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ABSTRACT

Parallel MRI techniques allow acceleration of MR imaging beyond traditional speed
limits. In parallel MRI, radiofrequency (RF) detector coil arrays are used to perform
some degree of spatial encoding which complements traditional encoding using
magnetic field gradients. As the acceleration factor increases, coil design becomes
critical to the overall image quality. The quality of a design is commonly judged on
how it compares with other coil configurations. A procedure to evaluate the absolute
performance of RF coil arrays is proposed. Electromagnetic calculations to compute
the ultimate intrinsic signal-to-noise ratio (SNR) available for any physically realizable
coil array are shown, and coil performance maps are generated based on the ratio of
experimentally measured SNR to this ultimate intrinsic SNR.

Parallel excitation, which involves independent transmission with multiple RF coils
distributed around the body, can be used to improve the homogeneity of RF excitations
and minimize the RF energy deposited in tissues - both critical issues for MRI at high
magnetic field strength. As its use is explored further, it will be important to investigate
the intrinsic constraints of the technique. We studied the trade-off between transmit
homogeneity and specific absorption rate (SAR) reduction with respect to main
magnetic field strength, object size and acceleration. We introduced the concept of
ultimate intrinsic SAR, the theoretical smallest RF energy deposition for a target flip
angle distribution, and we calculated the corresponding ideal current patterns.
Knowledge of these optimal current patterns will serve as an important guide for future
high-field coil designs.
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Chapter 1

Introduction

1.1 Background

From its first steps in the 1970s (1-4), Magnetic Resonance Imaging (MRI) has come a

long way to become today a fundamental diagnostic tool, whose applications range

from imaging anatomical structures at high resolution (5-7), to visualizing in real time

brain function or metabolism (8,9), with the promise of tracking stem cells injected into

the body (10,11). Recent scientific and technological developments, for example in the

area of hyperpolarization techniques (12,13), have the potential to cause a quantum

leap and open the field of MRI to new clinical horizons. One significant and

continuing advance in the fundamental capabilities of MRI began about a decade ago

with the advent of phased arrays (14) and parallel imaging techniques (15-17), which

have allowed intrinsic speed limits of MRI to be overcome.

Standard sequential MRI

In a magnetic resonance experiment, the signal, which relates to the physical and

biochemical properties of the sample, is detected in the form of a radiofrequency (RF)

voltage induced in a detector coil in response to the application of alternating magnetic

fields to the object of interest. In order to reconstruct an image, the signal is spatially

encoded by imposing magnetic field gradients during the acquisition.



The downside of such a method is that the gradients have to be re-applied many times

to encode the entire field of view (FOV) and thus the acquisition time becomes longer

as the resolution increases. Long acquisitions, besides being unpleasant for the patient

and increasing the cost of the examination, can promote motion artifacts, which may

limit the diagnostic value of some examinations. In recent years scientific advances in

imaging hardware, as well as the development of fast imaging sequences (2,18-20),

have contributed to substantial increases in the speed of MRI scans. However, the

nature of the MR signal, together with physical and safety issues regarding the rate of

application of radio frequency pulses and the switching rate of the magnetic field

gradients used in the acquisition, imposes complex constraints on the maximum

achievable speed.

Parallel MRI

The problem of lengthy acquisitions is intrinsic to standard Fourier encoding. The

gradient fields manipulate directly the nuclear magnetization to be imaged and each

encoding step produces a snapshot of a particular state of the magnetization. Clearly,

only one state at a time can be portrayed, resulting in long scan durations for high-

resolution images. Since it is not possible to acquire multiple gradient-encoded echoes

simultaneously, methods which aim to accelerate data acquisition either must

accelerate the process of gradient encoding (e.g. via improvements in gradient

switching speed) or must acquire fewer gradient-encoded echoes and make up

somehow for the missing information with supplementary encoding by other means.

This latter approach is what is accomplished in parallel imaging. The first effort in this

direction dates back to the late 1980 s, with the proposal of a hybrid method using dual

receiving coils to reduce by '/2 the number of phase-encoded echoes (21). There were

other early proposals for parallel data acquisition with a higher number of receive coils

(22-25), but, for reasons relating perhaps to the technological and intellectual readiness

of the field, it was only in the late 1990 s that parallel magnetic resonance imaging was

successfully applied to clinical scanning protocols (15,16). Parallel MRI is a

revolutionary technique that uses arrays of RF coils to increase imaging speed, without

increasing gradient switching rate or RF power deposition.



Coil arrays are commonly used in MRI because they provide images with a high

signal-to-noise ratio (SNR) across a large FOV (14). The sensitivity of a detector coil

to signal is high in the region directly below it and falls off with increasing distance

from the coil center. Thus, in the case of a coil array, each detector captures a strong

signal from a local region and the contribution, to both signal and noise, from the rest

of the sample is negligible. This argument clearly shows the SNR advantage in using

an array of coils to cover an extended region, rather than a large single coil with the

same total area. Optimal SNR can be achieved using standard sequential MRI, by

treating the complex-valued coil sensitivities as modulations of the magnetization, and

by combining single-coil images into a composite reconstructed image via an

appropriate matched filter (14).

Parallel MRI methods similarly take advantage of the local nature of the reception

pattern of each array element, but exploit it to extract spatial information about the

detected magnetization. Complementing such additional data with the spatial

information obtained from the externally applied magnetic field gradients, images can

be reconstructed from undersampled datasets. In this case, the complex-valued coil

sensitivities are treated as a modulation of the gradient-derived encoding functions (26)

and the omission of phase-encoding gradient steps enables scanning of the same FOV

in less time.

It was in 1997 that parallel MRI was successfully applied in vivo with the simultaneous

acquisition of spatial harmonics (SMASH) technique (15). SMASH emulates the

effect of the omitted phase encoding gradients, shaping linear combinations of coil

sensitivity functions into spatial harmonics. The method was made more robust and

generally applicable in successive improved implementations (27,28). In 1999, the

sensitivity encoding (SENSE) technique for parallel MRI was introduced and also

employed to acquire accelerated in vivo images (16). SENSE is based on a different

approach, which was first proposed in the early nineties (25), that involves using

measured information about coil sensitivities to reconstruct an image from a set of

aliased images, acquired with a reduced FOV.



Numerous other approaches have been proposed since the introduction of SMASH and

SENSE (17,26,29-33) and parallel MRI is now a well-established technique in many

areas of clinical medicine. Among those applications that strongly benefit from

accelerated image acquisition are dynamic contrast enhanced angiography (34-37),

real-time cardiac imaging (38), and abdominal imaging (39,40).

Despite the many advantages of parallel imaging, there are some disadvantages,

including both practical issues (such as hardware compatibility and increasing system

complexity) and intrinsic tradeoffs associated with fast scanning. For example, the

penalty for using fewer k-space samples in the reconstruction is a reduced time

averaging of noise, which leads to a loss in the SNR of the reconstructed image.

Furthermore, parallel MRI reconstructions require non-orthogonal transformations,

which lead to spatially dependent noise amplifications, commonly characterized in

terms of the geometry factor (g) (16).

Despite these practical issues, substantial scan accelerations have been achieved in

robust implementations, and efforts towards an ever greater number of receive channels

have continued, raising the prospect of a complete replacement of gradient phase

encoding by spatial encoding using many-element arrays. Unfortunately, in addition to

practical considerations related to the complexity of many-channel MR systems, there

are theoretical limitations. Inherent limits of parallel MRI performance were the

subject of two articles, in which the ultimate intrinsic SNR was calculated for objects

with uniform electrical properties, and its dependence on acceleration rate, main field

strength and position in the sample was analyzed (41,42). Both investigations

demonstrated that the largest achievable undersampling in parallel MRI is intrinsically

limited by electrodynamics, as the ultimate SNR performance decays exponentially

after a threshold reduction factor, which varies slightly depending on the main field

strength, the electrical properties and the size of the sample. The good news is that this

threshold is higher if the same degree of acceleration is achieved by undersampling in

two dimensions, rather than one. In the past several years examples of 24-fold

acceleration with a 32-element array have been reported for volumetric imaging and

multidimensional spatial encoding (43). Highly parallel MRI is possible with



volumetric imaging thanks to the presence of multiple phase-encoded direction suitable

for acceleration, as well as to the gain in baseline SNR provided by the increased

quantity of acquired data, which compensates in part for SNR losses associated with

undersampling. The possibility of large volumetric acquisitions with reasonable

imaging time is very appealing, as it would lead to a major simplification of scanning

procedures, eliminating for example the complex planning of oblique slabs in cardiac

imaging. With the advent of ultra-high-field (UHF, 7T and above) MR systems,

further increases in baseline SNR and acceleration capability may be envisioned, once

the challenges associated with ultra-high field strength are addressed.

High field MRI

The first UHF-MRI system was developed about eight years ago (44) and today the

number of systems at or above 7T is estimated around 30. Although MR systems

operating at 1.5 T remain the first choice for routine clinical imaging, the push toward

higher fields continues, driven by the promise of higher spectral and spatial resolution

and higher SNR, which is in some approximate limits proportional to magnetic field

strength (45). The first whole body 4 T MR magnet was installed in the early 1990 s

and, although the quality of the first images was poor due to inhomogeneities and low

contrast (46-49), technological improvements in coil design (50) soon highlighted the

potential advantages of high field MRI. More convincing still were implementations of

functional MRI (fMRI) at 4 T using the Blood Oxygen Level-Dependent (BOLD)

effect (51). In 1999 the first images at 8 T were reported (52) showing a spectacular

spatial resolution. However, soon after that, 7 T MR systems, which allowed for larger

bore sizes (900 mm instead of 800 mm) and less expensive installations, became the

UHF choice for all major MR vendors. There are only a few research groups focusing

on 9.4 T (53) or even 11.74 T (54) systems, and 7 T is currently the most promising

candidate for bringing UHF-MRI into clinical practice.

As the budget for hospital equipment is shared among an increasing number of medical

technologies, impressive practical applications of UHF-MRI will need to be

demonstrated in order to justify the substantial costs of UHF systems. Parallel imaging

will play a fundamental role in enabling such applications. UHF-MRI and parallel



imaging are in many ways synergistic. Parallel MRI allows for faster acquisitions,

minimizing artifacts present at high magnetic field strengths and, in turn, UHF-MRI

can improve parallel imaging performance due to increased baseline SNR and

improved encoding capabilities of high-frequency coil sensitivity profiles. Theoretical

studies have shown that ultimate intrinsic SNR and acceleration efficiency benefit

greatly from use of RF fields at higher frequencies (41,42).

However, there are still significant challenges which must be addressed for in-vivo

applications of UHF-MRI. Some of these challenges relate to inhomogeneities in the

static magnetic field, and others are associated with the high-frequency behavior of RF

fields. The operating wavelength of the RF fields decreases as field strength increase,

becoming ever smaller as compared to the dimensions of the human body, and

resulting in ever larger interactions between electromagnetic fields and dielectric

tissues. These interactions lead to local focusing of the RF magnetic field B,, both in

excitation and in reception, resulting in spatially-dependent signal variations or

dropouts, which compromise the underlying SNR. On the other hand, the focusing of

the RF electric field in dielectric tissues may lead to the formation of dangerous local

amplifications of the specific absorption rate (SAR) which measures RF energy

deposition in tissue. In addition to that, the magnitude of these electric fields per unit

flip angle of RF excitation grows with frequency, causing an overall increase in the

dissipated heat in the body. In recent years, multiple coil excitations with transmit or

transceiver arrays have been quite successful in addressing these issues.

Parallel Transmission

Traditionally, there have been two main approaches to multicoil excitations. In RF

shimming (50,55-57), all coils share the same gradient waveform and there is usually a

single driving current that is modulated in amplitude and phase at each transmit

element. More recently, MR systems with multiple transmit channels have enabled

time-varying control of the electromagnetic field, leading to the development of

parallel transmit techniques (58,59). In parallel excitation, also known as parallel

transmission or transmit SENSE, there is a common gradient waveform and each

individual coil is driven with a distinct tailored current waveform. Similarly to parallel



MRI, these techniques can exploit the additional degrees of freedom, provided by the

number of transmit elements, to accelerate complex excitation pulses. However, much

recent interest in parallel transmission has been addressed at its potential for

compensating B, inhomogeneities and managing SAR.

It has become clear nowadays that the synergies between parallelism and UHF-MRI

may naturally include transmission as well as reception. For this reason, MR vendors

have started delivering new prototype systems that combine high magnetic field

strength with multiple transmit and multiple receive capabilities. In this scenario, coil

arrays will play the important role of enabling technology, as the efficacy of parallel

MR techniques depends strongly on the amount and quality of the information

provided by a coil array.

The role of coil arrays

Highly parallel MRI for rapid volumetric acquisition will be possible only with a large

number of receiver coils encircling the body. Design of such many-element arrays

poses various challenges. To accommodate large numbers of coils in a fixed space,

individual coil sizes will necessarily be small, and coil-derived noise (e.g. Johnson

noise from coil conductors and other circuit elements) may become comparable to

noise derived from the body. Furthermore, traditional coil decoupling strategies which

rely upon geometric overlap may lose effectiveness as the number of non-adjacent

neighbor elements increases. Preamplifier-based decoupling, in which preamplifiers

with low input impedance are used to minimize circulation of induced currents in the

coils, may continue to play an important role, but the use of large numbers of

preamplifiers will be associated with other challenges of mechanical and electrical

design. Indeed, the sheer number of electronic components and cables in many-

element arrays represent a practical burden after a certain point.

Nevertheless, simulations have shown that with a sufficient number of coils it is

possible to approach the theoretical SNR limit (60), driving efforts toward the design

of ever larger arrays. For example, preliminary results with a 96-element head array

and a 128-element cardiac array have recently been presented (61,62).



The development of independently addressable transmit arrays represents an even

greater technological investment than is required for receive arrays. On the other hand,

the benefits of transmit arrays for UHF systems are quite clear. Common excitation

with a single large volume transmitter is not generally used for UHF MRI, due to

prohibitive power requirements and also to the inability of such a coil to produce a

uniform excitation over an extended region. Local transmit coils are the norm for UHF

applications, and it is natural in this context to consider transmission with multiple

elements in parallel. In parallel transmission each transmit element is separately

controlled to achieve tailored excitations that improve homogeneity and minimize RF

energy deposition. As in the receive case, optimal coil combination coefficients are

calculated inverting a sensitivity matrix, and the numerical conditioning of this

inversion is affected by the geometry of the array. In particular, SAR is expected to

vary substantially depending on the dimensions, shape and arrangement of the transmit

coils (63). An indicator of the performance of transmit arrays, similar to the g factor of

parallel imaging, has recently been proposed for accelerated parallel excitations (64).

From what has been discussed so far, it is evident that RF coils will continue to play a

fundamental role in the future of MRI.

1.2 Problem statement

The quality of a coil array design is commonly judged on how it compares with other

coil configurations. However, as the number of available receiver channels on modem

MR systems increases, the cost and difficulties associated with building many-element

array prototypes will make such empirical evaluations unrealistic. In this thesis we

propose a method to assess the absolute performance of any coil array with respect to

the theoretical highest SNR. Knowledge of coil efficiency as a percentage of the

optimum will help in deciding when a design is good enough to cease iteration, and

when a given number of coils is sufficient for particular imaging applications.



The field of parallel transmission is on the rise and there are many unsolved problems

and unanswered questions. For instance, how much freedom is there to compensate for

B1 inhomogeneities while simultaneously minimizing RF energy deposition? In order

to legitimate the large investments required for multiple transmit channel technology, it

will be important to investigate the intrinsic constraints of parallel transmission

techniques. In this thesis we investigate the trade-off between transmit homogeneity

and SAR reduction, with respect to main magnetic field strength, sample size and

acceleration. We introduced the concept of ultimate intrinsic SAR, the theoretical

smallest RF energy deposition for a given flip angle distribution. Our work provides

physical insight on the potential benefits of multiple coil excitations for ultra-high field

MRI.

As the number of available transmit and receive channels increases, the design of

many-element RF coil arrays will rely ever more on computer simulations. Numerical

simulation techniques are lengthy and limited by computational power. In this thesis

we derive a rigorous electrodynamic formulation for expressing the electromagnetic

field inside homogeneous samples. Our method allows rapid computation of ultimate

intrinsic SNR and SAR. It can be extended to simulate the case of particular coil

geometries, allowing a direct comparison of coil performance with the theoretical limit.

Ideal current patterns, corresponding to optimal performance, can be calculated, and

they will serve as an important guide for improving existing coil designs and for

developing innovative coils for high field applications.

Thesis outline

This thesis consists of this introduction, three main chapters and a final conclusion.

The next chapter (Chapter 2) is an extended version of an abstract presented in 2006 at

the fourteenth annual meeting of the International Society of Magnetic Resonance in

Medicine in Seattle. It describes the method of coil performance mapping for

evaluation of detector arrays. First, an expression for the ultimate intrinsic SNR is

derived using electrodynamic theory, and then the scaling factors necessary to compare



the optimum with experimental SNR data are discussed. The method is demonstrated

with a 32-element head array, and performance maps are reported for two different

samples and various acceleration factors.

Chapter 3 is adapted from a manuscript in press at "Magnetic Resonance in Medicine"

and it reports the results of a theoretical study of the fundamental limitations of

multiple coil excitations. A pulse design strategy that enables excitation of a desired

flip angle distribution with minimum SAR is described for the case of both RF

shimming and parallel transmission. The strategy is then implemented using a

complete set of basis functions that simulate the behavior of an infinite array in order to

find ultimate intrinsic SAR. The dependency of SAR and transmit homogeneity on

various practical factors is then investigated.

Chapter 4 describes in detail the electrodynamic formulation used to calculate optimal

SAR and SNR. The derivation of electromagnetic fields from surface current

distributions using dyadic Green's functions is shown for the case of spherical and

cylindrical geometries. An expression for optimal SNR and SAR is derived in the

ultimate case, as well in the case of finite coil arrays, with particular shapes and

geometrical arrangements. Ideal current patterns are compared with optimized current

distributions in finite coils, for different values of the main magnetic field strength.

The last chapter summarizes the main points of the thesis and discusses possible future

work.



Chapter 2

A practical Method to Evaluate Coil Performance with
Respect to the Ultimate Intrinsic SNR

Abstract

The quality of an RF detector coil design is commonly judged on how it compares with
other coil configurations. The aim of this article is to develop a tool for evaluating the
absolute performance of RF coil arrays. An algorithm to calculate the ultimate
intrinsic signal-to-noise ratio (SNR) was implemented for a spherical geometry. The
same imaging tasks modeled in the calculations were reproduced in reality using a 32-
element head array. Coil performance maps were then generated based on the ratio of
experimentally measured SNR to the ultimate intrinsic SNR, for different acceleration
factors associated with different degrees of parallel imaging (for which similar
assessments of absolute coil performance have not been reported previously). The
relative performance in all cases was highest near the center of the samples (where the
absolute SNR was lowest). The highest values were found in the unaccelerated case
and a maximum of 94% was observed with a phantom whose electrical properties are
consistent with values in the human brain. The performance remained almost constant
for 2-fold acceleration, but deteriorated at higher acceleration factors. The method
proposed here can serve as a tool for the evaluation of coil designs, as well as a tool to
develop original designs which may begin to approach the optimal performance.



Introduction

Parallel MRI methods exploit the local nature of the reception pattern of the individual

elements of coil arrays to extract spatial information about the detected magnetization

(15-17). When this coil sensitivity information is combined with the spatial

information obtained from externally applied magnetic field gradients, images can be

reconstructed from undersampled datasets acquired in less time that would otherwise

have been required with gradient encoding alone. Despite the many advantages of

parallel imaging, one disadvantage is that parallel MR image reconstructions require

the inversion of a non-unitary encoding matrix, which leads to spatially dependent

amplifications of noise. This additional source of signal-to-noise ratio (SNR) loss has

been used to assess the performance of coil arrays in parallel MRI applications and has

been referred to as the geometry factor (g), since it depends on the shape of the coil

sensitivity functions (16).

The dependency of g factor upon coil array geometry suggests that the SNR of the

reconstructed image can be improved by optimizing the design of the receiver coil

array. Nowadays it has in fact become common practice to include simulations of g in

the design process (65,66). Although effective in improving existing array

configurations, such a method does not necessarily aid in developing innovative

designs and, furthermore, it gives no indication of how well a given design performs in

comparison to the maximum achievable SNR.

Prior work has shown that there is in fact an inherent electrodynamic limit to the

achievable SNR for any physically realizable receiver coil, and have modeled the

behavior of ultimate intrinsic SNR (assuming sample-dominated noise) either in the

absence (67) or in the presence (41,42) of parallel acceleration. The existence of an

upper bound, independent of coil array design, on the performance of parallel MRI,

may be very useful for coil optimization. The comparison of the ultimate SNR with

the SNR of a coil array under development can indicate whether there is room for

further improvement and can help to choose the best design for given field strengths

and sample properties. Ocali et al. introduced a method to express the SNR



performance of a coil as a percentage of the best possible performance, in the case of

standard gradient-encoded MRI (67). In the present work, following preliminary

results presented at the 2006 meeting of the ISMRM in Seattle, Washington (68), we

extend this method to include the effects of parallel imaging. Previous studies (41,42)

of ultimate intrinsic SNR for parallel MRI have investigated the dependence of relative

SNR on acceleration, without any absolute comparison to an actual coil array. Here we

extend these previous studies to include just such absolute comparisons.

In order to achieve absolute comparisons, it was necessary to scale computed ultimate

intrinsic SNR values by all known experimental factors influencing baseline SNR. We

computed the ultimate intrinsic SNR, so scaled, at different points within an arbitrary

section of two modeled phantoms, for a variety of acceleration factors. We then

scanned the actual phantoms and measured the SNR at the corresponding pixel

locations and for the same acceleration factors. In each case, the experimentally

measured SNR values at each pixel were divided by the ultimate achievable values and

displayed as two-dimensional maps. Coil performance maps were used to evaluate the

effectiveness of a close-fitting 32-element head array design.

Methods

Review of the theoretical basis for an ultimate intrinsic SNR

The source of noise that inherently limits the SNR performance of MRI systems is

electromagnetic fluctuations caused by thermal agitation of particles in the sample, as

the contribution of other noise sources can in principle be diminished through

technological improvements. For this reason, our derivation of the best possible SNR

starts from the concept of intrinsic SNR, which is defined as the ratio of the NMR

signal to the RMS noise voltage produced by the randomly fluctuating noise currents in

the sample (41,42,67,69). The complex-valued signal voltage induced in a receiving

coil by a nuclear magnetic moment M precessing at position ro with the Larmor

frequency co about the z-axis, immediately after a 900 pulse, can be expressed, using



the principle of reciprocity (70), in terms of the RF magnetic field that would be

transmitted at the same position by a unit current of frequency o flowing around the

coil:

vs = coM41 (ro)" = coM o (B,x (ro)- iB,,y (ro)), (2.1)

where Mo is the equilibrium magnetization per unit volume and the net coil sensitivity

is defined as the complex conjugate of i (ro), the left-hand circularly polarized

component of the RF magnetic field. The RMS noise voltage per root unit receiver

bandwidth is given by:

VN =8kTP = j4kT ip, o((r)E(r)I2 d'r, (2.2)

where kB is the Boltzmann's constant, T is the absolute temperature of the sample and

PL is the power loss within the load (or sample). Resorting once again to the principle

of reciprocity, PL can be calculated with a volume integral as the Ohmic loss due to the

RF electric field ý, which would be generated within a sample with conductivity a by

the coil if it were driven by a unit current (71).

