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Abstract

Planar contraction flow was used as a model system to investigate two topics in vis-
coelastic fluid mechanics: 1) the origin and structure of transitions in viscoelastic flow and
2) the transient elongational response of a polymer solution to shearfree flow. The flow
cell was adjustable to contraction ratios of 2, 8, or 32. A semidilute polymer solution com-
posed of high molecular weight (MW) polyisobutylene in medium MW polybutene was
used as the test fluid. This "Boger" fluid was characterized by a long relaxation time and
nearly constant viscosity; inertia had negligible influence on the flow.

Laser Doppler velocimetry (LDV) and light sheet visualization were used to character-
ize the spatiotemporal structure of, and onset conditions for transition from two-dimen-
sional to three-dimensional, steady flow. The three-dimensional flow had the form of
"viscoelastic Gtirtler" vortices previously observed in other flow geometries. Characteris-
tic length scales of the three-dimensional flow indicated an influential role of curved
streamlines around the outer corner. The critical Weissenberg number at onset of instabil-
ity was determined as a function of contraction ratio; a "viscoelastic Gtirtler" scaling
proved valid. The scaling and structure indicated that the flow transition was driven by
interaction of streamwise "elastic" stress with streamline curvature. Onset of a second
transition to time-dependent flow at elevated Weissenberg number and/or contraction ratio
was detected. LDV measurements and consideration of upstream-channel aspect ratio
indicated that the temporal transition was induced by nonideal, three-dimensional bound-
ary conditions.

Flow induced birefringence, in conjunction with LDV, was used to determine the tran-
sient elongational viscosity profile along the shearfree centerline. Constitutive models
were evaluated with this data; however, it was found that the centerline flow could only
excite a linear viscoelastic response, despite the attainment of moderate Hencky strains of
3.5 and high Weissenberg numbers of 2.9. The nonhomogeneous centerline strain-rate
profile was much less "efficient" in stretching the polymer molecule than a homogeneous
profile. Increase of the flow rate or contraction ratio or tapering the entry region did not
improve the "efficiency" of the centerline flow.
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Professor Professor
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Chapter 1

Introduction

1.1 Motivation

Extrusion and injection molding are only two examples of processes which transform

the tens of millions of tonnes of thermoplastics produced in the United States each year

into useful, high value-added products. Understanding of the fluid mechanics of viscoelas-

tic polymer melts and solutions is necessary to optimize the economics of these polymer

processing operations. The ultimate goal of polymer fluid mechanics research is the devel-

opment of accurate constitutive equations, derivable from consideration of the molecular

structure of the material, in conjunction with efficient numerical solution algorithms. Such

a thorough understanding of the structure, process, and property interrelation would allow

the prediction of product properties in their end-use applications. Of potentially greater

importance is solution of the inverse problem; i.e., given required properties of a given

product in an application, an "expert system" would identify specific polymer materials

and associated processing operations and parameters as solutions.

At the present time, much work is required to advance the state of the field to the point

where development of such an "expert system" could be realistically considered. The

development of efficient numerical algorithms which will ultimately allow solution of the

set of three-dimensional and time-dependent partial differential equations comprised of

the equations of motion and energy and the constitutive equation has advanced consider-

ably; however, further progress is required before the governing equation set can be solved

at an acceptable computational cost. Accurate constitutive equations, which relate the

stress of a fluid element at a given point in time and space to the strain history, are

required. Determination of continuum constitutive equations from details of molecular

structure of a polymeric material is an active area of research (Ottinger, 1996). Regardless

of whether a constitutive model is derivable from molecular considerations or is purely

empirical, its accuracy must be verified by comparison of model predictions with experi-

mental measurements.



Measurement of the response of a viscoelastic fluid to a shear flow can be readily car-

ried out in commercial devices; however, the measurement of the nonlinear elongational

response remains a challenge. The utility of information obtained in previous investiga-

tions has often been limited by inadequate characterization of the strain history of the test

flow (Walters, 1992). Other investigations have carefully characterized the strain history,

but the small imposed Hencky strain resulted in only the linear viscoelastic response of the

fluid being probed (Quinzani et al., 1995). Accurate experimental characterization of the

elongational response remains an important problem since the effects of the elongational

response in certain polymer processing operations cannot be ignored. For example, in

fiber spinning of high tensile-strength polyethylene, high draw ratios and tensile stresses

are attained which act to align the polymer molecules; the alignment results in the fiber

having extremely high tensile strength. Conversely, in injection molding operations, the

molecular orientation which may be found in the wake of obstacles can result in the for-

mation of weak "weld lines" (Baird and Collias, 1995). Accurate modeling of such opera-

tions requires that a constitutive equation correctly represent the elongational response of

a fluid.

Onset of instabilities in a polymer process can severely compromise the economics of

the operation. Specifically, throughput can be limited by the requirement to run a machine

below a critical volumetric flow rate. Alternately, the onset of flow transitions can result in

a product having unacceptable properties. An example, shown in Fig. 1. lb, is the "shark-

skin" instability which results in a material having low gloss; at sufficiently high flow

rates, unstable flow results in complete breakup of the extrudate (cf. Fig. 1. 1d) (Piau et al.,

1990). Understanding of the mechanisms driving unstable flow could allow more accurate

prediction of the economics of a planned process, and possibly reveal ways to achieve

high throughput while avoiding flow transitions. Computational resources currently limit

numerical simulation of three-dimensional and/or time-dependent viscoelastic instabilities

in complex flows. However, better understanding of the physics which underpin instability

onset may allow the development of heuristics which allow flow transitions to be pre-

dicted and averted.

Common spatio-temporal features of viscoelastic flow instabilities have been noted in

work which has been published in the literature; these investigations are reviewed in



Figure 1.1 Onset of flow instabilities in the extrusion of a silicone gum through an ori-

fice die: (a) AP = 50 [kPa], Wi = 0.14; (b) AP = 600 [kPa], Wi = 0.30; (c) AP = 675 [kPa],

Wi = 0.31; (d) 1000 [kPa], Wi = 0.35. (reproduced from (Piau et al., 1990)).
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Chapter 2. Linear stability and energy analyses of systems with a simple base flow have

led to development of the concept that many of these flow instabilities have a common

underlying mechanism related to interaction between streamline curvature and streamwise

stress (Joo and Shaqfeh, 1992; Joo and Shaqfeh, 1994). This concept has led to develop-

ment of a scaling which may be applied to complex base flows (McKinley et al., 1996).

This scaling has been successfully applied to experimental data from several test flows;

however, the body of quantitative data, especially for complex flows, is limited. One

should also note that a range of quantitative data for various flows will be required to ver-

ify the accuracy of predictions of three-dimensional and/or time-dependent flows, once

these become feasible.

The investigations comprising this thesis are also of interest from a fundamental, sci-

entific point of view. Assessment of the accuracy of constitutive equations derived from

molecular considerations may provide insight into polymer kinetic theory. Evaluation of

the predicted elongational response is of particular interest. A polymer molecule in an

elongational flow can achieve an extended and aligned conformation which is fundamen-

tally different from the moderately stretched and tumbling configuration which occurs in a

shear flow (Larson, 1988). Identification and characterization of viscoelastic flow instabil-

ities provides insight into the interaction of a polymer molecule with a surrounding flow

field (Joo and Shaqfeh, 1992; Joo and Shaqfeh, 1994). Viscoelastic instabilities are also

interesting from a mathematical perspective in that they are physical manifestations of

phenomena anticipated by nonlinear dynamical theory, a field which has seen an explosion

of activity over the last two decades (Strogatz, 1995; Guckenheimer and Holmes, 1983).

1.2 Experimental Approach

A typical industrial polymer processing flow is highly complex, as illustrated by the

representation of a pipe extrusion operation in Fig. 1.2. To render the problem tractable,

such an operation is generally decomposed into individual subproblems of which the flow

geometry may be further idealized. For example, the flow from the barrel of the extruder

into the annular slit around the mandrel can be represented as an entry flow. Since the gap

width of the annular slit, d, is often much smaller than its radial distance from the center of
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Schematic diagram of a polymer pipe extrusion process and its decomposition into a number of simpler subprob-

lems. (reproduced from (McKinley, 1991)).
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the mandrel, R, the curvature, d/R, is small, and the entry flow can be approximated by

flow through an abrupt planar contraction. Examples of other subproblems are shown in

Fig. 1.2. One should be aware that the utility of the problem decomposition approach is

primarily in the advancement of fundamental understanding of polymer fluid mechanics

and the development of analytical and numerical tools. Because a viscoelastic fluid has

"memory" of its deformation history, the flow field at a given point in a processing opera-

tion will affect the flow field at all points farther downstream in the operation. Conse-

quently, accurate modeling of a polymer processing operation could not be conducted by

solving individual subproblems and "combining" them to reconstruct the entire process.

A good set of quantitative experimental data exists for viscoelastic flow through the

axisymmetric contraction. In contrast, most of the previous investigations of instabilities

in planar contraction flow have been qualitative. Furthermore, several of these prior stud-

ies did not fully characterize the shear-flow rheology of the test fluid. Inertia was not neg-

ligible, and it was difficult to distinguish the influence of inertia on the velocity field from

that of memory of nonlinear elastic effects. Hence, quantitative characterization of the

onset and spatio-temporal structure of instabilities in the planar contraction is needed to

complement the available data. The flow in the planar contraction (cf. Fig. 1.3) is also well

suited for the characterization of the elongational response of a viscoelastic fluid. Specifi-

cally, throughout most of the flow, the rate-of-strain tensor is complex; i.e., has both elon-

gational and shear contributions. However, because of symmetry, the flow on the

centerplane is shearfree and exclusively elongational. As discussed in Chapters 4 and 6,

direct interpretation of a flow induced birefringence (FIB) measurement in terms of the

stress field requires a flow which is two-dimensional and planar. Since the flow on the

centerplane of the planar contraction is two-dimensional, planar, and shearfree, it is well

suited for the measurement of the transient elongational response of a viscoelastic fluid. In

consequence, the abrupt planar contraction is used as the test geometry throughout this

thesis.

Several non-invasive, optical measurement techniques, described in detail in Chapter

3, are applied in the investigations presented in Chapters 5 and 6 to obtain velocity- and

stress-field information. Light sheet visualization is useful in observing the form of the

streamlines within a given two-dimensional plane ("streaklines") and thereby obtaining



Flow through the planar contraction; the flow on the centerline is shearfree.Figure 1.3



qualitative velocity field information. By taking successive "slices" in space, a qualitative,

three-dimensional representation of the velocity field is reconstructed. Such qualitative,

full-field velocity information is complemented by the quantitative laser Doppler velocim-

etry (LDV) technique. The LDV system used for the experiments of this thesis can acquire

highly accurate velocity information at a given point in space. A scan can also be per-

formed across a given line to characterize quantitatively variation of the velocity field in

space. Alternately, time-series velocity data can be acquired at a given point. Application

of the light sheet visualization and LDV techniques allows for extensive and accurate char-

acterization of the spatio-temporal structure of and onset conditions for viscoelastic flow

instabilities. The flow induced birefringence (FIB) technique, in conjunction with the lin-

ear stress-optical rule, is used to obtain quantitative, pointwise stress-field information for

two-dimensional, planar flows. Such stress-field information, in conjunction with veloc-

ity-field information obtained via LDV, is used to characterize the viscoelastic response of

the fluid to the elongational flow along the shearfree centerline.

Viscoelastic fluids differ in several fundamental ways from the Newtonian fluids

which are familiar from everyday experience. The characteristics of viscoelastic fluids and

the constitutive models used to describe them are presented in detail in Chapter 4, a brief

description of some essential characteristics is given here. The stress tensor of a Newto-

nian fluid element responds instantaneously and exclusively to the local rate-of-strain ten-

sor. In contrast, the stress tensor of a viscoelastic fluid element is affected not only by the

current rate-of-strain tensor, but also the entire prior strain history of the element. Strains

experienced more recently have a greater effect on the current stress than strains experi-

enced farther in the past; viscoelastic fluids are described as having a "fading memory".

The importance of memory effects in the determination of the stress and velocity field for

a given flow is parameterized by the Deborah number

De - (1.1)tflow

where k represents a relaxation time characteristic of the viscoelastic material and tflow

represents a characteristic timescale of the process.' In the limit De(y) = 0, obtained for an



inelastic fluid or a viscoelastic fluid in a very slow flow, a fluid element in the flow has

essentially no memory of its previous history and behaves inelastically. On the other

hand, a perfectly elastic solid, which does not forget its past history, is characterized by

De(y) - oo. Viscoelastic flows are characterized by intermediate values, De(y) - 0(1).

Viscoelastic materials also exhibit nonlinear behavior which distinguishes them from

Newtonian fluids. For example, viscoelastic fluids exhibit normal stresses in simple shear

flow. Viscoelastic fluids can also exhibit elongational thickening; i.e., the elongational vis-

cosity of a viscoelastic fluid can rise to a value 1000 times or greater than the viscosity. In

contrast, the ratio of the elongational viscosity, r , to the viscosity of a Newtonian fluid, 1,

is constant and depends only on the class of elongational flow; e.g. for planar elongational

flow rll/g = 4. The importance of nonlinear effects arising from the elastic nature of a

flow is parameterized by the Weissenberg number

Wi -- IF (1.2)

where F represents a characteristic strain rate of the flow. For a flow characterized by Wi

<< 1, the fluid will respond in a Newtonian manner; e.g., effects such as shear thinning,

elongational thickening, and shear-induced normal stresses will be negligible (Bird et al.,

1987a). Note that Wi and De are often used interchangeably in the literature; however, the

definitions given in this and the preceding paragraph are used consistently throughout this

thesis.

Polymer melts are of greater industrial and economic importance than polymer solu-

tions. However, polymer solutions have several characteristics which have favored their

use in the experiments presented in this thesis. Polymer solutions are fluid at room temper-

ature, so that the pressures required for conducting experiments are order one atmosphere.

The maximum pressure differential used for the experiments of this thesis was 700 [kPa].

The use of moderate temperatures and pressures simplifies the design of experiments

which use polymer solutions instead of polymer melts. Polymer solutions have the same

essential characteristics of viscoelastic fluids as polymer melts; experiments conducted

1. M. Reiner coined the term "Deborah number"; his illustrative and amusing monologue on the

origin and utility of this dimensionless parameter may be found in (Reiner, 1964).



with polymer solutions in complex flows are generally suitable for the evaluation of the

accuracy of isothermal numerical flow simulations. Although polymer melts are generally

of greater technological interest, polymer solutions are used in some industrial processes;

e.g., the fiber spinning of cellulose triacetate (Rodriguez, 1989).

The polymer solutions used for the experiments of this thesis fall into the class of

Boger fluids. These materials are characterized by a viscosity which is nearly independent

of shear rate; this characteristic is obtained by dissolving a low concentration of a high

molecular weight (MW) polymer in a highly viscous solvent such that the viscosity of the

solvent dominates over the contribution of the high MW polymer. However, one should

note that the Boger fluids used in this thesis do exhibit shear thinning of the first normal

stress coefficient. The characteristic of constant viscosity potentially simplifies modeling

the rheology of the Boger fluid and numerical simulation of flow. The property of high

and constant viscosity, in conjunction with long relaxation times, also results in inertia

being negligible for most test flows; this simplifies interpretation of experimental results

and corresponding numerical flow simulations.

1.3 Thesis Goals

The discussion in § 1.1 provided motivation for the characterization of viscoelastic

flow instabilities and measurement of the elongational response of viscoelastic fluids. Sec-

tion 1.2 gave a brief outline of the reasoning which has led to the selection of a planar con-

traction and Boger fluid as the test system. Experimental techniques used to acquire stress-

and velocity-field information were introduced.

Literature reviews of previous investigations of viscoelastic flow instabilities are pre-

sented in the first part of Chapter 2. Investigations which highlight the importance and the

difficulty of obtaining well-characterized elongational material function data for polymer

solutions are discussed in the second part of Chapter 2. The best characterized measure-

ments to date of the elongational response of polymer solutions are then described. Chap-

ter 3 presents the fluid handling system and test geometry used throughout the thesis and

discusses characteristics and limitations of the optical measurement techniques of light

sheet visualization, laser Doppler velocimetry, and flow induced birefringence. In the first



part of Chapter 4, material functions which characterize the response of viscoelastic fluids

to shear and shearfree flows and experimental techniques used in the determination of

these functions are presented. Characteristics of the constitutive models used throughout

this thesis to model the rheological response of the test fluid are described. The second

part of Chapter 4 presents in detail the experimentally determined shear-flow rheology of

the test fluid and the parameter fits of constitutive models.

In Chapter 5, the spatiotemporal structure and conditions for onset of a viscoelastic

instability in planar contraction flow are described; the study was conducted with specific

objectives required to advance the field.

* The spatio-temporal structure of the velocity field of the instability is qualitatively char-

acterized via light sheet visualization. The effects of inertia are negligible; this facilitates

comparison of the structure of the instability in the planar contraction with the structure

of instabilities observed in other geometries (e.g. the axisymmetric contraction).

* The velocity field is quantitatively characterized in select regions of the unstable flow

via LDV. This information provides a "benchmark" set of data for the evaluation of

three-dimensional and/or time-dependent numerical simulations in the future. The quan-

titative velocity-field information also serves to identify regions of flow and flow condi-

tions (i.e. volumetric flow rate) for which FIB measurements are directly interpretable in

terms of stress.

* The velocity-field data obtained via flow visualization and LDV are used to determine

whether the interaction of streamline curvature with streamwise stress drives the insta-

bility. Specifically, the region in the flow where the instability is localized and the scal-

ing of the spatial extent of the instability with geometrical parameters are identified. The

scaling of the critical Weissenberg number for instability onset with geometrical param-

eters is determined; a scaling criterion for onset of viscoelastic flow instabilities (McK-

inley et al., 1996) is evaluated with this information.

In Chapter 6, the experimental determination of the transient elongational response of

the test fluid to the nonhomogeneous planar elongational flow on the centerline of the con-

traction geometry is discussed; the investigation enables the achievement of specific goals.



* Experimental measurements are conducted in test geometries of different contraction

ratios to allow the attainment of different total Hencky strains; the volumetric flow rate

is varied to adjust the magnitude of the centerline strain-rate profile. Both the elonga-

tional strain rate and the stress tensor are measured in a quantitative manner along the

centerline; from this information, a well-characterized transient elongational viscosity

profile is determined. The data are used to evaluate the accuracy of the predictions of

nonlinear constitutive equations.

* The experimental results are also compared with the predictions of linear constitutive

equations under different flow conditions. This comparison allows evaluation of the effi-

cacy of the transient elongational flow on the centerline of the planar contraction in stim-

ulating a quasilinear or nonlinear viscoelastic response.

* Limitations of the FIB technique in obtaining quantitative stress-field information in pla-

nar contraction flow are assessed. Specifically, the effect of stress-field inhomogeneities

within the cross-sectional area sampled by the probe beam and inhomogeneities along

the beam path on the measured birefringence and calculated "apparent" stress tensor are

evaluated.

Essential findings and conclusions of this thesis are summarized in Chapter 7; suggestions

for future research are given.



Chapter 2

Literature Review

Two aspects of viscoelastic flow through the planar contraction were considered for

this thesis. Transition from the two-dimensional, steady base flow to three-dimensional

and time-dependent flow is linked to interaction between streamline curvature and stream-

wise stress in Chapter 5. A more restricted region of the flow is used in Chapter 6; the vis-

coelastic response to the transient shearfree flow on the centerline of the planar

contraction is considered. This Chapter reviews work previously reported in the literature

which serves to motivate and is drawn on in the interpretation of investigations presented

in Chapters 5 and 6.

2.1 "Elasticity-Driven" Flow Transitions

Previous investigations of viscoelastic flow through diverse geometries have noted

transitions in the structure of the flow field associated with the "elastic" nature of the flow;

time-dependent and nonlinear rheological character of the fluids in the flow. The investi-

gation presented in Chapter 5 of this thesis has focused on the classification of global flow

transitions in the planar contraction; i.e., those which occur over the longest characteristic

length scale of the geometry, the upstream half-height. In accordance with this emphasis,

global flow transitions observed in previous investigations are discussed in this Section.

Transitions associated with two-dimensional rearrangement of the flow field in differ-

ent geometries with complex flow (having both shear and elongational components of the

rate-of-strain tensor) are addressed in §2.1.1. These rearrangements precede transition to

three-dimensional and/or time-dependent behavior in complex flow, which is discussed in

§2.1.2. Transition to three-dimensional and/or time-dependent flow has also been noted in

simple, viscometric flows, in which they have been attributed to the interaction of stream-

wise stress with streamline curvature. A scaling concept which can be used to understand

critical conditions associated with such stress/curvature interaction in complex flows is



presented in §2.1.3. This scaling is applied to the transition observed in the planar contrac-

tion in Chapter 5.

The review provided in this Section is intended to motivate the study of flow transi-

tions in the planar contraction, presented in Chapter 5, and provide background informa-

tion useful for interpreting the results presented in this thesis. The review given here is not

intended to be comprehensive and is restricted in several respects. Transitions in the flow

field localized to the reentrant corner in abrupt contraction flows have been observed.

These are not discussed here; rather, the global flow transitions akin to those which were

the focus of the study presented in Chapter 5 are discussed. Studies in which the inertia

was negligible, i.e. flow transitions were solely a consequence of the viscoelastic nature of

the fluid are emphasized here. Investigations in which inertia was significant are presented

only where there are an insufficient number of investigations for which the flows were

inertialess for a given test geometry. A polymer solution was used as the viscoelastic test

fluid for the experiments comprising this thesis; consequently, the literature reviewed is

restricted to studies conducted with polymer solutions. Since polymer solutions were

used, all the flows discussed here may be considered isothermal. Note that at the end of

§2.1.2 only a brief comparison of transition behavior among the different geometries is

given. A more thorough discussion is deferred to §5.4, so that the transition behavior

observed for viscoelastic flow through the planar contraction in this study may be

included. Throughout this Section, all of the flows considered have a two-dimensional and

steady base state.

2.1.1 Two-Dimensional Velocity-Field Rearrangement

Two-dimensional rearrangement associated with the elastic nature of the flow has been

noted in diverse geometries of complex flow. In this Section, rearrangement phenomena

occurring in the driven-cavity and in the cylinder-in-channel geometries are presented

first. Rearrangement in contraction geometries is then discussed; the axisymmetric and

planar contraction flows exhibit similar behavior, onset of a "diverging streamline" pattern

is observed. A qualitative interpretation of the mechanism driving the transition to diverg-



ing streamlines, particularly for the case of contraction flows, is given at the end of this

Section.

Cylinder in Channel

Viscoelastic flow around a cylinder in a channel is a nominally two-dimensional and

planar geometry which has been studied by Byars (1996) and McKinley (1991). The for-

mulation of the polyisobutylene based Boger fluid used was similar to the fluid used in the

investigation for this thesis; the rheology was similar in nature, although the viscosity and

the relaxation time were lower than that of the test fluid described in Chapter 4. Inertia

was negligible in the test runs. At non-zero Weissenberg number, 0 < Wi . 1, a two-

dimensional rearrangement of the flow field was noted; specifically, downstream of the

cylinder there was a shift of the streamlines in the downstream direction.

Driven Cavity

The driven-cavity geometry is schematically illustrated in Fig. 2.1. The base flow in

the driven cavity is nominally two-dimensional and planar, i.e., invariant in the "neutral"

x-direction. The rate-of-strain tensor has both shear and elongational components (com-

plex flow). The evolution of the velocity field for increasing values of the Weissenberg

number, Wi, for a viscoelastic fluid was studied by Pakdel and McKinley (1996).1 The for-

mulation and rheology of the polyisobutylene based Boger test fluid were similar to the

test fluid used for the investigations of this thesis and described in Chapter 4; inertia was

negligible in the test runs. A two-dimensional flow rearrangement was observed at non-

zero Wi (Pakdel et al., 1997). Specifically, the elliptic point of the flow recirculation, ini-

tially located at the midpoint of the z-dimension (at z = L/2), shifted in the upstream direc-

tion (to z < L/2).

Axisymmetric Contraction

Onset of two-dimensional flow rearrangement in the form of streamlines which

diverge from the centerline has been observed in the axisymmetric abrupt contraction. In

1. Wi quantifies the importance of nonlinear effects, associated with the "elastic" nature of a flow,
in determining the stress and velocity fields for the flow (cf. § 1.1).
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the McKinley et al. (1991) study of axisymmetric contraction flow; diverging flow in the

rz-plane was noted for contraction ratios of RUp/RDn = 3, 4, and 5; a streakline image is

reproduced in Fig. 2.2. An increase in maximum dimensionless centerline strain rate with

Wi associated with the transition to diverging flow was also found. The ratio of the mean

upstream velocity to the minimum dimensionless velocity was greatest for the case of low

contraction ratios; i.e. the diverging flow was most pronounced. McKinley et al. did not

observe diverging flow in geometries for which RUp/RDn 2 6. The distance of the point

of minimum centerline velocity upstream from the contraction plane increased monotoni-

cally, although not linearly proportionally, with upstream tube radius, Rup.

Binding and Walters (1988) investigated viscoelastic flow through an axisymmetric

contraction geometry of ratio Rup/RDn = 14. A polyacrylamide-based Boger fluid, of con-

stant viscosity, was used; inertia was negligible in the experiments. No diverging flow was

noted in the flow through the axisymmetric contraction. Although Binding and Walters

did not investigate flow through geometries of lower contraction ratio, the absence of

diverging flow in a large ratio axisymmetric contraction is consistent with the study of

McKinley et al. in which diverging flow was not noted for RUp/RDn 2 6.

Planar Contraction

Only a limited number of studies of the viscoelastic flow of polymer solutions through

planar contraction geometries have been conducted. Evans and Walters (Evans and

Walters, 1989) noted a two-dimensional rearrangement of the velocity field at high flow

rates in a planar contraction of upstream to downstream half-height ratio H/h = 4. Specifi-

cally, for WiDn 2 3.8, a pattern of diverging streamlines upstream of the contraction plane

was noted. 2 A polyacrylamide solution which exhibited shear thinning of the viscosity

was used in the experiments. In consequence, inertia was a significant factor; ReDn > 130

at the flow rate for which diverging flow was observed. 3 The interaction of inertial with

elastic phenomena can give rise to essentially different behavior from that observed under

inertialess conditions (Joseph, 1990); as a result, it is difficult to unambiguously interpret

2. The shear-rate-dependent Weissenberg number based on downstream flow parameters, WiDn, is
defined in §5.1.
3. The shear-rate-dependent Reynolds number based on downstream flow parameters, ReDn, is
defined in §4.5.2.



(a)

(b)

Figure 2.2 Streakline images of viscoelastic flow through a 4:1 axisymmetric contraction: (a)

low flow rate (Wi = 0.90), continuously converging streamlines; (b) elevated flow rate (Wi =

3.40), diverging streamlines. (Reproduced from (McKinley, 1991)).



the rearrangement to diverging streamlines as arising solely from the "elastic" nature of

the flow.

The studies of Chiba et al. (Chiba et al., 1990; Chiba et al., 1992) used shear-thinning,

aqueous polyacrylamide (PAC) solutions with solute concentrations of 0.1% and 0.5%

flowing through planar contractions. In H/h = 3.3 and 5 planar contraction geometries,

Chiba et al. observed diverging flow. In the case of the 5:1 contraction, the critical flow

rate corresponded to ReDn = 26; WiDn was not known since the first normal stress coeffi-

cient of the test fluid was not measured. For the 3.3:1 contraction, the critical flow rate was

not reported. Onset of a diverging flow field was not found for the 10:1 contraction. As in

the Evans and Walters study, inertia was a significant factor, complicating interpretation of

the results.

In contrast to the studies of Chiba et al. and Evans and Walters, inertia was not a sig-

nificant factor in the investigation conducted by Binding and Walters (1988) of flow

through a planar contraction of ratio H/h = 14.4. Binding and Walters used a polyacryla-

mide-based Boger fluid, which was identical to that used in their study described in the

Section above. Diverging flow was noted in the planar contraction at a flow rate corre-

sponding to WiDn = 0.6 and ReDn = 0.01.

The investigations discussed above have revealed a similar evolution with Weissenberg

number for viscoelastic flows through both planar and axisymmetric geometries; i.e., two-

dimensional flow rearrangement to a pattern of "diverging streamlines". This common

behavior was noted for Boger and shear-thinning fluids, solutions composed with organic

and with aqueous solvents. Specifically, as the Wi is increased above a critical value,

diverging streamlines are noted; associated with this flow field is an increase in the maxi-

mum dimensionless centerline strain rate. The diverging flow behavior is most pro-

nounced for geometries of low contraction ratio. In fact, two of the studies (Binding and

Walters, 1988; McKinley et al., 1991) indicated that diverging flow did not occur for axi-

symmetric geometries of large contraction ratio.

The precise mechanism driving the diverging flow has not been elucidated; however, it

is probable that both shear and elongational components of the strain-rate field upstream

of the contraction plane play a role. A mechanism suggested by McKinley et al. (1991) is



discussed here. The fluid near the walls upstream of the contraction plane experiences a

much higher shear component of the rate-of-strain tensor than the fluid near the centerline.

This elevated shear rate induces shear-thinning of the fluid elasticity. In contrast, near the

centerline, the shear contribution is low but the elongational contribution to the rate-of-

strain tensor is high. The elongational strain rate generally has an elasticity-thickening

effect on unstructured polymer solutions (although the elongation stress-growth response

is only slightly higher than predicted by linear viscoelasticity for the flow along the center-

line of abrupt contractions - see Chapter 6). Because of the elasticity thinning near the

upstream wall and possible thickening near the centerline, the fluid flow redistributes from

the center of the flow to the region adjacent to the upstream walls, resulting in streamlines

which diverge from the centerline.

This reasoning is consistent with the observation that lower contraction ratio geome-

tries in both the planar and axisymmetric contractions have more pronounced diverging

flow behavior (lower centerline velocity minimum relative to mean upstream velocity, vz/

<vz>up) than higher contraction ratio configurations. For example, it was discussed above

that in the investigation of McKinley et al. (1991) of viscoelastic flow through the axisym-

metric contraction, diverging flow was noted for RUp/RDn 5 5 but not for RUp/RDn 2 6.

Specifically, the region of high elongational strain rate is primarily governed by the flow

near the downstream slit entrance; the influence of the contraction ratio on elongational

thickening is therefore minimal (cf. Chapter 6). In contrast, the shear rate of the flow adja-

cent to the upstream wall decreases with increasing contraction ratio. Hence, a less sub-

stantial, or even nonexistent diverging flow is observed for geometries of high contraction

ratio. The argument also is consistent with the differences in diverging flow behavior

observed for the axisymmetric and planar contraction geometries. The upstream-wall

shear rate for fully-developed flow will decrease as (H/h) 2 for the planar contraction but

as (Rup/RDn) -3 for the axisymmetric contraction. This is consistent with the observation

that the maximum contraction ratio for which diverging flow can be observed is typically

greater for planar contraction flow than axisymmetric contraction flow. For example, in

the study of Binding and Walters (1988) flow of a specific test fluid through the planar and

axisymmetric contractions was investigated. The contraction ratio for the geometries was

nearly identical, H/h - RUp/RDn = 14; however, diverging flow was observed in the pla-



nar contraction but not in the axisymmetric contraction. The effect of contraction ratio on

diverging-flow behavior is revisited during the discussion of the study presented in Chap-

ter 5.

More detailed understanding of the mechanism driving transition to diverging flow

will require numerical simulations which accurately incorporate both the shear and elon-

gational rheological response of the test fluids. Such simulations may also prove useful in

identifying common bases of two-dimensional velocity-field rearrangement phenomena

shared by different flow geometries; e.g., the abrupt contraction and driven-cavity flows.

Note that observation of the diverging flow behavior underscores the importance of the

experimental investigation of complex viscoelastic flows. Diverging of the streamlines in

flow through abrupt contractions at elevated Weissenberg number has not been not noted

in numerical simulations (Coates, 1992). The absence of this flow rearrangement may

indicate that the constitutive equation used in the simulation did not fully capture the rheo-

logical character of the fluid; in particular, the response of the fluid to a rate-of-strain field

with a strong elongational component may not have been accurately represented.

2.1.2 Transitions to Three-Dimensional and/or Time-Dependent Flow Driven by
Interaction of Streamline Curvature with Streamwise Stress

Previous investigations have indicated that the interaction of streamwise elastic

stresses with streamline curvature may induce flow transitions in diverse flow fields,

which have rate-of-strain tensors which have exclusively shear contributions or have both

shear and elongational contributions (complex flow). Studies of simple viscometric flows,

in which only shear contributes to the velocity gradient field, are discussed first; these flow

ate amenable to treatment with analytical mathematical techniques. Observations of tran-

sitions in complex flows, which more closely resemble aspects of industrial processes, are

then presented. Discussion of a scaling approach to consideration of stress/curvature inter-

action in complex flows is deferred to §2.1.3.



