
Modeling by Example

by

Lucy Mendel

MASSACHUSEiiS INSTI JTTE. !, .CHt ,.Q y

NOV 13 2008

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2007

@ Massachusetts Institute of Technology 2007. All rights reserved.

Author.....
Departme'/of Electrical Engineering and Computer Science

August 11, 2007

Certified by
Daniel N. Jackson

Professor
Thesis Supervisor

Accepted by.........................
Arthur C. Smith

Chairman, Department Committee on Graduate Students

ARCHIVES

Modeling by Example

by

Lucy Mendel

Submitted to the Department of Electrical Engineering and Computer Science
on August 11, 2007, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Software developers use modeling to explore design alternatives before investing in the
higher costs of building the full system. Unlike constructing specific examples, construct-
ing general models is challenging and error-prone. Modeling By Example (MBE) is a
new tool designed to help programmers construct general models faster and without errors.
Given an object model and an acceptable, or included, example, MBE generates near-hit
and near-miss examples for the user to mark as included or not by their mental goal model.
The marked examples form a training data-set from which MBE constructs the user's gen-
eral model. By generating examples dynamically to direct its own learning, MBE learns
the concrete goal model with a significantly smaller training data set size than conventional
instance-based learning techniques. Empirical experiments show that MBE is a practical
solution for constructing simple structural models, but even with a number of optimizations
to improve performance does not scale to learning complex models.

Thesis Supervisor: Daniel N. Jackson
Title: Professor

Acknowledgments

I thank my advisor, Prof. Daniel Jackson, for supervising my research at CSAIL in the past

two years, and for introducing me to the fascinating area of formal methods. I thank Derek

Rayside for being an excellent mentor in this and previous research.

Contents

1 Introduction 13

1.1 Pictorial vs Textual 14

1.2 Specific vs General 15

1.3 Contribution 17

1.4 Overview 18

1.5 Technical Challenges 18

1.6 Inspiration 20

2 Overview 21

2.1 Direct File System Model Construction. 23

2.1.1 Object Model 23

2.1.2 Constraints 23

2.2 MBE File System Model Construction 26

2.2.1 Interactive Generalization . 27

2.3 Equivalence of User-Constructed and MBE-Generated Textual Models . 33

3 Learning 35

3.1 Definitions 35

3.2 Learning Algorithm 39

3.2.1 ModelExtraction 40

3.2.2 Model Generalization 44

3.2.3 Termination 51

3.3 Rationale 53

7

3.3.1 Prototypical Example 54

3.3.2 Grammar 55

3.4 Refinements 56

3.4.1 Generating a Prototypical Example 57

3.4.2 Multiple Prototypes 58

3.4.3 Learning Implications 59

4 Evaluation 65

4.1 Singly Linked List 65

4.2 Doubly Linked List (good prototypical example) 68

4.3 Trivial File System 72

4.4 Medium Complexity File System 78

4.5 Full Complexity File System 79

5 Related Work 89

5.1 Examples and learning 89

5.2 Prototypical concept description 90

5.3 Dynamic invariant detection 91

5.4 Mutation testing 92

6 Conclusion and Future Work 95

6.1 Future W ork 95

A Predicate Library 99

List of Figures

1-1 Gustave Eiffel's blueprint [14] for the Eiffel Tower 16

2-1 Information flow between MBE and the user in order for MBE to learn the

user's goal model 22

2-2 File system object model 24

2-3 File system constraints (incorrect model) 24

2-4 File system constraints (correct) . 26

2-5 Prototypical example for file system model 26

2-6 MBE's generated textual model for file system. Alloy declarations for the

mathematical predicates are given in table A.1 34

3-1 (a) Object model and (b) prototypical example for a simple tree structure .. 36

3-2 Object model for modeling a file system 37

3-3 Metaphorical example space for tree model 38

3-4 Phase 1 of the learning algorithm 39

3-5 Phase 2 of the learning algorithm 40

3-6 The grammar of type and relation expressions, where typename and

relation_name are types and relations defined by some object model . . 41

3-7 Predefined predicates for restricted file system example 42

3-8 Generated constrains for file system example with three predefined predicates 43

3-9 Mutated models from the initial file system model extracted in section 3.2.1 46

3-10 Object model for file system example containing two kinds of file system

objects, File andDir 58

4-1 Singly linked list object model 66

4-2 Singly linked list prototypical example 67

4-3 Initial model extracted from singly linked list prototype (figure 4-2 68

4-4 Singly Linked List goal model constructed by MBE 69

4-5 Doubly linked list object model 70

4-6 Good doubly linked list prototypical example 71

4-7 Initial model extracted from ceiling and floor prototype (figure 4-6 73

4-8 Ceiling and floor goal model constructed by MBE 73

4-9 Two reduced ceiling and floor goal models 74

4-10 Trivial file system object model 74

4-11 Trivial file system prototypical example 75

4-12 Better trivial file system prototypical example 75

4-13 Initial model extracted from trivial file system prototype (figure 4-11) . . . 77

4-14 Trivial file system goal model constructed by MBE 77

4-15 Medium complexity file system goal model constructed by MBE 78

4-16 Complex file system object model 81

4-17 Complex file system prototypical example 81

4-18 Fully complex file system initial model constructed by MBE 86

4-19 Possible goal model for fully complex file system 87

A-1 Alloy code to check whether acyclic implies reflexive or irreflexive 103

A-2 Graph of implications between predicates 103

List of Tables

1.1 Comparison of architectural modeling with software modeling and visual-

ization .

1.2 Comparison of models constructed by MBE. MBE interacts with users via

specific examples in order to construct the general model it outputs. . . .

2.1

2.2

2.3

Examples generated by MBE in the first round of interaction

Examples generated by MBE in the second round of interaction

Examples generated by MBE in the third round of interaction

3.1 If McjuG generates an example, E, then E is included or excluded depend-

ing on whether Gi and cj contain essential constraints or overconstraints .

3.2 Comparison of the number of constraints extracted into the initial model

for different prototypical examples. 197 constraints were generated overall

by applying 16 predicates to the file system object model . . .

3.3 Constraints and the marked examples they generated

. 60

Summary of MBE's learning time on different models 65

Summary of MBE's learning time on different models 66

Instances generated by MBE in the first round of interaction 67

Instances generated by MBE in the first round of interaction 71

Instances generated by MBE in the first round of interaction 75

Instances generated by MBE in the second round of interaction 77

Instances generated by MBE in the first round of interaction 82

Instances generated by MBE in the second round of interaction 83

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9 Instances generated by MBE in the third round of interaction 85

A. 1 Predicates from Alloy's graph and relation utilities modules 100

Chapter 1

Introduction

Modeling, or using representations of a system's essential features to communicate and

investigate properties of the full system, is a useful and widespread practice in science

and engineering. Architects use models to communicate building designs to clients; parti-

cle physicists and geologists use models to examine physical reality without expensive or

dangerous real-world experimentation; and molecular chemists use models to mimic the

behavior of molecules in a controlled environment.

Software developers also use modeling to explore design alternatives before investing in

the higher costs of building the full system. Software developers, architects, scientists and

engineers all require that models be precise, or accessible to deep and meaningful analysis.

A model that is ambiguous or unclear on any essential component of the real-world system

it represents causes confusion and error. Equally important is reducing the cost of model

construction, measured in terms of development time and model correctness.

A model's preciseness and cost are largely influenced by its representation. Improving

a model's precision may mean using a modeling language that is easily but precisely parsed

by mechanical analysis. Improving a model's development time and correctness is a more

open-ended challenge. One primary goal is to help the programmer not make errors while

constructing the model. In this case, the most influential feature of a model's representation

is whether the model is specific or general, and to a lesser extent whether the language is

pictorial or textual.

1.1 Pictorial vs Textual

The models of scientists and engineers are often pictorial; e.g., schematics, blueprints,

maps and graphical simulations. In the book, "Engineering in the Mind's Eye," Eugene

Ferguson argues that visual thinking not only enriches engineering, but is crucial to its suc-

cess [18]. Well known tools such as Matlab and SolidWorks provide textual interfaces that

aid in constructing pictorial simulations, graphs and drafts. Active Statics is one example

of a tool that provides an interactive pictorial interface to structural designs [1]. It is based

on graphic statics, a body of precise, pictorial techniques used by such masters as Antonio

Gaudi, Gustave Eiffel, and Robert Maillart to create their structural masterpieces. Pictorial

models capture the essential properties of systems compactly and precisely, making them

well suited for analysis, as well as straightforward to construct and read. Similarly, scien-

tists use pictures, graphs and small examples in research papers so that readers can quickly

identify the context of technical discussion.

Existing software modeling tools primarily use specialized textual notations (e.g., Alloy

[23], SMV [7], Spin [22], VDM, Larch and Z). A common problem with textual interfaces

is that the text must be translated into the developer's mental model. The textual difference

between what the developer meant to write and what they actually wrote may be small,

which exacerbates they provide insufficient feedback are inconvenient for detecting and

debugging errors. A particularly well known and significant problem is checking that noth-

ing bad happens in an overconstrained model. For example, we might be relieved to know

that a proton therapy machine model never overdoses patients, only to find out later that an

error in the model prevented the modeled machine from giving doses of any amount.

Overconstrained models mask errors, but detecting and debugging overconstraints is

difficult because subtle differences in text can have surprising effects, and people com-

monly forget to consider tricky corner cases. For example, what happens when two uni-

versally quantified variables, a and b, refer to the same element? Corner cases such as

these are difficult even for expert software modelers. Forgetting to handle the case where

two universally quantified elements were equivalent resulted in a bug in Alloy's [23] graph

utility module that prevented models of singleton connected graphs.'

Attempts to create diagrammatic programming tools have resulted in pictures that are

either complex, and thus difficult to construct, or simplistic, and thus uninteresting to an-

alyze (e.g., UML). According to Fred Brooks in No Silver Bullet, "Whether we diagram

control flow, variable scope nesting, variable cross-references, data flow, hierarchical data

structures, or whatever, we feel only one dimension of the intricately interlocked software

elephant" [19].

1.2 Specific vs General

The difficulty in modeling software systems results from a fundamental difference between

the models of software developers and architects. Software developers build systems that

specify many possible executions, and thus software models themselves must specify many

possible examples, or particular configurations of system states. A general model declares

which examples are included by the model and which are excluded. A general model for

star network topology is "all nodes, called spokes, are connected to a central node, called

a hub, and all communication between spokes goes through the hub." Three computers

connected to a router is an example of a star network topology, whereas three computers

connected to each other is not.

Architects, on the other hand, primarily construct specific models, or a single example

of a potential goal building. Indeed, an architect constructs multiple examples to explore

alternate designs for a single goal building, not to generalize a single design for many

possible buildings.

Constructing precise representations of specific examples is straightforward, whereas

constructing precise representations of general models is difficult. For example, Gustave

Eiffel's blueprint of the Eiffel Tower specifies the precise dimensions of each crossbar

'This bug was present but unidentified since at least 2004 when Alloy3 was released. The bug appeared
in two predicates, weaklyConnected and stronglyConnected, in a graph module provided with
Alloy. Why was the bug not found earlier? Perhaps users wrote their own connected predicates instead of
using the provided utility modules. Perhaps weaklyConnected and stronglyConnected were unnecessary for
the models being written, or singleton graphs, which the bug erroneously excludes, were excluded by other
constraints.

J~n.h$a~DeAAeMi.mtW 03)
*PsL4e)a$t~ea (flYI()

)bmus*kvscwts#rniWIEt#I2
4wn ApM~r 1w/fl . -, -

4 -

2u

I?

'S

ft 19k

---i- -- ------- V

Figure 1-1: Gustave Eiffel's blueprint [14] for the Eiffel Tower

16

Specific Example General Model
Precise Architect's model Programmer's linguistical model

Ambiguous Programmer's pictorial model

Table 1.1: Comparison of architectural modeling with software modeling and visualization

Specific Example General Model
Textual Returned by MBE

Graphical Constructed by MBE for users to mark

Table 1.2: Comparison of models constructed by MBE. MBE interacts with users via spe-
cific examples in order to construct the general model it outputs.

(figure 1-1). What would be the blueprint from which we could construct not only the Eiffel

Tower but also the Empire State Building, Sears Tower, Petronas Towers and Taipei 101?

One straightforward representation is to reproduce 4 sub-blueprints, each a blueprint for

a different tower, within the single general blueprint. Unfortunately, this representation is

undesirable, if not infeasible, for models that include numerous, or even infinite, solutions.

Information in a general model is compressed compared to specific models. Rather than

enumerating all of the included examples, a general model must contain abstractions that

identify key features shared among included examples. Because general models contain

abstractions, they are more complex than specific examples. Consequently, constructing

error-free general models is more challenging than constructing specific examples. Devel-

oping pictorial models that are not only general but also precise is extremely challenging.