An expression of the intrinsic SNR received by the coil, per unit sample volume and

root unit receiver bandwidth, can be found by combining Eq. (2.1) and (2.2):

oH°m° (- ,x (ro ) - i4ly (ro )) (2.3)
SNR(ro)in (2.3)intr 4kT Lnpe c(r) E(r)12 d3r

The ultimate value of intrinsic SNR at any particular position r is found by maximizing

the ratio in Eq. (2.3). The net coil sensitivity is directly related to the electromagnetic

(EM) fields responsible for both signal reception and Ohmic losses in the sample;

therefore signal and noise are linked by Maxwell's equations and cannot be treated

separately in the search for the optimum SNR. The EM field can be expanded in an

infinite basis set:



B(r0) =a,(r,)Ai(ro)

4(2.4)
E(ro) = Za,(ro)EY(ro)

and each EM mode can be associated to a hypothetical coil, so that it is possible to

specify a complete basis of coil sensitivities and the total noise power associated with

any linear combination of them. The best possible SNR would then be given by the

weighting coefficients a, (ro) that result in the highest intrinsic SNR (41,42,67). In the

present work we use the weak Cartesian SENSE algorithm (16), which is an SNR-

optimal reconstruction algorithm for parallel imaging that yields unit net coil

sensitivity at the reconstructed voxel position ro and zero at all aliasing positions rn.

For this particular case, the search for maximum SNR is therefore equivalent to finding

the reconstruction weights that minimize the total noise power in the denominator of

Eq. (2.3), subject to the following constraint:

B1,x (in) - iA,y (r,) = Sno for n = 0...R- 1, (2.5)

where 8 is the Kronecker delta and R is the reduction, or acceleration, factor. The

solution was given by Pruessmann et al. (16) and an expression for the ultimate

intrinsic SNR per unit volume and unit bandwidth at any pixel position ro was derived

in Ref. (42):

_ coM
SNR(ro) = o(2.6)ult intr 4kBT -1  (2.6)

In this expression, where any scaling factor related to the particular pulse sequence has

been removed, the superscript H indicates conjugate (Hermitian) transpose and S

denotes the [L x R] encoding matrix (16), containing the sensitivities of all chosen L

basis elements (or a subset of the full basis that is sufficient for the convergence of the

calculation) at the reconstructed voxel position ro and all aliased positions in case of

undersampling:



Syn = B Y,('n)- i(2.7)r.)

I' is the [L x L] noise covariance matrix, which characterizes the noise received by

each coil and the correlated noise between coils (72):

FrTr, = f cr(r)Er(r)-Er,(r)*d'r (2.8)
sample

The "0,0 subscript in the denominator of Eq. (2.6) indicates the diagonal element of

the matrix in square brackets with an index associated with the target position r,.

Ultimate intrinsic SNR depends on the modeled object geometry and is independent of

the particular choice of the basis functions. However, previous studies have shown that

the numerical complexity involved in calculating SNR from Eq. (2.6) is affected by the

choice of basis functions, and have selected basis functions tailored to the object

geometry (41,42). In the present study, the EM modes inside a spherical object were

derived by performing a full-wave EM field expansion into vector spherical harmonics.

Ultimate intrinsic SNR calculation

Ultimate intrinsic SNR was calculated inside a sphere with uniform electrical

properties. The net EM field was derived by performing a mode expansion with dyadic

Green's functions (DGF) (73), following a method recently described (74). We chose

this approach over others relying on EM field-based sensitivity basis set (41,42), as the

DGF formalism enables calculating the current patterns corresponding to the optimized

SNR (74). Given any spatial current distribution J, the electric field can be calculated

as:

E(r)=ico•u o  G(r,r').J(r)d'r',  (2.9)
sample

where po is the magnetic permeability in free-space and G(r, r ) is the branch of the

DGF associated with the region indicated by r. We started by defining a complete

basis set of surface current modes, distributed on a spherical surface at 5 mm distance

from the surface of the modeled sphere. The generic surface current mode was

expressed as:

(2.7)



K im =W(M, X,), (,p) W, X(E Xi, ,(9 ),

where 1, m are the expansion indices, Xi,m is a vector spherical harmonic and W,"M

and Wf) are the series expansion coefficients representing divergence-free and curl-

free surface current contributions, respectively. Dyadic Green's functions associated

with a dielectric sphere were defined as double series of vector wave functions in

spherical coordinates (74):

M1I, (r, k) = j, (kp)X,m (0, ()
(2.11)Nim (r, k) = (1/k)V x j, (kp)Xl,m (9, (p)

where k is the complex wave number, p is the radial coordinate and jl is a spherical

Bessel function of order 1. Once the electric field is computed, the magnetic field can

be derived as 0B(r) = (-1/ia)V x E(r).

We assumed that the hypothetical coils derived from the basis set were made of perfect

conductors, to guarantee that only sample noise contributed to the ultimate intrinsic

SNR. In this way, the denominator of Eq. (2.6) does not require any additional term

and the encoding matrix and the noise covariance matrix in Eq. (2.7) and (2.8) can be

constructed using Eq. [BS] and [B7] of Ref. (42), respectively. Eq. [B7] was

multiplied by the conductivity of the sample, to correct for a minor typographical error.

The modeled sphere was chosen to match the geometry and the electrical properties of

two existing spherical MR phantoms, henceforward referred to as "Phantom I and

"Phantom 2 . Phantom I is a "Braino" phantom (GE Medical Systems, Milwaukee,

WI, USA) and Phantom 2 is a low-conductivity phantom (Siemens Healthcare,

Erlangen, Germany). Both phantoms have diameter equal to 16.86 cm (Figure 2-1).

(2.10)



168 mm, 84 pixels

Figure 2-1. Schematic diagram of the image plane and the FOV used to
calculate ultimate intrinsic SNR for the spherical phantom. The FOV is a
square with a side of 16.8 cm, just large enough to contain the entire
circular section. It is uniformly divided into an 84 x 84 grid of pixels.

Water solutions equivalent to the content of each phantom were mixed and their

conductivity and permittivity at 123.22 MHz (the operating frequency of the MR

scanner used in our experiments) were measured using an Agilent 85070E dielectric

probe (Agilent Technologies, Palo Alto, CA, USA). Conductivity and relative

permittivity were 0.97 Ohm- m-1 and 81.3 for Phantom 1, whereas for Phantom 2 they

were 0.084 Ohm- m-1 and 80. Magnetic permeability of free space was used in both

cases. A transverse section through the center of the sphere was divided into an 84 by

84 grid of square pixels with 2 mm side (Figure 2-1) and ultimate intrinsic SNR was

calculated at each position, assuming 2.89 T static magnetic field strength and room



temperature of 298 degrees Kelvin. Calculations were implemented in Matlab
(MathWorks, Natick, MA, USA).

Experimental data acquisition

The spherical phantoms were scanned on a Siemens TIM Trio 3T scanner (Siemens
Healthcare, Erlangen, Germany) using the same image planes modeled in the ultimate
intrinsic SNR simulations (see Figure 2-1). The RF receive coil used in the SNR
measurements was a receive-only head coil array (Figure 2-2) consisting of 32
overlapping circular surface coil elements arranged over the entire dome of the head
(75), with the scanner body coil used for transmit. The coil was tuned and matched for
a human head.

Figure 2-2. 32-element receiver coil array employed in the
experimental study. The surface coils are packed on a thin helmet-
shaped plastic frame that minimizes the distance from the sample.



A single proton density weighted two-dimensional gradient echo image was obtained

with parameters TR = 2000 ms, TE = 3.8 ms, flip angle = 200, slice thickness = 3 mm,

128x128 matrix, FOV = 256 mm, pixel half-bandwidth = 25.6 kHz (line bandwidth =

200 Hz/pixel). A long TR was chosen to avoid any TI dependence in the image. To

map the flip angle distribution over the phantom, eight additional images were acquired

with identical pulse sequence parameter values but with increasing transmit voltages to

achieve several nominal flip angles ranging from 600 to 1500 in 150 increments and

receiving with the body coil, including a body coil noise reference acquired at 00 flip

angle.

For each acquisition, raw k-space data were saved for offline analysis, and magnitude

images reconstructed online were also saved for comparison. Each image acquisition

was accompanied by a noise reference measurement obtained by recording complex-

valued data with the array coil during the same pulse sequence used for the image

acquisition but with no RF excitation; this ensured that the noise samples were

bandwidth-matched with the image acquisition and that a sufficient number of noise

samples were acquired to accurately estimate the noise.

Experimental SNR calculation

All image reconstruction and analysis was performed offline with custom software

written in MATLAB (The Mathworks, Natick, MA). Image data were acquired with a

Cartesian k-space sampling and two-dimensional Fourier imaging, thus a standard

image reconstruction consisting of standard FFT operations for each individual coil

channel was carried out. No apodization or filtering was applied at any stage of the

image reconstruction.

Due to the dielectric properties of the spherical phantoms, the flip angle of the RF

excitation varied spatially over the phantom, with higher flip angles at the center of the

phantom (76,77). Since the flip angle distribution affects image SNR, these transmit

effects were identified and removed from the empirical SNR calculation. To compute

the flip angle distribution, we fit a sinusoidal model of image intensity as a function of

transmit voltage across the eight body coil reference images to each image pixel with



the MATLAB function "fminsearch". The fit produced two parameters at each pixel

from which the achieved flip angle map @(x,y) was calculated. The flip angle

correction map was then generated as sin ((x,y))/sin(89), where 60 is the desired flip

angle (which in this case was 200, as specified above). This correction was applied to

the individual coil images to normalize the effect of the intensity non-uniformity

caused by the flip angle distribution, giving rise to a compensatory intensity increase in

the periphery of the phantom.

Because the phantoms contained no internal structure, the resulting image from a given

coil element after flip angle normalization provided a good approximation to the

element's sensitivity profile. Although noise contributes some degree of error to this

approximation, no smoothing or interpolation was applied to the images to avoid

introducing bias into the sensitivity approximation and subsequent SNR calculation.

The noise covariance matrix IF was calculated from the statistics of the noise samples

scaled by dividing the sample covariance matrix I by the noise equivalent bandwidth

b.o,, to account for noise correlations due to the filtering introduced by the data

acquisition electronics and receiver, i.e. T = Y/boise, (78).

Images reconstructed for each coil channel from the fully sampled dataset were then

combined with the optimal matched filter SNR combination method (14), which

incorporates both the approximations of the coil sensitivity and the channel noise

covariance matrices in the combination to boost the combined image SNR. Note that,

because in the ultimate SNR simulations the signal is defined to be complex-valued,

we adopt an observation model where the signal is assumed complex-valued and thus

the image SNR calculated from the imaging data does not require an additional 4I

scaling (see, e.g., Ref. (78,79)). In order to eliminate any phase variation in the

experimental data, the absolute magnitude of the final complex-valued combined SNR

image was taken. A final correction was applied to the resulting thermal SNR images

for the SNR bias introduced by the magnitude detection (78-80), which is the



generalization of the well-known Rician distribution correction (81) to multiple-

channel coil arrays.

The optimal Roemer combination method yields the same SNR of a fully-sampled (i.e.

unaccelerated) SENSE reconstruction (16). The resulting 128x128 SNR image was

cropped around the object boundaries, resulting in an 84x84 image with each pixel

corresponding to a position in the grid of computed ultimate intrinsic SNR values.

SNR and g images for acceleration factors 2, 4, and 6 were obtained from the fully

sampled dataset, using the SENSE reconstruction algorithm (16) with one-dimensional

undersampling on the x-y plane. To maximize coil performance in the accelerated

cases, the images were first cropped to produce a tight FOV around the phantom,

resulting in a cropped image size of 84x84. Estimates of the coil sensitivity profiles

were generated by low-pass filtering the resulting image intensities with a two-

dimensional Hanning filter (normalized for unity noise gain) with a cutoff set to

include only the central 25% of k-space. Noise covariance matrices were estimated as

described above, and the geometry factor was calculated directly from the analytic

expression (16).

Coil performance maps

The ultimate intrinsic SNR is calculated considering the effects of a net EM field

acting at particular positions inside a sample, without associating them to actual MR

image pixels. The values computed are therefore relative measures of the optimal SNR

and, without losing generality in the discussion, they can be used to theoretically

investigate the behavior of the optimum for various acceleration factors and at different

field strength.

On the other hand, in order to compare the experimental SNR data with the simulated

data, the ultimate intrinsic SNR values must be properly scaled to account for the

specific pulse sequence parameters and system characteristics:

V xe NacqNEX sin(0)

SNR'(ro)ult intr = SNR(ro)ult intr vo xe F(2.12)



where Vvoxel is the volume of the voxel, Nacq is the number of the acquired k-space

samples, which accounts for the signal summation resulting from Fourier transform,

NEX is the number of signal averages, 0 is the nominal flip angle, F is the noise factor

of the preamplifiers connected to the coils and Afis the receiver bandwidth. The noise

figure (NF), which is the noise factor expressed in dB, was measured experimentally

using the "hot-cold resistor" method (82) and the noise factor was then derived from

NF = 10 logl 0 F . Table 1 summarizes the numerical values of the scaling factors, as

well as the values of the phantom's dielectric properties and of the other quantities

used in the calculations. These quantities include the operating frequency o and the

equilibrium magnetization Mo at the field strength of interest, here 2.89 T. Mo appears

in Eq. (2.6) for ultimate intrinsic SNR, and must be accounted for correctly. The final

value of Mo listed in Table 1 was computed using the expression:

Ny2hI (1 + 1) Bo
M o = (2.13)

3kBT

with the gyromagnetic ratio y = 2.68x 108 rad T- 1 s- 1, the temperature of the sample T

= 298 K, the main magnetic field Bo = 2.89 T, I = 1/2 for hydrogen and the number of

nuclear spins per unit volume N= 6.691 x 10 28 m-3. kB is Boltzmann's constant and h

is Planck's constant divided by 2)r. It is also important to notice that, although final

matrix size is 128x 128, Nacq is equal to (256 x 128)/Racce ,, with Racce, being the

acceleration factor, because there were 256 k-space samples for each readout, due to an

automatic 2-fold oversampling performed by the MR system.

An accurate scaling of ultimate intrinsic SNR is critical to the absolute significance of

coil performance maps, which are defined as the ratio of the experimental SNR images

to the corresponding scaled ultimate intrinsic SNR images:

SNR(ro)ay
CPM(r) = SNR() y (2.14)

SNR'(r )uit intr



Performance maps provide a measure of the efficiency of each coil array for the

specific imaging task, as a function of position inside the sample of interest. Maps

were generated for various acceleration factors.

Table 1
Dielectric properties, constants and scaling factors used in the calculations

Coil performance maps for the 32-element head array are shown in Figure 2-3, for both

phantoms and various degrees of acceleration. In all cases the performance, relative to

the ultimate intrinsic SNR, was highest near the center of the object and approached

zero near the surface, where the ultimate SNR assumes its largest values.

Larmor frequency co/2;r 123.22 MHz

Equilibrium magnetization M o  9.03 x 10- A-m-1

Boltzmann constant kB 1.381 x 10-23 J-Kl

Sample temperature T 298 K

0.97 Phantom 1 I
Conductivity c0.08 Phantom 2

81.3 Phantom 1
Relative permittivity e 81 Phantom I

80 Phantom 2

Vacuum permittivity so 8.85 x 10-12  C2 -N1 m -2

Permeability 1P 1.2566 x 10-6 Wb-A-' -m'

Volume of the voxel Vvoxel 1.2 x 10-8  m 3

Receiver bandwidth Af 51.2 kHz

Flip angle 0 0.3421 rad

Noise factor F 1.22

Signal averages NEX I

Acquired data points Nacq (256 x 128)/Raccel -

Results
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Figure 2-3. Coil performance maps for an axial slice at 2.89 T in the center of a uniform
spherical phantom. The performance of the 32-element head array with respect to the
ultimate SNR is shown for two different phantoms and various acceleration factors. Each
pixel represents the experimental SNR divided by its corresponding ultimate SNR value.
Above each map, the maximum and the mean performance are indicated in brackets and
reported as a percentage of the optimum. The mean is computed including only the
pixels inside the circular section of the object.
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The peak performance was in the unaccelerated case and was 94% and 77% for
Phantom I and Phantom 2, respectively. The maximum and mean performance
(reported in square brackets above each map) both decreased as the acceleration factor
was increased. For 2-fold acceleration the performance was almost equal to that in the
fully-sampled reconstruction, whereas for 6-fold undersampling, noise amplifications
substantially degraded image SNR and the maximum performance with Phantom I and
2 decreased to 25% and 12% of the ultimate SNR, respectively.
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Figure 2-4. Geometry factor performance for different parallel imaging accelerations at 2.89 T
for an axial slice in the center of a uniform spherical phantom. The geometry factor of a 32-
element head array with respect to the corresponding value in the ultimate intrinsic case is
shown for two different phantoms and various acceleration factors.
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Figure 2-4 shows the performance of the coil in terms of the geometry factor.

Although these maps do not provide an absolute measure of the coil performance, they

are useful in investigating the potentiality of the coil for parallel imaging tasks and they

can be more easily calculated without worrying about the scaling factors in Eq. (2.12).

We notice that the 32-element array is almost equivalent to a hypothetical infinite array

for 2-fold acceleration, whereas its efficiency in accelerating by a factor of 6 is less

than 20% compared to the ultimate case.

Phantom 1 Phantom 2
.. (high conductivity) (low conductivity)

0.8
00.6

' 0.4
S0.2

S2 4
acceleration factor acceleration factor

Figure 2-5. SNR as a function of acceleration factor for a voxel in the center of a
spherical phantom. The SNR obtained with a 32-element head array is compared
with the corresponding ultimate intrinsic SNR for two homogeneous phantoms, with
equal dimensions and different electrical properties.

Comparisons with the ultimate intrinsic SNR and g in the center of the sample are

shown as a function of acceleration factor in Figures 2-5 and 2-6, respectively. In

Figure 2-5 we see that the performance of the coil is worse in the case of Phantom 2

and we also notice that, as we move to higher degrees of acceleration, the difference

between the SNR of the coil and the ultimate intrinsic SNR increases more rapidly for

Phantom 2. This is confirmed by the graphs in Figure 2-6, which show that for 2-fold

acceleration ultimate intrinsic g and g of the array overlap for both phantoms, whereas

for 6-fold acceleration g of the array becomes 12 for Phantom 1 and 18 for Phantom 2,

though ultimate intrinsic g remains almost equal in both plots.
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Figure 2-6. Geometry factor as a function of acceleration factor for a voxel in the center
of a spherical phantom. The geometry factor of a 32-element head array is compared
with the corresponding optimal values for two homogeneous phantoms, with equal
dimensions and different electrical properties.

Discussion

As the number of available receiver channels on modem MR systems increases, greater
attention will be paid to the design and performance of many-element RF coil arrays.
Questions regarding the balance of coil-noise and sample-noise, or the suitability of
any particular array design for parallel imaging, promise to take on new significance as
the number of elements increases. In the present work a method has been described to
evaluate the absolute performance of any particular coil array. Although originally
conceived to improve the design of receiver coils for parallel MRI applications, the
procedure can be applied to sequential imaging as well.

The performance of any coil array is strictly constrained by the behavior of
electromagnetic fields within the sample (41,42,67). For a chosen imaging task, the
best possible SNR achievable for any coil configuration can be computed using a
complete set of coil sensitivity basis functions.

In this study, we used a recently proposed algorithm to compute ultimate SNR for
spherical geometries (74). Ultimate intrinsic SNR values were calculated for each
pixel position on specific image planes and used as a reference to assess the efficiency



of a 32-channel receiver head coil in imaging two homogeneous phantoms, having

equal dimensions but different electrical properties. The results were presented in the

form of performance maps, which display the percentage of the optimum SNR that is

achieved at each pixel.

It should be noted that, although our experiments were performed only at 2.89 T, the

basis functions used in this work take full account of the frequency-dependence

associated with operation at different field strengths, and that coil performance maps

are possible at arbitrary field strength. That said, simple phantom geometries with

uniform electrical properties are expected to become an increasingly poor

approximation of in vivo SNR behavior with increasing field strength. The

characterization of coil performance for arbitrary electrically inhomogeneous objects

remains possible with appropriate choices of surface-based field or current basis

functions, but would also require extensive computational effort.

In simulating the ultimate SNR we are effectively using an infinite number of coils

surrounding the object, and we expect a very high signal close to the surface. As a

consequence, the ultimate SNR rises rapidly at the edges, and relative coil performance

is higher near the center of the object. A similar spatial variation was reported in a

previous paper, which showed coil performance maps in the case of non-parallel MRI

(67). The performance values presented in that study are slightly lower than those

found in this investigation for the unaccelerated case, but the results are not directly

comparable as the phantom, the image section, and the imaging system were different.

Small typographical differences in scaling of SNR, as noted in Ref. 7, may also have

had an effect. Coil performance maps for parallel MRI were presented for the first

time in 2006 (68) for the case of a cylindrical phantom. In that preliminary work, the

authors reported performance values of less than 50% in the center of the sample. The

low performance was in part due to the particular coil-phantom configuration. In fact,

the surface arrays used in that study were originally tuned and matched for a

rectangular phantom rather than a cylindrical phantom.

In the current work, the overall maximum performance, corresponding to the

unaccelerated case with Phantom 1, was more than 90% in the central portion of the



phantom, implying that there is little room for improvement. A similar behavior in the

center was predicted by a simulation study which modeled receive arrays of circular

coils, optimally arranged around a sphere (60). In that work the electrical properties of

the sphere were chosen to approximate values in the human brain and they were

consistent with those measured for Phantom 1. The fact that coil performance was

lower with Phantom 2 does not imply that the head array design is suboptimal for its

target clinical applications, as Phantom 2 is filled with a solution whose electrical

properties are not meant to approximate human tissue, but rather to minimize

susceptibility artifacts. Furthermore, as the array was tuned and matched for the

human head, better loading with Phantom 1 might have positively affected the

performance results.

The average performance of the coil array (see Figures 2-3 and 2-4) was almost

constant for 2-fold acceleration, but rapidly decreased for larger acceleration factors.

This suggests that 32 elements are not enough for highly accelerated parallel imaging

and that larger arrays are needed in order to approach the acceleration efficiency of the

ultimate intrinsic case.

The examples shown in this work prove that the method proposed here can serve as a

tool for the evaluation of coil designs. Ultimate intrinsic SNR defines an absolute

performance target for coil designers, and coil performance maps provide useful and

immediate feedback on how far a particular array configuration is from such

expectations. Ultimate SNR needs to be computed only once for each particular

geometry, and that will eventually facilitate its employment as an additional instrument

for coil engineers.

Given the comparatively large set of basis functions required for convergence of the

ultimate intrinsic SNR at multiple positions, it is unlikely that all the modes used to

simulate the optimum can be practically realized with an actual coil array. However, if

further investigation shows that a smaller subset of the larger basis can capture the

dominant SNR behavior, then it may be possible to build an array targeted to that

subset in order to approach the simulated optimal sensitivity patterns (see Ref. (60)).

