therefore use run-

length encoding to describe the encoding of the transmitted symbols in an efficient

manner. The header specifies a sequence of runs, each of which is described as

[(Code Vector of run), (Runstart : Runend)]. For example, in Fig. 5-5, the header

of the first outgoing coded packet will specify two runs, [(•yi3), (1, 1000)] and [(aii +

p/32), (1001,1500)].

(2) Pick codes that give longer runs: We force the overhead to stay small by intentionally

discarding clean symbols that fragment our run-length-encoding. Said differently, a for-
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Figure 5-5: Creating coded packets with longer runs. The forwarder received 3 packets with code vectors

vl, v2 and v3. All packets contain dirty symbols represented as shaded areas. Naively coding over all clean

received symbols results in a coded packet with 7 different runs. However, by ignoring some of the clean

symbols, the node can generate coded packets with much fewer runs.

warder can decide to ignore some clean symbols to ensure the header has longer runs of

symbols with the same code vector, and thus can be encoded efficiently.

Consider the example in Fig. 5-5, where the forwarder has received 3 packets, each with

some dirty symbols. Naively, applying the symbol-level network code along with the run-

length encoding described above, we get a coded packet that has seven different runs. But,

we can create fewer runs of longer lengths by ignoring some clean symbols in the coding

procedure. For example, in the first five runs in the naive coded packet, we can ignore

clean symbols from the first and second received packets. As a result, the five runs would

coalesce to a single longer run with the code vector -yv3, where -y is a random multiplier

and i'3 is the code vector of the third received packet. Similarly for the last two runs, if

we ignore clean symbols from the third received packet, we are left with a single longer

run with the code vector avi + 1i3, where a and p are random multipliers and Vi and vi

are the code vectors of the first and second received packets. The resulting coded packet

shown in Fig. 5-5 has only two runs with two code vectors, and requires less overhead to

express.

But, what if the forwarder has to transmit a second coded packet? One option is to

ignore the same set of clean symbols as above, but use different random multipliers,

a', -', •'. We would get a coded packet with two runs and their code vectors being -y'V3

and a'i1 + fl'i 2 . But this transmission will be wasteful, since the symbols in the first run

are not innovative w.r.t the first coded packet the node already transmitted (y' '3 is not lin-

early independent of -yV'f3). The solution is to split the first long run into two smaller runs
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by including clean symbols from the first and second packets, which we had previously ig-

nored. The second coded packet, shown in Fig. 5-5 has 3 runs with 3 different code vectors

V•3'2 + 'v3, Q'1 + ' V3 and a'5l + •3' •. The new packet is innovative w.r.t the previously

transmitted coded packet, and uses lower overhead in describing the codes.

U 5.4.3 Dynamic Programming to Minimize Overhead

We now present a systematic way to minimize the number of runs in a coded packet,

while ensuring that each packet is innovative with respect to previously transmitted coded

packets. We formalize the problem using dynamic programming. Let there be n input

packets, from which we create the naive coded packet, as shown in the previous example.

Say the naive packet contains the runs R 1R 2 ... RL. The optimization attempts to combine

consecutive runs from the naive coded packet into a single run, whose symbols all have

the same code vector by ignoring some of the input clean symbols. Let Cij be the combined

run that includes the runs Ri ... Rj from the naive coded packet. Note that the combined

run Cii is the same as run Ri.

Next, we show that each combined run can be assigned a cost, and that the optimization

problem that minimizes the number of innovative combined runs exhibits the "optimal

substructure" property, i.e., the cost of a combined run can be derived from the cost of two

sub-runs.

The goal is to create an outgoing coded packet out of the smallest number of combined

runs, while ensuring that the information we send out is innovative. Thus, we can formu-

late the cost of a combined run as follows:

Cost(Ci) = in f f(Cij), min {Cost(Cik) + Cost(Ckj)} (5.2)

where f(Cij) is given by:

f / Z I|Ri if Cij is not innovative
f(Cij) = (5.3)

1 (2log S)/8 + K otherwise

Intuitively, the function f(Cij) says that if the combined run Cij is not innovative with

respect to previous transmissions, the cost is the number of symbols in that combined run.

But if the combined run is innovative with respect to previous transmissions, its cost is just
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the number of bytes required to describe it. This requires describing the start and end of

the combined run, which can be done using (2 log S)/8 bytes, where S is the packet size,

and describing the combined run's code vector, which can be done using K bytes, where

K is the batch size. The second component in Eq. 5.2 checks if splitting the combined run

Cij into two smaller runs incurs a smaller cost, and if it does, it finds the best way to split

it.

The forwarder computes the dynamic program top-down using a table to memoize the

costs. Because the algorithm coalesces runs in the naively coded packet, the table has

at most as many entries as there are combined runs. The worst case complexity of the

algorithm is O(L3 ), but in practice it runs faster due to the following heuristic. In Eq. 5.2,

if Cij is innovative, we do not need to check whether splitting it reduces the cost because

f(Cij) will always be lower than the cost of the two sub runs, whose cost will at least be

2f(Cij). Typically, the DP takes under a millisecond to run for a packet with L , 15 - 20.

* 5.5 Congestion-Aware Forwarding

In general, because wireless is a broadcast medium several downstream routers will hear

any given symbol without error. For each symbol, the ideal situation is for the downstream

forwarder with the best path quality to the destination to forward the symbol (after coding

it). For example, in Fig. 5-6(a), routers R1 and R2 hear all the symbols from S1. However,

R2 should be the one to forward the symbols because it can deliver them to the destination

in fewer transmissions.

Path quality is not the only consideration in making this decision because one ulti-

mately cares about the time it takes for a symbol to reach the destination. If a path has

high quality (as measured by a low error rate), but also has long queues at its forwarders,

it would not be advisable to use it. Fig. 5-6(b) shows an example where a second flow

being forwarded through R2 causes R2's queues to grow, so having R1 forward some of

its traffic would improve performance and avoid creating a bottleneck at R2.

These requirements suggest the following approach for a node to decide how its down-

stream forwarders should forward on its behalf. First, for each path (via a downstream

node), determine the expected time it would take to successfully send a symbol along that

path. This time, which we call C-ETS (for "congestion-aware ETS"), incorporates both path
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Figure 5-6: Example of congestion-aware forwarding. If there is a single flow in the network, S1 should

always send all it's traffic through R2 since he has the better link to the destination. But if R2 is involved

in a second flow, then S1 should also send some of his traffic through R1 to avoid creating a bottleneck at

R2.

quality and node queue lengths (backlog). C-ETS via a downstream node i to a destina-

tion d is computed as C-ETS(i, d) = PQ(i, d) + kQ(i). Here, PQ is the path quality from

i to d, which depends on the symbol delivery probabilities and captures the time taken

to deliver a symbol to the destination in the absence of any queueing. In our implemen-

tation, we approximate this term using the ETS metric (defined as the expected number

of transmissions required to deliver a symbol), instead of using a more exact formula for

the expected number of transmissions using opportunistic routing [18].2 Q(i) is the total

number of symbols (backlog) across all flows queued up at node i yet to be transmitted (k

is a constant dimensional scaling factor that depends on the time it takes to transmit one

symbol).

