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Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with
diagnostics and treatments that are ineffective at stopping the progression. This thesis
examines new ways of both diagnosing and treating ALS, including 1) a gadolinium
tetanus toxin C fragment (Gd-TTC) biomarker for axonal retrograde transport, 2) TTC-
conjugated biodegradable nanoparticles, and 3) poly(glycerol-co-sebacate) acrylate
(PGSA) and 3D scaffolds for human embryonic stem cell (hESC) and neuronal
encapsulation.

A Gd-TTC conjugate was developed and characterized that was shown to be
highly visible under MRI and preserved the functionality of the native TTC protein in
vitro. Live animal MRI imaging and immunofluorescent staining of the spinal cord
showed that the conjugate was transported to the central nervous system (CNS) and
localized in motor neurons. H&E staining and biodistribution studies showed that Gd-
TTC was well tolerated and bioavailable. Quantification of MRI and staining images
showed that Gd-TTC was retrograde transported and that that this rate decreased during
the disease progression of ALS in a transgenic mouse model, suggesting that Gd-TTC
could be used as a biomarker for neurodegenerative diseases.

TTC-conjugated nanoparticles were developed by synthesizing PLGA-PEG-biotin
and using biotin binding proteins (avidin, streptavidin, and neutravidin) to specifically
conjugate TTC to the nanoparticle surface. TTC nanoparticles were shown to selectively
target neurons and not other cell types in vitro. Subsequent in vivo experiments showed
that nanoparticles were well tolerated and that TTC was co-localized with neurons
unilaterally, suggesting that TTC-conjugated nanoparticles may be a useful drug delivery
system.

Porous PGSA scaffolds were prepared and characterized by porosity, swelling,
mass loss, toxicity and mechanical properties, and subsequently used to encapsulated
hESC and neuroblastoma cells in vitro. Neuroblastoma cells proliferated and formed
matrix fibrils, and fluorescent staining of undifferentiated hESCs showed the presence of
all three germ layers. In vivo experiments showed that porous PGSA scaffolds were well-
tolerated and promoted vascular ingrowths.

Thesis Supervisors: Robert Langer, ScD (Institute Professor, MIT) and Robert H. Brown,
MD-DPhil (Director Day Neuromuscular Laboratory, MGH, and Professor, Harvard
Medical School)
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Chapter 1: Introduction

1.1.0 Amyotrophic Lateral Sclerosis

1.1.1 Background

Amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease) is a

neurodegenerative disease affecting both upper and lower motor neurons in the central

nervous system. There is currently no cure for ALS, and most people who are diagnosed

with ALS usually will die within 3-5 years after loss of motor function and muscle

atrophy. Approximately 5000 new cases of ALS are made each year in the US, primarily

in patients who are older than age 50. Despite the low incidence rate of the disease, ALS

has gained much public attention and is more well known by most people than other

neurodegenerative diseases, largely because several famous people have been diagnosed

with ALS (Lou Gehrig and Stephen Hawking, among others). Because of this, funding

for basic science and clinical trials research is available with the goal of someday finding

a cure to ALS.

1.1.2 Causes

The causes of ALS are not well understood. However, it is known that in a small

fraction of patients (approximately 10%), ALS is caused by a genetic mutation. Of these

cases that are caused genetically, most are recessively inherited, and approximately 20%

of these cases are caused by mutations in the superoxide dismutatase I (SOD 1) gene.

SOD1 is responsible for maintaining free radical and oxidation states, and for this reason,

some of the current clinical trials that are being conducted have targeted these pathways.

C 2008 Massachusetts Institute of Technology. All rights reserved.



This knowledge of SOD 1 mutations has led to the generation of a number of transgenic

animal models for ALS, including the G93A mouse model, a rat model, and an

earthworm model. However, in the vast majority of cases of ALS, the cause of the

disease is not known. Researchers suggest that environmental factors and apoptosis

could play a role as possible risk factors for the disease, but more research is needed to

understand relative and absolute contributions.

1.1.3 Symptoms

The early symptoms of ALS often go unnoticed or are misdiagnosed as common

signs of aging. These symptoms include the loss in strength and balance most often in

the arms and legs, reduced balance and coordination, and difficulty walking. Less

common early symptoms include a difficulty in speech and swallowing.

Late stage symptoms of ALS include total loss of motor function in the limbs,

inability to walk, and reduced activity in other motor neuron function. This leads to

difficulty swallowing, eating, talking, and breathing in patients with late stage ALS.

Visible symptoms of the disease are associated with secondary symptoms such as muscle

atrophy. However, ALS is not thought to affect other critical systems, and patients

maintain their cognitive ability throughout the disease. For this reason, treatments that

improve motor neuron function could have significant impacts on patient quality of life.

C 2008 Massachusetts Institute of Technology. All rights reserved.



1.1.4 Diagnostics

A diagnosis of ALS is usually made after early symptoms have been present for

extended periods. This is partially because ALS is rare, and many doctors misdiagnose

the symptoms as signs of aging. An accurate and reliable diagnosis is further

complicated because there is no single test for ALS. Instead, it is usually made by ruling

out other conditions by conducting a series of tests. These tests include evaluating nerve

conduction velocity, using an MRI to eliminate cancer as a possibility, and muscle or

nerve biopsy. Even with these tests, the results and a series of physical examinations is

used to make a final diagnosis, and often a patient has been seen by multiple neurologists

before a diagnosis is made. It is clear that more effective and earlier diagnostics would

help

1.1.5 Treatments

There is currently only one FDA-approved therapeutic for ALS, Riluzole, that

prolongs survival by approximately six months in most patients. Riluzole is only

successful in delaying the progression of ALS, but it is not a cure. It is largely believed

that the mechanism of riluzole includes a decrease in the amount of glutamate released by

neurons. Many researchers suggest that an earlier diagnostic test would enable more

successful treatments. Additionally, if we better understand the cause of ALS and the

mechanisms for progression, therapeutics could be developed to target certain pathways.

Unfortunately, despite the large number of completed and ongoing trials, most of the

completed clinical trials have been largely unsuccessful.
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In additional to pharmaceutical therapeutics, ALS therapies rely largely on

supportive care including breathing assistance and physical therapy. This treatment

includes the use of mechanical assistance such as walkers and braces, as well as

prescription therapeutics including drugs to reduce muscle fatigue. During late stage

ALS, devices that assist with voice communication can be used as patients often lose

their ability to talk coherently, as well as devices that assist with breathing such as

respiratory ventilators. It is widely viewed that this care does not prevent disease

progression but instead improves patient quality of life.

1.1.6 Experimental approaches

There are a number of experimental approaches that are being studied as possible

treatments for ALS. At this time, they are not FDA approved, and are at various stages of

development. Studies are aimed at treating all symptoms of ALS including reducing

apoptosis, decreasing local free radical formation, and administering various neurotrophic

factors. Additionally, FDA-approved drugs for other indications and diseases are being

studied for possible benefit in ALS. Outside of the clinic, there is a wide range of

research that is being conducted including next generation RNAi therapeutics, stem cell

therapeutics, and gene therapy. Most of these therapeutics are predicted to be years or

even decades away from clinical use.

In additional to a number of clinical trials 1-4 that test new therapeutics,

researchers are evaluating the role of supportive treatments 5, 6. Researchers have also

made contributions in understanding the mechanisms of ALS with clinical samples and in

transgenic animal models 7, 8. The SOD1 protein continues to be the topic of much

research and progress is being made in understanding its contribution 9-14, as well as other
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genes that may contribute to ALS progression 5-"7. Next generation therapeutics

including gene therapy 18-23 and RNAi/siRNA 24-26 are also being developed that treat a

number of symptoms of ALS including apoptosis 27, reduced levels of neurotrophic

factors 28, DNA repair mechanisms 29, and exploring the role of hypoxia in ALS 30-33

Additionally, VEGF 34, 35 and IGF-1 36-39 are among the many molecules that are

currently being tested as a possible ALS therapeutic. It is not yet clear which

experimental approaches will be most successful, and more research is needed to

understand the relative and absolute role of stopping ALS progression for each

therapeutic.

1.2.0 Magnetic resonance imaging

1.2.1 Overall background

Magnetic resonance imaging (MRI) is a method that is commonly used clinically

to visualized tissue. MRI utilized a magnetic field to generate an image of local tissue

including: brain and spinal cord imaging, tumors, cardiac tissue and vasculature, and

joints and cartilage. MRI differs from other imaging methods including positron

emission tomography (PET), which detects radioisotopes and generates an image,

because it has much higher resolution than PET. Additionally, a foreign radiolabeled

product is not required to generate images; however, often an MRI contrast agent is

administered for certain applications. Generally, MRI is considered very safe, but it

cannot be performed with patients who have any metals that are sensitive to a magnetic

field such as certain implants because the strong magnetic field would cause internal

motion. One of the most common side effects in patients is a feeling of claustrophobia
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because the imaging scan can take several hours to complete. Usually, the magnetic

fields that are used in clinical MRIs have field strengths between 0.5-3 Tesla. However,

experimental MRIs for non-human use have 14T magnetic strengths, or even higher.

Despite the high resolution images given by MRI, machines are very expensive to

purchase and operate, and often doctors make decisions about whether to give an MRI

imaging session based on cost considerations.

1.2.2 Methods of Imaging

The images from an MRI are obtained by generating a strong magnetic field and

by measuring the rate at which protons align with the magnetic field. The relaxivity, or

rate at which the protons return to their native state, is different for each type of tissue,

and can be affected by fluid levels or the presence of a contrast agent. There are several

types of scans on an MRI, and all have the goal of maximizing the signal contrast and

generating maximum signal to noise in the tissue of interest. Generally, there are two

types of relaxivity: longitudinal relaxivity which is associated with TI contrast, and

transverse relaxivity, which is associated with T2 contrast. Usually, the rate that protons

return to their native longitudinal state is faster for T2 contrast by approximately an order

of magnitude, but this rate is affected by the overall strength of the magnetic field. A

modified type of T2 sequence is often used for functional MRI brain imaging to account

for local differences in field strength.

Various contrast agents can be administered that can enhance the signal of either

T1 or T2 contrast. Gadolinium is often used clinically to enhance Tl and makes tissue

appear whiter in the presence of this agent 40, 41. Gadolinium is toxic in its native form,
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but is usually administered with a chelate which allows interaction with protons on water

molecules but reduces tissue toxicity. Additionally, recent studies have suggested that

there may be additional safety issues with the use of gadolinium for patients at high risk

of kidney failure, and the FDA has approved additional warning labels for gadolinium

based products to account for this. There are also T2 contrast agents, such as iron core

nanoparticles that can lead to an enhanced T2 signal that is darker compared to local

tissue 42-44. Often nanoparticles are functionalized to allow interaction with antibody

molecules for targeting applications in tumors45' 46. These studies could be expanded to

other research areas including targeting the central nervous system.

1.2.3 Research involving ALS

MRI is commonly used as one of the primary methods to diagnose ALS,

specifically by ruling out cancer of the brain and spinal cord as a primary diagnosis.

Additionally, researchers have used experimental MRI sequences to study the

progression of ALS 47-60. These studies have ranged from quantifying the size of the

spinal cord using MRI to assess the disease progression to using more sophisticated

diffusion tensor sequences. These methods are currently experimental, are not FDA-

approved as an ALS diagnostic, and are not used by clinicians outside of a research

environment. The use of MRI in monitoring the progression of ALS could see increasing

use with the development of specific biomarker contrast agents.
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1.3.0 Drug Delivery

1.3.1 Background

Many therapeutics are delivered via oral or injectable administration routes.

However, it is often difficult to maintain drug concentrations within the therapeutic

window. If drug concentrations are too high, side effects can occur (including death), but

if drug concentrations are too low, the therapeutic is often not effective. Additionally,

drug clearance rates including the first pass metabolism (clearance in the hepatic system)

eliminate the drug from the system over time. This is complicated by the fact that

different drugs have various therapeutic windows and clearance rates. The liver is

responsible for breaking drugs down into metabolites that can be cleared from the kidney,

but metabolites can be toxic. Models to predict drug toxicity are often inadequate

because initial in vitro screens are conducted with cells in a 2D culture system that do not

represent the liver microenvironment 61. These issues and considerations affect the

overall bioavailability and biodistribution over time, and are the cause of the failure for

many candidate drugs failing prior to and during clinical trials. Controlled and more

effective drug delivery can alleviate many of these problems.

1.3.2 Biodegradable Polymers

The field of drug delivery has seen advancement by the development of

biodegradable and biocompatible synthetic polymers. These polymers include

poly(lactic-co-glycolic acid) (PLGA), poly(lactic acid) (PLA), and poly(glycolic acid)

(PGA). These polymers vary by their core composition, degradation rates, and drug

release profiles, but are all generally considered well tolerated and are utilized in FDA-
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approved products. They degrade into either lactic acid or glycolic acid and water, and as

they degrade, an encapsulated therapeutic is released. Initial polymer studies were used

to treat brain tumors and improve survival 62-68, and since that point, significant

advancements have been made in polymer design and in understanding release 69-73. The

next generation polymers that are being developed include polymers with positive

charges that may enhance gene delivery, and those that have different degradation

profiles and release characteristics. Therefore, the drug release can be controlled for

many compounds for each application.

1.3.3 Blood Brain Barrier (BBB)

Delivering therapeutic agents to the CNS is of great importance but has remained

challenging in part because of difficulties in penetrating the blood brain barrier (BBB), a

layer of endothelial cells bound by tight junctions. Most drugs that are larger than -400

daltons do not pass through the BBB with high efficiency 74. Various approaches have

been used to administer agents to the CNS including concentrated mannitol, vascular

endothelial growth factor (VEGF), ultrasound, encapsulation within nanoparticles, and

retrograde transport. Of these, mannitol remains the most widely used clinically,

primarily for applications in cancer treatment. Ultrasound and VEGF administration

remain an active field of ongoing research. In addition, nanoparticle (both non-targeted

and targeted) and retrograde transport approaches have been used successfully to

penetrate the BBB.
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1.3.4 Microparticles and nanoparticles

Microparticles (1-1000um) and nanoparticles (1-1000nm) are often defined by

their size and are can be synthesized from commonly used polymers, including PLA,

PLGA, and PLG. These nanoparticles and microparticles are usually used to encapsulate

and release a therapeutic agent usually over a period of days to months, with minimal

toxicity 69. Nanoparticles can be administered either through non-targeted or targeted

delivery. During the latter, a protein, aptamer, peptide sequence, or other targeting

molecule specific for a receptor is attached to the outside of the polymer nanoparticle.

Targeted nanoparticles offer the potential for local delivery, reducing any systemic side

effects of the encapsulated therapeutic, and may reduce systemic clearance rates (i.e.

from the kidney, liver, or macrophages) 75. This is important as common routes of

nanoparticle administration include intravenous and intramuscular delivery, both of

which may lead to rapid clearance and reduced efficacy with certain applications. Many

studies have found that the incorporation of polyethylene glycol (PEG) to the polymer

chain reduces clearance rates and may improve overall efficacy 76

Most nanoparticles are not efficient at penetrating the CNS because of a

combination of their size, surface charge, and hydrophobic properties 74. However, their

smaller size (in comparison with larger microparticles) may allow for greater BBB

penetration. Recently, non-targeted polymer nanoparticles prepared from

polybutylcyanoacrylate (PCBA) polymer encapsulating a variety of drugs and coated

with a polysorbate 80 surfactant have been shown to penetrate the BBB 77-81. The

mechanism for uptake is not fully understood, but is proposed to take place via receptor

mediated endocytosis in brain endothelial cells (ref) 82. However, in contrast to PLA,

© 2008 Massachusetts Institute of Technology. All rights reserved.



PLG, and PLGA polymers that are currently used in FDA-approved applications, PCBA

polymers would need to be studied more extensively before they are widely used

clinically 83. Targeted nanoparticles may allow for boundaries such as the BBB to be

penetrated by facilitating endocytosis or transcytosis across brain endothelial cells, or by

utilizing retrograde transport to bypass the BBB.

1.4.0 Retrograde transport

1.4.1 Background

Axonal retrograde transport is an important cellular process used by neurons to

transport proteins, small molecules, and even cell organelles from the terminal end of a

neuron towards the cell body. Different molecules are transported via different

mechanisms of axonal transport. Specifically, axonal retrograde transport is usually

subdivided into molecules that are transported via fast transport (50-400mm/day) and

slow transport (less than 10mm/day). The mechanisms of both fast and slow transport

are still being investigated, but fast transport is largely thought to be mediated by dyenin

and slow transport is mediated by kinesins.

1.4.2 Molecules that use retrograde transport

Retrograde transport is utilized by viruses (i.e. herpes) and bacterial toxins (i.e.

tetanus toxoid) to bypass the BBB and efficiently penetrate the CNS. This process has

evolved over millions of years, and is highly efficient, often leading to the toxicity of

many of these molecules. In addition, molecules such as manganese are transported via

this mechanism, and have been used as MRI contrast agents. Other molecules that are
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transported retrogradely include: poliovirus, wheat germ agglutinin (WGA), and rabies.

Many of these molecules are being studied both to understand the mechanism of transport

and to utilize natural mechanisms of transport for drug delivery.

1.4.3 Use as a delivery vehicle

Researchers have used retrograde transport to deliver genes and protein

conjugates to the CNS with therapeutic efficacy 36, 84. This approach offers the possibility

of selectively targeting a specific region of the CNS that is a function of the injection site.

This is in contrast to non-targeted intravenous administration that would likely penetrate

the entire CNS equally. However, one concern with using this approach is a possible

immune response, which may be particularly important in patients diagnosed with cancer

or those taking immunosupressive medications. The immune response will likely be a

function of the retrograde transport molecule used and previous immunizations to that

molecule. Recently, the tetanus toxin C fragment (the non-toxic binding portion of the

tetanus toxoid that is efficiently retrograde transported in neurons) was conjugated to

nanoparticles and shown to target neuroblastoma cells in vitro 8. It is not clear yet

whether this approach will lead to nanoparticles penetrating the CNS with high efficiency

in vivo.

1.4.4 Retrograde transport and ALS

In addition to using retrograde transport as a delivery system, this important

cellular process is well studied as it relates to the progression of neurodegenerative

disease such as ALS. It has been shown that ALS is impaired preceding the visible

C 2008 Massachusetts Institute of Technology. All rights reserved.



symptoms of ALS 86-9 1. Additionally, there has been some progress made in using

biomarkers to monitor this transport such as manganese 92. However, it is expected that

by utilizing bacterial or viral toxin fragments, we may gather additional insight into the

disease progression and generate biomarkers with more clinical utility.

1.5.0 Stem cells

1.5.1 Background and derivation

One therapeutic area of interest for ALS is tissue engineering from stem cells.

This offers a mechanism to treat advanced cases of ALS, where motoneurons have

significantly degenerated, and may help to restore lost limb function. This approach

could be used in parallel with pharmaceutical agents to treat ALS both on a molecular

and cellular level.

Stem cells are undifferentiated (unspecialized) cells that reside among

differentiated (specialized) cells in a tissue or organ and have the capability for self-

renewal (producing identical copies of themselves) throughout their lifetime. A stem cell

is also capable of producing more mature (specialized) cell types of the specific tissue or

organ in which it resides through differentiation93 . This allows the existence of a constant

pool of specialized cells needed for homeostasis. To some extent, this pool also allows

the replacement of dead, injured, or diseased cells (regeneration of injured tissue in an

organ).

There are two primary classifications of stem cells: adult stem cells and

embryonic stem cells. Adult stem cells are partially differentiated stem cells that

maintain some pluripotency, but cannot become any cell type. In contrast, embryonic
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stem cells can differentiate into any cell type. This makes embryonic stem cells

particularly useful for studies aimed at better understanding developmental biology and

those or for studies in which multiple cell types interact together in a cell

microenvironment. Mouse embryonic stem cells have been studied for several decades,

but human embryonic stem cells (hESC) were recently derived approximately ten years

ago.

1.5.2 Ethical considerations

There has recently been controversy and ethical debate regarding the use of hESC

for research purposes. The primary arguments center around whether it is acceptable to

use cells that have been derived from a fertilized embryo. Specifically, hESC were

developed from early embryos in a laboratory that were to be discarded from in vitro

fertilization clinics. At present, the National Institutes of Health have provided

guidelines which limit government funding to only cell lines that have already been

derived. The research in this study used only NIH-approved hESC lines. It is clear that

more research will be needed before we understand any ethical considerations and the

role of stem cells in any clinical treatments or tissue engineering applications.

1.5.3 Differentiation (including neuronal)

One active focus of current research involves guiding the differentiation of

undifferentiated stem cells into certain cell types and tissues. hESC are exposed to a

variety of microenviroment conditions, nanotopography, and growth factors to induce

differentiation. However, most cell populations remain mixed and this process is not
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well understood. It is clear that a variety of factors contribute to cell differentiation and

more research is needed.

Researchers are investigating new ways to promote neuronal differentiation with

some applications for ALS 94-96. There are a variety of markers for neuronal

differentiation that are used including: nestin, Soxl, beta-3 tubulin, TuJ, and MAP2.

These markers may have basal expression levels in undifferentiated stem cells, so it is

important to compare these levels to appropriate controls. It is clear that having a high

population of neural cells could advance tissue engineering research.

Research has been successful at generating high relative fractions of stem cells

that express neuronal markers and exhibit neuronal characteristics. Usually, a variety of

growth factors are used for differentiation studies, but it is also possible to use

microfluidic technology as well 97-104. However, this research must be expanded to

include a 3D environment to move closer to a therapeutically relevant tissue engineering

approach.

1.5.4 Undifferentiation

One field of active research is maintaining cells in an undifferentiated

environment. Various markers are used show that cells are undifferentiated including

nanog, Oct4, and SSEA4, which are transcription factors. However, these markers are

not always equally expressed even in undifferentiated and pluripotent cells. Therefore,

more accurate and specific markers would help researchers to better quantify each cell

population. Certain scaffolds have been produced including those prepared from

hyaluronic acid (HA) that can maintain cells in an undifferentiated environment 105
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Often, synthetic scaffolds are preferred because any many applications have a long term

clinical goal which would be complicated with animal derived products.

1.5.5 Applications ofstem cells for ALS

Stem cells have recently been used as an experimental approach to treat ALS.

Most of this research is still being conducted in an animal model, and there is no FDA-

approved treatment for ALS that utilizes stem cells at the present time. However,

research in animal models is advancing rapidly, and progress is being made. Stem cells

are currently being tested as both supportive and replacement therapies for ALS, meaning

they could either reduce the rate at which motor neurons lose motor function and support

recovery, or serve as a template for new neural connections 106. For example, recently

researchers have shown that stem cell grafts that were transplanted into rats grew axons

and synapsed with neighboring cells 107-112. However, this research does not demonstrate

that there will be an improvement in recovery in movement and motor neuron function.