1.3 Contribution

Programmers want a less error-prone and less time consuming interface than text for con-

structing precise, general models. Pictorial models can capture essential properties pre-

cisely and compactly for specific models, but the approach does not seem to work for the

general models required in software modeling (table 1.1). We developed a technique, Mod-

eling By Example (MBE), that separates the construction of precise, textual generalizations

from the user interface (table 1.2). Users of MBE interactively discriminate between pic-

torial examples as included or excluded by their mental model, from which MBE mechan-

ically constructs a precise, textual generalization that is equivalent to the user's goal.

1.4 Overview

Research on human learning has shown that examples are a critical component of learning

new skills [33] [32] [44] [26]. People not only prefer to learn from concrete examples over

models when given a choice [34] [26], but also learn faster and with more comprehension

because examples are easier to keep in working-memory and more motivating than abstract

representations [6] [33] [44].

Examples play two key roles in understanding and learning a model: prototyping and

generalizing. In the first role, a model is represented by a prototype, or ideal example,

against which new examples are compared to determine their inclusion or exclusion by the

model. Examples that are similar to the prototype are included by the model; examples

that are different are excluded. Representing a model by a prototype was first introduced in

Marvin Minsky's seminal paper on knowledge representation and "frames" [28].

In the second role, near-miss and near-hit examples define the model's boundary. A

near-hit is an included example that would be excluded if changed slightly; it lies just

inside the model's boundary. A near-miss is an excluded model that would be included

if changed slightly; it lies just outside the model's boundary. Near-miss learning was

introduced in Patrick Winston's classic book on artificial intelligence [43], and example-

based learning in general is a broad and well-researched area of machine learning with

growing successes.

1.5 Technical Challenges

In designing MBE we faced the following three technical challenges: obtaining a complete

set of examples; generalizing examples into a general model; and scaling the algorithm to

complex models.

A set of examples is complete with respect to a particular model if MBE can learn a

single model from the set. An incomplete set of examples specifies multiple models. MBE

must learn a particular model, and thus every "aspect" of the goal model's boundary must

be precisely determined. A boundary aspect corresponds to the small portion of a model

from which classes of near-hits or near-misses are generated. MBE determines, or learns,

a boundary aspect from a near-hit or near-miss generated by changing only that slight

portion of the model. Thus, MBE must generate at least one example per boundary aspect

to guarantee learning a single model.

Because MBE does not know the desired model, the examples it generates may be near-

misses or near-hits. MBE learns from the example only after the user has marked that the

desired model includes or excludes the example (near-hit and near-miss, respectively).

Thus, the challenge is in generating the most discriminatory examples to minimize the

number of examples viewed by the user. MBE uses repeated rounds of user interaction to

guide its generation of real corner cases and avoidance of clear-hits and clear-misses.

Translating multiple examples into a single general model is challenging. Although

listing all included examples defines the exact boundary of the model, we require a gener-

alization that is more compact. To translate an example into a model we extract a general

representation, or model, using the algorithm explained in section 3.2.1. The extracted rep-

resentation is useful if it includes the original example, as well as excludes all significantly

different examples. That is, the model should preserve essential properties of the original

example and exclude examples that lack these properties. Otherwise, MBE will learn little

from extracted models. Determining "significant differences" and "essential properties"

relies on assumptions that are difficult to obtain early in the learning process.

The model extracted from a single example is likely overconstrained; thus, the model

MBE returns is learned from many examples. An underconstrained model includes unde-

sirable examples; an overconstrained model excludes desirable examples. Avoiding over-

constrained and underconstrained models is a classic problem in example-based learning,

and relies on obtaining a training data-set that sufficiently explores the state space. That is,

the learning algorithm requires a complete set of examples.

Unsurprisingly, the usefulness of MBE with respect to running time and comprehensi-

bility is inversely related to the range of models it can express. Increasing the complexity

of expressible models decreases the tool's efficiency. Thus, we make a trade-off that max-

imize the range of practical models we can express, while minimizing the language and

grammar complexity used to describe the models. Since MBE must generate a complete

set of near-hits and near-misses, the algorithm is at least linear in the size of the general-

ization's boundary. Scalability is therefore a primary concern.

Our design chooses optimizations that increase the running time while still guaran-

teeing that the correct model will be found if it is expressible. One particularly effective

optimization is to dynamically generate constraints as needed. For example, MBE initially

generates constraints by applying properties to root types in the object model; only when

some constraint, ct, is not held by an included example are constraints created by applying

the property to subtypes of t. By learning fine grained constraints only when necessary,

learning is faster in practice without sacrificing the models that can be learned.

1.6 Inspiration

Using specific examples in place of conventional textual or general interfaces in not new.

Prototype-based programming languages such as Self [37] and Subtext [12] provide an

interface in which object examples are copied with small modification from prototypical

objects. Subtext provides a radical WYSIWYG-like programming interface in which the

program code, which consists of a tree of examples, is constantly being executed [12].

Like MBE, Subtext separates the tool's representation from the interface. Edwards's work

on example centric programming provides automated IDE support for the use of examples

in programming [13].

MBE's learning algorithm, and particularly the generalization phase, is inspired by

Winston's work on near-misses and Seater's work on non-example generation [36] [42]

[43]. Seater uses near-miss and near-hit examples to explain the role of a constraint with

respect to the solution set for a particular model, whereas MBE learns the desired model's

boundary by using near-miss and near-hit examples to classify which constraints are es-

sential or overconstraints.

Chapter 2

Overview

We built Modeling by Example (MBE) to help programmers construct their intended mod-

els faster and with more confidence. Figure 2-1 summarizes how MBE learns a goal model.

To begin the learning process, the user provides an object model, which is a declaration of

the structure of examples included by a model (e.g., types and relations), and a prototypical

example, which is a user-generated example included by the model (phase I). Next, MBE

generates examples and displays them to the user. The user marks each example as in-

cluded or excluded by their goal model (phase II). MBE refines its internal working model

based on what it learns from the user-marked examples. Iterations of model refinement and

user interaction continue until MBE terminates the process and returns the learned model

(phase III).

MBE is built on top of Alloy [23], a lightweight model finding tool. The Alloy Analyzer

takes a model, in this case a logical formula, written in the Alloy Language and attempts

to find a binding of variables to values that makes the formula true. Using Alloy one can

mechanically verify complex structural constraints and behavior.

The rest of this chapter demonstrates two approaches to model construction, first using

a conventional modeling tool to construct the model directly (section 2.1), and then using

MBE to construct the model indirectly (section 2.2). Both demonstrations construct the

same file system model, specified below.

In the example file system model, there is one kind of file system object, called Dir,

which corresponds to a directory. Directories contain other directories via DirEntry

phase I.

phase II.

phase III.

Figure 2-1: Information flow between MBE and the user in order for MBE to learn the
user's goal model. To begin the learning process, the user provides an object model, which
is a declaration of the structure of examples included by a model (e.g., types and relations),
and a prototypical example, which is a user-generated example included by the model
(phase I). Next, MBE generates examples and displays them to the user. The user marks
each example as included or excluded by their goal model (phase II). MBE refines its
internal working model based on what it learns from the user-marked examples. Iterations
of model refinement and user interaction continue until MBE terminates the process and
returns the learned model (phase III)

objects. The entries relation maps each Dir to zero or more DirEntry. Each

DirEntry has one name of type Name, and one content of type Dir. The entries

and content s relations are constrained to conform to a tree data structure, with a single

root directory and no cycles. However, directories can be aliased; thus, a Dir object might

be contained by multiple DirEntry. Finally, Name objects describe local names. The

full path to some Dir, d, is formed by concatenating the names of DirEntry between

the root directory and d.

2.1 Direct File System Model Construction

To construct the file system model directly, the user specifies, in this case in Alloy, an object

model and constraints.

2.1.1 Object Model

An object model is a declaration of the types and relations that may exist in examples

included by a model. The file system model contains three types: Dir; DirEntry; and

Name; and three relations: entries; contents; and names.

Dir (directory) objects contain DirEntry (directory entry) objects via the entries

relation. Each DirEntry object contains one Name object and one Dir object via the

name and contents relations, respectively (figure 2-2).

2.1.2 Constraints

Next, the user constrains the file system model (figure 2-3).

Coming up with these four file system constraints is not trivial. In fact, the model is

incorrect in two ways.

First, only examples with a single directory satisfy the model; thus, the model is over-

constrained. We detect this bug by generating examples from the model (using Alloy) and

observing that no examples with more than one Dir appear. To verify this observation we

can add an additional constraint to the model so that it only includes examples with more

ext

entries coni

Figure 2-2: File system object model

- - no directory contains itself
all d: Dir I d !in d. ̂ (entries. contents)

- - rooted
one root: Dir Dir in root.* (entries. contents)

- - directories with the same parent have different names
all del,de2: DirEntry
del.-entries = de2.-entries => del.name !=de2.name

- - directory entries are unique
all de: DirEntry one de.- entries

Figure 2-3: File system constraints (incorrect model)

than one Dir. Alloy then tells us that no examples satisfy the model.

Determining the cause of the bug is less straightforward. The third constraint excludes

all examples with non-empty entries relations because the implication fails when del

and de2 reference the same element. To correct this bug we add an equality check to the

implication

- - directories with the same parent have different names

all del,de2: DirEntry I

del != de2 and del.'-entries = de2.-entries =>

del.name !=de2.name

Second, examples with DirEntry containing multiple Dir are falsely included. Be-

cause the first bug caused the model to be overconstrained, it masked the presence of the

second bug; the model is underconstrained because it includes undesirable examples.

Like last time we use example generation and additional constraints to detect the pres-

ence of this bug. We determine the presence of this bug by generating examples included

by the model and observing undesirable examples. We could also add constraints to the

model so that it only includes these undesirable examples. We would then check that no

example satisfies the extended model; since some would, we would know the model is

underconstrained.

To correct the model we add constraints that exclude the undesirable examples

- - names and contents are functional

all de: DirEntry I one de.name and one de.contents

Although identifying and fixing the bugs in the file system model is simple, the variety

and complexity of bugs increases as the number of interacting model elements increases.

Bugs are identified using a test suite of mutated models. Models that are expected to

generate some examples identify overconstraint bugs, while models that are expected to

generate no examples identify underconstrained bugs. Fixing bugs, on the other hand, is

frustrating because the user already knows which examples he wants the model to include

and excluded, but finding the offending constraints and determining the corrections requires

detective work and insight.

- - no directory contains itself
all d: Dir I d !in d. ^ (entries.contents)

- - rooted
one root: Dir I Dir in root.* (entries.contents)

- - directories with the same parent have different names
all del,de2: DirEntry
del != de2 and del.-entries = de2.-entries =>
del.name !=de2.name

- - directory entries are unique
all de: DirEntry I one de.- entries

- - names and contents are functional
all de: DirEntry I one de.name and one de.contents

Figure 2-4: File system constraints (correct)

2.2 MBE File System Model Construction

To construct a file system model using MBE the user provides the same object model as in

the conventional modeling demonstration (figure 2-2), as well as a prototypical, or standard,

example of a file system (figure 2-5).

entries

I contents narne

Figure 2-5: Prototypical example for file system model

2.2.1 Interactive Generalization

MBE uses the object model and prototype to generate interesting examples. In the first

interaction round MBE generates 10 examples (tables 2.1). MBE takes 9.92 seconds to

initialize using the prototypical example and object model, and 35.37 seconds to generate

and display all 10 examples on a dual 2 GHz PowerPC G5 machine with 4GB of RAM.

The interaction is similar to if the user asked a modeling expert to construct a file system

model. After looking at the prototypical example the expert might ask, "The entries

relation is functional in the prototype, but is that essential?" This is what MBE asks by

generating the eighth example in the first interaction round (table 2.1). The user marks that

example as included, from which MBE learns that entries is not functional. The last

example MBE generates in the first interaction round (table 2.1) is equivalent to an expert

asking the user whether contents is also not functional. The user marks this example as

excluded, since contents is functional.

After the user marks all 10 examples, MBE refines its internal model and, in 22.47s,

generates three examples in the second interaction round (table 2.2). MBE generates ex-

amples that ask more complex questions in later rounds. The second example in round two

queries the user on whether directories can be aliased. The users marks this example as

included, permitting Dir to share names.

After the user marks all 3 examples in the second interaction round, MBE generates, in

11.41s, one more example (table 2.3). MBE refines its model and then reaches a termina-

tion condition in 5.40s. The total running time of the algorithm, excluding the time it takes

the user to mark examples, is 84.57s. All boundary aspects of its internal model have been

corrected and verified; thus, it returns the textual goal model it constructed (figure 2-6).

Table 2.1: Examples generated by MBE in the first round of

interaction

Reason why example is in-

cluded or excluded by goal

model

Excluded: Dir[O] contains it-

self

Excluded: contents is not

total (DirEntry[0] does

not contain some Dir object)

Excluded: names is not to-

tal (DirEntry [0] does not

contain some Name object)

Excluded: names is not sur-

jective (Name [0] is not con-

tained by some DirEnt ry)

Continued on Next Page...