We now discuss how a node decides how many of its queued up symbols, Q(i, f) for

flow f, each downstream node should forward. (Because of the random network code, we

don't have to worry about downstream nodes sending the exact same information.) The

high-level idea is to favor nodes with smaller C-ETS values, but at the same time appor-

tioning enough responsibility to every downstream node because no link or path is loss-

free in general. Each node assigns responsibility to its downstream nodes by assigning

credits. Credit determines the probability with which the downstream node should for-

ward symbols belonging to the flow when they receive transmissions from the node. The

downstream node with best the C-ETS has credit 1; the next-best node has credit (1 - pi),

2Computing the ETS metric is simpler and does not change the paths used by much.
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where pl is the symbol delivery probability to the best downstream node; the best one af-

ter that has credit (1 - pl)(I - P2), and so on. What we have done here is to emulate, in

expectation, the best downstream node sending all the symbols it hears, the next-best one

only forwarding a fraction that the best one may not have heard, and so on, until all the

nodes down to the worst neighbor have some small responsibility.

How many transmissions should the node make? The node should make enough trans-

missions to make sure that every queued up symbol reaches some node with a lower C-

ETS metric. If the symbol delivery probability to downstream neighbor j is pj, then the

probability that some downstream neighbor gets any given symbol is P = 1 - H-j (1 - pj).

Hence in expectation, the number of coded symbols from a batch that a node would have

to send per queued up symbol is equal to 1/(1 - P) before some downstream node gets

it. Each node achieves this task by maintaining a decrementing per-flow Transmit-Counter,

throttling transmission of the batch when its value reaches 0.

The above intuitions are formalized in Alg. 3.

3 Computing credit assignment at node i
while Q(i, f) > 0 do

Update C-ETS of downstream nodes from overheard packets
Sort downstream nodes according to their C-ETS
Pleft = 1
for node j in set of downstream nodes sorted according to C-ETS do

credit.assgn(j) = P1eft
Pleft = Pieft * (1 - p(i, j))

end for
Increment Transmit.Counter of flow f by 1/(1 - Pe ft)
Decrement Q(i, f) by 1

end while

Distributed protocol: Each node, i, periodically measures the symbol delivery proba-

bilities p(i, j) for each of its neighbors via probes. These probabilities are distributed to its

neighbors using a link state protocol. Node i includes the computed credit.assgn for each

of its downstream nodes in the header of every packet it transmits. When downstream

nodes receive a packet, they update their Q(i, f) for that flow by the amount specified in

the header. Further, whenever node i transmits a packet, it includes its C-ETS to the corre-

sponding destination in the header. Upstream nodes which overhear this packet, use the

C-ETS value in their credit assignment procedure.

The algorithm above improves on the routing algorithms used in prior packet based
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opportunistic routing protocols like MORE [18] in two ways. First, we use queue back-

log information explicitly to avoid congested spots and balance network-wide load; prior

work ignores congestion. Second, the algorithm works at the symbol-level, which is the

right granularity for performing opportunistic routing on symbols. The algorithm is sim-

ilar in spirit to theoretical back-pressure [106, 28] ideas, but the exact technique is different

and simpler. We also present an actual implementation and evaluation of this algorithm in

Section 5.9.

* 5.6 Increasing Concurrency

Current wireless mesh networks allow a node to transmit only when they are sure that they

can deliver the packet to the intended next hop with high probability. MIXIT however, has

looser constraints:

1. It does not require the delivery of correct packets; it can work with partially correct

packets.

2. Because of its opportunistic nature, MIXIT only needs to ensure that every symbol

reaches some node closer to the destination than the transmitter; it does not need to

ensure that a specific node gets the correct symbols.

MIXIT exploits the above flexibility to increase concurrency without affecting end-to-

end reliability, improving throughput by enabling a more pipelined transmission pattern.

MIXIT's concurrency design has two components: determining when concurrent transmis-

sions are beneficial and building a distributed protocol to take advantage of concurrency

opportunities. We describe both components below.

* 5.6.1 When Should Two Nodes Transmit Concurrently?

MIXIT, similar to conflict maps [127], determines if two nodes should transmit concur-

rently by predicting the throughput under concurrent transmissions and comparing it to

the throughput when the nodes transmit separately. The nodes independently pick the

strategy with the higher expected throughput. Specifically, let nl and n2 be two nodes

transmitting packets of two flows 1 and k. Ne(nl, 1) and Ne(n2, k) are the corresponding

sets of downstream nodes for n1 and n2 for the respective flows. Symbol delivery proba-

bilities on any link will depend on whether these nodes transmit concurrently or not. Let
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pC(i, j) be the symbol delivery probability on link (i, j) when the two nodes transmit con-

currently and p(i, j) when they don't. The symbol delivery likelihoods achieved by node

nl for flow 1 with and without concurrent transmissions are given by

DC(nl,1) = 1 - (HIjENe(nWl,)( 1 - pc(n1, j))) (5.4)
D(nl, 1) = 1 - (H-jENe(n,1) (1 - p(nl,j)))

The symbol delivery likelihood is the probability that at least one node in Ne(nl, 1)

receives the symbol correctly when node n1 transmits. The symbol delivery likelihood

depends on other concurrent traffic, and could differ if n2's transmission interferes with

nl's. Similarly, n2 can compute its symbol delivery likelihood under both conditions.

Each node then computes the following concurrency condition:

DC(ni, 1) + DC(n2, k) > (D(nl, 1) + D(n2, k))/2 (5.5)

The above equation compares overall delivery likelihood under the two scheduling strate-

gies. If the above condition is true, it implies that more information gets delivered per time

slot when nodes transmit concurrently than when they transmit separately. Each node in-

dependently evaluates the above condition and decides its strategy.3

U 5.6.2 Estimating Symbol Delivery Probabilities

The concurrency condition above depends on the symbol delivery probabilities. Empir-

ically measuring these probabilities for all pairs of concurrent transmissions has O(N 2)

cost, where N is the number of nodes. Instead, MIXIT uses O(N) empirical signal-to-noise

ratio (SNR) measurements to predict these probabilities for any set of concurrent transmis-

sions. The approach works as follows.

1. The SNR profile of the network is measured when there is little traffic. Each of the

N nodes broadcasts probe packets in turn, while the rest of the nodes measure the

received SNR and the fraction of correctly received symbols. The measurements are

of the form SNR(i,j) and p(x), where SNR(i,j) is the received SNR at j when i

transmits and p(x) is the fraction of correct symbols received when the SNR is x.

3The above conditions assumes a single radio transmission bit-rate; it can be adapted easily to handle
variable bit-rates.
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Figure 5-7: Prediction error CDF. The SNR based prediction model accurately predicts the symbol delivery

probabilities under concurrent transmissions for 72% of the cases. The inaccuracies are primarily in cases

where (SNR(nl, m) - SNR(n2, m)) < 4dB, i.e., when concurrent transmissions will result in a signal being

received with low SINR at the receivers.

2. Nodes use the SNR profile to predict the signal-to-interference+noise ratio (SINR) at

any node under concurrent transmissions. Specifically, if nodes n1 and n2 transmit

concurrently, the SINR at node m is computed as SINR(nl, n2, m) = SNR(nl, m) -

SNR(n2, m) assuming SNR(nl, m) > SNR(n2, m) > c, where c is a threshold SNR

below which no symbol can be decoded. The symbol delivery probability is then

predicted to be p(SINR(nl, n2, m)), i.e., it is the same as if the signal was received at

m with SNR of SINR(nl, n2, m).