Viscometric Flows

Couette Cell

The spatial and temporal structure of flow after an elastically-driven transition in Cou-

ette cell flow in the annular gap between two concentric cylinders was described in the

paper by Larson et al. (1990). The geometry was designed to approximate the small gap

limit,

6 = (R2 -R1)/R 1 -0 (2.1)

where R2 is the radius at the wall of the outer cylinder, R1, the radius of the inner cylinder,

and (R2 - R1) denotes the gap width. Larson et al. used a constant viscosity Boger fluid so

that inertia was negligible, Re << 1. When a critical shear rate was exceeded, the flow

underwent a transition from axisymmetric to three-dimensional flow. Specifically, flow

visualization revealed toroidal vortex structures which were evenly spaced along the axis

of the cylinders. Throughout the remainder of this discussion these structures will be

termed "G6rtler-like vortices"; the rationale for this terminology is made clear below. The

structure of the flow resembled that of the Taylor-Couette flow after onset of instability;

however, since inertia was insignificant, the transition was exclusively an elastic phenom-

enon.

Baumert and Muller (Baumert and Muller, 1995) characterized the flow evolution

from start-up of flow for runs of successively increasing Weissenberg number (Wi). They

used light sheet visualization in conjunction with digital image processing to determine

the onset Wi and observe the transient evolution of the flow field. For low Wi < 1.50 the

flow remained in the two-dimensional, steady base state for the entire duration of observa-

tion. At intermediate Weissenberg number, 1.50 < Wi • 3.00, a direct transition from the

base flow state to a three-dimensional and steady state of "Girtler-like" vortices evenly

spaced along the cylinder axis was observed. The elapsed time from start-up to onset of

the instability was long, ranging from 39.0x103 [s] for the lower shear rate (Wi = 1.50) to

5.1x103 [s] for the higher shear rate (Wi = 3.00). Baumert and Muller did not make the

quantitative amplitude measurements required to definitively classify the bifurcation at

onset of instability; however, indications of hysteretic behavior were observed and they



believed the bifurcation to be subcritical. This is consistent with the nonlinear analysis of

Sureshkumar et al. which predicted a subcritical bifurcation from the base state for the

case of narrow-gap viscoelastic Couette flow (Sureshkumar et al., 1994). Baumert and

Muller noted a different time evolution sequence when the Wi was increased to a high

value, Wi > 3.75. Specifically, for the case of Wi = 3.75 they found that after a brief

induction time of 0.18x103 [s] axisymmetric G6rtler-like vortices formed which moved

along the axial length of the cylinder, irregularly oscillating about a mean axial position.

After a total of 3.1x103 [s] the spatio-temporal structure became regular; pairs of vortices

were formed at fixed, evenly spaced axial positions and moved away from each other in

the axial direction until two vortices met at a "cell boundary" and were annihilated. After

a total induction time of 4.1x103 [s], the time-dependent behavior ceased; steady, axisym-

metric, evenly-spaced vortices persisted. A three-dimensional schematic diagram and an

rz-planform of the spatial structure of this persistent state, inferred from flow visualiza-

tion, is shown in Fig. 2.3. A similar transition sequence was observed for flows of higher

Wi, although the duration of each stage in the transient evolution sequence was of shorter

time.

Larson et al. (Larson et al., 1990) investigated the elastically-driven flow transition in

the Couette cell via linear analysis. Using the Oldroyd-B constitutive equation they cor-

rectly predicted that the critical Weissenberg number, Wicrit, for the onset of instability

was related to the dimensionless gap width, 5 (defined in eq. (2.1)), and a constant param-

eter, Mcrit, as

Wicrit = -/2 Mcrit (2.2)

Northey et al. (1992) numerically computed the solution for the nonlinear equation set

describing flow of an upper convected Maxwell fluid in the Couette cell with dimension-

less gap widths in the range 0.01 < 8 6 0.1 . The computation was time-dependent and per-

formed over a domain in the rz-plane. The computed solution had the form of pairs of

counter-rotating vortices which were nested in the radial (r-) direction. These vortices

were "born" at the bounding wall of the inner cylinder, moved outward (in the positive r-

direction), and "died" at the bounding wall of the outer cylinder. A supercritical Hopf
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Figure 2.3 Three-dimensional view and rz-planform of the spatial structure of the flow after

transition to three-dimensional, steady flow inferred from light sheet visualization of flow in the

Couette cell conducted by Baumert and Muller (1995).
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bifurcation was associated with the transition from the two-dimensional, steady base flow

to the time-dependent, three-dimensional state. A limitation of the work of Northey et al.

(1992) was that since the computational domain was two-dimensional only axisymmetric

solutions could be computed; nonaxisymmetric modes, e.g. "barber-pole" structures,

could not be computed. This limitation is highlighted by the linear analysis conducted by

Joo and Shaqfeh (1994, 1992), which indicated that of two possible modes of flow to

which transition could occur, axisymmetric and non-axisymmetric, the non-axisymmetric

mode was the more dangerous. Joo and Shaqfeh also applied an energy analysis to obtain

insight into the mechanism driving the flow transition. A numerical nonlinear analysis

conducted by Sureshkumar et al. (1994) indicated that the solution branch corresponding

to the non-axisymmetric mode was itself unstable. Although the computations of Suresh-

kumar et al. (1994) were not pursued beyond the point of identifying the stability of this

branch, it is possible that the stable solution to which the system ultimately evolves after

bifurcation from the base flow is a nonlinear axisymmetric state. This would be consistent

with the experimental observations of Baumert and Muller (1995). These experimental

observations and theoretical investigations of viscoelastic Couette flow revealed that the

flow transition was induced by interaction between the curvature of the streamlines and

the normal "elastic" stresses along the streamlines associated with the high molecular

weight polymer component.

Recently, work has been conducted regarding the onset of Taylor-like instabilities in a

narrow-gap Couette cell for which both inertial (parameterized with the Reynolds number,

Re) and time-dependent elastic effects (parameterized via the Deborah number, De) were

significant. Renardy et al. (1996) found that a bifurcation of codimension-2 occurred when

either two Hopf modes, or a Hopf and a steady mode were simultaneously at criticality.

They also determined via a nonlinear analysis, that unless the ratio De/Re was very small,

a finite transition associated with a subcritical bifurcation occurred at the limit of stability

of the base Couette flow, in agreement with the prior results of Sureshkumar et al. (1994).

Cone and Plate

Onset and structure of an elastically-driven flow transition in the viscometric cone-

and-plate flow, which bore resemblance to that observed in the Taylor-Couette flow, was



experimentally and theoretically investigated by McKinley et al. (1995). The vortices

which comprised the flow after transition had the form of non-axisymmetric, self-similar

Bernoulli spirals which slowly translated toward positions of smaller radius. The local

structure within the spiral resembled "Girtler-like" vortices. The base flow underwent a

subcritical Hopf bifurcation to this three-dimensional, time-dependent state; hysteretic

behavior was observed. Inertia was negligible in the test runs; the formulation and rheol-

ogy of the polyisobutylene based Boger fluid used was similar to the test fluid used for the

investigations of this thesis and described in Chapter 4. A linear analysis using the

Chilcott-Rallison model for the constitutive equation qualitatively predicted the depen-

dence of the critical Wi on the cone angle. Ozetkin and Brown (1994) used a more sophis-

ticated multi-mode Giesekus model in their linear analysis and were able to quantitatively

predict the critical Wi for onset of the instability.

Complex Flows

Cylinder in Channel

The flow of a Boger fluid around a cylinder centered in a channel was experimentally

investigated by Byars (Byars, 1996; Ozetkin et al., 1997) who built on the work of McKin-

ley (1991). LDV was used to measure quantitatively the velocity field for several geome-

tries with different ratios of channel half-height to cylinder radius (Hchan/Rcyl). At a flow

rate above that required to observe the downstream shift of the streamlines described in

§2.1.1, a supercritical bifurcation from two-dimensional and steady to three-dimensional

and steady flow occurred. For the geometry with a channel half-height (Hchan) twice the

cylinder radius (Rcyl) the critical parameter was Wi = 1.3. The spatial structure of the flow

after transition was a series of Girtler-type counter-rotating vortex pairs noted for other

complex flows described in this Section. The experiments of Byars and of McKinley indi-

cated that both the length scales of cylinder radius, Rcyl, and gap between the cylinder and

the wall, Hchan - Rcyl, played roles in setting the wavelength between pairs of vortices.

When the flow rate is increased further, a transition to three-dimensional, time-dependent

flow occurs at Wi = 1.9 for the case of the Hchan/Rcyl = 2 geometry. After the temporal

transition, vortex pairs were continually "born" at the midpoint of the x-dimension



(dimension along the cylinder axis) and moved in opposite directions toward the walls

bounding the x-dimension. The class of bifurcation was not determined and time series

measurements were only performed at the midpoint of the cylinder, therefore it was not

known whether the waves associated with the temporal transition were superimposed on

the waves associated with the spatial transition (supercritical bifurcation) or if the waves

associated with the spatial transition suddenly started to move as a unit (subcritical bifur-

cation). Moreover, it was not determined whether the amplitude of the oscillations associ-

ated with the temporal transition was constant over the entire width (x-dimension) or if the

amplitude was greater at the bounding walls or at the midpoint of the cylinder axis. Nev-

ertheless, the walls bounding the x-dimension seemed to act as an imperfection to the two-

dimensional base flow and set the direction of vortex movement.

The observed spatial extent of the oscillations in the x-direction associated with flow

transition supported the concept that the transition was induced by interaction of stream-

wise stresses with curved streamlines, rather than phenomena associated with the elonga-

tional flow near the downstream stagnation point. Specifically, the region over which

spatial oscillations associated with the flow transition were observed extended from the

downstream stagnation point of the cylinder (0 = 0) to an azimuthal position of at least 0 =

it/4 [rad] upstream of this point. The flow in this region is complex, with both shear and

elongational contributions to the rate-of-strain tensor; the streamlines are curved. Ozetkin

et al. (Ozetkin et al., 1997) performed a linear analysis of viscoelastic flow around a cylin-

der in an unbounded medium using the Oldroyd-B and Giesekus constitutive equations;

the correct dependence of wavelength and critical Wi for onset of the instability on the

Hchan/Rcyl ratio was predicted, although the model was too simple to be quantitatively

accurate.

Driven Cavity

Pakdel and McKinley (1996) have observed the onset of an elastically-driven instabil-

ity in driven-cavity flow of a Boger fluid; inertia was negligible in the flow. At Wi greater

than that required for the two-dimensional flow rearrangement described in §2.1.1, a

three-dimensional and time-dependent flow structure was observed near the corner where

the moving top plate emerged (Pakdel and McKinley, 1996). Qualitative visual observa-



tion indicated that the spatio-temporal structure of the flow was of the form of "Goirtler-

type" vortices. The wavelength in the "neutral" x-direction of the flow structure associ-

ated with transition scaled with the height (the y-dimension, cf. Fig. 2.1) of the stationary

wall- adjacent to the corner (the depth (z-dimension) and width (x-dimension) of the box

were held constant).

Axisymmetric Abrupt Contraction

Binding and Walters (1988), investigated flow through a 14:1 axisymmetric contrac-

tion. They observed a transition to an asymmetric velocity field at elevated flow rates.

Specifically, a light sheet in the rz-plane passing through the centerline indicated that the

outer corner vortex in one half of the image was larger than the vortex located on the oppo-

site half (xt [rad] in the 0-direction) of the image. The temporal structure of the flow after

transition was not described.

Muller (Muller, 1986) and Raiford (Raiford, 1989) conducted studies of velocity field

transitions observed in the flow of polyisobutylene-based, "elastic", constant viscosity

(Boger) fluids through the axisymmetric contraction. Laser Doppler velocimetry (LDV)

was used to obtain quantitative information and determine the class of bifurcation associ-

ated with a given flow transition. McKinley et al. (1991) built on this work by characteriz-

ing flow for a range of geometries with different contraction ratios (ratio of upstream to

downstream tube radius, RUp/RDn). This information was used to construct a transition

map (cf. Fig. 2.4) of flow states in axisymmetric contraction flow. This map has proven

useful in unifying the observations obtained for several investigations (Boger et al., 1986).

At elevated flow rates, a transition from steady to time-dependent flow was observed. For

lower contraction ratios, RUp/RDn 5 4, the vortex remained axisymmetric but grew and

decayed with a characteristic frequency (pulsating mode). In contrast, for RU/RDn _2 5 the

vortex after onset of the instability was non-axisymmetric; as noted by Binding and

Walters (Binding and Walters, 1988), in the rz-plane the outer corner vortex on one half of

the plane was larger than in the other half. The structure precessed around the perimeter

of the cylinder with a characteristic frequency (rotating mode). Note that in the lower con-

traction ratio geometries, RUpRDn < 5, the transition to diverging flow, discussed in

§2.1.1, occurred at Wi below that for transition to time-dependent flow.
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Figure 2.4 Flow transitions in the axisymmetric abrupt contraction as functions of the con-

traction ratio for 2 < RUp/RDn < 8. (0), critical WiDn for Hopf bifurcation to time-dependent flow

near the lip; (0) critical WiDn for formation of a vortex near the lip; (A), first observation of

pulsing mode (axisymmetric) of global time-dependent flow; (A), first observation of rotating

mode (nonaxisymmetric) of global time-dependent flow; (x), first observation of diverging

streamlines reported in text. (Modified from (McKinley, 1991)).



Boger et al. (1986, 1987) used qualitative streakline visualization to study velocity

field transitions in axisymmetric abrupt contractions with contraction ratios in the range 2

• RUpRDn _ 16. Two different Boger fluids were used, one an organic solution based on

polyisobutylene (PIB), the other an aqueous solution based on polyacrylamide (PAC).

The fluids were composed so as to have similar shear flow material functions. However,

distinct differences in the evolution of the velocity field with Wi for a given contraction

ratio was noted. For example, in the 4:1 contraction, the PAC solution exhibited a continu-

ous increase in the reattachment length of the outer corner vortex with Wi. In contrast, for

the PIB solution, the reattachment length of the outer corner vortex initially decreased

with Wi. At sufficiently high Wi, an independent vortex (the lip vortex) formed near the

reentrant corner of the contraction. This lip vortex grew in size with Wi, eventually annihi-

lating the outer corner vortex. The single remaining vortex continued to grow with Wi

until the reattachment length once again exceeded the value observed at low Wi. This dif-

ference in velocity field evolution between the PAC- and PIB-based Boger fluids was

ascribed to an (unmeasured) variation in the elongational flow material functions of the

fluids.

Planar Abrupt Contraction

Binding and Walters (Binding and Walters, 1988) investigated the flow of a polyacry-

lamide Boger fluid through a planar contraction geometry with a contraction ratio of H/h =

14. The qualitative streakline visualization technique used revealed asymmetry in the

velocity field at elevated flow rates which has also been noted for viscoelastic flow

through the axisymmetric contraction. This transition occurred at a Wi greater than that

associated with the transition to diverging flow described in §2.1.1. Streakline images

were only taken in the plane normal to the "neutral" direction; nevertheless, the spatial

structure of the flow after transition appeared consistent with the form of "Girtler-like"

vortices.

Chiba et al. (Chiba et al., 1990; Chiba et al., 1992) used shear-thinning polyacryla-

mide solutions in their qualitative studies of flow through planar contraction geometries

with contraction ratios in the range 3.3 5 H/h < 10. A transition from two- to three-dimen-

sional flow was noted at flow rates above that required for the onset of diverging flow



Figure 2.5 Schematic diagram of "Girtler-like" vortex in flow through the planar contraction.

(Reproduced from (Chiba et al., 1992)).
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described in §2.1.1. With streakline photography, Chiba et al. showed that the spatial

structure of the flow consisted of interlaced pairs of counter-rotating vortices on each side

of the centerplane. A representation of flow of a "ribbon" of fluid is shown in Fig. 2.5.

These counter-rotating vortex pairs resemble the Gartler vortices for Newtonian fluids

found in flows at high Reynolds number (Re) with streamline curvature (Saric, 1994). In

the studies of Chiba et al., the dimensionless wavelength in the "neutral" x-direction of the

spatial oscillation associated with the flow transition was found to depend on contraction

ratio, increasing from kx/H = 1.3 for the 3.3:1 contraction to kx/H = 1.9 for the 10:1 con-

traction for the 0.1wt% polyacrylamide (PAC) in water solution. The wavelength was

considerably greater for the 0.5 wt% PAC solution flowing through the 10:1 contraction,

kx/H = 3.8. At yet higher flow rates, Chiba et al. noted a transition from the three-dimen-

sional and steady flow to three-dimensional and time-dependent flow; the temporal struc-

ture of the flow after transition was qualitatively characterized. Chiba et al. found that the

vortex pairs oscillated in the "neutral" direction about a fixed point rather than continu-

ously moving from the walls bounding the x-dimension toward the center. A limitation of

the Chiba et al. study was that at flow rates for which elasticity had a substantial effect on

the flow field, Wi > 1, the shear thinning behavior resulted in Re >_ 1; therefore, inertia

was not negligible in the flows investigated. Since both inertial and elastic effects were

significant, it was difficult to identify unambiguously the mechanism driving the flow

transition. As mentioned above, the interaction of inertial with elastic phenomena can give

rise to essentially different behavior from that observed under inertialess conditions

(Joseph, 1990).

The velocity-field transition sequences for the diverse complex flows described here

share a number of features in common. In all cases for which a two-dimensional flow rear-

rangement occurred, the critical Wi was lower than the onset Wi for transition to three-

dimensional and/or time-dependent flow. The interaction between streamline curvature

and streamwise stress appeared to be the mechanism driving the flow transition. In all

cases, the spatial structure of the flow after transition had the form of "G5rtler-type" vorti-

ces. However, substantial work remains to be done before a unified picture of transitions in

complex viscoelastic flows is obtained. For example, some of the transitions described

above are directly from a two-dimensional and steady flow to a three-dimensional and



time-dependent flow; other transition first undergo a spatial transition to three-dimen-

sional flow and then a temporal transition to time-dependent flow. No criterion which can

predict the transition route for a particular flow geometry currently exists.

2.1.3 Scaling of Elastically-Driven Transitions in Flows with Curved Streamlines

The experimental and theoretical investigation described in §2.1.2 have indicated that

the interaction of streamwise stresses with streamline curvature can induce transition from

two- to three-dimensional flow. The stress-curvature interaction can be quantitatively and

mathematically described for viscometric flows such as that in the Couette cell. However,

non-viscometric flows are generally not amenable to analytical solution. Moreover, the

streamline curvature varies in a complicated manner throughout the flow, making analyti-

cal treatment difficult. McKinley et al. (1996) developed a dimensionless scaling which

relates a characteristic shear rate, streamwise stress, fluid residence time, and streamline

curvature in a flow to a "viscoelastic Gbirtler number", which sets the critical conditions

for onset of instability. The principles underlying the scaling and examples of its applica-

tion are briefly given below; see McKinley et al. (1996) for more detail.

The "viscoelastic G6rtler number", MVG, is defined as

(,1pU  ; 1/ 2

MV G R " 1 (2.3)

The first term within the bracket on the right side of eq. (2.3) represents a ratio of a charac-

teristic length over which perturbations to the viscoelastic stress relax over a characteristic

radius of curvature in the flow, Rc. The "relaxation length" in the numerator is composed

of a characteristic velocity, U, and the characteristic relaxation time of the polymer,

Xip = T 1/2( - Tls), where T 1 represents the first normal stress coefficient, 1r is the

solution viscosity, and rls denotes the solvent viscosity. The second term within the

bracket on the right side of eq. (2.3) represents the magnitude of the coupling of perturba-

tive elastic stresses to the stresses in the base flow. "llp is the polymeric contribution to

the streamwise stress and y, a characteristic shear rate. A more rigorous justification of

eq. (2.3) based on the linearized governing equations is given in McKinley et al. (1996)



and is not reproduced here. Applications of the scaling to a viscometric flow and compari-

son with the predictions of linear analysis are discussed first; application to complex flows

is then considered.

In the Couette cell the characteristic geometric ratio is 8 = (R2 - R 1)/R 1 . For the

case of the narrow gap limit, 8 -ý 0; the shear rate is uniform throughout the gap. When

the Oldroyd-B constitutive equation is used together with eq. (2.3), the criterion for flow

transition is obtained,

MVG, crit(2.4)
crit = 1/2j2(1-•s/~o

6 2(1-Is/1 0 )

Which has the same form as the criterion for onset of instability obtained in the linear

analysis of Larson et al. (1990), cf. eq. (2.2). Comparison of eq. (2.4) with the analysis of

Larson et al. (1990) indicates that for a fluid with ils/TiO = 0.5 the "critical viscoelastic

Gbrtler number" is MVG, crit = 5.9.

A similar result is obtained for the case of small angle cone-and-plate flow; the geo-

metrical parameter, 6, in eq. (2.4) is replaced by the angle between the cone and the plate,

0. Subsequent comparison with the linear analysis of Olagunju (1997) indicates that for a

fluid with 1ls/r 0o = 0.5 the "viscoelastic G6rtler number" is MVE, crit = 4.6. McKinley

et al. (1996) also extended the utility of the scaling approach by using a multimode

Giesekus constitutive equation which could represent shear thinning of the material func-

tions Wl(y) and il(y). With this more sophisticated model, McKinley et al. (1996) found

that the neutral stability loci on the Ocrit versus Wi transition map predicted by the scaling

closely matched the linear stability calculations of Ozetkin and Brown (1994), and were in

reasonable agreement with experiments conducted with the cone-and-plate geometry.

McKinley et al. (1996) also explored the ability of the scaling defined by eq. (2.4) to fit

experimental data for transitions in two different complex flows: driven-cavity flow and

cylinder-in-channel flow. In each case, the term 6 in eq. (2.4) was replaced by an estimate

of the streamline curvature, 1/Rc, based on characteristic geometric parameters of the sys-

tem. A good fit with experimental data acquired for the driven cavity was obtained for

geometric ratios in the range 0.25 < H/L < 4; the fit yielded MVG, crit = 4.8. Application



of eq. (2.4) to the experimental data for the cylinder-in-channel geometry for geometric

ratios in the range 1.25 • Hchan/Rcyl 20 also demonstrated a good fit to the data; the fit

yielded MVG, crit = 5.

Thus, eq. (2.4) is able to match the experimentally or numerically determined depen-

dence of Wicrit on characteristic ratios of geometric parameters for several viscometric and

complex flows. Note that the MVG, crit which were determined for these flows were of

similar magnitude, indicating the general applicability of eq. (2.4) to transitions in vis-

coelastic flows with curved streamlines. However, for the case of complex flows, parame-

ters which relate the characteristic streamline curvature, 1/Rc, to geometric parameters

must be fit or assumed. These parameters cannot presently be estimated a priori for an

arbitrary geometry and fluid system.

2.2 Elongational Viscosity of Polymer Solutions

As discussed in Chapter 1, the measurement of the elongational response is important

from both practical and theoretical points of view. In many polymer processing operations

the rate-of-strain tensor contains a substantial elongational component; e.g., in fiber draw-

ing, the flow is almost exclusively elongational. To understand the influence of the elonga-

tional response on the stress and velocity fields of a flow, and ultimately on product

properties, it is essential to have accurate experimental data on the elongational material

properties of a viscoelastic fluid. Such information could be immediately applied to help

guide the design and optimization of polymer processing operations.

On a more fundamental level, experimental information on the elongational response

of a viscoelastic fluid is useful in evaluating the accuracy of constitutive models. Often the

parameters of a constitutive model are obtained via an empirical fit to readily obtainable

shear-flow rheological information. The predictive capability of such a constitutive model

can then be assessed by comparing the predicted elongational response with experimental

data. Before a constitutive model can be reliably applied in a numerical simulation of a

complex flow (for which the rate-of-strain tensor has both shear and elongational compo-

nents) the accuracy of the predicted elongational response must be evaluated. If necessary,

the parameters must be refitted to optimize the accuracy of both predicted shear and elon-



gational responses. Note that although the predictive accuracy of a constitutive model for

exclusively elongational and exclusively shear flows does not guarantee accuracy in a

complex flow, predictive accuracy for these limiting cases is certainly necessary.

Polymer kinetic theory has the goal of ultimately being able to predict a constitutive

equation solely from consideration of the molecular structure of the polymer such that no

parameters would have to be empirically fitted. In this case, comparison of the predicted

with the experimentally observed shear rheological response would serve as a check on

the validity of the theory. However, evaluation of the shear-flow rheological response

would provide only a partial test of validity. In particular, for the shear rates typically

attainable in commercial rheometers which provide information on both shear and normal

stresses (e.g. RMS-800, Rheometrics), the configurational state of the polymer does not

approach the fully extended state. Moreover, the orientational state of a given molecule in

a "weak" shear flow is different from that in a "strong" elongational flow. Specifically, an

elongational flow has no vorticity, and at a given point in the flow the molecules will be

oriented in a single direction for all time. In contrast, vorticity is present in a shear flow,

and at a given point in space, the molecules, while exhibiting an average preferred orienta-

tion over time, will at any given instant be executing a tumbling motion. Consequently,

measurement of the elongational viscosity can be used to assess the accuracy of polymer

kinetic theory for a class of flow distinct from shear flow.

In this Section, previously published results of experimental measurement of the elon-

gational response of polymer solutions is discussed. In §2.2.1 a review of results obtained

for a common polymer-solution test fluid in different experimental configurations is pre-

sented. This serves to illustrate the difficulty of obtaining well characterized elongational

data suitable for the evaluation of constitutive models. A detailed discussion of the various

experimental configurations is deferred to Chapter 4. Section 2.2.2 presents a review of

recent implementations of the filament stretching technique; these investigations have

arguably obtained the best-characterized elongational response data for polymer solutions

to date.

The approach of the studies of §2.2.2 is to determine the elongational response of a

polymer solution by closely approximating a homogeneous shearfree flow. An alternative

is to use a nonhomogeneous shearfree flow, but measure the velocity and stress fields in



pointwise manners within the flow. A given constitutive equation can then be integrated

with the velocity field to predict the stress field. The predicted and measured stress fields

could then be compared to assess the accuracy of the model for the test fluid in the elonga-

tional flow. In Chapter 3, the design of a planar contraction geometry, within which the

flow on the centerline is nonhomogeneous and shearfree, is discussed. This shearfree flow

is used in the presentation of Chapter 6 to determine the transient elongational response of

a viscous polymer solution. An assessment of the efficaciousness of the flow in extending

the polymer molecules and exciting a nonlinear elongational response is given in Sections

6.4 and 6.5. Note that detailed discussion of the response of a polymer molecule to an

elongational flow, from a microscopic viewpoint, is deferred to §6.1; the characteristics of

specific constitutive models are also addressed. It is felt that such detailed discussion is

most appropriately located before the interpretation of the experimental results obtained

for this thesis.

2.2.1 Experimental Indications of the Importance of Well-Defined Strain-Rate His-
tory in Measurement of Elongational Viscosity

The majority of previous investigations have focused on the determination of the

steady-state elongational viscosity of a polymer solution as a function of strain rate, much

as the steady-state value of the viscosity as a function of shear rate is a standard and com-

monly used rheological function. However, the exponential (as opposed to linear) separa-

tion with increasing time of fluid elements makes development of a homogeneous flow of

sufficient extent for the fluid to reach steady state much more challenging for the measure-

ment of the elongational viscosity than for the measurement of the viscosity.

The difficulty of achieving and measuring a true steady-state elongational response has

not been fully appreciated in most previous investigations. Often, what was reported as the

steady-state elongational viscosity was in actuality a transient quantity. In principle, a tran-

sient response measured in a well-characterized flow can also provide information useful

for the evaluation of constitutive equations. However, since the strain history of the

streamlines in the test flows used by these previous investigations was not fully character-

ized and reported, comparison of results obtained in different apparatus or use of these

results in the fitting and evaluation of constitutive models was difficult or impossible.



The limited utility of transient elongational measurements obtained in devices for

which the test flow was incompletely characterized was highlighted by the "Ml Project"

(Proc. of Int'l Conf. on Extensional Flow, 1990). Comparison of results obtained in differ-

ent experimental configurations was facilitated by the use of a single, standard test fluid of

which the shear rheology was thoroughly characterized. The reported "extensional viscos-

ity" which was determined for this standard test fluid via a variety of experimental config-

urations ranged over as much as three decades at a given strain rate; a summary figure by

Walters is reproduced in Fig. 2.6. James and Walters (1992) emphasized that the data

obtained in these experiments were accurate and reproducible and the variation was a con-

sequence of the transient nature of the tests and the differing strain histories.

In §2.2.2 recent experiments in which careful attention has been paid to the develop-

ment and measurement of a steady-state elongational response in homogeneous flows

(which have a spatially uniform rate-of-strain tensor) are discussed. Nonidealities in these

experiments and their effect on the apparent elongational viscosity are discussed in detail.

The results of these experiments, which arguably represent the best-characterized elonga-

tional material function information to date, are presented.

2.2.2 Elongational Viscosity Measurements in Filament-Pulling Apparatus

Experimental tensile-pulling configurations for imposing uniaxial strain on a test sam-

ple have been used by numerous groups for the characterization of the elongational

response of polymer melts (Cogswell, 1968; Mtinstedt, 1975; Mtinstedt, 1979; Laun and

Mtinstedt, 1976; Vinogradov et al., 1970; Vinogradov et al., 1972; Franck and Meissner,

1984). However, use of this configuration with polymer solutions, which typically have

much lower viscosities, is more difficult. Under the influence of surface tension and gravi-

tational body forces, an extended filament will tend to deform in a nonhomogeneous and

undesirable manner, potentially resulting in erroneous measurement.

Sridhar et al. (1991) reported measurements conducted with a filament stretching

device on a sample of polymer solution. The test fluid had essentially constant viscosity

(acted as a Boger fluid) and had a zero-shear-rate viscosity of 710 = 36.0 [Pa s]. A drop of

fluid was placed between two disks. One disk was connected to a normal force transducer,
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Figure 2.6 Extensional viscosities as a function of extensional rate reported for the Ml fluid.

The lines and envelopes represent data by the various M1 Project investigators as published in

(Proc. of Int'l Conf. on Extensional Flow, 1990). (Reproduced from (Walters, 1992)).



the other disk was connected to a drive system configured such that the distance between

the disks increased exponentially with time. In the ideal case, a filament of uniform diam-

eter between the disks would undergo a homogeneous uniaxial elongational flow with

constant elongational strain rate over time.

Sridhar et al. (1991) used a photographic technique and a light-beam measuring device

to characterize the diameter of the filament at the midpoint between the disks at a given

time. By measuring the diameter at evenly spaced time intervals the instantaneous strain

rate experienced by a fluid element at the midpoint was determined. These measurements

indicated that shortly after inception of straining, the actual strain rate at the midpoint was

approximately twice that expected from the "apparent" strain rate imposed by the moving

endplates. After this time, the strain rate rapidly decreased to nearly the same value as the

"apparent" quantity. Consequently, the flow within the filament was non-homogeneous for

at least some time following inception of flow.

Despite the nonideality of the flow, Sridhar et al. (1991) found that the transient elon-

gational viscosity which they determined for the test fluid exhibited essential features

expected from predictions of constitutive models. They defined the elongational viscosity

as

+ (Fo/A - Fg - Fy)
1E = (2.5)

where Fo is the measured force exerted on the end disk, Fg is the gravitational body force,

and Fy is the surface tension force. s represents the "applied" strain rate imposed by

movement of the disks and A is the average cross-sectional area of the filament calculated

from conservation of mass. Sridhar et al. use the Trouton ratio, defined as

TIE(E)
(2.6)

to represent their data. Note that the shear-thinning viscosity term in the denominator of

eq. (2.6), i (y), is evaluated at a shear rate equal to the second invariant of the nominal

rate-of-strain tensor experienced by the fluid, such that y = e•,F. The viscosity is nearly



constant for a test fluid which acts as a Boger fluid, r(y) = 110. For the test fluid used in

the study, Sridhar et al. (1991) observed an initial approach to the Newtonian Trouton

ratio, nlE(E)/rl(y) = 3, at early times. At a critical accumulated Hencky strain, 1 < E <

2, an increase in the elongational viscosity above the Trouton value was observed. The

dependence of this increase on accumulated strain, rather than time, is characteristic of

onset of the nonlinear viscoelastic response. The Trouton ratio was then observed to

increase with strain up to values of the order +E(e)/1r(y) - 1000; however, "leveling

out", characteristic of approach to the steady value, was not observed in the experiments.

In a later publication, Tirtaatmadja and Sridhar (1995) reported the results of measure-

ment of the elongational response of three different polymer solutions in the filament

stretching device. Two different polyisobutylene-based Boger fluids were used, the Ml

fluid mentioned in §2.2.1 and the fluid which had been characterized by Quinzani et al.

(1990), identified as fluid "A". A third, shear thinning fluid (fluid "Al") was also used.

The results for fluid A for an applied strain rate of E = 2.7 [s-1] are shown in Fig. 2.7.