Example

I entries

I name

entries

I contents

Table 2.1 - Continued

Excluded: names is not func-

tional (DirEntry[O] con-

tains two Name objects)

Included: Directories with

different parents may share

the same name

Example

I entries

*ontents I nam\e name

I entries

contents V\ name

Continued on Next Page...

name

Table 2.1 - Continued

Table 2.2: Examples generated by MBE in the second round

of interaction

Reason why example is in-

cluded or excluded by goal

model

Excluded: entries is not

injective (DirEntry [1] is

contained by multiple Dir)

Included: Directories may be

aliased

Example

Continued on Next Page...

--- ~---

--- ~----

Table 2.2 - Continued

Reason why example is in-

cluded or excluded by goal

model

Excluded: Sibling directo-

ries share the same name

(Dir[O] and Dir[1] are

both Name [0] /Name [0])

Example

Table 2.3: Examples generated by MBE in the third round of

interaction

2.3 Equivalence of User-Constructed and MBE-Generated

Textual Models

MBE generates a textual model (figure 2-6) that is behaviorally equivalent to the model

written by the user in section 2.1. The wording of constraints in each model may be differ-

ent, but every example that is included (excluded) by one model is included (excluded) by

the other. A side-effect of MBE's process is a mutation-complete test suite for the model.

The test suite is mutation-complete in that there is a test case for all boundary aspects

identified by extracting an initial model from the prototypical example.

ExampleReason why example is in-

cluded or excluded by goal

model

ame

Included:

(functional, contents)

(functional, name)

(innerinjective, ternary[entries, name])

(injective, entries)

(surjective, entries)
(rootedOne, ternary[entries, contents])

(acyclic, ternary[entries, contents])
(total, contents)

(total, name)

(surjective, name)

Figure 2-6: MBE's generated textual model for file system. Alloy declarations for the
mathematical predicates are given in table A. 1

Chapter 3

Learning

In this chapter we explain how modeling by example works. We start by defining the

components over which learning occurs, followed by an explanation of the learning process

itself. We conclude by rationalizing the tradeoffs made.

3.1 Definitions

The model that MBE constructs is a conjunction of constraints on the types and relations

declared in the object model provided by the user.

A constraint is the application of a predicate to types and relations. For example, if

the object model defines a tree (figure 3.1 (a)), then

(acyclic, children)

indicates the constraint that the children relation satisfies the acyclic predicate. MBE has

16 basic graph and relation predicates from which it generates constraints for a particular

object model (table A.1).

Using an overloaded form of the acyclic predicate, we can apply the acyclic predicate

to a type expression, such as non-rooted nodes

(acyclic, children, node - root).

This means that the root node may have self-edges, however all other nodes are not involved

in cycles.

hildren hildren

~,,p. "
hiliren

fxtends [children
Ixends

(a) (b)

Figure 3-1: (a) Object model and (b) prototypical example for a simple tree structure

To express interaction among relations and types we apply a predicate to an expression

over relations and types. For example, if the object model defines a file system (figure 3-2),

then

(symmetric, parent + entries.contents)

indicates the constraint that parent and the relational join of entries and contents to-

gether satisfy the symmetric predicate. Combining this constraint with constraints against

cycles in parent or entries, content s, and we constraint examples such that if di-

rectory a contains directory b (through entries . contents), then a is also b's parent.

If our model included multiple kinds of file system objects, such as Files and Dirs,

and only Dirs have parents, then we would have to restrict the range of the type ex-

pression

(symmetric, parent + entries.contents :> Dir).

MBE interacts with the user via examples. An example is a particular mapping of vari-

ables to atoms (elements of a type) and tuples (elements of a relation) according to some

object model. A prototypical example is an ideal example that satisfies the user's goal

model. In particular, it demonstrates a lack of compliance to undesirable models. For ex-

II

mscontents

antries

extends xtends

a rent

Figure 3-2: Object model for modeling a file system

ample, if an object model for a tree contains the type node and the relation children (fig-

ure 3.1 (b)), then a prototypical example might be node = {r, cl, c2 , g} and children =

{ (r, C1, (r, (r), (cl, g) } (figure 3.1). This example demonstrates that the children relation

is acyclic, rooted, and injective, which are properties of a tree structure, not a linked list or

ring.

An example that showed only a single node atom or ten nodes in a line is not a proto-

typical example. Although these examples are included by the model, the line example first

appears to be a more restricted list structure and the singleton trivially satisfies predicates

of many structures because the relation is the empty set. Because each example also holds

for other models, neither is a good prototypical example. The prototype holds for as few

models as possible. Conceptually, if we consider the space of all examples in the universe,

the prototypical example is at the center of the examples included by the model and is not

included by any model except for strict supersets (figure 3-3).

A marked example is an example with an additional tag indicating whether it is in-

cluded or excluded by the goal model. Like the object model, the markings on an example

are supplied by the user. Marked examples are the supervised training data set that MBE

uses to learn the goal model.

/

names
~

Figure 3-3: Metaphorical example space for tree model. The prototypical tree example,
P, is farthest from the boundary of the tree model and is not included by the ring or list
models.

phase I.

Figure 3-4: Phase 1 of the learning algorithm

3.2 Learning Algorithm

The user initiates learning by providing a object model of their goal model. MBE learns

the goal model in the following three phases:

1. An initial model is extracted from the prototype (figure 3-4).

2. The extracted model is iteratively generalized using both included and excluded ex-

amples (figure 3-5).

3. The learning process is terminated when the user's goal model is either found or

deemed inexpressible.

The rest of this section uses the file system model from section 2.2 as a running example

at the end of each section. The complete learning process on this example is explained in

section 4.4.

phase 11.

Formula

Figure 3-5: Phase 2 of the learning algorithm

3.2.1 Model Extraction

The first phase of learning is to generate constraints from the user's object model, and then

extract an initial model from a user-provided prototypical example. The learning algorithm

will work on any included example, however a prototypical model yields the most efficient

learning process (section 3.3.1).

Constraint Generation

MBE generates constraints from an object model in two steps. First, all combinations of

relations and types, called relation expressions and type expressions, are generated (figure

3-6). Then, all combinations of relation and type expressions are applied to all predefined

predicates, which yields constraints. Since MBE learns from examples that are directed

graphs, it has 16 predefined predicates taken from the graph and relation utility models that

come with Alloy (table A. 1).

Constraint generation is not straightforward. MBE's initial knowledge is in terms of

predicates, which are model-independent properties, from which MBE generates model-

dependent constraints. Increasing the variety of models that MBE can learn requires in-

creasing the variety of constraints MBE generates. However, in generating some particular

type_expression ::= type_name

I typeexpression type_op type_expression

type_op + I-

relation_expression ::= relation_name

I relation_expression relation_op (relation_expression)

I typeexpression <: relation_expression

relation_expression :> type_expression

relation_op ::= + - I N I

Figure 3-6: The grammar of type and relation expressions, where type_name and
relation_name are types and relations defined by some object model

constraint necessary to express some model, MBE will also generate dozens of unnecessary

constraints, many of which will be extracted into the initial model and must be removed

by the generalization phase. Thus, increasing the expressiveness of the learning algorithm,

with respect to the kinds of learnable models, greatly increases the cost of learning.

In the first step of constraint generation, MBE generates all non-trivial and non-redundant

type expressions and relation expressions. Trivial expressions occur when the relation or

type expression equals the empty set; e.g., r - r or t - to - t1 , where to and tl are the

only subtypes of t. Similarly, we only apply type operations that yield possibly non-empty

sets; e.g., r.s is only generated when the intersection of r's range and s's domain may be

non-empty. Redundant expressions occur when equivalent sets are described by different

expressions; e.g., r + s and s + r, or t - to and tl, where to and t, are the only subtypes of

t.

In the second step of constraint generation, each relation and type expression combina-

tion is applied, if applicable, to each predicate to yield a constraint. All constraints are gen-

erated except for redundant and unlikely constraints. Redundant constraints are constraints

that are behaviorally equivalent; e.g., (acyclic, r) and (acyclic, -i r), (acyclic, r1 .r2) and

(acyclic, ri + r 2) or (injective, r) and (functional, - r).

Unlike generating expressions, we do not know if a constraint will be trivially satisfied

or unsatisfied, since that depends on the constraints in the goal model. However, we could

apply domain specific knowledge to exclude constraints that are likely unnecessary for

expressing a user's goal model (chapter 6). One optimization that yields the same set of

expressible models as brute force and does not require that the learning algorithm backtrack

is to dynamically generate constraints on subtypes in the object model. That is, MBE

initially generates constraints by applying predicates to root types in the object model.

Only when some constraint, ct, is not held by an included example are constraints created

by applying the predicate to subtypes of t. By constructing fine grained constraints only

when necessary, learning is faster in practice without sacrificing the models that can be

learned.

Figure 3-7: Predefined predicates for restricted file system example

acyclic: no element contains itself

functional: all elements contain at most one element

symmetric: for any two elements, a and b, if a points to b, then b points to a

Constraint Generation For File System Example For learning the file system model,

suppose MBE has 3 predefined predicates (figure 3-7). MBE generates three constraints

from the functional predicate since each declared relation could be functional. Unlike func-

tional, the acyclic predicate only makes sense when the range and domain of the relation

are the same type. Thus, only one constraint is generated from the acyclic predicate. Sim-

ilarly, one constraint is generated from the symmetric predicate. This yields a total of 5

generated constraints (figure 3-8).

Extracting an Initial Model

MBE mechanically extracts an initial model from the prototypical example. The initial

model is a conjunction of all constraints that the prototypical example individually satis-

fied.

Figure 3-8: Generated constrains for file system example with three predefined predicates

(acyclic, entries.contents) - no Dir contains itself

(functional, name) - all DirEntry have at most one name

(functional, contents) - all DirEntry have at most one contents

(functional, entries) - all Dir have at most one entries

(symmetric, entries.contents) - for two Dir, a and b, if a contains b then b
contains a

Because the learning process iteratively refines the initial model, the learning speed is

greatly impacted by the choice of initial model. MBE reduces the size of the initial model

by using dynamic constraint construction. Further refinements on the initial model are

explain in section 3.4.2.

Dynamic Constraint Construction MBE reduces the size of the initial model by dy-

namically generating constraints on subtypes in the object model. That is, MBE initially

generates constraints by applying predicates to root types in the object model. Only when

some constraint, ct, is not held by an included example are constraints created by applying

the predicate to subtypes of t. By constructing fine grained constraints only when neces-

sary, learning is faster in practice without sacrificing the models that can be learned.

Extracting an Initial File System Model MBE tests whether the prototype (figure 2-5)

satisfies a model containing a single constraint. This test is performed for all generated

constraints (figure 3-8).

The prototypical example satisfies all of the listed constraints except for (symmetric,

entries.contents); thus, the extracted initial model is the conjunction of the following

constraints

(acyclic, entries.contents)

(functional, name)

(functional, contents)

(functional, entries).

3.2.2 Model Generalization

The second phase of learning is to generalize the initial model. Generalization is required

because the initial model may overfit the prototypical example(s). Overfitting occurs when

a predicate that is true for one included example is false for another included example. In

the running file system example from section 3.2.1, the initial model contained the over-

constraint, (functional, entries). Although the prototype satisfies this constraint, a file

system example with a root directory contain two directories does not. The overconstraint

happened to be true for the prototypical example, but it is not essential or invariant to all

included examples. If the overconstraint is not eliminated, then MBE's model is overcon-

strained with respect to the goal model.

To eliminate overconstraints MBE generalizes the model by generating examples for

the user to mark, thereby forming a supervised training dataset over which MBE learns the

goal model.

Obtaining Supervised Training Data

MBE generates examples that are different from both each other and the prototypical ex-

ample in order to generalize the model using as few generated examples as possible. Unlike

the prototypical example, which exhibits standard, or central, characteristics of the model,

generated examples are near the boundary of the model, which is the part of the model

MBE is least confident is right. Included examples that would be excluded were their con-

straints slightly modified are called near hits; excluded examples that would be included

were their constraints slightly modified are called near misses [36]. Thus, MBE obtains

a supervised training data set by generating near hits and misses for the user to mark as

included or excluded by the goal model.

If MBE were to generate all near hits and misses upfront for the user to mark, then

information obtained by initial marks may be redundant with later marks. In order to

minimize the size of the training data set supervised by the user, we employ an iterative

learning process that maximizes what is learned from each marked example.

Generalization Algorithm

MBE attempts to learn the goal model using a relatively small training data set. Even with

an efficient UI, we would like the user to mark as few examples as necessary. Conventional

example-based learning techniques statistically generalize a model and thus rely on training

data sets of hundreds or thousands of examples. The main difference between our learning

algorithm and other instance-based learning techniques is that our algorithm dynamically

constructs its training data set based on what it has learned so far. In this respect, our

algorithm is similar to techniques for mutation testing.