Fig. 5-7 plots the CDF of prediction errors using the above model. The results are from

a 25-node testbed of GNURadio software nodes with USRP frontends, with two concur-

rent senders transmitting 802.15.4 packets. The figure demonstrates that the prediction

model is quite accurate, with the inaccurate predictions occurring at low SINR (< 4 dB).

But because the symbol delivery probability at low SINR is negligible, inaccuracies in the

low SINR region do not affect performance. Furthermore, unlike prior proposals [120, 111]

that try to predict packet delivery rates using a SINR model, MIXIT's model predicts sym-

bol delivery likelihoods. The latter is simpler since packet delivery is a complex function

of error rates, nature of interference etc. Finally, the concurrency condition is a binary deci-

sion, even if the predicted probabilities are slightly off, it is unlikely to affect the decision.

r
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Figure 5-8: MIXIT's error correcting code design. The source preprocesses the original data packets with

a MRD code in groups of B symbols and transmits them. The network applies symbol-level network

coding on clean symbols. Erroneous clean symbols may end up corrupting all the received symbols at the

destination, but the destination can use the MRD code to decode most of the original data symbols.

* 5.6.3 Distributed Channel Access Protocol

A node uses a two-step procedure when it has packets enqueued for transmission. First, if

it has not heard any on-going transmissions, it simply goes ahead and transmits. But if it

has heard an on-going transmission, then it uses Eq. 5.5 to determine if it should transmit

concurrently or defer until the on-going transmission has finished.

How does a node know which other nodes are transmitting at that time instant? Similar

to prior work [65, 127], MIXIT encapsulates every packet with a header and trailer. The

header includes the identity of the transmitting node, and the flow to which the packet

belongs. Other nodes overhearing a packet use the header to identify the beginning of an

active transmission and the trailer to signify the end.

* 5.7 Error Correction

Up to now we have ignored the difference between clean and correct symbols and fo-

cused on delivering clean symbols to the destination. But clean symbols can be incorrect.

Further, an erroneous symbol which was incorrectly classified clean may end up corrupt-

ing other correct clean symbols due to network coding. Thus the destination potentially,

could get all symbols corrupted due to a single clean but erroneous symbol. Fortunately,

MIXIT comes with in-built error correction capability which allows the destination to re-

cover the original correct symbols. The error-correcting code is not affected even if all re-

ceived symbols are corrupted, the only thing that matters is how many erroneous symbols

were incorrectly classified clean. The code guarantees that if m erroneous symbols were



incorrectly classified clean, then the destination needs only B + 2m symbols to recover the

original B symbols. This guarantee is theoretically optimal [136, 15]. The code is simple,

rateless and end-to-end. Routers inside the network are oblivious to the existence of the

error-correcting code and are only required to perform simple network coding operations.

MIXIT's error-correcting code is built on the observation that random network coding

is vector space preserving [76]. Specifically, if we model the original data injected by the

source as a basis for a vector space V, then the random network code acts only as a linear

transformation T on the vector space. But vector spaces are preserved under linear trans-

formations if no errors occur, and if errors do occur, the received vector space U is very

close to the transmitted vector space V under an appropriately defined distance metric on

vector spaces.

Recent work [76, 118, 62] has studied the problem of making network coding resilient

to byzantine adversaries injecting corrupted packets. It has observed that low complexity

Maximum Rank Distance (MRD) codes [43], with a small modification can be applied to

exploit the vector space observation and correct adversarial errors. The network coding in

MIXIT is different, but the basic algorithm in MRD can be adapted to work with MIXIT's

symbol-level network code. Fig. 5-8 shows the high level architecture of how MRD codes

are integrated within MIXIT.

E 5.7.1 Fundamentals of Rank Codes

In this section we describe some fundamentals of rank-codes that were introduced by

Gabidulin in 1985 [43]. Most of the material in this section can be found in [118, 43, 44, 112],

we present it here for completeness.

Let x be a codeword of length n with elements from GF(qN), where q is a power of a

prime. Let us consider a bijective mapping

A: GF(qN)n - A- (5.6)

Definition 5.1 (Rank Metric over GF(q)) The rank of x over q is defined as r(xlq) = r(AIq).

The rank function r(AIq) is equal to the maximum number of linearly independent rows or columns

of A over GF(q).

It is well known that the rank function defines a norm. Indeed, r(xjq) _ 0, r(xlq) =
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0 = x = 0. In addition, r(x + ylq) • r(xlq) + r(ylq). Furthermore, r(axlq) = lalr(xlq) is

also fulfilled, if we set lal = 0 for a = 0 and lal = 1 for a - 0.

Definition 5.2 (Rank Distance) Let x and y be two codewords of length n with elements from

GF(qN). The rank distance is defined as distr(x, y) = r(x - ylq).

Similar to the minimum Hamming distance, we can determine the maximum rank dis-

tance of a code W.

Definition 5.3 (Minimum Rank Distance) For a code W the minimum rank distance is given

by:
dr := min{distr(x, y)Ix E W,y E W, X : y}, (5.7)

or when the code is linear:

d, := min{r(xlq)Ix E W, x = 0}. (5.8)

Let W(n, k, dr) be a code of dimension k, length n, and minimum rank distance dr.

It was shown in [43] that there also exists a Singleton-style bound for the rank distance.

Theorem 5.1 shows, how the minimum rank distance dr is bounded by the minimum Ham-

ming distance dh and by the Singleton bound.

Theorem 5.1 (Singleton-style Bound) For every linear code W(n, k, dr) E GF(qN)n, dr is up-

per bounded by:

dr < dh < n- k + 1 (5.9)

Definition 5.4 (MRD Code) A linear (n, k, dr) code W is called Maximum Rank Distance

(MRD) code, if the Singleton-style bound is fulfilled with equality.

In [43], a constructive method for the parity check matrix and the generator matrix of

an MRD code is given as follows:

Theorem 5.2 (Construction of MRD Codes) A parity check matrix H which defines an MRD
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code is given by:

ho hi ... hn-

hq h ... h
H 22 2 h 2

H= h hn- .

hqd-2 qd-2 d-2

LO 1 n-1

(5.10)

and the corresponding generator matrix can be written as:

go 91 ... gn-1

90 91 ... gnl
q2 2 q2

g90 g 9 g n-1

k-1 k-1 q k-1

go 9 i " gn-i .

(5.11)

where the elements hi, hi,..., h,_ 1 E GF(qN) and 90,91, ... , gn-1 E GF(qN) are linearly inde-

pendent over GF(q).

In the following we define %MRD(n, k, dr) as an MRD array code of length n, dimension

k and minimum rank distance d, = n - k + 1.

The decoding of Rank-Codes with the modified Berlekamp-Massey algorithm can be

done based on linearized polynomials.

Definition 5.5 (Linearized Polynomials) A linearized polynomial over GF(qN) is a polyno-

mial of the form
N(L)

L(x) = LpqP'  (5.12)
p=O

where Lp, GF(qN) and N(L) is the norm of the linearized polynomial. The norm N(L) charac-

terizes the largest p where Lp, , 0. Let 0 be the symbolic product of linearized polynomials defined

as:

F(x) 0 G(x) = F(G(x)) = (fi )xqP' (5.13)
p=0 i+l=p

where j = N(F) + N(G). It is known that the symbolic product is associative and distributive,

but it is non-commutative.