It is also becoming more clear that stem cells function together with their

microenvironment and other cells in a highly dynamic process over the ALS disease

progression, and that understanding this microenvironment will be critical in developing

therapeutically relevant treatments 106, 13, 114. Therefore, researchers are utilizing growth

factors and cytokines to control stem cell fate and improve motor neuron function in

ALS, or genetically engineering stem cells to upregulate expression of these growth

factors 115s. It is most likely that a combination approach will be required for successful

therapy "5
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1.5.6 Hydrogels and scaffolds

It is well-established that differences exist between cells grown in

two dimensional (2D) culture and cells found in their native 3D environment,

where they are surrounded by other cells and held in a complex network of

extracellular matrix (ECM). In developing tissue, a unique 3D microenvironment

with specific mechanical properties is formed by the ECM and various regulators.

Cellular microenvironments in vivo are immobilized within tissue and are bound

to ECM proteins that control mechanical stiffness by both chemical and

biophysical cues. This matrix elasticity has been shown to direct stem cell lineage

differentiation. However, it is still not clear how hESC sense 3D matrix elasticity

and translate that into self renewal and tumor formation signals. It is therefore

desirable to study cell differentiation in conditions that closely resemble the

natural 3D microenvironment because these cell matrix interactions may more

accurately represent in vivo conditions.

Three-dimensional scaffolds can be used to provide for a template for cell

proliferation and differentiation. Certain scaffolds may more accurately mimic the native

chemical and mechanical microenvironment of stem cells 116-120. A number of natural

and synthetic biomaterials have been used as cell scaffolds or for cell encapsulation (i.e.

Matrigel, hyaluronic acid, collagen, dextran etc.). However, most scaffolds do not have

the range of mechanical properties observed in vivo, and they lose strength and integrity

as cells proliferate.

Bioelastomer materials may provide a flexible scaffold for the 3D culture of cells.

Poly(glycerol sebacate) (PGS) was developed and shown to be biocompatibile both in
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vitro and in vivo 121, 122. A recent modification to PGS incorporated acrylate groups into

the polymer backbone that allowed for photo-polymerization with well-defined and

tunable mechanical properties resembling those of native soft tissue. Additionally, PGSA

was shown to support the culture of neuroblastomas and human embryonic stem cells in

vitro, and to be highly biocompatible in vivo. These studies could lead to new therapeutic

options for neurodegenerative diseases including ALS.
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1.6.0 Overall goals

The overall goal of this thesis is to make a contribution to scientific research by

developing next generation methods to diagnose and treat ALS. To this end, we have

conducted a three prong approach: 1) using a gadolinium tetanus toxin C fragment (Gd-

TTC) conjugate as a biomarker and early diagnostic, 2) using a nanoparticle-based drug

delivery system to bypass the blood brain barrier, penetrate the central nervous system,

and selectively target neurons, and 3) using a combination of natural and synthetic

polymers and growth factors in a 3D scaffold to enable human embryonic stem cell

differentiation into neurons for tissue engineering applications. We feel that given our

multidisciplinary expertise, this approach was the most efficient way to lead to high

impact solutions in an established field of research. It is our expectation that our

contribution will give ideas to others in the fields of drug delivery and neurodegenerative

research.
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1.7.0 Format of this document

This thesis document begins with an introduction of topics that are pertinent to

our overall goals, and then is organized into chapters the follow the specific aims of this

thesis. Following research chapters is a section focusing on future work for the logical

next steps following this thesis, and then a list of appendices. The appendices are

organized in a way such that they follow the format of the thesis chapters. They contain

an appendix summary, supplemental data, results from early experiments, and alternative

analysis of data that was previously presented. It is our goal that these data will further

guide researchers in what experiments are successful, and what experiments will be high

risk.
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Chapter 2: Development of a gadolinium tetanus toxin C

fragment conjugate biomarker for in vivo MRI visualization of

axonal retrograde transport in an amyotrophic lateral sclerosis

mouse model

2.1.0 Abstract

Amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease) is a neurodegenerative

disease with ineffective treatments at stopping the disease progression. We have

developed a gadolinium tetanus toxin C fragment conjugate (Gd-TTC) that was shown to

be highly visible under MRI, as determined by relaxivity experiments, and preserved the

neuroblastoma cell binding properties of the native protein in vitro. Live animal and ex

vivo MRI imaging showed that Gd-TTC transport could be visualized in the lumbar

spinal cord following a hindlimb intramuscular injection in mice. Histological analysis

confirmed these observations and confirmed that Gd-TTC was localized in the ventral

horn of motor neurons in the lumbar spinal cord. H&E staining showed that Gd-TTC was

well tolerated and biodistribution studies showed that it remained in high concentrations

near the site of injection after 48 hours. The Gd-TTC was used to quantify reductions in

axonal retrograde transport efficiency in a transgenic mouse model for ALS over the

disease progression. We therefore conclude that the Gd-TTC conjugate may have

applications as a minimally-invasive biomarker for neurodegenerative disease including

ALS.
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2.2.0 Introduction

Amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease) is a degenerative

disease that affects motor neurons, causing progressive paralysis and death, typically

within 5 years. An estimated 30,000 patients in the US are diagnosed with ALS; about

5,000 new cases arise every year. Although progress is being made in understanding the

causes of the disease and in developing new treatments for ALS, there is still much work

to be done 25, 36, 123, 124. Only a single compound is FDA-approved for ALS, and its benefit

is marginal 125-127. A major challenge in treating ALS and other neurodegenerative

diseases is directly targeting the central nervous system (CNS), a compartment that is

difficult to penetrate because it is protected by the blood-brain barrier (BBB). Several

methods have been used to penetrate the BBB including physical disruption by osmotic

pressure, nanoparticles, and retrograde transport, but progress is still needed in this field

36, 81, 84

Retrograde transport from distal axon terminals to the neuronal cell body is an

essential process in neurons; it is used to transport enzymes, vesicles, and mitochondria,

and is exploited by viruses and bacterial pathogens as a route to intoxicate motor neurons

128-131. The mechanism of retrograde transport is not well understood but is known to

involve microtubules, dynactin and dynein. Additionally, retrograde transport can be

divided into fast and slow components. Fast retrograde transport (speed -400mm/day) is

specific to membrane bound organelles, whereas slow retrograde transport (-5mm/day) is

used to transport soluble proteins that are not membrane-bound. It is becoming well

established that retrograde axonal transport of substances from the periphery to motor
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neuron cell bodies can be used as an effective route to penetrate the CNS and bypass the

BBB.

One problem in ALS therapy trials is that the disorder is usually not diagnosed

until symptoms are advanced, precluding possible benefit from early intervention. A

major limitation in devising therapies for ALS and other disorders affecting motor

neurons is the absence of biomarkers that permit relatively rapid testing of drug efficacy.

In the absence of such biomarkers, the gold standard in ALS therapeutics is analysis of

survival; unfortunately, survival analyses are lengthy and expensive. Our knowledge of

ALS disease progression has formed the basis for several transgenic animal models that

are widely used in research laboratories in these studies. However, it is likely that

physiological parameters that reflect the disease process could also serve as surrogate

markers for the disease. This concept is exemplified in the muscle disorder polymyositis,

for which heightened blood levels of the skeletal muscle enzyme creatine kinase

accurately reflect the activity of the underlying muscle inflammation. To date, the only

physiological indicators of motor nerve function are electromyographic assessments of

the integrity of the motor unit. Regrettably, these measurements do not closely correlate

with the stage and activity of the disease. Confounding the situation in ALS, these

parameters, like the clinical presentation, do not become diagnostically useful until the

disease is well advanced. For these reasons, it is striking that in experimental models of

motor neuron disease, such as transgenic ALS mice, the process of axonal transport

appears to be significantly deranged early in the course of motor neuron disease. This

raises the possibility that techniques that allow one to non-invasively and accurately to

define rates of axonal transport in humans would greatly enhance the diagnosis of motor
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neuron diseases. Such methods would potentially serve as the desired biomarkers for

motor neuron dysfunction that would facilitate and accelerate drug testing.

One important element in our early studies has been the use of a non-toxic

fragment of tetanus toxin, known as tetanus toxin C fragment or TTC. TTC is the

neuronal binding portion of the native tetanus toxin. It demonstrates extremely high

affinity binding to the neuronal ganglioside GTlb that is the tetanus receptor. Because

GT1b is located selectively the surfaces of neurons, TTC shows highly selective neuronal

binding. Moreover, once it binds to neurons, TTC, like tetanus itself, is readily taken up

in endosomes and efficiently transported via retrograde transport from the distal axonal

terminus to the neuronal cell body. We and others have found that TTC binding and

transport in neurons is quantitative both in vitro and in vivo; TTC is routinely used in

experimental systems to provide quantitative assessment of retrograde axonal transport in

motor neurons. The overall goal of this study is to develop a minimally invasive

biomarker by conjugating gadolinium, a clinically used and highly MRI visible molecule,

to TTC and to evaluate this as a biomarker for ALS and other neurodegenerative

diseases.
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2.3.0 Methods

2.3.1 Synthesis of Gd-TTC and Gd-BSA: A gadolinium protein labeling kit (BioPAL;

Worcester, MA) was used to chemically conjugate gadolinium to TTC (Roche Applied

Science; Indianapolis, IN) and BSA (Sigma; St. Louis, MO), according to the

manufacturer's directions. Briefly, 4 mg protein was dissolved in 1.4mL 0.2M carbonate

buffer (pH 8.9, final protein concentration 2.86mg/mL). 393uL of IM sodium acetate

containing IM sodium hydroxide and 6.66uL IM GdCI3 were added in sequence to

7.3umol of an amine-reactive gadolinium chelate. The chelate was vortexed for

approximately 2 minutes and allowed to incubate for 5 minutes at RT. 100uL of the

subsequent chelate was incubated with 4mg of the protein under gentle stirring for 2

hours. Subsequent product was dialyzed with PBS for 2 hours (RT), 2 hours (RT), and

overnight (4'C) against a 10 kDa dialysis cassette (Pierce Biotechnology). Dialysis

medium was exchanged between each dialysis period. Protein was lyophilized and stored

at -20 0 C until use.

2.3.2 Protein characterization: Gadolinium conjugates were prepared as described above.

Protein samples (BSA, Gd-BSA, TTC, or Gd-TTC) were mixed 1:1 with a dilutent (95%

blue, 5% beta-mercaptanol) and heated for 5 minutes at 95C to denature the protein. 20uL

of protein samples and 10uL of the ladder standard were loaded into a 15% SDS gel

(COMPANY) in lx tris-glycine buffer. BSA and Gd-BSA protein concentrations were

20ug/mL, and TTC and Gd-TTC protein concentrations were 50ug/mL. The gel was run

for 55 minutes at 200V, stained in Coomassie blue solution for -3h, and then destained in

acetic acid solution overnight. Gels were photographed using a digital camera.
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2.3.3 Culture of N18-RE-105 neuroblastoma cells: N18-RE-105 neuroblastoma cells

were grown with previous methods as those previously described 85. Briefly,

neuroblastoma cells were cultured in DMEM and supplemented with HAT supplement

(100uM sodium hypoxanthine, 400nM aminopterin, 16uM thymidine), 10% FBS, and 1%

penicillin/streptomycin. All cells were grown in filtered flasks in an incubator at 95% air

and 5% carbon dioxide. Media was changed every 48 hours, and cells were passaged with

EDTA-trypsin when confluent. All media reagents were purchased from Invitrogen. N18-

RE-105 cells were a generous gift of Dr. Jonathan Francis at the Massachusetts General

Hospital.

2.3.4 Cell binding assay andflow cytometry: N18-RE-105 cells (106 cells/mL) were

removed from culture and incubated with Gd-BSA, TTC, or Gd-TTC (final protein

concentration 10ug/mL) in 500uL of media containing 10% FBS for 60 minutes on ice.

Cells were then incubated with a mouse monoclonal antibody against TTC (Roche

Applied Science, Indianapolis, IN) at 10ug/mL for 60 minutes on ice. Cells were then

incubated with a FITC-conjugated fluorescent anti-mouse secondary antibody with a 1:50

final dilution for 45 minutes on ice. Cells were washed with PBS containing 1% BSA 3x

by centrifugation (3 minutes, 4C, 1500rpm) in between each incubation and after the final

antibody incubation. Negative controls lacking protein, primary antibody, or secondary

antibody were conducted analogously to verify antibody specificity. Cells were analyzed

using a FACScan flow cytometer (Becton Dickinson) to measure fluorescence (488nm

excitation, 530nm and 650nm emission) as previously described. Briefly, cells were
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incubated with propidium iodide (5ug/mL), and cell populations were gated based on

forward/side scatter and propidium iodide fluorescence to remove debris and dead cells

from analysis. A total of at least 10,000 gated events were obtained for each sample. Data

was analyzed using FlowJo software (Tree Star) to generate histograms of each sample.

2.3.5 MRI relaxivity measurements: Gd-TTC and Gd-BSA dissolved in PBS with final

protein concentrations between 5mg/mL to 40ug/mL in 1:2 dilutions and placed in a 96

well plate. The signal intensity was determined at seven different inversion times for each

protein concentration that were determined to give linear range fits with signal intensity

(inversion times between 10 milliseconds and 10 seconds) using a Bruker NMR Minispec

(Billerica, MA) as previously described 45. Relaxivity values were determined using the

following equation: M, (TI) = M (1- e"" ; T = 1 / R,, where M(TI) represents the signal

intensity at each inversion time, Moo represents the signal intensity at high inversion

times, TI represents each inversion time, and R1 represents the signal relaxivity.

Relaxivity values were determined for each protein concentration using best-fit functions

in OriginLab software and plotted as a function of protein concentration (OriginLab,

Northhamption, MA). Each reported value represents the cumulative average of over

5,000 independent measurements.

2.3.6 MRI imaging qf Protein Contrast (1.5T): Gd-TTC and Gd-BSA were dissolved in

PBS at concentrations between 3mg/mL and 190uL/mL in 1:2 dilutions and placed in a

96-well plate. PBS was placed in all wells and in the space between wells to provide a

direct comparison in magnetic contrast and to minimize artifacts induced by the plate.
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Samples were pulsed with a 90-180-90 inversion recovery MRI protocol using a 1.5T

magnet with inversion times varied between 20-4000ms. Images were captured and

processed using ImageJ software (National Institutes of Health, Bethesda, MD) for

analysis.

2.3.7 Animal study approval and injections: All animal protocols were approved by the

SRAC committee on animal care at the Massachusetts General Hospital. Mice (8-16

weeks) were anesthetized with 130mg/kg ketamine and 10mg/kg xylazine via an

intraperitoneal injection. Mice were shaved and an incision was made exposing the right

quadriceps under aseptic conditions. Three 25uL injections containing Gd-TTC, Gd-

BSA, Eu-TTC, or Eu-BSA (20mg/mL) or a PBS negative control were made into the

muscle using a 26G Hamilton syringe (1.5mg protein injected). The wound was sutured

and the animal was allowed to recover.

2.3.8 9.4T MRI live animal imaging (in vivo): Animals were anesthetized under

isoflurane/N 20/0 2 (1.5-2% isoflurane) and restrained in a headholder at 38C using a

water blanket. A custom-made MRI surface coil was secured on the animal's back and

centered around the lumbar spinal cord region. Animals were placed in a 9.4T magnetic

field for imaging. Axial cross sections were taken of the animals at various echo times

(20-4000ms) and recovery times (5-50ms) using a standard 90-180-90 inversion recovery

MRI sequence, similar to those previously described . Section thickness ranged between

0.5-1.5mm, with a 2.5x2.5cm FOV, and resolution up to 256x256. Images were

processed using ImageJ software (National Institutes of Health, Bethesda, MD).
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2.3.9 Transcardial perfusion and spinal cord isolation: Animals were sacrificed using

CO 2 asphyxia. An incision was made opening the animal's sternum, and a 30G needle

was inserted into the left ventricle. The right atrium was cut, and the animal was perfused

with PBS until blood cleared. Perfusion medium was switched to 4% paraformaldehyde

solution and perfused for 15 minutes. The spinal cord was gently removed from the

vertebrate using forceps and blunt dissection, and cut into cervical, thoracic, and lumbar

sections. Tissue was fixated in 4% paraformaldehyde overnight. For

immunohistochemistry experiments, tissue was incubated in 10% sucrose for 12 hours,

and then in 30% sucrose solution for 12 hours, each overnight at 4C until sectioning.

Tissue for MRI ex vivo imaging and hematoxylin/eosion staining was stored in PBS until

imaging or mounting.

2.3.10 14T MRI spinal cord imaging (ex vivo): The spinal cord from Gd-TTC injected

mice was fixed as described above and placed in an NMR tube in non-magnetic Fluoro

solution. Axial cross sections were taken of the spinal cord at various echo times (20-

1000ms) and recovery times (5-50ms) using a standard 90-180-90 inversion recovery

MRI sequence, similar to those previously described . Section thickness ranged between

0.5-1.5mm, with a 2.5x2.5cm FOV, and resolution up to 256x256. Images were

processed using ImageJ software (National Institutes of Health, Bethesda, MD).

2.3.11 Hematoxylin and Eosion staining: Spinal cords of PBS, TTC, or Gd-TTC injected

mice were prepared as described above. Tissue was dehydrated in graded ethanol (70 -
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100%), embedded in paraffin, sectioned axially using a microtome (4um), and stained

with H&E.

2.3.12 Immunohistochemistry staining for TTC and NeuN: Mice injected with either TTC

or Gd-TTC were sacrificed 24-48 hours post injection. Samples were placed in Tissue-

Tek OCT gel (Sakura Finetechnical Co, Tokyo, Japan), frozen on dry ice, and stored at -

80'C till cryostat sectioning. Tissue was blocked and permeabilized in using PBS

containing 0.3% Triton-100 and 10% FBS for lh at RT. Tissue was incubated with rabbit

anti-TTC (1:1000, Rockland Immunochemicals; Gilbertsville, PA) and mouse anti-NeuN

(1:500, Chemicon; Billerica, MA) containing 0.1% Triton-100 and 10% FBS overnight at

4C. Tissue was washed in PBS 3x to remove unbound primary antibodies. Tissue was

incubated with Cy3 conjugated goat anti-rabbit (1:1000, Jackson Immunoresearch; West

Grove, PA) and FITC conjugated goat anti-mouse (1:100, Sigma; St. Louis, MO)

containing 0.1% Triton-100 and 10% FBS for 1.5 hours at RT. Tissue was washed 3x in

PBS to remove unbound secondary antibody. Tissue was mounted using Vectashield

fluorescent mounting medium containing DAPI (Vector Laboratories; Burlingame, CA)

and imaged using a Nikon E800 microscope.

2.3.13 Biodistribution (in vivo) and neutron irratiation analysis: Europium-conjugated

TTC and BSA were prepared analogously to preparation of gadolinium conjugated

described above, but using EuCl3 instead of GdC13 and a europium protein conjugation

kit from BioPAL (Worcester, MA). Mice were injected with Eu-TTC, Eu-BSA, or PBS.

Mice were sacrificed 48 hours post injection, and the following organs were harvested
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and weighed: spinal cord, blood, spleen, heart, lungs, liver, kidney, brain, injected

quadriceps, and uninjected quadriceps. Tissue was oven dried at 70C overnight and sent

to BioPAL (Worcester, MA) for neutron irradiation analysis and quantification of

europium content in each tissue using a short activation protocol. Briefly, tissue was

exposed to a field of thermal neutrons for one minute. Tissue was stored for 24 hours to

allow short-lived activation products to decay. Spectroscopic analysis was performed on

each sample and reported as disintegrations per minute (dpm) measured for europium.

Measurement normalization and corrections were made at BioPAL to account for inter-

radionuclide crossover and tracer decay during the counting period. Instruments were

calibrated to account for differences in sample volume and geometry. All sample analysis

was conducted within one week of the removal of tissue.

2.3.14 Image analysis and quantification: ImageJ (NIH, Bethesda, MD) and Matlab

(Mathworks; Natick, MA) were used for all image processing. A region of interest

corresponding to the ventral horn in the lumbar spinal cord was determined, and ImageJ

was used to determine pixel intensity over the entire region and automatically grouped

into 256 bins. Data was then inputted into Matlab and fit to a normal distribution using

built-in functions. Average distribution values for each corresponding side were analyzed

and, sorted into positive and negative sides, and expressed as a normalized ratio for each

set of wildtype or ALS animals.
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2.4.0 Results and Discussion

2.4.1 Conjugation ofgadolinium to TTC

We hypothesized that gadolinium could be conjugated to TTC to produce an MRI

contrast agent biomarker for axonal retrograde transport. We reasoned that gadolinium 1)

has high TI magnetic contrast properties, 2) is widely used clinically as an imaging agent,

and 3) is small in molecular weight relative to the size of TTC and is therefore expected

to minimally affect transport. Gadolinium was incubated with a functionalized chelate

and subsequently conjugated to primary amine groups on TTC and purified by dialysis

(see Figure la). Gadolinium was also conjugated to BSA and the resulting conjugate was

used as a control protein for all experiments, having both molecular weight and amino

acid composition similar to that of TTC.

To verify successful conjugation and to determine whether unconjugated protein

remained in each sample, we ran Gd-TTC and Gd-BSA against unconjugated controls on

an SDS page gel and processed samples with a Coomassie blue stain (see Figure ib).

Both Gd-TTC and Gd-BSA showed higher molecular weights and wider distributions

than the respective unconjugated TTC or BSA protein, suggesting successful chelate

conjugation. Based on molecular weight standards and neglecting any effect of the

chelate on protein mobility, the ratio of conjugated chelate to protein was estimated to be

7.1 for Gd-TTC and 5.6 for Gd-BSA. Additionally, bands corresponding to unconjugated

protein were absent in Gd-TTC and Gd-BSA samples, suggesting that gadolinium

conjugation was successful and products contained only trace unconjugated protein.

2.4.2 Characterization of Magnetic Relaxivity
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We characterized the MRI relaxivity properties of Gd-TTC and Gd-BSA, 1) to

determine the approximate number of gadolinium molecules that were conjugated to each

molecule of protein, and 2) to obtain relaxivity values that could be used in subsequent

studies to quantify rates and efficiency of retrograde transport in vivo. The magnetic

contrast of conjugates was verified by visual inspection using a Ti-weighted 1.5T MRI

sequence in a phantom 96-well plate containing 1:2 serial dilutions of Gd-TTC and Gd-

BSA (Figure Ic). In a separate experiment, preparations containing Gd-TTC and Gd-

BSA in various concentrations (39ug/mL - 5mg/mL in 2:1 serial dilutions) were analyzed

by a modified Bruker mini-spec auto NMR to determine conjugate relaxivity. For each

conjugate at each concentration, an inversion recovery sequence was run and signal

intensity was quantified to determine R1 (Figure Id-e). The R1 value was plotted as a

function of inversion time for each concentration and fit to a linear function to determine

the relaxivity of each contrast agent (Figure If). The relaxivity of Gd-TTC and Gd-BSA

were determined to be 0.029 uM-'s-1 and 0.051 uM 1-s 1 , respectively. Both Gd-TTC and

Gd-BSA exhibited similar behaviors and had linear relaxation times as a function of

concentration (R2 > 0.999), suggesting that there was minimal free gadolinium in the

solution remaining after dialysis purification.