Onset of the nonlinear response is observed at a strain of e = 1.4. The Trouton ratio4

increases until the apparent attainment of a steady-state value of TE(E)/l0 - 1000 at a

time corresponding to an accumulated strain of e = 4.7. Figure 2.7 also shows the predic-

tions of several four-mode nonlinear constitutive models; the parameters of the models

had been fitted to steady and dynamic shear rheology data. Three of the models, Oldroyd-

B, Giesekus, and FENE-P, show quantitative agreement with the data up to an accumu-

lated Hencky strain of e = 3.8. At greater strains the model predictions deviate from the

data; this is expected for the Oldroyd-B model which predicts an unbounded elongational

viscosity. The Giesekus and FENE-P models predict the correct trend, an approach of the

elongational viscosity to a steady state value. The M1 and Al fluids exhibited similar

behavior, although the steady state value of the Trouton ratio was not attained; values as
+ +

high as ijE(E)/rl0 - 8000 were observed for the M1 fluid and 1E(E)/10 - 1000 for the

Al fluid.

4. Note that in the paper of Tirtaatmadja and Sridhar (1995) the usual definition of the Trouton

ratio, E11(E)/rl0, was used. ni(E') is defined as in eq. (2.5); ro0 is the zero-shear-rate limit of the

viscosity.
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Spiegelberg et al. (1996) characterized the elongational response of viscoelastic fluids

in a filament stretching device similar to that of Sridhar et al. (1991). The major contribu-

tion of Spiegelberg et al. was a careful analysis of the effect of nonideal boundary condi-

tions on the rate-of-strain field throughout the filament. This was achieved by capturing

video images of the filament, and digitizing them to determine their profiles of radius as a

function of axial position, r = r(z), at successive instants in time. To evaluate the accuracy

of the device, initial test runs were performed with a Newtonian fluid, for which the elon-

gational response is simple and known. Spiegelberg et al. (1996) found that the no-slip

condition at the endplates, termed the "pinning condition", modified the rate-of-strain

field throughout the filament from an exclusively homogeneous, shearfree state, and ren-

dered it nonhomogeneous and introduced shear components. This was readily apparent by

the "hourglass" shape of the filament profile at times soon after inception of straining

imposed by the endplates. The fact that the filament has a fixed diameter in the immediate

vicinity of the endplate results in a depletion of the volume of fluid near the midpoint of

the filament relative to the case of ideal boundary conditions at the endplate. It follows

from continuity that the actual strain rate at the midpoint of the filament is greater than the

"ideal" strain rate imposed by the motion of the endplates. Consequently, for a Newtonian

fluid, at times shortly after inception of plate motion, the strain rate at the midpoint will be

substantially greater than the ideal value; at later times, the strain rate will decrease and

approach the ideal value. Knowledge of the effect of the pinning conditions was used by

Spiegelberg et al. to modify the velocity versus time profile of the endplates such that the

strain rate experienced by a fluid element near the midpoint of the filament, co, was con-

stant in time. However, the rate-of-strain field in the vicinity of the endplates was still non-

homogeneous; moreover, the rate-of-strain tensor experienced by fluid elements in the

vicinity of the endplates was not constant in time.

The "pinning condition" also results in the rate-of-strain tensor of the fluid near the

endplates having a substantial shearing component. The associated shear stress results in

an initial overshoot of the apparent Trouton ratio soon after inception of straining; at later

times a decrease to the Newtonian value of rl(E0)/ 10 = 3 is observed. The magnitude

of the overshoot is dependent on the initial aspect ratio of the fluid volume, L0/Ro, and is

greatest for low aspect ratios. Typically, Hencky strains in the range 1.5 < E < 2 must be



achieved before the "pinning condition" has a negligible effect on the apparent Trouton

ratio of a Newtonian fluid.

The "pinning condition" affects the rate-of-strain field and measured Trouton ratio

over the straining operation of a viscoelastic fluid somewhat differently than those of a

Newtonian fluid. The fluids exhibit similar behavior at times soon after inception of strain-

ing; specifically, the "pinning condition" leads to an "hourglass" shape of the profile (cf.

Figs. 2.8a - 2.8c) and an increase in the strain rate at the midpoint of the filament above the

ideal value. However, at later times, elongational thickening results in the filament's hav-

ing a nearly constant radius throughout most of its length, except in the vicinity of the end-

plates (cf. Figs. 2.8d - 2.8e). The volume of fluid near the endplates acts as a "reservoir"

which feeds the constant radius section of the filament. In consequence, the actual strain

rate near the midpoint of the filament drops below the ideal value at later times. Eventu-

ally, the "reservoir" of fluid near the endplates becomes exhausted. The fluid has at this

point achieved a sufficient degree of elongational thickening for the acting normal stress to

cause the filament to partially detach from the endplate, preventing continuation of the test

to longer times and higher Hencky strains.

At times soon after the inception of straining the plot of Trouton ratio as a function of

time for a viscoelastic fluid is similar to that observed for a Newtonian fluid. Specifically,

the shear stresses induced by the "pinning condition" result in an overshoot of the mea-

sured Trouton ratio immediately after inception of straining which decays at later times.

However, the elongational thickening nature of the fluid subsequently results in a rise in

the Trouton ratio which continues monotonically until the end of the test. The pronounced

inhomogeneity of the velocity field at times immediately after inception of straining have

distinctly different effects on the elongational response of Newtonian and viscoelastic flu-

ids at later times. The stress tensor of a Newtonian fluid element is linearly proportional to

the local rate-of-strain tensor at a given instant; Newtonian fluids have no "memory" of

their previous strain history. In contrast, viscoelastic fluids do have "memory" of their

prior deformation history. In consequence, adjustment of the aspect ratio of the initial fluid

volume of a Newtonian fluid affects the apparent Trouton ratio at short, but not at long

times. For viscoelastic fluids, adjustment of the aspect ratio not only affects the apparent

Trouton ratio at short times, but also for all times. In consequence, the utility of modifying
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the motion of the endplates to achieve a constant strain rate at the midpoint of the filament

is limited.

Despite the nonideal "pinning condition" imposed by the endplates, the measured

Trouton ratio for two viscoelastic fluids was in qualitative agreement with the predictions

of constitutive models which had been fit to shear-flow rheological data (Spiegelberg et

al., 1996). Two viscoelastic fluids were used. The first (BG-1) was the same fluid charac-

terized in Quinzani et al. (1990) and designated "fluid A" in the paper by Tirtaatmadja and

Sridhar (1995). The second fluid (BG-2) used the same high molecular weight polymer

solute at the same concentration, but a Newtonian solvent of higher viscosity was used.

Consequently the relaxation time of fluid BG-2 was greater than that of fluid BG-1. For

the test, the strain rates for each of the fluids was selected so that the Weissenberg number,

Wi = E-X1, was identical. A plot of the Trouton ratio as a function of Hencky strain for

the two fluids is shown in Fig. 2.9. The experimental data for the two fluids are in agree-

ment within the measurement error, as is be expected since they only differed in the sol-

vent viscosity. The data agree with the prediction of the Oldroyd-B model up to a Hencky

strain of c = 4. At greater strains, the data are in closer agreement with the predictions of

the CR model than the prediction of the Oldroyd-B model. The deviation of the prediction

of the Oldroyd-B model from the predictions of the CR model and the experimental data at

high strains is a consequence of the Oldroyd-B model's predicting a physically unrealistic

unbounded steady-state elongational viscosity. In contrast, the Chilcott-Rallison model

always predicts a bounded steady-state elongational viscosity which is dependent on the

extensibility parameter, Q = Lc/ (r2)o; Lc represents the maximum extensible length

of the polymer molecule, and 4(r r)o, its root-mean-square radius of gyration at equilib-

rium. At high Hencky strains the data were in closer accordance with a CR model with Q

= 40 than one with Q = 55. However, sufficiently high values of strain to observe the

steady-state Trouton value were not achieved in the experiment, precluding definitive

identification of Q. The data do indicate a lower bound on the parameter, Q 2 40. Consid-

eration of the molecular weight of the polymer and its conformation in the solvent led to

an extensibility parameter value of Q = 55, consistent with this lower bound.

Spiegelberg et al. (1996) concluded that while the semiquantitative data obtained in

the filament stretching rheometer was reasonable, further refinements would be necessary
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to allow accurate quantitative data, suitable for evaluation and fitting of constitutive mod-

els, to be obtained. Specifically, to avoid the "pinning condition" and achieve a homoge-

neous strain rate throughout the filament, endplates whose radius would decrease during

the stretching of the filament would have to be used. Such variable radius endplates have

been successfully used in the investigation of Berg et al. (1994). Note that only low

Hencky strains e < 1.4 were attained in the experiments of Berg et al. (1994). Conse-

quently, although the work was of interest from an experimental design viewpoint, the

strains were too low to be of use for rheological measurement. It is interesting to note that

in spite of the simplicity of the principles underlying the filament stretching rheometer, the

determination of accurate and well characterized data requires consideration of a number

of physical principles. Furthermore, maximal constraints on the size of the apparatus and

minimal constraints of the dimensions of the test sample at the start of the test (Lo and R0 )

continue to make measurement of the steady state elongational viscosity difficult.



Chapter 3

Experimental Method

This chapter describes the experimental system used for the investigations presented in

this thesis. The test geometry and fluid handling system are described in §3.1. The flow

visualization technique used to obtain full field streakline images of the flow is discussed

in §3.2 and the laser Doppler velocimetry (LDV) technique used to acquire pointwise

quantitative velocity field information is described in §3.3. In §3.4 the flow induced bire-

fringence (FIB) technique which enables pointwise determination of the stress field in a

flow is introduced. Section 3.5 describes the FIB system used for the investigation pre-

sented in Chapter 6; §3.6 gives a brief description of the Couette cell apparatus used for

obtaining stress-optical coefficients.

3.1 Test Geometry and Fluid Handling System

A schematic diagram of the fluid handling system is given in Fig. 3.1. The fluid was

driven by nitrogen pressure from a supply tank (a) through the test cell (b) and into a

receiving tank (c) maintained at atmospheric pressure. The fluid flow rate was adjusted by

controlling the gas pressure with a self-relieving regulator (d). A batch mode of operation

was used; after the supply tank was emptied it was necessary to stop the test and drive the

fluid from the receiving tank back to the supply tank through a bypass (e). A continuous

flow system would have required the use of a mechanical pump; this was avoided since

high localized shear rates in the pump might have induced fluid degradation. A mechani-

cal pump would also have produced mechanical vibrations and oscillations not present

with pressure driven flow.

A schematic of the abrupt planar contraction test geometry is shown in Fig. 3.2. The

exterior of the geometry was constructed of aluminum which was anodized to minimize

reflection of the laser beams. Fluid flowed in the z-direction from an upstream duct of

half-height H into a smaller, downstream duct of half-height h. The width, W, is fixed

throughout the geometry. A downstream insert constructed of anodized aluminum and
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Figure 3.1 Fluid handling system. Shown are the source tank for nitrogen (N2) pres-

sure, (a) fluid supply tank, (b) test geometry, (c) fluid receiving tank, (d) self-relieving reg-

ulator, (e) bypass line. Gas lines are shown as thin lines, fluid lines as thick lines, valves

are indicated as (I).
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recording light sheet visualization images in the xz-plane. All dimensions are in millime-
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borosilicate glass (BK-10, Schott Glass Technologies) was used to set the half-height of

the downstream slit, h = 1.09 [mm]; careful machining ensured that variation in h did not

exceed ±0.05 [mm]. The contraction ratio, H/h, was varied by changing the upstream

insert which set the upstream half-height, H; contraction ratios ranging from H/h = 2 to 32

could be used. The upstream insert was constructed of anodized aluminum and polymeth-

ylmethacrylate (PMMA). Qualitative, full-field streakline observations of the kinematic

structure of the flow in the xz-plane were made through windows placed in the top of the

geometry, a. Quantitative LDV measurements of the vy or vz velocity component and full-

field streakline observations of flow in the yz-plane were made through a window placed

in the side of the contraction geometry, b. The FIB measurements also were conducted

through the window, b. To minimize the influence of parasitic birefringence on the FIB

measurement, the window was constructed of SF-57 glass (Schott Glass Technologies);

this material has a low stress optical coefficient of C = 0.02 x 10-12 [Pa-l] at 589 [nm].

The faces of the glass were polished and coated to minimize reflections. The test geome-

try was designed to withstand static pressures of at least 600 [kPa]; this construction

allowed flow rates to be used which corresponded to a downstream shear-rate dependent

Weissenberg number of order WiDn - 3 (cf. eq. 6.2 for definition of WiDn).

The coordinate system used throughout this paper is indicated in Fig. 3.2. The origin

is located in the center of the downstream duct, at the contraction plane (z = 0, where the

upstream and downstream ducts join). The dimensional coordinates (x, y, z) are given in

millimeters; dimensionless coordinates are based on the downstream half-height: X = x/h,

u = y/h, ý = z/h. The term "centerplane" refers to the plane defined by (x, o0 = 0, ý); "cen-

terline" refers to any line in this plane with a constant value of X. Because the geometry is

nominally two-dimensional, x is referred to as the "neutral" direction.

3.2 Flow Visualization

The light sheet visualization technique was used to record a streakline image of the

velocity field in a selected two-dimensional plane. The technique enables the experi-

menter to rapidly acquire a qualitative impression of the global spatial and temporal struc-

ture of the flow field. A laser beam is passed through a cylindrical lens to form a light



sheet with thickness of approximately 100 [gm] throughout the illuminated region of the

flow field. As the particles in the fluid travel through the sheet they scatter light which is

recorded by a video camera; the axis of the video camera is normal to the light sheet. Two

configurations were used in the experiments: in the first the light sheet was formed in the

xz-plane to acquire a top view (camera (d) shown in Fig. 3.2, light sheet not shown); in the

second the light sheet was formed in the yz-plane to acquire a side view (not illustrated).

The video camera signal was stored on videotape for later analysis.

The characteristic length scale of the instability discussed in Chapter 5 was of the

order of the upstream half-height H, for which the smallest value was 2.18 [mm] for the

geometries used. The coarsest resolution of an image stored on videotape was approxi-

mately 6 [pixels mm-1], sufficient to resolve essential spatial features of the instability.

The time scale of the instability was greater than 10 [s]; images were stored at a rate of 30

[frames s-l], adequate for resolving the temporal structure of the instability.

Images were digitized using a frame grabber board (model LG-3, Scion Corp.)

equipped with 16 Mb of memory on a Macintosh Quadra platform. Frames in a time

series were superimposed and averaged using image processing software (NIH Image v.

1.55). By averaging together several frames separated by equal intervals of time streakline

images were produced. The length and direction of a given streak corresponded to the

local velocity vector in the plane of the light sheet; this qualitative information was used to

acquire an overview of the structure of the velocity field. One can note that a more sophis-

ticated version of this technique has been developed, digital particle imaging velocimetry

(DPIV), which extracts a quantitative, two-dimensional velocity vector field from images

of flows illuminated with light sheets (Pakdel and McKinley, 1997). However, qualitative

streakline images in conjunction with quantitative laser Doppler velocimetry were suitable

for elucidating the structure of the instability in this investigation.

To develop understanding of the three-dimensional spatial structure of the instability,

images were acquired for a given flow with light sheets in the xz-plane at several y-posi-

tions and in the yz-plane at various x-positions. These sets of two-dimensional images

were used to construct a three-dimensional schematic picture of the flow field. Automated

tomographic image processing was not required; examination and interpretation of the



images by the experimenter was sufficient to produce an accurate qualitative representa-

tion of the velocity field.

3.3 Laser Doppler Velocimetry (LDV)

A brief description of the physical principles of the laser Doppler velocimetry tech-

nique is given below. More extensive discussions can be found in the books by Drain

(Drain, 1980) and Durst (Durst et al., 1981); good summaries of the application of LDV to

viscoelastic flows are found in the theses of McKinley (McKinley, 1991) and Byars

(Byars, 1996). The specific configuration of the LDV system used in the experiments pre-

sented in this thesis also is discussed.

Laser Doppler velocimetry is a non-invasive optical technique used to acquire quanti-

tative information on components of the velocity vector at a single point in a fluid flow.

Various implementations of the technique have been used to characterize a wide range of

gas and liquid flows; velocities ranging from 1 [plm s-1] to 1000 [m s-1] have been mea-

sured (TSI, ).

When a beam of light is scattered from a particle moving relative to an observer, the

light beam undergoes a frequency, or Doppler, shift. The magnitude of the shift is directly

proportional to the velocity of the particle. However, for subsonic particle velocities the

magnitude of the shift is small compared with the frequency of the incident light beam and

cannot be directly measured. Several optical techniques exist which involve the combining

of two beams to generate an observable oscillation of the scattered light intensity which

has frequency equal to that of the Doppler shift, fs. One class of these techniques involves

recombining, or heterodyning, the scattered light with a reference light beam. The fre-

quency shift, fs, of the scattered light then manifests itself as an optical "beating" or oscil-

lation of intensity of the combined light (Drain, 1980).

The most commonly applied class of LDV techniques, used in the current investiga-

tion, is termed the "differential Doppler" technique. A schematic drawing of this tech-

nique in the backscatter mode of operation is shown in Fig. 3.3. Two coherent,

monochromatic light beams are focused on a region in space. An interference pattern is
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Figure 3.3 Geometric arrangement for a "dual-beam" laser Doppler velocimeter (a)

and its interpretation in terms of the "fringe model" (b). Note that the included half-angle

of the beams, x, and the wavelength of the light, X, set the fringe spacing, df. (reproduced

from (McKinley, 1991)).
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established in the "measuring volume" where the beams cross. The fringe spacing, df, is

dependent on the wavelength of the light, k, and angle between the beams, 2a,

df = sin (3.1)

When a "seed" particle passes through the measuring volume, light is scattered from the

"bright" fringes of constructive interference. For a seed particle smaller than the fringe

spacing, a pulse train of scattered light (termed a "Doppler burst") is detected by a photo-

multiplier tube. The frequency, fs, of this train (i.e. inverse of time interval between

"bright" fringe crossings) can be measured. Because the fringe spacing is known, the

velocity component of the particle which is perpendicular to the plane of the fringes is cal-

culated as (McKinley, 1991; Byars, 1996)

d, _ fs
vz - - (3.2)

(fs)-1 2sina

One should note that the "optical beating" and "fringe model" interpretations of the

LDV technique are approximations which are valid in different limits. The "fringe model"

is usually the more appropriate interpretation for the differential Doppler technique; the

model is strictly valid only when a single particle of size smaller than the fringe spacing,

df, resides in the measuring volume at a given time. However, the relation of the measured

shift frequency, fs, to the particle velocity, vz, is the same for both models. Consequently, it

is useful to use the "fringe model" for calculation purposes even though in a real system

scattering events may occur with more than one particle in the measuring volume at a

given time (Drain, 1980).

The specific configuration of the LDV system (TSI, Model 9100-12) used has been

described in (Byars, 1996) and is only briefly discussed here. As illustrated in Fig. 3.4, the

output of a 4 [W] multiline argon-ion laser is passed through a series of optical elements

and a final focusing lens of focal length FL = 250 [mm] to form two pairs of intersecting

beams orthogonal to each other and capable of measuring the vy (blue beam pair) and vz

(green beam pair) velocity components. The half-angle included by each beam pair is
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0.083 [rad]; the half-angle in conjunction with the wavelength sets the fringe spacing of df

= 3.1 [g.m]. The superimposed measuring volumes from the two beam pairs are ellipsoids

of which the dimensions were experimentally determined to be approximately 80 x 80 x

500 [gim] in air, the long axis positioned along the x-direction (in the 0.30 wt% PIB in PB

test fluid, which has a relative refractive index of 1.50, the dimensions of the measuring

volume are approximately 80 x 80 x 750 [jim]). The LDV optics are mounted on a three-

axis translating table (TSI, Model 9500) capable of positioning the measuring volume to

within ±4 [gtm]. Figure 3.1 illustrates how a pair of beams leaving the final focusing lens

travel through the glass bounding the geometry in the x-direction to form the measuring

volume in the fluid; the beam pair which measures the vz velocity component is shown.

Under steady flow conditions, velocity data is collected by operating the system in the

"spectrum analysis mode". The Doppler burst signals detected by the photomultiplier

(PM) tube are passed through an FFT spectrum analyzer (Nicolet, Model 660B) which

calculates the power spectrum (PS). The velocity of the particles passing through the

measuring volume is then determined from the characteristic frequency of the peak in the

PS. The PS of a number of successive bursts is averaged together to enable accurate mea-

surement of low velocities. The nominal dynamic range of the instrument when operated

in "spectrum analysis mode" is 0.4 to 4000 [mm s-1] with an accuracy of ±1%.

For time-dependent flows, it is necessary to use a frequency tracker (DISA, Model

55N20/21) to follow the Doppler frequency. The tracker requires a high Doppler burst

rate, approximately 100 [bursts s-l], if the rate is too low, the phase-locked-loop circuit

will "drop out", resulting in noisy data. To ensure an adequate data rate, the fluid was

seeded with 2 [jm] silicon carbide scattering particles (TSI 10081); a seeding density of

0.036 [g 1-1] was used. The seeding ameliorated the problem of tracker "drop out". How-

ever, since a given data point corresponds to only a single Doppler burst, velocity data

obtained with the tracker is inevitably "noisier" than data obtained with the spectrum anal-

ysis technique which uses the information from several Doppler bursts.



3.4 Flow Induced Birefringence (FIB)

The physical principles underlying the FIB technique are discussed along with inher-

ent limitations of the technique in §3.4.1. In §3.4.2 brief descriptions of several implemen-

tations of the FIB technique are given.

3.4.1 Physical Principles Underlying Flow Induced Birefringence

The derivation of the "stress-optical rule" from considerations of polymer dynamic

and limits on its validity are discussed below. Inherent limitations to spatial resolution

attainable with the FIB technique are also described.

Derivation of Stress-Optical Rule from Molecular Theory

The "stress-optical rule", was initially proposed by Lodge (Lodge, 1955) for polymer

melts and concentrated polymer solutions. The "rule" postulates a linear relation between

the refractive index and stress tensors

n = Cr (3.3)

where n is the refractive index tensor, Pr the stress tensor, and C the stress-optical coeffi-

cient. Lodge postulated the stress-optical rule based on network theory; specifically, he

showed the common dependence of the stress and refractive index tensors on the strain

history. The affect of a medium on a beam of light travelling along a given coordinate axis

is fully described by the submatrix of the refractive index tensor comprised of terms asso-

ciated with the coordinates which lie in the plane normal to the direction of propagation of

the light beam. The difference of the eigenvalues of this submatrix is referred to as the
4 2 )2

birefringence, An = ne - n = 4n 21 + (n11 - n22  . The eigenvector is termed the optic
e21 2 T21

axis, which can be represented in terms of the extinction angle, x = 21tan-1

formed with respect to the first coordinate axis. The extraordinary refractive index, ne, is

related to the velocity with which light polarized parallel to the optic axis travels,

vil = c/ne; c is the speed of light in vacuum. The ordinary refractive index, no, is related



to the velocity with which light polarized perpendicularly to the optic axis travels

vI = c/n o.

Later experimental and theoretical work indicated that the stress-optical rule also can

be applied to flows of dilute and semidilute polymer solutions. The birefringence of ori-

ented polymer molecules has its molecular origin in the difference between the parallel

and perpendicular polarizabilities of a polymer chain segment, a l- a• (Doi and

Edwards, 1986; Dupuis et al., 1986). Specifically, the local state of the electron cloud

causes light to propagate at different velocities when polarized with different orientations

to the chain backbone, giving rise to different values of the ordinary and extraordinary

refractive indices, no and ne. To determine the net effect of the entire polymer molecule on

the polarization state of the transmitted light, one calculates a contour integral which con-

siders the local relative orientation of the polarized light to the chain backbone along the

contour length of the chain. In the case of a polymer molecule at equilibrium, there is no

preferred direction of orientation of the chain segments comprising the backbone and

hence no resultant birefringence. When the polymer molecule is deformed, e.g. by the

surrounding flow field, the molecule elongates, resulting in a preferred direction of orien-

tation of the segments. When this preferred direction of orientation is projected onto the

plane which is normal to the direction of propagation of the light beam, the angle which

the projected vector forms with the first coordinate axis is equal to the extinction angle, X,

described in the preceding paragraph. In the linear Hookean limit, for which the end-to-

end length of the polymer molecule is less than approximately 40% of the total contour

length, the contour integral which relates the stress to the chain configuration has the same

form as the expression which relates the chain configuration to the birefringence. This

similarity of the relation to the chain configuration is manifested macroscopically as the

linear stress-optical rule.

The stress-optical rule breaks down when the molecule becomes highly extended, with

the end-to-end distance approaching the contour length (Wales, 1976; Janeschitz-Kriegl,

1969; Kobe and Wiest, ; Wiest, ). This extremely high degree of orientation was not

approached in the investigations described in Chapter 6, and the stress-optical rule is

expected to hold. Nevertheless, one should be aware of an additional caveat. In principle,

a polymer molecule could adopt an "accordion" or "kinked" configuration in which the



end-to-end distance would approach the contour length, but the chain segments would

have no mean preferred orientation. Thus, although the molecule would be highly stressed

and stretched, the net birefringence would be small or zero. Brownian molecular dynam-

ics simulations have indicated that such a configurational state may occur (Shaqfeh,

1996). However, such a configuration is not expected in the set of experiments presented

in Chapter 6, for which the molecules are in the "perturbed coil" configuration and not

highly extended.

The test fluid used for the investigations presented in this thesis (described in Chapter

4) consists of a high molecular weight (MW) polyisobutylene (PIB) polymer dissolved in

a medium MW polybutene (PB) polymer which acts as a Newtonian solvent. Since both

polymer components contribute substantially to the stresses in the flow, it is necessary to

extend the stress-optical rule, eq. (3.3), to polymer blends. The net birefringence is simply

the linear superposition of the stress contributed by each of the components weighted by

the respective stress-optical coefficients (Fuller, 1995). For the case of the test fluid used

in these experiments one obtains the equation

n = CPIB'PIB + CPB'PB (3.4)

Knowledge of the refractive index tensor and the stress-optical coefficients is insufficient

to determine individual contributions to the stress of the polymer components, TPB and

rPIB. Since the PB component acts as a Newtonian solvent, information as to the value of

the rate-of-strain field and the viscosity of the PB allows determination of the stress field,

PBa = rIPBy Subsequently, the contribution of the PIB to the stress is calculated as

TpIB = (n - CPBTPB)/CPIB. This approach is used for determining the stress of the com-

ponents and the total stress, Tr = rPIB + TPB , in the investigation presented in Chapter 6.

Limits to Resolution of FIB Measurements

As described in Sections 3.4.2 and 3.5 for specific implementations of the technique,

the flow induced birefringence is measured by sending a laser beam with a characteristic

polarization state through a sample. The polarization state of the transmitted light is then



measured and the birefringence and extinction angle determined. The probe beam is

affected by the sample along the entire beam path length. Specifically, one can write

-S(x) = m(x) - S(x) (3.5)

where S(x) is the Stokes vector describing the polarization state of the light. The differen-

tial propagation matrix, m(x), describes the effect of a "slab" of the sample of infinitesimal

thickness dx on the polarization state of the beam traveling in the x-direction (Galante,

1991)(Azzam, 1978)(Azzam and Bashara, 1987). Given the initial polarization state of the

beam, S(xo), eq. (3.5) is integrated along the beam path, x0 • x • xl , using the known

m(x), to give the Stokes vector, S(xl), for the exiting beam. However, an FIB measure-

ment requires solution of the inverse problem: given a measured S(xo) and S(xl), deter-

mine the m(x) along the path length. Since S(xl) is an integral quantity, information about

m(x) at each point x along the beam path is lost. However, if m(x) does not vary through-

out the sample (i.e. m(x) = m) the problem becomes tractable. Specifically, one obtains

S(xl) = M S(x 0 ) (3.6)

where M = E - eA( ) is the Mueller matrix containing the birefringence and

extinction angle information; note that E represents the matrix of eigenvectors and A the

matrix of eigenvalues of the constant differential propagation matrix, m. To ensure that m

is constant along the beam path the flow under investigation must be a two-dimensional,

planar flow which does not vary along the "neutral" x-direction. Clearly all real flows

must have a wall bounding the x-direction which will introduce some three-dimensionality

into the flow. Throughout the results presented in Chapter 6 the effect of such non-ideali-

ties on the measurement will be considered. One may note that analyses have been under-

taken to extend the application of FIB to flows which are three-dimensional or non-planar

(Andrienko et al., 1992b; Andrienko et al., 1992a; Funatsu and Kajiwara, 1988). How-

ever, the challenge of implementing a tomographic-type measurement and subsequent

deconvolution of the information is daunting when one considers that an integral tensorial

equation must be solved. A tomographic approach is most likely to prove successful when



the flow has a high degree of symmetry (e.g. axisymmetric); Funatsu et al. obtained prom-

ising results in their measurement of the stress field in viscoelastic flow around a sphere

(Funatsu et al., 1988). However, quantitative FIB measurement in a general three-dimen-

sional flow field is still an unsolved problem.

A second limitation of the FIB technique also concerns an averaging effect, but within

the plane (yz) perpendicular to the beam propagation direction (x) (Galante, 1991). Spe-

cifically, a real probe beam has a finite diameter. If the actual Mueller matrix of the sam-

ple has different values throughout this beam area, the Mueller matrix which is back-

calculated from the measured Stokes vectors S(xo) and S(x 1) will represent a mean value.

More precisely, one integrates the local Mueller matrix M(y, z), weighted by the beam

intensity at a given point I(y, z), over the beam area to obtain the observed Mueller matrix

<M>,

IIM(y, z)I(y, z)dydz
(M) = (3.7)

I I(y, z)dydz

Since the relations between the components of the Mueller matrix and the refractive index

tensor are generally not linear, knowledge of this "mean" Mueller matrix does not allow

determination of the "mean" stress field over the area.

One apparent solution to the problem is to reduce the size of the beam so that varia-

tions in the stress field over the beam area are negligible. Although feasible in certain

cases, divergence of a Gaussian laser beam in conjunction with the requirement of approx-

imating a two-dimensional planar flow places severe constraints on this approach. The

radius of a Gaussian beam over a particular length of the beam path can be derived from

the Maxwell equations and represented by the formula

r(z) zkL
- 1- 1I + I (3.8)o \x7ro



where r0 is the radius of the beam at the waist, r(z) is the radius of the beam at a distance z

from the waist, and k is the wavelength of the light. For the case of the planar contraction,

when the beam waist is located in the middle of the x-dimension, the maximum beam

radius, rW/2 = r(W/2), is at the walls of the geometry. The width of the geometry, W, also is

related to the aspect ratio in the upstream duct, A = W/2H, and the half-height of the

upstream duct, H, is related to that of the downstream duct, h, by the contraction ratio H/h.

Substituting these relations into eq. (3.8) gives

(h/r) A(H/h)h1

(rw/2/r 0) - 1

where the ratio of the beam waist radius to the downstream half-height, r0/h, is a measure

of the resolution of the system. A geometry with a contraction ratio as great as H/h = 32

was used in the investigations presented in Chapter 6. The effect of the aspect ratio on the

two-dimensionality of the flow field is considered in more detail in Chapter 6; a minimum

required upstream aspect ratio of A = 1 is assumed here. When the beam is collimated to

within 5% over the width of the geometry, rw/2/ro = 1.05, and the resolution of the system

is r0/h = 0.125, solution of eq. (3.9) yields a beam waist radius of ro = 0.13 [mm] and a

downstream half-height of h = 1.05 [mm]. Using the downstream half-height as a measure

of the size of the geometry (upstream half-height and width will scale proportionally)

gives the inverse square dependence on the resolution

h o (ro/h)- 2  (3.10)

Consequently, a large increase in the size of the geometry is required to improve the reso-

lution. As the width of the geometry increases, thermally induced beam divergence effects

become significant. This, in conjunction with the experimental difficulty and expense of

working with a large geometry, restricts the attainable resolution. The interrelated con-

straints imposed by Gaussian beam divergence and geometrical parameters guided the

design of the geometry described in §3.1.



An alternate approach which has been tried to improve the resolution of FIB measure-

ments consists of masking all but a small center section of the beam which has been trans-

mitted through the sample immediately in front of the photodetector. However, it has been

shown (Galante, 1991)(Durnin et al., 1987) that this method does not reduce the effective

area probed by the beam. Specifically, the Maxwell equations for propagation of electro-

magnetic radiation were used to show that conventional geometrical optics is not appropri-

ate for analyzing the propagation of energy (and consequently information) within a

Gaussian beam. A Gaussian beam exhibits very little divergence; i.e., the intensity distri-

bution remains nearly constant over successive axial positions. However, the energy at a

given point in the beam generally does not travel in a straight line coaxial to the beam

path; rather, the energy diffracts within the beam. Potential "in-plane" beam averaging

effects and their influence on FIB measurements are addressed in Chapter 6; approaches

for obtaining useful stress field information despite such averaging effects are discussed in

Chapter 7.

3.4.2 Examples of Flow Induced Birefringence Measurement Techniques

As described above, the Mueller matrix of the sample, M, is calculated from the

observed difference in polarization state of the incident S(xo) and transmitted S(x 1 )

beams. The birefringence and extinction angle are in turn calculated from the Mueller

matrix. Subsequently, the stress-optical rule is invoked to determine the stress field.

Several different FIB measurement techniques exist which differ in the optical ele-

ments which comprise the polarization state generator (PSG), located before the sample,

and the polarization state analyzer (PSA), located after the sample. A simple polarimeter

is discussed first. The two-color technique is then discussed and compared with the polar-

ization modulated flow birefringence technique.