MBE uses mutation to learn a formula: the generalization phase of MBE's learning

process creates n mutant formulas from an initial formula of n constraints, and then tries

to distinguish mutants that are real faults, which indicates the mutation of an essential

constraint, from mutants that are semantically equivalent to the desired formula, which

indicates the mutation of an over-constraint.

Our approach is to systematically determine for each constraint in the initial model

whether it is essential to the goal model or an overconstraint. Only when MBE lacks

information necessary for determining the role of a constrain does it generate the near hit

or near miss example for the user to mark.

Overconstraints To learn which constraints of the initial model are overconstraints MBE

tests each one. MBE creates n models, Mc,, M , , Mn, where n is the number of

constraints in the initial model, M, and

M = M \ {ci} U {-ci} where 1 < i < n and ci E M.

For each Mc, MBE finds an example, I, that satisfies Mc,. If the user marks I as

acceptable then ci must be an overconstraint. Thus, MBE generalizes M to M - {ci}.

We generalize the process of learning overconstraints with the following overconstraint

detection rule:

If a mutated model generates an included example, then the negated constraints

are overconstraints.

Detecting Overconstraints in File System Example In the file system example from

section 3.2.1, the mutated models are constructed by negating each constraint in the initial

model (figure 3-9).

Figure 3-9: Mutated models from the initial file system model extracted in section 3.2.1

M(acyclic,entries.contents) = -(acyclic, entries.contents) A

(functional, name) A

(functional, contents) A

(functional, entries)

M(functional,name) =(acyclic, entries.contents) A

-(functional, name) A

(functional, contents) A

(functional, entries)

M(functional,contents) =(acyclic, entries.contents) A

(functional, name) A

-7(functional, contents) A

(functional, entries)

AM/(functional,entries) =(acyclic, entries.contents) A

(functional, name) A

(functional, contents) A

--(functional, entries)

An example generated from M(functional,entries) will contain a directory with more than

one children. Such an example is acceptable to a user, and thus marked as included, from

which MBE will learn that (functional, entries) is an overconstraint.

Once an overconstraint is identified MBE removes it from the working model. In this

case, the presence or absence of (functional, entries) prevents the inclusion of goal ex-

amples; thus, MBE removes (functional, entries) from the working model.

Essential Constraints On the other hand, if examples generated from a mutated model,

McA, are excluded, then ci must be essential.

Learning essential constraints is governed by the essential constraint detection rule:

If a mutated model generates an excluded example, then the negated constraint

is essential.

Detecting Essential Constraints in File System Example In the file system example,

no included example satisfies M(acyclic,entries.contents). All examples in which there exists

some directory that contains itself is not an example of a file system. Thus, M(acyclic,entries.contents)

is not an overconstraint, but instead is an essential constraint in the goal model.

Redundant Constraints In addition to being essential or overconstraints, constraints can

also be redundant with other constraints in the model. A redundant constraint is implied

by a subset of other constraints in the model. If cj is redundant with a set of constraints,

Cj, then Ci -= cj, which we can rewrite as Ci A --cj, where we expect C, A -7cj to be

unsatisfiable. Therefore, when a mutated model, Mc,, satisfies no example it is because cj

is redundant with a subset of other constraints, Ci, in Mcj.

Learning redundant constraint is governed by the redundant constraint detection rule:

If a mutated model generates no examples, then the negated constraints are

redundant with non-negated constraints in the model.

Detecting Redundant Constraints in File System Example Suppose we expand the

universe of predicates in the file system example from section 3.2.1 to include irreflexive

(no self-loops). The initial model, M, now contains the constraints

(acyclic, entries.contents) A

(functional, name) A

(functional, contents) A

(functional, entries) A

(irreflexive, entries. contents)

The mutated model M(irreflexive,entries.contents) generates no examples because (acyclic,

entries.contents) implies (irreflexive, entries.contents). All acyclic graphs neces-

sarily contain no self-loops. Thus, (irreflexive, entries.contents) is a redundant con-

straint.

Similarly, if predicates were added for weaklyConnected (all elements are reachable

from any other element by following the specified relation in either direction) and roote-

dOne (all elements are reachable from one root element), then the initial model would

contain the redundant constraint (weaklyConnected, entries.contents), since all rooted

graphs are necessarily weakly connected.

In this version of the file system example, the presence of redundant examples is harm-

less. A model with redundant constraints is behaviorally equivalent to a model without

redundant constraints. That is, both models include and exclude the same examples.

Whether MBE should remove redundant constraints is tricky. Redundant constraints

clutter the model, making it more difficult for users to understand and extend the goal model

returned by MBE. However, we cannot assume that redundant constraints are implied by

essential constraints.

If an overconstraint implies another overconstraint, then both constraints must be re-

moved from the model. In the file system example from section 3.2.1, this might occur if

the prototypical example were a single directory. Then the extract model would include all

constraints, including the overconstraint (complete, entries.contents), which implies

the overconstraint (symmetric, entries. contents).

On the other hand, if an overconstraint implies an essential constraint, then the redun-

dant constraint must not be removed from the model, and in fact will not be redundant once

the overconstraint is removed. In the complex file system example from section 3.4.2, this

would occur if the initial model contains the overconstraint (complete, entries.contents),

which implies the essential constraint (symmetric, entries.contents + parent :> Dir).

Since a redundant constraint may be an overconstraint or essential, it is crucial to de-

velop a strategy for distinguishing these two cases.

A Priori Lookup Table Some predicates always imply other predicates when applied to

the same relation and type (chapter A). Thus, MBE uses a static lookup table of these

predicates from which it can check whether some constraint, ci, implies another constraint,

In order to test the role of cj, MBE constructs a model with cj negated and ci removed.

MBE determines ci via the lookup table. Whenever MBE negates some constraint, cj, it

uses the lookup table to find all constraints, Ci, that imply cj and removes them from the

model. This enables MBE to generate an example for the user to mark so that it can learn

the role of cj.

Using a Lookup Table in the File System Example Using a priori knowledge in the

file system example in section 3.4.2 allows MBE to detect that

(symmetric, entries.contents + parent :> Dir)

is an overconstraint immediately. Whenever

(symmetric, entries.contents + parent :> Dir)

is negated, (complete, entries.contents) is temporarily removed from the mutated model.

However, for this technique to work all implications among constraints have to be

foreseen before knowing the object model. That is, we must determine potential impli-

cations among constraints knowing only how predicates interact. Unfortunately, multi-

ple relations can interact across type hierarchies to create redundant constraints. For ex-

ample, when negating (symmetric, entries.contents), how does MBE know to negate

(complete, parent) but not (complete, name)? Sometimes a handful of constraints or a

dozen imply other constraints. Such complex relationships cannot be determined without

an intelligent understanding of the model.

Thus, MBE uses a lookup table as an optimization rather than a solution. The solution

is to figure out implications between constraints on the fly.

Dynamically Determining Implications MBE uses a guess-and-check technique to dy-

namically determine the implication's antecedent. MBE guesses some set of constraints, G,

that might imply cj, the redundant constraint. MBE then creates a mutated model, Mc0 UG,

with cj negated, and all of the constraints in G negated, as well. If McjuG generates no

examples, then G does not imply cj and the guess was wrong. MBE keeps guessing until

MUGc generates examples, which indicates that G implies cj. By systematically guessing

all possible G of size n before guessing G of size n + 1, MBE ensures that the found G

contains no unnecessary constraints.

The goal of this process is to determine whether cj is an overconstraint or essential.

Since cj is redundant with G, the role of cj is dependent on whether G contains only es-

sential constraints, only overconstraints or a mix of both (table 3.1). Note that essential

constraints by themselves cannot imply an overconstraint, nor overconstraints by them-

selves imply an essential constraint. However, a mix of essential and overconstraints may

imply either.

Table 3.1: If MjUG generates an example, E, then E is included or excluded depending on
whether Gi and cj contain essential constraints or overconstraints

G contains ... cj is an essential constraint cj is an overconstraint
both essential and overconstraints E is excluded E is excluded

overconstraints (impossible) E is included
essential constraints E is excluded (impossible)

If the examples generated from M~-cG are excluded, then at least one constraint in cj UG

is essential. If MBE knows that all of the constraints in G are essential, then it concludes

that cj is essential, too. However, if the role of any constraint in G is unknown, then G

may contain an overconstraint, and thus cj may be an overconstraint. Thus, MBE cannot

be certain that cj is essential or an overconstraint. Instead, it continues the generalization

process to determine the role of constraints in G before re-attempting to determine the role

of cj.

On the other hand, if Mc,-G generates included examples, then cj and all of the con-

straints in G are overconstraints. All of the generated examples are included because all

essential constraints are still present. In this case, MBE can mark both cj and all of the

constraints in G as overconstraints.

3.2.3 Termination

MBE terminates the generalization process when any of the following conditions are met:

1. All constraints in the inital model have been classified into essential, overconstraint

or redundant roles.

2. The learning process has reached a fix point but the roles of some constraints are

unknown (section 3.2.2). The remaining unknown constraints are either essential or

redundant with essential constraints.

3. The initial model generates an excluded example or the algorithm fails to make

progress, indicating that the goal model is inexpressible because essential constraints

are absent.

4. Inconsistencies in constraint determination indicate that the goal model is inexpress-

ible.

The rest of this section explains each of the termination conditions in turn.

Condition I The first condition is a straightforward execution of the algorithm and is

obvious to detect.

Condition II The second condition occurs because the learning process is unable to dis-

tinguish between constraints that are essential and constraints that are redundant with essen-

tial constraints until all overconstraints have been removed. Let EC be the set of constraints

that are redundant with essential constraints. In order to remove the redundant constraints

MBE guesses a subset of EC, ECE, and tests whether E U ECE is equivalent to E U EC.

E U EC is a correct model based on the supervised training data set, so MBE removes

constraints from EC so long as it does not change the behavior of the model. Thus, MBE

removes constraints while

Eu EC - EU ECE.

holds. If the test holds, then the constraints in EC - ECE are redundant with essential

constraints and can be removed. Otherwise, some constraint in EC - ECE is essential,

although MBE does not know which one. MBE continues guessing until all constraints

have been tested.

Termination in Linked List Example Suppose MBE is learning a linked list model with

a single relation, next, linking nodes. After a number of generalization rounds (explained

in detail in section 4.1), the end model contains the following five constraints

(total, next)

(injective, next)

(surjective, next)

(functional, next)

(rootedAll, next)

MBE learns that (rootedAll, next) is essential, but negating any of the other four con-

straints generates no examples. The other four constraints are implied by each other and

(rootedAll, next), and thus could be essential or redundant. When (total, next) and

(injective, next) are negated, then negating any of the other constraints yields a model

that generates excluded examples.

This indicates that (total, next) and (injective, next) are redundant. MBE constructs

Msb, which is M with (total, next) and (injective, next) removed, and tests whether the

two models include and exclude the same examples (Msub e Mend). As expected they

do. The constraints (total, next) and (injective, next) are redundant, so MBE returns the

most reduced form of the goal model, Mub.

Condition III The third condition is detected during the first two phases of the learning

process. Once an initial model is extracted from the prototypical example, all examples

satsified by the initial model are generated and given to the user to mark. If any of those

examples are excluded then MBE immediately knows that there exists some essential predi-

cate that is not in the available language. Because the model is overconstrained, the number

of examples the user must view is small. Of the five models we evaluated, the initial models

generated 1-4 examples.

Condition IV The fourth condition is detected when MBE finds an inconsistency in the

role fulfilled by some constraint. Another way to spot the inconsistency is to monitor the

following learning invariant:

The intersection of positive constraints in all models that satisfy some included

example satisfy no excluded example.

The positive constraints in all models that satisfy some included example are at least the

essential constraints, thus satisfying an excluded example implies that there exists an essen-

tial constraint not in expressed in the language. That is, all models are underconstrained.

The missing essential constraint must be an absent predicate or else it would have been

included in the initial model. Because the initial model is underconstrained, the learning

process will be unable to find the goal model.

3.3 Rationale

This section rationalizes how the learning algorithm works and the tradeoffs made.

3.3.1 Prototypical Example

The learning process starts with a prototypical example to provide a context from which

to learn. Without a context, a model that satisfies an excluded example tells us very little.

Some of the constraints in the model may be wrong, and some essential constraints may

be missing. For example, if the model is composed of three constraints, a, b and c, and the

universe contains constraints a, b,..., y, z, then the explanation for why the model is wrong

could be "a is incorrect or b is incorrect or c is incorrect or d is essential or e is essential "

The search space is over all possible constraints in the universe, where each constraint in the

model may be incorrect and each constraint not in the model may be essential. If there are n

constraints in the universe, then the goal model is one of 2" possibilities. Furthermore, the

information from a different model that generates only excluded examples need not narrow

down the possible reasons why the original model is incorrect. In fact, even a large set

of models that generate excluded examples cannot indicate the role of any constraint with

complete certainty, since there may always exist some essential constraint missing from all

the models.