2.4.3 Neuronal binding of Gd-TTC in vitro

Gadolinium conjugation could alter the ability of TTC to bind to neurons. We

incubated TTC, Gd-TTC, and Gd-BSA with N18-RE-105 neuroblastoma cells that are

known to express the GTIB ganglioside receptor for TTC on their surface. We incubated

each preparation with a primary antibody against TTC followed by a fluorescent
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secondary antibody, with appropriate washes in between the incubations. All incubations

were done on ice to minimize receptor internalization that may affect binding in

subsequent steps. Cells analyzed on flow cytometry showed high levels of fluorescence

for positive controls TTC and Gd-TTC, but not in Gd-BSA negative controls or

preparations lacking either a primary or secondary antibody (Figure lg-i). In some

preparations containing a secondary antibody, background fluorescence was observed;

however, this was almost two orders of magnitude lower than TTC or Gd-TTC samples,

and is expected to minimally contribute to the positive signal (Table 1). Interestingly, Gd-

TTC samples exhibited a dual peak, suggesting that protein conformation of Gd-TTC

may have been slightly affected by the conjugation. However, the overall in vitro cell

binding properties of TTC were preserved in the Gd-TTC conjugate.

2.4.4 Live animal 9.4T MRI imaging

Wildtype mice were injected with Gd-TTC unilaterally in the quadriceps and

allowed to recover for 24-48h prior to in vivo 7.4T MRI imaging of the spinal cord. T1-

weighted images of the lumbar section of the spinal cord showed areas of high magnetic

contrast that were concentrated on the injection side of the animal (Figure 2, top).

Contrast was observed in multiple spinal cord sections that were not adjacent, possibly a

result of discrete clusters of motor neurons originating from different areas within the

lumbar spinal cord. However, the localization of contrast was more central than was

expected given known neuroanatomy motor neuron innervation in the ventral horn. This

was observed consistently in several animals that were injected, and with different

preparations of contrast agent. Additionally, contrast intensity was variable in different
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animals suggesting that precise quantification of retrograde transport rates and efficiency

may be difficult using this approach. Independent T2-weighted imaging scans of non-

injected animals verified the interface of the white/gray matter, spinal cord, cerebral

spinal fluid, and vertebrae (data not shown). These imaging results taken together are

consistent with previously published studies of the mouse spinal cord in vivo and ex vivo

imaging132, 133. However, the precise localization of the contrast agent within the spinal

cord could not be determined because of visible motion artifacts (i.e. from animal

breathing) and we therefore turned to higher resolution imaging of the spinal cord of

excised mouse spinal cords.

2.4.5 Ex Vivo 14T MRI imaging (high resolution)

Spinal cords were excised from Gd-TTC injected animals and imaged ex vivo

using a 14T MRI to generate high resolution images that were free from fat or motion

artifacts. In a Ti-weighted MRI sequence, unilateral magnetic contrast was observed in

the ventral horn of the lumbar region (Figure 2, middle). Images from individual spinal

cord sections were processed by examining regions of similar magnetic contrast to further

investigate regions of high magnetic contrast intensity (Figure 2, bottom). Consistent

with previous observations, there was variability in the contrast intensity and localization

between the animals 47, 132. However, contrast was observed to be primarily localized

within expected regions, consistent with previous characterizations of TTC transport in

motor neurons .

2.4.6 Immunohistochemistry and Hematoxylin/Eosion Staining
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Spinal cords from Gd-TTC, TTC, or PBS unilaterally injected mice were fixed,

sectioned, and immunostained against TTC and NeuN to verify axonal retrograde

transport and further explore neuronal localization within the spinal cord. Spinal cord

sections showed unilateral positive staining for TTC concentrated in the ventral horn of

the lumbar region of the spinal cord (Figure 3). Furthermore, this was co-localized with

neuronal positive staining. Spinal cord sections from TTC and Gd-TTC injected mice

showed similar localization, intensity, and distribution. PBS or Gd-BSA injected animals

showed characteristic NeuN staining, but only background levels of TTC staining (data

not shown). These results suggest that axonal retrograde transport properties of TTC are

preserved in the Gd-TTC conjugate.

To determine whether any signs of acute inflammation were observed as a result

of the presence of the Gd-TTC conjugate, we sectioned and stained spinal cords with

hematoxylin and eosion. No differences were observed between injected animals (either

TTC or Gd-TTC) and PBS negative controls (Figure 4, top). These results suggest that an

injection of the Gd-TTC conjugate is well tolerated and biocompatible. This is consistent

with previous observations following the injection of TTC in rodents and the established

safety profile of gadolinium compounds used in the clinic 134-139

2.4.7 Biodistribution (in vivo)

We prepared europium conjugates to TTC and BSA to determine the in vivo

biodistribution of Gd-TTC relative to that of non-specific Gd-BSA. Eu-TTC and Eu-BSA

were prepared analogously to the gadolinium conjugates using the same amine-reactive

chelate. Both europium and gadolinium are lanthanide rare earth elements with similar
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molecular weights and are expected to attach to the chelate and subsequently the protein

in a stable non-reversible reaction. Therefore, the Eu-TTC biodistribution is expected to

resemble that of Gd-TTC. Europium can be neutron activated, generating unstable

radioactive byproducts that can be measured to quantify the amount of conjugate present

in tissue.

Adult mice were anesthetized and the quadriceps injected unilaterally with Eu-

TTC or Eu-BSA. Mice were sacrificed and the major organs removed 48 hours post

injection (spinal cord, blood, spleen, heart, lungs, liver, kidney, brain, injected

quadriceps, and uninjected quadriceps). Organs were processed, and analyzed using

neutron activation to determine semi-quantitative levels of Eu-TTC and Eu-BSA in each

organ (Figure 4, bottom). After 48 hours, the highest concentration of both Eu-TTC and

Eu-BSA were found in the quadriceps near the site of injection. These were not

significantly different from each other, but both were higher than their respective

uninjected quadriceps (p<0.01, n=4). Eu-TTC levels were found to be higher than Eu-

BSA in the kidney (p<0.001, n=4) and lower than Eu-BSA in the spleen (p<0.01, n=4),

lungs (p<0.05, n=4), and liver (p<0.01, n=4). This is likely a result of relative GTIB

ganglioside concentrations throughout the animal, which are known to be primarily

expressed in neurons but also expressed in other organs. We were not able to detect any

conjugate in either the brain or the spinal cord. This is likely because only a small amount

of the overall injected dose is transported to the central nervous system, or because the

neutron activation assay was not sensitive enough to detect the conjugate at the injected

levels. It is also possible that a different timepoint would yield detectable levels of the

contrast agent within the CNS. However, based on our previous work, we have seen high
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levels the native TTC protein at 24-48 hours. These results therefore suggest that only a

small amount of the overall injected dose reach the brain and spinal cord, but that this

amount can be detected both by MRI and by immunochemistry.

2.4.8 Gd-TTC as a Biomarkerfor ALS (in vivo)

We conducted proof-of-concept studies to test our hypothesis that the Gd-TTC

conjugate could be used as a minimally invasive biomarker for neurodegeneration,

utilizing a transgenic mouse model for amyotrophic lateral sclerosis. The G93A mouse

model that we used has been well-characterized and has a known disease progression that

resembles human ALS: 1) at 60 days, mice are visibly asymptomatic, 2) at 90 days,

symptoms including decreased muscle strength and mobility appear, and 3) at 120 days,

mice are highly immobile and have significantly impaired motor function 140-143

Transgenic ALS mice and wildtype controls were injected with Gd-TTC and sacrificed

48 hours post injection. Spinal cords were removed for 14T MRI spinal cord analysis,

and sectioned for immunohistochemistry staining of TTC on the same spinal cords. MRI

images of 60 day ALS animals showed similar magnetic contrast as wildtype controls

that was reduced in 120 day ALS animals (Figure 5, top left). Similar trends were

observed with immunohistochemistry staining for TTC (Figure 5, top right). Sections

taken from MRI images and immunohistochemistry staining from 90 day ALS animals

showed visibly similar intensity and localization as those from 60 day ALS and wildtype

mice (data not shown).

Images from injected animals (n=3-4 in each group) were analyzed using ImageJ

software to generate a histogram of known signal intensity in each lumbar horn and
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grouped into 256 bins of equal size. This data was then processed in Matlab to fit each

histogram to a normal distribution function, and the mean distribution value was used to

compare different samples. Data was sorted such that paired values were always

expressed as a ratio of the positive side to the negative side and expressed as a

normalized ratio. MRI images showed no differences between wildtype, 60 day ALS, and

90 day ALS mice, but a significant reduction in intensity for 120 day ALS mice

(p<0.001). Images processed from immunohistochemistry stains showed no difference

between wildtype and 60 day ALS mice, but a reduction in signal intensity for 90 day

ALS mice relative to wildtype (p<0.001) and reduced for 120 day ALS mice relative to

both wildtype and 60 day ALS mice (p<0.001). Normalized signal ratios were higher for

immunohistochemistry results than MRI, possibly a result of signal amplification during

primary and secondary antibody incubation. These results taken together suggest that

there are changes in axonal retrograde transport intensity that can be quantified

throughout ALS disease progression. It should also be noted that TTC is transported via

fast retrograde transport, which has previously been shown to not be impaired during

ALS disease progression. These data suggest that there may be differences in the

mechanism of transport for molecules that via fast axonal transport that remain unknown.
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2.5.0 Conclusions

We have developed a novel gadolinium tetanus toxin C fragment conjugate (Gd-

TTC) that was characterized by gel electrophoresis, MRI relaxivity, and in vitro cell

binding to N18-RE-105 neuroblastoma cells. Gd-TTC was retrogradely transported from

peripheral muscle to the spinal cord following a unilateral injection in mice as evidenced

by 9.4T live animal in vivo and 14T ex vivo MRI imaging and immunohistochemistry

staining for TTC and NeuN of the spinal cord. H&E staining and biodistribution studies

showed that Gd-TTC was well tolerated and bioavailable. We conducted a proof-of-

concept study and showed that the Gd-TTC conjugate could be used to quantify

differences in retrograde transport that were observed in the ALS transgenic mouse

model during the disease progression. The Gd-TTC conjugate could provide a biomarker

for neurodegeneration and make earlier diagnostics possible.
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2.7.0 Figures and Figure Legends
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2.7.1 Figure 1 - Synthesis and characterization of Gd-TTC: (a) Schematic of gadolinium

tetanus toxin C fragment contrast agent (not drawn to scale) showing stable amine site

conjugation. (b) Coomassie blue staining of Gd-TTC, TTC, Gd-BSA, and BSA with

protein standard after gel electrophoresis separation showing successful conjugation of a

pure product with a narrow size distribution. (c) Visual verification of magnetic contrast

of conjugates in a 96-well plate pulsed with a 90-180-90 inversion recovery MRI

protocol using a 1.5T magnet. Concentrations for each sample ranged from 3mg/mL to

190uL/mL in 1:2 dilutions. PBS was placed in wells around all samples to minimize

artifact from plate inhomogenities. (d-e) Magnetic relaxivity curves for Gd-TTC (d) and
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Gd-BSA (e) as measured using a modified NMR-Mouse. Concentrations for each sample

ranged from 5mg/mL to 40ug/mL in 1:2 dilutions. (f) Linear fit analysis for Gd-BSA

(black) and Gd-TTC (gray) for concentration dependent T1 values as determined for each

relaxivity value determined by the following equation: M () = M ( - e' ); = /

Linear behavior in both contrast agents indicates the absence of free gadolinium in

solution and successful conjugation. (g-i) Flow cytometry analysis of N18-RE-105

neuroblastoma cells after incubation on ice with TTC (g), Gd-TTC (h), and Gd-BSA (i)

and PBS (red), mouse monoclonal antibody against TTC (blue), secondary anti-mouse

fluorescent antibody (green), and monoclonal and secondary antibody (orange) with

appropriate washes, showing that gadolinium conjugation to TTC preserves

neuroblastoma binding.
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Figure 2
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2.7.2 Figure 2 -MRI imaging of Gd-TTC injected wildtype mice: (Top) Live animal

(anesthetized) in vivo imaging of a mouse spinal cord 24 hours following a unilateral

quadriceps injection of Gd-TTC showing regions of enhanced contrast. Images were

obtained using a 9.4T MRI and were the result of six averages scanned with Ti-weighted

scan with a TE of 1000ms, a TR of 14.8ms, Imm interslice average, a field of view of

1.4cm x 1.4cm, and a resolution of 256x256. (Middle, Bottom) Representative high

resolution (ex vivo) images of excised spinal cords removed from mice 48 hours

following a unilateral quadriceps injection of Gd-TTC. Images were obtained using a 14T

MRI and were the result of six averages scanned with a TE of 300ms, a TR of 3.4ms,

0.85mm interslice average, a field of view of 9.5mmx9.5mm, and a resolution of

256x256 (middle). (bottom) Images were processed using Matlab to highlight regions of
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equal magnetic contrast intensity for 10 isolines (left) and for 50 isolines (right) to show

relative localization and intensity of the contrast agent. Magnetic contrast is visible in the

ventral horn in the lumbar section of the spinal cord.
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2.7.3 Figure 3 - Immunohistological staining for TTC: Mice were injected unilaterally

with TTC or Gd-TTC and sacrificed 48 hours post injection. The lumbar spinal cord was

sectioned and stained for TTC (red), NeuN (green), and DAPI (blue). Images were

obtained at 4x magnification (top), 20x magnification (middle) and 40x magnification

(bottom) that were centered on each side of the ventral horn of the spinal. TTC stained

sections (left) show a high level of asymmetry between the right side and the left side of
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the spinal cord in both TTC and Gd-TTC. NeuN staining was similar between TTC and

Gd-TTC injected mice (middle). Merged images showed that TTC and NeuN positive

staining were co-localized suggesting specific neuronal uptake of Gd-TTC that exhibits

similar properties as TTC.
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2.7.4 Figure 4 - Haematoxylin and Eosin Staining and in vivo biodistribution: (Top)

Mice were injected with PBS, TTC, or Gd-TTC unilaterally and sacrificed 48 hours post

injection. Lumbar spinal cords were sectioned, stained with H&E, and imaged for PBS

(top), TTC (middle), and Gd-TTC (bottom), at 4x (left) and 20x (right) magnification. No

observable asymmetries between the right and left side, or between the each material

injected were observed, suggesting only mild acute inflammation at the spinal cord as a

result of the TTC or Gd-TTC conjugate injection and transport. (Bottom) Eu-TTC or Eu-

BSA were injected unilaterally and mice were sacrificed 48 hours post injection. Tissue

from the following tissue was removed, neutron activated, and analyzed for radiolabeled

product: spinal cord (SC), blood, spleen, heart, lungs, liver, kidney, brain, injected

quadriceps, and uninjected quadriceps. Eu-TTC (black) showed higher levels in the

kidney, and lower levels in the liver, spleen, and lungs. Neither Eu-TTC or Eu-BSA were

detectable in the spinal cord or brain, suggesting a small amount of overall injected dose

is transported to this tissue. A high level of agent remained at the site of injection

indicating prolonged opportunity for transport via motor neurons.
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Figure 5
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2.7.5 Figure 5 - Gd-TTC as a biomarker for retrograde transport in ALS mice: (Top left)

14T MRI images of 60 day and 120 day ALS mice 48 hours following a unilateral

quadriceps injection of Gd-TTC. A high concentration of Gd-TTC is observed on a single

side in the ventral horn at 60 days, with reduced contrast differences after 120 days. (Top

right) Mice were immunostained for TTC showing consistent observations and reduced

axonal retrograde transport in 120 day ALS animals. (Bottom) Both MRI (left) and

immunohistochemistry differences were quantified and expressed as a normal ratio of

positive:non-positive signal demonstrating differences in transport efficiency over the

ALS disease progression.
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Chapter 3: Tetanus toxin C fragment conjugated nanoparticles

for targeted drug delivery to neurons 85

3.1.0 Abstract

The use of nanoparticles for targeted drug delivery is often facilitated by specific

conjugation of functional targeting molecules to the nanoparticle surface. We compared

different biotin binding proteins (avidin, streptavidin, or neutravidin) as crosslinkers to

conjugate proteins to biodegradable nanoparticles prepared from PLGA-PEG-biotin

polymers. Avidin gave the highest levels of overall protein conjugation, whereas

neutravidin minimized protein non-specific binding to the polymer. The tetanus toxin C

fragment (TTC), which is efficiently retrogradely transported in neurons and binds to

neurons with high specificity and affinity, retained the ability to bind to neuroblastoma

cells following amine group modifications. TTC was conjugated to nanoparticles using

neutravidin, and the resulting nanoparticles were shown to selectively target

neuroblastoma cells in vitro. TTC-conjugated nanoparticles have the potential to serve as

drug delivery vehicles targeted to the central nervous system.
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3.2.0 Introduction

Biodegradable polymers, including polylactic acid (PLA) and poly(lactic-co-

glycolic acid) (PLGA), have been used to create nanoparticles and microparticles that

encapsulate a variety of therapeutic compounds over time with favorable safety profiles

69. Polyethylene glycol (PEG) reduces systemic clearance rates in vivo 76, and the

functionalization of polymer end groups and subsequent conjugation of targeting moieties

(proteins, aptamers, and peptides) permits local drug delivery and reduced systemic

toxicity 75. N-hydroxysuccinimide (NHS) and 1-Ethyl-3-(3-dimethylaminopropyl)-

carbodiimide (EDC) are commonly used for protein conjugation and can generate a stable

covalent bond. One problem when using this and other similar techniques is the presence

of intermediaries with short half lives, which may lead to inefficient conjugations. In

contrast, non-covalent interactions between biotin and its binding proteins (avidin,

streptavidin, and neutravidin) are highly specific and do not involve unstable

intermediaries. Biotin binding proteins have previously been used to conjugate proteins to

the surface of microparticles and nanoparticles 144-150

A major challenge in treating neurodegenerative diseases is directly delivering

therapies to neurons in the central nervous system (CNS). The CNS is difficult to

penetrate because it is protected by the blood-brain barrier (BBB) 151. Recently,

nanoparticles synthesized from poly(butylcyanoacrylate) with polysorbate 80 152, and in

separate experiments liposomes conjugated to the antibody to the transferrin receptor,

have been used to bypass the BBB 153

Retrograde transport from distal axon terminals to the neuronal cell body is an

essential process in neurons; it transports enzymes, vesicles, and mitochondria, and is
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exploited by viruses and bacterial pathogens as a route to intoxicate motor neurons 154. It

is apparent that retrograde axonal transport of substances from the periphery to motor

neuron cell bodies can effectively penetrate the CNS and bypass the BBB 36. Thus, it may

be possible to target nanoparticles to CNS neurons by exploiting retrograde neuronal

transport.

One important element in our early studies has been the use of a non-toxic

fragment of tetanus toxin, known as tetanus toxin C fragment or TTC 84. TTC is the

neuronal binding portion of the native tetanus toxin. TTC demonstrates extremely high

affinity binding to the neuronal ganglioside GTlb that is the tetanus receptor, which is

located selectively on the surfaces of neurons 155. Moreover, once TTC binds to neurons,

it is readily endocytosed and efficiently carried via retrograde transport from the distal

axonal terminus to the neuronal cell body 55, 156

In this report, we compare the ability of different biotin binding proteins (avidin,

streptavidin, and neutravidin) to specifically conjugate a protein to the surface of PLGA-

PEG-biotin nanoparticles. We describe the use of TTC conjugated PLGA-PEG-biotin

nanoparticles as a drug delivery system that selectively targets neuronal cells in vitro.

This system may have applications for delivering therapeutics to neurons affected by

neurodegenerative diseases and may allow retrograde transport delivery to the central

nervous system.

© 2008 Massachusetts Institute of Technology. All rights reserved.



3.3.0 Methods

3.3.1 Preparation ofPLGA-PEG-COOH: One gram of PLGA-COOH (20kDa MW,

Lactel Absorbable Polymers) was dissolved in 4mL dichloromethane and stirred at RT in

the presence of NHS (1:8 PLGA:NHS molar ratio) and EDC (1:8 PLGA:EDC molar

ratio) to form an amine reactive ester. Unreacted NHS and EDC were removed using a

solution containing 70% ethyl ether and 30% methanol. Trace solvents were removed

under vacuum for 2 hours. The polymer was re-dissolved in 5 mL chloroform and

incubated under gentle stirring overnight with HC1.NH2-PEG-COOH (3400MW, Nektar

Therapeutics) or NH2-PEG-Biotin (3400MW, Laysan Bio) (1:1.3 PLGA:PEG molar

ratio). N-Ethyldiisopropylamine (DIEA) was also added to the HC1.NH2-PEG-COOH

solution. The polymer was washed with methanol to remove unreacted PEG. The final

PLGA-PEG-COOH/Biotin product was recovered using ethyl ether, vacuum dried for 2h,

and stored at -20 0C until use.

3.3.2 NMR analysis: Polymer was dissolved in deuterated chloroform (5-10mg/mL) and

placed in a glass NMR tube. Polymer was analyzed on a Bruker Avance 400Mhz NMR

spectrometer using standard proton NMR to verify PEG conjugation to PLGA. Samples

were analyzed for the presence of any intermediary products and to quantify the extent of

conjugation.

3.2.3 Preparation of nanoparticles (nanoprecipitation): Ten milligrams of PLGA-PEG-

COOH or PLGA-PEG-biotin was dissolved in 1.5mL acetone, and fluorescent

nanoparticles were made by also adding 200ul of coumarin-6 (1mg/mL in acetone, Sigma
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Aldrich) 57. Nanoparticles made of different mixtures of -COOH and -Biotin polymers

were prepared in the same way, similarly to methods previously described 158. Five

aliquots of 0.3 mL of the polymer solution were continuously injected with a glass

syringe to each of five stirring vials of 0.9 mL deionized water to form nanoparticles.

The tip of the syringe was submerged during particle formation. The vials were pooled,

the acetone solvent was evaporated at RT for lh, and nanoparticles were briefly

centrifuged (2000rcf, 10 seconds) to remove any visible aggregates. Nanoparticles were

concentrated and washed to remove any remaining acetone in an Amicon Ultra-4,

100kDa centrifugal filter (Millipore). Particles were redissolved in a minimal volume of

water and stored at 40C until use.

3.3.4 Protein attachment to nanoparticles: Five hundred microliters of nanoparticle

solution (-20mg polymer/mL) was incubated with 2mL avidin (Invitrogen) solution

(2mg/mL) and gently stirred for 30 minutes at RT to allow avidin conjugation to the

nanoparticle. Neutravidin (Pierce Biotechnology) or streptavidin (Invitrogen) were used

analogously for experiments using these as the crosslinker. Nanoparticles were washed

and free biotin binding protein was removed by 3 centrifugal washes (4,000rcf, 25C, -10

minutes) in an Amicon filter. Nanoparticles were resuspended in 500uL of water, and

biotinylated bovine serum albumin (BSA) or TTC (2mg/mL in PBS) were incubated with

the nanoparticles at RT under gentle stirring. Product was washed 3 times with PBS by

centrifugation using an Amicon filter (4,000rcf, 25C, -20 minutes) to remove unbound

protein. Nanoparticles were resuspended in a minimal volume of PBS and stored at 40 C

until analysis. For all free biotin conjugation experiments, free biotin was mixed with

C 2008 Massachusetts Institute of Technology. All rights reserved.



biotinylated TTC in different concentrations, and conjugated analogously. All fluorescent

measurements were made on a 1420 VICTOR3 plate reader (Perkin Elmer) and read in a

96-well plate in triplicate.