G =



* 5.7.2 Berlekamp-Massey Algorithm for Rank-Codes

In this section, we describe the decoding algorithm for Rank-Codes with the modified

Berlekamp-Massey algorithm. For simplicity we will define the minimum rank distance

in the following sections by d. Let c, r and e be the codeword vector, the received vector,

and the error vector of length n with elements from GF(qN), respectively. The received

vector is r = c + e. Let v = r(elq) be the rank of the error vector e. Now, we present a

method of finding the correct codeword, if 2v < dr.

We can calculate the syndrome s by:

s = r.HT = (c + e)HT. (5.14)

Let us define a (v x n) matrix mY of rank v whose entries are from the base field GF(q).

Thus, we can write

e= (Eo, E,..., Ev_1)Y, (5.15)

where Eo, E1 ,..., Ev- 1 E GF(qN) are linearly independent over GF(q). Now, we define

the matrix Z as

ZT = YHT =

Z,-1 Zqv-

qd-2-

. ZO

qd-2
.. z 1

qd-2
v-,_

1

(5.16)

It can be shown that the elements z0 , z, ... , Zv-1

over GF(q). Hence, equation 5.14 can be written as:

(So, S 1 , ... , Sd-2)= (Eo, El,..., Ev-1).Z T

v-1

j= Ej0z
j=0

E GF(qN) are linearly independent

(5.17)

(5.18),p= 0,...,d - 2.

By raising each side of the equations to the power of q-P we get:

v-1

= E zj ,p=O,...,d - 2.
j=0

(5.19)
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Hence, we have a system of d - 1 equations with 2 - v unknown variables that are

linear in zo, zl,..., zv,1. Note that also the rank v of the error vector is unknown. It is

sufficient to find one solution of the system because every solution of Eo, E1,..., E- 1 and

zo, l, ... , , z1 results in the same error vector e.

Let A(x) = EZ 0 Aj x q be a linearized polynomial, which has all linear combinations of

E0, El,..., Ev, 1 over GF(q) as its roots and A0o = 1. We call A(x) the row error polynomial.

Also, let S(x) = E•-j Sj X q be the linearized syndrome polynomial.

Now, it is possible to define the key equation by the next theorem.

Theorem 5.3 (Key Equation)

A(x) 0 S(x) = F(x) (mod xqd-l) (5.20)

where F(x) is an auxiliary linearized polynomial that has norm N(F) < v.

Proof. From the definition of linearized polynomials we know that

v+d-2

A(x) 0 S(x) = A iS' XqP .  (5.21)
p=0 i+l=p

Since all coefficients p > d - 1 vanish because of the modulo operation of equation 5.20 and

the symbolic product of two linearized polynomials results in another linearized polyno-

mial, we just have to prove that Fp = 0 for v < p _ d - 2.

p p v-1

i+l=p i=0 i=0 \s=0

v-1 P v-1

= z' AiE(= zq'A(E) = 0
s=0 i=O s=0

(5.22)

because p is equal to v = N(A) or larger and Eo, E1,..., E,_1 are roots of A(x).
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Hence, we have to solve the following system of equations to get A(x), if 2.v < d.

-Sp = Ai Sqi, p=v,... ,2v -1 (5.23)
i= 1

This can be written in matrix form as:

Av

Av-1

Av-2

A1

-S,

- Sv+l
-Sv+2

-- S2v-1

(5.24)

with S defined as:
S

q v  S. 
q l

= SqV ... Sv±l (5.25)

S1  S . 2v-2

It can be shown that the matrix S is nonsingular. Thus, the system of equations has a

unique solution. This solution can be efficiently found with a modified Berlekamp-Massey

algorithm. The algorithm can be implemented completely in hardware using shift regis-

ters [112]. Here we summarize the different steps of the decoding procedure.

1. Calculate the syndrome with equation 5.14.

2. Solve the key equation 5.24 with the modified Berlekamp-Massey algorithm to obtain

A(x).

3. Calculate the linearly independent roots E 0, El,..., Ev- 1 of A(x). This can be done

with the algorithm described in [7].

4. Solve the linear system of equations 5.19 for the unknown variables zo, z1 ..., Zv-, 1.

5. Calculate the matrix Y using equation 5.16.

6. Calculate the error vector e by equation 5.15 and the decoded codeword 8 = r - e.
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* 5.7.3 Decoding Rank-Codes with Row Erasures

In MIXIT, the destination might want to decode packets as soon as it has enough infor-

mation, i.e., use the network code as a rateless code. In this case, if 1 out of n packets are

received, then we can treat the missing n - 1 packets as row erasures in the matrix. In this

case, the decoder has to correct erasures and errors. This involves a slight modification

of the previous algorithm, essentially adding a preprocessing step. The number of row

erasures is specified as s, and the rank of the error matrix whose erased rows are filled

with zeros is b. We can find the correct codeword, if s, + 2b < d. Let O(x) be a linearized

polynomial that has all linear combinations of the row erasures as its roots and bo = 1.

,O(x) is called the row erasure polynomial.

Let v = s, + b and let sr + 2b < d. We define A(x) as the row errata polynomial that

has all linear combinations of E 0o, El,..., E,_1 as roots. Without loss of generality we set

E 0, E 1,..., Es, -1 as the row erasures and E,,, E,,+1,... , Ev1 as the rank errors. The mod-

ified key equation 5.24 for the case with row erasures can be written as:

A(x) 0 S(x) = F(x) mod xqd-l (5.26)

where the norm N(F) < v. The proof is similar to the proof in Section 5.7.2. Again we can

represent equation 5.26 in matrix form:

AI

AV1

-SV

-SV+1

--Sb+v-l_

(5.27)

with Sr defined as:

Soq Sq - . S qSr1 v-1
Sqv q"-1 ...

Sr = (5.28)

zQv ,-1 1
b-1 b b+v-2_

Additionally, we know that the row erasures Eo, El,..., E,,_1 are roots of A(x). Hence,
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we get the following system of equations:

Eo Eo - -A, Eo

S= (5.29)

Eq 1  Eq•1  A1  Esr-1

It is possible to show that the sr + b equations for the unknown variables A1, A2, ... 7 ,v

are linearly independent and therefore have a unique solution. Also it is possible to show

that the Berlekamp-Massey algorithm solves this system, if r and Lsr are both initialized

with sr and the row errata polynomial A(Sr) (x) is initialized with /(x).

The decoding procedure of Rank-Codes with row erasures can be summarized as fol-

lows.

1. Fill the erased rows of the codeword with zeros or any other symbols and calculate

the syndrome by equation 5.14.

2. Solve the key equation 5.27 and 5.29 with the Berlekamp-Massey algorithm for row

erasures.

Steps 3-7 are equivalent to the decoding algorithm described in Section 5.7.2.

0 5.7.4 Discussion

Finally, we summarize the main differences between the theoretical literature on decoding

MRD codes and MIXIT.

Symbol-level network coding along with the end-to-end MRD code can function as

a rateless error-correcting code. The destination can attempt to decode the original

data vector Di as soon as it receives B < K coded symbols for that position. If no

erroneous symbols had seeped through, then it will be able to recover the original

correct data. If not, it simply waits to receive more coded symbols until it can decode.