On the other hand, once we have a model that satisfies an included example, we are

guaranteed that no essential constraint is missing. If there did exist an essential constraint,

ce, that was not in the initial model it would mean that ce, by itself, did not satisfy the

prototypical example. But if ce does not satisfy some included example then it is not

essential. Thus, the initial model must contain all essential constraints.

If we know that a model is not missing any essential constraints, then if it satisfies ex-

cluded examples we know it must be because it includes an incorrect constraint, which we

have previously shown to be an overconstraint. Finding a model that satisfies an included

example is therefore crucial to the learning process, since then we need only ever consider

the constraints that satisfy that initial model, and not all generated constraints. The total

number of constraints in the universe grows exponentially in the number of relations and

types because all expression and predicate combinations may be possible.

3.3.2 Grammar

Models in our approach are a conjunction of constraints.' This allowed the learning algo-

rithm to assume that all essential constraints are present in any included example, permit-

ting a straight forward learning process guaranteed to find expressible goal models. But

what if the goal model is not expressible in this grammar?

When choosing the grammar we make a trade-off between usefulness with respect to the

correctness and comprehensibility of the learned model and the efficiency of the learning

process. As we increase the number of constraints in the universe, we increase the number

of essential, redundant and overconstraints the algorithm must distinguish between. The

cost of increasing the complexity of the grammar is especially high if the learning algorithm

can make mistakes and have to backtrack.

One might think that avoiding disjunction, and thus implication, significantly limits

what models our system can express. In fact, many models do not require disjunction or

implication on the predicates that are invariant among all examples. Predicates typically

describe invariants on the structure of relations, whereas model variation typically occurs

on which types satisfy those predicates and not on the predicates themselves.

In the extended file system model, all Dir atoms have one parent except for the Root,

a special kind of Dir that has no parent. Thus we have the implication

V d CDir, d E Root - no d.parent A

d Root = one d.parent. (3.1)

A conjunction of constraints can express this kind of implication since the predicates

of noparent and oneparent are invariant on Root and Dir - Root, respectively. That

'We have also constrained the initial and goal model to contain only positive constraints. The restriction
on negating constraints is arbitrary, since it is equivalent to doubling the constraint language with the negation
of each constraint.

is, 3.1 is equivalent to 3.2,

V r E Root, no r.parent A

V d E Dir - Root, one d.parent. (3.2)

MBE expresses this invariant using nevertotal, which is equivalent to having no parent,

and function, which is equivalent to having one parent, to the appropriate subtypes

(nevertotal, parent, Root) A (function, parent, Dir - Root).

Models that require disjunction on the properties of relations, instead of on the prop-

erties of types, are not expressible using only conjunctions of constraints. For example,

relation and type expressions are not able to express that a relation forms either a randomly

accessible sequence or a linked list, but not other structures such as a tree. This kind of data

structure complexity is unusual, but may be useful for optimization. For example, suppose

we are adding elements to a data structure, and based on domain-specific knowledge we

know that we will likely receive either a handful or a thousand of elements. We may want

to initially allocate single linked list elements for each element that gets added; however, if

the number of elements exceeds some threshold we then allocate a large chunk of randomly

accessible memory. Thus, we have

#e > E ==> array predicates hold A

#e < ==E linked list predicates hold,

where e is some constant. There is no way to express this kind of implication in the current

system.

3.4 Refinements

This section proposes techniques for improving the expressiveness, efficiency and usability

of the learning algorithm.

3.4.1 Generating a Prototypical Example

If MBE is to generate the prototype mechanically then it needs a strategy for generating

examples such that the task of finding an included example is not onerous. The naive

approach is to apply no constraints and generate all examples within some bound on the

number of atoms. A matrix of examples is presented to the user so that she may select one

or more included examples. If none of the presented examples are included by the user's

goal model, then a different matrix of generated examples is shown. By increasing the

bounds on the number of atoms in the generated examples an included example must be

identified eventually.

A more intelligent approach is to present examples that maximize two predicates: like-

liness of being included, so that the user is not repeatedly excluding examples that are

nothing like what he wants; and differentness from previously excluded examples, so that

the example space can be explored quickly. Heuristics based on common models would

direct the search towards likely examples, while graph isomorphism algorithms (or less

costly heuristics) would direct the search towards different examples.

Examples could also be ordered so that examples that would result in faster learning

are shown first. Because learning is more efficient when the prototypical example displays

more features, we would put large, more complex examples ahead of smaller ones. This

must be balanced against confusing the user, as well as the cost of detecting differentness,

which is higher for larger examples. MBE may also be able to learn from excluded exam-

ples which so that it can dynamically present examples with different predicates.

Complex models with many constraints on relations and types will benefit from the

intelligent approach, whereas the naive approach is practical for simple model. The first

included example selected may not be the best prototypical example for efficient learning,

however the learning process will yield the same result regardless of the initial example.

Furthermore, the user may select multiple included examples which together are equivalent

to selecting a single prototypical example with respect to the initial model MBE extracts.

/,

names contents

antries

xtends xtends

Sa rent

Figure 3-10: Object model for file system example containing two kinds of file system
objects, File and Dir. Directories can contain other file system objects and, unlike files,
have a single parent Directory

3.4.2 Multiple Prototypes

Instead of providing a single prototypical example, the user may provide multiple included

examples. Extracting a single initial model from multiple included examples means taking

the intersection of the models extracted individually from each included example. This is

possible because MBE is already defined to learn models that are the conjunction of all

constraints that hold for all included examples and do not hold for all excluded examples.

Taking the intersection of a subset of included examples removes some overconstraints,

thus multiple prototypes can yield a smaller initial model.

Not all included examples are prototypical examples. The learning algorithm uses the

prototype to reduce the size of the model before the generalization phase. To accomplish

this gain in efficiency, the prototype must demonstrate non-compliance to non-constraints.

The worst prototypical example is one from which all available constraints are extracted

into the initial model, since this means the prototypical example taught the learning algo-

rithm nothing.

To compare prototypical examples we use a more complex version of the file system

example than seen previously. The object model for this file system is shown in figure 3-10.

The model contains two kinds of file system objects, files and directories. Directories can

contain other file system objects and, unlike files, have a single parent Directory.

Table 3.2 compares the number of constraints extracted from different prototypical ex-

amples. The relations in (e) fully demonstrate file system properties, including a directory

containing multiple files and directories, including a grandchild. Any overconstraint satis-

fied by (e) is satisfied by all other examples. Or rather, any overconstraint not satisfied by

another example is not satisfied by (e), either.

Example (d) includes the overconstraints that entries . content s is transitive, and

contents is functional for both directories and files. Examples (b) and (c) each demon-

strate properties for only files or directories, respectively. Many overconstraints are trivially

satisfied for the missing relations, and thus each is a poor choice for a prototypical example.

Example (a) trivial satisfies almost all constraints since it lacks any relations.

Interestingly, the overconstraints in the sets for (b) and (c) do not completely overlap.

Thus, these two poor examples could be combined to form a good example. Pictorially, (b)

and (c) could be combined to form (d); alternatively, MBE could accept both as prototypical

examples and then take the intersection of the extracted models.

Although accepting multiple included examples may be useful for guiding the user to

provide examples that demonstrate all uses of relations and types, it is not more useful than

the user providing the best prototypical example.

3.4.3 Learning Implications

Although we did not implement this algorithm, we now outline how implication and dis-

junction could be added to the learning process. First we describe an automatic tech-

nique that maintains the same kind of user interaction as before. Then we describe a semi-

automatic technique that uses multiple prototypical examples to help MBE distinguish the

conjunctive expressions in the disjunction.

Consider first how the current learning process handles implication. Let the goal model

be (a ==# b), where a, b and c are constraints. If a holds then b holds, or a does not hold

and there are no other constraints; thus, our goal model is

(aA b) v (a).

Some prototypical example is provided from which MBE extracts the following initial

Prototypical example Number of
constraints in
initial model

(a) 193

1 1
ntries

name ontents

(b) _ _ 162

(c)

ent

155I I

139

rent

137

Table 3.2: Comparison of the number of constraints extracted into the initial model for
different prototypical examples. 197 constraints were generated overall by applying 16
predicates to the file system object model

(d)

(e)

t 1 I

1

N f --139

model

aAbAc.

The negation of each constraint yields models M,a, M-b and M,, which satisfy exam-

ples I ,a Ib and I- , respectively (table 3.3). The user marks I,a as included, since if a is

not true then any example is included. The user marks Ib as excluded, since a is holds but

b does not, which we know is contrary to the goal model a ==* b. Finally, the user marks

I, as included, since c need not necessarily hold.

Table 3.3: Constraints and the marked examples they generated

Model Constraints Examples satisfied
M-,a a b c / included
Mb a -b c x excluded
M c a b -lc / included
M-,ab -a -b c / included
M-bc a -b -c x excluded

M-abc -a --b --c / included

From the user markings, MBE correctly learns that c is an overconstraint (M, satisfies

an included example), but incorrectly learns that a is an overconstraint (Ma satisfies an

included example) and b is essential (M-b satisfies an excluded example). A model in

which both a and b did not hold, Mab, satisfies an included example, and thus MBE would

learn that b, its negation in models satisfying both included and excluded examples, is an

overconstraint instead!

Implication introduces uncertainty and complexity into the learning process because

the assumption that all essential constraints are in the initial model would be false. The

next thing learned could force MBE to question everything it previously learned.

To learn disjunction MBE maintains multiple underlying models. The goal model is a

disjunction of submodels that are conjunctions of constraints. If an example satisfies one

of the submodels, it is included. The number of examples generated increases with the

number of models because what is learned on one model cannot be assumed to hold on

another model.

Automatic Implication Modeling

In order to learn models containing implication, the learning algorithm must not only de-

tect that the goal model contains implication, but also the constraints involved. Some con-

straints may be invariant throughout, and some constraints may be in multiple antecedents.

Our approach is to assume a simple model structure, eg a conjunction of constraints, and

then re-learn a more complicated model structure, eg two submodels, if an inconsistency is

detected.

For example, to correctly learn the toy model a =- b, the generalization proceeds

as outlined in the previous section until the inconsistency with b as both essential and

overconstraint is detected. Since the inconsistency is present when -b holds, MBE looks

at what is essential to models that contain -b and are satisfied by included examples versus

models that contain -7b and are satisfied by excluded examples.

In this example, all excluded examples satisfy the models containing a (Mb and M-bc).

On the other hand, models containing -b that are satisfied by included examples (i-iab and

M-abc), also contain -a.

From this analysis, the algorithm learns that a is essential to determining whether mod-

els that contain --b satisfy included or excluded examples.

Because c is not part of the implication's antecedent, the algorithm must determine sep-

arately in both submodels whether c is essential, redundant or an overconstraint. Models

with positive a and b yield included examples regardless of whether c is negated, indicating

that c is an overconstraint in the submodel when the implication antecedent (a) holds. Mod-

els with negative a yield included examples regardless of whether c is negated, indicating

that c is an overconstraint in the submodel when the implication antecedent does not hold.

The implication antecedents must be correctly determined in order to distinguish correct

submodels, which in turn are required for correctly analyzing marked examples. Consider

the case where (a ==> b) V (-a => c) is the goal model and the prototypical example

for the first clause generates a A b A c. Until MBE knows that -a -=> c, it will believe

that -a A b A c satisfying an included example indicates that a is an overconstraint.

Thus, automatic implication detection requires more information than the original al-

gorithm that assumed the goal model was a conjunction of constraints. Potentially 2"

constraint combinations, where n is the number of constraints in the initial model, must

be negated to use automatic implication detection. Although the exponential increase in

mutated models results in an exponential increase in computational costs, the number of

generated examples may not increase that quickly, since it is likely that generated examples

satisfy multiple mutated models, especially those with overlapping negated constraints.

Nonetheless, the costs of detecting and learning multiple implications can be removed

by relying on the user to provide separate prototypical examples for each submodel.

Semi-Automatic Implication Modeling

The cost of learning models that contain implications is largely in determining the con-

straints in the antecedents. Users can recognize distinct classes of included examples and

provide one prototypical example from each class. This removes the cost of implication

detection from the learning algorithm, and, by comparing initial models, provides useful

initial knowledge for efficiently determining the implication antecedents.

In section 3.4.2 we showed how the algorithm can be improved by accepting multiple

prototypical examples for the same submodel. The learning algorithm can still take advan-

tage of this when there are multiple submodels by first assuming each extracted submodel

to be unique. A submodel is extracted and generalized until there is sufficient confidence

that it is redundant with another submodel, at which point it is removed. Requiring com-

plete confidence puts this step in the termination phase of the learning algorithm; however,

the amount of redundant computation during learning can be reduced by requiring only a

portion of essential, redundant and overconstraints to be known when comparing whether

two submodels are the same.

Chapter 4

Evaluation

We performed empirical tests on 5 models: singly linked list; doubly linked list; trivial file

system; simple file system; and complex file system. The computation times are summa-

rized in table 4.1. All reported computed times in this chapter were run on a dual 2 GHz

PowerPC G5 machine with 4GB of RAM. All learning algorithm optimizations discussed

in chapter 3 were used, including heuristics that prevent unlikely constraints from being

generated.