Simple Polarimeter

In the simple polarimeter shown in Fig. 3.5a, a beam of monochromatic light of wave-

length XG is passed through the PSG, a linear polarizer, P(0), oriented at an angle 0 with

respect to the observer's reference frame. The polarizer transmits only a component of the
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Figure 3.5 Flow induced birefringence measurement systems: (a) simple polarimeter

arrangement; (b) two-color flow induced birefringence system.
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light wave which has the electric vector in a specific direction. The beam then passes

through a distance, Ls, of the sample being studied. The light emerging from the sample

passes through the PSA, a linear polarizer, P(O + i/2), oriented ir/2 [rad] relative to the

PSG: Finally, the light impinges on a photodetector, D1, which measures the intensity. If

the light beam were unaffected by the sample, the PSA would not transmit any of the light.

However, as described in §3.4.1, the preferred direction of orientation of the polymer seg-

ments in conjunction with the difference in polarizability of the chain to light travelling

parallel and perpendicular to the backbone causes a stressed polymeric material to have a

net birefringence. Consequently, the electric vector will, in general, no longer be perpen-

dicular to the direction which can be transmitted through the polarizer; light will reach the

photodetector. It can be shown (Azzam and Bashara, 1987)(Quinzani, 1991) that the

extinction angle, X, and the birefringence, An, are related to the ratio of the light beam

intensity entering the flow cell, IO, and the light beam intensity measured at the detector, I,

by

I sin2( sin2(2(X - 0))
(3.11)

6' An8' = 2t- d

where X is the wavelength of the light and (x - 0) the orientation of the incident linearly

polarized light with respect to the extinction angle. One should note that eq. (3.11)

assumes that aside from the dichroic attenuation in the linear polarizers, no light is scat-

tered or absorbed in the system.

Several different configurations of this simple polarimeter exist. Full field devices

have been constructed which usually provide qualitative information. From eq. (3.11),

when 8' = 27tN (with N an integer) no light will be transmitted; the dark regions associ-

ated with these values of the retardance, 8', are termed the isochromatic fringes. When the

stress-optical rule is valid, the isochromatic fringes indicate constant magnitude of the first

principal stress, At. By counting the number of isochromatic fringes from a point of

known stress in the flow, one can estimate the stress in a specific region of the flow. Equa-

tion (3.11) indicates that when (X - 0) = Nit/2 no light will be transmitted; the dark regions



associated with these extinction angles are termed the isoclinic lines. The isoclinic lines

indicate regions of common orientation, X, of the molecules in the flow and in conjunction

with the known At allow calculation of the components of the stress tensor in the

observer's frame of reference. By varying 0 by simultaneously rotating the orientation of

the PSG (P(O)) and the PSA (P(0 + it/2), in principle, estimates are made of An and X at

each point in the flow. However, if X is determined at each point by varying 0 until the iso-

clinic is superimposed on the point, the method is laborious (Gortemaker et al., 1976).

To minimize the number of measurements required, Osaki et al. (Osaki et al., 1979)

noted that if the intensity of the transmitted light was quantitatively measured, An and X

could be determined at a given point in the flow with only two measurements, with the

polarizers positioned at 0 = 0 and 0 = Tn/4 [rad]. Although the method allows for much

faster data acquisition than the isochromatic counting and isoclinic identification tech-

nique described in the preceding paragraph, manual intervention on the part of the opera-

tor is still required. Moreover, if a transient flow changes on a time scale of the order of or

faster than the time required to perform the two measurements, the method cannot be

applied.

Two-Color Technique

The two-color flow birefringence (TCFIB) technique developed by Chow and Fuller

(Chow and Fuller, 1984; Chow and Fuller, 1985) is an extension of the method used by

Osaki et al. (Osaki et al., 1979). The TCFIB technique is illustrated in Fig. 3.5b. Two

monochromatic light beams of different wavelengths, XG and XB, are passed through the

system. The PSG and PSA for a beam of a given wavelength are rotated 7c/4 [rad] with

respect to the PSG and PSA of the other beam. A combination of beam splitters and wave-

length filters are used to direct the two beams of differing wavelength along the same path

within the sample and subsequently separate the light into distinct beams of different

wavelength. Because eq. (3.11) holds independently for each beam, a system of two equa-

tions is solved to obtain An and X. Consequently, the method is fully automated, no opera-

tor intervention is required. In principle, An and X data can be acquired instantaneously,

measurements of flows with very short time scales can be made.



Polarization Modulated Technique

The polarization modulated flow birefringence (PMFIB) technique generally uses only

one laser beam for which the polarization state of the PSG is modulated with time. One

implementation of the PMFIB technique uses a quartz photoelastic modulator; several

groups have obtained favorable results with this implementation (Frattini and Fuller, 1984;

Fuller, 1990; Galante, 1991). PMFIB techniques are limited to observation of phenomena

with time scales substantially longer than the inverse of the modulation frequency, O > 10/

•mo d, whereas the TCFIB technique is in principle instantaneous. Nevertheless, a PMFIB

system typically requires the alignment of only one beam, and is usually more compact

than a TCFIB system.

3.5 Two-Color Flow Induced Birefringence Experimental System

A two-color flow induced birefringence (TCFIB) system was used in the investiga-

tions presented in this thesis to measure simultaneously the extinction angle and the bire-

fringence at a point in the flow. The TCFIB apparatus used in this set of experiments was

originally constructed by Quinzani (Quinzani, 1991) and was based on the experimental

design of Chow and Fuller (Chow and Fuller, 1984; Chow and Fuller, 1985). A compre-

hensive discussion of the configuration of the system used has been presented in Quinzani

(Quinzani et al., 1994); therefore, the description here will be brief and focus primarily on

modifications made to the original system.

A schematic diagram of the system is shown in Fig. 3.6. The original system used a

laser-line interference filter to combine simultaneously (or split) and filter the blue and

green beams. It was found that the multiple layers comprising the filter in conjunction

with inherent stresses in the element introduced an unacceptable level of parasitic birefrin-

gence in the transmitted beam. To overcome this problem, the beam splitting and filtering

functions were separated into two optical elements. Specifically, the laser line filter was

placed before the initial polarizer (or after the analyzer polarizer) to avoid the introduction

of parasitic birefringence. A beamsplitter, composed of a single piece of glass and coated

to provide 50% transmission at an incident beam angle of oc = 0 [rad], was used to com-

bine or split the beams. A different collimator, C, and pair of focusing lenses, LB and LG,



BS
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Figure 3.6 Schematic Diagram of the TCFIB system used in this study. Specific opti-

cal elements are shown: C, collimator; BS, beamsplitter, M, mirror; F, filter; L, lens; P, lin-

ear polarizer; D, photodetector. A "B" subscript indicates that blue light is transmitted,

polarized, or the intensity measured by the specific optical element; a "G" indicates simi-

lar action performed by an element on green light. A "0" subscript indicates that an optical

element acts on the light before it has passed through the flow cell; a "1" subscript indi-

cates that the light which has already passed through the cell (modified from (Quinzani,

1991)).
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than used in the original configuration of Quinzani were used so as to improve the resolu-

tion of the system. Details on the resolution of the current system are provided below.

As described in Quinzani (Quinzani et al., 1994), four photodetectors are used in the

system. Each detector is connected to a power meter which is in turn linked to an analog to

digital signal board to allow continuous data acquisition on an IBM PC. Two photodetec-

tors, D1B and DIG, measure the intensity of the light transmitted through the sample and

the polarizing optics, I1B and IIB. The other two photodetectors, DOB and DOG, provide a

reference measurement of the intensity of the light before passage through the sample and

polarizing optics, IrefB and IrefG. A transmitted intensity, I1, is then normalized with the

reference measurement, Iref , to correct for variation in the intensity of light emitted by the

laser over time; specifically, one uses

i = I1/Iref (3.12)

The attenuation of the light by scattering and absorption in the sample and the optics

must also be accounted for. One sets the polarizers to the parallel position and measures

the light transmitted through the sample and the polarizers, III; this value is normalized to

obtain ill. ill represents the intensity of the initial beam, corrected for attenuation by scatter-

ing and absorption and normalized with respect to the reference beam. The equations for

the transmitted intensity of the blue beam (0 B = 0 [rad]) and the green beam (OG = ·t/4

[rad]) are then

i B  sin 2  Andin2(
2 (X••- 0 ) )

(3.13)

= sin2 ,Andsin2(2(X - G))
IGll .IG I

where XB = 488 [nm] and XG = 514.5 [nm], the wavelengths of the blue and green beams

respectively. Equations (3.13) are then solved numerically to determine the birefringence

and extinction angle at a specific point in the flow sample.

The constraints imposed by the geometrical parameters and divergence of the Gauss-

ian beam governed selection of the dimensions of the geometry and radius of the beams.



Specifically, beams of radius r0 = 0.25 [mm] at the beam waist were used; the radius of a

given beam did not exceed this minimum value by more than 10% over the width of the

geometry, W = 70 [mm]. Consequently, the resolution of the system in dimensionless

terms was r0/h = 0.23, where h is the downstream half-height of the contraction geometry.

As described in Quinzani (Quinzani, 1991), a two-axis translating system (Klinger Scien-

tific Model, MT160.100 and MT160.200) allowed the measuring volume to be positioned

to a relative accuracy of ± 2 [ýtm]. The alignment procedure allowed the origin of the

coordinate system to be located to within approximately ± 20 [Im].

The accuracy of the TCFIB system was assessed by using a quarter-wave plate in the

place of the flow cell. This optical element induced a nominal 8'R = 90 [deg] retardation

between the phase of a light wave of wavelength 632.8 [nm] with the electric vector paral-

lel to the characteristic orientation of the plate and the electric vector perpendicular to the

orientation of the plate. The element was rated to an accuracy of ±2% of the nominal

value of the retardation. The measured values of the extinction angle, X, and the retarda-

tion for a wavelength of 632.8 [nm], 8'R, are shown as a function of the orientation of the

quarter wave plate, OQW, in Fig. 3.7. The average of the measured value of the retardance

was 8' R = 92.6 + 1.8 [deg], nearly within the rated accuracy of the element. A good, lin-

ear, unit-slope fit to the measured extinction angle was obtained; the standard deviation

was ±0.25 [deg]. The lowest value of An for which data could be obtained (i.e. the sensi-

tivity of the system) was set by the parasitic birefringence of the glass and other optical

elements located before and including the polarizers. The parasitic birefringence was

assessed at the beginning of each run by measuring the birefringence with no fluid flow-

ing. This measurement was consistent, with an average value and standard deviation of

Anparasitic = 4.2 x 10-8 ± 0.5 x 10-8. The accuracy and sensitivity of the system are com-

pared with those used in previous investigations in Table 3.1.
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Figure 3.7 Evaluation of the accuracy of the TCFIB system with a quarter wave plate

(nominal 6'R = 90 [deg] at 632.8 [nm]), quantities are measured as a function of wave

plate orientation angle, OQw: ( O ) measured retardance, 8'R, in terms of wavelength X =

632.8 [nm], and average value of retardance over all orientation angles, (-); (+) mea-

sured extinction angle, X, and linear fit (. - -.).
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Quarter-Wave Plate (QWP) Assessment Minimum
Reference System Accuracy Fractional Deviation Detectable

of QWP 6' Error in 6' in X [deg] An

Frattini & PMFIB ±1% 2.4% ± 2% 0.25
Fuller, 1984

Chow, 1984 TCFIB ±2% 2.2% ± 1% 0.15 2 x 10-7

Quinzani, 1991 TCFIB ±2% 0.4% + 0.5% 0.2 2.3 x 10-7

Genieser, 1997 TCFIB ±2% 2.9% ± 2% 0.25 2.1 x 10-

Table 3.1 Comparison of the accuracy and sensitivity of several FIB systems using a

quarter-wave plate retarder.

The accuracy of the retardation (8') of the quarter-wave plate used to assess a given

system is given in the table. Clearly, the absolute accuracy of the system cannot be

assessed more precisely than the accuracy of the quarter-wave plate used to test it. For the

fractional error in the measurement of 8', the first value quoted is the percent deviation of

the mean of the measurement from the nominal value of 90 [deg]; the second is the stan-

dard deviation about the mean of the measured values. The fractional errors reported by

Frattini & Fuller and Chow and in this study are all of the same order; the fractional error

reported by Quinzani is somewhat smaller. The deviation of the extinction angle (x) mea-

surement conducted with the quarter-wave plate is of the same order for all of the experi-

ments. In the right-most column, the minimum detectable birefringence for the systems is

given. The value of Chow is given as reported. For the investigation of Quinzani and this

study, the given value is based on the parasitic birefringence. Specifically, AnParasitic /

AnMin = 0.2; i.e., this AnMin is the smallest birefringence which can be measured such that

the error does not exceed 20%.

3.6 Couette Cell: Used to Determine Stress-Optical Coefficient

As indicated by eq. 3.4, in order to interpret the birefringence measurements taken for

the planar contraction flow in terms of the stress, it was necessary to first obtain the stress-

optical coefficients of the polyisobutylene solute (CpIB) and the polybutene solvent (CpB).
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To determine the coefficients, it was necessary to measure the refractive index tensor

(equivalently, the birefringence and extinction angle) in a test flow for which the stress

tensor was known. The specific details and the results of the measurement are described in

§6.4.1; the test geometry is described here.

A simple geometry which allows the measurement to be conducted is narrow gap Cou-

ette flow. The same device was used as in the investigation of Quinzani (Quinzani, 1991);

a schematic showing essential features is shown in Fig. 3.8. The apparatus consists of an

inner, cylindrical spindle of radius R1 = 80 [mm] contained within a hollow cylindrical

housing of which the inner radius was R2 = 81.5 [mm]. Both the spindle and the housing

were constructed of aluminum which was anodized in order to minimize reflections of the

laser beam. The region between these spindle and the inner surface of the housing is an

annular gap of constant width R2 - R1 = 1.5 [mm]. The geometry provides a good approx-

imation to the narrow gap limit, specifically one obtains the dimensionless gap width of

(R2 - R1)/R1 = 6 = 0.019. One may note that in the limit of 8 -4 0, the shear rate is uni-

form throughout the gap with Y0 = -Q/8, where Q is the angular rotation rate of the

inner spindle. For a viscosity non-shear-thinning fluid, the fractional deviation from the

limiting shear-rate value, at any position within the gap, R1 • r < R2 , does not exceed

(y(r) - yo)/yo = +8/2 (Leal, 1992). In the case of the Couette cell used to obtain the

stress-optical coefficients, this value is 5/2 = .0094. Consequently, the stress field may be

assumed to be homogeneous over the gap width.

To generate the shear flow, the inner spindle is rotated by a variable speed DC electric

motor. To precisely determine the speed of rotation, a four-bladed chopper wheel was

placed on the shaft extending from the spindle. A light beam was shown through the chop-

per wheel and onto a photodetector. The output of the photodetector was sent to an analog-

to-digital board and subsequently a personal computer, which determined the rotation rate

of the spindle, ", by timing the interval between successive light pulses.

As shown in Fig. 3.8, the laser beams of the TCFIB system travel through the annular

gap, parallel to the axis of rotation of the spindle. The beam travelled through a distance

Ls = 80 [mm] of sheared sample, the high aspect ratio of the shear region, Ls/(R2 - R1) =

53, ensured that the influence of end effects on the birefringence measurement was negli-

gible. The windows through which the laser beam passed were constructed of silica glass.
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Figure 3.8 Couette cell used to measure stress-optical coefficients. (modified from

(Quinzani, 1991)).
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Parasitic birefringence induced by stresses within the glass was experimentally deter-

mined to be negligible. Additional detail on the design of the Couette cell is found in the

thesis of Quinzani (Quinzani, 1991).
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Chapter 4

Test Fluid Rheology

This Chapter describes the composition and rheological characterization of the test

fluid developed for the experiments described in this thesis. To allow the experiments to be

conducted at room temperature and moderate pressures a polymer solution rather than a

melt was used. In order to maximize the utility of the experimental results of this thesis for

comparison with future numerical simulations, the same fluid was used for both the inves-

tigation of elastically driven instabilities in Chapter 5 and the elongational response in

Chapter 6. Since viscoelastic fluids which have been used in previous studies could not

satisfy all the requirements for both of these studies a new test fluid had to be developed.

High Weissenberg numbers had to be attained in order to observe elastically driven

instabilities in the study of Chapter 5. At the same time, the test fluid had to be essentially

non-shear-thinning in viscosity over the range of shear rates characteristic of the flow in

order to avoid the attainment of high Reynolds number, Re. Hi Re could result in onset of

inertially-driven instabilities or the modification of elastic instabilities, which would com-

plicate interpretation of the results. These considerations motivated use of a Boger fluid

which had long relaxation time and high and constant viscosity.

The studies conducted in Chapter 6 on the measurement of the elongational viscosity

of the fluid also required use of a fluid with long relaxation time, so that the critical strain

rate required to elongate the molecule was within the range attainable by the fluid han-

dling system. For the study of Chapter 6, the shearfree centerline of the planar contraction

flow was used as a "tool" to characterize the elongational response of the test fluid. Modi-

fication of the flow field via an inertial mechanism was not, in and of itself, of conse-

quence. However, measurement of the transient elongational viscosity profile required a

flow which was steady in an Eulerian sense. Moreover, as discussed in Chapter 3, direct

interpretation of birefringence measurement in terms of the stress field necessitated that

the flow field be two-dimensional. Both of these requirements would not be met if use of a

viscosity shear-thinning fluid resulted in attainment of high Re and consequent onset of an

inertially driven instability. These considerations indicated the use of a Boger fluid as the
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test fluid. However, previous investigations found that use of a ternary polyisobutylene

(PIB) in polybutene (PB) and tetradecane (C 14) polymer solution resulted in divergence of

a beam passing through the solution, probably associated with structural changes in com-

position (shear-induced phase separation or concentration fluctuation enhancement). One

of the achievements of this thesis was the development of a new test fluid which possessed

the properties required for the investigations of Chapters 5 and 6, i.e., a binary Boger fluid

with long relaxation time and constant viscosity which did not induce beam divergence

when sheared.

The composition of the test fluid and its molecular character are discussed in §4.1. A

description of standard material functions used to characterize the rheology of viscoelastic

fluids is given in §4.2. Experimental techniques used to obtain rheological information are

described. §4.3 presents the origins, applications, and limitations of constitutive models

used to model viscoelastic fluid flow in this thesis. In §4.4 the background information

presented in Sections 4.1 through 4.3 is used in conjunction with experimental data to

describe the rheology of the test fluid in shear flow and fit parameters of constitutive mod-

els. §4.5 defines the shear-rate-dependent Weissenberg number, and presents the Weissen-

berg number of the test fluid as a function of shear rate.

4.1 Fluid Composition and Molecular Character

In §4.1.1, common characteristics of the composition of Boger fluids are discussed;

general methods for producing these fluids are described. In §4.1.2 the rheological proper-

ties of solutions in the dilute limit are compared with those in the concentrated regime.

Scaling arguments which assess whether a solution is in the dilute or concentrated limit

are discussed; Boger fluids, including the test fluid used in this thesis, are found generally

to be in an intermediate, semidilute regime. Consideration of the dimensions of the high

MW PIB solute in the limiting coiled and fully stretched configurations provides addi-

tional information on the fluid microstructure. In §4.1.3 previous experimental and theo-

retical investigation of the phenomenon of "shear-induced phase separation" or "shear-

induced concentration fluctuation enhancement" are discussed. Specific reference to the

shear-induced beam divergence observed for a ternary PIB in PB and C14 Boger fluid is
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made, this phenomenon prevented FIB measurements from being taken in a previous

investigation (McKinley et al., 1991; Byars, 1996). A new, two-component Boger fluid

was developed for the investigations of this thesis; the test fluid does not exhibit shear-

induced beam divergence. Specific detail on the composition of the 0.30 wt% PIB in PB

binary Boger fluid used for experiments in this thesis is given in §4.1.4.

4.1.1 Composition of Boger Fluids

Previous investigations of viscoelastic fluid flow have used test fluids with the charac-

ter of Boger fluids, which are nearly non-shear-thinning in viscosity (although they may

exhibit shear thinning of the first normal stress coefficient) (Boger, 1977/1978; McKinley

et al., 1991; Byars, 1996). Since the viscosity does not shear thin, flow effects induced by

the elastic nature of the fluid can be studied (i.e. high Weissenberg number can be

attained) while neglecting inertia. To compose a Boger fluid, a low concentration of high

molecular weight (MW) polymer is dissolved in a medium MW polymeric solvent. The

high MW component gives the fluid its elastic nature (non-zero first normal stress coeffi-

cient and memory) while only making a small or moderate contribution to the viscosity.

The medium MW polymer exhibits Newtonian behavior over the shear rates investigated,

but is highly viscous. The viscosity of the medium MW solvent, rls, dominates over the

moderate viscosity contribution of the high MW solute, irp; consequently, shear thinning

of the solution viscosity, '1 = ls + frlp, is negligible.

Although they have similar shear rheology, and exhibit some similarity in composi-

tion, the chemical character of Boger fluids can differ widely. Boger fluids have been com-

posed of polar, high MW solutes dissolved in aqueous polymeric solvents as well as non-

polar, high MW solutes dissolved in organic polymeric solvents. In the case of the non-

polar solutes, since the polymer solvent is of medium molecular weight (typically M w -

103 [g mol-l]) the direct dissolution of the high MW polymer in the solvent is unaccept-

ably slow. To accelerate the mixing, a low MW oligomeric cosolvent is used. This cosol-
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vent may either remain as part of a ternary solution, or a volatile cosolvent may be

removed to form a binary solution.

4.1.2 Rheological and Molecular Characteristics of Dilute and Concentrated
Solutions

In a dilute solution, the polymer molecules are spaced sufficiently far apart that direct

interaction between macromolecules is negligible. Material functions such as the elonga-

tional viscosity are solely related to interaction of the solvent flow field with the individual

macromolecules and associated changes in conformation, e.g. stretching, of these macro-

molecules. Consequently, the magnitudes of material functions such as rip and the first

normal stress coefficient, P 1, are directly proportional to the polymer concentration.

In contrast, in a concentrated solution, the polymer molecules form an entangled net-

work. Forces can be transmitted directly between macromolecules rather than through an

intermediate solvent. In fact, in the limiting case of a single-component polymer melt, no

solvent is present. Consequently, in addition to considering changes in conformation of the

individual macromolecules, constraints imposed on the motion of a given macromolecule

by its neighbors must be considered. Because of these nonlinear interactions, the zero-

shear-rate viscoelastic material functions exhibit a nonlinear, power-law dependence on

polymer concentration. In addition, the dependence of material functions on polymer

molecular weight is much more sensitive than for the case of dilute solutions. The zero-

shear rate material functions of solutions in the concentrated regime have been shown



experimentally and for the dilute regime experimentally and theoretically to scale as given

in Table 4.2.

Zero-Shear-Rate Material Dilute Solution Concentrated Solution
Function

Viscosity r1po - 1rsc M r2lo (cM)
2 2 2(3.4)

First Normal Stress Coefficient 10  s cM To0 - (cM) 2

Relaxation Time pO 11sM 3/ 2  0 - (CM)3.4

Table 4.1 Scaling of steady shear material functions with solute concentration, c, and

molecular weight, M, for dilute and concentrated polymer solutions.

The relaxation time at zero-shear rate is defined in the Table as 0 = TI 10/2rlp0 for dilute

solutions and Xpo = TP10 /2r10 for concentrated solutions. One should note that the transi-

tion between dilute and concentrated behavior is not sharp; a transition region of semidi-

lute behavior exists (Bird et al., 1987a; Bird et al., 1987b).

The critical concentration, c* (mass of high MW polymer solute per mole of solvent),

at which the polymer molecules first begin to interact is dependent on the polymer solute

molecular weight and on the solvent "power". Higher MW polymer solutes have lower

critical concentration. Solvent "power" refers to the ability of a solvent to dissolve a poly-

meric solute of a particular MW, more specifically, to the change in free energy upon mix-

ing, AGmix. In a "good" solvent the solute polymer chains will be extended relative to their

conformation in a theta-solvent.' Consequently, the "better" the solvent (more negative

AGmix), the lower the critical concentration (Rosen, 1982).

De Gennes considered a solution of long polymer molecules (e.g. the Mw = 2 x 106 [g

mol-1] polyisobutylene (PIB) used in these experiments) in a good, athermal solvent of

medium MW polymer chains (e.g. the Mn = 1.3 x 103 [g mol- 1] polybutene (PB)) (de

Gennes, 1979). An athermal medium MW solvent such as PB behaves as a theta-solvent

when the polymer chains have a contour length, LL, greater than the square root of the

1. A polymer solution is said to be at the theta-condition when the Gibbs free energy of the system

does not change upon mixing of the solute (for which the MW approaches infinity) with the sol-

vent, AGmix = 0; i.e., the polymer/solvent system is thermodynamically neutrally stable.
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chain length of the high MW solute, LH. That is, when LL > LH 1/2, the increase in entropy

upon mixing is minimal, ASmix = 0; since the solvent is athermal, AHmix = 0, the increase

in free energy is also minimal, AGmix = AH - TAS = 0. In contrast, if the solvent chains are

shorter than the critical value, AGmix is expected to be sufficiently negative for the

medium MW component to function as a moderately good solvent. In the 0.31 wt% PIB

in PB and C14 solution, one obtains LL - LH1/ 2; i.e. the polybutene is in the transition

region between a good, athermal and a neutral, theta-solvent.

For the case of a good, athermal solvent, the critical concentration, c*, scales with the

square-root of the molecular weight

* 1/2
c ocM (4.1)

More specifically, the critical concentration of a solution of Mw = 2 x 106 [g mol-1] PIB

molecules in a good, athermal solvent is calculated as (de Gennes, 1979; McKinley, 1991)

c= 3M 8.1 x 104 [g mol-1] (4.2)
41NA (r2  0

which would correspond to a 0.08 wt% PIB in PB solution. Note that M is the molecular

weight for a polymer of monodisperse molecular weight distribution (MWD); NA is the
2 1/2

Avogadro number and (r )o the equilibrium root-mean-square (r.m.s.) end-to-end

length of the polymer coil. Since the solvent "power" of the medium MW PB used in this

study is in the intermediate range between a good and a theta-solvent, the high MW PfB

molecules are expected to be more tightly coiled than they would be in a good solvent.

Consequently, the actual critical concentration for the PIB in the PB will be higher than c*

= 0.08 wt%. The test fluid used in this study, with a concentration of 0.30 wt% PIB in PB,

greater than but of the same order as the critical concentration, c*, should be in an interme-

diate, or semidilute, regime of concentration.

This semidilute regime is less well understood from a theoretical perspective than the

limiting dilute or concentrated regimes; accepted empirical scalings, as are available for

concentrated solutions, do not exist. Nevertheless, one may note that most Boger fluids
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previously used in experimental investigations of viscoelastic fluid flow have been semid-

ilute solutions. The requisite property of viscosity non-shear-thinning excludes the use of

concentrated solutions for these fluids. Dilute solutions are, in principle, ideal Boger fluids

since the high MW polymer makes only an infinitesimal contribution to the solution vis-

cosity. However, the first normal stress coefficient of these solutions is also small. In gen-

eral, it is too difficult to achieve experimental conditions of high Weissenberg number to

allow the use of dilute solutions.

Understanding of the response of the high MW polymer molecule to an imposed flow

field is developed by consideration of the limiting dimensions of the molecule in the coiled

state at equilibrium and a hypothetical, fully stretched state. A simple estimate can be

obtained by treating the chain as a "random-walk" distribution; the bond angles are taken

into consideration but the steric and excluded volume effects are neglected. From the

known molecular weight (Mw), mass of the isobutylene repeat unit (mo), and bond angle

(0) and length (lc_c) of a carbon-carbon bond, the equilibrium r.m.s. end-to-end length of

the polymer is determined to be

2 1 + coso 2Mw .
(r )of = Ic-c 1 01 - cos; (4.3)

For the case of the high MW PIB polymer, which has the constants

Mw = 2 x 106 [g mol- ], mo = 56 [g mol ], 0 = 109.5 [deg], and

Ic-c = 1.54 x 10- 10 [m], one obtains r 2)Of = 6 x 10.8 [m] (McKinley, 1991; Flory,

1953). However, the effects of excluded volume and the pendant -CH 3 groups along the

backbone will result in the polymer at equilibrium in a theta solvent being expanded rela-

tive to this simple "random-walk" estimate. These effects are taken into consideration by

experimental determined Mark-Houwink parameters for the polymer in a theta solvent.

McKinley (McKinley, 1991) used the parameters K = 107 x 10-3 [cm 3 g-1] and a = 0.50

for PIB in benzene, which acts as a theta solvent at the test temperature of 24 [C] (Brandup

and Immergut, 1975); the r.m.s. end-to-end length was then calculated to be

(r2 )0 = 1.0 x 10-7 [m]. The contour length of the fully extended chain can be directly



calculated from the molecular weight of the polymer, molecular weight of the repeat unit,

and bond length and angle as

= L2Mw c(180 - 8(.mo) 2
(McKinley, 1991). For the high MW PIB polymer used for the investigations of this thesis

Lc = 8 x 10-6 [m]. Hence the ratio of end-to-end lengths which the polymer molecule can,

in principle, have is large,

Lc
= 80. (4.5)

d/(r )0o

A fully extended state could only be attained in elongational flow of extremely high strain

rate. More detailed consideration of the response of a polymer molecule to an elongational

flow is given in Chapter 6.

Polymer solution theory provides a useful guide for understanding the nature of the

semidilute polymer solution which was used as the test fluid for the investigations com-

prising this thesis. However, the theory, which contains a number of assumptions, cannot

be applied in a quantitative manner. For example, the scalings of polymer solution theory

are based on a monodisperse molecular weight distribution (MWD) of the components of

a polymer solution. In actuality, both the high MW solute and the medium MW solvent

comprising the test fluid had broad MWDs. Note that the MWD also implies a distribution

of polymer end-to-end length in the coiled, (r )0, and in the extended, Lc, configura-

tions.

4.1.3 Shear-Induced Turbidity in Polymer Solutions

A Boger fluid which has been extensively characterized is the ternary solution of 0.31

wt% high MW polyisobutylene dissolved in a solvent of 5 wt% tetradecane in polybutene

(Quinzani et al., 1990). It was initially attempted to use this fluid in the flow induced bire-

fringence (FIB) investigation discussed in Chapter 6. The stress-optical coefficient was

112



obtained using a Couette cell filled with the test fluid and by passing a laser beam through

the sample in the "neutral" direction. Immediately upon shearing, the beam was observed

to diverge (Quinzani et al., 1992). This effect was not attributed to a refractive index gradi-

ent associated with viscous heating since it occurred at low shear rates and immediately

upon shearing. Similar phenomena have been noted for other ternary and binary polymer

solutions (van Egmond and Fuller, 1993; Yanase et al., 1991; Kramer-Lucas et al., 1988a).

Elucidation of the origin of "shear-induced turbidity" remains an active area of investiga-

tion. The hypotheses initially proposed suggested a thermodynamic mechanism of shear-

induced phase separation (Rangel-Nafaile et al., 1984; Kramer-Lucas et al., 1988b). The

theoretical basis of this hypothesis was criticized by Helfand and Frederickson (Helfand

and Frederickson, 1989) and by Onuki (Onuki, 1989) who sought an explanation in terms

of shear-induced growth of concentration fluctuations which could precede the formation

of aggregated polymer structures. Both of these interpretations could explain the phenom-

ena of "shear induced turbidity" and an associated decrease in solution viscosity (Schmidt

and Wolf, 1979); neither interpretation is in perfect agreement with experiment (Yanase et

al., 1991; Onuki, 1989).

Determination of the origin of the "shear-induced turbidity" phenomenon is outside of

the scope of this thesis. However, it was crucial to find a polymer solution which did not

cause the broadening of the probe beam which prevented an FIB measurement from being

taken. In the ternary solution, the low molecular weight tetradecane oligomers will diffuse

much more rapidly than the medium or high molecular weight polymers. It was speculated

that the presence of rapidly diffusing oligomer would render the solution more susceptible

to "shear induced turbidity". Specifically, phase separation could occur (thermodynamic

reasoning) or the concentration fluctuations could grow to an observable size on the time

scale of the experiment. In contrast, if the tetradecane oligomer were removed, the system

might be in a thermodynamically unstable state or have growing concentration fluctua-

tions; however, since the time scale for diffusion of the medium and of the high molecular

weight polymers would be long compared with the time scale of the experiment, the phe-

nomenon would not manifest itself macroscopically (Muller, 1992; Byars, 1992).

The procedure for composing the binary high MW polyisobutylene in medium MW

polybutene solution is described in §4.1.4. When this solution was used in the Couette
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cell, no beam divergence was observed; FIB measurements could be taken. However, one

must realize that this observation does not in and of itself validate the speculation of the

above paragraph which led to the use of a binary solution. Presently, the absence of beam

divergence upon shearing of the binary solution must be taken only as an empirical find-

ing.