3.3.5 Preparation ofBSA-FITC and TTC-FITC: Ten milligrams of BSA was dissolved in

PBS (10mg/mL) or lmg of TTC was dissolved in PBS (2mg/mL), and incubated with

EZ-Link NHS-FITC (Pierce Biotechnology) (1-24:1 FITC:protein molar ratio) under

gentle stirring for 2h at RT. Reacted product was collected using a Zeba Desalt Spin

Column (Pierce Biotechnology), according to manufacturer's directions.

3.3.6 Biotinylation ofBSA and TTC: Ten milligrams of BSA was dissolved in PBS

(10mg/mL) or lmg of TTC was dissolved in PBS (2mg/mL), and incubated with EZ-Link

NHS-PEG4-biotin (Pierce Biotechnology) under gentle stirring for 2h at RT. Reacted

product was collected using a Zeba Desalt Spin Column (Pierce Biotechnology),

according to manufacturer's directions. Biotinylated BSA was incubated at a ratio of 20:1

NHS-PEG 4-biotin:BSA and biotinylated TTC was incubated at a ratio of 10:1 NHS-

PEG4-biotin:TTC in all experiments unless otherwise noted.

3.3.7 Biotinylation quantification: The extent of BSA and TTC biotinylation was

determined using a HABA-biotin quantification assay (Pierce Biotechnology), according

to manufacturer's directions. Briefly, the absorbance of the HABA-avidin solution was

measured at 500nm. 100uL of biotinylated BSA or TTC was then added to 900ul of the

HABA-avidin solution, and the absorbance at 500nm measured again. The molar
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concentration of biotin was calculated from the difference in absorbance after adding

biotinylated BSA, using a HABA-avidin extinction coefficient of 34,000 M-lcm-1 159. The

extinction coefficient for TTC was calculated by measuring the absorbance at 280nm of a

solution of biotinylated TTC whose concentration was measured by a micro BCA assay

(Pierce Biotechnology). The absorbance at 280nm was confirmed to be linearly

dependent on concentration using a series of TTC dilutions. The molar concentrations of

biotinylated BSA and TTC were determined by measuring the absorbance of the protein

solution at 280nm, and calculated using an extinction coefficient of 43,824 M-l cm'- for

BSA and the empirically derived extinction coefficient for TTC. The average number of

biotins conjugated to BSA and TTC was calculated as the ratio of biotin concentration to

biotinylated BSA/TTC concentration. All absorbance measurements were made on a

SpectraMax Plus 384 spectrometer (Molecular Devices) and read in a cuvette in

triplicate.

3.3.8 Nanoparticle characterization and schematic: Nanoparticle size and zeta potential

properties were characterized using a ZetaPALS dynamic light scattering instrument

(Brookhaven Instruments Corporation) as previously described 158. 3D schematics of the

nanoparticle and conjugation system were created using CN3D (NCBI) and 3ds Max

(Autodesk) software.

3.3.9 Flow cytometry: Cells were analyzed using a FACScan flow cytometer (Becton

Dickinson) to measure fluorescence (488nm excitation, 530nm and 650nm emission).

Cells were incubated with propidium iodide (5ug/mL), and cell populations were gated
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based on forward/side scatter and propidium iodide fluorescence to remove debris and

dead cells from analysis. A total of at least 10,000 gated events were obtained for each

sample. Data was analyzed using FlowJo software (Tree Star) to generate histograms of

each sample.

3.3.10 Cell culture: N18-RE-105 neuroblastoma, b.End3 brain endothelial, and HepG2

liver cells were grown with previous methods as those previously described 160-162

Briefly, neuroblastoma cells were cultured in DMEM and supplemented with HAT

supplement (100uM sodium hypoxanthine, 400nM aminopterin, 16uM thymidine), 10%

FBS, and 1% penicillin/streptomycin. HepG2 and b.End3 cells were grown in MEM and

DMEM, respectively, containing 10% FBS and 1% penicillin/streptomycin. All cells

were grown in filtered flasks in an incubator at 95% air and 5% carbon dioxide. Media

was changed every 48 hours, and cells were passaged with EDTA-trypsin when

confluent. All media reagents were purchased from Invitrogen. HepG2 and b.End3 cells

were purchased from ATCC, and N18-RE-105 cells were a generous gift of Dr. Jonathan

Francis at the Massachusetts General Hospital.

3.3.11 Statistics: An ANOVA analysis was conducted for all multiple point analysis, and

a Student's t-test was used for all statistical analysis between two groups, unless

otherwise indicated. A p-value less than 0.05 was considered significant. Results are

expressed as mean + SD unless otherwise indicated.
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3.4.0 Results and Discussion

3.4.1 Biotin binding proteins.for nanoparticle conjugation

We used biotin binding proteins to conjugate targeting molecules to the surface of

biodegradable nanoparticles for drug delivery (Figure la). The conjugation method uses

biotin-functionalized PLGA-PEG polymers and biotin binding proteins (avidin,

streptavidin, and neutravidin) as crosslinkers for conjugation (Figure ib) 163-165. This

system has the advantage of conjugating a targeting ligand to the surface of the

nanoparticle using highly specific biotin interactions. This may therefore have advantages

over other conjugation chemistries that do not distinguish between functional groups that

may be present on both the targeting ligand and the encapsulated therapeutic (e.g.

primary amines, thiols). Moreover, this system amplifies available protein conjugation

sites, because each biotin binding protein has four biotin binding sites, and avoids

unstable chemical intermediaries present in other protein conjugation reactions. The

bonds formed by the biotin interactions are highly stable, and the system can be

universally applied to conjugate other targeting molecules with accessible primary amine

groups.

3.4.2 NMR characterization

We prepared PLGA-PEG-biotin polymers by a one step synthesis conducted in

anhydrous organic solvents. Proton NMR revealed characteristic peaks of PLGA at 1.5

ppm, 4.8 ppm and 5.2 ppm in all PLGA dissolved polymer samples (Figure Ic-f). Peaks

were observed at 3.6 ppm in PLGA-PEG-COOH and PLGA-PEG-biotin, corresponding
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to the PEG chain (Figure 1 e-f). Using the integration of the relative molecular weights

and peaks, the conjugation efficiency of NH2-PEG-COOH and NH2-PEG-Biotin to

PLGA-COOH was estimated to be approximately 35%. NMR peaks in some samples

were detected at 1.2 ppm and 3.4 ppm and identified as residual diethyl ether (Figures id,

e, f). Biotin peaks following conjugation were not easily detected, presumably because

the relative biotin signal was masked by the signal from the polymer chain, even when a

lower MW PLGA polymer was used (-20kDa). This has previously been observed in

NMR analysis of high molecular weight polymer chains with end-group conjugation 146

3.4.3 Protein conjugation to nanoparticles

To show that biotin was functional and present on the surface of the nanoparticles,

we synthesized nanoparticles using a solvent/non-solvent nanoprecipitation method and

incubated them with avidin-FITC, followed by centrifugal washes. Nanoparticles were

made using either PLGA-PEG-COOH or PLGA-PEG-biotin polymers. Nanoparticles

formed from either a carboxyl or biotin end group that were not incubated with avidin-

FITC showed baseline fluorescence levels in a fluorescent plate reader, whereas

nanoparticles incubated with avidin-FITC had significantly higher binding with biotin-

functionalized polymer than carboxylic acid controls (Figure 2a, n=5-6, p<0.01).

Subsequent washes reduced but did not eliminate the amount of binding of the avidin-

FITC to the PLGA-PEG-COOH, indicating a small amount of non-specific binding,

likely a result of electrostatic interactions between the negatively charged polymer and

positively charged avidin.
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The previous experiments documented that one can conjugate avidin to the

surface of a nanoparticle via biotin end-groups. We next tested the possibility that avidin

could be used to attach a protein to the nanoparticle. We first conjugated biotin to BSA or

TTC in different molar ratios (1:1, 3:1, and 10:1, biotin:protein) and quantified the final

number of moles of biotin per mole of protein using a HABA-avidin assay. An

empirically derived extinction coefficient of 75,550 M-l cm- was used for TTC. As

predicted, incubation of protein with higher concentrations of NHS-PEG4-biotin led to

higher overall biotinylation (Figure 2b, ANOVA, p<0.01, n=3). At 10:1 conjugation

ratios, TTC showed higher levels of biotinylation than BSA (p<0.01). We therefore used

a higher 20:1 molar ratio of NHS-PEG 4-biotin:BSA and quantified the extent of

biotinylation. BSA showed slightly higher but not significant biotinylation for 20:1 than

for 10:1 ratios (2.2+0.10 vs. 2.0+0.03, ns). For all subsequent experiments, we used

protein that was conjugated with a 10:1 biotin:TTC ratio and a 20:1 biotin:BSA ratio.

We then used nonfluorescent avidin and biotinylated BSA-FITC (b-BSA-FITC)

to evaluate whether PLGA-PEG-biotin+avidin could be used to conjugate protein to

nanoparticles. We incubated nanoparticles with avidin, followed by three washes, and

subsequently with biotinylated BSA-FITC followed by three washes (Figure 2c).

Nanoparticles prepared from PLGA-PEG-biotin and subsequently incubated with avidin

and biotinylated BSA-FITC gave significantly higher fluorescence than negative controls

made from PLGA-PEG-COOH polymers or preparations without avidin (Figure 2d,

ANOVA, p<0.01, n=6). This suggests that functional biotin is present on the nanoparticle

surface, and that this could be used for protein conjugation. This system could be used as
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an alternative to NHS/EDC conjugations to avoid unstable intermediaries throughout the

conjugation process.

3.4.4 Comparison of different biotin binding proteins

In the previous experiments, some nonspecific binding of avidin-FITC (Figure 2a)

and biotin-BSA-FITC (Figure 2d) to the nanoparticle was observed. We predicted that

streptavidin (negatively charged) or neutravidin (an uncharged avidin derivative) may

reduce non-specific interactions and binding to the nanoparticle. We added each of these

three biotin binding proteins to either PLGA-PEG-COOH or PLGA-PEG-biotin

nanoparticles. Biotinylated BSA-FITC was added to nanoparticle preparations after

washing out unbound biotin binding protein. The mean fluorescence was measured on

independent preparations in triplicate using a fluorescence plate reader (Figure 2e).

Nanoparticles with different biotin binding proteins showed various levels of protein

binding (ANOVA, p<0.01, n=3-6). As predicted, avidin resulted in high levels of overall

protein conjugation to PLGA-PEG-biotin nanoparticles, significantly higher than

streptavidin (p<0.01) and neutravidin (p<0.05). Streptavidin and neutravidin fluorescence

values were not significantly different. Neutravidin led to relatively high levels of protein

conjugation but had lower overall non-specific binding to the nanoparticles than avidin

(p<0.01). Surprisingly, streptavidin led to non-specific binding to the nanoparticles and

observable nanoparticle aggregation (visual observations). These data suggest that avidin

has the advantage of generating high levels of conjugated (both specific and non-specific)

protein on nanoparticles, whereas neutravidin leads to highly specific protein conjugation

to nanoparticles. Neutravidin was used for all subsequent experiments.
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3.4.5 Protein functionality and specificity

TTC in its native form binds with high affinity and specificity to neurons. To test

whether conjugation of small molecules to TTC using NHS chemistry affects TTC

protein functionality, we conjugated FITC to TTC using NHS-FITC (1:1, 8:1, and 24:1

FITC:protein molar ratios), and incubated the fluorescent protein with N 18-RE- 105

neuroblastoma cells, which are known to express the ganglioside (GTIB) receptor for

TTC. BSA-FITC prepared analogously to TTC-FITC and matched in fluorescence and

concentration to TTC-FITC was used as a negative control. In all binding ratios, TTC

selectively bound to neuroblastoma cells, whereas BSA did not (Figure 3a-c). The higher

binding of BSA at higher fluorescent ratios may be a result of unbound NHS-FITC that

was not removed during protein purification. The double peak observed in TTC binding

may be a result of a heterogenous cell population that is observed by light microscopy

(visual observations). These data demonstrate that TTC preserves its ability to bind to

neurons following amine conjugation.

3.4.6 Nanoparticle aggregation

In the above paradigm, each nanoparticle binds multiple biotin-binding proteins.

Moreover, each neutravidin molecule has four biotin binding sites. For this reason,

nanoparticle cross-linking was sometimes observed in these experiments 166, 167. At least

two factors determine the propensity toward aggregation: the ratio of free neutravidin to

biotin on the nanoparticle surface in the first conjugation step, and the ratio of

biotinylated protein to nanoparticle-bound neutravidin in the second conjugation step.
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Therefore, we used two approaches to reduce aggregation. The first was to reduce the

available numbers of biotin molecules on the nanoparticle surface by creating particles

with various mixtures of PLGA-PEG-COOH and PLGA-PEG-biotin in increasing

COOH:biotin molar ratios. Nanoparticles prepared from PLGA-PEG-biotin polymers

show maximal aggregation at intermediate biotinylated TTC concentrations (<10 uM),

whereas increasing the PLGA-PEG-COOH molar ratio reduced aggregation at each

protein concentration (Figure 3d). Aggregation was not fully eliminated even at very low

PLGA-PEG-biotin concentrations, likely a result of some neutravidin non-specific

binding to the nanoparticle surface. The second approach we have used to reduce

aggregation is to competitively bind free biotin to neutravidin binding sites during the

biotin-TTC conjugation step. Increasing free biotin reduced aggregation and eliminated

aggregation at high free biotin concentrations (Figure 3e). We again note that increasing

concentrations of biotin-TTC also reduced but did not eliminate aggregation. For

subsequent experiments, we used 1.6uM free biotin and added TTC in excess of this

amount to reduce nanoparticle size, while ensuring that TTC was bound to the

nanoparticle surface.

3.4.7 In vitro cell specificity

We tested the ability of TTC to serve as a targeting protein for specific

nanoparticle delivery to neurons. We prepared PLGA-PEG-biotin nanoparticles

encapsulating fluorescent coumarin-6 and conjugated TTC to their surface.

Neuroblastoma cells were incubated with these nanoparticles as well as negative controls

(without both neutravidin and TTC, without TTC, without neutravidin, and with BSA
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instead of TTC). Cells were analyzed using flow cytometry and shown to be significantly

more fluorescent with TTC conjugated nanoparticles than any negative control (Figure

4a). Hep G2 liver (Figure 4b) or b.End3 endothelial cells (Figure 4c) were incubated with

TTC-conjugated or BSA-conjugated (negative control) nanoparticles. Both specific and

non-specific uptake ratios are summarized on Table 1. Non-specific binding or uptake

was observed in all cell types, which is consistent with previous cell targeting studies

using different ligands 168-170. This is possibly due to background levels of fluorescent

nanoparticles that remain after cell washes. Although non-specific binding was observed,

non-specific delivery of nanoparticles delivering therapeutic agents alone may not be

sufficient for efficacy, necessitating targeted delivery that may increase uptake by

specific cell types. The benefit of PEG is most clear in previous studies during in vivo

studies where PEG has been shown to increase nanoparticle half life by reducing

systemic clearance rates 171. TTC-conjugated nanoparticles showed high selectivity for

neuroblastoma cells, indicating that TTC-conjugated nanoparticles may be useful for

selective targeting of neurons. Because of the native properties of TTC, these

nanoparticles may allow for retrograde transport and provide a drug delivery system to

specifically target neurons.

3.4.8 Characterization of nanoparticles

Nanoparticle properties were characterized using dynamic light scattering (DLS)

to give size, polydispersity, and zeta potential in each preparation (see Table 2). PLGA-

PEG-COOH nanoparticles were not significantly different than PLGA-PEG-biotin

nanoparticles in size, but were more negative in zeta potential (n=3, p<0.05), presumably
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due to fewer COOH groups in biotin-conjugated nanoparticles. Nanoparticles showed a

slight increase in size upon addition of neutravidin, and the addition of the biotinylated

protein further increased the size of the nanoparticles.

3.5.0 Conclusions

We developed nanoparticles from PLGA-PEG-biotin polymers and used biotin

binding proteins (avidin, streptavidin, or neutravidin) as crosslinkers for protein

conjugation. The tetanus toxin C fragment was modified and conjugated to nanoparticles,

allowing targeted binding to neuroblastoma cells, while not targeting liver or endothelial

cells.
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3.7.0 Tables and Figures
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7.1 Figure 1: Protein conjugation to nanoparticles using biotin binding proteins.

Conceptual schematic (not to scale) illustrating (a) the cross-section of a biodegradable

polymer nanoparticle that is functionalized with the tetanus toxin C fragment (TTC) and

presumed to encapsulate a therapeutic substance, and (b) the conjugation system used to

attach functional TTC to the nanoparticle utilizing PLGA-PEG-biotin functionalized

biodegradable polymer, and biotinylated TTC with an avidin cross-linker, based on

previously published structures 163-165. Two of the four avidin subunits are shown for

illustrative purposes. Proton NMR spectra of (c) PLGA-COOH, (d) PLGA-biotin, (e)

PLGA-PEG-COOH, and (f) PLGA-PEG-biotin polymers dissolved in deuterated
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chloroform. Characteristic peaks are visible for PLGA (*) and PEG (#), but not for

conjugated biotin.
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3.7.2 Figure 2: Protein conjugation to PLGA-PEG-biotin nanoparticles. (a) PLGA-PEG-

COOH (-) and PLGA-PEG-biotin (+) nanoparticles incubated with the presence (+) or

absence (-) of avidin-FITC and analyzed on a fluorescent plate reader. (b) Quantified

extent of biotinylation for BSA (white) and TTC (gray) proteins for different NHS-PEG 4-

biotin:protein molar ratios. (c) Schematic representation of overall protein conjugation to

PLGA-PEG-COOH or PLGA-PEG-biotin polymer nanoparticles (as indicated). Avidin

(Step 1) and biotinylated BSA-FITC (Step 2) were conjugated in sequence to the

nanoparticle surface, with PBS washes to remove unbound protein at each step. (d)
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PLGA-PEG-COOH (-) and PLGA-PEG-biotin (+) nanoparticles incubated with the

presence (+) or absence (-) of avidin, subsequently incubated with biotinylated BSA-

FITC (b-BSA-FITC) and analyzed on a fluorescent plate reader showing selective protein

conjugation to nanoparticles. (e) Comparison of biotin binding proteins (BBP) as

crosslinkers for protein conjugation to nanoparticles. Data is expressed as mean + SEM.

PLGA-PEG-COOH (white, gray) and PLGA-PEG-biotin (black) nanoparticles were

prepared and incubated with avidin (left), streptavidin (middle), or neutravidin (right),

and subsequently with biotinylated BSA-FITC. Avidin showed the highest overall protein

conjugation, whereas neutravidin resulted in reduced non-specific interaction and the

most specific protein conjugation.
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3.7.3 Figure 3: TTC protein functionality and nanoparticle size optimization. Flow

cytometry analysis of N18-RE-105 neuroblastoma cells incubated with fluorescent TTC
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(green), fluorescent BSA (blue), or PBS control (red), for NHS-FITC:protein conjugation

ratios of 1:1 (a), 8:1 (b), and 24:1 (c). TTC remained functional following amine

conjugation and preserved its ability to target neurons (a-c). Dynamic light scattering

analysis of nanoparticle size following conjugation with neutravidin and biotinylated

TTC (d-e). (d) Nanoparticles prepared with different molar ratios of PLGA-PEG-COOH

to PLGA-PEG-biotin as indicated (control is 100% PLGA-PEG-Biotin), and (e) free

biotin competition with TTC-biotin conjugation to nanoparticles at different

concentrations of free biotin as indicated; control is without free biotin. These figures

show that nanoparticle aggregation can be reduced by decreasing the number of biotins

on the nanoparticle surface (d) or by free biotin competition during conjugation of the

biotinylated protein (e). For all sizing experiments, results are expressed as mean±SD of

3 independent size measurements of one preparation of nanoparticles.

Figure 4

a

- EF'5

"6,

b c
Hep G2

Liver

40)

10 !01 102 j03 104 FIuorIeonro (2rhfn LuniS) Fluorec nCnoe (wb'tr2ynult)

FIuorrocnce (arbitrary unts)

3.7.4 Figure 4: In vitro cell binding of TTC-conjugated nanoparticles. Flow cytometry

analysis of N18-RE-105 neuroblastoma cells (a), HepG2 liver (b), and b.End3 endothelial

(c), cells following incubation with TTC-conjugated nanoparticles (green), BSA-

conjugated nanoparticles (blue), or a PBS negative control (red). Other negative controls
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are shown for (a) for nanoparticles without neutravidin (purple), without TTC (orange),

and blank nanoparticles (black), demonstrating that TTC-conjugated nanoparticles

selectively target neurons.
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Table 1

Non-Specific
Uptake ratio
(BSA/PBS)
Specific Uptake
Ratio (TTC/PBS)

N18-RE-105
Neuroblastoma

2.76

25.50

Hep G2 Liver

4.31

4.87

b.End3 Endothelial

4.99

6.83

3.7.5 Table 1: Nanoparticle binding to cells. Summary of figure 4 flow cytometry

analysis for N 18-RE-105 neuroblastoma, HepG2, and b.End3 cells incubated with TTC

or BSA conjugated fluorescent nanoparticles and PBS (negative control). The specific

(TTC) and non-specific (BSA) uptake ratios show the fluorescence ratio of conjugated

nanoparticles to PBS treated negative controls. Results are expressed as mean

fluorescence of each gated live cell population. Each sample represents an analysis of at

least 10,000 live gated cells.
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Table 2

PLGA-PEG-COOH
PLGA-PEG-biotin
PLGA-PEG-
biotin+NA
PLGA-PEG-
biotin+NA+BSA
PLGA-PEG-
biotin+NA+TTC+free
biotin

Mean Size (nm)

135.7(1.1)
111.1(1.8)
144.1(2.4)

175.3(2.3)

255.2(6.3)

Zeta Potential (mV)

-32.07(3.19)
-23.28(1.17)
-0.497(0.402)

-3.37(3.86)

-5.85(5.00)

Polydispersity
Index

0.137(0.023)
0.227(0.006)
0.198(0.012)

0.226(0.012)

0.219(0.007)

3.7.6 Table 2: Nanoparticle characterization. Size, charge zeta potential, and

polydispersity index for each nanoparticle preparation indicated as determined by

dynamic light scattering. Results are expressed as mean (SD) for 3 size and zeta potential

measurements.
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Chapter 4: A porous photocurable elastomer for cell

encapsulation and culture 172

4.1.0 Abstract

Tissue engineering utilizing stem cells has the potential to provide new therapeutics for

amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease). Encapsulating cells within

a polymer matrix creates a three-dimensional (3D) scaffold that may more accurately

represent the native microenvironment and cell organization and may support neuronal

culture. Here we report a porous scaffold prepared from a photocurable elastomer,

poly(glycerol-co-sebacate)-acrylate (PGSA). The scaffold porosity, swelling, mass loss,

toxicity and mechanical properties, suggest that porous PGSA could be used to support

the growth and differentiation of encapsulated cells. Neuroblastoma (NB) and human

embryonic stem cells (hESCs) were encapsulated into the matrix and found to adhere to

the material and interact with each other within 24 hours. After 7 days, encapsulated NB

cells were found to grow, and form matrix fibrils and tissue. Undifferentiated hESCs

proliferated and differentiated in the PGSA scaffold. In vivo experiments showed that

both porous scaffolds have similar biocompatibility profiles as non-porous PGSA, but

porous PGSA promotes tissue ingrowth, as compared to non-porous PGSA. We therefore

propose that porous PGSA scaffolds can provide a logistical template for 3D growth of

cells and tissue engineering.
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4.2.0 Introduction

Tissue engineering of neurons may lead to more effective treatments for

amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease). This could be

accomplished either ex vivo or in vivo, the later of which would require that the cell

microenvironment support neuronal growth and proliferation. It is well-established that

differences exist between cells grown in two dimensional (2D) culture and cells found in

their native 3D environment, where cells interact with each other and the extracellular

matrix (ECM) to form tissue. These interactions lead to well established differences in

cell signaling, gene expression, and cellular organization 173-176. Furthermore, it is

increasingly accepted that physical cues play a role in cell growth and tissue assembly 177,

178. These signals are important in stem cells (SCs) during self renewal, proliferation, and

differentiation.