Table 4.1: Summary of MBE's learning time on different models
Time in seconds: Phase I Round 1 Round 2 Round 3 Phase HI Total

Singly linked list 4.09 2.52 - - 0.08 6.69
Doubly linked list 11.25 15.04 - - 3.72 30.01
Trivial file system 4.15 2.54 2.26 - 0.15 9.10
Simple file system 9.92 35.37 22.47 11.41 5.40 84.57

Complex file system 20.17 50.35 73.97 72.19 146.68 ...

4.1 Singly Linked List

MBE applies 16 predicates to the singly linked list object model (figure 4-1) to generate

17 constraints. Using the prototypical example (figure 4-2), MBE extracts an initial model

with 8 constraints (figure 4-3). Together these steps take 1.71s.

MBE generates 4 examples (table 4.3) in the first round of interaction, taking 7.60s. The

fourth example, which the user marks as included (acceptable), shows that (transitive, next)

Table 4.2: Summary of MBE's learning time on different models

Singly linked list 17 8 3 3
Doubly linked list 22 13 8 4
Trivial file system 18 8 3 3
Simple file system 69 18 10 10

Complex file system 88 28 - (19)

is an overconstraint. The first, second and third examples, marked as excluded (unac-

ceptable), show that (functional, next), (acyclic, next) and (rootedOne, next), are es-

sential constraints. Using a pre-defined look-up table (appendix A), MBE removes con-

straints that are implied by essential constraints. This includes (antisymmetric, next) and

(irreflexive, next), implied by (acyclic, next), and (weaklyConnected, next) implied by

(rootedOne, next).

After the first round, only one constraint, (injective, next), is not declared essential,

redundant or overconstraint. However, M(injective,next) generates no examples, indicating

that (injective, next) is redundant. Since the rest of the constraints in M are essential,

(injective, next) can safely be removed.

Finally, MBE returns the goal model (figure 4-4).

Iextends
) next

Figure 4-1: Singly linked list object model

Figure 4-2: Singly linked list prototypical example

Table 4.3: Instances generated by MBE in the first round of

interaction

Reason why instance is in-

cluded or excluded by goal

model

Excluded: next relation is

not functional

Excluded: next is not

acyclic and, since acyclic

implies irreflexive, next is

not irreflexive

Excluded: next is not rooted

and, since acyclic implies

weaklyConnected, next is

not connected

Continued on Next Page...

Instance

/next nex nex

)next

II

(antisymmetric, next) A
(irreflexive, next) A

(acyclic, next) A

(functional, next) A

(injective, next) A

(rootedOne, next) A

(weaklyConnected, next) A
(transitive, next)

Figure 4-3: Initial model extracted from singly linked list prototype (figure 4-2

Table 4.3 - Continued

Reason why instance is in- Instance

cluded or excluded by goal

model

next

next

Included: LLE may con-

tain any depth of descendants

(next is not transitive)

4.2 Doubly Linked List (good prototypical example)

One fun example of a doubly linked list is the ceiling and floor model in Alloy's example

folder. We tested MBE on constructing a model that met the ceiling and floor requirements:

(acyclic, next) A

(functional, next) A

(rootedOne, next)

Figure 4-4: Singly Linked List goal model constructed by MBE

1. Every man's ceiling is another man's floor

2. Two different men cannot share the same ceiling or floor

3. All men have exactly one ceiling and one floor

MBE applies 16 predicates to the ceiling and floor object model (figure 4-5) to generate

17 constraints. Using the prototypical example (figure 4-6), MBE extracts an initial model

with 13 constraints (figure 4-7). Together these steps take 2.69s.

MBE generates 4 examples (table 4.4) in the first round of interaction, taking 10.60s.

All of these examples are generated from models with two or three negated constraints.

Because of the symmetry of ceiling and floor, no single constraint can be negated. For ex-

ample, if a constraint generated from the surjective predicate is negated, then all other con-

straints generated from the surjective predicate must also be negated or removed. Further-

more, had the generated relation expression been more expressive, eg. ceiling+- floor

and ceiling. -floor, then 63 constraints would have been generate, 31 constraints

would be in the initial model, and it would take 25.62s to generate the two instances in

the first of ten rounds. By preventing transpose, we prevent generating relation expressions

with identical range and domain, which prevents applying a number of graph predicates.

Each of the generated examples negates matching constraints on the floor and ce iling

relations. This is how (functional, ceiling), (total, ceiling), injective, ceiling) and

(surjective, ceiling), and the matching constraints for floor and ceiling+floor

are learned to be essential constraints.

Although the model is quite simple, this symmetry is actually quite difficult for the

algorithm to handle. When a mutated model generates an excluded instance, it means the

negated constraint is essential. If more than one constraint is negated, MBE can draw no

conclusion about which is the essential constraint. However, MBE does extra detective

work-removing the matching constraints instead of negating them-to determine that the

matching constraints are redundant with the negated one (section 3.2.2). MBE cannot al-

ways assume that negated constraints are redundant with each other. In particular, although

it can recognize matching predicates and matching relations within expressions, it cannot

assume that the constraint with a complex relation expression is not an overconstraint. That

is, it could not assume that floor and ceiling interacted on an essential property. In complex

models, although some relations do interact, others do not.

MBE does not generate an example for one pair of constraints, (irreflexive, ceiling)

and (irreflexive, floor). Although M(irreflexive,ceiling) would generate an example, the pro-

totypical example also satisfies M(irreflexive,ceiling). MBE first checks if any existing exam-

ples satisfy a mutated model. The is a quick way to determine that (irreflexive, ceiling)

and (irreflexive, floor) are implied by the other constraints in the model, which after round

one are all essential.

Since all redundant and essential constraints have been determined, MBE returns the

goal model (figure 4-9) in 3.72s, which contains only 8 constraints.

Although the initial model contained no overconstraints, determining that it contained

no overconstraints required involved detective work. The final step would be to check

for even more redundancy. There are two most reduced models for ceiling and floor that

partition the 8 constraint goal model in half.

ds

Figure 4-5: Doubly linked list object model

iling

Figure 4-6: Good doubly linked list prototypical example

Table 4.4: Instances generated by MBE in the first round of

interaction

Reason why instance is in-

cluded or excluded by goal

model

Excluded: A man cannot have

multiple ceilings or floors

(floor and ceiling are

not functional)

Excluded: A man cannot have

no ceiling or floor (floor

and ceiling are not total)

Continued on Next Page...

Instance

eiin,,, floor ceiin) floor

, '

ceiling floor

~cc

Table 4.4 - Continued

Reason why instance is in- Instance

cluded or excluded by goal

model

ceiling floor ceiling floor

Platform[O]
Excluded: Multiple men can-

not share the same ceiling or

floor (floor and ceiling

are not injective)

m anlfo

Excluded: One man's ceil-

ing is not another man's floor

(floor and ceiling are

not surjective)

4.3 Trivial File System

The simplest file system is has a single file system object, a directory, capable of containing

other directories. MBE applies 16 predicates to the trivial file system object model (figure

4-10) to generate 18 constraints. Using the prototypical example (figure 4-11), MBE ex-

tracts an initial model with 8 constraints (figure 4-13). Together these steps take 1.41s.

MBE generates 4 examples (table 4.5) in the first round of interaction, taking 4.34s.

The first example negates (rootedOne, contains), which generates an excluded instance,

indicating that (rootedOne, contains) is essential. Since (rootedOne, contains) im-

plies (weaklyConnected, contains), (weaklyConnected, contains) is removed from the

(irreflexive, ceiling) A

(functional, ceiling) A

(total, ceiling) A

(injective, ceiling) A

(surjective, ceiling) A

(irreflexive, floor) A

(functional, floor) A

(total, floor) A

(injective, floor) A

(surjective, floor) A

(irreflexive, ceiling + floor) A

(total, ceiling + floor) A

(surjective, ceiling + floor)

Figure 4-7: Initial model extracted from ceiling and floor prototype (figure 4-6

(functional, ceiling) A

(total, ceiling) A

(injective, ceiling) A

(surjective, ceiling) A

(functional, floor) A

(total, floor) A

(injective, floor) A

(surjective, floor)

Figure 4-8: Ceiling and floor goal model constructed by MBE

(total, ceiling) A

(injective, ceiling) A

(total, floor) A

(a) (injective, floor)

(surjective, ceiling) A

(functional, ceiling) A

(surjective, floor) A

(b) (functional, floor)

Figure 4-9: Two reduced ceiling and floor goal models

working model.

The second and third examples are included, indicating that (functional, contains)

and (transitive, contains) are overconstraints. Had a better prototypical example been

provided (figure 4-12), these two constraints would not have been extracted into the initial

model.

The fourth example in the first round of generalization negates (acyclic, contains).

Since the generated example is excluded, (acyclic, contains) is essential. Both of the

implied constraints, (antisymmetric, contains) and (irreflexive, contains), are removed

from the working model.

Of the remaining three constraints in the working model (acyclic, contains) and (rootedOne, contain

are essential and (injective, contains) is unclassified. MBE negates (injective, contains)

in the second round of interaction and generates and excluded example (table 4.9) in 2.26s.

Since all essential, redundant and overconstraints have been identified, MBE returns

the goal model (figure 4-14).

extends

) contains

Figure 4-10: Trivial file system object model

contains

Figure 4-11: Trivial file system prototypical example

contains

Figure 4-12: Better trivial file system prototypical example

Table 4.5: Instances generated by MBE in the first round of

interaction

Reason why instance is in- Instance

cluded or excluded by goal

model

Excluded: no root directory [example with no elements]

contains contains
011

Included: Directories may

contain multiple directories

Continued on Next Page...

Table 4.5 - Continued

Reason why instance is in-

cluded or excluded by goal

model

Included: contains is not

transitive

Excluded: contains is not

acyclic

Instance

Dirt l I

contains

contains

contains

contains

Table 4.6: Instances generated by MBE in the second round

of interaction

(injective, contains)

(transitive, contains)

(antisymmetric, contains) A

(acyclic, contains) A

(functional, contains) A

(weaklyConnected, contains) A

(rootedOne, contains) A

(irreflexive, contains)

Figure 4-13: Initial model extracted from trivial file system prototype (figure 4-11)

(injective, contains) A

(acyclic, contains) A

(rootedOne, contains)

Figure 4-14: Trivial file system goal model constructed by MBE

InstanceReason why instance is in-

cluded or excluded by goal

model

Excluded: contains is not

injective

4.4 Medium Complexity File System

The file system model from section 2.2 has constraints with relation expression on two

relations, thus we consider it to be a medium complexity model. MBE applies 16 predicates

to the file system object model (figure 2-2) to generate 38 constraints in 2.52s. Using the

prototypical example (figure 2-5), MBE extracts an initial model with 18 constraints in

7.57s.

After the user marks all 10 instances, MBE refines its internal model and, in 22.47s,

generates three instances in the second interaction round (table 2.2). MBE generates in-

stances that ask more complex questions in later rounds. The second instance in round two

queries the user on whether directories can be aliased. The users marks this instance as

included, permitting Dir to share names.

After the user marks all 3 instances in the second interaction round, MBE generates, in

11.41s, one more instance (table 2.3). MBE refines its model and then reaches a termination

condition in 5.40s. The total running time of the algorithm, excluding the time it takes the

user to mark examples, is Imin:27.53s. All boundary aspects of its internal model have

been corrected and verified; thus, it returns the textual goal model it constructed (figure

2-6).

(functional, contents)

(functional, name)

(innerinjective, ternary[entries, name])

(injective, entries)

(surjective, entries)

(rootedOne, tternary [entries, contents])

(acyclic, ternary[entries, contents])
(total, contents)

(total, name)

(surjective, name)

Figure 4-15: Medium complexity file system goal model constructed by MBE

4.5 Full Complexity File System

The extended file system model has 4 interacting relations and 6 types, with 4 types in-

volved in a 3-level type hierarchy. MBE applies 16 predicates to the file system object

model (figure 2-2) to generate 88 constraints in 20.17s. Using the prototypical example

(figure 2-5), MBE extracts an initial model with 28 constraints in 50.35s.

Although the initial model looks only slightly bigger than the medium complexity file

system model, it is too complex for MBE to solve. In the previous models, the constraints

in the goal model are present in the initial model; in this model, the constraints in the

goal model (figure 4-19) are variations on the constraints in the initial model (figure 4-

18). In particular, we use dynamic constraint construction so that specific type expressions

and domain and range restriction are only constructed when constraints with general type

and relation expressions are found to be overconstraints (section 3.2.1). Otherwise, 197

constraints would be generated and the initial model would have 137 constraints.

A general constraint uses the root type for type expressions and domain and range re-

striction. In the complex file system model there are 4 possible subtypes: Dir; File;

Object-Root; and Dir-Root. These subtypes can be applied both to the type expres-

sion, e.g.,

(surjective, contents, Object - Root), (4.1)

and restriction, e.g.,

(surjective, Object - Root <: contents). (4.2)

Constraint 4.1 means that only Object - Root elements have surjective contents.