4.1.4 Composition of Test Fluid

As discussed in §4.1.2, the "solvent power" of the medium molecular weight (MW)

polybutene solvent (PB) with respect to the polyisobutylene solute (PIB) is in the interme-

diate regime between a good, athermal solvent and a neutral, theta solvent. Consequently,

in order to dissolve the high MW polyisobutylene (Mw = 2 x 106 [g mol- 1], Exxon Chem-

icals, Vistanex L-120 (McKinley, 1991)) in the medium MW polybutene (Mn = 1.3 x 103

Amoco Chemical, Panalane H300E (Amoco Chemical Company, 1992)) within an accept-

able period of time, it was necessary to use hexane as a cosolvent. The PIB was initially

dissolved to a concentration of 2 wt% in chromatography grade hexane. The solution was

stirred for 24 [hr]. Completeness of dissolution was assessed by observing the solution

through the glass walls of the flask, any region of non-homogeneous concentration would

show up as a "shimmering" caused by variation in refractive index; at the end of the 24

[hr] period no such "shimmering" was apparent. The PIB in hexane solution was then

combined with the PB in a 20 [1] container. Dissolution was promoted by placing the con-

tainer on a roll mill for at least 24 [hr]; after "rolling" the visual appearance of the solution

was homogeneous. The PIB in hexane and PB ternary solution was then poured into a set

of shallow trays to a depth of approximately 1 [cm]. The solution was heated for 24 [hr]

under a nitrogen purge at a temperature of approximately 70 [oC] . The solution then

underwent heating at 70 [oC] for an additional 48 [hr] under vacuum to complete removal

of the hexane. A fluid sample was taken and the viscosity and first normal stress coeffi-

cient measured in a rheometer (RMS-800, Rheometrics). The fluid in the trays was then

heated under vacuum, at 70 [oC], for an additional 6 [hr]. A second sample from the same

tray as the first sample was then taken and its rheological properties also measured. The

additional 6 [hr] of heating under vacuum had no effect on the rheological properties,
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within experimental error. Hence, it was concluded that heating for 24 [hr] under nitrogen

and 48 [hr] under vacuum was sufficient to remove the hexane to a trace level where it no

longer had any measurable effect on rheological properties. The net yield of PIB in PB test

fluid after evaporation of an initial 13 [1] of PIB in PB and hexane solution was approxi-

mately 7 [1]; note that some material was lost during the transfer of the fluid from the vac-

uum oven to storage containers. The above procedure was repeated several times to obtain

a sufficient quantity of fluid, approximately 33 [1], to fill the fluid handling system

described in §3.1.

Despite the homogeneous appearance of the solution after the "rolling" procedure,

there was evidence that the dissolution of the PB with the PIB in hexane solution was

incomplete. Specifically, after evaporation of the hexane, samples taken from different

trays exhibited significant variation in rheology. It was concluded that after rolling and

then standing for several hours, the fluid in the upper section of the 20 [1] container was

richer in the PIB/hexane solution than the lower section. However, the average concentra-

tion of a batch (all the trays taken together) of the PIB in PB solution after evaporation was

0.30 wt%. Therefore, once a sufficient total volume of the two-component PIB in PB fluid

had been made, the fluid was poured into the flow handling system (cf. Fig. 3.1). The

fluid was heated to 60 [°C] in order to temporarily lower the viscosity and pumped from

the supply to the receiver tank and back again ten times. A set of samples from different

points in the tank was then taken and the rl and T 1 material functions measured; the rheol-

ogy of the samples was identical to within the error of the instrument (±5% for rl and

±10% for P 1). Therefore, the pumping procedure in the fluid handling system homoge-

nized the composition of the fluid to an 0.30 wt% concentration of PIB in PB throughout,

with no detectable hexane.

4.2 Rheological Methods and Definition of Material Functions

A polymer flow in a typical industrial process is highly complex; the rate-of-strain ten-

sor varies throughout the system, may be time-dependent, and has both shear and elonga-

tional components. Although the ultimate goal is the ability to accurately simulate

numerically such a system; it is first necessary to characterize and understand viscoelastic
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fluid behavior in kinematically simple test flows. Information from such standard test

flows, in conjunction with a suitable constitutive equation, could then be used to predict

phenomena in complex flows more closely resembling industrial processes. The two main

categories of standard flow patterns are shear and shearfree flows. A summary of test

flows used to determine the material functions of non-Newtonian fluids can be found in

Bird, et al. (Bird et al., 1987a); the flows used for the investigations comprising this thesis

are described here.

4.2.1 Shear Flows Material Functions

A simple shear flow is defined by the velocity field:

vx = y(t)y

v = 0 (4.6)

vz =0

where y(t) represents the "shear rate". 2 For simple shear flow the shear rate can be a func-

tion of time but is independent of position; it is a homogeneous, or uniform, flow. Several

shear flow material functions are defined in this Section; specific measurement techniques

are then discussed in.

Steady Shear Flow

A subclass of simple shear flow is the time-independent, or steady, flow case with

y(t) = yYo; this flow is illustrated in Fig. 4. la. The viscosity is defined as

11(7) YX (4.7)
YO

where tyx denotes the shear stress. In the case of a Newtonian fluid the viscosity is con-

stant and independent of shear rate, rl(7) = g. In contrast, non-Newtonian fluids may

2. For a general flow, the shear rate is defined as the magnitude of the rate-of-strain tensor, y , via

Y = +(1/2)(y : -).
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Figure 4.1 Four simple shearing flow experiments used to characterize the rheology of

a viscoelastic fluid: (a) steady shear flow; (b) small-amplitude oscillatory shear flow; (c)

stress growth after inception of steady shear flow; (d) stress relaxation after cessation of

steady shear flow. (After (McKinley, 1991; Bird et al., 1987a)).
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exhibit shear-thinning (viscosity decrease with shear rate) or shear-thickening (viscosity

increase with shear rate) behavior (Bird et al., 1987a).

The first and second normal stress coefficients are defined as

(Txx -- yy) 1T'tI(YO) = • 2_ _ - • N

o) 2 . 2
Yo Yo

(TYY - Tzz) N 2  
(4.8)

Y2(Y0) = . 2
Yo Yo

where xx, Tyy , and tzz represent the normal components of the stress tensor, and N 1 and

N2 corresponding normal stress differences. Note that in simple shear flow a Newtonian

fluid will have T 1(Yo) = T 2 (Y0 ) = 0; complex fluids may have non-zero normal stress co-

efficients.

Small-Amplitude Oscillatory Shear Flow

A subclass of the non-Newtonian fluids are the viscoelastic fluids, which have the

characteristic of "remembering" a previous state of deformation (Larson, 1988; Bird et al.,

1987a). To characterize the "memory" of viscoelastic fluids, a number of time-dependent,

or unsteady, test flows exist. Small-amplitude oscillatory shear flow is used to character-

ize the linear viscoelastic response and determine the linear viscoelastic spectrum of a

material as discussed in §4.3. The small-amplitude oscillatory shear flow is defined by the

velocity field of eq. (4.6) with y(t) = yocosOmt ; the flow is illustrated in Fig. 4. lb. Associ-

ated material properties, the dynamic viscosity, I', and the dynamic rigidity, rl", are

defined by

Tyx = - rl'(c)Yocosot - rl"(co)yosin(ot (4.9)
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where Co is the frequency of oscillation. These dynamic quantities are related to the stor-

age and loss moduli by

storage modulus: G' = "o(4.10)
(4.10)

loss modulus: G" = "'o

Note that T1' and G" are in-phase with the instantaneous shear rate, y(t), whereas Tr" and

G' are out-of-phase. Complex quantities may be defined as

complex viscosity: 11 = 1' - in"
(4.11)

complex modulus: G = G'+ iG"

Note that for a perfectly elastic solid G' = G, the constant shear modulus, and G" = 0.

Conversely, for a Newtonian fluid G' = 0 (i1" = 0), whereas G" = gco (71'= g). In the limit

of low shear rate and low frequency the steady-state and small-amplitude oscillatory

(dynamic) material functions are related as

lim 1'(o) = lim r (7) = rl0
o --0 r -•0

(4.12)

lim ) lim 'I(y) = 10

Stress Growth upon Inception of Shear Flow

Other time-dependent, transient flows may be defined. These are generally used to

characterize the nonlinear response of a viscoelastic fluid. For measurement of stress

growth material functions, the velocity field is as given in eq. (4.6), but with sudden incep-

tion of the shear rate

t < : = 0
(4.13)

t 0: Y = Yo
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imposed; the test flow is illustrated in Fig. 4. Ic. Subsequently, one defines

l1+ (t , o ( - "y

N +++ IT (t, Yo) .2 (4.14)
Yo

N+++

T2 (t, o) = .2
Yo

Stress Relaxation after Cessation of Shear Flow

The velocity field associated with the stress relaxation material functions is defined as

in eq. (4.6) but with sudden cessation of the shear rate

t <0: y= Yo
(4.15)

t 0: = 0

the flow is shown in Fig. 4. d. One then defines

ty
rl (t, Yo) = Yo

NI
T' (t, Yo) 2 (4.16)

Yo

N2
W2 (t, Yo) .2

Yo

Shear Flow Material Function Measurement Techniques

Steady, small-amplitude oscillatory, and inception or cessation shear flows can all be

produced in the cone-and-plate viscometer. Such a device consists of a truncated cone of

small angle 00 located above a circular flat plate of radius R (cf. Fig. 4.2). The plate can

rotate in a single direction at a controlled rate, ", for the measurement of steady-state,
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stress growth, or stress relaxation material functions. The plate can also oscillate azimuth-

ally in (p about a fixed position, allowing dynamic properties to be measured. The cone is

connected to force transducers which measure the torque, T, and the upward force normal

to the plate, F.

The cone-and-plate geometry has the advantage that a nearly homogeneous flow is

developed between the surfaces. Specifically, it has been shown (Bird et al., 1987a) that in

the limit of small angle, typically 00 < 0.1 [rad], the shear rate has a constant value of

S= O (4.17)

throughout the sample, where Q is the angular rotation rate of the plate. The shear stress

may then be calculated as

3T
T(o 2rcR 3  (4.18)

and the first normal stress difference as

2F
N -= (4.19)

7tR

Note that because of the small gap angle and the homogeneity of the flow, one may associ-

ate the spherical coordinate system (0, (p, r) with the Cartesian system (x, y, z) used to

define the steady and dynamic material functions above. From the known values of F, T,

and y(t) the material functions can be calculated.

The apparatus primarily used to determine the shear material functions of the test fluid

used in this thesis was the Rheometrics Mechanical Spectrometer (RMS-800). The instru-

ment functions by imposing a rotation on the bottom plate and measuring F and T on the

top cone. At low shear rates or oscillation frequencies measurements were limited by the

sensitivity of the transducer, accurate readings could be obtained for values as low as F =

0.02 [N] and T = 2 x 10-4 [N m]. Cone fixtures were used of geometry R = 12.5 [mm] with

00 = 0.1 [rad] and R = 60 [mm] with 00 = 0.04 [rad]. As discussed in §4.4 the material
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functions are affected by the sample temperature. For the smaller cone fixture the temper-

ature could be held constant to within ±0.1 [°C]. The temperature could not be set for the

larger fixture, but was instead measured to within ±0.1 [oC] and the measured material

functions subsequently adjusted by means of time-temperature superposition to a refer-

ence temperature, To .

Two factors were found to restrict the maximum strain rate for which steady measure-

ments could be taken. The first of these was viscous heating. When a viscous fluid is

sheared, mechanical energy is converted to heat. At sufficiently high shear rates, for a

given cone geometry (characterized by 00 and R), the maximum temperature within the

gap will rise to a level where the material functions are affected. To ameliorate this prob-

lem, the cone angle may be decreased; however, limitations on the precision of the align-

ment can result in deleterious effects on accuracy of the measured material functions.

The second limiting factor was the onset of a three-dimensional, time-dependent insta-

bility which was related to the interaction of streamwise stresses with streamline curva-

ture. McKinley, et al. have studied this phenomenon in detail via experimental and

theoretical means (McKinley et al., 1995); various manifestations of instabilities related to

stress-curvature interaction are discussed in Chapter 5 of this thesis. It suffices here to

point out that after onset of the instability, the flow no longer has the velocity field charac-

ter of simple shear flow, preventing the material functions from being determined. Higher

shear rates can be attained before instability onset by using a smaller cone angle; however,

the cone angle may only be decreased so far before alignment problems affect accuracy.

One should note that other configurations besides the cone and plate may be used to

obtain material function data. The parallel-plate geometry is similar to the cone-and-plate

configuration with a flat plate replacing the upper cone. The parallel-plate configuration

has the advantage that the gap height, which is analogous to the cone angle, can be contin-

uously varied. However, unlike the cone and plate, a homogeneous flow is not approxi-

mated: the local shear rate increases linearly as one moves radially from the center to the

edge of the plate. The steady material functions r (7), T 1 (y), and Y 2 (7) may still be

obtained, even for a shear thinning fluid; however, the data reduction procedure is more

involved. The interested reader may consult texts such as Bird et al. (Bird et al., 1987a) for

details. Factors limiting the minimum and maximum shear rates for which data may be
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obtained are essentially the same as described above for the cone-and-plate configuration.

The cone-and-plate configuration was primarily used to obtain the shear rheological data

presented in §4.4. However, the parallel-plate configuration with small gap height was

used in certain instances to avoid instability onset and thereby obtain data at elevated shear

rates.

4.2.2 Shearfree Flows

Shearfree flows are defined by the velocity field

vx = -2(l+ b)x

(4.20)
V 1 =
vy = - .(1 -b)y

v z = Ez

where 0 < b • 1 and the elongation rate is defined as

avz
C= -

Three different limiting types of elongational flow exist and depend on the values of b and

F,

uniaxial elongation: b = 0, e > 0

biaxial stretching: b = 0, E < 0 (4.22)

planar elongation: b = 1

Figure 4.3 illustrates these limiting cases for deformation of a unit cube fluid element. The

Hencky strain experienced by a fluid element over a time interval t2 - t1 is defined as

(4.23)
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t>O

(b) Biaxial Extension

b=O

.ItNI

b=r Elongaton
b=l

Deformation of a unit cell in limiting shearfree flows: (a) uniaxial elonga-

tion; (b) biaxial stretching; (c) planar elongation. (Modified from (Bird et al., 1987a; McK-

inley, 1991)).
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Shearfree Material Functions

The steady-state shearfree material functions are defined as

first elongational viscosity:

second elongational viscosity:

-zz - xx

_ yy - xx
112

For the limiting case of b = 0, uniaxial or biaxial flow, one has

112 = 0

(4.24)

(4.25)

where rl is referred to simply as the elongational viscosity. In the Newtonian limit the first

elongational viscosity for the limiting flows defined above reduces to

uniaxial elongation or biaxial stretching:

planar elongation:

1 = 34

1 I = 4t
(4.26)

where the viscosity of the Newtonian fluid is given as g.

Transient elongational material properties can also be defined. For example, one can

measure stress growth on inception of steady shearfree flow

t < 0, = 0
(4.27)

t 0, e = Eo

and determine the associated material functions:

-+1"11 tz -t

(4.28)
-+ yy - xx
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Shearfree Flow Material Function Measurement Techniques

By comparison with the shear flow material functions, the shearfree material functions

are difficult to measure experimentally. In contrast with shear flows, where particles in dif-

ferent shearing surfaces diverge approximately linearly in time at steady state, in steady

shearfree flows particles diverge exponentially in time. Furthermore, establishment of

boundary conditions which result in a homogeneous flow field is much more difficult for

shearfree than for shear flows. Consequently, it can be difficult or impossible to observe

the steady-state values of the material functions.

In this Section, techniques which produce a nominally homogeneous flow field and

subsequently determine the shearfree material functions of the test fluid are discussed. The

requirement of a homogeneous flow field can constrain the test fluids which may be used

and the attainable Hencky strain and, hence, the range of application of these techniques.

Methods which characterize the elongational material behavior of a test fluid in non-

homogeneous flows are then described. A broader range of test fluids may be used for sev-

eral of these techniques. However, most of the methods do not fully characterize the strain

history of the streamlines comprising the flow field. Consequently, only an "apparent

elongational viscosity" is measured; this quantity may bear little relation to the shearfree

material functions defined in above. More significantly, the "apparent elongational viscos-

ity" is difficult to compare with results obtained in other experiments and is usually not

suitable for quantitative evaluation of constitutive models. In the last part of this Section,

the use of rheo-optical techniques to obtain stress and velocity field information is dis-

cussed. The pointwise measurements obtained by rheo-optical techniques allow quantita-

tive and well-defined elongational property data to be obtained in certain non-

homogeneous flows.

One may note that summaries of mechanically based elongational material property

measurement techniques are given in Bird et al. (Bird et al., 1987a). The thesis of Quin-

zani (Quinzani, 1991) also provides useful perspective.
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Measurement of Shearfree Material Functions in Nominally Homogeneous
Flow Fields

In this Section several experimental techniques which use mechanical methods to

measure shearfree material functions of a test fluid in a homogeneous flow field are

described. Limitations on the types of fluids which can be studied and the Hencky strain

which can be achieved with these methods are discussed; such constraints motivate tech-

niques which use non-homogeneous flow fields, discussed below.

Two experimental configurations which generate well characterized, homogeneous

flows are the homogeneous stretching method (Cogswell, 1968; Mtinstedt, 1975; Mtinst-

edt, 1979; Laun and Mtinstedt, 1976) and Meissner's apparatus (Meissner, 1971). In the

homogeneous stretching method, shown in Fig. 4.4a, a cylinder of material is placed

between two clamps, which are then pulled apart at a constant strain rate, e, to produce a

uniaxial elongational flow. The sample length increases as

1 = loexp(eo(t-to)) (4.29)

where 10 is the length at time to. At the end of the test, the polymer sample is simulta-

neously cut into pieces of equal length, which are then weighed to ensure that the strain

experienced by a given fluid element was homogeneous throughout the sample. It is

apparent that this exponential dependence in conjunction with restrictions on the physical

size of the device will limit the Hencky strain, E = 6o(t - to), to low values. Nevertheless,
-+

the transient elongational viscosity, 11 , associated with start-up of elongational flow, can

be determined by measuring the tensile force exerted on the clamps and applying eq.

(4.28). Meissner's apparatus, illustrated in Fig. 4.4b, is a similar technique but allows

attainment of substantially higher values of e. In this device the material sample is

stretched at a constant strain rate by two counterrotating pairs of clamps, which remain a

fixed distance apart. Hencky strains as great as S - 7 have been attained with this device.
-+

Meissner observed a maximum in rl for a polyethylene melt at e- 6 followed by a
--+

decline in r1 ; even at E - 7 a steady state was not observed (Meissner, 1985). A related

apparatus capable of producing a more general class of elongational flow was also con-

structed by Meissner (Meissner, 1985). A sheet of polymer is surrounded on the perimeter
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Figure 4.4 Schematic diagrams of arrangements for measuring elongational material

functions in nominally homogeneous shearfree flows: (a) "homogeneous stretching"; (b)

Meissner's apparatus; (c) lubricated die; (d) lubricated squeezing. (After (Quinzani,

1991)).
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by rotating clamps. The configuration and relative rotation rate of the clamps can be

adjusted to generate, in principle, a shearfree flow field (as described by eq. (4.20)) with

any selected value of 0 • b • 1. One should note that both the homogeneous stretching

method and both versions of Meissner's apparatus are only suitable for high viscosity

materials; e.g., polymer melts.

Modifications of the homogeneous stretching technique have been used to obtain elon-

gational viscosity data on polymer solutions with viscosities which are high, but much

lower than for melts. In particular, the constant viscosity Boger fluids, described in § 1.1,

can be used. As for the case of polymer melts, high Hencky strains must be achieved in

order to observe the steady-state elongational viscosity of a polymer solution; this require-

ment complicates the development of devices which also provide well-characterized data.

In Chapter 6, the Hencky strain required to attain the steady-state elongational response

for the test fluid used for experiments of this thesis is estimated to be at least E - 4.4 and

probably considerably greater. In the experiments of Tirtaatmadja & Sridhar (1995) and

Sridhar et al. (1991), discussed in Chapter 2, a column of fluid was placed between two

plates and the plates separated so that the distance exponentially increased with time, gen-

erating an elongational flow with nominally uniform e. The normal force exerted on the

plates was measured and an elongational viscosity determined. The experimental results

on a polyisobutylene based Boger fluid seemed to indicate that the steady-state elonga-

tional viscosity was attained. However, experimental measurements and numerical simula-

tions conducted by Spiegelberg, Ables & McKinley (1996), described in Chapter 2, have

indicated nonidealities associated with the experimental configuration used by Tirtaatm-

adja, Sridhar et al. which may have introduced substantial error into the measurements.

An important nonideality concerns "end effects" in the flow region adjacent to the end

plates. Spiegelberg & McKinley are currently developing a device in which control over

the end plate boundary conditions will result in ideal uniaxial elongational flow being

more closely approached. Their device is designed for use in a microgravity environment

(aboard the Space Shuttle) which will allow data to be acquired for a broader range of

strain rates and fluids of lower viscosity. One should note that the behavior of capillary

"bridges" of polymer solutions between separating end plates has also been studied by

Berg, Kriger & Rath (1994). An experimental design incorporating end plates for which
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the radius contracted during stretching was used, more closely simulating an ideal bound-

ary condition. Several of the experiments were conducted in a free-fall tower which

allowed simulation of a local microgravity environment. The primary limitation of the

experiment was the low Hencky strains (F = 1.4) achieved during the duration of free-fall;

such low strains are ineffective in stretching the high MW polymer solute molecules and

stimulating a nonlinear viscoelastic response.

The methods described above require that the fluid be capable of forming a filament

("spinnable") and retain this form over the time scale of the experiment. Only a part of the

surface of the fluid sample had a boundary condition imposed on it (e.g. the end plates in

the capillary stretching devices) the remaining surface was "free" (e.g. the fluid/air bound-

ary of the filament). In contrast, other methods impose a boundary condition over nearly

the entire surface of the fluid sample. Consequently, the fluid does not have to be "spinna-

ble". For example, in the lubricated converging flow rheometer (shown in Figure 4.4.c),

the viscoelastic material is confined to travel between the walls of a hyperbolically shaped

die. The approximation to a homogeneous, shearfree rate-of-strain field is dependent on

the ability of a low viscosity Newtonian lubricant to create a perfect slip boundary condi-

tion between the sample material and the confining walls. The need for a lubricant with

viscosity sufficiently low to approximate a slip boundary condition, yet sufficiently high

so that it will form a stable intermediate layer between the fluid under investigation and

the die walls presents a considerable challenge, especially since this process must be

undertaken for each test fluid studied. The requirements for the test fluid and the lubricant

to both be stable under the conditions of temperature and stress in the experiment and

chemically non-interacting impose additional constraints (Jones et al., 1987). Moreover,

the total Hencky strain, E, is limited by the physical dimensions of the device.

A related method is lubricated squeezing flow (Soskey and Winter, 1985) (Fig. 4.4d).

Two opposed plates are lubricated with a low viscosity fluid and the fluid sample placed

between them. The plates are then driven together at a constant negative strain rate. As in

the case of the lubricated die device, the approximation to biaxial flow is dependent upon

the ability of the lubricant to provide a perfect-slip boundary under the operating condi-

tions of the experiment. In practice, the total achievable Hencky strain (e), where in this



case E < 0, is ultimately limited by the failure of the lubricant to provide the required

boundary condition.

Measurement of Shearfree Material Properties in Non-Homogeneous Flows

Certain techniques use non-homogeneous flows to characterize the elongational mate-

rial properties of a test fluid; several of these methods allow a wider range of test fluids to

be used than the homogeneous methods described above. However, most of the techniques

determine an "apparent elongational viscosity"

-Nchar
7lapp - . (4.30)

Echar

Nchar is a characteristic normal stress which often represents an average over a range of

streamlines with different strain history. The characteristic strain rate, Echar, is obtained

from measurement of global parameters such as volumetric flow rate and mean cross-sec-

tional area; the local e may vary considerably throughout the flow. Consequently, the

1lapp is in general not a well-defined quantity: quantitative comparison with results

obtained in other experiments and evaluation of constitutive models is not possible.

Suitable for use with fluids of moderate viscosity are the spin-line rheometer and

open-siphon techniques (Jones et al., 1987; Laun and Schuch, 1989). In the spin-line rhe-

ometer (shown in Fig. 4.5a), a reservoir contains the material sample. The material is then

forced by pressure through a die into the form of a filament and subsequently drawn by

and collected on a take-up reel, or in a suction device. An "apparent elongational viscos-

ity" is determined from measurement of the force exerted between the die and the reel and

a characteristic elongational strain rate of the filament (Oliver, 1994; Gupta et al., 1986;

Sridhar et al., 1986). The spin-line rheometer bears some resemblance to the capillary

stretching techniques discussed above. However, the boundary conditions at the die exit

and at the take-up reel result in variation of the local strain rate, e, along the length of the

fiber; i.e. a homogeneous flow is not well approximated. Moreover, the flow in the die and

the reservoir is complex, with the rate-of-strain tensor having both shear and elongational

components, and is not well characterized. Since the fluid has memory, these upstream
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Figure 4.5 Schematic diagrams of arrangements for measuring elongational material

properties in non-homogeneous shearfree flows: (a) spin-line rheometer; (b) open-siphon

technique; (c) opposed-jet apparatus. (After (Quinzani, 1991)).



flow conditions continue to be manifested in the stress field of the filament after it leaves

the die (Matthys and Khatami, 1988). A related method is the open-siphon technique

(Moan and Mageur, 1988) (cf. Fig. 4.5b). Fluid is pulled by suction from a reservoir in

which the fluid is nearly stagnant, through the surrounding air, and into a tube; the tensile

force exerted on the tube is measured. The flow is somewhat better characterized than that

of the spin-line rheometer, since the fluid in the reservoir is nominally unstressed and at

equilibrium. However, the flow is not homogeneous: the strain rate, £, varies along the

axis of the fluid column.

The opposed-jet apparatus, shown schematically in Fig. 4.5c approximates a uniaxial

elongational flow field by siphoning the test fluid from a reservoir into a pair of opposed

tubes or "jets"; conversely, a biaxial flow can be approximated by expelling fluid from the

jets (Fuller et al., 1987). This experimental configuration has been realized in a commer-

cial instrument, the RFX device (Rheometrics). Using the assumption that a shearfree flow

is well approximated in conjunction with the known volumetric flow rate a characteristic

strain rate is calculated; the force required to maintain a constant gap between the jets is

measured. The characteristic strain rate and separation force are then used to determine an

"apparent elongational viscosity". However, the non-ideal boundary conditions imposed

by the nozzles and the surrounding bath of stagnant fluid have non-trivial effects on the

measurements; the "apparent elongational viscosity" may differ considerably from the

actual steady state value, ir. These non-ideal effects have been clarified by an investiga-

tion of Newtonian flow in an opposed jet apparatus with the separation between the noz-

zles approximately equal to the inner diameter of the nozzles, 2r d (Schunk et al., 1990).

The extension rate in the axial direction, avz/az, was found to fall with radial distance; at

the midplane between the nozzles, z = 0, at a distance rd from the centerline, the strain rate

drops to a value as low as 50% of the centerline rate. Since the flow is not bounded by a

free surface, but rather surrounded by a bath of stagnant fluid, the isotropic pressure will

not necessarily cancel the radial normal deviatoric stress at the midplane, p + trr -= Itrr • 0,

resulting in a non-ideal contribution to the force imposed on the nozzles. In addition, even

if the effects of non-uniformity in the elongational strain rate and non-zero total radial nor-

mal stress at the midplane could be neglected, the total Hencky strain experienced by a

given fluid element would still vary across the streamlines. Near the axis of the flow the
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total Hencky strain approaches infinity, near the periphery of the flow which enters the jets

the Hencky strain may be only order one or less. As mentioned above, the attainment of

the steady-state elongational viscosity typically requires Hencky strains of order e > 4.

Since the separation force is measured across an area of the flow which includes stream-

lines with a broad distribution of Hencky strains, quantitative comparison of the "apparent

elongational viscosity" with predictions of constitutive models is not possible. As dis-

cussed in the next Section, quantitative elongational material property information can be

obtained in certain non-homogeneous flows, but the flow fields must be well character-

ized.

Application of Rheo-optical Techniques to Measurement of Shearfree Material Proper-
ties in Non-Homogeneous Flows

The experimental techniques described above, use mechanical measurements to obtain

information on the normal stress of the fluid, which is subsequently used in the calculation

of an elongational viscosity. Since the stress field is a mechanical entity, approaches which

measure the normal stress by mechanical means are ostensibly "direct" and straightfor-

ward. However, use of mechanical techniques most often employs measurement of a total

force over a finite area. In the case of the opposed-jet apparatus, streamlines with different

strain histories contribute to this average force. In the case of the spin-line rheometer, the

strain rate varies along the filament; consequently, even if the streamlines have similar

strain history the detailed nature of this history is unknown. As discussed above, the

"apparent elongational viscosity" is of limited utility.

However, if the strain history and the stress are measured in a pointwise manner along

the individual streamlines, constitutive models can be quantitatively evaluated. The "tran-

sient elongational viscosity" profile which is measured will not necessarily have been

defined above as a standard material function, but can be of comparable utility in evaluat-

ing the accuracy of a constitutive equation. Rheo-optical methods allow the requisite

quantitative and pointwise stress and velocity field information to be obtained. Specific

details on the flow induced birefringence (FIB) technique, used to obtain stress-field infor-

mation, and the laser Doppler velocimetry (LDV) technique, used to obtain velocity field

information, have been given in Chapter 3 and are not reiterated here. Rather, background



on the application of rheo-optical techniques to several experimental configurations is pro-

vided in this Section.

FIB has been used in an opposed jet apparatus, similar to that described above, in order

to identify transitions in the configuration of the polymer molecules between the coiled

and the stretched state and the nature of entanglements between the macromolecules

(Mtiller, 1988). In the investigation, semi-quantitative data were obtained; consequently,

the utility of the data in assessing the accuracy of constitutive models was limited. How-

ever, the FIB measurement allowed conclusions to be drawn as to the dependence of the

configurational state of polymers in elongational flows of different strain rates; compara-

ble information on the configurational state could not have been obtained via mechanical

measurements.

Studies of the configurational state of polymers in an elongational flow were also con-

ducted by using FIB measurement in conjunction with a two- and a four-roll mill appara-

tus (Ng and Leal, 1993). The device consisted of two or four cylinders immerged in a

reservoir of the test fluid, as illustrated in Fig. 4.6a. The relative rotation rate of the rollers

could be adjusted to generate a range of flow fields at the center of the device, ranging

from shear flows with little or no elongational component to shearfree flows; intermediate,

complex flows could also be produced. Since the strain history of individual streamlines in

the flow was not characterized, the experimental data could not be used for quantitative

assessment of the accuracy of constitutive models. However, useful information on the

effect of solute concentration on polymer chain extension in an elongational flow was

obtained.

Pointwise stress and velocity field measurements in the flow through the planar con-

traction have provided quantitative information on elongational material properties of

polymer solutions (Fig. 4.6b). The flow on the centerline is shearfree, specifically it is a

planar elongational flow. The velocity and stress field are measured at each point on the

centerline with the LDV and FIB techniques respectively. The flow is non-homogeneous,

and transient from a Lagrangian perspective; however, constitutive models can be quanti-

tatively evaluated. Specifically, the centerline velocity profile can be used in conjunction

with a particular constitutive model to predict the stress profile; this predicted stress pro-
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(a) (b)

Figure 4.6 Schematic diagrams of arrangements for measuring elongational material

properties in nonhomogeneous shearfree flows via application of rheo-optical techniques:

(a) four-roll mill; (b) planar contraction.
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file can then be compared with the measured stress profile in order to evaluate the accu-

racy of the model.

Galante and Frattini used polydimethylsiloxane melts in their investigation of flow

through a planar contraction with an upstream to downstream half-height contraction ratio

of 4 (Galante, 1991; Galante and Frattini, 1993). The experiment was carefully con-

ducted; the effect of non-idealities on the FIB measurement such as those introduced by

the walls bounding the "neutral" direction of the flow were assessed. However, the center-

line velocity profile was not directly measured, an "engineering approximation" was used.

Consequently, it was difficult to compare the measured stress profile with the prediction of

a constitutive equation. A centerline Hencky strain of only E = 1.4 was achieved, and the

shear-rate-dependent Weissenberg number defined in terms of the downstream parameters

was less than unity. Therefore, the potential of the experiment to probe the nonlinear

response of the test fluid was limited. Necessary conditions for observation of a nonlinear

viscoelastic response are considered in detail in Chapter 6.

Quinzani et al. (1991, 1994, 1995) investigated the flow of a shear-thinning viscoelas-

tic polymer solution of PIB in tetradecane through a 4:1 planar contraction. A Boger fluid

was not used for the study since the available ternary polymer solution of PIB in PB and

tetradecane induced light beam divergence when subjected to shearing flow, as described

in §4.1.3. Because of the shear-thinning nature of the test fluid used, the highest value of

the downstream, shear-rate-dependent Weissenberg number attained was only WiDn =

0.77. As in the studies of Galante and Frattini, the low Weissenberg number and the low

centerline Hencky strain limited the potential of the experiment to stimulate a nonlinear

viscoelastic response.