The code guarantees that if there were m erroneous symbols incorrectly classified as

clean which seeped through for that position, then the destination can decode as

soon as it receives B + 2m coded symbols for that position, it does not have to wait

to receive K symbols.
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MAC HEADER ..-- SRCP I DSTIP
FLOWID

MIXIT HEADER BATCH NO
% NUM RUNS

START END I CODE VECTOR

Encoded Data X NUM FORWARDERS

.............. FORWARDER ID FRD CREDIT

CODE VECTOR
BLOCK

FORWARDER
BLOCK

Figure 5-9: MIXIT's packet format.

* The rateless code allows MIXIT to provide flexible reliability semantics. Since the

code works on groups of B symbols, there is no fate sharing across groups of B

symbols. It's likely that when the destination receives a few packets, it will be able

to decode most of the groups of B symbols, but not some since they had more er-

rors. Depending on the application, the destination could wait to receive more coded

symbols until it can decode, or ignore the undecoded symbols and ask the source to

proceed to the next batch by sending a batch-ack to the source.

i 5.8 Implementation

* 5.8.1 Packet Format

MIXIT inserts a variable length header in each packet, as shown in Fig. 5-9. The header is

also repeated as a trailer at the end of the packet to improve delivery in the face of colli-

sions [65]. The header contains the source and destination addresses, the flow identifier,

and the the batch identifier. These fields are followed by a variable length Code Vector

Block, which describes how the symbols in this packet have been created. It has the format

(Code Vector, Run Start, Run End); the values of these fields are obtained using the algo-

rithm in Section 5.4.2. Following that is the variable length Forwarder Block that lists all the

neighbors of this node ordered according to their C-ETS metrics. For each neighbor, the

header also contains its credit assignment as described in Section 5.5. The Code Vector Block

and the Forwarder Block are computed and updated by the forwarders. The other fields are

initialized by the source and simply copied by each forwarder.

__ I

MIXIT TRAILER
MAC TRAILER
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Section Result

Table 5-1: A summary of the major experimental contributions of this chapter.

0 5.8.2 Node State

Each MIXIT node maintains per-flow state, which is initialized when the first packet from

a flow that contains the node ID in the Neighbor Block arrives. The per-flow state includes:

* The batch.buffer, which stores the received clean symbols for each batch. This buffer

is at most K x S, where K is the batch size and S the packet size.

* The credit.counter, which stores the number of credits assigned to the node by the

upstream neighbors for the batch. Upon the arrival of a packet from a node with a

higher C-ETS, the node increments the credit by the corresponding credit assignment

as indicated in the packet header.

* The transmit-counter, which is incremented by the credit assignment algorithm in

Section 5.5. After a packet transmission, it decrements by one.

N 5.8.3 Control Flow

MIXIT's control flow responds to packet receptions. On the receiving side, whenever a

packet arrives, the node checks whether it's ID is present in the Forwarder Block. If it is,

then it updates the credit-counter for the corresponding batch of that flow by the credit

Section 

Result

Experiment
MIXIT in a lightly
loaded network
Impact of concurrency

Impact of symbol level
diversity
Impact of mistake rate
threshold

Impact of batch size

MIXIT in a congested
network
Impact of forwarding
algorithm

5.9.2 MIXIT improves median throughput by 2.1 x over
MORE and 2.9 x over SPR

5.9.2 MIXIT exploits loose packet delivery constraints to
increase concurrency.

5.9.2 MIXIT with plain carrier sense still outperforms
MORE by 1.5 x.

5.9.2 MIXIT's error correcting code allows us to be flexi-
ble with the mistake rate. This reduces the fraction
of correct symbols incorrectly labeled dirty and in-
creases throughput.

5.9.2 MIXIT is insensitive to batch size, providing large
gains for sizes as small as 8.

5.9.3 MIXIT improves median throughput by 2.8 x over
MORE and 3.9 x over SPR.

5.9.3 MIXIT's congestion-aware forwarding prevents
hotspots and keeps network capacity from drop-
ping during congestion.
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assigned to it in the Forwarder Block. Next, the node picks out clean symbols from the

received packet using the SoftPHY hints and adds them to the batch.buffer. If the credit is

greater than one, it runs the credit assignment algorithm from Section 5.5. It then creates

transmit.counter coded packets using the technique in Section 5.4.2 and enqueues them.

The MAC layer transmits these packets using the rule discussed in Section 5.6.1.

When the destination node receives a packet, it checks the symbol positions for which

it has received at least B coded symbols and decodes whichever of them it can. It sends a

batch-Ack to the source when it has decoded the required fraction (determined by the ap-

plication's reliability requirements) of original symbols. The batch-Ack is sent periodically

until packets from the next batch start arriving.

* 5.9 Evaluation

We compare MIXIT with two routing protocols for wireless mesh networks: MORE, a state-

of-the-art packet-level opportunistic routing protocol, and SPR, single path routing using

the commonly used ETX metric. Our experimental results are summarized in Table 5-1.

* 5.9.1 Testbed

We use a 25-node indoor testbed deployed in a lab. Each node is a Zigbee software radio.

The hardware portion of the node is a Universal Software Radio Peripheral [59] with a

2.4 GHz daughterboard, the remainder of the node's functions (demodulation, channel

decoding, network coding etc) are implemented in software. The peak data rate on the link

is 250 Kbits/s when there are no other transmissions in progress. Paths between nodes are

between one and five hops long, and the SNR of the links varies from 5 dB to 30 dB. The

average packet loss rate on links in our network is 23% for 1500 byte packets.

* 5.9.2 Single Flow

Throughput Comparison

Method: We run SPR, MORE, and MIXIT in sequence between 120 randomly picked

source-destination pairs in our testbed. Each run transfers a 5 MByte file. The batch size of

MIXIT is 12, but the error-correction preprocessing stage described in Section 5.7 converts

it into 16 packets. To make a fair comparison, MORE uses a batch of 16 packets. We use
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the same batch sizes for MIXIT and MORE for all other experiments unless specifically

noted otherwise. The packet size for all three protocols is 1500B. The mistake rate 7 for

MIXIT is fixed at 5% and the symbol size for MIXIT is 6 bytes unless otherwise noted. Be-

fore running an experiment, we collect measurements to compute pairwise packet delivery

probabilities, which are then fed to SPR and MORE to be used in their route computations.

The same measurement packets are used by MIXIT to compute the network's SNR profile

as described in Section 5.6. We repeat the experiment for each source-destination pair five

times and report the average throughput for each scheme.

Results: Fig. 5-10 plots the CDF of the throughput taken over 120 source-destination

pairs in our testbed. MIXIT provides a median throughput gain of 2.1 x over MORE and

2.9x over SPR.

We note that MIXIT improves performance across the entire throughput range. Packet-

based opportunistic routing protocols, like MORE, provide large throughput gains for

dead spots, i.e., scenarios where all paths between the source and destination are of poor

quality. The gains for high quality paths were relatively minor [12, 18]. Both MORE and

ExOR exploit diversity at the packet level to build better quality links out of many bad

links. But for source-destination pairs that are connected via good links, diversity does not

help. Naturally, this makes one wonder whether MIXIT's gains over packet based oppor-

tunistic routing protocols arise from its ability to exploit concurrency, a question that we

address in the next section.
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Figure 5-10: Throughput comparison. The figure shows that MIXIT has a median throughput gain of 2.1 x

over MORE, the state-of-the-art packet level opportunistic routing protocol, and 2.9x over SPR, a single

path routing protocol based on the ETX metric.