Stem cells have great potential both as a source of cellular tissue for regenerative

medicine and for investigating fundamental concepts in developmental biology 179, 180

Three-dimensional scaffolds can be used to provide a structural and logistic template for

SC attachment, growth and differentiation. These may more accurately mimic some

aspects of both chemical and physical signals and the native local microenvironment of

SCs 116, 181, 182

Various methods have been used to culture cells in a 3D environment, including

seeding or encapsulating cells into biomaterials. Scaffolds prepared from biodegradable

polymers (e.g. PLGA) are commonly used for cell seeding, but cell density throughout

the matrix may not be uniform and may affect cell fate and differentiation 117-120

Encapsulating cells within a biodegradable scaffold may lead to a more uniform cell
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distribution '83. Hydrogels are highly hydrated matrices prepared from either natural or

synthetic material networks that are widely used for embedding cells in a 3D

environment 184. In many applications, it is desirable to use scaffold prepared from

polymers with material properties that resemble those of the native ECM, a soft, tough,

and elastomeric network that provides mechanical stability and structural integrity to

cells.

Bioelastomer materials may provide a flexible scaffold for 3D culture of cells 185

In our previous studies, poly(glycerol sebacate) (PGS) was developed and shown to be

biocompatibile both in vitro and in vivo 121, 122. A recent modification to PGS

incorporated acrylate groups into the polymer backbone that allowed for photo-

polymerization while preserving the elastic and biocompatibility properties of PGS 186

Photopolymerization has been used as a means to encapsulate and support both mature

cells and human embryonic stem cells (hESC) 87-'191'. This modified elastomer,

poly(glycerol-co-sebacate)-acrylate (PGSA), polymerizes to form a uniform scaffold.

However, the density and hydrophobicity of the material, which lacks pores, does not

allow for rapid diffusion of media and therefore may not be well suited for cell

encapsulation. We hypothesized that porous PGSA could be used for cell encapsulation

and culture within an elastic scaffold.

C 2008 Massachusetts Institute of Technology. All rights reserved.



4.3.0 Methods

4.3.1 Cell culture and media: hESCs. Two NIH-registered hESC cell lines were used for

all studies (H9 and H13, WiCell Research Institute, Madison, WI; p19-30). Human ESCs

were grown on an inactivated mouse embryonic fibroblast (MEF) feeder layer in growth

medium (80% KnockOut DMEM, supplemented with 20% KnockOut Serum

Replacement, 4 ng/ml basic Fibroblast Growth Factor, 1 mM L-glutamine, 0.1 mM 3-

mercaptoethanol, 1% non-essential amino acids). Human ESCs were passaged every 4-6

days using lmg/ml type IV collagenase for 20-30 minutes. Neuroblastoma cells. N18-

RE-105 neuroblastoma cells were grown in DMEM supplemented with HAT supplement,

10% FBS, penicillin and streptomycin. Media was changed every 48 hours, and cells

were passaged with EDTA-trypsin for 5-7 minutes every 3-5 days when confluent.

Embryoid body (EB) media. Encapsulated hESCs were cultured with in EB media (80%

DMEM, supplemented with 20% defined FBS, 1 mM L-glutamine, 0.1 mM 3-

mercaptoethanol, 1% non-essential amino acids). All media components and reagents for

both hESCs and neuroblastoma culture were purchased from Invitrogen Corporation

(Carlsbad, CA), except for defined FBS, which was purchased from Hyclone (Logan,

UT).

4.3.2 Synthesis ofPGSA: All reagent were purchased from Sigma-Aldrich (St. Louis,

MO), PGS and PGSA were prepared as previously described 121, 186. Briefly, 20g PGS

pre-polymer was incubated in a round-bottom flask with 200 mL anhydrous

dichloromethane and 20mg 4-(dimethylamino)-pyridine (DMAP). The flask was cooled
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to 0 oC under positive N2 pressure. (0.34* 78 mmol) Acryloyl chloride and equimolar

triethylamine (0.32 mol per mol of hydroxyl groups on the PGS pre-polymer) were

slowly added to the flask and stirred for 24 h at RT. The resulting PGSA polymer was

dissolved in ethyl acetate, precipitated with ethanol, vacuum oven dried at 45 OC, and

stored at -20C until use.

4.3.3 Formation ofporous PGSA scaffolds: PGSA scaffolds were prepared by mixing the

PGSA pre-polymer with 0.1% photoinitiator (2,2-dimethoxy-2-phenyl-acetophenone,

wt%) and polymerized using a ultraviolet light (10 mW/cm 2, model 100AP , Black-Ray )

at RT for 10 minutes. To form PGSA15 and PGSA35 scaffolds, 15 and 35% glycerol

(wt%) was mixed with the PGSA pre-polymer containing photoinitiator and polymerized

analogously. Polymerization for all scaffolds occurred under sterile conditions using a

custom mold. Cylindrical scaffolds containing 25uL of pre-polymer were prepared for

both in vitro (3mm in diameter, 2mm thick) and in vivo (8mm in diameter, Imm thick)

experiments.

4.3.4 In vitro swelling and material loss: PGSA samples with 15% and 35% glycerol

(wt%) were weighed and incubated in media at 37 0 C. At time intervals between 1-35

days, the samples were removed from media, blotted, and weighed to record the wet

weight. The samples were then oven dried for five days at 600C and weighed to record

the dry weight. Swelling ratios were determined by the following formula:

SRt=(Wt/Dt)/(Wto/Dto), where SRt is the normalized swelling ratio at time = t, W, is the

weight of the scaffold at time = t, Wto is the initial weight of the scaffolds at t = 0, Dto is
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the dry weight of the scaffolds at t = 0,and Dt is the dry weight of the scaffold at time = t.

Mass loss was determining by the following formula: Mt=(Dt/It)/(Dto/Ito), where Mt

represents the normalized mass of the scaffold at time = t, It represents the initial dry

weight of the scaffolds at time =t, Io represents the initial dry weight of the scaffolds at

time =0, and Do and Dt and Wt represent the same as stated above. Results were

normalized to the average initial wet weight and the individual scaffold dry weight (for

swelling ratios) or the average initial dry weight and individual scaffold wet weight (for

mass loss) at each timepoint.

4.3.5 Mechanical tests: Tensile tests were conducted on dog-bone-shaped polymer strips

cut from photocured PGSA15 and PGSA35 sheets (test section dimensions roughly

10mm x 3.5mm x 1.2mm, n= 5 per composition) and were tested using an Instron 5542

according to ASTM standard D412-98a. All mechanical testing was performed under wet

conditions, specifically the photocured PGSA samples were incubated in PBS for 24 h

prior to testing. The samples were elongated at a constant deflection rate of 10 mm/min

and were all elongated to failure. Stress-strain properties were determined using

engineering stress and strain and the tensile modulus was calculated from the initial slope

(0-20%). The compressive modulus of the PGSA15, PGSA35, and swollen HA hydrogels

(2%, 50kDa) 192 was determined using parallel plate grips on the same Instron 5542 at a

constant deflection rate of 500 um/min. Samples for mechanical testing (n= 5 per

composition) were cylindrical (-1.5 mm height, -6.0 mm diameter) and were compressed

until failure or until 60% of the initial thickness was reached. None of the PGSA15 or

PGSA35 samples failed before reaching the maximum loading limit of the 50N load cell
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employed in all tests. The compressive modulus was determined as the initial slope of the

stress-strain curve (0-20% strain).

4.3.6 In vitro toxicity: Cell proliferation was detected the XTT kit (Sigma, St. Louis MO)

according to the manufacturer's instructions. Briefly, undifferentiated hESCs cultured in

the presence of PGSA macromer with glycerol (15% and 35%) and were incubated for 4

h in medium containing 20% (v/v) XTT solution. For analysis, 150 [l of the medium

were removed, placed in a 96-plate well and read in a microplate reader at 450 nm.

Encapsulation of hESCs and neuroblastomas into PSGA. For encapsulation studies, cells

were removed from culture by incubation with collagenase (hESCs) or with trypsin

(neuroblastomas). Approximately 3-6 x 106 hESCs or NBs were mixed with 50 gL PGSA

prepolymer (15% or 35% glycerol) and photocured as describe above. The crosslinked

polymers were immediately placed in 2mls EB media (for hESCs) or NB media (for NB

cells). Scaffolds with encapsulated cells were kept in culture for 1-7 days, and media was

changed daily.

4.3.7 Environmental Scanning Electron Microscope (ESEM): FEI/Phillips XL-30 Field

Emission ESEM was used to evaluate PGSA porosity, cell organization, and cell-material

interaction. Samples of PGSA (with or without cells) were removed from culture, fixed

with Accustain (Sigma-Aldrich, St. Louis, MO), and washed with PBS. Scaffolds were

cut horizontally cut in half and placed with inner side facing up on the ESEM platform.

ESEM images were taken with a beam intensity of between 5-30.0 keV at 0.4 Torr with

the gaseous secondary electron (GSE) detectors.
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4.3.8 Porosity analysis: Porosity of PGSA scaffolds was determined using ESEM images

and histological sections of scaffolds using the built-in area selection tool of ImageJ

software (NIH, Bethesda, MD). A total of 2 scaffolds and at least 10 images were

analyzed from two different scaffold preparations. The size of each pore and total number

of pores were determined for each image analyzed. The total percent porosity was

determined the ratio of the total pore area to the total scaffold area in each image.

4.3.9 In vivo biocompatibility: PGSA, PGSA15, and PGSA35 scaffolds (all without cells)

were prepared under sterile conditions and incubated in PBS for 48hrs. Female Lewis rats

(n=8) (Charles River Laboratories, Wilmington, MA) weighing 200-250 g were housed

in groups of 2 and had access to water and food ad libitum. Animals were cared for

according to the approved protocols of the Committee on Animal Care of the

Massachusetts Institute of Technology in conformity with the NIH guidelines for the care

and use of laboratory animals (NIH publication #85-23, revised 1985). The animals were

anaesthetized using continuous 2% isoflurane/O2 inhalation. Two rats per group per time

point received implants. This was done by three small midline incisions on the dorsum of

the rat and the implants were introduced in lateral subcutaneous pockets created by blunt

dissection. All animals remained in good general health throughout the study as assessed

by their weight gain. At each predetermined time point (1,3,5, and 7 weeks), one

randomly selected group of rats (n=2) was sacrificed, and the implanted scaffolds were

removed en bloc with the surrounding tissue (--15x5mm). The samples were fixed and

processed for histology as described below.
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4.3.10 Histology: PGSA scaffolds from both in vitro (with and without cells) and in vivo

(without cells) experiments were placed in Tissue-Tek OCT gel (Sakura Finetechnical

Co, Tokyo, JPN), frozen on dry ice, and stored at -800C till cryostat sectioning.

Sequential sections (8-15 jm) were stained with hematoxliyn and eosine (H&E).

Separate scaffolds from in vivo experiments were fixed with Accustain (Sigma-Aldrich,

St. Louis, MO) for 24hrs, dehydrated in graded ethanol (70 - 100%), embedded in

paraffin, sectioned using a microtome (4um), and stained with H&E.

4.3.11 Immunofluorescence. Cryosections were thawed and fixed with acetone for 5min

at room temperature. After blocking with 5% FBS, cells were stained with one of the

following primary antibodies: anti-cytokeratin 18 (1:50; Chemicon, Temecula, CA), anti-

a-feto protein (1:100; Dako Dako California Inc. Carpinteria, CA), and Brachyury

(1:100; R&D systems, Minneapolis,.MN). Cells were then rinsed three times with PBS

(Invitrogen corporation, Carlsbad, CA) and incubated for 30 min with suitable FITC-

conjugated (R&D systems, Minneapolis, MN) or Cy3-conjugated (Sigma, St Louis, MO)

secondary antibodies. Secondary antibody alone served as controls. The immuno-labeled

cells were examined using fluorescence microscopy (Zeiss, Germany).

4.3.12 Inflammatory response and in-growth characterization. The size of the

inflammatory active zone of implanted scaffolds was measured in histological sections

using the built-in calibration/length tool in AxioVision software (Zeiss, Oberkochen,

Germany). A total of 30 measurements (over 10 histological slices) were taken for each
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scaffold. Additionally, the number of in-growths was determined for each implanted

scaffold by counting pores with positive H+E staining and grouped by their size, small

(<50um) and large (>50um), at each timepoint. Results are presented as the average ± SD

for the (n=4).

4.3.13 Statistics: One-tailed student's t-tests with unequal variances were performed to

determine statistical significance, where appropriate (Microsoft Excel, Redmond, WA).

Parametric one-way and two-way ANOVA tests were also performed where appropriate

(GraphPad Prism 4.02, GraphPad Software, San Diego, CA). Significance levels were set

at: *p < 0.05, **p < 0.01, and ***p < 0.001. All results shown are mean±SD.
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4.4.0 Results

4.4.1 Characterization of PGSA scaffold porosity

We hypothesized that glycerol could be used during the PGSA polymerization

process to develop a porous scaffold. We reasoned that glycerol (utilized as a

cryoprotectant additive) is expected to be minimally toxic to cells, and is viscous, thus

minimizing material separation during polymerization. Glycerol was added in 15%

(PGSA15) and 35% (PGSA35) mass ratios with pre-polymer containing photoinitiator,

and polymerized using ultraviolet light under sterile conditions. Glycerol concentrations

higher than 35% did not form scaffolds that were structurally stable (visual observations;

data not shown). We used environmental scanning electron microscopy (ESEM) and light

microscopy of cryosectioned scaffolds to characterize the ultrastructure. Scaffolds

prepared from both 15% and 35% glycerol resulted in pore formation across the entire

scaffold. Macropores (>50m; Fig la-b) with interconnecting pores (20-5.0m; Fig 1)

were observed in both scaffolds, whereas micropores (<2.0Qm) were found in greater

number in PGSA35 scaffolds (Fig 1). The average macropore size were similar for both

scaffolds, whereas the total pore number was greater for PGSA35 scaffolds (Table 1;

*p<0.05). The total porosity (determined from macropores) was slightly higher in

PGSA15 scaffolds (Table 1; ***p<0.001).

4.4.2 Swelling and mass loss properties

To evaluate PGSA/glycerol scaffolds as a system for in vitro cell culture, we

studied their swelling and mass loss properties. PGSA/glycerol scaffolds were prepared
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as before and incubated in PBS for 1-35 days at 370 C. Both PGSA15 and PGSA35

swelled within 24 hours to 206±18.9% and 140±4.20% of their respective initial weights

(mean±SD, Figure 2A). The swelling ratios in both scaffolds showed a biphasic hydration

that peaked at 6 days, followed by decreasing swelling ratios in each scaffold (Figure

2A). These data are consistent with mass loss over 35 days that was observed for

PGSA15 (18.1±1.5%) and PGSA35 (27.5±4.9%) scaffolds (Fig 2B), and with previous

experiments that showed slow in vitro degradation rates of PGSA 186

4.4.3 Mechanical property characterization

To examine the mechanical properties of porous PGSA, we conducted a series of

tensile and compressive tests. Tensile test showed that stress-strain properties of both

PGSA15 and PGSA35 retained similar elastic behaviour to those of PGSA 186 (Fig 2C).

The ultimate strain for PGSA15 was similar to that of PGSA (Table 2), whereas the

ultimate strain for PGSA35 was significantly greater than either PGSA or PGSA15

(Table 2; **p< 0.01). The Young's modulus for PGSA15 was significantly greater than

for the value for PGSA35 (Table 2; *p< 0.05), while both were lower than that for PGSA

(Table 2). The ultimate stresses of the PGSA15 and PGSA35 were similar; however, both

values were less than the ultimate stress of PGSA (Table 2).

4.4.4 Toxicity

Previous studies have demonstrated that polymerized PGS and PGSA are

biocompatible and support the growth and proliferation of cells 12, 122186. Because the

photocuring process may lead to unpolymerized PGSA, we evaluated the effects of
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unpolymerized PGSA and glycerol on the toxicity of cells. We used hESCs for these

experiments because they are particularly susceptible to harmful culture conditions 193.

Human ESCs were cultured on a MEF feeder layer with 50 pl/ml PGSA15 and PGSA35,

concentrations simulating conditions in which none of the material polymerized. Human

ESCs formed characteristic colonies of proliferating cells in all culture conditions (Fig 3).

Comparison of the cell metabolism by an XTT assay showed that cell proliferation rates

were slightly reduced by PGSA15 and PGSA35 but not significantly different than

control conditions (Fig 3).

4.4.5 N18-RE-105 cell encapsulation and culture (in vitro)

We evaluated the ability of PGSA15 and PGSA35 scaffolds to encapsulate N18-

RE-105 neuroblastoma (NB) cells. NB cells were encapsulated by photopolymerization

in PGSA15 and PGSA35 scaffolds and grown in culture media for 1-7 days. After 1 day

in culture, ESEM analysis revealed that NB cells adhered to the scaffold wall (mainly

within macropores) and formed protrusions and apparent interconnections between each

other (Figure 4A-C). After 7 days, NB cells produced fibrils which coated entire pores,

suggesting that cells were producing components of the extracellular matrix on the PGSA

material (Fig 4D). NB cells continued to grow while forming 3D aggregates and were

found in both smaller interconnecting pores and macropores (Fig 4E-F). NB cells were

supported similarly in both PGSA15 and PGSA35 scaffolds, and no qualitative or

quantitative differences were observed between the scaffolds.
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4.4.6 Human embryonic stem cell encapsulation (in vitro)

To test whether PGSA scaffolds would support the culture of human embryonic

stem cell (hESCs), we encapsulated undifferentiated hESCs into scaffolds using an

analogous protocol used for the NB cell experiments. After 1 day in both PGSA15 and

PGSA35 scaffolds, hESCs were found to be organized in colonies primarily within the

PGSA macropores (Figure 4G-I). After 7 days, were found in interconnecting pores (Fig

4J), while forming tissue-like sheets that covered the entire scaffold (Fig 4K). Thick

histological sections revealed aggregates with various cell morphologies within the pores

(Fig 4L). Similarly to the NB cultures, no differences could be quantified between cells

grown in PGSA15 and PGSA35 scaffolds

4.4.7 Human ESC proliferation and differentiation (in vitro)

Histology sectioning showed that hESCs encapsulated in PGSA15 and PGSA35

scaffolds for 7 days are at a higher cell density then was observed after 1 day of culture,

suggesting that PGSA supports cell proliferation (data not shown). To further investigate

this, hESCs encapsulated into PGSA15 and PGSA35 scaffolds for 7 days were stained for

the Ki67 protein, which is expressed in proliferating differentiated cells 194. The majority

of encapsulated hESCs were observed to express Ki67 after 7 days in culture (Fig 5A-C).

We further found cells that were representative of all three germ layers in the

encapsulated differentiated hESCs (Fig 5D-F), suggesting that structures similar to EBs

were forming within the scaffold.
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4.4.8 Biocompatibility (in vivo)

To investigate the biocompatibility of porous scaffolds made from PGSA and

glycerol, we prepared PGSA15 and PGSA35 scaffolds without cells and implanted them

subcutaneously in rats for 1-7 weeks. The thickness of the inflammatory active zone was

quantified in each scaffold at four time points. Notably, there was an acute inflammatory

response in the PGSA35 scaffolds that was not present in the PGSA15 scaffolds, as

determined by the thickness of the active zone and the presence of characteristic signs of

inflammation throughout the muscle (Fig 6A). The elevated inflammatory response in the

PGSA35 scaffold that was observed at week 1 was not observed at later time points (Fig

6B). The active zone showed a decreasing inflammatory response for both PGSA15 and

PGSA35 scaffolds over a 7 week period, as was previously reported for PLGA and PGS

implants (Fig 6C;). The PGSA15 inflammatory response at all time points was similar to

that previously reported for PLGA and PGS 121, which are known to be highly

biocompatible.

4.4.9 Scaffold ingrowth (in vivo)

We examined whether an increase in porosity from glycerol in PGSA scaffolds

would promote the formation of tissue ingrowth in vivo. We observed that I week after

subcutaneous implantation, some ingrowth could be detected in both the PGSA15 and

PGSA35 scaffolds (Fig 7A), and ingrowth increased over 7 weeks post implantation (Fig

7B). The ingrowth was absent in the non-porous PGSA scaffolds made without glycerol.

The ingrowths in the PGSA15 and PGSA35 scaffolds were observed both at the

boundary of the scaffold and the surrounding tissue and within the scaffold pores (Fig
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7C). In contrast to the non-porous scaffolds (without glycerol), increasing glycerol mass

percentage was associated with an increase in both small ingrowth (Fig 7D), and large

ingrowth (Fig 7E), over time. These data suggest that porous PGSA promotes scaffold

ingrowth and could be used to support growth for tissue engineering applications.

4.5.0 Discussion

The modified elastomer, PGSA, polymerizes under physiological conditions and

allows the encapsulation of proteins and cells. Glycerol was chosen as a cell carrier due

to its: (1) common usage as a cell and tissue carrier for cryopreservation 195, and (2)

minimal reactivity with PGSA that may result in dispersed phase separation. Our results

show that mixing glycerol (15% or 35% (w/w)) with PGSA resulted in porous scaffolds.

Macropores (>50p.m) with interconnecting pores (20-50gtm) were observed in both

scaffolds, whereas micropores (<2Qtm) were found in greater number in PGSA35

scaffolds. The addition of porosity had a substantial effect on the mechanical properties

of PGSA, which is to be expected as increased porosity causes a decrease of load bearing

material per volume, however these changes in porosity did not cause a decrease in

ultimate strain. A softer substrate and the ability to tune the mechanical properties within

a given range could be advantageous as cell differentiation was shown to be affected by

substrate stiffness 196. The toxicity effects of unpolymerized PGSA/glycerol were found

to be minimal and most likely were magnified because unpolymerized material would

normally be removed during media changes. Overall, we reasoned that either the

PGSA15 or the PGSA35 scaffolds could be used to encapsulate and support the growth

of cells in 3D culture.
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Our laboratory and others have used methylacrylated and acrylated pre-polymer

in combination with photopolymerization to encapsulate cells in hydrogels and have

shown minimal effects of the UV light on cell viability, p53 accumulation, and gene

aberrations over long term culture 116, 89. NB cells were chosen because, like PGS, PGSA

has possible applications as a material that may promote nerve guidance 197. NB cells

encapsulated in PGSA proliferated and formed structures resembling neuronal like

spheres after one week in culture. Furthermore, after one week of encapsulation, the

surface of the PGSA was covered with ECM fibers suggesting that the NB cells created

their own 3D microenvironments by secretion of ECM. To examine the usage of PGSA

with hESCs, undifferentiated hESC colonies were encapsulated and cultured for one

week. Human ESCs proliferated and formed aggregates that resembled embryoid body

like structures within the pores, which contained representative cell types of all three

germ layers. Altogether, these results suggest that porous PGSA elastic scaffolds offer a

biocompatible scaffold with tuneable mechanical properties.