Constraint 4.2 means that all Object elements have surjective contents when only

tuples with Object - Root domain are considered.

Unfortunately, all of the general constraints are overconstraints. Since dynamic con-

straint construction occurs while determining implication antecedents, all of the 137 po-

tential constraints are part of at least one antecedent guess. Whereas in previous models

only a single example was need to show whether a property applied to a relation, now up to

125 examples may be necessary since there are 5 possible type expressions in each of the

three type expression locations in a constraint. Some combinations are very unlikely, e.g.,

restricting both the domain and the range, or restricting the range on the total predicate.

Nonetheless, the goal model demonstrates that all three locations are important, and finding

that particular, but essential, combination requires generating several more constraints than

without subtypes.

Furthermore, the model requires adding two additional predicates, neve r_s ur j e ct ive

and never_total. never_surjective means that all elements in the range map to

zero elements in the domain, which generates the constraint

(never-surjective, contents :> Root, Root),

which prevents other directories from containing root. nevertotal means that all ele-

ments in the domain map to zero elements in the range, which generates the constraint

(never_total, Root <: parent, Root),

which prevents the root from having a parent. These additional predicates are required in

order to ensure that the root of the file system be a Root element and not some other Dir

that happens to exhibit those properties. Since neversur jective and never_total

conflict with surjective and total, they are not included in the initial model but

instead added during dynamic constraint generation.

MBE generates 3 examples in 50.35s in the first round of interaction. In the second

round it generates 3 more examples in 73.97s. In the third round it generates 1 example

in 72.19s. MBE continues to spend several minutes per round generating 1 or 2 exam-

ples. These examples are all incorrect antecedent guesses, and thus obviously (and frustrat-

ingly) excluded. Since excluded examples from antecedent guesses teach MBE nothing,

no progress is made (section 3.2.2). It may be that MBE is capable of learning the complex

file system model if given enough time, or there may be a problem with the algorithm.

However, since we know that a possible goal model contains variations on the constraints

in the initial model, we suspect that MBE's problem is due to scaling.

,ts

Name

Figure 4-16: Complex file system object model

arent

/name contents

fie I
Figure 4-17: Complex file system prototypical example

Table 4.7: Instances generated by MBE in the first round of

interaction

Reason why instance is in-

cluded or excluded by goal

model

Included: contents is not

total

Excluded:

entries .contents

is cyclic

Instance

entries

DirEntIM01

name

parent

Continued on Next Page...

Table 4.7 - Continued

Table 4.8: Instances generated by MBE in the second round

of interaction

Continued on Next Page...

InstanceReason why instance is in-

cluded or excluded by goal

model

/contents

entries

S/parent\ \
/ |

ontents name

Included:

entries .contents

is not transitive

Reason why instance is in- Instance

cluded or excluded by goal

model

) parent
Excluded: Root contains it-

self

I
|

/

name

entries

Table 4.8 - Continued

Reason why instance is in- Instance

cluded or excluded by goal

model

total U J1b L 3 IIVL
total

wrong direction

U l dd I

U lI dt .. . h+

Table 4.9: Instances generated by MBE in the third round of

interaction

Reason why instance is in-

cluded or excluded by goal

model

Excluded: Di rEnt ry not in-

jective

Instance

entries

(acyclic, entries.contents)

(acyclic, parent)
(functional, contents)

(functional, name)

(functional, parent)

(injective, contents)

(injective, entries)

(injective, name)

(irreflexive, contents)
(irreflexive, entries)

(irreflexive, name)

(irreflexive, parent)

(rootedOne, entries.contents)

(rootedOne, parent)

(rootedOne, ternary[entries, contents])

(innerinjective, ternary[entries, contents])

(innerinjective, ternary[entries, name])

(surjective, contents)

(surjective, entries)

(surjective, names)
(surjective, parent)
(symmetric, parent + entries.contents)

(total, contents)

(total, entries)

(total, name)

(weaklyConnected, parent)

Figure 4-18: Fully complex file system initial model constructed by MBE

(acyclic, entries.contents :> Dir, Dir)

(acyclic, parent)

(functional, contents)

(functional, names)

(functional, parent)

(injective, contents :> Dir, Dir)

(injective, entries)

(injective, names)

(neversurjective, contents :> Root, Root)

(nevertotal, Root <: parent, Root)

(rootedOne, entries.contents)
(innerinjective, ternary[entries, contents :> Dir])

(innerinjective, ternary[entries, names])

(surjective, contents :> (Object - Root), Object - Root)

(surjective, entries)
(symmetric, parent + entries.contents :> Dir)

(total, (Dir - Root) <: parent, Dir - Root)
(total, contents)

(total, names)

Figure 4-19: Possible goal model for fully complex file system

Chapter 5

Related Work

5.1 Examples and learning

Research on learning has shown that examples are a critical component of learning new

skills [33] [32] [44] [26]. People not only prefer to learn from concrete examples over

formulas when given a choice [34] [26], but also learn faster and with more comprehension

because examples are easier to keep in working-memory and more motivating than abstract

representations [6] [33] [44]. Why and how examples enhance human learning is not clear,

but human inspired artificial intelligence often performs better than computational methods

when humans are to interact with the process and understand the end result.

MBE uses examples in two ways. First, the user provides a prototypical example to

initiate the learning algorithm. Representing a formula by a prototype was first introduced

in Marvin Minsky's seminal paper on knowledge representation and "frames" [28]. A

frame encodes chunks of information (i.e., situations and objects) by representing a single

prototype.

The second use of examples in MBE is for generalization of the initial formula. One

competing theory for how humans learn via examples is that problem solving rules are

generalized from examples [27] [40]. Rules or heuristics are used to relax or restrain a

formula based on positive and negative examples. example-based learning is a well-known

learning technique in the machine learning community with a plethora of algorithms for

combatting overfitting, including example-based generalization [25] [3] [10] [30] [15] [29],

relevance-based learning [39] [2] [35] and knowledge-based inductive learning or inductive

logic programming [41] [38] [24] [31].

5.2 Prototypical concept description

Prototypical concept description is a learning algorithm that partitions supervised train-

ing datasets into categories from which prototypical examples, which are not necessarily

members of the training dataset, are extracted [9]. New examples are categorized by find-

ing the closest matching prototypical example based on underlying concepts. Overfitting is

partially mitigated by the continuous example space between categories, but largely relies

on inputting a sufficiently varied example space. MBE's learning algorithm guarantees no

overfitting because it forces a varied example space by dynamically generating its training

dataset in the generalization phase.

In the prototypical concept view, MBE would first collect included and excluded exam-

ples, and then extract prototypical examples for both categories. Since the correct formula

must be learned without generating too many examples, determining the right similarity

function, in terms of constraints, is critical for relaxing overfit constraints without includ-

ing false positives. Unfortunately, weighting constraints on how likely they are to be over-

constraints versus essential constraints relies on subjective heuristics, and thus MBE may

incorrectly learn complex or unusual formulas. Instead, user interaction permits MBE to

detect and correct errors in the initial formula during the generalization phase. By tap-

ping into information (the prototypical example) easily provided by the user, more onerous

information (marking included and excluded examples) is reduced.

In addition to simple models, prototypical concept description learns categories that are

a disjunction of prototypical examples [8]. We, too, propose using multiple prototypical

examples to express disjunction. In order to learn the multiple prototypes for a particular

category, [8] uses k-means clustering. If MBE were to determine prototypes on its own,

then it could use a similarity metric on examples in place of a distance metric to determine

when to increase the prototypical examples in the formula. By guessing different k, one can

find the minimum number of prototypical examples for accurately formulaing a category.

Unfortunately, comparing examples is non-trivial. Instead, MBE would rely on making

logical deductions based on the formulas that satisfy marked examples (section 3.3.2).

5.3 Dynamic invariant detection

Daikon, a tool for dynamic invariant detection, learns program invariants from program

executions by instrumenting the target program to trace the variables of interest [16].

Dynamic invariant detection and MBE face similar challenges in three areas: generating

domain-specific constraints from generic properties; detecting false positives (overcon-

straints) and redundant invariants; and increasing the tool's expressiveness without sig-

nificantly increasing the cost.

Like MBE, Daikon generates program-specific properties (like MBE's constraints) from

templates of basic properties. Initially, Daikon assumes all properties are true, which is an

enormous state-space. However, false invariants are falsified quickly. Similarly, MBE ex-

tracts an initial formula from the prototypical example, thereby quickly reducing the num-

ber of constraints under consideration in the generalization phase. Nonetheless, increasing

the number of properties (or potential invariants) is likely to increase false positives and

redundant invariants without similarly increasing the number of expressible formulas (or

interesting invariants found) [11]. MBE carefully constructs possible constraints since most

generated constraints are redundant and increase the time of the learning algorithm. In both

cases, knowledge about the kinds of formula constraints or program invariants likely to be

interesting, combined with removing redundant and trivial generated constraints before

learning begins, mitigates the problem.

The primary difference between these algorithms is that MBE actively detects false

positives, while Daikon, which is at the mercy of the provided test suite for exercising all

program behavior. Thus, MBE is concerned less with reducing obfuscation of interesting

constraints and more with reducing the cost of learning. Daikon detects overconstraints by

statistically determining whether the invariant could easily have occurred by chance. This

approach requires a large training dataset, and MBE explicitly seeks a minimal test suite to

reason over instead of computing statistical likelihood.

Doodoo et al. expand the grammar of Daikon by selecting predicates for conditional

invariants [11]. Since it is infeasible to check a == b for every a and b, the analysis

restricts which a are checked. Daikon will return as many interesting invariants as are

expressible by the language and grammar; restricting either component will reduce how

much useful information is returned by the analysis. On the other hand, MBE either finds

the desired formula or not, so restricting the language or grammar is a significant trade-

off against the utility of the tool. MBE can be selective by ordering potential antecedents,

however in the worst case all possible subsets must be tested. Thus, MBE may rely on

heuristics for efficiency instead of expressibility.

5.4 Mutation testing

Mutation testing is a well-known technique for evaluating a program's test suite [20] [21]

[5]. A program is seeded with faults, which creates mutant versions of the program. A test

case that distinguishes between the original program and the mutant is said to "kill" the

mutant. A test suite that kills all mutants is complete with respect to that mutant set. A

major topic of research is how to determine if a mutant is semantically different from the

original program.

MBE uses mutation to learn a formula: the generalization phase of MBE's learning

process creates n mutant formulas from an initial formula of n constraints, and then tries

to distinguish mutants that are real faults, which indicates the mutation of an essential

constraint, from mutants that are semantically equivalent to the desired formula, which

indicates the mutation of an over-constraint. This process could be generalized into learning

specifications for a program.

Of particular interest to us is the mutation of specifications. Although their goal is to

generate program test suites, Black et al. mutate SMV specifications [4] and Fabbri et al.

mutate Statecharts [17]. The mutations of specifications, as with programs, rely on muta-

tion operators that make slight but reasonable changes to the original text. If MBE were

to use mutation operators then the formula it learns would be more like the formula con-

structed by typical users, allowing the user to switch between textual and pictorial formula

constructing interfaces. This would greatly enlarge the state space of predicates and gram-

mar, and would be probably be impractical unless the user supplied a partially constructed

(over-constrained) formula.

Chapter 6

Conclusion and Future Work

Modeling by example is an interesting new technique that relies on the conjunction of pred-

icates to express some of the same models expressible by a first order logic. By altering

the underlying predicate language, the learning technique may be applicable to other mod-

eling languages (eg, SMV, Spin), as well. By using active, iterative data collection, MBE

minimizes its training data set size and interaction with the user. Based on empirical tests

(tables 4.1 and 4.2), MBE correctly learns simple structural models in under 2 minutes, fast

enough for users to use MBE in place of conventional modeling techniques.

Unfortunately, MBE has problems scaling, especially when constraints rely on specific

subtype expressions. Thus, MBE may not be a practical solution for constructing complex

models. The bottleneck occurs in the generalization phase when numerous constraints are

redundant with other constraints. The complex file system example (section 4.5) has 2

overlapping groups of interacting relations and 3 subtypes. Although MBE extracts an

initial model, MBE learns very little because the large number of generated constraints

makes guessing implication antecedents impractical. Although we can manually determine

the correct goal model, MBE cannot.

6.1 Future Work

Using domain-specific knowledge, either supplied by the user or based on accumulated

statistics, is the most likely way to make MBE scalable. The algorithm's running time can

be improved by directing the overconstraint and implication searches towards likely targets

first. Directed search cannot improve the worst case running time, but it can significantly

improve the practical running time of the algorithm.

Constraint Tiers

A simple way to direct the search towards likely targets first is to restrict the total num-

ber of constraints in tiers. Tiers could restrict predicates, expression generation rules and

constraint generation rules. MBE would initially learn using a tightly restricted tier. If the

model cannot be learned, MBE tries again using the next tier.