Despite the limitations of previous investigations, rheo-optical measurement of stress

and velocity fields on the centerline of planar contraction flow is an experimental tech-

nique which allows the determination of a well-defined "transient elongational viscosity"

profile. In the study conducted for this thesis, the method was extended to higher center-
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line Hencky strains and a test fluid was used which allowed higher Weissenberg numbers

to be attained; the investigation is presented in Chapter 6.

4.2.3 Correlation of Material Functions with Temperature

Polymeric materials exhibit dependence of the material functions on temperature. For

thermo-rheologically simple fluids, such as the PIB in PB test fluid used for this thesis, a

method of reduced variables, time-temperature superposition, allows material function

data obtained at a given temperature to be shifted to values observed at a different temper-

ature. In particular, data for a given material function is often obtained over a range of

temperatures and then shifted to a single reference temperature, To, to create a master

curve (Ferry, 1980; Bird et al., 1987a). Specifically, one may note in Table 4.2 how several

common steady and dynamic material functions are shifted

Table 4.2 Time-temperature shift relations for frequency (w), strain rate

(y), and several material functions.

The shift factor is defined as

- o0 (T)ToPo rlo(T)
aT =- (T0 )Tp rio(T •) (4.31)

r1o is the zero-shear-rate viscosity at the indicated temperature. T is the absolute test tem-

perature, and To the absolute reference temperature; p is the density at T, and po is the

density at To . The simplification in eq. (4.31) is valid for the restricted range of tempera-

tures used in the experiments conducted for this thesis, 288 < T 5 308 [K].

The time-temperature superposition principle is also valid for quantities other than

those listed in Table 1.1; e.g., t (time, used for transient material functions) or ri. In gen-
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eral, one shifts a rheological quantity, X, which includes the dimension of time, X = X(tm)

as

X0(t m) = aT X(t m ) (4.32)

where the zero subscript denotes the value of the quantity at the reference temperature, To.

In certain cases time-temperature superposition can be used to extend the range of

shear rates or frequencies over which measurements may be conducted for a given instru-

ment. For example, the RMS-800 rheometer used for the shear flow rheological tests

described in §4.4 can perform oscillatory measurements over the frequency range 10-3 < 0

< 100 [s-l]. A shift factor of aT = 10 would effectively shift this range upward, allowing

material function data to be obtained for frequencies as great as 1000 [s-l]. Conversely, a

shift factor of aT = 0.1 would shift the range downward. Running the test for a frequency

of 0 = 10-2 [s-1] at temperature T would yield information on the linear viscoelastic

response at temperature To for o = 10-3 [s-1]. Such a shift is useful since data acquisition

at low frequencies is extremely time consuming. For the investigations presented in this

thesis, time-temperature superposition was primarily used to shift all experimental data to

a single reference temperature, To = 25 [oC], in order to facilitate the comparison of data

obtained in different test runs. Shifting to the reference temperature was especially useful

for the experiments conducted with the flow cell, in which the temperature was stable over

the course of the trial, but could not be set by the experimenter.

4.3 Constitutive Models

The material functions described in §4.2 characterize the response of a viscoelastic

fluid to a viscometric flow. However, use of this information to predict the behavior of the

fluid in a complex flow, for which the rate-of-strain tensor has both shear and elongational

components, requires a constitutive model. The constitutive equation relates the stress in a

viscoelastic flow at a specific point in time and space to the strain history of the fluid ele-

ment at that point. Constitutive models are classified as linear or nonlinear; a subset of the

nonlinear class are the quasi-linear models in which the stress depends linearly on the his-
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tory of a strain tensor. The generalized linear Maxwell model (described in §4.3.1) can be

used to determine the linear viscoelastic relaxation spectrum of a fluid. Whereas a linear

Maxwell model only applies to flows with infinitesimal strains, the convected Maxwell

model (§4.3.2) can be applied to flows with finite strains; however, the convected Maxwell

model cannot describe shear thinning of the viscometric functions. The Giesekus model

(§4.3.3) can describe this nonlinear shear-thinning behavior. The linear Maxwell and the

nonlinear Giesekus models are used in Chapter 6 to characterize the response of the test

fluid to a transient elongational flow as linear or nonlinear; the models allow conclusions

to be drawn about the nature of the flow required to excite a nonlinear response. To facili-

tate use of the models in Chapter 6, their physical basis is briefly described here; classes of

flows for which the models may be appropriately applied and limitations to their applica-

tion are presented. The monographs of Bird, Armstrong & Hassager (1987) and Bird et al.

(1987b) were the primary reference sources used for §4.3.

4.3.1 Multimode Formulation of Models

In order to represent accurately the relaxation spectrum of the fluid the multimode for-

mulation of the models was used

Nmodes

T(t) = rk(t) + s (4.33)

k= 1

where t represents the stress tensor. The unsubscripted variable represents the total

"observable" stress whereas the subscript on a given variable indicates that the quantity is

associated with the kth mode of the relaxation spectrum. Note that the total stress is a lin-

ear superposition of the individual modes (Bird et al., 1987a).

Since the PB solvent exhibits a Newtonian response on the time scale and for the stress

levels attained in these experiments, it is useful to include the contribution of a Newtonian



solvent to the total stress in the models. The constitutive equation for the mode associated

with a Newtonian solvent of viscosity rls is written as

Ts = -isY (4.34)

This solvent mode is then included in the summation over the modes, eq. 4.29, to yield the

total stress.

4.3.2 Linear Maxwell Model

A specialization of the general linear viscoelastic fluid is the generalized linear Max-

well model for which the kth mode can be written as

Tk + kt = -akY (4.35)

where 'Tk represents the stress tensor, y, the strain-rate tensor, Xk, the relaxation time, Ilk,

the viscosity, and t, the time. The Maxwell model can be physically viewed by analogy to

a mechanical system with a "spring" and "dashpot" in series. The "spring", with modulus

Xkrlk, represents the elastic response of the fluid; a consequence of the entropic forces

which induce polymer chains to return to a coiled configuration. The "dashpot", with vis-

cosity rlk, represents the viscous nature of the fluid; a portion of the kinetic energy of the

molecules comprising the fluid is converted to heat. These elastic and viscous characteris-

tics which are simultaneously present result in the fluid having a "fading memory" (Ferry,

1980). Linear viscoelastic models are appropriate for flows in which the fluid experiences

infinitesimally small strains. Additionally, linear viscoelastic models may be applied to

flows which are sufficiently slow that over a period of a relaxation time only an infinitesi-
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mal strain is experienced by a fluid element. These restrictions arise from the fact that lin-

ear viscoelastic models are not rheologically invariant (Oldroyd, 1984). 3

4.3.3 Convected Maxwell: a Quasilinear Model

The convected Maxwell constitutive equation is admissible; i.e. rheologically invari-

ant. Consequently, it can be used to model viscoelastic flows in which the fluid element

"remembers" a finite amount of strain. In contrast to the linear Maxwell model described

above, the quasilinearity 4 of the convected Maxwell model results in its predicting finite

normal stresses in steady shear flow; such normal stresses are observed in viscoelastic

shear flows of typical polymer solutions and melts. The convected Maxwell model can be

written as

rk + Xkrk(1) = - 1kY (4.36)

The equation superficially resembles that for the linear Maxwell model; however, the par-

tial time derivative of stress has been replaced by a convected time derivative of stress,

D
rk(1) = DJ ,k - ((VV)t Tk + k (VV)} (4.37)

where D/Dt represents the material derivative and Vv the velocity gradient tensor. One

should note that although the convected Maxwell model is admissible, and its simplicity

favors its application in viscoelastic flow simulations, the model has several limitations

which prevent it from realistically modeling certain viscoelastic flow systems. For exam-

ple, the model cannot predict viscometric material functions, rl and P1, which exhibit

shear-thinning behavior. The convected Maxwell model also predicts physically unrealis-

3. A constitutive model which is rheologically invariant must be "(a) form invariant under a change
of coordinate system, (b) value invariant under a change of translational or rotational motion of the
fluid element as it goes through space, and (c) value invariant under a change of rheological history
of neighboring fluid elements ((Bird et al., 1987a))." Note that while eq. (4.35) satisfies (a) and (c),
it does not satisfy (b).
4. The term "quasilinear" is used since the stress depends linearly on the history of a relative strain
tensor; this linear dependence is evident when the model is written in integral form. However, note
that the relative strain tensor exhibits nonlinear dependence on the displacement gradients (Bird et
al., 1987a).



tic values for the steady-state shearfree material functions at elevated strain rates. Specifi-

cally, for planar elongational flow the first elongational viscosity, 11 , is

4Tbo
1] 1 "(4.38)

(1 + 2Xh1E)(1 - 2kl)(0)

where E0 represents the strain rate; rl1 is undefined in the limit of X•1o = + 1/2. One may

note that, when a Newtonian solvent contribution to the viscosity is included in the sum-

mation over the modes (cf. eq. (4.32)) of the convected Maxwell equation, the resultant

model is termed "Convected Jeffreys" or "Oldroyd-B". Note that the Oldroyd-B model is

derivable from consideration of a "dumbbell" model. Specifically, one may represent the

polymer molecule as two beads, which interact hydrodynamically with the surrounding

Newtonian solvent, connected by a spring which obeys a linear or "Hookean" force law.

The individual "dumbbells" do not interact with each other: Oldroyd-B is a dilute solution

model (Bird et al., 1987a; Bird et al., 1987b). More detailed consideration of the response

of dumbbell models to an elongational flow is given in Chapter 6.

4.3.4 Giesekus: a Nonlinear Model

Another admissible nonlinear model is the Giesekus model (Giesekus, 1982b;

Giesekus, 1982a; Giesekus, 1983). In contrast with convected Maxwell, shear thinning of

the material functions ir and ' 1 can be predicted; the steady-state elongational viscosity is

bounded for all strain rates. The Giesekus model is based on the concept of including

anisotropic Brownian motion and hydrodynamic drag in the dumbbell model. Specifically,

when external forces are neglected, kinetic theory predicts that the equation of change for

the phase-space averaged dyadic product of the dumbbell vector, Q, is

1 -1 a-1 a(- I ]
2(QQ)(1) = kT(g •L  )Q :+ (4.39)

+ kT(5 - )-1 -1 -1 -1 F()Q + QF()
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where kT expresses the thermal energy of the system. The Kramers form for the stress ten-

sor is written as

Tp = n(QF (c)) + nkT(2( - 1) - 6) (4.40)

where 'p represents the contribution of the polymer to the deviatoric stress and n the num-

ber density of "dumbbells". As for the case of Oldroyd-B, the "connector force" term is

that for a Hookean spring, F(c) = HQ, where H represents the spring constant. The fol-

lowing empiricism is used for the anisotropic friction tensor,

= ; Tip (4.41)

where rip represents the zero-shear-rate contribution of the polymer to the viscosity,

C = 4HM1 the magnitude of the anisotropic friction tensor when the polymer molecule is

near its equilibrium configuration, and a the "mobility factor", which has a value in the

range 0 5 a ( 0.5. For the anisotropic Brownian motion tensor, the empiricism is

9-1 = 8 _- (4.42)
Sn21p 2nkTP (.2

The anisotropy of eqs. (4.41) and (4.42) make the Giesekus model suitable for represent-

ing concentrated polymer solutions and polymer melts. The representation of the motion

of an actual polymer chain by the Giesekus "dumbbell model" can be viewed as follows.

The anisotropic Brownian motion tensor reflects the confinement of the motion of a given

polymer chain within a "reptation tube" imposed by the neighboring chains. The anisotro-

pic friction tensor reflects the fact that the polymer chain can more easily move a given

distance in its mean direction of orientation, Q/IIQII, when the chain is extended (straight

"reptation tube") than when the chain is coiled (convoluted "reptation tube"). It must be

born in mind that eqs. (4.41) and (4.42) are empiricisms which must be fitted to experi-

mental data; these empiricisms are not derivable from detailed modeling of chain-chain

interactions. Equations (4.39) and (4.40), in conjunction with eqs. (4.41) and (4.42) are



then solved to represent the Giesekus model in terms of the stress and rate-of-strain ten-

sors. The model can be extended to a multimode formulation to represent a fluid with a

spectrum of relaxation times, although this multimode formulation cannot be described by

the "physically intuitive" picture given above. The kth mode of the multimode Giesekus

model is written as

k + kkk(1)-- k-{k k} = -k lkY (4.43)

Note that when ok = 0 for all the modes, the Giesekus model reduces to convected Max-

well. The texts of Bird et al. (1977a, 1977b) were drawn on for the above discussion; Bird

et al. (1987b) is especially useful in relating the macroscopic constitutive eq. (4.43) to

kinetic theory concepts. More detailed consideration of the Giesekus model in the context

of elongational flow is given in Chapter 6; e.g., the effect of the "mobility factor", a, on

the steady and the transient elongational response is described.

4.4 Test Fluid Shear Flow Rheology

In this Subsection the experimentally determined rheology of the 0.30 wt% PIB in PB

test fluid and the polybutene solvent are presented. In §4.4.1 the temperature dependence

of the material functions of the test fluid and the solvent is described. Section 4.4.2 pre-

sents the rheology of the polybutene solvent, which acts as a Newtonian fluid. Dynamic

material functions of the 0.30 wt% PIB in PB test fluid are presented in §4.4.3 and used to

fit the coefficients, Tik and Xk , comprising the linear viscoelastic spectrum. The shear

thinning parameters, ck, of the Giesekus model are fit with the steady shear material func-

tions for the test fluid given in §4.4.4. In §4.4.5 the transient material functions for the test

fluid are presented; this information provides a check on the models which were fit to the

dynamic and steady data in Sections 4.4.3 and 4.4.4.
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4.4.1 Temperature Dependence of Fluid Rheology

The temperature dependence of the material functions for the 0.30 wt% PIB in PB test

fluid was determined by measuring the dynamic viscosity of a fluid sample undergoing

oscillatory shear in a cone-and-plate configuration and sweeping the temperature over a

range from 15 to 35 [°C]. A Carri-Med CSL-500 controlled stress rheometer (TA Instru-

ments) was used because the temperature could be accurately ramped at a constant rate. A

semilog plot in Fig. 4.7 shows the measured dependence of the zero-frequency dynamic

viscosity, ri'0 , on the difference between the inverse of the absolute temperature and the

inverse reference temperature, T- - To . An Arrhenius expression (Bird et al., 1987a)

H 1 1
a = exp1( (4.44)aT  ex R• To

was accurately fit to the data, where aT = rl'0 (T)/ri'o(T0 ) and R = 8.314 [J mol-1 K-4 ];

the fit is indicated in the Figure by a solid line. The data and corresponding Arrhenius fit

for the pure PB solvent are also shown in Fig. 4.7. The "activation energy", AH, for the

0.30 wt% PIB in PB test fluid and for the solvent of pure PB is given in Table 4.3.

Table 4.3 "Activation energy", AH/R, of the 0.30 wt% PIB in PB test

fluid and the PB solvent.

The similarity of the activation energy of the 0.30 wt% PIB in PB solution to that of the

PB solvent is a consequence of the low concentration of the PIB solute. The 0.30 wt% PIB

in PB solution exhibits a sensitive dependence of the material properties on the tempera-

ture; a 1 [oC] change in temperature induces an 8% change in the viscosity within the tem-

perature range used in the investigations, 15 < T < 35 [oC]. All quantitative experimental

Fluid AH/R [K]

0.30 wt% PIB in PB 7.56 x 103

pure PB 7.59 x 103
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Figure 4.7 Temperature dependence of zero-shear-rate dynamic viscosity, 11'o: (0),

0.30 wt% PIB in PB test fluid; (A), PB solvent. Lines show the Arrhenius fit to the data.
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results presented in this Section have been time-temperature shifted to the reference tem-

perature, T = 25 ['C].

4.4.2 Rheology of the Polybutene Solvent

The rheology of the polybutene solvent was characterized in the RMS-800 mechanical

spectrometer. The dynamic viscosity, rl', is shown in Fig. 4.8a. No decreasing trend in r1'

with increasing frequency can be discerned up to 0 max = 100 [s-l]. Consequently, either

the instrument was insufficiently accurate or insufficiently high frequencies could be

attained to detect any elastic character in the fluid. More specifically, an upper bound on

the longest relaxation time of the fluid may be identified as

Longest < /max = 0.01 [s ] (4.45)

The straight line in Fig. 4.8a at fl's = ils = 79 [Pa s] indicates the solvent viscosity

obtained by fitting to the dynamic and the steady shear data.

Figure 4.8b shows the viscosity of the polybutene measured in steady-shear flow. The

viscosity has a constant value of rls = 79 [Pa s] up to a shear rate of 26 [s-']. At greater

shear rates a gradual decrease in the viscosity with shear rate is apparent; this was attrib-

uted to viscous heating. Calculations of the effect of viscous heating indicated that for y >

40 [s-l] the apparent viscosity would drop by more than 6% when the cone-and-plate fix-

ture was used with radius of R = 12.5 [mm] and angle of 00 = 0.1 [rad]. Up to at least y =

26 [s-1] the viscosity of the polybutene fluid was shear-rate independent.

4.4.3 Dynamic Properties of the Test Fluid: Fitting of the Linear Viscoelastic
Spectrum

The dynamic shear flow material functions, ir'(0) and (2T1"(w))/w, of the 0.30 wt%

polyisobutylene (PIB) in polybutene (PB) test fluid were measured in small-amplitude

oscillatory shear flow in a cone-and-plate configuration and are shown in Fig. 4.9. This

linear viscoelastic data, in conjunction with the steady data described in §4.4.4, were used

to fit a four-mode linear Maxwell model; the parameters rlk and Xk which define the

relaxation spectrum are given in Table 4.4. The fitting of the constants was done manually,
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Figure 4.8 (a) Dynamic viscosity (measured in small-amplitude oscillatory shear

flow) of the PB solvent. Line shows the fit to the data, il's = 79 [Pa s]. (b) Viscosity (mea-

sured in steady shear flow) of the PB solvent. Line shows the fit to the data, r11 = 79 [Pa

s]. Note the bars indicating the ±5% error at the right of the plots.
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Figure 4.9 Linear viscoelastic properties, 'q'(co) and 2q"(eo)/w, of the 0.30 wt% PIB

in PB test fluid. ( - ), fit of the four-mode linear Maxwell model to the data; (- - -),

individual spectral contributions, (2 ,r"/co)k, of the modes. Error bars are given near the

upper-left corner of the graph.



by adjusting parameters until the difference between

curves was minimized.

the predicted and experimental

Mode No. 1lk [Pa s] Xk [S]

1 8.0 20

2 7.4 4.8

3 9.5 1.1

4 6.5 0.12

Solvent 79 (< 0.01)

Table 4.4 Linear viscoelastic spectrum of the 0.30 wt% PIB in PB test fluid.

The individual contributions of the modes of the linear Maxwell fit to the total value of

2q"/o are also indicated by the dashed lines in Fig. 4.9. Each mode is dominant in a dif-

ferent region of the spectrum; a given mode starts to shear thin once a critical frequency is

exceeded, (0 k - 1/Xk . In the case of q9', a similar pattern can be observed for the modal

contributions, 1l'k, originating from the high molecular weight solute; however, these con-

tributions are not shown in Fig. 4.9 since the contribution of the non-frequency-thinning

solvent, rs1' = s, dominates over the other modes.

It is often found that the zero-frequency plateau of the material functions can be more

closely approached in a dynamic shear flow experiment that the zero-shear-rate plateau of

the material functions in a steady shear flow experiment. Consequently, dynamic measure-

ments are useful in obtaining information on the longest relaxation time of a fluid. Fur-

thermore, as discussed in §4.2, in the limit of zero frequency, the dynamic material

functions, when written as f1' and 2T1"/0o0 , are equivalent to the zero-shear-rate steady

properties 01o and Tlo (viscosity and first-normal-stress coefficient). The fit of the linear

Maxwell model to the data indicated that the zero-frequency limit for the dynamic viscos-

ity was il'o = 110 [Pa s]. In the case of the material function 2,r"/w, a gradual leveling

off was observed with decreasing frequency; however, the rheometer was not sufficiently
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sensitive for the zero-frequency plateau to be reached. The data did allow a lower bound

on the zero-frequency limit to be defined, 2T1"/0• > 130[Pa s2].

4.4.4 Steady Shear Rheology of the Test Fluid: Fitting of Nonlinear Giesekus Model

The steady shear flow material functions of the 0.30 wt% PIB in PB solution were

measured by using the rheometer in the cone-and-plate and in the parallel-plate configura-

tions. A plot of rl (y) and PI (y) is shown in Fig. 4.10. The linear Maxwell fit indicated a

decrease in viscosity from ilo = 110 [Pa s] to il = 90 [Pa s] at the maximum shear rate, for

which data was obtained, of 40 [s-l]. Because of this decrease of only 18% in the viscos-

ity over nearly three decades of shear rate the test fluid closely approximated an elastic,

constant viscosity non-shear-thinning Boger fluid (Boger, 1977/1978). The highest shear

rate for which material functions were measured was 40 [s-1]; at shear rates exceeding this

value viscous heating would act to decrease 1l by more than 9% and Y1 by more than 18%.

Substantial shear thinning is observed for the first-normal-stress coefficient, Y 1. The

zero-shear-rate limit for T 1 could not be reached because of the sensitivity limits of the

normal force transducer. However, at 0.25 [s-l], the lowest shear rate for which results

reproducible to within +25% could be obtained, the data indicated a lower bound on the

zero-shear-rate limit of 1I > 200 [Pa s2]. Note that the "flat" region of Yl (y) over the

range 0.6 • y•_ 2.5 [s-l] is the "knee" which has been noticed for a similar PIB based

Boger fluid (Quinzani et al., 1990); this flat region is not the zero-shear-rate plateau. The

nonlinear viscoelastic four-mode Giesekus model is capable of capturing the shear thin-

ning of the Tl and T, material functions; values of the OXk,which control the shear thinning
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behavior of the steady shear material functions, in addition to the coefficients r k and Xk

discussed in §4.4.3, are given in Table 4.5.

Mode No. rlk [Pa s] Xk [S] Ck

1 8.0 20 0.1

2 7.4 4.8 1.3x10 -4

3 9.5 1.1 1.3x10 -3

4 6.5 0.12 3x10 -3

Solvent 79 (< 0.01)

Table 4.5 Fitted parameters of the four-mode Giesekus model.

The ak were determined manually, by minimizing the difference between the predicted

viscometric functions, especially 'P1, and the experimental data.

4.4.5 Transient Shear Rheology of the Test Fluid

The transient shear flow material functions of the 0.30 wt% PIB in PB solution, used

as the test fluid in the investigations presented in Chapters 5 and 6, were measured with a

cone-and-plate fixture of 00 = 0.1 [rad] in the Rheometrics Mechanical Spectrometer

(RMS 800). The stress growth and the stress relaxation response of the viscosity and the

first normal stress coefficient were measured under shear rate conditions of Yo = 2.6 and

10 [s-l]. Data at •' = 0.65 [s-'] and lower shear rates were taken, but there was too much

scatter in the data for them to be useful in quantitatively evaluating the model predictions.

Above 10 [s-], onset of a viscoelastic instability for a cone-and-plate configuration of 00

= 0.1 [rad] prevented measurement of the transient shear rheology (McKinley et al.,

1995). Use of a parallel-plate configuration with small gap could have allowed higher

shear rates to be used without onset of the instability. However, determination of the tran-

sient material functions requires differentiation of the measured force and torque data; dif-

ferentiation acts to increase the severity of experimental noise. Decrease of the gap

distance in and of itself increases measurement noise, consequently, the quality of the data

which would be obtained would be too low to justify use of the parallel-plate configura-

tion. Both the test with Yo = 2.6 [s-1] and Yo = 10 [s- '] stimulated a nonlinear transient
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response. For a material to exhibit a linear response, one must have the shear-rate-depen-

dent Weissenberg number less than one. Note from Fig. 4.14 (discussed in §4.5.1) that

Wi(y = 2.2 [s ]) = 1, corresponding to a shear rate lower than those used for the tran-

sient tests.

Stress Growth Response

Plots of 1f (yo, t), time-temperature shifted to the reference temperature of To = 25

[oC], are presented in Fig. 4.11. Experimental data are shown as symbols; predictions of

the four-mode Giesekus model are shown by dashed lines. The Giesekus prediction for Yo

= 10 [s-l] shows a good quantitative match to the data. The data and model agree up to t -

5 [s], at which time both exhibit an overshoot. However, the quantitative magnitude of the

overshoot of the experimental data is greater. Despite this difference, the maximum frac-

tional deviation of the data and the model is only 3%. The model prediction for Yo = 2.6

[s-1] shows the same time-dependent response as the data; specifically, levelling out is

observed around t - 10 [s]. No overshoot is noted for the experimental data. The predic-

tion of the model lies approximately 5 [Pa s] below the experimental data for the times

shown; this 5% deviation lies within the instrument error. The linear viscoelastic envelope,

shown in Fig. 4.11 by a solid line, is the curve to which all viscoelastic fluids conform in

the limit o << yc, where Wi(yc) = 1. At finite shear rates; the curve representing the

response of a nonlinear viscoelastic fluid will fall below the linear viscoelastic curve

(within the envelope). Note that the torque transducer on the RMS-800 mechanical spec-

trometer can resolve torques as low as 0.05 [mN m] (better than the specified value of 0.2

[mN m]). For the specific cone-and-plate fixture used, this resolution corresponds to a

minimum value of the viscosity which may be accurately determined of 7rl = 4.6 [Pa s]

for the lower shear rate of •o = 2.6 [s-1], and T1+ = 1.2 [Pa s] for the higher shear rate of

[s- 1].

The stress growth response of the first normal stress coefficient, P (Yo, t), is shown in

Fig. 4.12. For a shear rate of Yo = 2.6 [s-l], the multimode Giesekus model quantitatively

predicted the response for all times. In the case of the higher shear rate, Yo = 10 [s-l], a

quantitative match between the model prediction and the data was observed up to a time of

t - 4 [s]. The prediction of the model is then found to lie below the experimental data val-
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Figure 4.11 Stress growth function rl+(t, Yo) of the 0.30 wt% PIB in PB test fluid.

Experimental data: (+), yo = 2.6 [s-]; (x), yo = 10 [s-l]. Predictions of four-mode

Giesekus model: ( ...... ), o = 2.6 [s-]; ( ), =o = 10 [s-']. ( ), prediction of four-

mode linear Maxwell model. An error bar is given at the left of the graph.
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Figure 4.12 Stress growth function P (t, yo) of the 0.30 wt% PIB in PB test fluid.

Experimental data: (+), yo = 2.6 [s-l]; (x), yo = 10 [s-i]. Predictions of four-mode

Giesekus model: ( -- - ), Yo = 2.6 [s-]; (- -), Yo = 10 [s-l]. Error bars are given at the

right of the plots.
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ues. Both the model and the experimental data exhibit an overshoot; as for the case of the

11+ function, the overshoot exhibited by the experimental data is greater than that of the

model. The normal force transducer on the RMS-800 can resolve forces as low as 0.02

[N]. For the cone and plate fixture used, this corresponds to the following values of the

first normal stress coefficient which can accurately be measured: YPl = 12 [Pa s2] for the

lower shear rate of y = 2.6 [s-1] and \'P = 0.8 [Pa s2] for the higher shear rate of

y = 10 [s-l]. These limiting values are indicated on Fig. 4.12.

Stress Relaxation Response

The stress relaxation response of the viscosity is shown in Fig. 4.13. For the case of a

shear rate of Yo = 2.6 [s-1], a good match between the experimental data and the prediction

of the multimode Giesekus model is observed for the range 0.2 [s] < t < 3.5 [s]; the frac-

tional error between the model and the data is of order 20%. For the shear rate yo = 10 [s-

1], the model quantitatively predicts the experimentally observed response for all times t >

1 [s]. The minimum values of 1- which can be accurately measured, associated with the

limited resolution of the transducer, are indicated in Fig. 4.13. For the case of the test per-

formed at the lower shear rate of y = 2.6 [s-l], the limited resolution explains the increas-

ing discrepancy with time between predicted and experimentally measured values for t >

3.5 [s].

The dynamic and steady shear measurements of §4.1.4 have been used to fit the

parameters of the linear Maxwell and nonlinear Giesekus models. The accuracy of these

fits was confirmed by comparing the experimental data with model predictions of the tran-

sient response. For the 71+ material function, good agreement within the instrument error

of ±5% was observed. For the case of T+7, the maximum error was greater, ±25%; this

error was larger than expected. For r-, the error was as great as +20%, larger than

expected. However, the predicted and experimental data exhibit the same exponential-like

decay with time. In summary, the dynamic, steady, and transient shear measurements form

a set of complimentary techniques for determining the rheological characteristics of the

test fluid in shear flow. The experimental measurements and predictions of the Giesekus

model for the transient material functions did not quantitatively match (within the

expected error of the measurement) in all cases. Nevertheless, the trends were the same
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Figure 4.13 Stress relaxation function rl(t, yo) of the 0.30 wt% PIB in PB test fluid.

Experimental data: (+), yo = 2.6 [s-l]; (x), yo = 10 [s-l]. Predictions of four-mode

Giesekus model: ( - -- -. ), o = 2.6 [s-l]; (- - ), Yo = 10 [s-]. ( - ), prediction of four-

mode linear Maxwell model. An error bar is given at the right of the graph.
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and the transient tests corroborated the Giesekus model which was fit to the dynamic and

shear rheological data.

4.5 Dimensionless Flow Parameters

The Weissenberg number and the Reynolds number are used throughout this thesis to

parameterize the effect of nonlinear viscoelasticity and the inertia, respectively, on the

flow field (i.e. the stress and velocity fields). The appropriate characteristic shear rate,

velocity, and geometric parameters used in the calculation of these dimensionless parame-

ters depend on the viscoelastic flow phenomenon under consideration; their selection will

be discussed in Chapters 5 and 6.

4.5.1 Relaxation Time and the Weissenberg Number

Viscoelastic fluids are distinguished by the fact that a given fluid element has memory

of its past deformation history. A characteristic relaxation time, which represents the dura-

tion required for a fluid element to "forget" its previous strain history in a flow may be

defined. A spectrum of relaxation times (shown in Table 4.5) was fitted to the material

functions of the fluid in §4.4. Use of the longest relaxation time, X1 , is appropriate for

flows with low characteristic shear rates, YLow, such that for the shorter relaxation times

associated with the other modes one obtains (Xk > )y << 1 . However, because of the shear-

thinning nature of the fluid, use of the longest relaxation time will over-predict the charac-

teristic relaxation time for elevated flow rates. Consequently, a shear-rate-dependent relax-

ation time, X(y), (Bird et al., 1987a) is defined as

T(y) M (4.46)

The Weissenberg number, introduced in Chapter 1, is used throughout this thesis to

parameterize the influence of nonlinear viscoelastic effects on the flow field. However,



because of the shear-thinning nature of the fluid, accurate representation of these nonlin-

ear effects requires the definition of a shear-rate dependent Weissenberg number

Wi(y) - (y) (y) (4.47)

where X(y) is defined in eq. (4.46).

A plot of Wi(y) for the 0.30 wt% polyisobutylene (PIB) in polybutene (PB) test fluid

is given in Fig. 4.14. To maximize the utility of the experimental data reported in this the-

sis for comparison with future numerical simulations, the predictions of TPl (y) and r (y)

from the fitted Giesekus model, with parameters given in Table 4.5, are used in eq. (4.46);

as described above, eq. (4.46) is used in the definition of eq. (4.47). Table 4.5 showed that

relaxation modes with time scales as great as 20 [s] were fit to the shear rheology informa-

tion; reproducible dynamic data were obtained for frequencies as low as 0.1 [s-1]. As

stated in §4.4.4, the steady material functions were accurately measured over the range of

shear rates from 0.25 to 40 [s-l]. The dynamic measurement shown in Fig. 4.9 indicated

that although the slope of the 2r9"/o function was found to decrease for decreasing o, the

zero-shear-rate limit, lim 2Tr"/0o = 10o, was not attained. In consequence, the plot of

Wi(y) in Fig. 4.14 is corroborated by experimental viscometric material function data for

72Ž 0.25 [s-l]. However, for shear rates y*< 0.25 [s-1] the Wi(y) is an extrapolated predic-

tion of the fitted Giesekus model. 5

4.5.2 Reynolds Number

The Reynolds number, Re, describes the influence of the fluid inertia on the flow field.

The use of the Reynolds number in the analysis of fluid mechanical problems is discussed

in depth in a number of texts (Lamb, 1945; Bird et al., 1960; Batchelor, 1967); the defini-

tion used throughout this thesis is

Re_ 2pL(v)Re (4.48)

5. Note further that for the calculation of Wi < 0.044, which corresponds to a shear rate of
y< 0.025 [s-l], the relaxation time used in eq. (4.47) is held fixed at X = 1.74 [s].
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Figure 4.14 Weissenberg number, Wi(y) = h l ( / )Y, as a function of shear rate for the

0.30 wt% PIB in PB test fluid. An error bar which applies to the part of the curve with

Ž2 0.25 [s-1] is given at the right of the graph.
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The density of the fluid is represented by p, the fluid viscosity is indicated as rl, a charac-

teristic velocity is given by (v) , and a characteristic length is denoted by L.