Examining the porous PGSA biocompatibility in vivo it was found that high levels

of glycerol (35%) resulted in acute inflammatory reaction which was decreased to basal

levels similar to PGSAl5 and PGSA '86 In growth into both PGSA15 and PGSA35 was

observed already after I week, which increased with time of transplantation. These

results suggest that porous PGSA promotes integration with the host circulation and

tissue, and therefore may be utilized for tissue engineering applications.
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4.6.0 Conclusions

We have utilized glycerol to create porous PGSA scaffolds, which were found to

maintain elastomeric mechanical properties, and defined porosity, swelling, mass loss,

and biocompatibility characteristics. Porous PGSA scaffolds were used to encapsulate

and support the growth of N18-RE-105 neuroblastoma and hESCs in vitro. Porous PGSA

scaffolds were biocompatible in vivo and allow host tissue ingrowth This data suggests

that bioelastic porous PGSA scaffolds could be used as an alternative to hydrogel culture

in vitro or as a scaffold for tissue engineering applications in vivo.
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4.8.0 Table and Figure Captions

0L I

4.8.1 Figure 1: Porous PGSA. ESEM images of PGSA15 and PGSA35 scaffolds at low

(left panels) and high (middle panels) magnification, showing the presence of macropores

(>50um) and interconnecting pores (20-50um, asterisks). Light microscopy images of

cryostat sectioned scaffolds (right panels) showing the presence of micropores (<20 tm

throughout the PGSA35 but not in the PGSA15 scaffolds.
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4.8.2 Figure 2: Swelling, mass loss, and mechanical characterization. (A) Normalized

swelling ratios and (B) normalized mass loss during in vitro incubation for 1-35 days, and

(C) Average tensile stress-strain properties of PGSA 15 (light) and PGSA35 (dark)

scaffolds.
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4.8.3 Figure 3: Toxicity ofPGSA monomer and glycerol. Light microscopy images of

undifferentiated hESCs grown on MEF feeder layers in the absence (control), or in the

presence of 50uL/mL PGSA pre-polymer (PGSA15 and PGSA35). Characteristic hESC

colonies are observed under all conditions. Arrows indicate PGSA and glycerol in media.

Cell proliferation graph quantified by an XTT cell proliferation assay showing slightly

reduced but not significantly different cell activity in PGSA 15 and PGSA35 conditions,

as compared to cells grown in control conditions. Scale bars=100tm.
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4.8.4 Figure 4: Cell encapsulation within Porous PGSA. ESEM and H&E staining

micrograhs showing encapsulated Ni 8-RE- 105 NB cells (A) after 1 day of culture found

primarily within macropores, (B) mainly located on the pore walls (indicated by arrows),

while (C) forming cellular interconnections among neighboring cells. After 7 days,

ESEM images showed that NB cells (D) produced fibrous components which coated

entire pores, (E) formed 3D aggregates and (F) bonds among cells within the aggregates.

Undifferentiated hESC colonies encapsulated in porous PGSA and cultured for 1 day

were also observed to (G-I) settle within the macropores. After 7 days, hESCs (J,K)

formed tissue like structures covering most of the scaffold pores, and (L) were organized

in 3D structures containing cells with various morphologies.

© 2008 Massachusetts Institute of Technology. All rights reserved.
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4.8.5 Figure 5: Differentiated hESCs. Immunofluorescent staining of hESCs

encapsulated in porous PGSA and cultured for 7 days further revealed proliferating cells

positive for Ki67 in (A) low and (B-C) high magnification. Differentiated hESCs were

found to express early markers of the three germ layers: (D) brachury (mesoderm), (E)

cytokeratin 18 (ectoderm), and (F) a-Feto protein (endoderm). Scale bars A,D-F=50pm;

B-C- 10 m.
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4.8.6 Figure 6: In vivo Biocompatibility. Porous PGSA scaffolds were transplanted S.C in

rats. (A) After 1 week PGSA35 (i,ii) showed a thicker inflammatory zone surrounding

the scaffolds than PGSA15 (iii,iv). Inflammation in the muscle (arrowheads) was found

in PGSA35 scaffolds only. (B) After 3 weeks, the PGSA35 inflammatory zone was

reduced to comparable levels for PGSA 15. (C) Inflammatory zones of both scaffolds

were reduced along the 7-week experiment (p<0.001). Scale bar=-100tm.
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4.8.7 Figure 7: In vivo ingrowth. PGSA, PGSA 15, and PGSA35 scaffolds were

transplanted subcutaneously in rats. (A) H&E stained histological slices of explants

revealed tissue ingrowth in porous scaffolds after 1 week that were not observed in the

nonporous scaffolds (no glycerol), and (B) continued to persist in porous scaffolds with

almost no growth in the nonporous scaffolds (no glycerol). All boxes in upper panel are

shown at higher magnification in lower panels. (C) Different types of ingrowth could be

observed in implants including at the boundary of the scaffold and the surrounding tissue

(right) and within the scaffold pores (left). Presence of glycerol was found to be

associated with an increase in both (D) small and (E) large ingrowth. Scale bars= 100pm.
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Average Macropore
Size (um)

Pore Number
(# per mm2)

Porosity
(% volume)

PGSA15 86.8±23.2 0.44+0.10 18.1±2.10**
PGSA35 85.3+23.7 12.4+2.27 17.2±0.36

4.8.8 Table 1: Pore Characterization. Porosity properties of PGSA scaffold was

quantified from ESEM images analyses. Porosity was determined for macropores

(>50um) only by ESEM . Values shown are mean+SD.

Table 2
Ultimate strain (%) Young's modulus Ultimate stress

(kPa) (kPa)
PGSA15 57.0 ± 4.1% 59.9 ± 8.4 27.8 + 3.6
PGSA35 81.3 + 13%' 42.3 ± 5.0 30.3 ± 2.6
PGSA 186 60.1 5.7% 568 ± 220 270 ± 32

4.8.9 Table 2: Mechanical properties of porous PGSA. Mechanical properties as

determined from stress-strain relationships for PGSA15 and PGSA35 (n = 5 for each

condition) and values for PGSA as determined previously for comparison 86. Values

shown are mean±SD.

Table 3

PGSA15
PGSA35

IHA

Compression
modulus (kPa)
119 65"
80.2 + 28
34.1 + 10.6"

Stress at <60%
Strain (kPa)
266 ± 93
232 ± 71
144 . 89[a]

4.8.10 Table 3: Compressive properties ofporous PGSA. Mechanical properties as

determined from stress-strain relationships for PGSA15, PGSA35 and HA hydrogels (n =

5 for each condition). [a] Stress at failure. Values shown are mean±SD.

© 2008 Massachusetts Institute of Technology. All rights reserved.
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Chapter 5: Future Directions

5.1.0 ALS biomarkers

We have shown that Gd-TTC can be used to quantify differences in axonal

retrograde transport. It is clear that a functional measure of transport would help

clinicians to both diagnose and to monitor the progression and any recovery of ALS;

however, this there is still much work that must be done before there is widespread use of

a new biomarker for ALS. Specifically, we must characterize and optimize the dose and

transport timecourse of the contrast agent. A thorough imaging study must be conducted

that quantifies this rate, and to correlate differences that are observed with

immunohistochemistry staining. Ideally, serial sectioning would be used in parallel with

high resolution in vivo and ex vivo imaging to correlate differences observed and to

determine the cluster of motor neurons for positive transport. These studies would

provide insight into the mechanism of transport reduction that was observed in late stage

ALS transgenic animals: a decrease in overall efficiency (i.e. rate) of transport, or a

decrease in maximal transport rates.

New MRI imaging sequences could also improve quantification of transport rates

by reducing noise. Gating on animal breathing could reduce motion artifacts, but would

prolong the overall scan time. MRI coils that were specifically designed for spinal cord

images would also enhance signal to noise over the standard surface coils that were used

for these studies. Additionally, using iron in place of gadolinium as a contrast agent

could enhance the overall signal, but would introduce additional complications that

would need to be overcome and optimized in any subsequent study.
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Any biomarker for ALS would need to be extensively validated in larger animal

models for both efficacy and toxicity. These studies that were shown to be successful in

mice would likely be conducted in rats, including ALS transgenic rat models, before

moving into non-human primate models. Primate models would not include ALS

animals, but would provide toxicity studies that would be required before moving into

healthy humans and humans with ALS. However, our goal of developing a biomarker for

ALS retrograde transport remains unchanged.

5.2.0 Drug delivery to the CNS

Our goal of developing a drug delivery system that penetrates the CNS with high

efficiency and selectively targeted neurons in vivo remains largely unrealized. This could

be for a variety of reasons, including that nanoparticle size was too large, the use of TTC

as a carrier molecule was ineffective, and that there was a technical reason for failure (i.e.

radiolabeled molecules dissociated from the polymer nanoparticles). To address these

issues, a series of experiments could be designed. Reducing nanoparticle size has proven

difficult for a number of researchers, but progress is being made. Initial nanoparticle size

is largely determined by solvent and non-solvent combinations, and the size of

nanoparticles can easily reach 80nm or less. However, once protein is conjugated to the

nanoparticle, aggregation becomes a problem. This problem can be alleviated but not

eliminated by conducting the precipitation in PBS and maintaining this nanoparticle

solution for the duration of the preparations. Additionally, sucrose stabilization can

reduce aggregation during lyophilization and could be incorporated into future

experiments.
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It is possible that having higher concentrations of TTC, or utilizing other protein

or viral fragments would improve cellular uptake and improve overall delivery to the

CNS. Using avidin as a biotin binding molecule cross-linker or using a higher

concentration of PLGA-PEG-biotin could increase protein concentrations. However, this

would likely introduce additional problems with nanoparticle aggregation. If these

approaches are not successful at improving uptake, TTC-conjugated nanoparticles could

still have an application for local delivery. Thus, biodistribution studies should be

conducted that test this option as a delivery vehicle. However, even with these additional

experiments, it would be predicted that this drug vehicle would not be successful in

penetrating the CNS because of the low penetration rates of the blood brain barrier.

5.3.0 Neuronal stem cells

There are additional experiments that could be conducted to characterize the

timecourse for differentiation and the non-neuronal cell fraction before any tissue

engineering application would be realized. Our experiments have shown that PGSA was

well tolerated both in vitro and in vivo, but that hESC that were encapsulated into PGSA

differentiated into both neurons and non-neuronal fractions. In contrast, Matrigel

encapsulation appeared to have a higher concentration of cells expressing neuronal

markers than other cell gernn layers. Thus more experiments are needed to characterize

these differences in cell differentiation, and to quantify each cell fraction. The

immunohistochemistry studies should be expanded to incorporate fluorescent analysis

and dual staining, to determine specifically whether cells that have increased levels of
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neuronal stains also have a decreased level of undifferentiation markers (Oct4, SSEA4,

and Nanog).

The next phase of studies that could be conducted is to use encapsulated growth

factors and cytokines that promote neuronal differentiation. Specifically, this could start

by combining growth factors present in Matrigel with PGSA scaffolds, or to use

microparticle controlled release for these studies. There are a variety of factors that could

be considered, but it would be a logical first step to combine the two matrices that were

utilized for this thesis. Additionally, it would be beneficial to know whether any long

term genetic abnormalities were visible by conducting karyotyping experiments on long

term culture of encapsulated cells. These studies would move us closer to understanding

neuronal differentiation and to carefully controlling cell microenvironments for tissue

engineering applications.
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Appendix Summary

Appendix A: Authorship on Publications and Manuscripts

This contains a list of the publications and manuscripts that have led to the

majority of this thesis, including authors lists, order, and affiliations. When

noted, authors have contributed equally to manuscripts. Additionally, some of the

work has been presented at scientific conferences, including a 1) Keystone

Symposia: stem cells and their microenvironment (poster/presentation, March

2007) for the PGSA research, 2) US-Japan symposium on drug delivery systems

(poster/presentation, December 2007) for the Gd-TTC biomarker and TTC-

conjugated nanoparticles, and two separate departmental presentations given

through the biotechnology and toxicology seminar series.

Appendix B: Tetanus toxin C conjugated nanoparticles for in vivo delivery to the central

nervous system

This appendix provides supplemental data from Chapter 3, dealing with further in

vivo data supporting TTC-conjugated nanoparticle drug delivery to the CNS.

Appendix C: Human embryonic stem cell encapsulation in Matrigel for neuronal

differentiation.

This appendix details a new technique that we have utilized to encapsulate hESC

into Matrigel scaffolds within a 3D microenvironment. We provide data that

suggests that the Matrigel environment may induce neuronal differentiation and

support stem cell culture.

Appendix D.: Chemical structures and predicted NMR
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NMR results were compared with theoretical NMR signal, as determined by

ChemDraw software, which is commonly used by chemists to convert a chemical

structure into a signal. The following NMR spectra were analyzed: 1) PLA-PEG-

biotin and PLGA-PEG-biotin, 2) NHS, EDC, and Sulfo-NHS, 3) Sulfo-NHS-

biotin and NH2-PEG-biotin, 4) NH2-PEG-biotin theoretical NMR, 5) PLGA-

COOH theoretical NMR, 6) PLGA-PEG-COOH theoretical NMR, 7) NH2-PEG-

COOH theoretical NMR, 8) PLGA PEG-biotin theoretical NMR, 9) Biotin:

theoretical NMR, and 10) Summary predicted polymer NMR. In summary, most

of the peaks that were determined analytically were not similar to those that were

predicted, even when the predictions had a large degree of certainty associated

with the predictions.

Appendix E: Synthesis of PLGA-PEG-biotin

This contains a chemical equation overview of the process that was used to

synthesize PLGA-PEG-biotin using NHS and EDC modifications of COOH acid

groups at the terminal ends of the polymer.

Appendix F: Schematics of MRI contrast agent biomarkers

This contains a schematic of possible MRI contrast agents that could be used in

parallel with TTC modifications as a biomarker for neurodegenerative diseases

including ALS. These include: 1) Gd-TTC, which was the focus of our initial

studies, 2) an iron core nanoparticle that is conjugated to TTC with a dextran

outer shell and a -2nm core, 3) a biodegradable PLGA (or equivalent) polymer

nanoparticle with encapsulated Magnevist gadolinium-based MRI contrast agent,

and conjugated to TTC. The first agent has the advantage of having a
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size/molecular weight closest to that of TTC and is predicted to maintain the

native retrograde transport properties of TTC. The second agent is iron-based and

has extremely high contrast per nanoparticle. The third agent has the advantage

of being biodegradable with a well-established safety profile. We have utilized

all three systems in previous studies, with the best results coming from the first

agent, and thus that is the primary work that we present.

Appendix G.: Additional analysis ofMRI relaxivity

Our first studies with the Gd-TTC contrast agent were conducted in a 96-well

plate in a 1.5T MRI over a range of TE and TR signals. Thus, the relaxivity could

be measured for each contrast agent, but not nearly as accurately as those results

obtained from an NMR mini-spec. Gd-TTC, Gd-BSA, and iron core

nanoparticles (conjugated to either TTC or BSA) were analyzed in the MRI at

various dilutions. The results from these experiments agree well with those that

are presented in the thesis.

Appendix H: 4. 7T MRI Imaging (in vivo)

Initial MRI imaging experiments were conducted with live mice at 4.7T under

isoflurane anesthesia. Mice were injected with 50uL of Gd-TTC (3mg/mL), for a

total dose of 150ug of Gd-TTC, and imaged 24 hours post recovery. Shown are

two sequential sections of the mouse spinal cord for the thoracic (left) and lumbar

(right) regions. While there are regions of high MRI contrast intensity in the

lumber sections, further experiments suggested that these signals were caused by

artifacts and not as a direct result of Gd-TTC transport.

Appendix I.- 9.4T MRI Imaging (in vivo)
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These contain images of mice that were injected with Gd-TTC and were presented

earlier in the thesis. However, these images show the spinal cord with other

organs that are visible, and additional sections. It is possible to see the full extent

of the breathing and other artifacts that are visible throughout sections, and to see

the orientation of tissue throughout the entire animal. It is clear that MRI contrast

and the reduction of artifacts are not ideal, and that the imaging could be

improved by a combination of imaging sequences and MRI coil design.

Appendix J: Spinal cord staining of TTC transport (ex vivo)

Immunohistochemistry of mice spinal cord samples in the lumbar region 24 hours

after the injection of TTC protein. On the left are PBS negative controls, and on

the right are TTC injected mice, for low (top) and high (bottom) magnification.

These were stained with traditional DAB protocols. TTC localization is

concentrated on a single side of the mouse; however, positivity is also visible on

the contralateral side and around the edges of the tissue. Our desire to explore

neuronal localization with dual staining in injected animals led us to pursue

immunofluorescence for most experiments in this thesis.

Appendix K: Additional analysis of IlHC and MRI transport quantification

There are many ways that the immunohistochemistry and MRI data can be

analyzed and quantified to give comparisons between wildtype and ALS animals

at various ages. This shows examples of the method that was used and described

in detail during the thesis. Specifically, a histogram was generated for a region of

interest in the ventral horn of the lumbar spinal cord on each side. The histogram

corresponds to signal intensity levels, and the number of pixels in the image at
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each intensity. Thus, a normalized ratio can be generated by fitting each

histogram to a probability distribution function that accounts for differences in

staining, antibody, and fluorescence background in each tissue sample. Shown

are representative samples of wildtype and each age of ALS histograms.

Appendix L: Nanoparticle preparations to control size

One concern that we had when preparing nanoparticles for in vivo delivery of

therapeutics is that the nanoparticle size would be too large to allow for TTC-

facilitated transport. We tested a number of different polymer solvents and non-

solvents to reduce nanoparticle size. Here we give a table of combinations for a

PLGA polymer in each solvent, and the sizes of each nanoparticle preparation.

Appendix M. Immunohistochemistry staining of TTC-conjugated nanoparticles

We used traditional primary and secondary antibody immunofluorescent

experiments to determine whether TTC was conjugated to nanoparticles, and

whether this was specific when using NHS and EDC conjugation chemistry. This

experiment also suggested that the TTC protein conformation was preserved. The

figure shows greater fluorescence levels for TTC/NHS/EDC nanoparticles than

those of negative controls. Negative controls include those without a primary

antibody, secondary antibody, or without NHS/EDC.

Appendix N. Nanoparticle protein encapsulation and conjugation

We used a variety of methods to verify that proteins were encapsulated into

biodegradable polymers for early experiments, and also to show that avidin could

be used to specifically conjugate a protein to the polymer. (A) This shows that

biotinylated fluorescent BSA was conjugated to the nanoparticles only with avidin
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as a crosslinker, as evidenced by the visible fluorescent pellet of nanoparticles in

ependorf tubes. (B) Flow cytometry confirmed that populations of nanoparticles

were more fluorescent. (C-E) Fluorescent BSA protein was encapsulated into

nanoparticles via a double emulsion protocol, and nanoparticles were analyzed by

flow cytometry (C), and a BCA protein quantification assay (D-E). It was shown

that protein could be encapsulated using these methods, but encapsulation

efficiency of smaller molecule therapeutics was more quantitative via HPLC

assays and was the focus of this analysis.

Appendix 0: Flow cytometry analysis of biotin binding proteins

In addition to fluorescent quantification when comparing biotin binding proteins,

we also used flow cytometry. Our analysis showed that this method could be

used to show relative differences, but was less quantitative because it was greatly

affected by nanoparticle concentration in each sample, suggesting that a

population of nanoparticles was analyzed in each sample.

Appendix P: Cell binding of TTC-conjugated nanoparticles using NHS/EDC

Our initial experiments were focused on using NHS and EDC to conjugate TTC

onto nanoparticles as a drug delivery vehicle. We made the nanoparticles

fluorescent by encapsulating BSA-FITC via double emulsion, and then activated

COOH groups on the polymer similarly to those protocols previously described

169. An increase in NI 8-RE-105 neuroblastoma cell binding was observed in the

TTC conjugated nanoparticles; however, the overall binding ratio compared to

that of BSA conjugated nanoparticles was less than four fold. Thus, we
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investigated methods of improving protein levels on the nanoparticles and focused

on biotin binding proteins which gave higher overall binding ratios.

Appendix Q: TTC nanoparticles binding to Prostate cancer

Our studies investigating nanoparticle cell binding in vitro focused on several cell

lines as negative controls that were not neuroblastomas and therefore were not

predicted to express the TTC receptor, the GTIB ganglioside. However, we

surprising observed that one prostate line (LNCAP) had significantly higher

binding properties for TTC nanoparticles than for BSA negative controls. Upon

further investigation, we found that previous publications showed that there were

increased expression levels of the TTC binding ganglioside in LNCAP cells,

relative to other cell types including PC3 prostate cell lines '98. Thus, we suggest

that TTC nanoparticles may be useful in targeting prostate cancer, as this

ganglioside is also upregulated in human forms of prostate cancer.

Appendix R: TTC binding to neuroblastomas with polystyrene nanoparticles

In our earlier studies, we also used polystyrene nanoparticle beads to investigate

differences in cellular uptake in cell lines as a function of nanoparticle size.

There were significant increases in neuroblastoma binding after 30 minutes for

40nm and 200nm nanoparticles, and lum microparticles.

Appendix S: Diffusion through hydrogels

In our investigations of different scaffolds that could be utilized for cell

encapsulation studies, we utilized hyaluronic acid and measured the rate of

diffusion of some representative molecules of different sizes in the hydrogel

(VEGF, albumin, globulins, and glucose). Scaffolds were prepared in a custom
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molding, and then radiolabeled samples were taken from the supernatant, as

indicated by the schematic. The amount removed was accounted for

mathematically and was not predicted to change relative concentration levels

significantly. All molecules had rapid diffusion rates through the hydrogel, and

these studies could be expanded to other scaffolds.

Appendix T: Cancer Stem Cells

This provides further background about cancer stem cells, a field of growing

interest with therapeutically relevant applications. Further insight into the biology

behind cancer stem cells could provide additional applications for work in the

field of ALS.