Where do MIXIT's Throughput Gains Come From?

MIXIT exploits both wireless diversity and concurrent transmissions. We would like to

measure how much each of these components contributes to MIXIT's throughput gains.

Method: We first compare MIXIT with a modified version of MORE that takes advan-

tage of concurrency at the packet level, which we call MORE-C. Like MORE, MORE-C

performs packet based opportunistic routing. But MORE-C also allows nodes to trans-

mit concurrently. To check whether two transmissions should be transmitted concurrently,

MORE-C uses the same algorithm used by MIXIT and described in Section 5.6, but after it

replaces symbol delivery probabilities with packet delivery probabilities.
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Figure 5-11: Impact of concurrency. The figure shows the throughput of MIXIT, MORE, and a concurrency-
enabled version of MORE which we term MORE-C. Clearly concurrency helps but it is not sufficient to
achieve the same throughput as MIXIT.

Results: Fig. 5-11 plots the CDF of the throughputs of MIXIT, MORE, and MORE-C

taken over the same source-destination pairs as before. MIXIT provides a median through-

put gain of 1.7x over MORE-C. The main result is that even when compared against a

protocol that exploits both diversity and concurrency like MORE-C, MIXIT still does sig-

nificantly better. The only extra property that MIXIT has beyond MORE-C is its ability to

work at the symbol level. Is the median gain of 1.7x over MORE-C due mainly to MIXIT's

ability to exploit clean symbols, i.e., is symbol-level diversity the dominant contributor to

MIXIT's overall throughput gain?

Method: To answer the above question, we prevent MIXIT from aggressively exploiting

concurrent transmissions and use plain carrier sense. The intent is to limit its gains over
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MORE to be from being able to perform opportunistic routing over clean symbols. We call

the resulting version MIXIT-CS.
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Figure 5-12: Throughputs for MIXIT with CS. The figure shows the throughput of MIXIT, MORE, and
MIXIT-CS, a version of MIXIT which uses plain carrier sense and can only take advantage of symbol-
level diversity. MIXIT-CS still performs better than MORE due to its ability to exploit long opportunistic
receptions but with a few errors in them.

Results: Fig. 5-12 plots the CDF of the throughputs of MIXIT, MIXIT-CS and MORE.

MIXIT-CS provides a median throughput gain of 1.5 x over MORE, i.e., significantly less

gain than MIXIT. Thus, symbol-level diversity is not the dominant contributor to MIXIT's

throughput gains. Indeed, comparing Fig. 5-12 with Fig. 5-11 shows that the overall gain of.

MIXIT over MORE is roughly Gain of MIXIT-CS over MORE x Gain of MORE-C over MORE,
i.e. 1.5 x 1.4 = 2.1. The multiplicative effect is due to the symbiotic interaction between

concurrency and symbol-level opportunistic routing; concurrency tries to run the medium

at high utilization and hence increases symbol error rate. But when the symbol error rate
becomes high, almost every packet will have some symbols in error causing the whole
packet to be dropped. Consequently, trying to exploit concurrency with a packet level
protocol is limited by nature. Only a protocol that filters out incorrect symbols can push
concurrency to its limits.

Impact of Letting More Errors Through

Method: We evaluate how the threshold on classifying clean symbols affects throughput.
As explained in Section 5.3, MIXIT has the flexibility to choose the threshold mistake rate
y. We vary this threshold and compare the average throughput. For the Zigbee protocol,
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Figure 5-13: Impact of changing the mistake rate. The figure shows that many mistake rate thresholds

provide significant throughput gains and hence MIXIT performs reasonably well even if the network is

configured with a suboptimal threshold.

the PHY symbol is 4 bits long, while the MIXIT symbol size is 6 bytes.

Results: Fig. 5-13 plots the average throughput across all source-destination pairs for

different mistake rates. The average throughput surprisingly increases as we let more

errors through! It peaks when the mistake rate is around 5% and drops at higher error

rates.

This may sound counter intuitive, but recall that we are talking about a probability of

error; if the router would know for sure which PHY symbols are incorrect, the best it can

do is to drop all incorrect PHY symbols. But a PHY symbol that has a 5% chance of being in

error has also a 95% chance of being correct. For our topology, at 5% mistake rate, the cost

of correcting the error end-to-end balances the opportunity of exploiting correct symbols

that made it to their next hops, maximizing the throughput.

The right mistake rate threshold depends on the network. We assume that the admin-

istrator calibrates this parameter for her networks. A large mistake rate like 30% does not

make sense for any network.4 The results however show that a wide range of choices

provide good throughput and outperform packet-based opportunistic routing.

Impact of Batch Size

We evaluate whether MIXIT's throughput is sensitive to batch size. Fig. 5-14 plots the

throughput for batch sizes of 8,12,16 and 32. The throughput is largely insensitive to the

4Even under optimal conditions, it takes at least two symbols to correct each incorrect symbol [136] and

hence a mistake rate higher than 33% would never make sense.
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Figure 5-14: Impact of batch size. The figure shows the CDF of the throughput achieved by MIXIT for
different batch sizes. It shows that MIXIT is largely insensitive to batch sizes.

batch size. The slight drop off at lower batch sizes is primarily because of higher over-

head. A bigger batch size allows MIXIT to amortize the overhead over a larger number of

packets, increasing throughput. Insensitivity to batch sizes allows MIXIT to vary the batch

size to accommodate different transfer sizes. For any transfer larger than 8 packets, MIXIT

shows significant advantages. Shorter transfers can be sent using traditional routing.

Comparison with Fragmented CRC

Method: MIXIT achieves significant gains due to its ability to perform opportunistic rout-

ing on clean symbols, which are classified using SoftPHY hints. We now investigate how

much benefit we obtain from using SoftPHY. An alternative to SoftPHY is a fragmented

CRC scheme [46]. The scheme splits each packet into multiple fragments, and sends mul-

tiple checksums per packet, one per fragment. This scheme allows the routers to identify

which parts of a packet are correct and then apply symbol-level network coding on them.

Fragment size is a design choice that affects end-to-end throughput. We pick 50 bytes to be

the fragment size because it provides the highest median throughput in our experiments.

Results: Fig. 5-15 plots the CDF of throughputs obtained with MIXIT using the Soft-

PHY interface and MIXIT using the fragmented CRC scheme. The SoftPHY scheme has

a median throughput gain of 56% over the fragmented CRC scheme. The main reason

the fragmented CRC scheme performs worse is because of fate sharing across the entire

fragment. Random bit errors are quite common on long lossy links as well as short high
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Figure 5-16: Average throughput with multiple active flows for MIXIT, MORE, and SPR. The figure shows

that MIXIT's throughput scales as offered load increases until the network is saturated. MORE and SPR
become similar as load increases and perform worse than MIXIT because of their inability to exploit con-
currency opportunities.

quality links in the presence of concurrent transmissions. The fragmented CRC scheme

wastes entire fragments, while the SoftPHY based scheme is more efficient in discarding

incorrect bits.