These ideal EM fields can be directly computed using the weighting factors generated



by the ultimate SNR optimization, but they would be different for every point in the

sample. Thus, only a trade-off solution might exist for the conductor patterns which

will be needed to produce fields as close as possible to the optimum for the largest

number of positions. Genetic algorithms have been already applied to a similar

optimization problem (83) and, with an accurate and robust parameterization, they

might be employed also for the design of ideal coil arrays for different parallel MRI

applications.

Since such arrays should in principle perform very close to the optimum, any

discordance could be linked to noise other than that coming from the sample. The

development in recent years of arrays with very many elements (61,84) has raised to

practical priority the question of what is the smallest size for array elements before the

final SNR begins to be dominated by the noise coming from the electronic

components.

In conclusion, the capability of parallel MRI to accelerate image acquisitions is

fundamentally limited by electrodynamic constraints, but the knowledge of such

limitations can be exploited to improve current coil design and to eventually develop

innovative receivers that may operate close to the optimum.
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Chapter 3

Electrodynamic Constraints on Homogeneity and RF Power
Deposition in Multiple Coil Excitations'

Abstract

The promise of increased SNR and spatial/spectral resolution continues to drive MR
technology toward higher magnetic field strengths. SAR management and B,
inhomogeneity correction become critical issues at the high frequencies associated with
high field MR. In recent years, multiple coil excitation techniques have been
recognized as potentially powerful tools for controlling SAR while simultaneously
compensating for B1 inhomogeneities. This work explores electrodynamic constraints
on transmit homogeneity and SAR, for both fully parallel transmission and its time-
independent special case known as RF shimming. Ultimate intrinsic SAR - the lowest
possible SAR consistent with electrodynamics for a particular excitation profile but
independent of transmit coil design - is studied for different field strengths, object
sizes and pulse acceleration factors. The approach to the ultimate intrinsic limit with
increasing numbers of finite transmit coils is also studied, and the tradeoff between
homogeneity and SAR is explored for various excitation strategies. In the case of fully
parallel transmission, ultimate intrinsic SAR shows flattening or slight reduction with
increasing field strength, in contradiction to the traditionally cited quadratic
dependency, but consistent with established electrodynamic principles.

'The work in this chapter has been adapted for publication as "Lattanzi R, Sodickson DK, Grant AK and
Zhu Y: Electrodynamic Constraints on Homogeneity and RF Power Deposition in Multiple Coil
Excitations. Magn Reson Med. (in press)"



Introduction

The advantages of using high magnetic field strengths for MR imaging and

spectroscopy are well known: they include the promise of improved signal-to-noise

ratio (SNR) and spatial or spectral resolution, as well as the potential for improvements

in certain useful forms of contrast. The challenges of high field strength are also well

known, including a variety of difficulties associated with reduced homogeneity in both

static and radiofrequency (RF) fields. For RF fields in particular, the operating

wavelength decreases as field strength and Larmor frequency increase, becoming ever

smaller as compared to the dimensions of the human body, and resulting in ever larger

interactions between electromagnetic fields and dielectric tissues. These interactions

lead to local focusing of the RF magnetic field BI, both in excitation and in reception.

The focusing of BI field results in interference patterns (77), which compromise the

underlying SNR increases associated with high field strength and which would in many

cases markedly impede clinical diagnosis. B, focusing also results in subject-specific

spatial variations of flip angle, which can diminish the reliability of image contrast.

Meanwhile, the focusing of RF electric fields in dielectric tissues at high frequency

results in increasingly inhomogeneous and subject-dependent specific absorption rate

(SAR). Furthermore, the magnitude of electric fields produced for a given strength of

the transmit magnetic field (i.e. per unit flip angle of RF excitation) is generally

expected to grow with frequency. These electric fields induce eddy currents and

dissipate heat in the body, causing an overall SAR increase which has (in admittedly

casual approximations based on low- to moderate-frequency behavior) been taken to

increase approximately with the square of the frequency.

Compensation of B, inhomogeneities and management of SAR are indeed among the

most difficult challenges faced by in-vivo ultra high field MR applications. RF-

induced heating is a potentially elevated safety concern at high field strength, both

requiring careful design and evaluation of RF coils and necessitating worst-case safety

limits on flip angles in MR pulse sequences, which can further erode achievable high-

field SNR and contrast. Various approaches to homogeneity correction and SAR



management have been proposed, involving either coil design or pulse sequence

design.

At low magnetic field strength, birdcage coils are commonly used to produce

homogeneous excitations over a large fields of view, but traditional birdcage designs

can exhibit significant B, inhomogeneities and SAR increases when operating at high

frequency (85). Various novel volume coil designs with improved homogeneity and

efficiency at high field strength have been developed in recent years (57,86). Recent

work using numerical methods has also shown that further variations in RF coil design

can serve to redistribute RF energy absorption over the imaged object, in order to

remove hot spots caused by RF field concentrations (87).

One noteworthy feature which has begun to distinguish high-field coil design is the use

of multiple transmit elements or drive points. This provides additional degrees of

freedom which may be used to control the distribution of electromagnetic fields. In

particular, independent control of the driving amplitude and phase of individual current

elements can be effective in correcting B, inhomogeneities - an approach generally

referred to as RF shimming (50,55-57,88). RF shimming has been shown to be

effective in improving B, homogeneity at high magnetic fields when an adequate

number of coils is available (89). A recent study showed that SAR reduction may be

achieved together with improved B, uniformity by optimizing the amplitudes and

phases of the elements of a transmit array (90).

RF power deposition and B, homogeneity can also be controlled to some extent by

pulse or pulse sequence design, for example using SAR-optimized flip angles (91), or

variable-rate selective excitations (VERSE) (92). Hennig et al. have reported

substantial SAR reductions in spin echo sequences using hyperecho techniques (93).

Composite pulses have been used successfully with single coils (94) and coil arrays

(95) to improve excitation homogeneity, and array-optimized composite pulse design

can be also pursued for reducing local SAR levels (95). Parallel MRI techniques (15-

17) may be used to decrease the number and frequency of RF excitations, thereby

reducing total RF power deposition, albeit at the expense of signal to noise ratio

(SNR).



Recently, parallel transmit MR techniques (58,59) - which combine multi-coil

excitation and pulse design - have been explored with increasing interest. These

techniques, which are generalizations of RF shimming with the additional capability to

perform B, optimization in the time domain, were originally designed to accelerate

complex excitation pulses, by analogy with the principles underlying parallel MRI. By

driving each element of an array of transmit coils with a distinct tailored RF waveform,

parallel excitation techniques enable the suppression of aliasing lobes resulting from

reduction of the sampling density in excitation k-space. In these approaches, the

composite B, field is modulated in space and time by adjusting the independent RF

waveforms transmitted by each coil, and is combined with a suitable synchronous

gradient waveform in order to generate a target excitation profile.

Early in the development of parallel transmit MR, it was also recognized that parallel

transmission can be exploited to improve the homogeneity of RF excitations and to

reduce SAR (59). These capabilities account in part for the great recent interest in

parallel transmission as an enabling technology for high-field MRI. It should be noted,

however, that the demands of pulse acceleration and the demands of SAR reduction

may often be opposed, since calculation of the weights required to produce an

accelerated excitation relies on the inversion of ill-conditioned sensitivity matrices,

which may cause spatial amplification of SAR somewhat analogous to the spatial

amplification of noise in parallel imaging (64). Also by analogy with the case of

parallel reception, it is possible to derive a set of transmit coil waveforms which yield

the minimum SAR for a given level of pulse acceleration (59).

Parallel transmission methods require prior knowledge of B, field distributions, as well

as hardware capable of generating and amplifying multiple independent RF

waveforms. In order to justify these additional investments in calibration and

technology, it will be important to assess how well fully parallel transmission can

perform. Katscher et al. have shown that suboptimal coil arrays may have a negligible

effect on the quality of the excitation pattern in fully parallel transmission, whereas

they dramatically affect SAR, even for slight variations in the spatial arrangement of

individual elements (63). This result also suggests that it will be important to assess



the tradeoff between excitation fidelity or homogeneity and SAR. In this paper, we

present a framework in which the homogeneity and SAR associated with various

transmission approaches may be compared independent of any particular coil

configuration. We also present a lower bound on SAR as a guide for future transmit

coil array designs.

In the case of parallel imaging it has been shown that there is an inherent

electrodynamic limitation to the achievable SNR of any physically realizable coil array,

and the behavior of ultimate intrinsic SNR has been extensively studied (41,42,67). In

those prior studies, receive coil sensitivities were expanded in a complete basis of valid

solutions to Maxwell's equations and the optimal SNR was calculated by finding a

linear combination that minimized the total noise power for unit signal strength. In this

paper we use a similar approach to explore electrodynamic constraints on transmit

homogeneity and SAR, by expanding putative transmit coil fields in a suitable basis to

compute the ultimate intrinsic SAR for various excitation approaches. We explore the

dependency of ultimate intrinsic SAR upon field strength and investigate the effects of

varying the shape of the target excitation as well as the size of the imaged body (since

wavelength effects can be strongly influenced by object size). In addition, we model

the same excitation approaches using finite coil arrays of well-defined geometry, and

compare their performance against the ultimate intrinsic case. In the case of fully

parallel excitation, we investigate the relation between ultimate SAR and acceleration

factor, and we determine the time-varying spatial distribution of RF power deposition

within the subject during optimized excitation pulses.

Theory

In this section we begin by reviewing the general formalism of excitation with an array

of transmit coils and then we describe a procedure for combining the individual coils'

current waveforms in order to minimize RF power deposition in the subject while

preserving a target net excitation profile. We then show a method to derive a



theoretical lower bound on this deposited power, by employing a complete basis set of

transmit coil fields.

Multi-coil RF excitation formalism

It is often convenient to express the RF field generated by a transmit coil in a reference

frame rotating at angular frequency equal to the Larmor frequency, as in this way the

carrier term exp(iot) disappears from the equations. The principle of reciprocity,

commonly used to calculate the strength of the MR signal, must be adapted

accordingly. A rigorous formulation was provided by Hoult (70), who derived the

following expressions for the magnetic field in the positively and negatively rotating

frame, as a function of the components of the magnetic field in the static laboratory

frame:

k+ l,x + 
illy

S 2
). (3.1)

l ( / l , -x  i l'y
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where * indicates complex conjugation and 1,,• and •0,, are the Cartesian components

of the complex RF field amplitude generated by a coil in the laboratory frame (with the

carrier terms removed). The RF excitation may be expressed in terms of k, whereas,

in accordance with the principle of reciprocity, the strength of the received MR signal

is proportional to C,-. Neglecting short-lived field transients and assuming a driven

steady state which changes slowly as compared with the RF oscillation period, (j+ can

be separated into a spatially varying term and a temporal envelope:

1 (r,t) = b(r)I(t) (3.2)

It is important to remember that both factors on the right hand side of Eq. (3.2) are

complex quantities: b(r) because of its orientation in the positively rotating frame and

I(t) because it is an oscillatory current which has a magnitude and a phase in time.



Let us now consider an array of transmit coils. Within the limits of the small tip-angle

approximation, the transverse magnetization resulting from simultaneous excitation

with L transmit coils can be derived using k-space Fourier analysis (59):

L L

M(r) = iyMo (r) bi,(r) cJ1,1 W, (k) S(k) e'2r krdk . (3.3)
I'=1 k 1=1

y is the gyromagnetic ratio, i is the imaginary unit, M o is the equilibrium value of the

nuclear magnetization, b,(r) is the complex spatial weighting induced by the C+ field

pattern of the h component coil in the array, and c,,, are the coefficients that

characterize the mutual coupling between the coils. In practice, rather than b,(r), it is

convenient to measure, by means of so-called B1 maps, the effective spatial weighting

b,(r) = c",=, c,,b,,(r), which incorporates the mutual coupling. The product of the

spatial-frequency weighting introduced by the t coil, W,(k), and the excitation k-

space sampling trajectory controlled by the switching gradients, S(k), represents the

explicit weighting of k-space by the RF excitation and is defined as (96):

W, (k)S(k) = JW iG(k(t)) (k(t) - k (t) dt = It) (k(t)-k) k(t)L}dt, (3.4)

where JG(t)J is the amplitude of the linear gradients and 3t the three-dimensional

delta function. It(t) is the current circulating in the t coil and it is a measure of the

amplitude of the RF field applied by the lth coil to produce an ideal small tip-angle

excitation at the voxel of interest in the current RF cycle.

The portion of Eq. (3.3) that defines the complex-valued excitation profile U(r) can

thus be re-written as:

L

/p(r) = , (r) fW(k) S(k) e 2 rkArdk (3.5)
1=1 k



Let us now consider the case of a 2D echo-planar excitation trajectory. Indicating

positions on the trajectory with (kx, ky), we can define the periodic excitation pattern

f, (x, y) associated with the RF pulse of the th transmit element as:

f(x, y)= J W(kx,ky)e 2 (kxx+kdkxdky (3.6)

(Note that, as compared with the original exposition in Ref. (59), we have changed

notation for the excitation pattern from g tof so as to avoid confusion with the g-factor

in parallel imaging). The periodic patterns are then combined to excite simultaneously

the target profile. This translates into the following constraint for the f (x, y)'s in Eq.

(3.6):

f (x,y) (x, y) = p(x, y) (3.7)
l=1

From Eq. (3.6) is clear that discrete sampling in the spatial-frequency domain (kx, ky)

results in aliasing lobes in the x and y directions. If the sampling interval is sufficiently

small, all the aliasing lobes occur outside the FOV and we need not include the

periodicity of the fi(x,y) explicitly in the equation. This is the case for unaccelerated

parallel transmission, which requires solving Eq. (3.7) for each voxel in the image

separately.

RFpower deposition with multiple transmit coils

The total electric field associated with the pth time-period in the RF excitation can be

expressed as a linear combination of the electric fields generated by the L elements of

the transmit array:

L

E(r, pAt)= , (pAt)er(r), (3.8)
/=1

where I(pAt) is the p-th complex-valued time-sample of the current applied for an

interval At to the th transmit element or driving port, and e,(r) denotes the complex-

valued electric field which would be produced by the lth coil if 1, (pAt) were equal to 1.



The temporal window At is assumed small enough that the field amplitudes can be

considered constant within it. The RF power dissipated in the subject over one

excitation time period can be expressed as a quadratic function in the samples of the

current waveforms:

1= I f(r)!E(r, pAt)12 dtdv
V At

e,(r) II(pAt)
= (I (pAt).. I(pAt)..1,(pAt)) (r) er) (eI(r)..e,(r)..eL(r))dv I,( At)

e, (r)) IL (pAt)

= IHD I

(3.9)

o-(r) is the conductivity of the sample, and the superscripts * and H denote,

respectively, complex conjugate and conjugate (Hermitian) transpose. b is a matrix

which contains the overlap integrals of the electric fields from the individual coils and

its elements are calculated as:

giD t, = fo(r)et (r) e, (r)dv (3.10)
V

(Note that Eq. (3.10) is equivalent, by reciprocity, to the expression for the noise

correlation matrix between transmit elements if they were used in receive mode.) The

samples of the current waveforms (It(pAt)) are related by Fourier transformation to

the periodic patterns that define the excitation profile (see Eq. (3.4) and (3.6)):

w, =- W,(k.,k,)= W,(k(pAt)) = 11(pAt) = fI(xy) = M W oc l(pAt)]IyG(pAt)J
(3.11)

where E indicates the Fourier transform, and n is an index of discrete voxel positions

(x,y) considered in defining the excitation profile. The factor lyG(pAt)l has been

absorbed into the proportionality on the right hand side of Eq. (3.11), as it remains

constant for the EPI trajectory in question. Eq. (3.11) explicitly shows how time



dependence disappears from the remainder of the theory and becomes incorporated in

the index p. The notation used here in fact indicates that, for each time period p, time-

variant quantities are sampled only at time points corresponding to positions (kx, ky)

lying on the excitation k-space trajectory. The mapping of k-space positions to spatial

voxel locations by Fourier transformation applies also to the corresponding indices (p

and n), as follows:

(k,,ky) - p

IF E7 (3.12)
(x, y) - n

Because of the property detailed in Eq.(3. 1), we can apply Parseval's theorem to write

RF power deposition using the fn's:

S bI, DI = ,• I, (pAt)D,, ,I,(pAt) =2 Y ,,, , l, (pAt)l1(pAt) C

p=l p=l =1 N'=1 l=1 ('=1 p=l
, (3.13)

1=1 P= n= n=1 1=1 1'=1 n=1

where P is the total number of time periods in the excitation and N is the total number

of voxels. Using the result of Eq. (3.13) in Eq. (3.9), we can define the average RF

power deposited in the sample during the excitation with two equivalent expressions:

=_ IH n(HI, D f, n . (3.14)
= 

=
p=1 N 11=1

Optimal RFpower deposition with fully parallel transmission

In fully parallel transmission tailored excitations are transmitted independently with the

individual array elements. This means that each coil's base excitation pattern may vary

independently voxel-by-voxel, since that coil's driving current pattern is free to vary

independently over time. The expression in Eq. (3.7), which relates individual coil

excitations to the target excitation profile, can be re-written as:

L

fin f ,,, = p,, (3.15)
l=1



which represents N separate relations, each applicable at a particular voxel position. If

we concatenate these relations into a single matrix equation, we obtain the following

expression:

b, ··I ... bil... b Oj... 0 .. 0 ... 0 ...
Siii... ... ... ... ... ... o
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Here bin =b(x,,y,), fin =fi(xn, y), and /u =/ (x,,

we may write:

CFOVfFOV = P-FOV '

y,). In more compact notation,

(3.17)

with PFOv representing a [N x 1] vector that contains the target profile, fyov being a

[LN x 1] vector concatenating values of f as shown in Eq. (3.16), and the block-

structured [N x LN] matrix CFOV being a spatial-weighting map made up of transmit

field values b•,.

Using Eq. (3.14) and the concatenated quantity fyov, we can write an expression for

the average RF power dissipated over the entire duration of the parallel excitation:

(3.18)
SF O

N

\v LtJL j



where 1 is a block-diagonal matrix, with N copies of D along the diagonal and zero

elsewhere. The design of parallel excitation pulse sequences that yield minimization of

RF power deposition consists in finding a set of coefficients for each time period, or,

equivalently, a set of tailored excitation patterns at each voxel position, that leads to

SAR minimization over the entire duration of the excitation. Combining Eq.'s (3.18)

and (3.17), we see that the constrained minimization problem for fully parallel

transmission can be summarized as (59):

minimize r-=(fH ~f )
mN FOV 4DfV (3.19)

subject to C,,ff = tFOV

Given the block structure of CFO,,, the constraint in Eq. (3.19) can be seen as the

concatenation of N constraints, each of which must be satisfied simultaneously in order

to achieve the desired excitation pattern at all voxel positions. However, as the

contribution to ý from each voxel position in the sum shown in Eq. (3.14) is positive

definite, we can subdivide Eq (3.19) and separately optimize the current patterns for

each target position, (since the sum of separately obtained minimum SAR contributions

fH n f, will remain the minimum achievable total SAR). Application of Lagrange

multipliers to solve each sub-problem in Eq (3.19) yields the following solution,

previously shown in Ref. (64):

f, = -' Cn )- n (3.20)

The tilde in f, indicates that this choice of the individual excitation patterns is optimal

in the least-squares sense. Substituting in Eq. (3.18), we obtain the minimum average

SAR:

1= I N H c -CH)-', (3.21)
In=1

In Eq. (3.21), SAR is optimized for each voxel position (or, equivalently by application

of Parseval's theorem, for each excitation time period) and then averaged.



Algorithmically, this involves a loop over voxel positions to accumulate global SAR

contributions.

One further subtlety to note is that each contribution i< (C,' -'CH)-l'p to the sum in

Eq. (3.21) represents not the local SAR at the nth voxel position, but rather the

contribution to global SAR associated with the achieving of the target excitation at that

position within the FOV. With the results of our optimization in hand, however, it is

straightforward to compute local SAR at any position. If we weight the electric fields

produced when the individual coils are driven by a unit current (see Eq. (3.8)) with the

inverse Fourier transform of the corresponding elements of f,, which is proportional to

the coils' actual driving current (see Eq. (3.11)), we can compute the spatially

dependent net electric field generated during each time period of the SAR-optimized

excitation. Knowledge of the net electric field during each excitation sampling interval

enables calculation of power deposition at any particular location as a function of time

and thus provides us with a spatial distribution of SAR as the excitation proceeds

through excitation k-space. For each time period in the SAR-optimized excitation, the

resulting local SAR at any position in the sample is:

L 2
loal (r, pAt) oc cr(r) n ]e,(r) (3.22)

Pulse design for accelerated parallel excitations

If the sampling interval in excitation k-space is not sufficiently small, aliasing lobes

will occur inside the excited FOV. In the case of under-sampling along kx with

sampling interval Akx, we can re-write Eq. (3.7), suppressing the z-dependence for

simplicity, as:

L M-1

p(x, y) = xi (x, y) I fl (x- mA , y) , (3.23)
i=1 m=0

where M-1 is the number of aliasing lobes inside the FOV and Ax = 1/Akx. Once again,

the aliasing lobes outside the FOV are omitted (otherwise m would range from -oo to

+oo). In the case of M = 1, which corresponds to unaccelerated excitations, and



discretizing to discrete voxel positions, we recover the voxel-by-voxel subproblems of

Eq. (3.16), i.e.

(bý (X,, Iy) ... b, (x,,, y) ... bL(n n>f, (XnYn n 'n ) (3.24)

In parallel excitation techniques, the number of time periods necessary to excite a

target profile is reduced by lengthening the sampling interval, and by weighting the

aliased excitation patterns of the independent transmission elements to eliminate

aliasing in the combined excitation. Thus, in the general case of M > 1 Eq. (3.23)

translates into a set of M linear equations:

f (x,, y,)
p(x, +MAx,Y,)

p(xn + MA.,, yn),

(3.25)

The SAR optimization problem for accelerated parallel transmission may be

formulated precisely as in Eq. (3.19), with the difference that all sums over n run from

one to NIM and the optimization is performed over sets of M aliased voxels rather

than for each voxel independently.

This formulation, of course, has a strong counterpart in formulation of the weak

Cartesian SENSE parallel image reconstruction (16). In fact, when we assume a fully

homogeneous target excitation profile (i.e. u(x,, y,) = 1 and p(x, + mA x ,yn) = 0 for all

m), and exchange the transmit field (' for the receive field -1, then the expression for

each voxel's SAR contribution in our optimization is equivalent to the inverse square

of the expression for voxelwise SNR in weak Cartesian SENSE.

b (x,,y,) ... b,(x,, y,) ... bL (x,,y)
(x, ... ... ... ...

b, (x, +mAx,Y,) ... b,(x, +mAxIY,) ... bl.(x, +mAx,y,)
... ... ... ... ...A., A,

ýb (xn +MMLxyY) ... b, (, + M~x, yn) ... b,,(x + M ý,, yn))

' r/ \

" "



Optimal RFpower deposition with time-independent RF optimization

The same optimization can be applied to a special case of parallel transmission, which

has fewer degrees of freedom and does not allow for accelerated excitations. In RF

shimming, or Bi shimming, all coils share a common current waveform with only a

single time-independent phase and amplitude distinguishing each channel. In order to

optimize the performance of RF shimming, we can search, among all possible

modulations, for the one set of phases and amplitudes that minimizes RF power

deposition while removing, to the greatest extent possible, B, inhomogeneities.