An obvious disadvantage to this approach is that failing on multiple small tiers can

take longer than learning on one large tier. This is exacerbated by the observation that

constraints are not strictly ordered, and thus a formula that requires a constraint in a very

high tier may not need any of the constraints introduced in middle tiers. This is particu-

larly true when determining type expression generation (section 4.5). Whether MBE could

mechanically determine why it failed is a difficult learning problem.

User Guidance

Alternatively, MBE could rely on user-guidance. Whether the user can tell MBE which tier

to use or why learning failed depends on how much the user knows about the constraint lan-

guage and how well MBE can deal with misinformation. In addition, the user can indicate

structural properties of the model, e.g., entries and content s form a tree.

MBE's largest problem is finding the antecedents of implications, especially since the

guess-and-check algorithm often generates excluded examples. In order to learn from

excluded examples, MBE needs to be told why the example is excluded, since it only

knows that some constraint in the negated set is essential. The user knows which edges and

nodes cause the exclusion, either by their presence or absence. MBE may be able to use

the user provided mutated included example to determine the essential constraints.

Incremental Learning

Finally, it may be more efficient to learn the formula gradually or in parts. Complex formu-

las often have smaller modules that interact in limited ways. Learning each part separately

could reduce the number of constraints under consideration without limiting the predicates

or constraint generation rules. The challenge is combining formulas without introducing

all possible relation and type expressions among constraints in both subformulas. In order

to reduce the overall search space, MBE must recognize which constraints to reconsider

and which to freeze.

Appendix A

Predicate Library

MBE learns formulas and examples that are directed graphs with labeled nodes and edges.

Thus, it is natural to choose graph and relation properties for MBE's predefined predicate

set. MBE, which is built on Alloy [23], uses 16 predicates, defined in table A.1 and taken

from the Alloy relation and graph utilities modules.

In section 3.2 we show that the learning algorithm's running time depends on finding

satisfiable examples when testing the role of each constraint. Since constraints are negated

when tested, examples in which negated constraints are implied by other (non-negated)

constraints are unsatisfiable. Finding the antecedents in these implications is expensive.

Although most implications between constraints depends on the object model, we can prove

that some predicates always imply other predicates. MBE uses these predetermined facts to

recognize implications between constraints over the same relation, increasing the running

time for finding a satisfiable model.

Table A.1: Predicates from Alloy's graph and relation utili-

ties modules

acyclic: no cycles or self-loops

pred acyclic [r :univ->univ , t :univ] {

all x:t I x !in x.^r

}
antisymmetric: no two-node cycles

pred antisymmetric [r :univ->univ] {

r & r in iden

}
complete: all possible tuples exist

pred complete [r :univ->univ , t :univ] {

all x,y:t x!=y => (x->y in r && y->x in -r)

}
functional: all elements in the domain map to at least one element in the range

pred functional [r :univ->univ , t :univ] {

all x:t I lone x.r

}
injective: all elements in the range are mapped to by at most one element in the domain

pred injective [r :univ->univ , t :univ] {

all x:t I lone r.x

}
innerinjective: equivalent to defining r = set A -+ one B -- set C

pred innerinjective [r :univ->univ I {

all x:r.univ.univ injective[x.r, univ. (x.r)]

}
Continued on Next Page...

100

Table A.1 - Continued

irreflexive: no self-loops

pred irreflexive [r :univ->univ] {

no iden & r

}
reflexive: all nodes have self-loops

pred reflexive [r :univ->univ , t :univ] {

t <: iden in r

}
rootedAll: all elements in domain can reach all elements in range

pred rootedAll [r :univ->univ , t :univ] {

all root:t t in root.*r

}
rootedOne: one element in domain can reach all elements in range

pred rootedOne [r :univ->univ , t :univ] {

one root:t I t in root.*r

}
stronglyConnected: all elements in domain can reach all elements in range

pred stronglyConnected [r :univ->univ , t :univ] {

all d,g:t d != g => d in g.^r

}
surjective: all elements in the range are mapped to by at least one element in the domain

pred surjective [r :univ->univ , t :univ] {

all x:t I some r.x

}
symmetric: undirectional relations

pred symmetric [r :univ->univ] {

-r in r

I

Continued on Next Page...

101

Table A. 1 - Continued

The lookup table for predicate implications was mechanically generated. For example,

to determine that acyclic implies reflexive we defined, in Alloy, a simple relation,

r, over a type, t, and checked the assertion that if r is acyclic, r is also reflexive

(figure A-1). In this case, executing the check finds a counter-example, a single node and

empty relation. Thus, acyclic does not imply reflexive. Since executing the second

check finds no counter-example, we conclude that acyclic does imply ir reflexive.

We mechanically generated Alloy code for all 16 predicate pairs, and then the 540

checks were executed. Those that found no counter-example (figure A-2) were identified

and given to MBE to use in a lookup table.

102

total: all elements in the domain map to at most one element in the range

pred total [r :univ->univ , t :univ] {

all x:t I some x.r

}
transitive: every node is directly connected to all reachable nodes

pred transitive [r :univ->univ] {

r. r in r

}
weaklyConnected: all elements in domain reach or are reachable by all elements in range

pred weaklyConnected [r :univ->univ , t :univ] {

all d,g:t d != g => d in g.^(r +- r)

}

Figure A-1: Alloy code to check whether acyclic implies reflexive or irreflexive
sig t { r : set t }
pred acyclic[r:univ->univ, t:univ]{ all x:t I x !in x.^r}
pred irreflexive[r:univ->univ]{ no iden & r }
pred reflexive[r:univ->univ, t:univ]{ t <: iden in r }
check { acyclic[r,t] => reflexive[r,t] } for 5 expect 1
check { acyclic[r,t] => irreflexive[r] } for 5 expect 0

Figure A-2: Graph of implications between predicates

implies implies
mplies mplies

103

104

Bibliography

[1] Edward Allen and Waclaw Zalewski. Shaping Structures: Statics. John Wiley &

Sons, NY, 1998.

[2] H. Almuallim and T. Dietterich. Learning with many irrelevant features. In Proc. 9th

National Conference on Artificial Intelligence, volume 2, pages 547-552, Anaheim,

CA, 1991. AAAI Press.

[3] J. R. Anderson. The architecture of cognition. 1983.

[4] Paul E. Black, Vadim Okun, and Yaacov Yesha. Mutation operators for specifications.

In Automated Software Engineering, pages 81-87, 2000.

[5] Timothy A. Budd, Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward.

Theoretical and empirical studies on using program mutation to test the functional

correctness of programs. In POPL '80: Proceedings of the 7th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 220-233, New

York, NY, USA, 1980. ACM Press.

[6] Michelene T. H. Chi, Nicholas de Leeuw, Mei-Hung Chiu, and Christian LaVancher.

Eliciting self-explanations improves understanding. Cognitive Science, 18(3):439-

477, 1994.

[7] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri.

NUSMV: A new symbolic model verifier. In Computer Aided Verification, pages

495-499, 1999.

105

[8] Piew Datta and Dennis Kibler. Learning symbolic prototypes. In Proc. 14th Interna-

tional Conference on Machine Learning, pages 75-82. Morgan Kaufmann, 1997.

[9] Piew Datta and Dennis F. Kibler. Learning prototypical concept descriptions. In

International Conference on Machine Learning, pages 158-166, 1995.

[10] G. DeJong. Generalizations based on explanations. In Proc. 7th International Joint

Conference on Artificial Intelligence, pages 67-69, Vancouver, British Columbia,

1981. Morgan Kaufmann.

[11] N. Dodoo, A. Donovan, L. Lin, and M. Ernst. Selecting predicates for implications in

program analysis, 2002.

[12] J. Edwards. Subtext: uncovering the simplicity of programming, 2005.

[13] Jonathan Edwards. Example centric programming. SIGPLAN Not., 39(12):84-91,

2004.

[14] Gustave Eiffel. Official site of the eiffel tower, July 2007.

[15] Thomas Ellman. Explanation-based learning: a survey of programs and perspectives.

ACM Comput. Surv., 21(2):163-221, 1989.

[16] Michael D. Ernst. Dynamically Discovering Likely Program Invariants. PhD thesis,

2000.

[17] Sandra Camargo Pinto Ferraz Fabbri, Jose Carlos Maldonado, Tatiana Sugeta, and

Paulo Cesar Masiero. Mutation testing applied to validate specifications based on

statecharts. In ISSRE '99: Proceedings of the 10th International Symposium on Soft-

ware Reliability Engineering, page 210, Washington, DC, USA, 1999. IEEE Com-

puter Society.

[18] Eugene S. Ferguson. Engineering and the mind's eye. MIT Press, Cambridge, MA,

USA, 1992.

[19] Jr. Frederick P. Brooks. No silver bullet: essence and accidents of software engineer-

ing. Computer, 20(4):10-19, 1987.

106

[20] Mark Harman, Rob Hierons, and Sebastian Danicic. The relationship between pro-

gram dependence and mutation analysis. pages 5-13, 2001.

[21] Robert M. Hierons, Mark Harman, and Sebastian Danicic. Using program slicing to

assist in the detection of equivalent mutants. Software Testing, Verification & Relia-

bility, 9(4):233-262, 1999.

[22] Gerard J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279-

295, 1997.

[23] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularity mecha-

nism. pages 62-73. ESEC / SIGSOFT FSE, 2001.

[24] R. D. King, S. H. Muggleton, R. A. Lewis, and M. J. E. Sternberg. Drug design by

machine learning: The use of inductive logic programming to model the structure

activity relationships of trimethoprim analogues binding to dihydrofolate reductase.

In Proceedings of the National Academy of Sciences of the United States of America,

pages 11322-11326, 1992.

[25] J. E. Laird, P. S. Rosenbloom, and A. Newell. Chunking in soar: The anatomy of a

general learning mechanism. 1:11-46, 1986.

[26] Jo-Anne LeFevre and Peter Dixon. Do written instructions need examples? Cognition

and Instruction, 3(1):1-30, 1986.

[27] Clayton Lewis. Why and how to learn why: Analysis-based generalization of proce-

dures. Cognitive Science: A Multidisciplinary Journal, 12(2):211-256, 1988.

[28] Marvin Minsky. A framework for representing knowledge. Technical report, Cam-

bridge, MA, USA, 1974.

[29] Tom M. Mitchell, Richard M. Keller, and Smadar T. Kedar-Cabelli. Explanation-

based generalization: A unifying view. Mach. Learn., 1(1):47-80, 1986.

107

[30] Tom M. Mitchell and Sebastian Thrun. Explanation based learning: A comparison of

symbolic and neural network approaches. In International Conference on Machine

Learning, pages 197-204, 1993.

[31] S. H. Muggleton. Inductive logic programming. pages 295-318, 1991.

[32] Owen, Elizabeth and Sweller, John. Should problem solving be used as a learning

device in mathematics? Journal for Research in Mathematics Education, 20(3):322-

328, may 1989.

[33] Peter Pirolli. Effects of examples and their explanations in a lesson n recursion: A

production system analysis. Cognition and Instruction, 8(3):207-259, 1991.

[34] Margaret M. Recker and Peter Pirolli. Modeling individual differences in students'

learning strategies. Journal of the Learning Sciences, 4(1): 1-38, 1995.

[35] S. J. Russell. Tree-structured bias. In Proc. 7th National Conference on Artificial In-

telligence, volume 2, pages 641-645, St. Paul, Minnesota, 1988. Morgan Kaufmann.

[36] Robert Seater. Core extraction and non-example generation: Debugging and under-

standing logical models. Masters thesis, MIT, Computer Science and Artificial Intel-

ligence Laboratory, November 2004.

[37] Randall B. Smith and David Ungar. Self: The power of simplicity. Technical report,

Mountain View, CA, USA, 1994.

[38] A. Srinivasan, S. H. Muggleton, R. D. King, and M. J. E. Sternberg. Mutagenesis:

Ilp experiments in a non-determinate biological domain. In Proc. 4th International

Workshop on Inductive Logic Programming, volume 237, pages 217-232, 1994.

[39] P. Tadepalli. Learning from queries and examples with tree-structured bias. In Proc.

10th International Workshop on Machine Learning, pages 322-329, Amherst, MA,

1993. Morgan Kaufmann.

[40] J. Trafton and B. Reiser. The contributions of studying examples and solving prob-

lems to skill acquisition, 1993.

108

[41] M. Turcotte, S. H. Muggleton, and M. J. E. Sternberg. Automated discovery of struc-

tural signatures of protein fold and function. pages 591-605, 2001.

[42] Patrick H. Winston. Learning structural descriptions from examples. Technical report,

Cambridge, MA, USA, 1970.

[43] Patrick H. Winston. Artificial intelligence. Technical report, Reading, MA, USA,

1992.

[44] Xinming Zhu and Herbert A. Simon. Learning mathematics from examples and by

doing. Cognition and Instruction, 4(3):137-166, 1987.

109