Appendix U: References

This includes a list of references that have been cited throughout the thesis, in the

Nature journal format.
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Appendix B: Tetanus toxin C conjugated nanoparticles for in

vivo delivery to the central nervous system

A.B.1.0 Abstract

Amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease) is a neurodegenerative

disease of the central nervous system (CNS). We have expanded on our previous studies

utilizing TTC-conjugated PLGA-PEG nanoparticles to evaluate whether they would lead

to more effective therapeutic drug delivery systems targeting the CNS. Riluzole, the only

FDA-approved drug for ALS, was encapsulated within nanoparticles and showed to

exhibit a controlled release profile over a period of several days. TTC-conjugated

nanoparticles were shown to be biocompatible using H&E staining, and specifically

transported in vivo from the injection site in the peripheral quadriceps into the lumbar

region of the spinal cord. Furthermore, TTC-conjugated nanoparticles were co-localized

within lumbar spinal cord motor neurons. Radiolabeled biodistribution studies showed

that there was not a statistically significant difference between TTC-conjugated and

BSA-conjugated nanoparticles in their ability to reach the central nervous system. TTC-

conjugated nanoparticles could provide a drug delivery system that enables selective

targeting of motor neurons of the central nervous system.
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A.B.2.0 Introduction

Delivering therapeutic agents to the central nervous system (CNS) is of great

importance but has remained challenging in part because of difficulties in penetrating the

blood brain barrier (BBB), a layer of endothelial cells bound by tight junctions. Most

drugs that are larger than -400 daltons do not pass through the BBB with high efficiency

74. Various approaches have been used to administer agents to the CNS including

concentrated mannitol, vascular endothelial growth factor (VEGF), ultrasound,

encapsulation within nanoparticles, and retrograde transport. Of these, mannitol remains

the most widely used clinically, primarily for applications in cancer treatment.

Ultrasound and VEGF administration remain an active field of ongoing research. In

addition, nanoparticle (both non-targeted and targeted) and retrograde transport

approaches have been used successfully to penetrate the BBB.

Many nanoparticles are synthesized from commonly used polymers, including

polylactic acid (PLA), poly(lactic-co-glycolic acid) (PLGA), and polyglycolic acid

(PLG), which are used to encapsulate and release a therapeutic agent usually over a

period of days to months, with minimal toxicity 69. New polymers are being evaluated for

use as drug carriers that may have beneficial properties such as improvements in drug

loading efficiency, payload delivery, or release kinetics, but their toxicity profile must be

extensively validated before widespread clinical use. Generally, these properties are

different for each therapeutic compound and polymer but can be optimized for each

application.

Nanoparticles can be administered either through non-targeted or targeted

delivery. During the latter, a protein, aptamer, peptide sequence, or other targeting
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molecule specific for a receptor is attached to the outside of the polymer nanoparticle.

Targeted nanoparticles offer the potential for local delivery, reducing any systemic side

effects of the encapsulated therapeutic, and may reduce systemic clearance rates (i.e.

from the kidney, liver, or macrophages) 75. This is important as common routes of

nanoparticle administration include intravenous and intramuscular delivery, both of

which may lead to rapid clearance and reduced efficacy with certain applications. Many

studies have found that the incorporation of polyethylene glycol (PEG) to the polymer

chain reduces clearance rates and may improve overall efficacy 76

Most nanoparticles are not efficient at penetrating the CNS because of a

combination of their size, surface charge, and hydrophobic properties 74. However, their

smaller size (in comparison with larger microparticles) may allow for greater BBB

penetration. Recently, non-targeted polymer nanoparticles prepared from

polybutylcyanoacrylate (PCBA) polymer encapsulating a variety of drugs and coated

with a polysorbate 80 surfactant have been shown to penetrate the BBB 77-81. The

mechanism for uptake is not fully understood, but is proposed to take place via receptor

mediated endocytosis in brain endothelial cells (ref) 82. However, in contrast to PLA,

PLG, and PLGA polymers that are currently used in FDA-approved applications, PCBA

polymers would need to be studied more extensively before they are widely used

clinically 83

Targeted nanoparticles may allow for boundaries such as the BBB to be

penetrated by facilitating endocytosis or transcytosis across brain endothelial cells.

Another approach utilizes retrograde transport to bypass the BBB. Axonal retrograde

transport is an important cellular process used by neurons to transport proteins, small
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molecules, and even cell organelles from the terminal end of a neuron towards the cell

body. It is utilized by viruses (i.e. herpes) and bacterial toxins (i.e. tetanus toxoid) to

bypass the BBB and efficiently penetrate the CNS. Researchers have used retrograde

transport to deliver genes and protein conjugates to the CNS with therapeutic efficacy 36,

84. In addition, this approach offers the possibility of selectively targeting a specific

region of the CNS that is a function of the injection site. This is in contrast to non-

targeted intravenous administration that would likely penetrate the entire CNS equally.

However, one concern with using this approach is a possible immune response, which

may be particularly important in patients diagnosed with cancer or those taking

immunosupressive medications. The immune response will likely be a function of the

retrograde transport molecule used and previous immunizations to that molecule.

Recently, the tetanus toxin C fragment (the non-toxic binding portion of the tetanus

toxoid that is efficiently retrograde transported in neurons) was conjugated to

nanoparticles and shown to target neuroblastoma cells in vitro 85. It is not clear yet

whether this approach will lead to nanoparticles penetrating the CNS with high efficiency

in vivo.

Liposome nanoparticles prepared from lipids offer another alternative to deliver

therapeutics to the CNS. In particular, lipids may offer better loading efficiency for

negatively charged DNA or siRNA payloads than negatively charged polymers.

Liposomes that were conjugated to a transferrin or insulin receptor antibody (thought to

transcytosis across endothelial cells) were have been used for successful gene delivery

with a brain specific promoter (ref) 153, 199, 200. However, this approach is non-specific to

brain endothelial cells and requires a brain specific promoter to achieve selective CNS
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targeting. A different study addressed this issue by targeting magnetic liposomes to the

vasculature surriounding the CNS by generating a transient magnetic field 201'. This

approach may be used in parallel with a targeted liposome to penetrate the CNS while

reducing nonspecific uptake in other organs. In addition to these approaches, lipid

libraries similar to those that have been used for other organs could lead to new materials

that might efficiently penetrate the BBB and target CNS 20 2. In particular, these

liposomes may have applications for delivering interference RNA through shRNA,

siRNA, or RNAi molecules because their loading efficiency is generally higher than that

of negatively charged polymer nanoparticles.

The overall goal of this study is to advance our previous research that showed

TTC-conjugated nanoparticles were highly selective for neuroblastoma cells in vitro 8.5

and to evaluate whether these nanoparticles could be used as a drug delivery system to

selectively target the central nervous system in vivo.
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A.B.3.0 Methods

A.B. 3.1: Preparation of nanoparticles.: PLGA-PEG-biotin polymer and nanoparticles

were prepared as previously described 85. Briefly, PLGA-COOH (20kDa MW, Lactel

Absorbable Polymers) was activated with NHS (1:8 PLGA:NHS molar ratio) and EDC

(1:8 PLGA:EDC molar ratio) and subsequently incubated with NH2-PEG-Biotin

(3400MW, Laysan Bio) (1:1.3 PLGA:PEG molar ratio) to form PLGA-PEG-biotin.

Nanoparticles were prepared by PLGA-PEG-biotin (6.7mg/mL polymer in acetone)

nanoprecipitation into deionized water. Coumarin-6 (lmg/mL in acetone, Sigma Aldrich)

or drug (riluzole or thalidomide, 5-50% mass drug:polymer) were mixed with the

polymer prior for encapsulation studies. The solvents for the drugs and polymer that were

used included: acetone, acetonitrile, or DMSO, and were acetonitrile where not indicated.

Nanoparticles (500uL at -20mg polymer/mL) were incubated with neutravidin (2uL at

2mg/mL) (Pierce Biotechnology; Rockford, IL), subsequently mixed with biotinylated

TTC or BSA, and washed by centrifugation using an Amicon filter (4,000rcf, 25C, -20

minutes). Nanoparticles were concentrated and stored at 4C until use.

A.B.3.2 Measurement of encapsulation efficiency and release kinetics: Drugs were

encapsulated into polymer nanoparticles (as indicated above) and dialyzed against a

10,000 Da membrane (Pierce Biotechnology; Rockford, IL) at timepoints between 0-48

hours. Once removed, nanoparticles were snap frozen in liquid nitrogen and lyophilized

to remove liquid. The dry nanoparticles were dissolved in acetonitrile solvent, filtered

through a 0.224m syringe filter and analyzed using an Agilent 1100 high performance
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liquid chromatography (HPLC) (Agilent Technologies; Palo Alto, CA) with a C18

column (Alltech Associates; Deerfield, IL) in 100[L intervals with detection at 264k as

previously described 58, 203. All samples were processed with equal parts of water and

acetonitrile at constant 1ml/min flowrate for one hour. Various timepoints were taken to

generate release kinetics curves for each drug at different loading concentrations, and

total encapsulation efficiency was determined by known drug concentrations at initial

timepoints by normalizing to polymer peaks in the HPLC.

A.B.3.3 Animal study approval and injections: All animal protocols were approved by the

Committee on Animal Care at the Massachusetts Institute of Technology. Mice (8-16

weeks) were anesthetized with 130mg/kg ketamine and 10mg/kg xylazine via an

intraperitoneal injection. Mice were shaved and a small incision was made exposing the

right quadriceps under aseptic conditions. Three 25uL injections containing BSA-

conjugated, TTC-conjugated nanoparticles or a PBS negative control were made into the

muscle using a 26G Hamilton syringe (1.5mg total protein injected). Nanoparticles were

injected that contained coumarin-6, radiolabeled [3H]-PLGA (5 uCi per animal), or blank

drug, and were either conjugated to TTC or BSA. The wound was sutured and the animal

was allowed to recover.

A.B.3.4 Transcardial perfusion and spinal cord isolation: Animals for all spinal cord

sectioned experiments (H&E, fluorescent nanoparticles, and immunohistochemistry

staining) were sacrificed using CO 2 asphyxia. An incision was made opening the

animal's sternum, and a 30G needle was inserted into the left ventricle. The right atrium
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was cut, and the animal was perfused with PBS until blood cleared. Perfusion medium

was switched to 4% paraformaldehyde solution and perfused for 15 minutes. The spinal

cord was gently removed from the vertebrate using forceps and blunt dissection, and cut

into cervical, thoracic, and lumbar sections. Tissue was fixated in 4% paraformaldehyde

overnight. For immunohistochemistry experiments, tissue was incubated in 10% sucrose

for 12 hours, and then in 30% sucrose solution for 12 hours, each overnight at 4C until

sectioning. Tissue for hematoxylin and eosion staining was stored in PBS until mounting.

A.B.3.5 Hematoxylin and Eosion staining: Spinal cords from mice injected with TTC-

conjugated nanoparticles, BSA-conjugated nanoparticles, or PBS negative controls were

prepared as described previously 204. A Gemini automated (ThermoFisher Scientific;

Waltham, MA) staining machine was used for all H&E. Briefly, tissue was dehydrated in

graded ethanol (70 to 100%), embedded in paraffin and sectioned axially using a

microtome (4um). Tissue paraffin was removed with 3 changes of xylene, rehydrated

with graded ethanol, stained with Harris Hematoxylin (Surgipath Medical; Richmond, IL)

for four minutes, and then rinsed with water, 1% acid alcohol (1% HCI in 70% ethanol),

and then water in series. Tissue was then stained for blue nuclei using Scott's Tap water

substitute (Surgipath Medical; Richmond, IL) for one minute, washed and ethanol/xylene

dehydrated as previously, and mounted. Slides were photographed using an inverted

Nikon light microscope.

A.B.3.6 Immunohistochemistry staining for TTC and NeuN: Mice injected with either

TTC-conjugated or BSA-conjugated nanoparticles were sacrificed 24-48 hours post
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injection. Nanoparticles were fluorescent for all non-stained tissue, and non-fluorescent

for all immunohistochemistry stained tissue. Samples were placed in Tissue-Tek OCT gel

(Sakura Finetechnical Co; Tokyo, Japan), frozen on dry ice, and stored at -800 C till

cryostat sectioning. For all non-fluorescent samples, tissue was blocked and

permeabilized in using PBS containing 0.3% Triton-100 and 10% FBS for lh at RT.

Tissue was incubated with rabbit anti-TTC (1:1000, Rockland Immunochemicals;

Gilbertsville, PA) and mouse anti-NeuN (1:500, Chemicon; Billerica, MA) containing

0.1% Triton-100 and 10% FBS overnight at 4C. Tissue was washed in PBS 3x to remove

unbound primary antibodies. Tissue was incubated with Cy3 conjugated goat anti-rabbit

(1:1000, Jackson Immunoresearch; West Grove, PA) and FITC conjugated goat anti-

mouse (1:100, Sigma; St. Louis, MO) containing 0.1% Triton-100 and 10% FBS for 1.5

hours at RT. Tissue was washed 3x in PBS to remove unbound secondary antibody. For

all samples, tissue was mounted using Vectashield fluorescent mounting medium

containing DAPI (Vector Laboratories; Burlingame, CA) and imaged using a Nikon E800

microscope.

A.B.3.7 Cell culture and nanoparticle incubations: N18-RE-105 neuroblastoma and

HepG2 liver cells were grown with previous methods as those previously described 85, 160-

162. Briefly, neuroblastoma cells were cultured in DMEM and supplemented with HAT

supplement (100uM sodium hypoxanthine, 400nM aminopterin, 16uM thymidine), 10%

FBS, and 1% penicillin/streptomycin. HepG2 cells were grown in MEM containing 10%

FBS and 1% penicillin/streptomycin. All cells were grown in filtered flasks in an

incubator at 95% air and 5% carbon dioxide. Media was changed every 48 hours, and
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cells were passaged with EDTA-trypsin when confluent. Confluent neuroblastoma and

HepG2 cells were incubated with dilute radiolabeled nanoparticles at 37C for 30 minutes

prior to trypsin and processing for radiodetection. All media reagents were purchased

from Invitrogen. HepG2 cells were purchased from ATCC, and N 18-RE-105 cells were a

generous gift of Dr. Jonathan Francis at the Massachusetts General Hospital.

A.B.3.8 Nanoparticle biodistribution (in vivo) and tissue preparation/processing:

Radiolabeled nanoparticles (TTC or BSA conjugated) were prepared and injected

unilaterally into the mouse quadriceps as stated above. Separate animals were injected

with PBS negative controls. Mice were sacrificed 48 hours post injection, and the

following organs were harvested and weighed: heart, spleen, lung, liver, kidney, right

(injected) quadriceps, left (not injected) quadriceps, brain, spinal cord, bone, and blood.

The tritium content of each tissue sample was analyzed using a Packard Tri-Carb

Scintillation Analyser (Downers Grove, IL, USA) as protocols modified from those

previously described' 58. The tissues were measured in liquid solution with equal parts of

Hionic-Fluor scintillation cocktail (PerkinElmer, Boston, MA). Tissue was processed

prior to measuring in 2mL of Solvable (Packard) for 12h at 60C, and the resulting

solution was de-colored with 200 mL hydrogen peroxide for lh at 60C. The injected

stock solution was also measured and treated as an unknown sample to determine the

percentage of injected dose at each tissue. The wet weight of each organ was measured to

normalize radioactive counts to each gram of tissue. All sample analysis was conducted

immediately after the removal of tissue.
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A.B.4.0 Results and Discussion

A.B.4.1 Riluzole release kinetics from nanoparticles

We studied the release kinetics of riluzole after encapsulation into biodegradable

polymers of different molecular weights at various loading efficiencies. Riluzole was

chosen as a model drug because it is currently the only FDA approved drug for

amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease), a disease that would benefit

from drug controlled release and local delivery from nanoparticles. We utilized

nanoparticles prepared from PLGA-PEG polymer as previously described85, with

inherent viscosities of either 0.67 or 0.83 (in methylene chloride). Polymer solvents that

were used included acetone, acetonitrile, and dimethyl sulfoxide (DMSO). At 50% drug

loading, a burst release for all solvent and polymer viscosity conditions was observed

(Figure la), which is consistent with other release profiles for small molecule drugs20 3.

We then reduced the drug loading percentage to a 5% drug to polymer mass ratio. This

resulted in drug release profiles that were extended, with only 90% of the drug released

after 48 hours (Figure lb). This is a significant improvement on current riluzole

treatments which are administered twice daily, and could likely be further optimized to

extend the release profile.

A.B. 4.2 Biocompatibility of TTC-conjugated nanoparticles

Spinal cords from mice that were unilaterally injected with TTC or BSA

conjugated nanoparticles were fixed, sectioned, and stained with hematotoxylin and
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eosion to determine whether any signs of acute inflammation were observed. No

differences were observed between injected animals (either TTC or BSA conjugated

nanoparticles) (Figure 2) and PBS negative controls (data not shown). These results

suggest that an injection of the Gd-TTC conjugate is well tolerated and biocompatible.

This is consistent with previous observations following the injection of TTC in rodents

and the established safety profile of gadolinium compounds used in the clinic.

A.B.4.3 In vivo transport of TTC-conjugated nanoparticles

To evaluate whether nanoparticles were transported to the lumbar spinal cord

specifically (i.e. as a direct result of TTC conjugation), we prepared fluorescent

nanoparticles and conjugated them to either BSA or TTC. Nanoparticles were injected

unilaterally as before, and spinal cords were sectioned using a cryostat. Sections were

immediately mounted and stained with DAPI mounting medium to photograph sections

using a fluorescent microscope. All animals showed a small amount of non-specific

uptake on the uninjected side of the animal, likely a result of nanoparticles that were in

circulation. However, the intensity of fluorescence was significantly higher on the side

of injection, and was co-localized with DAPI stains (Figure 3), as indicated by three

different animals for representative traces. Spinal cords from mice that were injected

with BSA-conjugated nanoparticles were less intense than those from TTC-conjugated

mice (data not shown). These data suggest that TTC-nanoparticles promote delivery to

the spinal cord.

A.B. 4.4 Localization of TTC-conjugated nanoparticles in motorneurons
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Spinal cords from mice that were unilaterally injected with TTC or BSA

conjugated nanoparticles (non-fluorescent) were fixed, sectioned, and immunostained

against TTC and a NeuN neuronal stain to verify axonal retrograde transport and to

further explore neuronal localization within the spinal cord. Spinal cord sections from

mice following TTC-conjugated nanoparticle injection showed unilateral positive

staining for TTC concentrated in the ventral horn of the lumbar region of the spinal cord

(Figure 3, top). This was absent in spinal cord sections that were injected with BSA-

conjugated nanoparticles (Figure 3, bottom). Furthermore, TTC positive staining was co-

localized with neuronal positive staining in the positive samples. Spinal cord sections

from TTC injected mice showed similar localization, intensity, and distribution (data not

shown). PBS injected mice showed characteristic NeuN staining, but only background

levels of TTC staining (data not shown). These results suggest that axonal retrograde

transport properties of TTC-conjugated nanoparticles are preserved following

conjugation, and are able to facilitate nanoparticle transport into the lumbar region of the

spinal cord.

A.B. 4.5 Nanoparticle biodistribution (in vivo)

We prepared radiolabeled nanoparticles that were conjugated to either TTC or

BSA to determine relative nanoparticle biodistribution and to quantify how effective

TTC-conjugated nanoparticles were are at penetrating the CNS. Radiolabeled

nanoparticles (and PBS negative controls) were injected unilaterally into the quadriceps

of mice. Mice were sacrificed after 48 hours, and the following organs were recovered:

heart, spleen, lung, liver, kidney, right quadriceps (injected), left quadriceps, brain, spinal
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cord, femur bone, and blood. Tissue was processed and analyzed for radioactivity.

Overall, the biodistribution was similar for nanoparticles regardless of whether they were

conjugated to TTC or BSA. TTC-conjugated nanoparticles showed lower levels of

radioactivity in the brain (16.9±0.7 vs. 11.2±0.35, p<0.01), in the lung (18.3±2.4 vs.

11.5±0.02, p<0.05), and in the heart (18.4+2.8 vs. 11.7±1.5, p<0.05) than BSA-

conjugated nanoparticles. This result is most likely a result of high background levels

and a small relative level of enhanced transport efficiency of TTC-conjugated

nanoparticles relative to those of negative controls. Further studies will be required to

further investigate differences in central nervous system delivery that are a result of TTC-

mediated delivery and to validate this method as a drug delivery system.

A.B.5.0 Conclusions

We have expanded on our previous studies that showed TTC-conjugated

nanoparticles were highly specific for neuroblastoma cells in vitro85. We showed that

riluzole could be encapsulated within biodegradable nanoparticles and released over a

period of several days. TTC-conjugated nanoparticles were shown to be biocompatible

(as evidenced by H&E staining), transported specifically within the lumbar region of the

spinal cord, and co-localized with neurons. However, TTC-conjugated nanoparticles did

not show overall a greater level of penetration to the central nervous system. We have

developed a drug delivery system with potential to specifically and efficiently target the

central nervous system.
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A.B.7.0 Figures and Figure Legends

Figure 1

Data 1
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A.B. 7.1 Figure 1 - Riluzole nanoparticle release kinetics: (a) Drug release kinetics over

48 hours for riluzole at 50% drug loading (drug to polymer mass ratio) for 0.67 and 0.83

inherent viscosity PLGA-PEG polymers, in acetone, acetonitrile, or DMSO, as indicated.

(b) Comparison of drug loading efficiency on release kinetics for 50% and 5% riluzole

loading. Drug release kinetics can be controlled by changing drug loading concentrations

and polymer ratios, as well as by changing polymer and solvent parameters.
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A.B. 7.2 Figure 2 - Haematoxylin and eosin staining of lumbar spinal cord sections

following BSA-NP and TTC-NP injections: Mice injected unilaterally with TTC-

conjugated or BSA-conjugated nanoparticles were sacrificed 48 hours post injection.