Traditionally, RF shimming has been performed using single slice-selective pulses, in

which case the excitation k-space trajectory reduces to a single non-zero amplitude at

(kx, ky) = 0 played out in the presence of a slice-select gradient. In order to derive RF

shimming as a special case of the general formalism, we begin by assuming the more

general excitation k-space trajectory used for fully parallel transmission, but in this

case shared among all coils. We discuss other possible excitation strategies at the end

of the section and in "Materials and Methods".

If we indicate with A, and Pt, the amplitude and phase used to modulate the current at

the th coil or driving port for RF shimming, we can express this current as:

I,(pAt) = Ae'"• I(pAt) = aI, (3.26)

where a, is a complex coefficient and I, is the current generated by the RF source at

time-period p. Knowing that the spatial frequency weights Wp are proportional to the

currents I, (pAt) and that the currents are sampled only along the k-space trajectory (see

Eq. (3.11)), we can make the integral in Eq. (3.6) discrete and re-write the equation for

the case of RF shimming:

P

f,(x, y)= f, c I,(pAt)ei2, (kp ,xx+kpyy) = ha (3.27)
p=l

where we define the common excitation pattern shared by all transmit array elements

as:



P

h,= Ie x+ky) . (3.28)
p=l

This common excitation pattern results from the shared RF waveform combined with

the common applied field gradients. For each transmit element, of course, this shared

pattern will be modulated by that element's transmit field pattern. Substituting in Eq.

(3.7) and using the index n to indicate voxel locations, we obtain:

L L

finbi = h. ab = p,.. (3.29)
1=1 I=1

Substituting Eq. (3.27) into Eq. (3.13), we can express the RF power deposited in the

sample during the excitation of the target profile as a quadratic function in the RF

shimming coefficients a,:

= hI2  I • ',.,a = 1 2 h a a) (3.30)
N1 1=1 '= n=1

Optimization of RF shimming performance, then, involves adjusting the a,'s, for any

given choice of common profile h,, to minimize the expression for SAR in Eq. (3.30)

while preserving to the greatest extent possible the desired net excitation profile p, as

specified by Eq. (3.29). This reduces to the following constrained minimization

problem:

minimize (aHQ a)
(3.31)

subject to SFa FO (3.31
hFOV

S,,o is a [N x L] spatial-weighting map made up of transmit field values bin, a is a [L

x 1] vector containing the unknown complex modulation coefficient for each transmit

coil, Pov represents the same [N x 1] vector that appears in Eq. (3.19) and hFov is a

[N x 1] vector that contains the common excitation pattern at each voxel position of the

FOV. The quotient on the right hand side of Eq. (3.31) represents an element-by-

element division, derived from Eq. (3.29) and reflecting the fact that it is only the



relative differences between the starting common profile and the target profile which

must be adjusted by RF shimming. The optimization in Eq. (3.31) is performed

simultaneously for all voxels and the accuracy with which the homogeneity constraint

is satisfied is strongly affected by the number of transmit elements, i.e. the number of

columns in SFOV, as we can see better by expanding the matrix elements:

/ 1X

b,(x yl,Yl)... b,(x,, yl) ... bL (xl, Yl)

b l(x,, y) ... b(x, y n ) ... bL(Xn,Yn)
... ... ... ... ...

,[,,(x,,, yN,) ... b,, (xN, I, YA ... b,•(xN, yN)

al h(x, y1 )
a, h(x,,y,)

at = (3.32)
h(xn, y,)

a. P(XN , YN)
L ý h(xN, y,)

The solution of this matrix equation, detailed in Appendix A, yields the optimal

modulation coefficients:

S= 'SOV(S FOVSH V)l FOV (3.33)
h FOV

The resulting minimum SAR value is obtained by substituting di into Eq. (3.30):

P = h,2 I 1 (Srove-'SH~OV' P-1 (3.34)
n=1 FOV hFOV

This value represents, in effect, the SAR achieved with the best possible fixed

combination of transmit coils otherwise sharing the same RF waveform. The actual

excited profile, achieved when the optimal coefficients are applied to the coils, can be

calculated by substituting i into Eq. (3.31). If the number of transmit elements L were

greater than or equal to the number of target excitation voxels N and the transmit fields

of the various elements were sufficiently distinct, than any two-dimensional profile

could be matched within the voxel resolutio n in a target image plane. (The fidelity of

excitations in three dimensions is limited by the constraints of Maxwell's equations

(55).) Subvoxel variations between the target voxel centers are always present, as in

the analogous case of weak SENSE reconstruction for parallel reception (16).



Numerical errors in or regularization of the inverse in Eq. (3.33) will result in

additional deviations from the target profile. Furthermore, just as inversion of ill-

conditioned coil sensitivity matrices in the SENSE formulation of parallel image

reconstruction results in noise amplification, ill-conditioning in the transmit sensitivity

matrix SFOV here can result in amplification of SAR in Eq. (3.34). Thus, SAR would

appear to be the principal price paid for maximum adherence to a target excitation

profile.

A few comments about the choice of common excitation profile h,,, are in order.

hm,,V represents the spatial excitation profile produced by the shared RF current

waveform together with the applied gradient waveform, prior to modulation by

individual transmit coil field patterns. The particular form of hEyo may be chosen

according to the problem of interest: for example, if we choose to set h•,V = pFov , the

task of RF shimming is simply to correct for the additional modulations produced by

the transmit element field patterns. If instead we choose to set hFo • PFOV,I then we

would be also relying upon the RF shimming procedure to compensate for any

deficiencies in the combined RF and gradient waveforms. In this work we explore

both situations.

If we set hO V = 1 everywhere, our general formalism reduces to the familiar case of

single slice-selective pulses at (kx, ky) = 0. More recently, other RF optimization

techniques have been proposed using multi-spoke excitation trajectories (97,98), which

apply non-zero RF amplitudes at a small number of carefully chosen (kx, ky) values,

each in the presence of a slice-select gradient. Multi-spoke trajectories can be seen as

an intermediate case between RF shimming and fully parallel transmission. Indeed,

both the slice-selective pulses at (kx, ky) = 0 typical of RF shimming and the slice-

selective pulses with multi-spoke k-space traversal employ relatively simple k-space

sampling patterns and RF pulse temporal relationships, and both can be viewed as

special cases of parallel transmission. Multi-spoke excitation expands, compared to RF

shimming, excitation profile control in the (x,y) plane. Meanwhile, it implements a



practical tradeoff scheme among in-plane profile, slice profile and RF pulse length.

Further tradeoffs are possible in the general framework of parallel transmission. Multi-

spoke approaches may be accommodated in a straightforward manner in our

formalism, with the common excitation hFoV being defined by any chosen set of spoke

amplitudes. In fact, homogeneity- and SAR-optimized choices of spoke amplitudes

may also be determined as part of the design, through small modifications of the

minimization problem of Eq. (3.31). In this case, the set of weights a would be

expanded to include a complex weight not only for each coil but also for each spoke

amplitude. Meanwhile, the column space of the SFOV matrix would also be expanded

by a factor equal to the number of spokes, with columns now containing the values

b,(x,,y,)exp(ikxx, +ikyy,) for each chosen spoke location (kx, ky). Such an

expansion of the number of degrees of freedom represents a step in the direction of

fully parallel transmission.

Theoretical lower bound on the RFpower deposition: ultimate intrinsic SAR

The tailored excitation patterns in Eq. (3.20) and the modulation coefficients in Eq.

(3.33) result in the minimization of power deposition in RF shimming and fully parallel

transmission, respectively. Increasing the number of elements in the transmit array

would increase the number of degrees of freedom available for the optimizations in Eq.

(3.19), and (3.31), allowing improved management of the energy employed in the

excitation and therefore leading to further reduction of the average RF power deposited

in the subject. Indeed, for any given array, if any element were added whose net effect

was to increase global SAR (and its contribution were not essential to achieving the

target excitation), the optimization would automatically assign it a weight of zero. In

order to find the theoretical minimum value of SAR for a given excitation trajectory,

then, one can in principle add new RF sources into the pulse optimization until no

further reduction in power deposition is observed. Though adding arbitrary new RF

sources without perturbing existing sources would be difficult in practice, the

computational procedure of performing the optimization with a suitable basis of

transmitters (or, alternatively, of RF electromagnetic fields) results in a lower limit on



the attainable SAR, which we shall refer to as the ultimate intrinsic SAR. Such a

procedure is closely related to methods which have recently been used to compute

ultimate intrinsic SNR for parallel imaging (41,42).

For the remainder of the theory to follow we suppose that all transmit elements, as well

as all receive coils, are positioned outside the body, which is assumed to be

homogeneous. Such a condition enables us to express the fields arising in the sample

at each time period in the excitation as solutions of the source-free Maxwell's

equations. In accordance with previous studies of ultimate intrinsic SNR (41,42), the

net field E" and "', generated by a hypothetical net transmit coil, can be expressed

as the time-dependent linear combination of the contributions of a complete set of basis

fields e, and b,:

E" (r, pAt) = J",8 (pAt)e,(r)
1 (3.35)

0" (r, pAt) = ,8 (pAt) b,(r)

In order to find the theoretical lower bound on the RF power deposited in a given

subject during a particular RF excitation, we must find the weights fl, (pAt) that

produce the desired excitation profile with the smallest possible RF energy deposition.

In contrast to the case of ultimate intrinsic SNR (41,42), which uses (,-, for this

calculation we use A , and thus (bt. + i b,,), the spatially varying component of the

right-hand circularly polarized magnetic fields in the basis set, accounts for the

transmit sensitivity patterns of the individual hypothetical transmit elements. (The

harmonic time dependence of the basis fields has been removed by transformation to

the rotating frame, and all other time dependence has been incorporated into the

weights /3,.) These field values constitute the matrix elements of C, in Eq. (3.21) and

S,F, in Eq. (3.34). Substituting the e,(r)'s of the basis set to calculate the entries of

QC in Eq. (3.9), we can compute 4 ultimate - a quantity that, up to scaling factors, is a

measure of the ultimate intrinsic SAR.



The optimal weights f, can be then calculated by inverse Fourier transformation (see

Eq. (3.11)) of the tailored excitation patterns fl, which are found by using the selected

basis set in Eq. (3.20) and Eq. (3.33). The resulting ft (pAt) in our case are equal to

the spatial-frequency weighting functions W,(k(pAt)) in Eq. (3.11), which in turn are

equal to the optimal complex current waveforms that must be applied to the individual

driving ports at each time period, multiplied by a constant factor accounting for the

regular application of the gradients in the EPI trajectory. If we then substitute these

weights into the expression for the net electric field we can compute the time-varying

local SAR as:

basis set 2

a set (r,pAt) oca o(r) 8 (pAt)e,(r) (3.36)

Eq. (3.36) yields a relative measure of local RF power deposition during the excitation

that results in the theoretical smallest global SAR. 41,=t does not necessarily

represent the lowest possible SAR at every position r for any time-period p, but, rather,

it represents the local consequences of the choice of weights that lead to the global

SAR value etimte over the total duration of the excitation and the entire volume of the

sample. Direct minimizations of local SAR at any particular spatial position could in

fact be performed using our current formalism with the spatial integration inherent in

the matrix 4 removed, but such minimizations would necessarily occur at the expense

of SAR elsewhere in the volume, and we have chosen to retain global SAR as our

principal optimization parameter. (One could conceive of attempting simultaneous

optimization of multiple local SAR values as a consensus among competing optima,

but such an approach would represent a more complicated goal-attainment problem for

which the simple linear algebraic formulation used here would not apply).

Henceforward, we shall refer to 5Itc as ultimate intrinsic local SAR.

For an appropriately constructed field basis set, the value of ltimate will eventually

converge at some finite value of the index 1. Convergence may be tested by performing



the optimization for increasing values of 1. Converged values for ultimate intrinsic

SAR may then be compared with SAR values obtained by using finite transmit coil

arrays with defined conductor geometries, to assess how closely the ultimate value may

be approached with physically realizable arrays. The choice of basis for ultimate SAR

computations and the methodology for comparison with finite transmit arrays are

outlined in "Materials and Methods" to follow.

Materials and Methods

Choice of basis functions for ultimate intrinsic SAR calculations

The numerical complexity of solving the optimization problems in Eq. (3.19) and Eq.

(3.31) using a complete basis of EM fields is affected by the choice of the basis

functions and by the geometry of the object modeled in the simulations. For this

reason, in the present work the sample was modeled as a homogeneous sphere and a

multipole expansion of electromagnetic fields was used (42,71,99). Multipole electric

and magnetic fields have the advantage of orthogonality over the sphere, which

simplifies various expressions in the calculation and provides some confidence

regarding convergence. Wiesinger et al. (42) showed that the multipole basis set

enables convenient calculation of ultimate intrinsic SNR for the sphere. We employed

a similar computational framework to calculate ultimate SAR, with attention to unique

constraints of transmission as opposed to reception. Furthermore, this approach allows

for direct comparison of the ultimate intrinsic SAR with the best attainable SAR values

for a finite number of circular coils arranged on the sphere surface, as a semi-analytical

solution for the EM fields of these coils can be derived as a special case of the

multipole expansion (60,99,100).

Following Eq. [B3] of Ref. (42), the multipole electromagnetic fields are given by



basis set (m 1  (x XimA (9 0))

k j ji(kt "r)Y (9,) + f3,j,(k'"r)X,( ,)

o !
b asset (r, ,) = [ i { mimj((k9r)X,(09, )

1=0 m=-1

M [ i 8(r j,(k1 r)) +1 )-f I- (rx Xim (0)) j (k'"r)Y' (38i j}Sk' r rr Jnk' r)('

(3.37)

Here k'" is the wave number inside the sphere, defined as (k'")2 = co(co + ia) where

a and 6 are the electrical conductivity and electric permittivity, respectively, of the

sphere contents. j,(ki"r) is the spherical Bessel function of the first kind, Y" are

scalar spherical harmonics and Xt. the corresponding vector spherical harmonics

defined as Xm,(3,)=(-i/ l(l+l))(rxV)Ym(3,#) (with the full position vector r

replacing the unit vector i in Eq. B2 of Ref. (42)). fE and mM, denote expansion

coefficients of electric-source and magnetic-source multipole basis functions,

respectively. Letting the transmit-element/mode index range over both I and m, the set

of weights P(pAt) -{ lEm (pAt), jMm(pAt)} were optimized following the procedures

outlined in previous sections.

In order to calculate the noise covariance matrix D and the coil sensitivities we

followed with minor changes the method outlined in Appendix B of Ref. (42). More

precisely, Eq. [B7] of Ref. (42) was multiplied by the conductivity of the sample, to

correct for a minor typographical error, and, to model RF transmission, coil

sensitivities were computed using the right-hand rather than the left-hand circularly

polarized component of the magnetic field.



Table 1.
Dielectric properties of average brain tissue obtained from Reference 26

Bo [T] 1 3 5 7 9 11

Larmor Frequency [MHz] 42.6 127.7 212.9 298.1 383.2 468.4

Dielectric Constant Er 102.5 63.1 55.3 52 50 48.8

Conductivity a [1/0m] 0.36 0.46 0.51 0.55 0.59 0.62

The electromagnetic properties of the

magnetic field strengths were chosen

material in the homogeneous sphere at various

to approximate values in the head, as given in

Table 1. The FOV is a transverse square section through the center of the sphere, with

the side length equal to the sphere's diameter (Figure 3-1). We assumed image matrix

size to be 32-by-32 voxels. (This choice was made for practical reasons of

computation time, but larger matrix sizes are certainly possible.) SAR was calculated

for concentric excitation profiles with three different radii, equal to 100%, 50%, or

25% of the radius of the sphere (Figure 3-1). Homogeneity of the target excitations

was also varied as described further in Results to follow. All calculations were

implemented using MATLAB (Mathworks, Natick, USA) on a standard PC.



p = a p = 0.5*a p = 0.25*a

K N

Figure 3-1. Schematic representation of the sample geometry, the FOV and
the shape of the target excitation profiles. Fully homogeneous concentric
excitation profiles were modeled with radius equal to 100%, 50%, and 25%
of the radius of the sphere. Smoothly varying excitation profiles with the
same set of radii were also tested, and are shown in subsequent figures.

Circular surface coils

The full-wave solution of the electromagnetic field produced by a circular surface coil

adjacent to a homogeneous sphere (Figure 3-2) can be expressed in the form of a semi-

analytical multipole expansion (99):

'Ecil (r, 9, 0) = 8j (kinr)Xo (8, ,)

I=1

3oi1 (r,, )= t9o L k1 r -)Y-o( )r, (3.38)

i fM (r j,(kinr)) (rxX( )]
k' r r1,0 r

wM,0 is the expansion coefficient of magnetic-source multipole basis functions (99),

derived by applying appropriate boundary conditions at the surface of a homogeneous

dielectric sphere to the unconstrained fields in Eq. (3.37):

01



,p12 = ; 2 (21+ 1) (kout )2 R2h l)(ko"u d2 +R 2) dP1(l)
,o 4rl(l + 1) d2 +R2  r. (339(3.39)

kk" (j (ko"'a)y,+,, (kota) - y, (kota)j,,, (kouta))
k"h i) (kou ta)j,,+ (k ia) - koutj, (kin a)h) (kou ta)

kout = moxUp0•0 is the wave number in free space, R is the radius of the circular coil, a is

the radius of the sphere, d is the distance between the center of the coil and the center

of the sphere, I is the current circulating in the coil (assumed to be normalized to unity

throughout this work), P, is the Legendre polynomial of order 1, r = dl•d 2 + R2 is the

cosine of the angle subtended by the circular coil, and h'(1 and y, are the spherical

Bessel functions of the second and third kinds, respectively.

The EM fields in Eq. (3.38) can be appropriately rotated in order to express the EM

fields of an identical circular coil at a different position near the surface of the sphere,

with respect to the same reference frame of the sample (see Appendix B and Figure 3-

2). In order to model finite arrays of surface coils, we followed a procedure outlined

by Wiesinger et al in Ref. (60,100) to distribute circular coils as evenly as possible

around a spherical surface concentric with the imaged sphere. The radius -d 2 + R2 of

the spherical surface on which the coils are placed was 10% larger than the radius a of

the imaged sphere. Transmit arrays with element numbers ranging from I to 64 were

simulated in this way, and the resulting sets of coil fields were subjected to the

identical optimization algorithms as the multipole fields used for ultimate intrinsic

SAR computations. SAR and homogeneity results were then compared with ultimate

intrinsic results. It is clear from the formulation of the coil electromagnetic fields in

Eq. (3.38) that any finite array will perform worse than our ultimate intrinsic limit,

even if the mode expansion is carried out to a finite mode order Im"x, since the complete

multipole basis of Eq. (3.37) may be regenerated by removing boundary condition

constraints to allow m • 0 terms, and by including electric-source terms, both of which

will necessarily increase the number of degrees of freedom for homogeneity correction

and SAR control.



X

Figure 3-2. Schematic arrangement of two circular surface coils near the
surface of a homogeneous sphere. The sphere is centered at the origin of the
laboratory reference frame.

For completeness, we also computed SAR and homogeneity for transmission in single

surface coils or simple fixed sums of coils, in order to assess the degree of benefit

afforded by coil-by-coil and/or time-period-by-time-period control. The case of simple

sums of transmit coils may be treated as a special case of time-independent RF

optimization, in which all the coil weights a, are forced to unity, placing any desired

homogeneity adjustment entirely in the domain of the gradient-based common

excitation hn . Modifying Eq. (3.30), the resulting SAR may be expressed in terms of

h, and the precomputed matrix elements C,i ,:

sum _ N 2 ) ,, (3.40)
We used two distinct choices of h in our comparisons:'=

We used two distinct choices of h in our comparisons:



the "forced homogeneity" choice in which h, is designed to compensate for any

inhomogeneities in the net transmit field to yield the exact target excitation •p,. In this

case, setting b,,,= Bo(x,, y,,) +itB(x, y,,) for each coil in turn, we have from Eq.

(3.32):

h,n (3.41)

l=1

the simple "sum of coils" choice in which no shaping of the target excitation is

performed, and the target profile is allowed to match the simple sum of coil transmit
L

fields: P, oc bl,, . In this case, which may be accomplished using a single slice-

selective ID pulse, we need only specify a single proportionality constant which

defines the overall "magnitude" of the excitation. For our comparisons, we chose to

define a "unit" excitation to occur when the net excitation field equals the mean of its

absolute value across the FOV, i.e.

h, = h = -1 b1 i (3.42)
n=1 1=1

Results

Figure 3-3 shows how rapidly the ultimate global SAR approaches a limiting value as

the order of the multipole expansion Imax, and therefore the number 2 *(lmax + 1)2 of

spherical harmonics in the basis set, is increased.
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Figure 3-3. Convergence of the ultimate SAR optimization as a function of the number of
basis functions used in the calculations. The number of basis functions is equal to 2 *(lmax + 1)2,
where Imax is the order of the multipole expansion, whose range is reported at the top of each
plot. Data are reported for three different sphere radii (a = 5 cm, a = 15 cm, a = 25 cm) and
two extreme field strengths (B, = IT, Bo = 11T). In each of these cases convergence was tested
for the three shapes of the target excitation profile shown in Figure 3-1.

Data are plotted for the cases of the two extreme main magnetic field strengths (1T and

1 IT), for unaccelerated and 8-fold accelerated parallel excitation. For each of these

cases sphere radii of 5 cm, 15 cm, and 25 cm were used, and convergence was tested

for the different shapes of the target excitation profile shown in Figure 3-1. The FOV

was always a transverse slice through the center of the sphere, as shown in Figure 3-1,

with 32-by-32 matrix size. The calculations converged quickly in all cases (Figure 3-

3), and for all simulations in this work it was decided to set the expansion order to Imax
= 80, to match the conditions of a previous investigation using the same multipole

expansion (42). Calculations of ultimate SAR in the case of RF shimming have a

similar convergence behavior, which is not shown here. The same expansion order

used to generate the basis set was employed to calculate the EM field associated with a

circular surface coil with the semi-analytical multipole expansion (see Eq. (3.38)).
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With our choice of Imax, the duration of ultimate global SAR calculations was about 2

minutes for RF shimming and about 5 minutes for unaccelerated fully parallel

transmission. Calculation of ultimate intrinsic local SAR is nearly independent of the

chosen expansion order and in each case lasted about 90 minutes, as it required

performing 2D Fourier transformation on a 32-by-32 matrix of complex elements for

every time period of the excitation.