Although a Boger fluid was used for the investigations presented in this thesis, shear-

thinning fluids have been used in previous studies to which comparison is made in Chapter

5. To obtain an upper bound on the importance of inertia in flow of a shear-thinning fluid,

the Reynolds number used throughout this thesis was defined in terms of downstream

parameters of the contraction. The average velocity in the downstream slit is applied,

(v) = (vz)Dn, the mean shear rate in the downstream slit is used, y = (K)Dn, and the

downstream slit half-height is employed, L = h, to yield the definition

2ph(vz)Dn

ReDn = (4.49)
n l(()Dn)

The maximum value of the Reynolds number for a test run in any investigation performed

for this thesis was ReDn(y) = 7x10 -4 , so that inertial effects were negligible in all of the

experiments.
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Chapter 5

Viscoelastic Flow Transitions in Abrupt
Planar Contractions

Literature pertaining to the experimental characterization of viscoelastic flow transi-

tions observed in viscometric and in complex flows has been discussed in Chapter 2. The

unifying concept of streamline curvature and streamwise stress acting as the mechanism

driving a class of viscoelastic flow transitions was presented. In particular, a "viscoelastic

G6rtler" scaling based on this concept was presented; the validity of this scaling has been

demonstrated in its application to viscometric and to complex flows. Studies of viscoelas-

tic flow transitions in planar contractions have been conducted; however, these prior inves-

tigations were limited in several respects. The shear rheology of the test fluid was often

incompletely characterized, inertia was a significant factor in determination of the flow

field, and only qualitative velocity-field information was obtained. In consequence, the

utility of the studies in evaluating the "viscoelastic G5rtler" scaling or serving as "bench-

marks" for the assessment of numerical flow simulations was limited. Quantitative infor-

mation on the structure of viscoelastic flow transitions in planar contraction flow is needed

to complement analogous work which has been conducted for axisymmetric contraction

flow (McKinley et al., 1991).

In §5.2 of this Chapter, characterization of the spatiotemporal structure of viscoelastic

flow transitions occurring in the 2:1, 8:1, and 32:1 planar contraction geometries is pre-

sented. Specifically, the light sheet visualization technique is used to develop a model of

the velocity field structure. Laser Doppler velocimetry (LDV) is used to quantitatively

characterize the critical Weissenberg number associated with onset of the instability; a

detailed description of the experimental apparatus and measurement techniques is pro-

vided in Chapter 3. Wavelength and time scales associated with the velocity field after

onset of the instability are measured with LDV; two-dimensional rearrangement of the

velocity field preceding instability onset is identified. The data are interpreted in §5.3.

Characteristic dimensions of the velocity field after flow transition are related to geometri-

cal parameters in the flow. The validity of the "viscoelastic Gortler" scaling for the case of
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flow transition in the planar contraction is assessed by representing the experimental data

in the form of a transition map in §5.3.1. In the summary of §5.4, the set of quantitative

information is used to compare and contrast the spatiotemporal structure of the instability

observed in planar contraction flow with that of instabilities which have been identified in

other geometries. Future research to investigate questions raised by and develop concepts

presented in this study is suggested in §5.5.

5.1 Flow Parameters

The Weissenberg number (Wi) is used to characterize the importance of elastic effects

in determining stress and velocity fields in a flow; a general definition is given in eq. (1.2)

of Chapter 1. To represent accurately the effect of elasticity on the flow field, a relaxation

time is used which reflects the shear thinning of T 1 at elevated shear rates. The mean

relaxation time at a given shear rate is defined in this Chapter as

4() -(5.1)

The shear rheology of the test fluid has been described in Chapter 4; a plot of Wi as a func-

tion of shear rate is given in Fig. 4.15.

One should note that a single parameter, Wi, will not necessarily accurately describe

the importance of elasticity in all regions when the velocity gradient tensor varies through-

out the flow, as in the case of the planar contraction. In general, a characteristic shear rate

is selected so that global transitions in the flow field associated with elastic phenomena

correspond with Wi - 0(1). However, in flow regions with shear rates above the selected

characteristic value, local elastically induced flow phenomena may occur at Weissenberg

number much less than one.

Throughout this chapter, a Weissenberg number, WiUp, based on the upstream mean

shear rate, <y>Up = <vz>/H, is used. Several considerations motivate this choice. As dis-

cussed in Sections 5.2 and 5.3, the experimental results indicate that onset of the instabil-

ity is associated with flow conditions (shear rate and streamline curvature) upstream of the
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contraction plane. Furthermore, the critical WiUp for instability onset is observed to

decrease with increasing contraction ratio; this is consistent with the concept that stream-

line curvature plays a key role in onset of the instability.

The reader will note that in flows through geometries with large contraction ratios, H/

h 2 8, very low values of WiUp Crit << 1 are observed for instability onset. This supports

the concept that the WiUp parameter alone does not capture the physics controlling onset

of instability. A scaling which incorporates the interaction of elastic effects with stream-

line curvature has been described in Chapter 2 (McKinley et al., 1996) and is applied to

the planar contraction flow in §5.3. However, as discussed in Chapter 2, the theory is pres-

ently insufficiently developed to a priori predict all requisite scaling parameters; these

parameters are obtained by fitting to experimental data. By contrast, WiUp can be deter-

mined solely from information on flow conditions for a given test run and known shear

rheological data and is therefore used throughout this Chapter.

The highest value of mean upstream shear rate attained in these experiments was

<Y>Up = 4.9 [s-1] with an associated WiUp = 1.80, within the range for which steady shear

rheological data could be obtained, in the 2:1 contraction. The lowest value of upstream

shear rate for which an experimental result (taken in the 32:1 contraction) is reported was

<Y>Up = 0.0021 [s-1] which corresponds to WiUp = 0.004. The shear rheological data are

extrapolated to estimate WiUp at this low shear rate, as discussed in §4.5.1. As discussed at

the end of Chapter 2, the maximum value of the Reynolds number for a test run in this

study was ReDn = 7 x 10-4; inertial effects were negligible for all experiments performed.

5.2 Experimental Results

In this Section a qualitative overview of the spatio-temporal structure of flow states

observed in the viscoelastic planar contraction flow is first given. A schematic diagram

based on analysis of streaklines in the xz- and yz-planes over a range of flow rates is pre-

sented. Next, quantitative velocity field information, obtained via pointwise LDV mea-

surement, for several different regions of the flow, is discussed. Off-centerline scans in

space and time-series data acquired at a point are used to identify the WiUp at onset of

instability as well as the characteristic spatial wavenumbers and temporal frequencies
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associated with a given global flow state. The transitions of the global flow field are con-

trasted with transitions associated with the local flow near the walls bounding the x-

dimension at X = ±32. Velocity measurements on the centerplane are used to identify a

flow- rearrangement which may be related to, but has a structure distinct from, off-center-

line flow transitions.

5.2.1 Qualitative, Velocity-Field Visualization

Results from light sheet visualization of the flow at different flow rates are presented

in detail for the 8:1 contraction. The data are used to reconstruct the spatial and temporal

structure of the flow field after onset of the instability. Comparison with observations of

flow transitions in the 2:1 and 32:1 contractions is then made.

Flow Transitions in 8:1 Contraction

The evolution of the velocity field with increasing WiUp will now be discussed. The

Newtonian-like base flow for low WiUp is described first. The first observed non-Newto-

nian phenomenon is the two-dimensional flow rearrangement to diverging streamlines. At

a sufficiently high Wi transition to three-dimensional and steady flow is found; this is fol-

lowed by the onset of time-dependent flow.

Base Flow at Low Wiup

At Wiup < 0.112 the planar contraction flow of the test fluid resembled Newtonian

flow. Specifically, the yz-sheet streakline image (cf. Fig. 5.1a) for WiUp = 0.052 indicates

that the streamlines converged smoothly from the upstream channel into the downstream

duct and that the flow was steady and symmetric about the centerplane (0 = 0). The xz-

sheet images gave no indication of flow in the x-direction. The resolution of the streakline

images was insufficient to quantitatively determine the reattachment length of the outer

vortex (Lv) in the upstream channel. However, the streakline image is consistent with an

eddy in the outer corner with reattachment length of Lv/H = 0.34, which has been pre-

dicted numerically for Stokes flow (Re = 0) of a Newtonian fluid (Coates, 1992); note that
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Figure 5.1 Side view of viscoelastic flow through the abrupt 8:1 planar contraction:(a)

low flow rate with converging streamlines and Moffat vortex in outer corner, WiUp = 0.052

(number of superimposed frames (Nframes) = 15, time interval between frames (Atframes) =

0.33 [s]); (b) reduction in size of corner vortex and development of diverging streamlines,

Wiup = 0.138 (Nframes = 10, Atframes = 0.20 [s]); (c) asymmetric, three-dimensional struc-

ture at high flow rates, WiUp = 0.229 (Nframes = 4, Atframes = 0.12 [s]).

169

(b)



analytical treatment of Stokes flow around a corner with a 7r/2 [rad] included angle also

predicts the existence of eddies (Moffat, 1964).

Transition to Diverging Flow

For WiUp 2 0.138, an essential change in the spatial structure of the steady-state and

two-dimensional velocity field was noted. As shown in the yz-sheet view of Fig. 5. lb, the

streamlines appear symmetric about the centerplane; however, instead of uniformly con-

verging to the centerplane as the downstream slit is approached, the streamlines slightly

diverge in a region approximately one half-height, H, upstream of the contraction plane (ý

= 0). This corresponds to a deceleration of fluid in the upstream region, avz/az < 0. Fur-

thermore, the distance in the z-direction over which the streamlines exhibited the most

rapid continuous convergence from the upstream channel to the downstream slit moved

closer to the contraction plane; note in Fig. 5.1b that the streamlines appear "squashed"

toward the contraction plane when compared with the image in Fig. 5.1 la. Associated with

the streamline shift was an apparent decrease in the reattachment length of the outer cor-

ner vortex.

Transition to Three-Dimensional, Steady Flow

At WiUp = 0.124 ± 0.012, a transition occurred to steady, three-dimensional flow; the

qualitative structure of the velocity field is described here in detail. Above Wiu, = 0.171 +

0.035, the flow became fully time-dependent as well as three-dimensional; however, the

spatial structure of the flow at a given instant in time remained essentially unchanged and

resembled the structure described here. This fact allows the use of images of flows with

WiUp > 0.171 to illustrate the spatial structure of the flow: at higher WiUp spatial features

of the instability are more readily apparent.

A streakline image in the yz-plane after onset of the spatial instability for Wiup =
0.229 is shown in Fig. 5. lc. The streaklines are asymmetrical about the centerplane. On

the right half of the image the streaklines continuously converge from the upstream chan-

nel into the downstream slit. A separated vortex in the outer right corner is evident; the

reattachment length of the vortex appears to be approximately LV/H = 0.3, similar to the
Moffat eddy. The in-plane flow speed, v , in the region immediately adjacent to2Moffat eddy. The in-plane flow speed, vz + Vy , in the region immediately adjacent to
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the boundary of the right outer vortex is greater than in any other part of the image; a very

high velocity gradient exists in the vicinity of the vortex boundary.

In the upstream region of the flow (ý < -0.2), the vz velocity component of the flow is

uniform throughout the left half of Fig. 5. 1c, in contrast with the right side where the fast

flow is located adjacent to the outer vortex. In the left half of the upstream region of Fig.

5.1c, streaklines initially approach the outer left wall; they move in the positive y-direc-

tion, away from the centerplane. When they near the outer left corner (ý >_ -0.2), the

streaklines abruptly change direction and travel in the negative y-direction, following

along the wall which defines the contraction plane (ý = 0). No outer corner vortex could

be observed on the left side of the image. When the streamlines reach the downstream slit,

they again change direction in order to enter the slit. Near the left lip corner of the down-

stream slit, a small but distinct vortex is observed. This lip vortex is separated from any

vortical flow which may be present in the outer left corner. Although the most dramatic

effect of the flow transition on the velocity field is observed near the outer walls and near

the contraction plane, the transition has a noticeable effect on the entire flow field up to at

least a distance O - 1.5H before the contraction plane. For example, the streaklines near

the centerplane appear snakelike: the mean direction of flow is in the positive z-direction,

and the streaklines execute a sinusoidal motion in the y-direction.

Images of slices in the xz-plane located at positions ranging from near the outer wall to

near the centerplane are shown in Fig. 5.2. These are discussed in order of increasing u-

position, starting from near the outer wall and following the mean flow of fluid toward the

downstream slit. At a position -u = -8.2, streaks oriented in the z-direction are visible in

Fig. 5.2a. These streaks have a mean separation from each other in the x-direction of O -

1.5H; this separation defines the wavelength of the three-dimensional flow. The fluid in

the vicinity of the streaks has a much faster vz-component than fluid in the intermediate

regions. Moreover, fluid is observed to flow out of the intermediate regions in the x-direc-

tion and feed into the streaks; this accounts for the arced appearance of the streaklines on

either side of the fast streaks in Fig. 5.2a. In the slice taken at u = -4.4 (Fig. 5.2b), the fast

flow regions continue to be fed by the slow flow regions at distances greater than 0.3H

upstream of the contraction plane. Near the contraction plane the flow spreads out to

assume a more uniform profile of vz along the x-direction. Specifically, fluid appears to
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Figure 5.2 Top view of the abrupt 8:1 planar contraction at high flow rate, WiUp = 0.229

(Nframes = 15, Atframes = 0.1 [s] for all images). Structure is three-dimensional, slices in the xz-

plane at different y-elevations are shown: (a) flow near the outer wall (13 = -7.5), fluid flows in the

x-direction to "feed" regions of fast flow visible as bright areas; (b) far from the contraction plane

fluid "feeds" the fast regions, near the contraction plane fluid "spreads out" to assume a more uni-

form profile in the x-direction, a = -4.0; (c) at u = -2.0, closer to the centerplane, the flow is more

uniform in the x-direction, within the triangular structures fluid "wells up" from planes closer to

the outer wall.
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travel along the bright boundaries which demarcate the triangular structures between the

contraction plane and the end of a given streak. In the interior of these triangular struc-

tures, the flow is directed primarily in the y- (out of plane) direction. An image of a slice

taken at position -u = -2.2 is shown in Fig. 5.2c. The triangular structures are now confined

to a region nearer to the contraction plane. Although the resolution of the streakline image

in Fig. 5.2c is limited, careful study of the source videotape indicated that within the trian-

gular structures there was flow in the x-direction, directed away from the center of the

structure. The primary direction of flow within the triangular structures was still in the y-

direction, toward the centerplane. Throughout the image (with the exception of the region

located immediately before the contraction plane, where the triangular structures are

located) the vz-component of the flow is more uniform along the x-direction than the

slices taken closer to the outer wall (Fig. 5.2ab). Hence, close to the centerplane (u = 0),

the flow rearranges to adopt a more uniform velocity profile along the x-direction before

entering the downstream slit.

A slice taken at 'u = -7.8 is contrasted with a slice on the opposite side of the center-

plane at u = +7.8 in Fig. 5.3. Regions of fast flow, indicated by the streaks in the z-direc-

tion, on a given side of the centerplane correspond to regions of slow flow at the same x-

position on the other half of the centerplane. This was confirmed by continuously moving

the xz light sheet through the entire upstream height over a period of 45 [s], much less than

the time scale of the temporal oscillation discussed below. These observations are consis-

tent with the bundles of counter-rotating vortex pairs having an interlaced structure (Chiba

et al., 1990; Chiba et al., 1992).

From the light sheet slices in the xz- and yz-planes it was possible to reconstruct a

qualitative sketch of the three-dimensional spatial structure of the flow. The history of a

fluid element traveling along a streamline which passes through the fast region of flow

will now be summarized with reference to Fig. 5.4. Fluid near the wall of the upstream

channel travels in the z-direction of mean flow (a). When it reaches a distance of the order

of the upstream half-height, H, before the contraction plane, the fluid begins to also travel

in the x-direction, toward the fast region (b). As it more closely approaches the fast

region, the fluid begins to travel in the y-direction, away from the outer wall and towards

the downstream slit (c). When the fluid approaches to within the order of the downstream
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Figure 5.3 Top view of the abrupt 8:1 planar contraction at high flow rate, WiUp =

0.229 (Nframes = 15, Atframes = 0.1 [s] for both images): (a) flow near the top outer wall ('

= +7.8); (b) flow near the bottom outer wall (u = -7.8). The pair of images show that the

fast regions of flow (brighter areas) are opposed by slow regions of flow (darker areas) on

the opposite side of the centerplane.
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Figure 5.4 Diagram representing the three-dimensional structure of the flow after onset of the instability: (a) far upstream fluid near

wall fluid element travels in z-direction; (b) at distance order H before contraction plane element feeds into "fast" region; (c) element in

"fast" region flows toward downstream slit; (d) at distance order h before contraction plane fluid "spreads out" to achieve v, more uni-

form along x; (e) fluid enters downstream slit.

(e)



slit half-height, h, of the contraction plane, it travels back in the positive x-direction, away

from the center of the region of fast flow (d). When the fluid reaches the contraction plane

(e), the magnitudes of vx and vy are small when compared with that of vz. The "spreading

out" of the flow near the contraction plane makes the v,-component nearly uniform along

the x-direction near the contraction plane, ý = 0.

Onset of temporal instability at high Wiup

The temporal structure of the instability is elucidated by sets of yz- and xz-sheet

images taken successively in time. A yz-plane of the flow through the 8:1 contraction is

shown in Fig. 5.5a and corresponds to WiUp = 0.229 at t = 0 [s]; the streaklines are asym-

metric with the region of fast flow on the right half of the image. An xz-plane of the flow

taken with the light sheet located near the outer wall, at u = -7.8, is shown in Fig. 5.5b.

The yz- and xz-views were taken at different absolute times, but at the same flow condi-

tions. Dashed arrows on a given image (e.g., yz-plane) indicate the position of the corre-

sponding image (e.g., xz-plane). At t = 105 [s], the streaklines in Fig. 5.5c appear nearly

symmetrical about the centerplane. The corresponding xz-image (Fig. 5.5d) shows that

the vortices have moved toward the center of the flow (x = 0) by comparison with Fig.

5.5b. Hence, the light sheet in Fig. 5.5c is located half-way between the fast and slow

regions on both sides of the centerplane (u = 0). The flow shown in Fig. 5.5e at t = 270 [s]

is again asymmetric; however, the region of fast flow is now on the left half of the image.

The flow in Fig. 5.5f shows that this reversal of features in Fig. 5.5e with respect to Fig.

5.5a is a result of the vortices having moved farther toward the X = 0 center of the flow.

Specifically, the region of fast flow in Fig. 5.5a has been replaced by a region of slow flow

in Fig. 5.5e.

The flow closest to the walls bounding the x-direction at X = -32 could not be

observed with light sheet slices in the yz- or the xz-plane; only positions in the range -23 <

X • 23 were accessible. However, visual observations in conjunction with the LDV mea-

surements described below indicated that after onset of the temporal instability the vortex

structures in the flow are continually born at the walls bounding the x-direction (x = +32)

and move toward the center (x = 0) of the flow. As a result, the mean spacing between the

vortex bundles decreases. Eventually a vortex bundle must be destroyed to maintain an
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Figure 5.5 Successive images in time, yz- and xz-planes (fixed in space) of the abrupt 8:1 planar contraction at high flow rate, Wiup
= 0.229 (Nframes = 15, Atframes = 0.1 [s] for yz-images, Nframes = 40, Atframes = 0.1 [s] for xz-images): (ab) views at t = 0 [s], asymmet-

rical streaklines are shown in the yz-image with region of fast flow on the right half of the image; (cd) views at t = 105 [s], xz-image

shows that vortex bundles have moved toward the center of the flow (X = 0), streaklines in the yz-image appear nearly symmetrical; (ef)

views at t = 270 [s], the yz-image shows asymmetrical streaklines, now with the fast flow on the left side of the image, xz-image shows

that vortex bundles have moved toward the center of the flow, the fast flow region in (b) has been replaced by a slow flow region.



average spacing between the bundles on the order of the upstream half-height. This occurs

through one of two mechanisms. Two neighboring streamline bundles near the center of

the flow may move closer to each other until eventually they merge into one. Alternately,

a vortex bundle near the center of the flow may decrease in size and intensity as neighbor-

ing streamline bundles on either side approach. Eventually the streamline bundle in the

middle disappears entirely; this process of "absorption" by neighboring bundles, is shown

in Fig. 5.6 via successive xz-images in time. A destruction mechanism which has ele-

ments of both the "merging" and "absorption" processes, i.e. preferential absorption into

one of the neighboring vortex bundles, was also observed.

Flow Transitions in the 2:1 and 32:1 Contractions

The flow transition sequence with increasing WiUp in the 2:1 contraction was qualita-

tively similar to that observed in the 8:1 contraction. However, the transitions occurred at

higher values of WiUp. The wavelength and the upstream extent of the spatial instability

were both of the order of the upstream half-height, H, as found for the 8:1 contraction.

There were visual indications of time-dependent behavior of the vortex bundles at elevated

flow rates. However, the movement of the vortices in the xz-plane was not as distinct as in

the images acquired with the 8:1 contraction flow.

In the 32:1 contraction, the low aspect ratio, W/2H = 1, of the upstream channel

affected the transition sequence and spatio-temporal structure of the flow. Onset of three-

dimensional flow, specifically flow in the x-direction, could be detected via light sheet

visualization at the periphery of the observable region encompassing -23 < X < 23. Addi-

tional detail on the spatio-temporal structure of the flow after onset of the instability is

given in §5.2.2.

5.2.2 Off-Centerline Velocity Measurements of Global Flow Transitions

Quantitative velocity field information was obtained to characterize the spatial and

temporal structure of flows after, and the class of bifurcation at instability onset; the laser

Doppler velocimetry (LDV) technique was used. To parallel the qualitative observations

178



4I
(a)

(b) t
(c)

(d)

(e)

z

Figure 5.6 Successive streakline images in time, top view, of the abrupt 8:1 planar contraction

at high flow rate, Wiup = 0.229 (Nframes = 6): (a) t = 0 [s], vortex bundles of equal strength are

evenly spaced 1.5H apart, note the arrow at top which indicates the location of the "center vortex

bundle" on which attention is focused here; (b) view at t = 120 [s], the vortex bundles have moved

toward the center of the flow (X = 0), resulting in closer spacing; (c) at t = 180 [s] vortex bundles

have moved yet closer together and the center vortex bundle has weakened relative to the neigh-

boring bundles; (d) at t = 210 [s] the center vortex has weakened further and is barely distinguish-

able; (e) at t = 240 [s] the center bundle vortex has been completely absorbed into the neighboring

bundles.
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discussed above, results are given for transitions occurring at increasing WiUp. Off-center-

line LDV data were taken for the 2:1 and 32:1 contractions but not for the 8:1 contraction.

Transition to and Evolution of Three-Dimensional Flow in the 2:1 Contraction

The LDV system was operated with the frequency tracker in order to characterize the

wavelength of the three-dimensional flow field in the x-direction after onset of the insta-

bility. Specifically, the measuring volume was scanned through the region corresponding

to -26 < X < 0, u = -1.75, ý = -1.80 at a constant rate of vx scan = 1.43 [mm/s]. The

acquired set of velocity versus time data was then converted to velocity versus spatial posi-

tion information. Data could not be obtained for X 2 0 since the backscattered light had to

travel through too much fluid. Specifically, the light was obscured by the seed particles in

the fluid, reducing the amount of backscattered light received by the LDV optics to too

low a level for effective use of the tracker.

As the volumetric flow rate was increased from an initially low value, the structure of

the flow field evolved. The spatial evolution described in this Section consisted of a

sequence of transitions: onset of three-dimensional, steady flow; wavenumber doubling;

and appearance of multiple harmonics. At the end of this Section, the bifurcation to spatial

oscillation is classified.

Spatial Profile of vz at Intermediate WiUp

At volumetric flow rates corresponding to WiUp • 0.37 the profile of vz versus x was

uniform, indicating that the flow was two-dimensional. When the flow rate was increased

such that the Weissenberg number was in the range 0.51 • WiUp • 1.37, the profile of vz

versus x was no longer uniform, a transition to a three-dimensional, steady flow had

occurred. The spatial scans typically had a substantial amount of instrument induced

noise at a frequency of about 14 [Hz]; this complicated direct interpretation of the vz-ver-

sus-x profile. However, the information on the spatial period of the instability corre-

sponded to a tracker output of between 0.1 and 1.5 [Hz]. Since the frequencies of the

flow-structure information and the noise were well separated, a power spectrum (PS) of

the data could be used to identify oscillations associated with the viscoelastic instability.

The PS of the velocity versus position data was calculated using data in the range of -26.1
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< X < -1.6, for which the strongest signal was obtained. To obtain a more accurate esti-

mate of the "true" PS, a set of eight velocity versus position scans was made for a given

flow rate. The Welch windowing function was applied to each scan before calculation of

the PS.' The eight PS were then averaged to generate a mean PS with a standard deviation

1/,, = 35% of a single PS.

A plot of the mean power spectral density (PSD) as a function of the wavenumber

made dimensionless with the upstream half-height, H, is shown in Fig. 5.7a for a flow with

WiUp = 0.67. Wavenumber is used for the abscissa since the PS is calculated for equal

wavenumber intervals. The large peak centered about a dimensionless wavenumber of

0.69 corresponds to the characteristic wavelength of the three-dimensional flow. The par-

tially shown peak at the extreme left of the plot is an artifact and not physically signifi-

cant.2

The power associated with the peak representing the spatial oscillation in the PS was

estimated by summing the power spectral density (PSD) values of a continuous range of

wavenumbers for which the PSDs were greater than 10% of the peak value. The ampli-

tude of a peak in the PS is defined as the square root of this total power under the peak; the

spatial oscillation shown in Fig. 5.7a has an amplitude of 0.065 [mm s-l]. Since the peak

has a finite breadth, an estimate of the wavenumber of the spatial oscillation should con-

sider the entire peak, not only the wavenumber associated with the maximum power.

Therefore, the wavenumbers were weighted with their associated PSD values and summa-

tion performed over the range. The sum was then normalized with the total power over the

1. The discrete PS obtained for a finite set of data provides an approximation to the actual, contin-
uous PS of the physical system. If the physical system has a peak in the continuous PS which is not
located between two frequency "bins" of the discrete approximation, the power associated with the
peak is not only partitioned between these adjacent "bins" but also "leaks" into bins which are far-
ther removed. Application of a windowing function to the data set prior to computation of the PS
serves to ameliorate spurious features in the PS which can arise via "leakage" (Press et al., 1988).
2. A decreasing trend in the velocity with increasing X-position was noted; this slope was mani-
fested as a peak at the lowest non-DC frequency "bin" of the PS. This was found for flows in the
two-dimensional base state as well as the three-dimensional flows. In consequence, the trend did
not appear to be related to the "elastic" nature of the flow. As the measuring volume is moved to
more positive values of c, the backscattered light must travel through more fluid; in consequence
the effective Doppler burst rate "seen" by the tracker decreases. The decreased rate may have

aggravated tracker "dropout" (cf. Chapter 3) and resulted in a decreased apparent velocity for data

obtained at more positive X-positions (far from the wall). Note that individual "dropout" events
would appear as high frequency peaks in the PS far removed from the low frequency peaks associ-
ated with the (real, physical) spatial oscillation.
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Figure 5.7 (a) Mean power spectrum (PS) of scan in the x-direction (u) = -1.75, r = -1.79) for

flow through the 2:1 contraction with WiUp = 0.67. Mean dimensionless wavenumber of primary

peak is (H/kx) 1 = 0.69; (b) PS of scan in x-direction (u = -1.75, ý = -1.79), 2:1 contraction,

WiUp = 1.53. Wavenumber doubling behavior; primary peak wavenumber is (H/kx) 1 = 0.67,

secondary peak wavenumber is (H/Xx) 2 = 1.48; (c) PS of scan in x-direction (u = -1.74, ý = -

1.80), 2:1 contraction, WiUp = 1.72. Primary peak wavenumber is (H/Xx) 1 = 0.62, secondary

peak wavenumber is (H/kx) 2 = 1.32. Higher order harmonics (in addition to the primary and

secondary peaks) are present. Note that the mean dimensionless wavenumber of the peaks shown

in (a - c) are indicated by arrows.
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range to determine a first moment quantity corresponding to the mean wavenumber. The

characteristic dimensionless wavenumber of the spatial oscillation shown in Fig. 5.7a was

H/? = 0.74 which corresponds to a wavelength of X = 1.35H.

Wavenumber-Doubling Behavior of Spatial Oscillation in vt at High Wiup

For volumetric flow rates corresponding to 1.14 • WiUp • 1.53, a secondary peak at

approximately twice the spatial wavenumber of the primary peak was observed. The PS

of the flow corresponding to WiUp = 1.53 is shown in Fig. 5.7b. The primary peak has a

mean dimensionless wavenumber of 0.67; a broad secondary peak with a dimensionless

wavenumber of 1.48 is now also apparent.

Multiple Harmonics in Spatial Oscillation of vz at High Wiup

The PS of a flow with WiUp = 1.72 is shown in Fig. 5.7c. The secondary peak at a

dimensionless wavenumber of 1.32 has increased in strength whereas the primary peak at

0.62 has weakened. Additional peaks appear between the primary and secondary peaks

and below the primary peak. The PSD values within these additional peaks are above the

level of the broadband noise, indicating that they are physical phenomena, i.e. additional

harmonics. However, the resolution of the PS (the wavenumber interval) is limited by the

finite distance in the x-direction which can be probed, and the limited number of data sets

restricts the accuracy of the PSD estimate at a given wavenumber. These considerations

prevent specific identification of the higher-order harmonics.

As discussed below, a transition to time-dependent behavior occurs in the range 1.37 5

WiUp 5 1.43; the frequency associated with this temporal oscillation is of order 0.006

[Hz]. In contrast, the output from the tracker which contains the information on the spatial

period of the instability for the scan speed used corresponds to a frequency between 0.1

and 1.5 [Hz]. Therefore, the time-dependent behavior does not have a deleterious effect

on the measurement of the spatial form of the instability.

Classification of Bifurcation to Spatial Oscillation

The amplitude of the spatial oscillation is plotted as a function of WiUp in Fig. 5.8. In

order to check for the occurrence of hysteresis, the volumetric rate was first set to a value
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Figure 5.8 Amplitude of spatial oscillation, Ivzlosc from scans of vz vs. X (^ = -1.75,

= -1.80) as a function of WiUp in 2:1 contraction flow. Data taken with ( A) successively

increasing flow rates; (0) decreasing flow rates; note the absence of hysteresis. Solid sym-

bols indicate two-dimensional flow; hollow symbols denote three-dimensional flow; (-),

fit of eq. (5.2) to data near onset. The order ±10% error associated with the determination

of the amplitude of oscillation is indicated by the two representative error bars.
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such that the flow was in the two-dimensional base state; specifically WiUp •< 0.37. Mea-

surements of the velocity profile were then taken at successively increasing flow rates; the

amplitude of a peak associated with the spatial oscillation for a given WiUp is shown in the

plot. In a second set of runs, the flow rate was initially set to a value such that the flow

was in the three-dimensional and steady state. Velocity profile measurements were then

taken at successively decreasing flow rates; the peak amplitudes for these measurements

are shown in Fig. 5.8. Since there is no significant difference between the amplitudes of

the sequences of measurements conducted for increasing and for decreasing flow rates, no

hysteresis is evident; absence of hysteresis is characteristic of a supercritical bifurcation

(Strogatz, 1995). The standard deviation of the amplitude of oscillation of the eight power

spectra which were averaged together was of order ±10%; error bars of ±10% are indi-

cated in Fig. 5.8.

Asymptotic analysis of a supercritical bifurcation predicts that near onset of instability,

the amplitude of oscillation will scale as

Iv zosc = Cs2(Wiup - Wiup, S)1/ 2  (5.2)

where CS2 is a constant (Strogatz, 1995). 3 In Fig. 5.8 two-dimensional, steady base flow is

indicated by filled symbols and three-dimensional flow by hollow symbols. The ampli-

tude of spatial oscillation data near the value of WiUp for onset of the instability was then

fit by eq. (5.2) with CS2 = 0.124 [mm s-l] and the critical value WiUp S2 = 0.44 ± 0.07; the

error bounds are derived from data points with WiUp immediately greater than or less than

WiUp S2, for which stability of the base flow or spatial oscillation was observed. At ele-

vated WiUp > 0.74, a departure from the square root scaling is observed; this behavior is

associated with the onset of harmonics of the fundamental wavenumber of the spatial

oscillation.

3. The letter in the subscript of parameters in eq. (5.2) indicates the particular flow transition with
which the parameter is associated: S indicates transition from two-dimensional, steady to three-
dimensional, steady flow; T denotes transition from steady to time-dependent flow. The number
indicates the contraction ratio, H/h, for which the parameter applies.
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Transition to Time-Dependent Flow in 2:1 Contraction

In order to characterize the temporal structure of the flow after transition to time-

dependent behavior, the measurement volume of the LDV system was placed at the point

X =-20.0, ) =-1.75, and ý =-1.80. This point was chosen since it was expected to provide

the clearest signal; specifically, in the spatial scan it was within the region of maximum

difference between the crest and trough of the measured vz. The flow rate was then set to

a value corresponding to a specific WiUp, and the velocity recorded as a function of time.