Lumbar spinal cords were sectioned, stained with H&E, and imaged for BSA-NP (top)

and TTC-NP (bottom), at 4x (left) and 20x (right) magnification. No observable

asymmetries between the right and left side, or between the each material injected were

observed, suggesting only mild acute inflammation at the spinal cord as a result of the

TTC or Gd-TTC conjugate injection and transport.
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A.B. 7.3 Figure 3 - Retrograde transport for TTC-conjugated nanoparticles to the lumbar

spinal cord: Mice were injected unilaterally with fluorescent TTC-conjugated

nanoparticles, sacrificed after 48 hours, and then spinal cords stained with DAPI to

investigate nanoparticle localization in the spinal cord. The injection side (right) of the

spinal cord shows higher concentration of fluorescent nanoparticles localized within

DAPI positive regions, suggesting successful transport to the spinal cord.
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Figure 4
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A.B. 7.4 Figure 4 - Immunohistological staining for TTC: Mice were injected unilaterally

with nonfluorescent TTC-NP or BSA-NP and sacrificed 48 hours post injection. The

lumbar spinal cord was sectioned and stained for TTC (red) and NeuN (green). Images

that were obtained at 4x magnification showed that TTC positive staining was localized

unilaterally within the ventral horn of the spinal cord. Merged images showed that TTC

and NeuN positive staining were co-localized suggesting specific neuronal uptake of

TTC-NP.
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Figure 5
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A.B. 7.5 Figure 5 - In vivo biodistribution.: Mice were injected with PBS, TTC-NP, or

BSA-NP unilaterally and sacrificed 48 hours post injection. Tissue from the following

tissue was removed and analyzed for radiolabeled product: heart, spleen, lung, liver,

kidney, right quad (injected side), left quadriceps (uninjected side), brain, spinal cord,

bone (femur), and blood for low (top) and high (bottom) scale analysis. A high level of

agent remained at the site of injection indicating prolonged opportunity for transport via

motor neurons. Overall, biodistribution including that in the central nervous system

(brain and spinal cord) of BSA and TTC-conjugated nanoparticles were similar.
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Appendix C: Human embryonic stem cell encapsulation in

Matrigel for neuronal differentiation

A.C.1.0 Abstract

Tissue engineering and stem cell research would move closer to clinical

applications in treating amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease) if

pure populations of precursor neural cells could be generated. We encapsulated

undifferentiated human embryonic stem cells (hESC) in Matrigel in a 3D culture. hESC

developed structures that resembled neural tubules after 4 days in culture and supported

cells in colony formation. hESC simultaneously exhibited expression levels for all three

germ layers (ectoderm, mesoderm, and endoderm) but stained with greatest intensity in

the neural ectoderm (nestin stain). Cells showed positive neural staining including nestin,

MAP2, B3-tubulin, Soxl, and TuJ suggesting neuronal differentiation. Additionally,

neural tubules were co-localized with increased expression of HIF-1 alpha suggesting

that oxygen tension may play a role in neuronal differentiation. Flow cytometry was

used to quantify markers for cell undifferentiation and neuronal markers in isolated single

cell populations over a 10 day culture in Matrigel. These results suggest that Matrigel

could be used as a scaffold for 3D hESC culture and neuronal differentiation.
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A.C.2.0 Introduction

Tissue engineering approaches offer a unique treatment modality for amyotrophic

lateral sclerosis (ALS, or Lou Gehrig's disease). One of the requirements of successful

treatments is likely the ability of scaffolds to support neuronal differentiation and growth

in a 3D environment. Recent studies have characterized some of the differences between

2D and 3D cell culture systems and have demonstrated that biophysical, biomechanical

and biochemical forces and signals play a critical role in determining cellular

organization and phenotypic expressionl 77' 205, 206. These same interactions affect human

embryonic stem cells (hESCs) differentiation and morphology 207 Despite this

knowledge, most hESC in vitro differentiation studies are carried out in 2D culture, either

directly on mouse embryonic fibroblasts (MEFs) or on modified surfaces coated with

ECM components such as Matrigel. Researchers have shown that coating a 2D culture

plate with Matrigel allows hESCs to remain undifferentiated and pluripotent when grown

in MEF conditioned media (CM) and low levels of human basic fibroblast growth factor

(hbFGF). Most studies that have used Matrigels to encapsulate cells have not provided a

truly 3D conformation because the relative thickness of Matrigel in most studies is small

compared to the size of a cell colony 208. Therefore, the effect of Matrigel in most of

these studies is limited to providing ECM components.

One leading application of using 3D cultures is for use with human embryonic

stem cell (hESC) culture because these cells are particularly sensitive to the effects of

their microenvironment on cell differentiation 209-213. hESC are used in research because

of their clinical uses that involves the repair of damaged organs and for tissue
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regeneration, including neuronal injury repair 95, 96. These cells have widespread

applications in diseases such as Parkinsons, amyotrophic lateral sclerosis, and spinal cord

injury following contact injury 214,215. A major complication in bringing these therapies

to the clinic is developing a system that has high levels of neurons in a mixed stem cell

population 16. hESC cell differentiation and pluripotency are regularly evaluated by

undifferentiation markers including Oct4, SSEA4, and Nanog, and evaluated for neuronal

cell characteristics by markers including nestin, MAP2, and beta tubulin 217. The

expression levels of these proteins can be induced by certain growth factors and

cytokines, as well as by cell microenvironment scaffolds and binding proteins. Many of

these matrix proteins and cytokines are present in Matrigel scaffolds and may direct

differentiation 218

Our goal is to utilize Matrigel scaffolds for hESC encapsulation within a 3D

scaffold, and to evaluate whether this matrix can be used to promote neuronal

differentiation.
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A.C.3.0 Methods

A. C.3.1 Cell culture and media: Two NIH-registered hESC cell lines were used for all

studies (H9 and H13, WiCell Research Institute, Madison, WI; p19-30). Human ESCs

were grown on an inactivated mouse embryonic fibroblast (MEF) feeder layer in growth

medium (80% KnockOut DMEM, supplemented with 20% KnockOut Serum

Replacement, 4 ng/ml basic Fibroblast Growth Factor, 1 mM L-glutamine, 0.1 mM f3-

mercaptoethanol, 1% non-essential amino acids). Human ESCs were passaged every 4-6

days using lmg/ml type IV collagenase for 20-30 minutes. To produce inactivated MEF,

activated MEF (Chemicon) were cultured in 85% DMEM containing 15% FBS, and

inactivated for 2 hours with DMEM containing 8ug/mL mitomycin-C (Sigma), detached

with 0.25% trypsin, and seeded at a density of 1.5-3.0 x 105 cells per well in a gelatin

coated 6-well plate. All media components and reagents for hESCs culture were

purchased from Invitrogen Corporation (Carlsbad, CA), except for defined FBS, which

was purchased from Hyclone (Logan, UT). Cell culture methods were modified from

those previously described 105, 172, 219

A. C.3.2 Condition media production: Mitomycin-C inactivated MEF cells were plated on

gelatin coated 6-well plates at 2x normal density. MEF were allowed to attach to the

plate for 24 hours, subsequently cultured in hESC media (replaced daily), and removed

every 24 hours to produce condition medium as previously described 0 5. This protocol

was completed for up to 10 days of media collection for each plate. Condition medium

was stored at -20 'C until use for up to one month.
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A.C.3.3 Matrigel hESC encapsulation andfixation: Undifferentiated hESC were removed

from culture and encapsulated within Matrigel scaffolds using a custom molding. hESC

harvested from one well of a 6-well plate were resuspended in 1 ml Matrigel. 25-100tl of

Matrigel was homogeneously poured in each molding and solidified at RT for 10 min.

The resulting cell encapsulated scaffolds were transferred into the wells of a 24-well

Ultralow adhesion plates (Corning) containing 1 ml of condition media. Condition media

was changed daily. Scaffolds were removed from culture at pre-determined timepoints

(0-20 days) and either fixed in Accustain (Sigma) formalin-free fixative for 20 minutes

for histological sectioning and analysis (H&E and peroxidase), or placed in Tissue-Tek

OCT gel (Sakura Finetechnical Co, Tokyo, JPN), frozen on dry ice, and stored at -800 C

and cryostat sectioned for all immunofluorescent staining.

A.C.3.4 Hematoxylin and Eosion (H&E) staining: Matrigel sections stained with H&E

were fixed and were prepared as described previously 204. A Gemini automated

(ThermoFisher Scientific; Waltham, MA) staining machine was used for all H&E.

Briefly, tissue was dehydrated in graded ethanol (70 to 100%), embedded in paraffin and

sectioned axially using a microtome (4um). Tissue paraffin was removed with 3 changes

of xylene, rehydrated with graded ethanol, stained with Harris Hematoxylin (Surgipath

Medical; Richmond, IL) for four minutes, and then rinsed with water, 1% acid alcohol

(1% HCI in 70% ethanol), and then water in series. Tissue was then stained for blue

nuclei using Scott's Tap water substitute (Surgipath Medical; Richmond, IL) for one
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minute, washed and ethanol/xylene dehydrated as previously, and mounted. Slides were

photographed using an inverted Nikon light microscope.

A. C.3.5 Immunofluorescence: Cryosections were thawed and fixed with acetone for 5min

at room temperature. After blocking with 5% FBS, sections were stained with a nestin

primary antibody (1:100 dilution, one hour) and an anti-mouse-Cy3 secondary antibody

(1:50 dilution, 30 minutes). Sections were then incubated with DAPI (1:200 dilution, 2

minutes) and mounted with fluorescent mounting medium (Dako). Negative controls

lacking either a primary or secondary antibody were used to verify specificity and to

determine minimal background levels. The immuno-labeled cells were examined using a

Zeiss fluorescence microscopy (Zeiss, Germany).

A. C.3.6 Immunohistochemistry and peroxidase staining: Matrigel sections were

embedded in paraffin prior to microtome sectioning (5um slices). The EnVision and

LSAB DakoCytomation kits were used for all immunohistochemically according to the

manufacturer's directions. Briefly, paraffin was removed by a xylene-ethanol dehydration

and permeabilized using 1 % Triton X100 (Sigma) with 1 % (w/v) BSA in PBS for 10

min. Sections were incubated with a primary antibody for each germ layer (CD34 at 1:20,

nestin at 1:20-100, or alpha-fetoprotein at 1:200), HIF-1 alpha (1:50), or neuronal

markers (nestin at 1:100, beta 3-tubulin at 1:20-200, TuJ at 1:50, Sox1 at 1:20-100, or

MAP2 at 1:50-200). Primary antibodies were incubated with a Dako diluent (Dako) and

incubated for 1 h at RT. The samples were then biotinylated for 30 minutes, incubated

with streptavidin-HRP for 30 minutes, and then a DAB chromogen substrate until color
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change was detected (-1-5 minutes). Samples were washed with PBS in between each

incubation, and each set of samples was incubated with DAB for the same time for each

antibody. Samples were then counterstained with a 1:4 dilution of Gill's hematoxylin

solution (Electron Microscopy Science) for 2-3 min. Samples were mounted and

photographed using a light microscope.

A. C.3.7 Flow cytometry: Cells that were removed from Matrigel were analyzed using a

FACScan flow cytometer (Becton Dickinson) to measure fluorescence (488nm

excitation, 530nm and 650nm emission). Cells were incubated with trypsin for 7 minutes

at 37C, inactivated, and then with dispase (50U/mL) to produce a single cell suspension.

A cell pellet was incubated with Intrastain fixative (Dako) for 15 minutes at RT, and

subsequently permeabilized according to the manufacturer's directions. Cells were

incubated with a fluorescent antibody including differentiation markers (Oct4-FITC,

SSEA4-PE, or Nanog-FITC), and neuronal markers (nestin-PE, B3-Tubulin-FITC, or

MAP2-FITC). Unbound antibody was removed by 3 washes in PBS and incubated with

propidium iodide (5ug/mL), and cell populations were gated based on forward/side

scatter and propidium iodide fluorescence to remove debris and dead cells from analysis.

A total of at least 10,000 gated events were obtained for each sample. Data was analyzed

using FlowJo software (Tree Star) to generate histograms of each sample.
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A.C.4.0 Results and Discussion

A. C.4. 1 hESC encapsulation within Matrigel and morphology

We hypothesized that Matrigel could be used to encapsulate stem cells, and that

the growth factors and matrix proteins within the material may promote neuronal

differentiation of undifferentiated human embryonic stem cells. Prior to these studies,

Matrigel has been used primarily as a dilute material to plate 2D culture dishes, or as a

partially embedded cell culture system. We instead utilized a custom molding and non-

diluted Matrigel to encapsulate undifferentiated human embryonic stem cells. hESC in

Matrigel showed cell spreading and the formation of tubule structures after a period of 4

days in culture by light microscopy (Figure 1). Cell spreading and protrusions were

interconnected and resembled axon structures. This is in contrast to the characteristic

morphology of undifferentiated hESC that grow together in colonies.

hESC that were embedded and directly analyzed by thin section H&E staining

showed morphology that resembled undifferentiated cells, suggesting that the method of

analysis did not lead to this morphology. This is in contrast to the distinct formation of

neuronal tubule structures after 4 and 10 days in Matrigel culture (Figure 2). hESC

continued to group into colonies and support each other, but organized into neural

formations. Cells did not form single cell formation suggesting continued cooperation

through cell signaling and matrix molecules that may further induce differentiation.

We then investigated whether morphology of encapsulated hESC was affected by

the size of the Matrigel scaffold. We prepared gels of sizes between 25uL and 100uL

with the same diameter and cultured hESC for between 4 and 10 days (Figure 3).
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Scaffolds that were formed showed greater density in the overall scaffold and resulting

cell colonies in 25uL gels than in larger 100uL gels, suggesting greater rates of

proliferation in smaller scaffolds. This may be a function of oxygen or micronutrient

consumption and resulting cell colonies. Overall, morphology was similar between

scaffolds and more investigation is needed to fully quantify differences in the scaffolds.

A. C. 4.2 Expression of di.ferentiation markers after Matrigel encapsulation

We then further investigated differentiation in hESC during Matrigel

encapsulation and culture. Matrigel scaffolds with hESC were cultured for 4-20 days and

stained for each layer of the germ layers and compared with undifferentiated controls

(Figure 4). hESC showed staining that was positive for each germ layer, however nestin

and ectoderm positive staining was significantly more intense and localized within

neuronal tubules than a-Fetoprotein (endoderm) of CD34 (mesoderm). These data

further suggest neuronal differentiation.

A. C. 4.3 Immunohistochemistry and neuronal differentiation

We investigated neuronal differentiation to further investigate the presence of

markers for neuronal differentiation. Matrigel scaffolds that were sectioned and stained

showed positive staining for B3-tubulin after 4 days, for Soxl after 20 days, for TuJ after

4 days, and MAP2 after 10 days in culture (Figure 5). Cell stains show positivity for

neuronal markers localized in neuron tubules. Additionally, there did not appear to be

visible or quantitative differences in expression levels between 4, 10, and 20 days in

culture for any of the neuronal markers (data not shown). In general, B3-tubulin and TuJ
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stains (both staining for tubulin but on different epitopes) showed positive but less

intense staining than nestin. The positive results for nestin staining were also confirmed

using immunofluorescence (Figure 6a). These results further give evidence for neuronal

differentiation in Matrigel scaffolds.

We next explored possible mechanisms for neuronal differentiation. In addition

to growth factors and matrix proteins that are present in Matrigel, oxygen tension could

play a role in neuronal differentiation. We next stained for HIF-1 alpha to investigate

localization. As predicted, we also observed high levels of this transcription factor

localized within neurotubules. These results suggest that oxygen tension may play a

critical role in neuronal differentiation and are consistent with previous studies 220

A.C.4.4 Flow cytometry of differentiation and neuronal markers

We next quantified relative differences in expression levels for markers of

undifferentiated stem cells (nanog, Oct4, and SSEA4) and neuronal markers (nestin and

MAP2) using flow cytometry. Cells were cultured for 0, 4, or 10 days in a Matrigel and

then removed and analyzed as single cells in suspension (Figure 7). Cells showed

relatively unchanged levels of expression of nanog and Oct4 expression, and higher

levels of SSEA4 expression after Matrigel culture. The SSEA4 levels were not predicted

and cannot be easily explained, but it should be noted that even undifferentiated cells

have highly variable expression levels of SSEA4.

In contrast, hESC showed significantly higher levels of nestin and MAP2 over the

culture period. Interestingly, undifferentiated cells showed a dual peak in expression of

MAP2 suggesting high basal levels of this neuronal marker in undifferentiated cells.
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Separate cell samples were stained with multiple antibodies for either neuronal or

undifferentiation markers. Results for these experiments were similar to those presented

for single antibody stains (results not shown). Cells were also stained with negative

controls for each isotype antibody to investigate non-specific binding and showed only

background levels of fluorescence (data not shown). Taken together, these results

suggest a high fraction of neuronal markers and expression over the Matrigel culture.

A.C.5.0 Conclusions

We have provided studies that demonstrate that hESC can be cultured by Matrigel

encapsulation. Matrigel scaffolds promote the formation of neuronal tubules and express

in these cells neuronal markers including nestin and MAP2. Cells furthermore showed

HIF-1 alpha localization suggesting oxygen tension may play a role in neuronal

differentiation. Flow cytometry confirmed quantitative differences in both markers for

hESC undifferentiation and neuronal markers over a 10 day Matrigel culture.

A.C.6.0 Acknowledgements

We would like to thank Heather Pressler for assistance with cell culture, and

Weijia Zhang at the MIT Center for Cancer Research for histological analysis and H&E

staining assistance. This was work that was presented here in this appendix was partially

conducted by Martin Schulz and used for his Master's thesis in Germany. Seth

Townsend is supported by a National Science Foundation Graduate Research Fellowship.

© 2008 Massachusetts Institute of Technology. All rights reserved. 177



A.C.7.0 Figure Legends
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Figure 1

A. C. 7.1 Figure 1 - Light microscopy of hESC encapsulated within Matrigel: (a)

undifferentiated hESC on a MEF feeder layer exhibiting characteristic colonies with

elongated MEF. (b) Differentiated hESC encapsulated within a 3D Matrigel scaffold after

4 days in culture as visualized by light microscopy. (c) higher resolution image of hESC

in Matrigel scaffolds after 4 days in culture showing characteristic cell spreading

resembling neuronal tubules.
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Figure 2

D d

A. C. 7.2 Figure 2 - hESC encapsulated within Matrigel: (a) undifferentiated hESC

encapsulated in Matrigel showing characteristic cell morphology. (b) region of interest in

the enlarged region of (a). (c) hESC after 4 days of Matrigel encapsulation showing

neuron tubule formation with an enlarged region of interest. (d) hESC after 10 days in

culture exhibiting neuron tubule formation.
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Figure 3

A. C. 7.3 Figure 3 - hESC encapsulated within Matrigel of different sizes affecting

morphology: hESC encapsulated within Matrigels after 4 days (a, b) for a 25uL (a) and

100uL Matrigel scaffold (b), and after 10 days (c, d) for 25uL (c) and 100uL (d)

scaffolds. The size of the Matrigel scaffold impacts overall cell morphology and density.
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Figure 4

A. C. 7.4 Figure 4 - Germ layer staining of hESC encapsulated within Matrigel after 4

days in culture: (a) undifferentiated control cells, (b, c) nestin for ectoderm at 50x (b) and

200x (c) magnification, (d) a-Fetoprotein for endoderm at 200x, and (e) CD34 for

mesoderm at 200x. Cells show strong positivity for nestin relative to other germ layers.
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Figure 5

A. C. 7.5 Figure 5 - Neuronal staining of hESC encapsulated in Matrigel: (a) day 4 B3-

tubulin, (b) day 20 Soxl, (c) day 4 TuJ, and (d) day 10 MAP2. Cell stains show

positivity for neuronal markers localized in neuron tubules.
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Figure 6

A. C. 7.6 Figure 6 - Immunofluorescent and immunohistochemistry staining of hESC in

Matrigel: (a) immunofluorescent staining for DAPI (blue) and nestin (red) after 4 days in

culture, and (b) HIF-la after 4 days in Matrigel culture. Nestin staining shows distinct

clusters of neuronal marker positive staining, and HIF-l a localization suggests the

mechanism for neuronal differentiation in Matrigel.
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Figure 7
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A. C. 7.7 Figure 7- Flow cytometry of single cell hESC populations after Matrigel

culture: Flow cytometry results of (a) Nanog, (b) Oct4, (c) SSEA4, (d) MAP2, and (e)

nestin. Cell populations in each sample include unstained cells (black), undifferentiated

cells (blue), day 4 Matrigel encapsulated cells (green), and day 10 Matrigel encapsulated

cells (red). Each cell population includes only gated events and includes at least 10,000

counted cells.
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Appendix D: Chemical structures and predicted NMR

Figure 1: PLGA-PEG-Biotin and PLGA-PEG-Biotin structure

PLA-PEG-Biotm

PLGA-PEG-I

Figure 2: NHS, EDC, and Sulfo-NHS Structure
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Figure 3: Sulfo-NHS-Biotin and NH2-PEG-Biotin Structure
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Figure 4.: NH2-PEG-Biotin theoretical NMR
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Figure 5: PLGA-COOH Theoretical NMR
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Figure 6.: PLGA-PEG-COOH Theoretical NMR
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Figure 7: NH2-PEG-COOH Theoretical NMR
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Figure 9.: Biotin: Theoretical NMR
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Appendix E: Synthesis of PLGA-PEG-biotin
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Appendix F: Schematics of MRI contrast agent biomarkers
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Appendix G: Additional analysis of MRI relaxivity
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Appendix H: 4.7T MRI Imaging (in vivo)

Thoracic Lumbar
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AnDendix I: 9.4T MRI Imaging (in vivo)
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Appendix J: Spinal cord staining of TTC transport (ex vivo)
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Appendix K: Additional analysis of IHC and MRI transport
quantification

Immunohistochemistry
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Appendix L: Nanoparticle preparations to control size

Nanoparticle Preparation
Preparation Solvent Non-Solvent Polymer RPM Size(nm)
1 DMSO water PLA 1200 n/a

2 DMSO water PLGA 1200 124.6

3 DMSO water PLA 2000 n/a

4 DMSO water PLGA 2000 119.3

5 DMSO Ethanol PLA 1200 219.3

6 DMSO Ethanol PLGA 1200 278.9

7 DMSO Ethanol PLA 2000 222.7

8 DMSO Ethanol PLGA 2000 264.1

9 DMSO Methanol PLA 1200 92

10 DMSO Methanol PLGA 1200 98.4

11 DMSO Methanol PLA 2000 86

12 DMSO Methanol PLGA 2000 91.9

13 DMSO Isopropanol PLA 1200 355.6
14 DMSO Isopropanol PLGA 1200 392.6

15 DMSO Isopropanol PLA 2000 342.1

16 DMSO Isopropanol PLGA 2000 380.6
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Appendix M: Immunohistochemistry staining of TTC-
conjugated nanoparticles

30000

25000

20000

15000

10000

5000

0

mAb 25ugmL mAb 10ug/mL

49 0 KIk2cXI
O A;t~CL(a CU

KS

mAb lugimL

Monoclonal antibody: Roche mouse IgG for TTC
Secondary antibody: Alexa Fluor 488 Goat anti-mouse IgG (10ug/mL)

C 2008 Massachusetts Institute of Technology. All rights reserved.

no mAb

211



O 2008 Massachusetts Institute of Technology. All rights reserved. 212



Appendix N: Nanoparticle protein encapsulation and
conjugation
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Appendix O: Flow cytometry analysis of biotin binding
proteins
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Appendix Q: TTC nanoparticles binding to Prostate cancer
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Appendix R: TTC binding to neuroblastomas with polystyrene
nanoparticles
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Appendix T: Diffusion through hydrogels
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Appendix T: Cancer Stem Cells

Researchers have suggested that normal stem cells may become cancer

stem cells (CSCs) by either genotypic or phenotypic changes that could give rise

to tumors 221. They reason that normal stem cells share certain characteristics

with cancer cells, specifically, high proliferation rates and immortality.

Alternatively, it has been postulated that cancer stem cells arise from progenitor

cells that under normal conditions have a finite number of mitotic cycles, but

acquire the ability to self-renew. Regardless of the source of CSC (which is still

under debate and is a field of active research), investigators have identified a

number of CSCs that share stem cell characteristics from humans, including

hematopoietic 222,223, mammary 224, prostate225 , melanoma 226, and brain 227 228

Cells were isolated using florescence or magnetic techniques in these studies with

markers that have previously been shown to be highly specific for stem cells.

Many of these cell lineages were capable of forming solid tumors, and could both

provide new in vitro and in vivo models for cancer research and guide clinical

therapeutic interventions. These topics are actively being researched and may

provide insight into non-cancer applications such as neurodegenerative disease.
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