U 5.9.3 Multiple Flows

Throughput Comparison

Method: We run MIXIT, MORE and SPR in sequence, varying the number of random

active flows in the network. The rest of the setup is similar to the single flow case. We run
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Figure 5-17: The role of congestion-aware forwarding. The figure shows that congestion-aware forwarding
is particularly important when the number of active flows is large.

50 experiments for each choice of number of flows, with each experiment repeated 5 times.

We calculate the average throughput for each run.

Results: Fig. 5-16 plots the average throughput for MIXIT, MORE, and SPR with in-

creasing number of flows. We see that MIXIT's throughput gain generally increases with

load, and at its peak reaches 2.8x over MORE and 3.9x over SPR.

The higher gains as load increases are due to MIXIT's ability to aggressively exploit

concurrency and perform congestion-aware forwarding. Both MORE and SPR, which rely

on carrier sense, become conservative in accessing the medium as the number of flows in-

creases. Thus, they cannot fully exploit the spatial diversity in the network. MIXIT how-

ever, can maintain high levels of concurrency because of its ability to deal with partially

correct packets.

The throughput gains drop slightly as the network gets heavily congested. The primary

reason is hidden terminals, whose effect is exacerbated by the fact that the USRP nodes,
which perform all processing in user mode on the PC, do not have support for synchronous

acks, and thus cannot quickly detect hidden terminals and backoff.

Impact of Congestion Aware Forwarding

Method: We evaluate the impact of MIXIT's congestion-aware forwarding component on
performance. Node congestion is built into MIXIT's routing algorithm due to its use of
the backlog parameter Q(i), the number of symbols queued up at node i yet to be trans-
mitted. Nodes that are backlogged will not be assigned credits by their upstream parents
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and thus traffic will be routed around hotspots. We compare this scheme with one where

this component is disabled. Specifically, parent nodes assign credits to their downstream

nodes based only on the path quality, i.e. based on the path ETS, and ignore congestion

information. We call this scheme MIXIT-NCA, for MIXIT with "No Congestion Aware"

forwarding.

Results: Fig. 5-17 plots the average throughput for MIXIT and MIXIT-NCA for increas-

ing number of flows. The figure shows that congestion-aware forwarding accounts for

30% of the throughput gain at high load. As load increases, the probability of the network

experiencing local hotspots increases. MIXIT-NCA does not route around such hotspots,

and insists on pushing the same amount of information through regardless of congestion.

MIXIT adaptively routes around these hotspots and therefore increases throughput.

U 5.10 Related Work

Laneman et al. [79] develop and analyze a series of information-theoretic schemes to ex-

ploit wireless co-operative diversity. MIXIT builds on the intuition, but with two important

differences that admit a practical design. First, intermediate nodes use SoftPHY hints to

"clean" the symbols before processing and forwarding them, rather than just receiving,

combining, and forwarding information at the signal level. Second, nodes use intra-flow

symbol-level network coding, which allows them to coordinate and collaborate without re-

quiring finely synchronized transmissions that many "co-operative diversity" approaches

entail.

MIXIT builds on prior work on opportunistic routing [12, 18], spatial diversity [96], and

wireless network coding [72]. In particular, it shares the idea of intra-flow network cod-

ing with MORE [18], but with three key differences: first, MORE operates on packets and

cannot deal with packets with errors; second, MIXIT's symbol-level network code is an

end-to-end rateless error correcting code while MORE's network code cannot correct errors;

and third, MIXIT designs a MAC which exploits the looser constraints on packet delivery

to significantly increase concurrent transmissions, MORE uses carrier sense and requires

correct packet delivery which prevents it from achieving high concurrency. MIXIT's net-

work code also builds on recent advances in extending network coding to scenarios with

errors and adversaries [62, 76]. In contrast to all these schemes, MIXIT only codes over
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symbols above a certain confidence threshold, while using coding coefficients that reduce

overhead.

MIXIT also builds on prior work on "soft information", whose benefits are well

known [124, 51, 128]. Soft information refers to the confidence values computed in some

physical layers when it decodes symbols. Recent work [65] has developed the SoftPHY

interface to expose this information to higher layers in a PHY-independent manner by an-

notating bits with additional hints. Thus far, the use of these hints at higher layers has been

limited to improving link reliability by developing better retransmission schemes [65] or

to combine confidence values over a wired network to reconstruct correct packets from er-

roneous receptions [132]. In contrast, MIXIT uses SoftPHY hints in a new way, eschewing

link-layer reliability in favor of spatial diversity to achieve high throughput and reliability.

U 5.11 Discussion

A key finding of MIXIT is that routers need not forward fully correct packets to achieve

end-to-end reliability, and that loosening this constraint significantly increases network

throughput. With MIXIT, as long as each symbol in every transmitted packet is correctly

received by some downstream node, the packet is highly likely to be delivered to the des-

tination correctly. Designing a network that has this attractive property is not an easy task

because it needs to scalably coordinate overlapping symbol receptions and cope with er-

roneous symbol propagation. MIXIT solves these problems using a symbol-level network

code that has an end-to-end rateless error correction component.

Instead of using link-layer error detection and recovery, MIXIT treats the entire wireless

network as a single logical channel whose component links could run at high error rates.

Because MIXIT can cope with individually high error rates, it encourages an aggressive

MAC protocol that greatly increases concurrency compared to CSMA.

Although MIXIT exploits cross-layer information, its architecture is modular and lay-

ered: it can run atop any radio and PHY that provide suitable confidence hints, with the

routers being oblivious to the end-to-end error correction mechanism. The gains may vary

depending on the PHY and MAC used, but it can be used in any multi-hop wireless net-

work with the following properties:

1. Computational capabilities: The coding/decoding algorithms in MIXIT are more de-
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manding than traditional store and forward networks. In our proof-of-concept soft-

ware implementation on software radios, the algorithms can achieve at most an ef-

fective throughput of 4.7Mb/s. But as shown in [112], we can build the entire de-

coder in hardware using simple shift registers, similar to traditional Reed-Solomon

(RS) hardware decoders that achieve speeds of 80 Gigabits per second [82]. Hence,

we believe that computational considerations will not limit the applicability of our

algorithms at high data rates.

2. Memory: MIXIT's nodes need to store packets from recent batches. The default batch

size is 16, and typically there are two or three batches in flight, requiring storage

space of roughly 70 KBytes, a modest amount for modern communication hardware.

The ideas in MIXIT may be applicable in sensor networks to ship data to sink nodes.

Because most traffic in these networks is uni-directional, data from different sensors can be

coded together to improve throughput. In addition, MIXIT could also be used to multicast

data in a mesh network. Because all destinations require the same data, routers can keep

transmitting coded data until all destinations can decode them.
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CHAPTER 6
Discussion & Conclusion

Despite the fact that wireless is increasingly the preferred mode of network access, today's

wireless systems are not equipped to meet the demands of emerging high bandwidth ap-

plications. Current deployed wireless mesh networks are built using a framework rooted

in wired network design, which ultimately limits throughput. This dissertation advocates

an alternative architecture built around network coding and shows that it can provide large

throughput and reliability gains. We conclude by examining the benefits of our network-

coded wireless architecture and the remaining challenges.

M 6.1 Network Coding: An Alternative Design for Wireless Net-

works

Current wireless networks are designed using the wired network as the blueprint. The

design abstracts the wireless channel as a point-to-point link and grafts wired network

protocols onto the wireless environment. Wireless channels however are fundamentally

different, and making them obey such a wired design conflicts with the intrinsic character-

istics of the wireless medium.