Figure 3-4 compares B, homogeneity for different excitation techniques and various

coil configurations at 7T main magnetic field strength. A target excitation profile fully

homogeneous over the entire FOV was used (i.e. p,, = h,, = 1 everywhere within the

sphere). The leftmost column of Figure 3-4 shows schematic representations of the

different transmit coil arrangements around the surface of the sphere. The ultimate

intrinsic case at the bottom of the figure is represented as a spherical surface without

particular coils in place. The columns to the right of the leftmost column show actual

excited profile for the following cases: sum of coils (second column from left, case (b)

and Eq. (3.42) in Materials & Methods), forced homogeneity (third column from left,

case (a) and Eq (3.41) in Materials & Methods), RF shimming (fourth column from

left), and fully parallel transmission (rightmost column).
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Figure 3-4. Actual excited profile for various transmit coil configurations and different
excitation strategies at 7T magnetic field strength. Leftmost column: coil configuration (with
ultimate intrinsic case at bottom). Second column from left ("sum of coils"): excitation profile
for simple fixed sums of transmit coil fields. The contributions of the individual coils are
summed and scaled by the average of the absolute value of each coil's transmit sensitivity (see
Eq. 42). Third column from left ("forced homogeneity"): excitation profile for the case in
which a common tailored gradient and RF excitation are used to correct for sensitivity
variations resulting from the simple sum (see Eq. 41). Fourth column from left and rightmost
column: these last two columns refer to RF shimming and parallel transmission respectively,
showing that the latter enables homogeneous excitations even with a small number of coils.
The radius of the modeled homogeneous sphere is 15 cm. The quantities reported are relative
measures of SAR and are normalized to the ultimate intrinsic value for parallel transmission
(indicated with an asterisk). The SAR values in parentheses for the second and fourth columns
represent the case in which excitation is achieved by repeatedly sampling the center of
excitation k-space 1024 times with small RF amplitudes, rather than by applying a single high-
amplitude spoke in the center during the 32-by-32 EPI trajectory.
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We see that fully parallel excitations result in good homogeneity even with small

numbers of elements, whereas using RF shimming it is more difficult to correct

inhomogeneities in the excitation profile with limited numbers of coils. Even 20 coils

are not sufficient for full homogeneity under the conditions studied in Figure 3-4. The

value of SAR (normalized to the ultimate intrinsic value for unaccelerated parallel

transmission) is plotted above the corresponding actual excited profile.. Two values of

SAR are reported in the case of sum of coils and RF shimming. The value on the left

corresponds directly to our theoretical formulation, where, for these two excitation

strategies, the 32-by-32 EPI trajectory reduces to a single period (or spoke) at the

center of k-space, occupying a fraction of the duration of a full 2D tailored excitation.

The same result, however, could be also achieved by repeatedly sampling the center of

excitation k-space with smaller RF amplitudes. Prolonging the pulse in this way is

known to reduce global SAR by the ratio of pulse durations (since the electric field

amplitude decreases linearly with the RF current amplitude, and the SAR scales as its

square, while the range of temporal integration increases in inverse proportion to the

current amplitude in order to preserve flip angle). On the right (red values in

parentheses) we report the SAR which would result if the single spoke were

repeated/extended 1024 times at correspondingly lower amplitude. Although

stretching single-spoke pulses out to durations typical of full 2D selective excitations

may not be fully realistic, due to off-resonance effects and other practical

considerations, we include this number as a lower bound, with the actual value for

particular implementations expected to fall somewhere between the two extremes. The

'forced homogeneity' case clearly shows that a high price in SAR must be paid in

exchange for homogeneity of the excitation using fixed multicoil excitation and relying

solely upon a common tailored RF and gradient waveform for homogeneity correction.

By comparison, SAR values are markedly reduced for fully parallel excitations, and

SAR decreases monotonically as the number of transmit elements increases.



Ultimate Global SAR vs. Field Strength
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Figure 3-5. Ultimate intrinsic average global SAR for excitation of a transverse FOV through
the center of a homogeneous sphere as a function of main magnetic field strength, for SAR-
optimized RF shimming (top row) and fully parallel transmission (bottom row). Frequency-
dependent average in vivo values of sphere electrical properties were used (see Table 1). The
size of the modeled sphere increases from the leftmost to the rightmost column. Results are
shown for three different concentric homogeneous target excitation profiles, whose radius is
indicated in the legend as a fraction of the sphere radius a.

The theoretical lower bound on RF power deposition was calculated for different sizes

of the sample and for different shapes (see Figure 3-1) of the target excitation profile.

The resulting values are plotted in Figure 3-5 as a function of the main magnetic field

strength, for the cases of RF shimming and parallel transmission. As expected, both

techniques result in higher RF power deposition when the sample dimensions are

increased, because more energy is needed to excite positions close to the center of the

sphere. Ultimate SAR increases with increasing size of the region in which we wish to

excite a fully homogenous profile (assuming that the unexcited regions are controlled

in the case of RF shimming by the common excitation profile rather than by the RF

shimming process per se, i.e. = h,, = 1 within excited regions and 0 within unexcited

regions). In general, the growth of ultimate SAR with field strength is slower for fully
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parallel transmission than for RF shimming. In the case of parallel transmission with a

sphere radius of 15 cm, there is an evident flattening in the growth of SAR with field

strength. In fact, for a 15cm sphere, ultimate SAR for parallel transmission decreases

slightly when field strength is increased from 9T to 11T.

The simple concentric target excitation profiles used to calculate RF power deposition

(see Figure 3-1) have sharp edges, and they might seem an unfair and/or unrealistic

choice in the case of finite coil arrays. Figure 3-6a shows global SAR and actual

excited profile for RF shimming comparing different target excitation profiles: the

uniform profile with sharp edges shown in Figure 3-1, a bi-dimensional Gaussian curve

of amplitude one in the center of the FOV and a bi-dimensional quadratic function with

amplitude decreasing from one at the edges to zero in the center. In all cases h, = 1

over the entire FOV, so that the coils' sensitivities alone were used to shape the

excitation profile, without aid from the gradients. For easiest comparison, SAR values

are normalized to the lowest value, which corresponds to the ultimate intrinsic case

using the smooth profile with low intensity in the center. We notice that there is an

evident baseline SAR advantage to using smooth profiles. The actual excited profile

matches the target profile only in the case of the ultimate basis set.

In order to improve SAR performance, one might also conceive of relaxing the strict

constraint of least-squares adherence to the target excitation profile, since in many

applications one might well be willing to settle for an approximate match to the target

in exchange for improved SAR. This may be accomplished by introducing some

degree of regularization into the pseudoinverse of Eq. (3.34). Figure 3-6b shows that

when the tolerance of SVD-based inversion (i.e. the smallest singular value considered

non-zero) is increased, the resulting global SAR for RF shimming (normalized to the

same case as in Figure 3-6a) becomes smaller, while the shape of the actual excited

profile deviates more and more from the desired profile.
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Figure 3-6. SAR benefits of relaxing homogeneity constraints. a) Average global SAR and
actual excited profile using RF shimming for various transmit coils configurations at 7T
magnetic field strength. The case of uniform concentric profiles considered elsewhere in this
work is compared against two smoother target excitation profiles: a bi-dimensional Gaussian
curve of amplitude one in the center of the FOV and a bi-dimensional quadratic function with
amplitude decreasing from one at the edges to zero in the center. b) Average global SAR and
actual excited profile using RF shimming for varying degrees of regularization with a 12-
element transmit array at 7T. By increasing the tolerance of the SVD-based inversion in Eq.
23, we can loosen the constraint on profile fidelity in order to improve SAR. SVD tolerance
(i.e. the threshold for the smallest singular value considered nonzero and included in the
inversion) increases from 10- 17 to 10- 14 to 10-11 from left to right, and the resulting SAR values
for RF shimming are shown above the resulting excited profiles. The radius of the modeled
homogeneous sphere is 15 cm for both (a) and (b). The quantities reported are relative
measures of SAR and are normalized to the case with the lowest SAR value in (a), which is
indicated with an asterisk in the figure.
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Dependency of eultimate upon acceleration factor is plotted in Figure 3-7 for parallel

excitations at various magnetic field strengths and for different sample sizes, in the

case of a homogenous target excitation profile uniform throughout the FOV (leftmost

diagram in Figure 3-1). Ultimate SAR is generally higher for larger accelerations,

although the pattern of growth depends on the size of the sample. The smaller the

sphere, the more the SAR growth flattens with increasing acceleration.

Ultimate Global SAR vs. Acceleration of the Excitation
sphere radius = 5 cm sphere radius = 15 cm sphere radius a 25 cm

xtO"

1 2 4

acceleration factor acceleration factor acceleration factor

Figure 3-7. Ultimate intrinsic average global SAR for parallel excitations along a transverse
FOV through the center of a homogeneous sphere, as a function of the acceleration factor.
Each plot refers to a different size of the modeled sphere and shows the behavior for different
values of the main magnetic field strength. A uniform, fully homogeneous concentric
excitation profile with radius equal to the radius of the sphere was used in all cases.

In addition to global SAR measures, ultimate intrinsic local SAR resulting from

unaccelerated parallel excitation with coefficients optimized for global SAR was also

calculated using Eq. (3.36) as a function of time, for a uniform concentric target

excitation profile with radius equal to the radius of the sphere (leftmost diagram in

Figure 3-1). Figure 3-8 shows the computed local SAR distribution within the FOV

during excitation of the center of k-space (i.e. half way through the duration of the

pulse) for different values of the main magnetic field and different sizes of the sample.

SAR values are normalized to the lowest local SAR in the plot at the top left of the

figure (i.e. Bo = I T, sphere radius = 5cm) and are plotted on a logarithmic scale in

order to highlight the behavior in the center of the FOV, where SAR is in general much
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lower than near the edges. The lower and upper bounds of the colormap were allowed

to vary from row to row so that the spatial variation of local SAR could best be

appreciated while preserving information about the overall scaling of SAR with field

strength. As expected, the spatial distribution of the RF power deposition is affected

by the dimension of the sample. In Figure 3-8 it is possible to appreciate how similar

ratios between the wavelength of the incident RF field and the radius of the sphere

result in similar distribution patterns, as for example in the case of Bo = 11 T and sphere

radius equal to 15 cm, as compared with Bo = 7T and sphere radius equal to 25 cm.

Ultimate intrinsic local SAR as a function of acceleration is shown in Figure 3-9, for a

15 cm sphere at different values of the main magnetic field strength. In order to

compare the results, in each case we considered a time period in the middle of the

excitation, whose duration differed depending upon the degree of acceleration. The

same normalization as in Figure 3-8 was used. For increasing acceleration, an

increasing proportion of RF energy is deposited near the center of the FOV, especially

at lower field strengths.



Spatial SAR Distribution (Log Scale) in
Optimal Unaccelerated Parallel Excitations
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Figure 3-8. Normalized distribution (base-10 Log scale) of local SAR within the FOV during
unaccelerated parallel excitations with current patterns optimized for global SAR. For each
value of the main magnetic field strength, spatial distribution of ultimate intrinsic local SAR is
compared for different sizes of the modeled sphere during excitation of the center of k-space.
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Figure 3-3 showed that in some cases optimal SAR calculations converge with a

relatively small number of basis functions. In Figure 3-10, the ratio of global SAR for

finite transmit arrays to ultimate intrinsic SAR is plotted (on a logarithmic scale) in the

case of unaccelerated parallel transmission to see how rapidly it is possible to approach

ultimate behavior by increasing the number of coils packed around the surface of the

sphere. For all magnetic field strengths global SAR can be maintained within one

order of magnitude of the theoretical lower bound using transmit arrays with at least 12

coils. Actual SAR approaches the ultimate intrinsic limit faster for smaller values of

Bo. At 3T the SAR resulting from parallel excitation with a 8-element array is already

only about three times larger than the corresponding ultimate intrinsic SAR.

Approaching Ultimate Intrinsic SAR with
Finite Arrays in Parallel Transmission

Ir/
4 5 12 15 zU Z4 az 4U SZ 54

number of coil elements

Figure 3-10. SAR efficiency of parallel transmission as a function of the number of coil
elements in the transmit array. The ratio of SAR resulting from unaccelerated parallel
excitations with finite arrays to ultimate intrinsic SAR is plotted for different magnetic field
strengths in the case of a 15 cm sphere, using a logarithmic scale.
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Discussion

The aim of this work is to explore electrodynamic constraints on transmit homogeneity

and SAR, two of the key obstacles to clinical applications of ultra high field MR

imaging. An algorithm is described here to calculate the theoretical lowest possible RF

power deposition for a spherical sample, based on multipole expansion of the

electromagnetic fields inside the object. Ultimate intrinsic SAR for multi-coil

excitations using fully parallel transmission and time-independent RF shimming was

assessed at different magnetic field strengths for various object sizes and target

excitation profiles.

In RF shimming, optimization of the magnitudes and phases of the driving currents is

performed over the entire FOV once for the whole pulse, whereas fully parallel

transmission allows engineering of destructive and constructive interferences both in

space and in time to achieve uniform profiles and reduce SAR. Ultimate SAR for RF

shimming was found to grow almost quadratically with increasing Bo, in large part due

to the increasingly stringent demands of homogeneity correction at high field strength.

By contrast, for fully parallel transmission the growth of ultimate SAR with field

strength flattened out and even slightly decreased for selected object sizes (Figure 3-5).

This somewhat surprising behavior, although in contradiction to the commonly

assumed quadratic dependency of SAR on frequency, is nevertheless consistent with

electrodynamic principles. Previously published computational results for single-port

(99,101) and multi-port (102) excitations in particular coil models already have shown

a less-than-quadratic SAR increase at high frequencies and empirical evidence can be

found in a paper comparing head images at 4T and 7T (103). Ibrahim and Tang (102)

used a rigorous FDTD model to investigate dependence of RF power deposition on

frequency in the case of a particular 4-, 8- and 16-port TEM resonator and found results

similar to those plotted for ultimate intrinsic SAR in our Figure 3-5, in which SAR

peaks in the vicinity of 7 Tesla and then decreases at higher field strength. Two

general physical arguments may be adduced to explain the observed behavior of

ultimate intrinsic SAR. First, SAR behavior is governed by the relative scaling

between the electric field and the magnetic field, since the electric field is directly



responsible for energy deposition via the sample conductivity, while the magnetic field

controls the degree of spin excitation. In other words, the quantity of interest is the

SAR per unit flip angle, or oa(r) lE(r, pAt)l2 dtdv/kl . Ignoring for the moment
V At /

the subtleties involved in the spatiotemporal integration and the implicit sum over

modes, we see that the relevant quantity for each multipole mode in the expansion of

Eq.'s (3.37) and (3.38) is je,l 2A bj -o~upo/)kj 2. This overall scaling factor is plotted

in Figure 3-11, and it shows a flattening with increasing frequency which clearly

contributes to the observed ultimate intrinsic SAR behavior. At high frequencies, the

possibility of increased destructive interference of electric fields (101) could also

contribute to the sub-quadratic increase of SAR with frequency.

SAR scaling factor

Field Strength [Tesla]

Figure 3-11. Behavior, as a function of main magnetic field strength, of
the scaling factor that pre-multiplies the SAR per unit flip angle for both
the case of circular surface coils and the limit case of a full basis set of
spherical harmonics. Permeability of free space was used, whereas
conductivity and permittivity were set to frequency-dependent in vivo
values as in Ref. (42).

In fully parallel transmission for moderately-sized spheres, the flattening is even more

accentuated because at high frequencies the wavelength is sufficiently reduced (Figure

cY

a,Y
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3-12) to become compatible with spatial focusing, allowing for further reduction of RF

power deposition via engineered field cancellations. For large spheres, the modest skin

depth at high frequency (Figure 3-12) prevents effective field penetration into central

regions, thereby spoiling some of the effectiveness of engineered cancellation.

Wavelength

E
cmý

Skin depth

Field Strength [Teslal

Figure 3-12. Wavelength and skin depth as a function of
main magnetic field strength. The electrical properties were
set to frequency-dependent in vivo values as for Figure 3-11.

When the length of a pulse is shortened, SAR is expected to grow, as transmit currents

must be increased to achieve any target level of excitation, and these currents enter

quadratically into the expression for SAR. However, in the case of accelerated parallel

excitations, ultimate SAR increased only moderately for small acceleration factors, and



overall was found to grow more slowly than expected (Figure 3-7). Relaxation of the

constraint on homogeneity of each component coil's excitation profile in the

framework of an accelerated excitation may be in part responsible for this behavior,

which nevertheless bears further investigation.

Ultimate intrinsic average global SAR is a global measure of the lowest achievable

SAR over the entire pulse duration and the entire volume of the object. Spatial

distribution of SAR is, however, very important for in-vivo applications, as "hotspots"

may occur in vulnerable anatomic locations (e.g. the orbits for brain imaging studies).

Once the current patterns that result in SAR-optimal parallel excitations are calculated,

they can be used to compute the associated local RF power deposition at each spatial

position and each time period in the excitation. Our results show that, as might be

expected, the spatial distribution of SAR within the object depends on its size, since the

pattern of interaction of RF fields with dielectric material is dictated by the relation

between the incident wavelength and the object dimensions (Figure 3-8). As

acceleration factor increases for parallel excitation, optimum local SAR values near the

center of the object become more comparable to the values at its edges (Figure 3-9),

showing that undersampling leads to more RF energy deposition in the middle of the

sample. This behavior is less dominant at higher field strengths, suggesting that

parallel transmission becomes more effective in resolving aliased positions at higher

frequencies. These trends aside, however, peak local SAR is always larger at positions

near the surface of the sphere, where the electric field is larger. A quantitative

interpretation of peak SAR results for practical safety purposes is delicate and is left to

future work.

Both RF shimming and parallel transmission enable complete compensation of BI

inhomogeneities over a 2D FOV in the ultimate intrinsic case. Even with few coils in

fixed combinations, transmit field homogeneity can always be corrected by relying

upon a shared gradient- and RF-based excitation pattern to undo the spatial variation of

coil sensitivities, although the associated SAR price can be very high (Figure 3-4).

When a transmit array is available, RF shimming can be used to improve homogeneity,

while controlling RF power deposition. However, many transmit coils may be needed



in order to excite the desired profile. On the other hand, parallel transmission yields

good compensation of B, inhomogeneities even with small arrays, suggesting once

again the potential benefits of this technique at ultra high field strengths. Relative RF

shimming performance is improved by choosing appropriately smooth target excitation

profiles.

In addition to the shape of the target profile itself, the requirements for profile fidelity

have a strong effect on the tradeoff between SAR and homogeneity in multicoil

excitation pulse design. The algebraic optimization algorithm employed in this work

treats adherence to the target profile as the primary constraint, and minimizes global

SAR subject to this constraint. This explains the substantially lower global SAR for

RF shimming with an 8-element transmit array (see Figure 3-4 and 3-6) as compared

with a 12- or 20-element array. In fact, with only 8 coils, close adherence to the target

profile is impossible, and remaining degrees of freedom are used for SAR reduction.

With more coils, combinations representing a closer match to the target are possible,

but these combinations are costly in SAR. Of course, in practice homogeneity need not

be prioritized universally over SAR in this manner. A flexible tradeoff between the

two pulse design goals is possible using appropriate regularization strategies. The

results shown in Figure 3-6a indicate that the SAR performance of RF shimming

approaches may be improved dramatically with regularization. SAR for fully parallel

excitations is correspondingly reduced if a similar flexibility in excitation profile is

allowed.

SAR results will of course depend as well upon the underlying excitation trajectory,

but the general trends demonstrated in this work are expected to be consistent among

trajectories. EPI trajectories were used here since they permit a particularly simple

formulation of the transmit acceleration process (59), but other excitation trajectories

and pulse design approaches are possible (58,104), with some increase in numerical

complexity.

One limitation of this study is that in our choice of a uniform target excitation profile

(p = 1) we are constraining both the magnitude and the phase of the optimized BI field

within the FOV. Although this approach allows us to maintain the linearity of the



algorithm and to apply the same SAR optimization to different multi-coil excitation

techniques, it is important to remember that, for RF shimming to be effective in certain

applications, only the magnitude of B, (and of the resulting transverse magnetization)

may need to be constrained. Specifying the phase as well in these cases might be

unnecessarily restrictive. Indeed, it has been shown that the performance of parallel

transmission and multi-spoke pulses can be improved with excitation designs that

compensate for BI magnitude inhomogeneities, allowing for a small amount of spatial

phase variation (105).

Another limitation is the use of a single geometry, but the general theoretical

framework outlined in the Theory section applies to any geometry and, for example, it

can be extended in a straightforward manner to a cylindrical object by using a different

set of basis functions. Furthermore, in this investigation we assumed the spherical

sample to be homogeneous, but the general principles should hold for more complex

models, incorporating multiple in-vivo tissue types.

It will be important in future work to investigate how sensitive the optimal combination

of the individual coils' excitation patterns may be with respect to calibration errors or

small loading perturbations. A better understanding of these questions will help in

assessing the practical feasibility of approaching ultimate intrinsic SAR with a

relatively small number of transmit elements. In any case, ultimate intrinsic SAR is a

theoretical lower bound independent from any specific coil geometry and it can be used

as a reference performance target for future designs.

One other practical detail we chose not to include in our circular coil model is the

potential effect of inductive or other coupling between transmit coils. This matter has

been discussed extensively in the context of early implementations of parallel

transmission. However, it is possible that appropriate incorporation of the measured

correlation matrix D into the SAR optimization will substantially blunt the worst

effects of coupling, just as incorporation of the noise correlation matrix in parallel

image reconstructions has been shown to blunt the effects of coupling upon SNR (106).



Finally, we chose to assess homogeneity (or adherence to a particular target excitation)

in a single 2D FOV. Correcting homogeneity over an entire volume is a more

ambitious proposition, and it may even be impossible for RF shimming alone (55).

Full volumetric homogeneity correction remains possible with fully parallel

transmission, but relatively long pulse durations may be required to add a sufficient

number of degrees of freedom to the optimization problem.

Conclusions

In the present work, fundamental constraints on the lowest possible SAR obtainable

with multi-coil excitations were studied with respect to the underlying

electrodynamics. In parallel transmission, the capability to transmit tailored excitations

with the individual elements of a transmit array enables a high degree of control over

BI homogeneity in combination with an effective means of SAR management. In RF

shimming, relatively low SAR values can be achieved with comparatively simple

pulses, but the tradeoff between homogeneity and SAR is less robust. In the case of

parallel transmission, ultimate intrinsic SAR varies quite slowly with frequency at the

highest field strengths studied, suggesting dramatic potential benefits of this technique

for high field imaging and spectroscopy.
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Appendix A

Minimization of average SAR in RF shimming and parallel transmission

In the Theory section we showed that the problem of finding the set of complex

modulation coefficients that minimize ý while exciting the target profile (see Eq.

(3.31)) reduces to the minimization of the function

Slh,= h He ) a (3.Al)

by varying the quantity a, under the constraint:

So a = FOV (3.A2)
hFOV

wherea is a [L x 1] vector, SFoV a [N x L] matrix, 0 a [L x L] matrix and P FOV a [N
hFOV

x 1] vector. The minimization problem can be expressed as a Lagrange function:

L L N L NL *

*=-- (, I(D,,l al)+ Z••(Sna•l - +~-+ (a*S,, - * (3.A3)
1=1 '=1 n=1 1=1 h,, n=1 n =I h,,

where ,, 's are Lagrange multipliers and the scaling factor in Eq. (3.Al) has been

removed for simplicity. Using a matrix formulation, Eq. (3.A3) becomes:

h FOV FO

If we set to zero the partial derivatives of C with respect to 2%, a, aH and 1H, we

obtain four equations which result in the solution di of Eq. (3.33).