* The current design imposes an artificial point-to-point abstraction on the wireless

channel, but wireless links (with omni-directional antennas) are broadcast links, and

hence can deliver a packet to multiple destinations in one transmission, a property

that the current design fails to exploit.
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* Because of their broadcast nature, simultaneous wireless transmissions may inter-

fere. The current wireless design considers interference to be always harmful, tries

to avoid it as much as possible, and ignores it when it still happens (like in a hidden

terminal scenario) [48].

* The current design tries to ensure reliability via retransmissions. Wireless networks,

however enjoy spatial diversity, and hence, though a packet may not be received

by its intended next hop, it is likely received by some node along its path to the

destination. The current design ignores these lucky receptions and retransmits the

packet until it is correctly received by its pre-determined next hop.

* The current design imposes layer isolation, where the lower layers deliver fully cor-

rect packets that the network layer routes towards their destinations. While this iso-

lation has worked properly for the low-error wired network, it imposes strict limita-

tions on their unpredictable error-prone wireless counterparts. In wireless networks,

even when no node receives a packet correctly, any given bit is likely to be received

correctly by some node closer to the destination than the transmitter. The current

design fails to harness these correctly received bits to improve reliability.

Network coding presents a unified tool for harnessing the intrinsic properties of the

wireless medium to improve throughput and reliability, as follows.

* Network coding can harness wireless broadcast to increase throughput. Wireless

networks exhibit a large overlap in the information available to the nodes because at

each hop the broadcast nature of a wireless transmission delivers the same packet to

multiple nodes within the transmitter's radio range. We have shown that COPE, a

network coding protocol, can leverage this redundancy to compress the transmitted

data, delivering the same information in fewer transmissions, and thus improving

the overall throughput.

* We have also shown that analog network coding (ANC) can exploit strategic inter-

ference to increase concurrency in the network, thus increasing network throughput

and demonstrating that certain types of interference can be quite useful.

* Further, in MIXIT, we have shown that it is often unnecessary to retransmit a cor-

rupted packet; our symbol-level network code leverages spatial diversity to recover
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a correct packet from bits that were correctly received at various routers. It funnels

groups of correct bits toward their destination, allowing the destination to recover

the whole packet.

Finally, rather than having the layers work in isolation, network coding allows the

physical and network layers to cooperate on their common goal of high through-

put and reliability. In particular, MIXIT loosens the contract between the layers and

discards the correct packet abstraction. It allows the PHY and link layers to deliver

likely correct bits, which the network layer routes to their destination. This new con-

tract is enabled by a novel symbol-level network code that operates over groups of

likely correct bits called symbols. The network code also functions as a rateless end-

to-end error correcting code, allowing the destination to correct any erroneous bits

that might seep through.

This dissertation builds the above ideas into a practical network-coded wireless archi-

tecture. Further, it integrates network coding within the current stack, develops practical

coding and decoding algorithms, provides prototype implementations of the proposed de-

signs, and testbed evaluations that show large performance gains in comparison with the

state-of-the-art wireless network design. Thus, we believe that this work makes a strong

case for an alternative wireless network design based on network coding.

U 6.2 Remaining Challenges & Future Work

The systems in this dissertation addressed the major challenges involved in bringing the

theory of network coding to practice and integrating it into the current network stack. Be-

low, we enumerate a few challenging issues that the dissertation does not solve. These are

not fundamental limitations however, we believe they can be solved within the network

coding framework.

Coding is typically more computationally expensive than a store-and-forward ap-

proach, which has a linear complexity in the packet length. The systems in this disser-

tation strive to achieve linear coding and decoding complexity. We succeeded with COPE

and ANC, both of which have linear complexity. MIXIT's network code, however, has

quadratic complexity, primarily due to the sophisticated decoding algorithm used for cor-

recting errors at the destination. These codes have the same structure as Reed-Solomon
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codes for which extremely efficient decoders exist. Hence we believe that even a MIXIT-

style coding can have a relatively low computationally cost.

Network coding also brings up interesting questions in how to provide reliability in

wireless mesh networks. Typically, TCP is used to provide end-to-end reliability. But

as we saw in the evaluation of COPE in Section 3.5.4, TCP's performance suffers due to

packet losses induced by collisions. On the other hand, the network code in MIXIT auto-

matically provides end-to-end reliability without even requiring link-level reliability. Of

course, TCP serves other purposes apart from reliability, mainly congestion control. An in-

teresting avenue for future research is how to combine them, i.e., how to obtain reliability

from network coding while keeping the congestion control functionality from TCP. MIXIT

provides a partial answer, using back-pressure techniques to provide load balanced for-

warding inside the network. But a general congestion control protocol for network-coded

mesh networks remains an open problem.

Our work raises interesting bit-rate adaptation issues. Existing algorithms work on

the assumption that the underlying link is a unicast link even though the medium itself

is broadcast. Thus, they optimize bit-rates for the channel to the corresponding receiver

on the unicast link. Our systems, however, exploit the broadcast nature of wireless. For

example, in COPE, a coded packet is intended for multiple next hops. Rate-adaptation al-

gorithms therefore have to find the best rate to maximize the delivery rate to all intended

next-hops. Similarly, in MIXIT, we benefit from wireless spatial diversity where multiple

next hops overhear the same packet, possibly with errors. The overhearing capability de-

pends on the bit-rate used, and increases with lower bit-rates. Thus there is an interesting

tradeoff, a lower bit-rate means longer time on the channel, but also increases overhearing

which increases gains. How to make this tradeoff in a practical system remains an open

problem.

The 802.11 technology provides multiple wireless channels. Our work has focused on

one channel. It does not prevent the usage of multiple 802.11 channels, but it treats them

independently. Recent work has shown that a joint design that assigns channels to links in

a way that reduces interference improves the throughput of mesh networks [109]. Though

the network coding techniques are orthogonal to the underlying channel allocation algo-

rithm, the gains we get might be impacted. Specifically, both COPE and MIXIT depend on

nodes overhearing packets; if nodes are operating on different frequencies, the possibility
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of overhearing will be reduced, potentially reducing gains. It is an interesting problem to

determine what is the tradeoff in using multiple channels to reduce interference compared

to the reduced overhearing opportunities, and the consequent smaller network coding

gains.

* 6.3 Looking Ahead

At the end of the day, this dissertation is about building an inter-disciplinary approach to

design future wireless networks. The success of wireless networks is due to contributions

from both electrical engineers and computer scientists. So far, however, these two groups

have proceeded largely in isolation, having agreed a few decades ago that their contract

would be a digital one: the electrical engineers would design components that present cor-

rect packets to the computer scientists, and in return, could ignore network layer questions;

while computer scientists would design the network layer and overlook physical layer de-

tails. Techniques such as coding, soft information, back-pressure have been limited to the

physical layer or worse, confined to the theoretical literature; while system designers have

proceeded along using dated designs. This dissertation revisits this contract and questions

whether this divide is suitable in every context. In particular, we show that, for wireless

networks, by poking a hole in this contract, i.e., by employing network coding combined

with richer information exchange between the physical and network layer, we can substan-

tially increase network capacity. We believe that, because of the substantial gains possible,

this inter-disciplinary approach should be the bedrock for future wireless system design.
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