In the Theory section we showed that in the case of parallel transmission we can

separately optimize the current patterns for each target position, as the RF power ý in

Eq. (3.19) is positive definite. The minimization problem in Eq (3.19) can thus be

divided in N sub-problems, each of which can be solved with the same method outlined

in this section for the case of RF shimming.



Appendix B

Calculations of the fields for a coil at an arbitrary position near the surface of the

sphere

Eq. (3.38) provides an expression for the EM field produced by a circular coil whose

axis coincides with the z-axis of the laboratory frame (Figure 3-2). The same

expression can be used to calculate the field for an identical circular coil at a different

position near the surface of the sphere, by applying an appropriate rotation. The

orientation of the reference frame of the rotated coil with respect to the laboratory

frame is defined by the angles a and f3 in Figure 3-2. So the two reference frames can

be superimposed by the consecutive application of two rotations:

( cos(a) sin(a) 0 ('cos() 0 -sin(B)'

0 0 1 sin() 0 cos(l)

Pre-multiplying the EM fields of the rotated coil by the rotation matrix Rafl we

express them with respect to the laboratory frame. Then, in order to evaluate the EM

fields at the same positions for both coils, we need to rotate the plane of the FOV

backward to its original position, using the inverse of Rf .

The transmit RF field produced by the rotated circular coil can thus be calculated as:

oiloil(R~r)E. (r)= REco i(R-r)
oil -l (3.B2)

B '(r)= Ra co i(R-1r)

where Ecoil and Bc"i are the fields of a coil coaxial with the z-axis, defined in Eq.

(3.38). The resulting values of B,, '(r) were used to generate transmit sensitivities.

For computation of the matrix D, the quantity fa(r)EcOl (r)- Eci* (r)d'r for
V

appropriately rotated versions of coil electric fields was generated by numerical

integration in a common reference frame, since a compact analytic expression is not

available.





Chapter 4

Dyadic Green's Functions for Electrodynamic Calculations
of Ideal Current Patterns yielding Optimal SNR and SAR in
Magnetic Resonance Imaging

Abstract

Numerical simulation techniques are commonly used to model interactions between
human tissues and the electromagnetic fields generated by RF coils in MRI
experiments. At high and ultra-high magnetic field strengths modeling of these effects
becomes ever more important, as inhomogeneities in the RF reception field may
compromise image quality, and as the power deposited into tissue during RF
transmission tends to increase. In this work we present a theoretical framework, based
on a rigorous electrodynamic formulation using dyadic Green's functions, to derive the
electromagnetic field in homogeneous spherical and cylindrical samples. We show
how to calculate ideal current patterns, independent on any particular coil design,
resulting in ultimate intrinsic SNR, the highest possible SNR, or ultimate intrinsic
SAR, the lowest possible RF power deposition for a target flip angle distribution. We
simulated optimal SNR and SAR for various coil array configurations and we
compared the results with the corresponding theoretical limit. Optimal performance
may be approached with finite arrays if ideal current patterns are used as a reference in
coil design.



Introduction

Accurate modeling of electromagnetic (EM) effects is becoming increasingly important

as higher magnetic field strengths are employed in MR systems. The interactions of

the EM field with biological tissues at high frequencies require appropriate coil designs

to improve image quality and to avoid adverse effects in patients. Parallel imaging

(15-17) and parallel excitation (58,59) techniques are promising solutions to overcome

these issues. In reception, the increased signal-to-noise ratio, available at higher field

strengths, allows for higher degrees of acceleration in parallel MRI, therefore reducing

susceptibility artifacts. In transmission, arrays of independently driven transmit coils

allows for time-varying control over the EM field which can be used to improve B1

homogeneity and to minimize specific absorption rate (SAR). As the number of

channels available in MR systems has increased to enable faster acquisitions and

multiple coil excitations, building prototypes of coil arrays has become more difficult

and expensive, and therefore the design of coil arrays has relied ever more upon

electrodynamic simulations.

Numerical simulations with techniques such as the finite difference time domain

(FDTD) technique are normally used for EM analyses with detailed heterogeneous

models of the human body (88,107,108). Although these approaches are rigorous and

the results have shown good agreement with experimental data, they are time-

consuming and the numerical complexity grows rapidly as the number of modeled

coils increases. The duration of these simulations also restricts the number of different

coil-sample configurations that can be realistically explored, limiting the generality of

the results. In fact, it has been shown that there is a strong dependency of SNR and

SAR upon geometrical and physical factors (42,100,109), such as shape and

dimensions of the object and the conductors, or electrical properties of the tissues. As

the investigation of these relations is fundamental to gain physical insight into the

behavior of RF coils at high magnetic field strength, different electrodynamic

approaches can be employed, allowing for less detailed geometrical models and faster,

but still rigorous, simulations of the EM field.



In this work we use mode expansions with dyadic Green's functions (DGF) (73) to

express the full-wave EM field in a dielectric sphere and in a dielectric cylinder. A

similar DGF approach for SNR calculation was described by Schnell et al. in the case

of a cylindrical sample (110), but to our knowledge such an approach has not been

explored for spherical geometries until now. The model in Ref. (110) was also

extended to include the effects of the conductive shield of the MR system. Semi-

analytical calculations of SNR and SAR for simulated MR experiments, both for

specific coil geometries and for the ultimate intrinsic case, can be performed quickly

with our DGF formulation. The theoretical framework also enables derivation of

optimized surface current patterns corresponding to the best possible performance.

Preliminary results of this work were presented at a recent conference (74,111).

Theory

Electromagnetic field expansion in a dielectric sphere with dyadic Green'sfunctions

The DGF formalism enables calculation of the electric field resulting from any spatial

current distribution J(r) as:

E(r) = iop0 fJG (r, r')J(r ')dV', (4.1)
V'

where i is the imaginary unit, o is the angular frequency, 4 is the magnetic

permeability in free-space and G(r,r') is the branch of the DGF corresponding to the

region indicated by r. The DGF associated with a dielectric sphere immersed in free

space was constructed, using the method of scattering superposition (Appendix A), in

terms of the following vector wave functions, which are among the possible solutions

of the vector wave equation in spherical coordinates:

M,,,, (r, kin)= -il(l + 1)jD(kin p)Xl,, (9, )

N,,, (r, kin) = -i( + ) V x j, (km p)Xl,,, (0, (4.2)

kin



In this expression j, is a spherical Bessel function of order 1, kin is the complex wave

number inside the sample:

in = W2r' + CiC0LC-r (4.3)

where eo is the permittivity of free space, e, and o- are the relative permittivity and the

conductivity of the sphere, respectively. The function Xi,m is a vector spherical

harmonic defined as:

-i
XIm(, ) = 1) (pp X V)Ym

1 (89, ), (4.4)

where Y' is a spherical harmonic.

If we define the current distribution J(r) to exist only on the sphere surface, Eq. (4.1)

reduces to a surface integral. In the most general case, the surface current density may

consist of both magnetic-type and electric-type components, indicated with the

superscript (M) and (E) respectively, and we can express it with a mode expansion. The

generic surface current mode would take the form of:

K,m (0, )= -i (l + 1 ) ["'X,M,,, (P,) + Wm pp x X,.,(O,q )], (4.5)

where W,,"' and W,Q) are the series expansion coefficients representing divergence-

free and curl-free surface current contributions, respectively. Substituting in Eq. (4.1),
we find the following expression for the EM field inside the sphere (Appendix B):

E(r) = 0 M, [,m(kin,r)Vm + &,,m(kin,r)V ,
k+n +/ 

(4.6)

B(r) = ipo +-3 1 ~ n,(k in  + 1 (kin, r) jIm
/=0 mn=-l

1M and T1 are the same functions in Eq. (4.2), divided by -i (1+ 1). The weighting

coefficients V," and V,;, are derived multiplying the expansion coefficients of the

current density with a transformation matrix T (see Appendix B) that accounts for

boundary conditions at the surface of the sphere:
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VN =V=TTW=TT ' (4.7)
(V,m ,E) (4.7)

where the superscript T indicates the transpose of the matrix. Note that the vectors V,

T and W are defined for given (1, m).

Electromagnetic field expansion in a dielectric cylinder with dyadic Green's functions

For the case of a dielectric cylinder, we have extended the EM field expansion

described by Schnell et al. (110) to include the MR conductive shield in the model. A

detailed derivation is provided in Appendix B. The generic current mode on the

surface of the cylinder would take the form of:

K,(m, (p, z) = WM) (m)V x e'"'e'" + W) (m)Ve'n'e" , (4.8)

and the vector wave functions used to construct the DGF are:

M,r (m, r) =Vx J.(yp)e"'einmz

N1 , (4.9)
N, (m, r) = VxVxJ,(yp)einemz

where J. (yp) is a Bessel function of integer order n and the eigenvalue parameter y is

defined as:

Z = k -m2 (4.10)

with ki, as in Eq. (4.3). The expression for the EM field inside the dielectric cylinder is

similar to Eq. (4.6) and it was also reported in Ref. (110):

E(r)=- ' [M,,, (m,r)VM (m)+ N (m,r)VnN(m) dm
8;7" n.... n,rn

(4.11)

tB(r) = kin 40 • (4.11)<Bir)= i f Nr(mgr)V," (m)+MQn.,r(mr)Vn"(m ) dm8;r ,n ,

For this work, we re-derived the transformation matrix T that multiplies the currents

weights (see Eq. (4.7)), to account for boundary conditions due to the MR conductive
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shield surrounding the cylinder (Appendix B). In order to calculate the current induced

in the shield, we also derived an expression for the EM outside the cylinder:

E ouf (r)- ,[A, ((m, r)V. (m) + B,, (m, r)VB(m)] dm
8;r n=--0o w0

,(4.12)
=•t (r) = E [Vx An, (m, r)V, (m) + Vx B,, (m, r)V (m)] dmin

8r n=-aoc

where A.,,i(m,r) and B,, (m,r) are combinations of vector wave functions, with the

eigenvalue parameter y replaced for the region outside the cylinder by:

772 = kO2  =2 = 200 - M2 , (4.13)

The coefficients VA (m), V, (m) are defined as:

V A (m) W M (m)
V(j= = U TW = U M) (4.14)
B (m) W'E) (M)

Here the transformation matrix U sets the boundary conditions at the shield surface and

its expression is provided in Appendix B.

Calculation of ideal current patternsfor ultimate intrinsic SNR

The complete set of EM modes can be employed to calculate the ultimate intrinsic

SNR (41,42,67), independent of any coil design. A general expression for the SNR

received by a coil at any particular position r0 can is given by:

mo°M -•-(ro)* ooMo(Bx (ro) - iBY (ro))
SNR(ro)- UB PO p (4.15)

J8k Ts 8k s BT

where Mo is the equilibrium magnetization, coo is the Larmor frequency, kB is the

Boltzmann's constant, Ts is the absolute temperature of the sample, Po is the total noise

power at position r0 and, according to the principle of reciprocity (70), the net coil

sensitivity is defined as the complex-conjugate of the left-hand circularly polarized

component of the RF magnetic field:
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+00 +1

Bx(r 0)- iBy(r 0 ) = WT TS
1=0 m=-1

(4.16)

Expressions for the matrix S are derived in Appendix C for both spherical and

cylindrical objects. In the general case Po includes both power loss within the load (or

sample) and power loss within the antenna. The power loss due to thermal noise inside

the dielectric object with uniform conductivity r can be calculated as (see Appendix

C):

+o0 +1 +oo +1

= = fJE(r).E'(r)dV= PLV = WTTPL (TTW)*,
L2 I=0 m=-l I=0 m=-1

with:

(4.17)

2lfo2 il J(kinP)P2 0 dp
2 kmi 0

0
1 a[ 8[pj(kinp) +1(+1)1 (kp) d

Ikin2 fl ap I' Pjj·i

(4.18)

for the case of a sphere with

expression for PL is derived in

radius a. For

Ref. (110):

the case of a cylinder with radius a, an

( 2

PL I -2 4j

a

Fn = JJ (rp)J, (rp)pdp
0

=aJ_, (y*a)J, (ra)-raJnl (y'a)J (y*a)
y 2 _*2
7 -y

The power loss due to the presence of the surface current distribution, assuming the

hypothetical coil material has thickness d, and conductivity aq, can be calculated as

(see Appendix C):
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Fn+l [F - Fn+

m 2 ,
- F,,, ]-- , Fn+ Fnl+2knk+1Lin n n+ m-

(4.19)
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+0o +1

PA- 1 K(r')K(r')dA'= I= WTPW'. (4.21)
2crd, ,A 1=0 m=-l

If we define the current distribution to be on a surface with radius p, for the case of

the sphere we have:

PA =2-d i0), (4.22)

whereas for the case of the cylinder:

r2pc 2 (1). (4.23)

We added the pc in Eq. (4.23), to account for a typographical error in Ref. (110). We

can now write a general expression for the total noise power:

O= (PL+ P' ),= (/ W TP (T + AW (4.24)TW + A

(4.24)

=- WH¶I mode Wj
/=0 m=-/ 0,0

Here the superscript H denotes conjugate (Hermitian) transpose. For the case of the

cylinder, where the double sum in 1 and m becomes a sum in n and an integration in m,

if we want to include the effect of the noise due to currents circulating in the

conductive shield, we need to add UPsUH to mode,, where Ps is a power loss term

calculated with the integral:

s 2's d JKsA(r).K (r )dA'= - PsUU'dm, (4.25)

where ds is the thickness of the shield material, as its conductivity and the current

induced in the shield is calculated as (Appendix C):

Ks(r) Bout (r) = x/ . (4.26)
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For Cartesian SENSE parallel imaging reconstructions (16), optimal SNR is achieved

by finding the coefficients that minimize Eq. (4.24) while having Eq. (4.16) equal to

unity at the reconstructed voxel position ro and zero at all aliasing positions. The

solution was given by Pruessmann et al. (16):

W"= mode BH modei, (4.27)

where B=TS is the so-called encoding matrix. Substituting Wo"' yields an expression

for the ultimate intrinsic SNR:

oM(ro) .- 7M (4.28)

8kTs- S"T (TPLT + PA )-1 TS]0 A8kBTsBH odeB

For the case of the cylinder, if we include the conductive shield, the noise matrix Ymode

in the denominator will have the additional term UPsUH . Note that, if we remove P,

and allow a fully general set of current modes, the boundary condition matrix T

disappears from the denominator of Eq. (4.28) and the expression for ultimate intrinsic

SNR matches that derived by Wiesinger et al. using multipole EM field expansion in a

sphere (42). However, the DGF approach begins by defining current distributions, so it

has the advantage that we can use the optimal coefficients Wop' in Eq. (4.5) and (4.8)

to perform a weighted sum of the individual current modes and find the ideal surface

current patterns that results in the ultimate intrinsic SNR. For the case of the sphere the

expression is:

+00 +1 +00 X ( )

Ideal (0, ) = -KoP'(0,q) (oPt )T x(( (4.29)Rx ',m XV, X (,
/=0 m=-l 1=0 m=-l I ,m

and for the cylinder:

Vdaeal( t, z)f ( WKf(m,, z)dm:• j(WP'I) T im- iPn?
n=-o- n=-mn.. AizP+ I.z n im

kPC
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Calculation of ideal current patterns for ultimate intrinsic SAR

The DGF formulation also extends naturally to SAR analysis in the transmit case, as

the electric field resulting from an arbitrary current distribution can be applied directly

to calculate the average RF power deposition in the object (59):

lPo P ++ao +1o +1'

= JfE(r, pAt) -E(r, pAt)dV = I W(WP , (4.31)
p= V p=1 I=0 I'=0 m=-1 m'=-l'

where P is the total number of time periods in the excitation, 0 is an electric field

correlation matrix, defined for each mode and equal by reciprocity to the sample noise

covariance matrix TPLTH in Eq. (4.18) and WP are the weighting coefficients (see Eq.

(4.5)) of the current distribution at time period p. Eq. (4.31) is a measure of global

SAR and in the case of rectilinear EPI-type excitation trajectories can be re-written in

image domain as a quadratic function in the RF excitation patterns f, generated by the

transmit coils (59,64,109):

SfH_ Of, (4.32)
N ,n=

where N is the total number of voxels. Time intervals p are mapped to spatial voxel

locations n by Fourier transformation and W,= =FF' {f,}, where <F indicates the Fourier

transform. In parallel transmission (58,59) it is possible to combine the excitations of

the individual transmit elements in a way that minimizes global SAR (64,109):

fnop = 'Y'CH (CI-lCH)-1" , (4.33)

where p , is the target excitation and the matrix C, is a spatial-weighting map made up

of the transmit sensitivities. C, is analogous to the matrix TS in Eq. (4.16), with the

right circularly polarized component of the magnetic field, i.e. . (r0)+ imty(ro), instead

of the left one. Substituting Eq. (4.33) in Eq (4.32) we obtain an expression for the

ultimate intrinsic SAR (109):

N= N ,(C.]'C n )-'n4 (4.34)

106



In the transmit case, ideal surface current patterns corresponding to the theoretically

smallest global SAR are calculated as a function of time, while traversing excitation k-

space:

+1 +0 ( X ,(O,)
I'deat Ko'(0,/9, pAt)= IF fopt /^ ( (4.35)TI= m=-p I=0 m=-~ 1 p)

This expression refers to the case of a spherical object, but it can be derived

analogously for a cylinder from Eq. (4.8):

im' - Ini
S00 00 mp--z

rdeal ,,t opt I Pc imp imz

I'Tx pA,(9,0)= KOpI(m,p,z, pAt)dm FF {f f}) r e ezdm
n=-0 - n=-oo -J i ^ .d-( +imz

(4.36)

In RF shimming (55,57), a special time-independent case of parallel transmission,

where there is a single driving RF current that is modulated in phase and amplitude at

each coil element, optimal modulation coefficients can be found using a similar SAR

minimization approach (112).

Optimal currents for circular surface coils

In the previous sections, we showed that we can use a complete set of basis functions

to simulate the optimal SNR and SAR achievable with an infinite number of coils. The

performance of any actual coil in the case of a spherical sample can be simulated with

the same formulas if we apply the appropriate weighting functions to the current

distribution in Eq. (4.5). Let us consider a loop coil of radius R positioned outside the

dielectric sphere, with axis along the z-axis and at a distance d from the center of the

sphere (Figure 4-1). The current distribution for this coil can be defined as:

KPsin p- 2 +R cosO9 d2R (4.37)
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where I is the current circulating in the coil, assumed to be uniform within the

conductive material, and 6(p - d+R ) =l, as the current is defined only on the

spherical surface of radius Pc = .d+ R. The proportionality factor sin9/ d2 + R

guarantees that the flux of K w through any half plane of constant 0 (polar angle) is

equal to I (the proportionality factor is the inverse of the Jacobian resulting from the

integration in polar coordinates of K'"P -.  on a plane defined by a constant 0, where,

due to the orientation and position of the coil, V corresponds to the normal fi of the

plane).

In the case of a loop coil, currents can only flow in closed patterns, so curl-free

contributions are zero in Eq. (4.5):

+oo +1
K(0,p) = (p W(IM (-i Jll+X (0, ))  (4.38)

I=0 m=-1

The last two equations must be equivalent and, if we compare them, we find an

expression for W,' ) associated to the particular loop coil (see Appendix D):

o) d2 +R 2 (1+1) 21-1 d,(, O a .d 4.39
O=arccos-

We have substituted I= 1, as, for the purposes of modeling coil sensitivities by

reciprocity, we are interested in unit current. The current density for a loop coil rotated

to an arbitrary position on the sphere (Figure 4-1) has the same functional form as that

of the loop coil along the z-axis, but in a coordinate system rotated with respect to the

reference coordinate system:

K'OP (9, °P - K "7' (9',) -" W'M)[-il(l+)X'o(9', ')] (4.40)
rot z' ' = . I,0

1=0

Rotated vector spherical harmonics can be always represented as a linear superposition

of unrotated vector harmonics (see Appendix D):
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X1 I, W : I y* (f8, a) X,, (0, ) (4.41)

where a and 8 define the angular position of the center of the rotated coil on the unit

sphere. Substituting in Eq. (4.40) we obtain:

rot= , 1'=- o 2l 1+ 1
1=0 M=-2, (4.42)

= ., M -;41(1+ 1)X1 (;9,9')]
I=0 m=-1

where the weights for the rotated coil are given by:

W =P(M) • ,r+ 17' (, a)w( M) (4.43)
21+1

In order to calculate optimal SNR for an array of Y receive loop coils, we need to

derive the coil sensitivities and the noise correlation matrix among coils. That can be

achieved by substituting the weights in the expressions in Eq. (4.16) and (4.24):

+o +1 loop,(M) T

<B'°P-x(ro) - iB'yO(ro) = E (I,m) TS
1=0 m=-1 0

(+0 ,+1 W""OOP'(M) T Wiop,(M)) (4.44)
,oop 3(,m), mod (mo 'y' 1=0 M=-1 0 )

The resulting matrices will then be combined as in Eq. (4.28) to find the optimal SNR.

The method can be extended straightforwardly to the calculation of minimum SAR for

an array of transmit loop coils.
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Figure 4-1. Schematic representation of the spherical sample geometry, with two loop coils

arranged on a spherical surface at distance d2 + R2 from the center of the sphere. SNR and

SAR calculations were performed on a transverse plane through the center of the object.

Optimal currents for cylindrical window coils

The formalism can be implemented as well for the case of an array of cylindrical

window coils (Figure 4-2). The weights to be applied to the divergence-free

component of the current distribution in Eq. (4.8) for the 7 th coil are (Appendix D):

W"nd"o M )(m) = 2 sin(n 0 ) sin(md) e m Ae z  (4.45)
n m

where 2(oy is the angular aperture of the yth coil, 2d, is the coil's axial extent, and

Aip and Az, are its the azimuthal and axial offsets.
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Figure 4-2. Schematic representation of the cylindrical sample geometry, with a cylindrical
window coil modeled on a surface between the object and the surrounding conductive shield.
The chosen FOV was a transverse plane at the level of the cylinder axis.

Methods

Spherical geometry

SNR and SAR calculations were performed on a transverse plane (Figure 4-1) through

the center of a sphere with uniform electrical properties, chosen to approximate

average values in the human head as in Ref. (42). SAR was calculated assuming a
homogeneous excitation profile on the field of view (FOV). For the ultimate case, we
used sphere radius of 10 cm and the current distribution was defined on a spherical

surface at radius pc = 10.5 cm from the center of the sphere. Finite arrays of identical
loop coils were modeled with different number of elements and various geometrical

arrangements. The radius -Jd2 + R2 of the spherical surface on which the coils are
placed was 10% larger than the radius a of the dielectric sphere. Copper conductivity
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and conductor thickness equal to skin depth was assumed. Calculations were

implemented in Matlab (MathWorks, Natick, MA, USA) using an expansion order Imax

= 70, to ensure convergence.

Cylindrical geometry

We modeled a dielectric cylinder of 20 cm radius and length L = 90 cm, assuming

dielectric properties of dog skeletal muscle as in Ref. (110). Current distribution was

defined on a cylindrical surface, concentric with the cylindrical body and with radius 5

mm larger, for both the ultimate intrinsic and the cylindrical window coil case.

Different array configurations were modeled by arranging identical coil elements

around the cylindrical surface and along its axial direction, with 10% overlapping on

each side. The conductive shield was positioned at a radial distance of 34.25 cm from

the center of the cylinder. For both coils and shield we assumed copper conductivity

and conductor thickness equal to skin depth. The expansion coefficient n was varied

from -40 to +40 with unit step, whereas m, which in theory should be continuous, was

varied from -50 to +50 with step Am= 1/L. For large m, both y and 1/ acquire a

substantial imaginary component, and the square root branches which yield Im(y)< 0

and Im(Q) < 0 must be chosen independently for each value of m. This selection

guarantees that the Bessel functions with argument yp or 77p - and hence the

electromagnetic fields associated with each mode - remain appropriately bounded with

increasing radius. (If the opposite branch were chosen, the fields would also diverge

unphysically at large m, a fact noted in Ref. (113)). Calculations were implemented in

Matlab and performed at voxel locations on a transverse FOV (Figure 4-2).

Results

Ultimate intrinsic SNR and optimal SNR for finite coil arrays were calculated within

the same theoretical framework, allowing for direct comparison, without concern about

differential scaling factors. Figure 4-3 shows SNR efficiency, with respect to the best

possible performance, of arrays of loop coils symmetrically packed around the
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spherical sample, at different voxel locations and for different values of the main

magnetic field strength. We note that, near the center of the object, the SNR of the

array converges rapidly to the ultimate value at 1.5 T as the number of coil elements

increases, whereas the performance worsens at higher frequencies. For a voxel near

the surface of the sphere, with 64 coils the resulting SNR is less than 15% of the

optimum.

Approaching Ultimate Intrinsic SNR with Surface Loop Coils
center: p= 0 cm intermediate: p = 4.6 cm surface: p = 9.2 cm

. . .I.- - l . .... . . . .... ...... ..... .. . ....

96o

Wo!70O

5i

24 4052•4 4 •2 1i 24 4052 4 4 8 12 16 24 40 52
number of coils number of coils number of coils

Figure 4-3. SNR of an array of loop coils, normalized to the ultimate intrinsic SNR, as a
function of number of coil elements, at various positions along the radius p of the dielectric
sphere, for different values of main magnetic field strength, in the unaccelerated case.

In the definition of the ultimate intrinsic SNR, power losses are due only to thermal

noise in the sample, which is equivalent to assuming that the conductors have infinite

conductivity and do not contribute with resistive losses. This additional source of

noise would have a negligible effect on the SNR in the center but, as we see in Figure

4-4, it would dramatically lower ultimate intrinsic SNR, therefore improving the

expected coil efficiency, at positions near the surface of the sphere, which are closer to

the region where the current distribution is defined.

113

R 100r.",

z 90
- 80

cc:z
CO 70'

'- 60"· i4

I,:

i ·.,i



Effect of Coil Noise on Ultimate Intrinsic SNR
surface: p= 9.2 cm

:3
-6

S0.8
Z
.0 0.6

0.4N

E 0.2
0
.7 n

1 3 5 7 9 11
Field Strength [ T ]

Figure 4-4. Ultimate intrinsic SNR, normalized to the case where only sample-
derived noise contributions are considered, at a position near the surface of the
sphere, as a function of main magnetic field strength. Adding coil-derived power
loss in the model reduces SNR in regions near the conductors, especially at high
field.

Ideal current patterns associated with the best possible SNR at 11 T are shown in

Figure 4-5 for a voxel at the center of the sphere. The ideal currents circulate in wide

loops embracing the spherical surface and we see that with 64 coils, symmetrically

arranged around the object, it is possible to capture most of this behavior, as the

resulting SNR is 83% of its theoretical limit. With 8 coils, the current patterns, which

are constrained by the position of the conductors, only cover a limited region of the

spherical surface and the resulting performance is lower.
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SNR arI SNR t = 0.67 SNRay/ SNRult = 0.83 Ideal Current Patterns
(voxel at the center)

Z Z

z-

8 coils
x

64 coils
X·

Ultimate
Basis Set

Figure 4-5. Ideal surface current patterns, associated to the best possible SNR at a voxel in the
center of the sphere, are compared, at 11 T, with SNR-optimized current patterns for an 8-
element and a 64-element array. The corresponding SNR, normalized to the ultimate intrinsic
SNR, is reported for both coils above the current plots.

The same graphical representation is used in Figure 4-6 for the case of a voxel located

about at the same distance from the center and the surface of the sphere. Here, ideal

current patterns are concentrated in a small loop centered at the azimuthal coordinate

corresponding to the voxel of interest. In the case of the 64-element array, we notice

that only the coils localized in the same region are active, minimizing in this way the

noise received from other regions. If the same encircling packing is used for the 8-

element array, SNR efficiency drops from 70% to 31% of the optimum. However, the

performance can be improved by arranging 8 coils around the FOV, or by using a

single coil that mimic the behavior of the ideal current patterns.
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array ult array ultSNR arra/ SNR = 0.31 SNR arraSNRlt = 0.70 Ideal Current Patterns
(voxel at an intermediate location)

,:•i'• • .·-- 1i•:•
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·:1 i . ;

..1 Y

8 coils 64 coils

z

y

Ultimate
Basis Set

array ultSNR / SNR = 0.52

/..
x-

coil SNRUlt
SNR /SNR = 0.47

Nx
y

8 coils 1 coil

Figure 4-6. Ideal surface current patterns, associated to the best possible SNR at a voxel
position intermediate between the center and the surface of the sphere, are compared, at 11 T,
with SNR-optimized current patterns for different coil configurations. The corresponding SNR
values, normalized to the ultimate intrinsic SNR, are reported above the current plots. Only
coil elements in the region near the voxel of interest are active.
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In Figure 4-7 the efficiency of various receive arrays, with an increased number of coil

elements symmetrically packed around the sphere, is evaluated in the case of 4-fold

acceleration, in terms of the geometry factor (g) (16). g, by definition greater than or

equal to one, is a measure of the spatially varying noise amplifications associated to

parallel imaging reconstructions and depends on the reciprocal orthogonality between

coil sensitivity functions. We see that accelerating by a factor of 4 with a 64-element

array is almost equivalent to using an infinite number coils. At 1.5 T (top row), the

ratio of the lowest possible g to the g of the arrays is smaller than at 7 T, indicating that

the coils are more efficient in accelerating image acquisition at higher frequencies.

It / arra ( 1x4 acceleration)

0.8%
0.6%
0.4%

0.8%
t ~0.6%6

U I~i
16 coils 24 coils 40

0.4%
0.2%

A0%
coils 64 coils

Figure 4-7. Coil efficiency as a percentage of the optimum for 4-fold linear accelerations. The
geometry factor of receive arrays with an increasing number of loop coil elements is reported
with respect to the ultimate intrinsic case, at 1.5 T and 7 T.

However, the overall coil performance is always higher at lower frequencies, as we see

in Figure 4-8, which shows, for the same simulation, coil performance maps (68),

displaying at each pixel display the SNR of the array divided by the corresponding

ultimate intrinsic SNR.
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SNRara / SNRUt ( 1x4 acceleration)

8 coils 16 coils 24 coils 40 coils 64 coils

Figure 4-8. Coil performance maps in the case of 4-fold accelerated parallel imaging. The
performance of receive coil arrays with respect to the ultimate intrinsic SNR is shown for two
different values of the main magnetic field strength and increasing number of coil elements.
Each pixel represents the SNR of the coil divided by its corresponding ultimate intrinsic SNR
value.

Ultimate intrinsic SNR is approached near the center of a dielectric cylinder with a

sufficient number of cylindrical window coils equally spaced along the axial and radial

direction (Figure 4-9 and 4-10). At higher magnetic fields and for larger acceleration

factors, the performance of the coil arrays with respect to the optimum is lower.

Approaching Ultimate Intrinsic SNR with Cylindrical Window Coils
center: p= 0 cm intermediate: p= 10 cm surface: p= 20 cm

number of coils number of coils
16 32 64
number of coils

Figure 4-9. SNR, normalized to the ultimate intrinsic SNR, as a function of number of coil
elements, at various positions along the radius p of the dielectric cylinder, for different values
of main magnetic field strength and acceleration factor.
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Approaching Ideal Surface Current Patterns

8 coils

SNRISNR 0.38 SNI

SNRISNR*" 0.30

SNR/SNIt * 0.18

SN

32 coils 128 coils Ultimate Basis Set

RISNRu *0.95 SNRISNI " 0

R =••NR'• 0.64SN•N•"O

SNRISNR * 0.37
NRIS ,ii

SNR/$SNR • -

).72 SNRY8NR• -

).83 SNRJSIt -

2 :· I 2i ; -

<
-U2 0 U2-U2 0 U2-U2 0 U2- 2 0

divergence-ftree

cur•-free

divergence-free

curl-free

Figure 4-10. Ideal surface current patterns compared with surface current patterns from
cylindrical window coil arrays, for a reconstructed voxel in the center of the object, in the
unaccelerated case for different magnetic field strengths. The plots represent 2D "unwrapped"
views of the 3D cylindrical surface. The axial and the azimuthal coordinates are on the
horizontal and vertical axis, respectively. Divergence-free and curl-free contributions to the
ideal current patterns are plotted separately in two cases to show the increasing effect of
electric dipole currents at high field.
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In Figure 4-10, optimal current patterns for the case of a voxel along the axis of the
cylinder are compared with the corresponding ideal current patterns. Although with a
128-element array the shape of the current patterns resembles the ideal distribution,
even in the best case (i.e. 1.5 T), the resulting SNR is only about 70% of the optimum.
If we decompose the ideal current patterns in their divergence-free and curl-free
components, we notice that at 1.5 T the dominant contribution is from closed-loop type
currents, as the divergence-free plot is almost identical to the plot showing the sum of
the two parts. At 7 T, the weight of the curl-free contribution increases.

Ideal Current Patterns for Optimized RF Shimming
Z Z
I II I

1.5 Tesla 3 Tesla 7 Tesla

Figure 4-11. Ideal current patterns resulting in the lowest possible SAR with RF shimming,
during the excitation of a homogeneous profile on the FOV. The simple loop shapes at 1.5 T
are compared with the increasingly complex patterns at higher field.

In Figure 4-11 we show ideal current patterns, corresponding to the excitation of a

homogeneous flip angle distribution on the transverse plane through the center of the

sphere, with the theoretically smallest SAR. The optimization was done for RF

shimming, as this technique enables achieving the desired excitation profile with a

single hard pulse in the center of k-space, resulting in a single set of optimal currents.

Ideal current patterns were calculated by summing the optimal contributions of each
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current mode. Results are compared for three different values of the main magnetic

field strength and we see that highly complex current patterns are needed to

compensate for B1 inhomogeneities and minimize SAR at 7 T.

Discussion

We have presented a formalism to calculate SNR and SAR within homogeneous

spherical and cylindrical samples, for any surface coil geometry as well as in the

ultimate intrinsic case. Our method allows for quick simulations of the physical

behavior of the RF field in head and body imaging applications and provides ideal

current patterns that can be used as a reference in coil design for parallel imaging and

for parallel transmission.

In the case of the sphere, the theoretical framework includes as a special case a

previously described theory of ultimate intrinsic SNR (42). In the case of the cylinder,

we have extended a previously published method for calculating optimal SNR (110) by

adapting it for parallel imaging reconstructions and by including the MR conductive

shield in the model. We used a realistic noise model, in order to account for losses due

not only to the sample, but also to the coil conductors and to parasitic currents induced

in the conductive shield. Results about the efficiency of finite arrays in terms of the

best possible performance are in agreement with previous observations (60,100), based

on similar coil and sample models, but obtained with a different electrodynamic

formulation.

Ideal current patterns, resulting in optimal performance, were presented for the first

time by the authors at a recent conference (74,111) and here we have shown how they

can be used for coil design. In Figure 4-5 we saw that the ultimate intrinsic SNR for a

voxel at the center of the sample corresponds to current patterns uniformly distributed

around the sphere and that it is indeed possible to capture most of the SNR

theoretically available, using a sufficient number of coils symmetrically arranged

around the object. At positions closer to the surface of the sphere, in accordance with
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intuition, the ideal current distribution is a loop pattern aligned with the voxel of

interest (Figure 4-6). This suggests that loop coils are likely to be the best choice for

building receive head arrays. In transmission, ideal current patterns resulting in the

theoretical smallest SAR, still look like distribute loops at low magnetic field strength,

but become more complex as the frequency increases (Figure 4-11). An interesting

feature that was also observed at high field (Figure 4-10) is that the curl-free

component of the ideal current patterns gives an important contribution in achieving

optimal SNR. That suggests that to approach the best possible performance, coil arrays

for high-field MRI should consist of a combination of closed-loop conductors and

electric dipoles. Although interesting from a conceptual perspective, it is expected that

a similar design would raise serious concerns about decoupling between elements and

RF energy deposition in patients.

The method we have developed can be a useful toolset for coil designers. It allows

investigating the dependency of SNR and SAR on a multitude of factors by means of

very fast simulations. The main limit is that it uses homogeneous samples. Although

our formalism provide important physical insights and the general trends are expected

to hold in many cases, there may be variations associated to particular heterogeneous

examples and so it is important to remember that the same SAR and SNR optimization

can be also implemented as is with any existing numerical simulation technique.

Conclusions

High and ultra-high field strengths represent an ongoing frontier for MRI, but issues

related to signal transmission and signal generation become important limiting factors.

In particular, SAR management and compensation of BI inhomogeneities are critical

issues, which require careful design and evaluation of RF coils, RF pulses and pulse

sequences. Evaluation of the specific absorption rate (SAR) is fundamental to assess

potential health effects and compliance with safety standards. On the other hand,

modeling of the SNR has become a common phase during the design of RF detector

coil arrays, as the number of elements, as well as their geometrical arrangement, is
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fundamental for achieving many-fold accelerations with parallel imaging techniques.

In this work we described a semi-analytical method to calculate SNR and SAR based

on a mode expansion using dyadic Green's functions in a dielectric sphere and in a

dielectric cylinder. Ultimate intrinsic SNR and SAR can be computed by employing a

complete set of surface current modes, and the corresponding ideal surface current

patterns can be derived. This formalism holds also in the case of actual coils and can

be useful to investigate the physical behaviors of the RF fields during MR reception

and MR excitation. Ideal current patterns can be used as a reference to improve coil

design.
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Appendix A

Dyadic Green's functions for a dielectric sphere in free space

Choosing the appropriate DGF enables calculating the EM field from any given current

density using Eq. (4.1). We start with defining two spherical vector wave functions

which are solutions of the vector wave equation V x V x F - k2F = 0 :

Mt,, (r) = Vx (y,,m (r) r)

1 (4.AI)
N (r) = V x (y/,,m (r) r)

where k is the complex wave number and /,m(r) are eigenfunctions that are solutions

of the scalar wave equation V2V/ + k2 / = 0 in spherical coordinates:
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21 +1 (1-m)/im(r) = l-+1 l(-m)!i(kp)P(cos39)eim+ = j,(kp)Y~,(89, ). (4.A2)
4r ( + m)!

In this expression, P" (cos 9) is the associated Legendre function of order (1, m), where

I and m are both integers, i, is a spherical Bessel function of order 1, and Y7" is a

spherical harmonic. Substituting Eq. (4.A2) in Eq. (4.Al), we obtain Eq. (4.2).

Ni,m (r) and Mm (r) satisfy the symmetrical relation:

Nim(r) = V x Mim(r)k
k I(4.A3)

Mim (r) = xNim (r)
k

For the case of a dielectric sphere of radius a immersed in free space, with its center

located at the origin of the coordinate system (Figure 4-1), we define the complex wave

number inside and outside the object, indicated with subscripts in and 0, respectively:

k 2 = 0 C0 pa (4.A4)
k2 = CO2 + ico o p a

where o is the angular frequency, u, is the relative permittivity of the dielectric

material, q and so are the magnetic permeability and the electric permittivity in free-

space, respectively. The DGF can be constructed using the method of scattering

superposition:

1ko(r,r')+G'' (r,r) p2a
(r,r') = ( r r )  p  a (4.A5)G2r )  P<a

Here the source is at location r' and r is the position at which the field is calculated.

The DGF in free space is defined as (73):

+1Im m(ko,r)Mim(ko,r')+Nm(ko,r)Nilo,,(ko,r' r r')
G,(r,r)=iko (4.A6)

!= o m=-1 •,m(ko,r)Mlim(ko,r')+Nlm(ko,r)N .+(ko, r ' r' 5r
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where the - means that the vector wave functions in Eq. (4.2) are normalized by

-i( 1 1) and the superscript + indicates that h, ) , the spherical Hankel function of the

first kind of order 1, is used in place of the j, 's in Eq. (4.A2). The scattering

components of the DGF are defined as (73):

(1)o 
+ +1

G r, r) = k [AIM',.(k0 , r)M,, (ko, r) + BiNm, (koi, r)N,, (ko, r')]
1=0 m=-1

(2)(rr )= iko0  •j [CM,I(kin.,r)Mm (ko,r)+ DNI,m (ki)Nm (k0o, r )]
1=0 m=-l

(4.A7)

where the coefficients AI, B1, C1 and DI are determined applying the Dirichlet boundary

conditions:

px G(p= a+) = ,xG(p= a-)

pxVxG(p =a+) = PxVxG(p= a-)

which yields:

-hJ" (ka)

0

8[phfl" (koPp)]

ap p=a

0
_a[phj( (kopp)]

ap p=a

0

j, (kia)

0

a[pi J(kid op]
a p=a

0

0

ko a[Pit (kin)]
k, ap p=a

0

- ji (kina)ko

Dyadic Green's functions for a dielectric cylinder in free space

In the case of a dielectric cylinder of radius a (Figure 4-2), the free-space DGF in Eq.

(4.A5) can be defined as:
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-0d A,?7 (m, r)1,,,, (m, r') + Bn(m, r)N,,,,, (m, rj') r Ž r'
Go(r,r') =- J ( (4.A10)

8• n=- -- I Mnr (im, r)An, (m, r ') + i,, (nm, r)B (m, r') r5 r'

Here the vector wave functions 1I ,,~ and 1,,, take the form of Eq. (4.9), with y

replaced by rl (defined in Eq. (4.13)). The functions A,,, and B,,7 are general linear

combinations of wave functions and they are chosen to satisfy boundary conditions at

the conductive shield (p = p,), which requires the parallel components of the electric

field to be zero:

H (2")7, P
Anq (m, r) = ', (m, r) -H1Qp 5) , (m, r)

(4.All)

B,tl N (m, r) = , (m, r) (, P) 1 , (m,r)

where M+,, and &L+, take precisely the same form as 1I,,, and N,,, with the additional

substitutions HI2) - Ji, and H 2
)' = lH(2)/ap -*• = •Jaiap, where HJ2) is the Hankel

function of the second kind of order n. Note also that, in order to ensure proper

orthogonality behavior, the signs of all factors of in and im are reversed in the primed

coordinate system as opposed to the unprimed coordinate system (e.g.

eim ei mz -> e-i" 'e`mz). The remaining Green's functions representing "scattering" by

the dielectric cylinder are defined as follows:

-j ~ dm [a, (m) An,, (m, r) + b, (m)B,, (m, r)] An,, (m, r')
GO) (rr') f mS(rr) -, 2 [c(m)A., (m,r)+d,(m)B,, (m,r)]B,,,(m,r')

(4.A12)

(2) dm e (m) • ,n (m, r)+ f,(m) ~1, (m,r)] A,, (m,r')
G (r, - f

8- n=- 7 [92 (m)MM,.(m, r)+ h, (m) N,,n (m, r)]B,,7 (m, r')

(4.A 13)

where the index y is defined as 2= k -m2 with kn as in Eq. (4.A4). The values of

the coefficients a, b, c, d, e,f, g, and h were fixed by applying the boundary conditions

in Eq. (4.A8) on electric and magnetic fields at the surface of the cylinder. For the left
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hand side of these equations we used (p = a+)= (r,r') + (r,r'))l and chose

the lower branch of Go in Eq. (4.A10) with A,, and B,,P in the prime coordinate

system (since the integral in Eq (4.1) is non-vanishing only at ' = p, > a = p). For the

left hand side we used (p = a-)= (S' (r,r')l =. Since all vector wave functions with

distinct mode indices are orthogonal, we can impose the boundary conditions

separately for each value of n and m, yielding the following matrix expressions for the

coefficients:

an (m) qJn' (qa)
b. (m)H 0
e, (m)J Jo (qa)J

c (m))

Q. dn (M)=
g[ (m)
g (m)

with / nm/ and:n /

-q1' (7a) -X - (qa)
oo

22

ko7 (qa) 0

-g' (ra) -ko,7' (ra)
92E(qa) o

yJ,, (ya) J,, (ya)
kin
Y2

0 i .Jn (ya)
kin

zxJ (ya)
-r72j (ya)

kyJ',. (ya)
0

H(qa) H H(i2 ) - H ( 72) Jn (qa)J.(7 1,p)

J• (11, p,)

E(qaa) -- •H-) _ H .) (sa)
E' ()a) H,2,)' (qa) H,(2 '(1(, P)J(la)

127
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k0 7 J, (7a)

0

(4.A14)

where:

(4.A 15)

(4.A16)
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Appendix B

Mode expansion of the electromagnetic field inside dielectric sphere

Let us define a basis set of current patterns on the surface of the sphere, including both

magnetic-type and electric-type components, indicated with the superscript (M) and (E)

respectively:

+oo +1

J(9, () = 1 [KIM (9, (0) "+" ,m[(9, ' 0)]

= + -i ((1+1)[W,I'Xi,m (9, ) + ,p 1 X X (9 )
1=0 m=-1

In order to calculate the EM field inside the sphere, we need to choose the branch of

the DGF with p < a and substitute in Eq. (4.1):

E(r)= iopo J•JG(r,r')J(r)dV' = iaouo JG('2)(r,r')- [KM'(r')+K((r')] d ' =
V' A'

i1=0 m=-I' iwpoa 2 -iko EC [CIM .,r)M+ m (ko,r r + Dfi,,m(k, r)&+, -+(k,, r
(4.B2)

Let us define:

V(,m),<,,) -- C W,,M,+(r • 1) +

'~ m(kor ')p ( -i 1'(l'+ 1)X,.,+.(a',b'))]dA'

(4.B3)
VN, = D WW( , N. (k0o,r) (-i kll+ ,Xr,, ,( ' ) +

A'

W,.Nm(ko,r')p x -i I'(+X),., (9', d

Applying the orthogonality relations of the vector spherical harmonics (71) we can

solve the integrals in Eq. (4.B3):
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Il,(io,r')(-i4l'r' 1 Xm, ( ', 0 ')) dA'
A'

= -ii '('+ 1)h' ) (koa) ffX,,i ('9 , b '). X*,,. (3', 9 )dA'
A'

= -i(l + (1)h/l (ko a),,rSm,m,

JIJi+,(ko,r')[p[ x(-il'(l'+ )X,m ', ') dA

= -i 1'(I'+1)h l')(koa) JXt, (', ') (p XX,,, (9', '))dA' = 0
A'

-+

JiN m,(ko,r') (-i 1'(l'+ )XIm .('9', '))dA' =
A'

= - i l'(l'+1l) 1  a[ph°)(kop)] (-,x X,,m(3',9Z')) X,,m,(',6')dA'+

N FA , k kp a p = a

-i1'(l'+I) + 1) A' h! ka Y a (i9',b')k9 X, m,(t9',9 )dA' = 0

IJf,,m(ko,r'){pp x(-i 1'(l'+l)X,.,(9','))dA' =
A'

-i l'(l'+1) [ph•')(koP)]l

A, koa p p=a
SXI, (9', ')). (p x X ,,m',(L9', 0'))dA'+ +

-i 1'(I'+) )1(/+1) 0h Y' (ka (', ) Ym( ('( p x XI,,,(9', '))dA' =

-il(1 +1) a[phf')(koP)]

koa fp ]p=a

We can now re-write Eq. (4.B3) with a more compact notation:

V = - i (1 +)h~( )(k oa)C,
V =( ,m =)

(4.B8)

0

-il(+ 1) a[phl('(koP)],

koa p lp=a

Substituting in the expression of the electric field, we find:
+o2 

+1

E(r) = wotokoa 2  I [MI, (kin, r)V,. + ,,• (ki, r)V,
1=0 m=-I
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(4.B7)

S " -( (E), T
Ijm
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An expression for the magnetic field can be easily derived using Maxwell's equations

and the symmetrical relations in Eq. (4.A3):

:(r) = ± Vkx •E(r) = ifkoka 2  
m [~ (kin, r)V,, + M.m(kin,r)V, (4.B 10)

0O) 1=0 m=-1

For the calculation of the SNR and the SAR per unit flip angle, electric and magnetic

field can be arbitrarily scaled by the same quantity. In order to match the equations of

the noise covariance matrix and the sensitivity matrix reported in Ref. (42) for ultimate

intrinsic SNR, we divided Eq. (4.B9) and (4.B 10) by kokr.a 2 , obtaining the expressions

in Eq. (4.6).

Mode expansion of the electromagnetic field inside the dielectric cylinder

The EM field inside a dielectric cylinder can be calculated similarly and yield the same

general expression as in Ref. (110):

•E(r)=--E 8  f["nM,,(mr)V,ý,(i)+ &N, (in, r)VnN. (m)] dm

(4.B 11)
(r) = i ~~ I [ N,r,,(m,r)V, (m) + M,, r (m ,r)V N (m ) dmi

As in Eq. (4.B8), V,M (m) and V,N(m) are defined as the product of a transformation

matrix T with the expansion weights. The matrix T is different from Ref. (110), as it

accounts for the presence of the conductive shield :

2) ( H2)' i e,[(m) [uim qn/bl]

J,'q,p,) f,(m)J

H 2) g,(m)nko b (m / ko) ((n / b) 2 -2)]

J,, ( h, (m)_
(4.B 12)

Mode expansion of the electromagnetic field at the conductive shield

The EM field at the conductive shield (i.e. for p = p, outside the cylinder) can be

calculated with G,(r,r')+G("(r,r') , choosing the upper branch of G,(r,r') in Eq.
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(4.A10) as we are in the case p' < p = p,s. Substituting in Eq. (4.1), with the current

distribution defined in Eq. (4.8), yields Eq. (4.12), where the matrix U is defined as:

V, (m) 4M2Pc {JO [] (m)[ [)]m rin/b]
V," (m) /7 0 b( ( M)_( m ))

=c 
nko / pc (mu/ko) (n/ P(2 _ 72) W ' M)

W, 0 1"' (m)(
UT

(4.B13)

The coefficients a, b, c, d, e, f, g, h are given in Eq. (4.A14) and rn, rl are given in

Eq. (4.A16).

Appendix C

Calculation of signal sensitivity and noise power for the dielectric sphere

The principle of reciprocity (70) allows calculating the receive sensitivity of a coil in

terms of the RF magnetic field that would be transmitted at the same position by a unit

current flowing around the coil. An expression of the sensitivity matrix is derived in

Eq. (4.16) as a function of the matrix S:

SM )  &Nx (kin, r) - i y(kin, r)
S S(E)  J• lMi kin, r)-iMy (kin,r) (4.C1)

where, from Eq. (4.2):

N x(kin,r)= [V x j(kin P)Xi,m (9, V)],
in

= i a[pj,(kinP)1 [ x Xm(, )]x + l(l+l) 1(k ) y (,9, ) [ (4.C2)
kinP 8 P P

Mx(kin,r)= j,(kinP)[Xt,m(0,(P)]x
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1Y, and 1•, are defined analogously, using the y-components. Note that Eq. (4.C2) is

identical to Eq. B8 in Ref. (42), derived with a different mode expansion of the EM

field.

The power loss in Eq. (4.17), due to thermal noise in the sample with conductivity cr,

was derived integrating electric field products over the volume of the sphere:

P ' = ffE(r) -E* (r)dV
2 V

2 M (4.C3)-01 +0 +1 +O +'  I
2 kin v 1=0 o=- i=om.=-i' ) 1,m

The four integrals can be solved using the orthogonality relations of the vector

spherical harmonics (71):

fffMim -M;",dV = ffj, (k, p)j' (kinP)Xi,m (89, 0) X;m. .(8, O)dV =
V V

a (4.C4)

= i.,,s,,.n jlj,(kinP)l2P2dp
0

fl,,. 1 1= T rrl a[pjl(kip)] a[pj.(k,,p)]ffflIm & dV T 2- ( x (1•, 0)) )

x X.,,,(8, ,))dV + 1(1 + 1) J P I(kip).(kinp)Y m (8, ) .YI"((8, ) dV}

= f a[Sm.m Ik12 1  (kinP)] + 1(+1)j, (kp)j 2 dp=kin 0 lap
(4.C5)

fffMi,m .N;,,dV= fJJI,.m M•I;.mdV = 0 (4.C6)
V V

Eq. (4.C3) can be re-written as:

132



2 + o +1
PL )= Eo r VT

2 ki 1=0 m=--

p 2dp

S 1 Ja[Pji(kinP)1 ]

ikl 2 ap
+00 +1

-=X VTPLV*
1=0 m=-1

(4.C7)

Note that P, coincides with the noise matrix derived by Wiesinger at al. using the

multipole expansion for the EM field in the sphere (42). The two expressions exactly

match if we multiply Eq. [B7] of Ref. (42) by the conductivity of the sample, to correct

for a minor typographical error and by 1/2 to account for a different definition of the

RMS noise voltage in the SNR equation.

The current distribution on the surface A', at radial distance Pc, causes a power loss

inversely proportional to the conductivity (oa ) and thickness (d, ) of the coil material:

PA = K(r')K'(r)dA'
2acdc A'

+00 +1 +0a +/'

2 'l I mm1 E ( ('21t6c A* -=0 m=-1 l'=0 m'=-l'

(
W(E),K )  ') / '

I (E)' W(E)Kim JI'M,

As for Eq. (4.C3), also in this case we can apply the orthogonality relations of the

vector spherical harmonics (71) to solve the equation:

KI'mK)" IidA' = (11 1 '( i)X m (, ) X;,, (L9, 9)d '
A' A'

= p2c,,ibm,mll( + 1)

fJK, K;E) ,,]'(E4 - (1 + 1) '(d'+ 1) Jf(p, xX ,,m (9, 0)).(p x X;,,(9,( Z))dA'
A' A'

K)= pK,rmmE) ,1(1 + 1)

f fKIm) -KI I = •fK - a K;ý) =A 0j I ,,m , I I' ---

(4.C9)

(4.C10)

(4.C11)

Substituting in Eq. (4.C8) yields:
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PA =-W T 2dl)P
/=0 m=-I 2o'cd (

0w* =I WTpAW*
0) /=o m0 l

Calculation of signal sensitivity and noise power for the dielectric cylinder

The sensitivity matrix in the case of the cylinder is calculated as:

BBx(ro)-iBY (ro)= -iuokn lI{•r , (m ,r) VT (m ) + MI r n (m,r) V"N (m)} (i- i) dm

= -, i- ik (N ,(m,r)V((m)+Mi (m,r)V" (m)} (•-i )dm

(YP) ik V, (m)+iVn"(m) e npemzdm

=-Po n J J(yp)+n (p)) m V (m) + kV, (m)} e'("n"elzdm-00 P

oyJn-1 (yp)e e m dm
81 k

00- -c= I f V, (M
n=-oo --.

= JVTSdm=Ž JW TTSdm
n=-"'°O n=--.o

(4.C13)

where the unit vectors were transformed in cylindrical coordinates using:

(4.C14)

and the following properties of Bessel functions were used:

Eq. (4.C13) is equivalent to Eq. (4.16) with:

S(M) p oJn- i(Yp)ei(n-1),p ein
S S( E) 8)r ( M k
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1
J' (yp) = (J _, (yp)- J,,+ (yp))

Jn (yp)= P(J (yp)+ Jn+,I (yp))
2n

(4.C15)

(4.C16)

8;r )7=--0 --C P

ý - A - iv ( A - i ^)X iy=e P 9



This expressions differs from the corresponding expression in (110) in several ways.

First, n-i substituted for n+l. Second, the sign of term mV,~(m) in Eq. (4.C13) is

reversed. Third, full P and z dependencies included, as required for parallel imaging

which relies upon phase as well as amplitude differences in sensitivities at aliased

positions.

The power loss due to thermal noise in the sample is derived in Ref. (110) and reported

in Eq. (4.19). The power loss due to the fact that currents circulate in lossy coil

conductors is calculated as:

PA = 2 K(r') K* (r )dA'
2aCde A'

1 ffdA f W, (m) x Ve-' )n.,m

21,cd c A' -fo -J n=w'---o m Ve WeT )e p

(4.C 17)

The four integral can be solved separately in cylindrical coordinates with dA'= p~dpdz:

V xe" e ) (V x e- "' e - 'z )dA,

n=--o n'=-" A'

+c + +cc 2j

= ffee e(mm')z 2 + dA' (4.C 18)
,o -- o n=

- -
ao n'=-- A'

= 4r 2 cnn(m - ')m 2 + 2
Pc

+00+00 + cc0 f

Sf(Ve"e-,) ( V e -" e"' d e- )
--oO n=--G n'=--c At

+cc+c 00 + 4 2 d-= fe i(n ei(m-m')z 2 + dA' (4.C19)

= 4; 2 p c6nn,4(m- m') 2

-- c -- n=- n'=- A
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+&V +im0

f •f(Ve"'eimz)r V x e- 'e - pi)'z dA' =0
- c -- n=- w n'=- wl A'

We can now re-write Eq. (4.C17) as:

1 ""
PA f[ Wn(m) 4r2pc

2ocdc -0n=-Go

\ '

2

2

2

0 2

+00 +00

= W,W (m)PAW,* (m)

with PA defined in Eq. (4.23). In the case of the cylinder we modeled an additional

power loss due to the induced currents circulating in the conductive shield. This

current distribution Ks is given by:

Ks(r) = (r) x
ou/ 

rl,,0

(H - J)VA (m) +

0+ (H

(m) + 0 V, (m)

Pq(H - J ) '

0
0 (H - J)'V,,B(m) e'"e"mzdm

ko,7

where:

136

(4.C21)

ik +00 +00
= _I f
8 n=o --oo

ik8 +00
8ffn=-0

0I 2
nm

(4.C23)
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(H - J) = H)2) (p) H(2)'(,) J(

(4.C24)

(H - J)'= H~)' (rHP() n0(, P
Jn (q, Ps)

The corresponding power loss, assuming the conductivity and the thickness of the

shield material are as and ds, respectively, for a shield of length Ls is calculated as:

s 1 2;r K( I1 -0
s K,(rK(r)d'= JKs(r')K;s(r)Psdpdz

2sds ,s 2s-d=s , -2odS A' 2ss 0 (4.C25)
= I[ V A (m)Vf (m)]Ps i2 Idmn=--oo Vn' (m)_

with:

]+ nm nmmo)"
s = 3nmkr Jks D D' (4.C26)

where we have defined D in terms of the quantities in Eq. (4.C24):

D = J)(H-J) (4.C27)
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Appendix D

Calculation of the weighting coefficients for a loop coil along the z-axis

In order to calculate the weights that must be applied to the basis current distribution

for the case of a loop coil perpendicular to the z-axis (Figure 4-1), we start by re-

writing Eq. (4.38) as:

+00o +1

K(0, p) = "'•W (+im cscOYl(0, (.)d
1=0 m=-1

- cot oY, (0, ,P) - csc 9 (12 m2 ),( (4.DI)

This expression must be equivalent to Eq. (4.37), so the 0 component must be zero for

every 1, which means that m = 0 always. We can now compare the simplified Eq.

(4.D1) with Eq. (4.37):

+00l , sin 890s d
0(M)' -i4 XeR)d 2( .9)R = i cos-. (4.D2)1,0 SIos,/=0

Let us multiply both sides by il'(l'+ 1)X; ,o(9, o) and take the surface integral:

+oo r 2r

W Wo (M)I( + 1)'(l'+1)f J'x, 0 (, p)X;o, (, ) (d2 + R2 )sin OdOdp
1=0 0 0

-=d
2 R 2 f f5{cos9- d2 +R 2X, 0 (,p)(d2+R 2)Sin29d9dqd2 + R 2 0 0 cos d

(4.D3)

The integral on left-hand side can be solved applying the orthogonality properties of

the vector spherical harmonics (71), whereas the solution for the right-hand side can be

found integrating by variable substitution. Extracting the W~,M ' yields the expression in

Eq. (4.39).

Calculation of the weighting coefficients for a loop coil rotated away from the z-axis

A loop coil arbitrarily rotated on the surface of the sphere (Figure 4-1) can be seen as a

loop coil along the z-axis of a rotated coordinate system (see Eq. (4.40)). The
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coordinate rotation which brings the unit vectors and coordinates of the unprimed

system into the primed system is defined as follows:

ex ex, xI x'
R(a, f, 0) ey = ey, , R(a, ,fl0) y = y' (4.D4)

e z  e z ,  
z z'

The axis of the rotated coil is parallel to e., and a and /. define the angular position

of the center of the rotated coil on the unit sphere. We may set y = 0 due to the

symmetry of the circular loop. We must now express Eq. (4.40) in terms of the

original reference coordinate system:

X't (0', ) -i (r'x V') Y0(9', () (4.D5)
r1(1+1)

We may express the cross product in the rotated reference frame in terms of Levi-

Civita symbols as follows:

e x,  ey, e z,

r'xV'= x' y' z' = C• kexj (4.D6)
S 8 8 lk ax'ka a a k ax

ax' iy' az'

Transforming each term in the sum into the unrotated coordinate frame, we have:

ex = R,, (a, ,, 0)exP
p

xj = Rjq (a,, 0)xq
q

a ax a , a , , a (4.D7)
axj r ax ax, a x4 rs )r)X axr

= R (a,l, 0) = Rkr (a,l, 0)
, & rx , ax,

Therefore,
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r 'xV ' = I ikRlpR, (a, , O)Rjq(a, , O)Rkr(a, , O)ex xv  (4.D8)
ykpqr aX r

This sum has a total of 162 terms (6 non-vanishing permutations of Ck times the 33

terms of the p, q, r sums). However, a large number of these terms vanish by

symmetry. For example, all terms with p=q, p=r, or q=r reverse sign on exchange of i,

j, or k with multiplication by ek , resulting in cancellation. Similarly, p<->q, p-+r, or

q++r result in sign changes. In short, we may write:

r 'x V'= :ejR,, (a, )R(, O)R)Rkr(a, , 0) pqrexpx - (4.D9)
pqr yk r

Now, for the combinations of p, q, and r which result in non-vanishing e,,, the i, j, k

sum in Eq. (4.D9) may be identified with the determinant of the rotation matrix

IR(a,/3, 0)l and proper orthogonal matrices (i.e. rotations) such as this must have unit

determinant:

SegkR,,, (a, f, O)Rjq (a, /, O)R, (a, ,,0) = R(a, /, 0) = 1 (4.D10)
yk

Therefore:

a= IXx'-- - p Xa--=rxV (4.D11)
k ak pqr r

Spherical harmonics in a rotated coordinate system can be expressed in terms of the

unrotated reference frame (114):

Y0 ((',) o= (R(a,/', 0) (0, )) = D,o (a, /,'0) Ym ( •P)

m=-I (4.D 12)
I 4",Y-7*,B, a)y (0 V

Substituting Eq. (4.DI 1) and (4.D12) in Eq. (4.D5), from Eq. (4.40) we obtain the

weights for the rotated loop coil in Eq. (4.43).

Calculation of the weighting coefficients for cylindrical window coils
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Current density distribution for an ideal cylindrical window coil (Figure 4-2) centered

at o = 0 and z = 0 with angular aperture 2(oo and axial length 2d carrying current I on

each leg is:

(6(z +d)- -(z - d))(0(9 -(o)- 9(( + V%))V
K+ b ((p -p) -9)(p + q))(O(z -d) - (z + d)) (4.D13)b

Here 9((p - o) is the step function with a positive step from 0 to I at po = oo . The

factor of 1/b in the z component arises from the requirement of uniform current around

the loop:

fJwindow (pdo dpi)= b Kwindow d= I= Kwindow .Oz = Jwindow .(dzdp#).

(4.D14)

Using the Fourier transformation properties of the delta function and the step function,

we have:

S sin(ng) eM (eiemd - e'd imz

Kwndow ((pz)=I I f n dm
n=- 1 (e-'" -en) en sin(md) emzi z

b m
(4.D15)

00  -0
= Io 2 sin(ng0) sin(md) in bmz in

n
e z e p dm

nI mb

This expression must be equivalent to the magnetic-dipole component of the current

distribution in Eq. (4.8) for p = b :

+0 +c0 +co +*0
K(qP,z)= , fW,'M)(m)Vxe 'ene'mzbdm= f jWn"(m) - e(me)zdm

-=-oz n=-=n _ J·b dm
(4.D16)

Comparing the last two equations we find an expression for the weighting coefficients:

Wwindow,(M) (m) =21 sin(ng•o) sin(md)
n m

(4.D17)
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The effects of translation or rotation of the coil on the cylindrical surface (i.e. moving

the coil center to ( = Aqpr and z = Azr , where y is the coil index) may be accounted for

by taking (p- - Apr and z - z- Az, in the preceding derivation, resulting in the

general expression of Eq. (4.45) for the current mode weights of a cylindrical window

coil arbitrarily positioned on the cylindrical surface.
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Chapter 5

General Conclusions and Future Work

5.1 Conclusions

The performance of RF coil arrays will shape the future of MRI. The benefits of high

field MRI can be fully exploited only with the implementation of parallel imaging and

parallel transmission techniques, which depend heavily upon the quality of the coils

used. As the operating frequency of and the number of available channels for MR

systems increases, coil engineers will be presented with new design challenges and the

role of computer simulations will become ever more important to avoid construction of

expensive prototypes. The performance of any coil array is strictly constrained by the

behavior of electromagnetic fields within the sample, but the knowledge of such

limitations can be exploited to improve existing coil designs and to develop novel

transmitters, or receivers, that operate close to the optimum performance.

In this dissertation we studied the performance of RF coil arrays, both in MR reception

and in MR transmission. We developed a comprehensive theoretical framework which

allows calculation of ultimate intrinsic SNR and SAR in the case of spherical and

cylindrical samples. We showed that both maximum SNR and minimum SAR can be

approached with a finite number of coils, if ideal current patterns resulting in the best

possible performance are used as a target for coil design. We proposed a method to

evaluate the absolute performance of a coil, using ultimate intrinsic SNR as a
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reference. Our method provides useful information for coil engineers, as a supplement

to or perhaps an eventual replacement for the common practice of comparing coils

among each other to assess their quality. It was found that at high magnetic field

strengths, due to shortening of the RF wavelength, parallel transmission become very

effective in reducing SAR while simultaneously maintaining the homogeneity of the

excitation. This work provides new insights on the potential uses of coil arrays, and it

can serve as a guide for future implementations.

5.2 Future research directions

In this work we described for the first time ideal current patterns associated with

optimal SNR and SAR performance. These ideal patterns provide physical insight

about desirable coil behavior, but the questions "What is the best transmitter?" and

"What is the best receiver?" are only partially answered. In parallel imaging and

parallel transmission, ideal current patterns are optimized at each voxel position and

each time period, respectively. Although this may be sufficient to maximize the

performance for particular applications, future research work will focus on searching

for composite current patterns that bring the overall performance of a coil close to the

optimum for a range of applications. A possible approach would be to parameterize

design specifications and employ genetic algorithms to find the optimal combination.

However, before investing resources in that direction, it will be important to validate

experimentally the results of the simulations. As it is easier to measure SNR than

SAR, the first tests should be aimed at proving the practical utility of ideal current

patterns in the receive case. We saw in chapter 4 that, for particular voxel locations,

these patterns have circular shape and are localized in small areas, so it would be

instructive to see how much of the ultimate SNR can be achieved if we build loop coils

that replicate the optimal current distribution.

It will be also important to verify the generality of the results presented in this thesis

when heterogeneous samples are used. One way of doing that is to replicate some of

the calculations of optimal SNR done for the case of few-element arrays, modeling

exactly the same coil geometries with, say, FDTD techniques and using realistic tissue
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models. Another possibility is to model previously derived ideal current patterns as

conductor distributions in finite element or FDTD methods, to see if the general trends

in SNR and SAR we observe in homogeneous samples are confirmed in the case of

heterogeneous samples.

One early application of ideal current patterns for improved coil design would be for

the case of RF shimming. In RF shimming all coils share a common pulse waveform,

and therefore there is a single configuration of the optimal current distribution that we

need to reproduce. Furthermore, in RF shimming achievable excitations are dictated

strongly by coil design (as opposed to the case of fully parallel transmission, which has

a larger number of degrees of freedom), and therefore RF shimming represents an

appealing starting point for optimization.

Though Cartesian k-space trajectories were used in this thesis for the study of both

reception and excitation behavior, our semi analytical simulation framework can be

extended in a straightforward manner to accommodate arbitrary k-space trajectories.

This would be particularly useful in the case of transmission, as Cartesian EPI

trajectories are not routinely used for parallel excitation due to their long duration. EPI

trajectories were used in this thesis because they simplify the implementation of

accelerated parallel excitations and they are a convenient choice for the study of SAR

behavior as a function of acceleration.

Shortening of the RF pulse duration in parallel excitation is compensated by use of

higher current amplitudes and therefore larger amounts of RF energy are expected to be

transferred to the patient during accelerated excitations. Despite this, our results show

that at high frequencies the growth of ultimate SAR with respect to the degree of

acceleration flattens out. This result suggests similarities to the improvements in

geometry factor observed at high field for parallel reception. In the transmit case as

well as in the receive case, the shortening of wavelength may improve the performance

for accelerated tasks. It will be interesting to verify this hypothesis in the case of finite

coil configurations, both in simulations and experimentally.
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It is our hope that in this work we have begun to address some of the questions facing

modern designers and users of RF coil arrays in MRI. These basic questions will

undoubtedly continue to motivate multifaceted work in times to come, and we look

forward to the answers which may emerge.
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