The evolution in the temporal structure of the flow is described here; the classification of

the bifurcation to time-dependent behavior is given at the end of this Section.

At low volumetric flow rates, corresponding to Wiup < 1.37, no characteristic tempo-

ral oscillation was noted in the power spectrum (PS). Once the volumetric flow rate was

increased to a value corresponding to WiUp 2 1.43 oscillation was noted in the time-series

data and characterized by calculating the PS in a similar manner as for the space data.

Overlapping data sets were extracted from the time series; the Welch windowing function

was applied to each set; individual PS were calculated; and the results were averaged to

compute a mean PS with a lower standard deviation than the individual PS. The PS of at

least three time-series segments were averaged together, each segment consisted of

approximately 900 data points representing 1500 [s] of flow. The mean frequency was

calculated in an analogous manner as the mean wavelength for the case of the spatial insta-

bility. Figure 5.9 shows the PS for a flow with WiUp = 1.72. The primary peak has a mean

frequency of 0.0047 [s-1] which corresponds to a period of 214 [s]. The two local maxima

within the primary peak are not physically significant, they result from the PS of only

three sets of time-series data being averaged together.

As discussed above, the spatial oscillation of the three-dimensional flow undergoes

wavenumber doubling. The secondary peak in the temporal PS of Fig. 5.9 at 0.0102 [s-1]

may be a manifestation of this wavenumber doubling. At WiUp > 1.80 the power of the

secondary peak in the temporal PS exceeds that contained in the primary peak; an increase

in the amplitude of the secondary peak with WiUp and a decrease for the primary peak was

also noted in the PS of the spatial oscillation discussed above. This observation further
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Figure 5.9 Mean power spectrum of time-series data for flow through 2:1 contraction

with Wiup = 1.72, data taken at the point (x =-20.0, iu =-1.75, ý =-1.80). Primary peak

mean frequency is v1 = 0.0047 [s-1], secondary peak mean wavenumber is

V2 = 0.0102 [s-l]. Mean frequencies of the peaks are indicated by arrows.
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Figure 5.10 Amplitude of oscillation, IVzlos c , for temporal instability at the point x = -

20.0, u = -1.75, ý = -1.80 as a function of WiUp in 2:1 contraction flow. Solid symbols.

indicate steady flow; hollow symbols denote time-dependent flow; (-), square-root-scal-

ing fit to data near onset. The order ±.10% error associated with determination of the

amplitude of oscillation is indicated by the two representative error bars.
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supports the idea that the secondary peak observed in the temporal PS of Fig. 5.9 is a man-

ifestation of period doubling of the spatial oscillation.

The amplitude of the temporal oscillation is plotted as a function of WiUp in Fig. 5.10.

Steady flow is indicated by the solid symbols, time-dependent flow by the hollow sym-

bols. Noise in the data made it difficult to characterize the amplitude of oscillation near

the onset point. For the data points with representing oscillation of finite amplitude, the

error was of order ±10%, as shown in the graph. Scaling of the form in eq. (5.2) (square

root of amplitude with WiUp) was consistent with the data, although the fit underpredicted

the critical Weissenberg number (WiUp T2) for onset of the instability. The fitted scaling

parameters for the temporal instability in the 2:1 contraction were CT2 = 0.183 [mm s- ]

and the critical value WiUp T2 = 1.29. Square-root scaling of the amplitude near onset of

temporal oscillation is observed for a supercritical Hopf bifurcation (Strogatz, 1995).

Global Flow Transitions in the 32:1 Contraction

LDV measurements were restricted by the size of the side window of the geometry to

the region -8 < o • 8. Velocity measurements near the wall of the upstream channel in the

32:1 contraction (at u = +32) could not be obtained; hence, in order to measure a large

amplitude of oscillation associated with a flow transition, the vy-component of the flow

was measured. Spatial scans in the x-direction as well as time series information at a

given point were acquired with the LDV system operated in frequency tracker mode.

Flow phenomena which span the entire x-dimension are considered here; phenomena

localized near the wall at x = +32 are considered in §5.2.3. The spatial structure of the

instability in the 32:1 contraction is considered first; then, the temporal structure is

addressed.

Spatial Structure of Flow after Onset of the Instability

In contrast with flow in the 8:1 and 2:1 contractions, a transition from the two-dimen-

sional base flow to a three-dimensional, but steady, spatial structure that encompassed the

entire span of the x-dimension was not observed. Rather, an immediate transition from the

base flow to a three-dimensional, time-dependent flow spanning the x-dimension was

observed.

189



(a) 0.6

N

0.4

0.2

0.0

-0.2

(b) 0.6

N

0.4

0.2

0.0

I I I I I I I I I I I I 1

-24 -16 -8

Figure 5.11 Dimensionless vy vs. X scan for flow through the 32:1 contraction with WiUp = 0.039. Spatial scans were performed

over the range -32 • X • 0, 1o =-1.50, and ý =-1.50. (a) Velocity profile at time t = 0 [s]. (b) Velocity profile at a later time, t > 120 [s].

- 0

0

I I I I I I I I I I I I

-U.3
-32

a 9

I I i I



A spatial scan, performed at a time t = 0 [s] over the region -32 < ý < 0, u =-1.50, and

S=-1.50 for a flow with WiUp = 0.039, is shown in Fig. 5.1 la; Fig. 5.1 lb is a spatial scan

over the same region but performed at a later time, t > 120 [s]. A specific wave speed was

not calculated, but Figs. 5.1 la and 5.1 lb are consistent with a wave originating at the

bounding wall at X =-32 and sweeping in the positive x-direction toward the center of the

flow. The scans were performed by moving the measuring volume in the negative x-direc-

tion at a constant rate of vx scan = 1.43 [mm s-l]. The scanning procedure did not substan-

tially shorten the apparent wavelength since the voltage output of the tracker during the

spatial scans shown in Figs. 5.11 a and 5.11 b had a lowest characteristic frequency on the

order of 0.05 [s-1] whereas the characteristic frequency of the temporal oscillation (dis-

cussed below) was much lower, 0.003 [s-l].

One may also note from Figs. 5.11 a and 5.1 lb that the variation in the Vy/<Vz>Dn ver-

sus X profile between two scans separated in time is greatest at the X-positions closest to

the bounding wall; i.e. in the range -32 • X • -16. The variation is much less near the cen-

ter of the flow -16 < X < 0; moreover, a trough in the velocity profile is noticeable at

x = -5 and a crest at X = -2 in both Figs. 5.1 la and 5.11 b. The fact that the profile near

the center of the flow is only slightly affected by the wave associated with the temporal

oscillation indicates that the temporal oscillation is superimposed upon a steady, spatial

oscillation. The amplitude of the temporal oscillation is greatest near the wall (x = -32)

where it dominates the vy/<Vz>Dn versus X profile and prevents accurate characterization

of the wavelength, amplitude, or onset WiUp of an underlying steady, spatial oscillation.

The amplitude of the temporal oscillation weakens as the center of the flow (X = 0) is

approached and the pattern of the underlying spatial oscillation becomes distinct. The

issue of localization of the temporal oscillation near the bounding wall at X = -32 is dis-

cussed in greater detail in §5.2.3 below.

Characterization of Onset and Temporal Structure of Flow Transition

In order to characterize the temporal structure of the instability in the 32:1 contraction,

the measurement volume was placed at the point X = -1.50, u = -21.0, and ý = -1.50. The

flow rate was then set to a value corresponding to a specific WiUp, and the velocity

recorded as a function of time. In this Section, the evolution of the temporal structure of



the flow for successively greater WiUp is described. Characterization of the dependence of

the magnitude of the oscillation on WiUp was used to identify the critical WiUp for onset of

the instability.

For Wiup •< 0.0352 no time dependence of vy was detected at the point in space where

the LDV measuring volume was located. When the volumetric rate was increased to a

value corresponding to Wiup _ 0.0356, oscillations were apparent in the time-series data.

The PS was calculated from the time-series data; the mean frequency of the oscillation

peak was 0.0029 ± 0.0003 [s-l]. The amplitude of oscillation is plotted as a function of

WiUp in Fig. 5.12. Filled symbols indicate steady flow, hollow symbols represent time-

dependent flow. For WiUp > 0.0356, the amplitude was observed to increase monotoni-

cally until Wiup = 0.0424; beyond this point the onset of additional harmonics resulted in

a decrease in the amplitude of the primary peak. No hysteresis was noted in WiUp when it

was dropped from WiUp = 0.0386 to WiUp = 0.0345, which was just below the critical

point.

As shown in Fig. 5.12, the data for the amplitude as a function of WiUp near the critical

value of WiUp fits the functional form

Ivzlose = CT 32 (WiUp - WiUpT32) 1/2  (5.3)

with fitted parameters CT32 = 68.2 [mm s1] and WiUp T32 = 0.0350. WiUp T32 is the

extrapolation of the fit to zero amplitude and is the predicted critical value for the onset of

time-periodic flow. The error in the amplitude was of order 10% and is indicated by repre-

sentative error bars in Fig. 5.12. Note from Fig. 5.12 that for WiUp = 0.0352 the flow is

steady, hence eq. (5.3) slightly underpredicted the critical WiUp for instability onset. This

discrepancy may be a consequence of error in the measurement. The temporal oscillations,

the lack of hysteretic behavior, and the scaling of amplitude near instability onset as

defined by eq. (5.3) are characteristic of a supercritical Hopf bifurcation (Strogatz, 1995).

For high volumetric rates corresponding to WiUp 2 0.0424, pronounced secondary har-

monic peaks are visible in the PS. The characteristic frequencies of the secondary peaks

adjacent to the primary peak were consistent with doubled and halved harmonics of the
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Figure 5.12 Amplitude of oscillation, Vzl osc , for time-dependent flow at the point X =-21.0, a

=-1.50, ý =-1.50 as a function of WiUp in the 32:1 contraction. Solid symbols indicate steady flow;

hollow symbols denote time-dependent flow; (-), square-root-scaling fit to data near onset. Note

that the fit slightly underpredicts the value of WiUp at onset of instability. (+) symbols and associ-

ated arrows indicate that in one of the runs the volumetric flow rate was decreased from WiUp =

0.0386 to WiUp = 0.0345; hysteresis was not observed. The order ±10% error associated with

determination of the amplitude of oscillation is indicated by the two representative error bars.
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fundamental frequency. However, the signal-to-noise ratio of the velocity data was too

low to allow more detailed classification of the time-periodic flow in the nonlinear regime.

5.2.3 Local Evolution of Flow Near the Bounding Wall at x = +32 in
the 32:1 Contraction

A viscoelastic flow transition localized near the wall bounding the x-dimension was

observed for flow through the 32:1 contraction. The spatial structure of this flow transi-

tion was characterized by operating the LDV system in the frequency-tracker mode. The

measuring volume was scanned in the x-direction at a constant rate of vx scan = 1.43 [mm

s-1] through the region of space corresponding to -32 : X 5 0, C = -1.50 for i) = -1.50 and

+1.50. The acquired set of velocity versus time data was then converted to velocity versus

spatial position data. Confidence in the profile was improved by reproducing the measure-

ments; a set of eight scans was used to develop a given profile.

The profile for WiUp = 0.006 is shown in Figs. 5.13a and 5.13b. In the middle section,

-24 5 X 5 0, the flow appears uniform to within the accuracy of the measurement. For the

scan with u = -1.50 (cf. Fig. 5.13a) the velocity is positive, fluid flows up toward the cen-

terplane; for i= +1.50 (cf. Fig. 5.13b) the velocity is negative. The signal-to-noise ratio is

low for these measurements because of the slow flow rate.

Near the wall, -32 < X < -24, the flow is nonuniform in the x-direction. In particular,

the flows in Fig. 5.13a and Fig. 5.13b in the middle section (-24 5 X < 0) are in opposite

directions; however, the peak of the "spike", located at X = -29, is positive for both 0 = -

1.50 and u = +1.50. The spike is not a measurement artifact. Four of the scans were per-

formed with the measurement volume moving in the positive and four in the negative x-

direction: the spike is not a transient resulting from finite response time of the tracker elec-

tronics. The length of the measurement volume in the x-direction was at most Lm/h = 0.7.

Regions of high velocity gradient are prone to erroneous measurement; specifically, when

the velocity changes substantially over the measuring volume, the tracker may be unable

to lock onto a single frequency. However, the peak of the spike is located at X = - 29, not

immediately adjacent to the wall; examination of the output voltage data showed that

tracker dropout was not the cause of the spike; and the reproducibility of the data indicated

that the flow was accurately measured. Close examination of Fig. 5.13a also reveals a
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small negative velocity in the region between the bounding wall and the positive spike, -32

< -30.5.

The velocity profile is illustrated in Figs. 5.13c and 5.13d along the x-direction for a

higher flow rate corresponding to WiUp = 0.031. The flow is still steady, onset of time-

dependent behavior occurred at WiUp T32 = 0.036. As for the lower flow rate case shown

in Figs. 5.13a and 5.13b, the velocity profile near the center of the flow (-20 • X < 0) is

uniform and in opposite directions for -u = -1.50 and u = +1.50. The nonuniform region of

the profile has expanded to fill the range -32 5 X 5 -20; both positive and negative values

of vy are apparent. Specifically, for the range -32 < X - -28 the velocity is negative on

both sides of the centerplane, while for -28 - <5 -24 the velocity is positive on both sides.

The velocity profiles given in Fig. 5.13a - 5.13d are consistent with the flow near the X

= -32 wall having a vortex structure in the xy-plane. At the lower flow rate, WiUp = 0.006,

the elliptic point of the vortex is located close to the wall, in the range -32 • X 5 -30.5

(Figs. 5.13a and 5.13b). At the higher flow rate the vortex has increased in size, with the

elliptic point located within the region -29.5 5 X 5 -28 (Figs. 5.13c and 5.13d). This vortex

is a non-Newtonian phenomenon; a possible interpretation of its origin follows. At the

low flow rate, WiUp = 0.006, the phenomenon is probably purely local, in extent as well as

origin; note that the extent of the vortex is on the order of the downstream length scale, h,

not the upstream length scale, H = 32h.

In the vicinity of the downstream slit the fluid near the wall at X = +32 experiences a

higher shear rate than fluid at other locations in the x-direction with the same u- and Q-
values because of the additional no-slip boundary. This higher shear rate results in onset

of an instability which is localized near the wall. At the elevated flow rate (Figs. 5.13c and

5.13d), there may be an interaction of global flow conditions with this local instability. As

is discussed in detail in §5.3, when wall effects are negligible and two-dimensional flow is

closely approximated throughout the geometry, the length scale of the spatial instability is

set by the upstream half-height, H. However, for the 32:1 contraction ratio, the width of

the geometry, i.e., the x-dimension, is only W = 2H. Therefore, the increased extent of the

vortex at the elevated flow rate, WiUp = 0.031, may result from expansion of the local vor-

tex near the wall, or could be a manifestation of the global spatial instability observed for
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the 2:1 and 8:1 contractions but which is modified in structure by the presence of the

bounding walls located at x = +32h = ±H.

The objective of this Chapter is to elucidate the global phenomena in the planar con-

traction flow; the local, side-wall-induced flow transition is a peripheral topic. In the case

of the 2:1 and 8:1 contraction ratios, the upstream aspect ratio is sufficiently high (W/2H =

16 and 4 respectively), that the presence of a bounding wall at the extremes of the x-direc-

tion can be treated as a local imperfection to the two-dimensional base flow and to flow

transitions at elevated WiUp. However, for the 32:1 contraction the upstream aspect ratio

is unity; consequently, the walls bounding the x-direction affect the flow structure and the

transition sequence throughout the upstream channel. The local instability near the bound-

ing walls at X = +32 noted in the 32:1 contraction may occur in the 2:1 and 8:1 contrac-

tions. Although effects of a local flow transition near the wall on the global flow field are

not directly apparent, upon onset of global time-dependent flow, the local flow transition

may act as a perturbation which sets the direction of movement of the vortices, from the

bounding walls, x = +32, toward the center of the flow, X = 0. Note that the effect of a wall

bounding a "neutral" third dimension in an otherwise two-dimensional geometry has been

studied by other researchers in the context of Newtonian flow. For example, Aidun et al.

(1991) considered flow in a lid-driven cavity bounded in the "neutral" direction, and

Tavener and Cliffe (1991) investigated the Taylor instability in a Couette cell with finite

axial length to gap width ratio.

5.2.4 Quantitative Characterization of Centerline Velocity Profile Evolution

The LDV system was operated using burst analysis to measure the centerline velocity

profile at several flow rates for the 2:1, 8:1, and 32:1 contractions. The global transitions

to three-dimensional, steady flow described above appear to be associated with changes in

the centerline profile. Upstream of the contraction plane, a decrease in the centerline

velocity below that of fully developed upstream channel flow was noted at elevated Wiup.

Closer to the contraction plane, in the entry flow region, an increase in the local elonga-

tional strain rate was found.
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Centerline Velocity Profile Evolution in the 2:1 Contraction

The magnitude of the vz velocity component along the centerline in the middle of the

flow was measured for the 2:1 contraction; specifically, scans were performed over the

range x = 0, t = 0, and -40 • : < 12. The velocity data as a function of position, vz(z),

was fit with a cubic spline; the fit was differentiated to obtain the strain-rate profile as a

function of position, e(z) = avz/az. The maximum dimensionless strain rate,

Emax(h/(vz)Dn), was used to quantify the sharpness of the peak in the centerline strain-

rate profile. The base profile associated with low WiUp is presented first; salient features

of the profile at elevated WiUp, after flow rearrangement, are then described.

The magnitude of vz along the centerline at WiUp = 0.37 is shown in Fig. 5.14a. Far

upstream of the contraction plane (ý 5 -8) the profile in the y-direction is parabolic

because the fluid has nearly constant viscosity. Hence, the velocity along the centerline

made dimensionless with the downstream mean velocity is approximately Vz/<vz>Dn -- (3/

2)(h/H). When a fluid element approaches to within two downstream half-heights of the

contraction plane (L > -2) it suddenly accelerates to the downstream fully developed cen-

terline velocity, vz = (3 /2 )<vz>Dn. The dimensionless strain rate, aZ , is shown

in Fig. 5.14b as a function of axial position. The acceleration of the fluid occurs over the

range -2 < 5 < 1.5. The maximum dimensionless strain rate of 0.57 is observed at a posi-

tion ý = -0.31, immediately upstream of the contraction plane. Note that the oscillations in

Fig. 5.14b for ý < -3 and ý > 2 are an artifact of the differentiation procedure, which acts to

aggravate the noise in the velocity measurement; the oscillations have no physical signifi-

cance.

At an elevated flow rate corresponding to WiUp = 1.20 the centerline velocity profile

shows evidence of the diverging flow noted in the visualization study described in §5.2.1.

Fig. 5.14c shows that the fluid initially decelerates from the fully developed upstream

velocity and then accelerates in the vicinity of the contraction plane. Another contrast

with the centerline velocity profile for low WiUp is that a pronounced velocity overshoot is

observed immediately downstream of the contraction plane. The centerline strain-rate pro-

file for the WiUp = 1.20 flow is shown in Fig. 5.14d. Diverging flow is evident as a region

of negative strain rate over the range -6 < r 5 -2; the minimum centerline velocity occurs
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Figure 5.14 Centerline (0 = 0) velocity and elongational strain-rate profiles for 2:1 contraction flow: (a) Dimensionless vz vs. ý,

WiUp = 0.37; (b) Dimensionless E vs. ý, WiUp = 0.37; (c) Dimensionless vz vs. ý, WiUp = 1.20; (d) Dimensionless E vs. ý, WiUp = 1.20.

(0) velocity data; (- ) cubic spline fit.
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at the position ý = -2.1. The acceleration of the fluid into the downstream region is appar-

ent as the peak occupying the range -2 < •5 0.5; the maximum dimensionless strain rate

of 0.96 occurs at an axial position of ý = -0.4. The velocity overshoot appears as a region

of negative strain rate located downstream of the contraction plane and extends over the

range 0.5 < ý < 3.

The maximum dimensionless strain rate achieved for the high WiUp flow is substan-

tially greater than for the flow with low Wiup; this is attributable to two factors. Firstly,

the difference between the minimum upstream and maximum downstream dimensionless

velocity is greater for the high WiUp flow because of the phenomena of diverging flow and

velocity overshoot. Secondly, the region over which the fluid accelerates from the

upstream into the downstream slit decreases slightly in extent, from -2 < : 5 1.5 for the

case with WiUp = 0.37 to -2 • ý 5 0.5 for WiUp = 1.20. Recall that this flow rearrangement

is related to the "elastic" nature of the flow since the Reynolds number is low,

ReDn < 7 x 10-4

Centerline Velocity Profile Evolution in 8:1 and 32:1 Contractions

The centerline velocity profile for flow through the 8:1 contraction at WiUp = 0.070 is

shown in Fig. 5.15a; the corresponding centerline strain-rate profile is shown in Fig. 5.15b.

The strain-rate profile appears qualitatively similar to the plot for the 2:1 contraction in

Fig. 5.14b; however, in the 8:1 contraction the region over which the flow accelerates from

the upstream into the downstream slit is greater in spatial extent, -10 5 ý 1. In contrast

with the 2:1 contraction flow, the strain-rate profile is composed of two distinct regions:

high strain rate, for which avz/az 2 0.1, is noted in the region -3 < ý 5 1; a low strain-rate

upstream "tail", for which avz/az < 0.1, is found in the region -10 5 ý 5 -3.

The velocity profile for flow with an elevated WiUp = 0.169 is shown in Fig. 5.15c; the

characteristics of diverging flow and velocity overshoot described for the higher WiUp

case in the 2:1 contraction are apparent. The corresponding centerline strain-rate profile

for WiUp = 0.169 in the 8:1 contraction is shown in Fig. 5.15d. The diverging flow region

is in the range -20 < ý < -5.5; the minimum velocity is observed at ý = -5.5. Acceleration

of the fluid extends over the range -5.5 < ý 5 0.5; there is a region of high strain rate

restricted to the range -2 5 • < 0; the maximum strain rate of 0.98 is located at ý = -0.42.
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Figure 5.15 Centerline (u = 0) velocity and elongational strain-rate profiles for 8:1 contraction flow: (a) Dimensionless vz vs. ý,

Wiup = 0.070; (b) Dimensionless c vs. ý, WiUp = 0.070; (c) Dimensionless vz vs. ý, Wiup = 0.169; (d) Dimensionless F vs. ,

WiUp = 0.169. (0) velocity data; (- ) cubic spline fit.
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Figure 5.16 Centerline (u = 0) velocity and elongational strain-rate profiles for 32:1 contraction flow: (a) Dimensionless vz vs. ý,

Wiup = 0.0108; (b) Dimensionless e vs. ý, WiUp = 0.0108; (c) Dimensionless vz vs. ý, WiUp = 0.038; (d) Dimensionless £ vs. ,

WiUp = 0.038. (0) velocity data; (- ) cubic spline fit.
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There are not sufficient data points in the downstream region to define precisely the spatial

extent of the velocity overshoot; however, it extends at least over the range 0.5 < ý 5 1.

The velocity profile is shown in Fig. 5.16a for flow through the 32:1 contraction at

WiUp = 0.0108; the strain-rate profile is shown in Fig. 5.16b. In a similar manner as for

the 8:1 contraction flow, a sharp peak corresponding to a region of high strain rate is evi-

dent over the range -3 < <• 1, while a long, low strain-rate upstream "tail" extends over

the range -40 5 ý 5 -3. The precise distance which this tail extended upstream could not

be determined since the region probed by LDV was restricted to 2> -40.

The velocity profile for flow through the 32:1 contraction at an elevated volumetric

rate corresponding to WiUp = 0.038 is shown in Fig. 5.16c. An upstream region of diverg-

ing flow is not evident, this is addressed below. A region of velocity overshoot immedi-

ately downstream of the contraction plane may be present although noise in the data

obscures its magnitude and extent. The corresponding centerline strain-rate profile is

shown in Fig. 5.16d. The fluid accelerates over a range extending from far upstream to

immediately downstream of the contraction plane, -40 5 ý 5 0.5. The region of greatest

strain rate is restricted to the range -2 5 ý < 0.25; the maximum dimensionless strain rate

of 0.90 occurs at an axial position of ý = -0.75. The distinction between the high strain-

rate region and low strain-rate "tail" is clearer in the case of the high WiUp. Furthermore

in Fig. 5.16a the velocity profile appears smooth throughout the upstream region; in con-

trast, "kinks" in the velocity profile are evident in Fig. 5.16c in the region -5 5 r 5 -2.5,

which lies between the low strain-rate "tail" and the high strain-rate region.

Summary of Evolution of Centerline Velocity Profile

In summary, the centerline profiles for the flows through the different contraction

ratios appear to exhibit a common set of qualitative features. At low WiUp, there are two

distinct regions of positive strain rate through which a fluid element on the centerline

passes when accelerating from the slit upstream of the contraction plane to the slit down-

stream of the contraction plane. A low strain-rate upstream "tail" is evident in the profiles

for the 32:1 and 8:1 contractions (Figs. 5.16b and 5.15b). The upstream extent of the tail

appears to be set by the upstream half-height, ~ - H/h (although the restriction on LDV

measurement to ý > -40 did not allow identification of the precise extent in the 32:1 con-
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traction). At the location r = -3, upstream of the contraction plane, the tail region adjoins

a high strain-rate "peak". The location of the transition between the low strain-rate tail

and high strain-rate peak appears to be set by the downstream half-height, h. The down-

stream limit of this high strain-rate peak is located at 5 - 0.5 and also seems to be set by

the downstream half-height, h.

The existence of two distinct regions, one a long, low strain-rate upstream tail, the

other a high strain-rate peak can be explained as follows. On the centerline and near the

contraction plane, the flow field is governed primarily by the downstream slit; the region

of high strain rate, the extent of which is set by the downstream half-height, is characteris-

tic of this entry flow field. Stated another way, the flow near the slit does not "see" the

upstream boundary conditions. Following this reasoning, a limiting profile is expected

near the contraction plane for the case of an infinite contraction ratio (sink flow). How-

ever, for a flow with a finite contraction ratio, the upstream half-height, H, must play some

role in determining the strain-rate profile. Specifically, the net Hencky strain experienced

by a fluid element traveling along the centerline from the upstream to the downstream

regions is set by the ratio of centerline velocities of the fully developed flows.

(vz() = O)Dn
EHencky- = lnZ( = 0)u-)p (5.4)

At a sufficient distance upstream of the contraction plane, the flow will "see" the upstream

boundary conditions. Hence the upstream boundary conditions set the profile for the low

strain-rate upstream tail, the spatial extent of which scales with the upstream half-height,

H. A distinct transition between the upstream "tail" and downstream "peak" is not noted

for the case of the 2:1 contraction, probably because the upstream and downstream half-

heights are sufficiently similar that the two regions overlap.

A common set of flow phenomena also is noted for the flows through the different

contractions at elevated WiUp. Specifically, in contrast with the flows for low WiUp, there

is an increase in the maximum strain rate attained and a velocity overshoot is observed

immediately downstream of the contraction plane. The spatial extent of the velocity over-

shoot in the downstream region is governed by the downstream half-height, h. This scal-
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ing is probably a result of the strain rate in the vicinity of the downstream slit being much

higher than that in the low strain-rate upstream tail; the fluid only "remembers" flow con-

ditions near the downstream slit.

At elevated flow rates, diverging flow was noted upstream of the contraction plane for

the 2:1 and 8:1 contractions. The point of minimum centerline velocity occurred for the

2:1 and 8:1 contractions at the boundary between the diverging flow (avz/az < 0) and

accelerating flow (avz/az > 0) regimes. The location of this minimum velocity point

appeared to scale with the upstream half-height, H. Specifically, for the 2:1 contraction,

the minimum was at ý = -2.1; for the 8:1 contraction, at ý = -5.5. No diverging flow was

noted for the 32:1 contraction; however, since the farthest point upstream which could be

probed was located at r = -40, this observation is consistent with a scaling with the

upstream half-height, H = 32h. For the case of the 8:1 contraction, after onset of diverging

flow, the long upstream tail of low, positive strain rate did not extend as far upstream,

reaching only to ý = -5.5 instead of ý - -10; a limited number of data points prevents pre-

cise delineation of this change in extent.

The transition from a "moderately peaked" to a "sharply peaked" strain-rate profile

occurs in a continuous manner over an intermediate range of WiUp. The maximum dimen-

sionless strain rate, Emax ( , - -) is shown as a function of WiUp in Fig. 5.17a for each

of the contraction ratios investigated. A square-root function of the form

Emax(WiUp)(n -EmaxO(( = C p - Wip, crit (5.5)

was fit to each data set associated with a given contraction ratio. WiUp is the independent

variable, and maxo( is the maximum dimensionless centerline strain rate in the

limit of Wi -4 0, as inferred from the data. C and Wiup,cri t are the fitted parameters.

These square-root fits are intended to act primarily as a guide to the eye. The data are con-

sistent with a supercritical bifurcation at Wicrit; however, there are not sufficient data

points for the bifurcation to be definitively classified. Two regions are apparent for the

data associated with a given contraction ratio in Fig. 5.17a. At low WiUp, corresponding

to the profiles shown in Plots a and b of Figs. 5.14 through 5.16, the maximum dimension-
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Figure 5.17 Maximum centerline dimensionless strain rate vs. Weissenberg number: (A) 2:1

contraction; (E) 8:1 contraction; (0) 32:1 contraction. The lines are square-root fits to the data,

the lower terminus of the line is the predicted onset point for the increase in dimensionless strain

rate with Wi; the arrows indicate the Wi for which transition from global, two-dimensional base

flow to three-dimensional flow occurs. (a) domain is Weissenberg number defined in terms of

upstream flow parameters, Wiup; (b) domain is Weissenberg number defined in terms of down-

stream flow parameters, WiDn.
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less strain rate is nearly independent of WiUp; this independence is evident in Fig. 5.17a

for Wiup < 0.1, for the case of the 8:1 contraction flow, and for WiUp < 0.02, for the case

of the 32:1 contraction flow. More generally, at low Wiup the dimensionless velocity pro-

file is independent of the flow rate. At elevated WiUp, corresponding to the profiles shown

in Plots c and d of Figs. 5.14 through 5.16, the maximum dimensionless strain rate is

observed to increase with WiUp; this dependence is apparent in Fig. 5.17a for 0.4 < Wiup

for the case of the 2:1 contraction, 0.1 < WiUp for the 8:1 contraction, and WiUp < 0.02 for

the 32:1 contraction. Upstream diverging flow and downstream velocity overshoot are

noted in the velocity profile for elevated volumetric flow rates; these phenomena result in

the increase in maximum dimensionless strain rate. As discussed in the beginning of this

Chapter, when the Weissenberg number is defined in terms of the upstream flow parame-

ters, the critical value for transitions can be substantially less than one. This reflects the

dependence of the flow rearrangement on contraction ratio as well as on WiUp.

Figure 5.17b shows the maximum dimensionless shear rate as a function of the Weis-

senberg number defined in terms of the mean downstream shear rate; i.e.

WiDn = Wi( (vz)D/h).4 Note that when WiDn is used, the critical parameters for onset

of diverging flow differ by only a factor of 3 between HIh = 2 and H/h = 32, as opposed to

the corresponding Wiup,crit, used in Fig. 5.17a, which differ by a factor of 20. However,

distinct superposition of the curves in Fig. 5.17b is not observed. This is attributed to the

role which the contraction ratio plays in governing the flow rearrangement; neither WiDn

nor WiUp alone fully describe the conditions for transition to diverging flow.

To decide whether Wiup or WiDn is the more appropriate parameter to use, it is helpful

to consider the critical Weissenberg number for flow rearrangement expected in the limits

of H/h -- 1 (channel flow) and H/h -- oo (sink flow). For the sink-flow limit, it is

expected that WiDn,crit is a non-zero, finite value. Specifically as H/h - oo, the upstream

walls have less and less effect on what occurs in the vicinity of the downstream slit. In

contrast, WiUp,cri t will continuously decrease and approach zero. In the channel-flow limit,

it necessarily follows that lim WiUp, crit = Wion, crit. In a channel, rearrangement to
H/h --+ 1

diverging flow is never observed; two scenarios may be envisioned as occurring as the

4. Note that the Weissenberg number defined in terms of downstream shear rate is used throughout
Chapter 6 and is defined in eq. 6.2.
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lower limit is approached. 1) The critical Weissenberg number may continuously approach

infinity as the contraction ratio approaches one. In this case Wiup,crit will monotonically

increase with H/h, whereas WiDn,crit will first decrease (as shown in Fig. 5.17b) and then

increase. 2) The critical Weissenberg number will approach a finite limit as H/h -- 1.

WiUp,crit will continuously increase, and WiDn continuously decrease to the limit as chan-

nel flow is approached. By consideration of the critical values shown in Figs. 5.17a and

5.17b, this limiting value (should Scenario 2 apply) can be bounded as

lim 0.3 < WiUp, crit - WiDn, crit < 1.1. Note, however, that when the limit H/h = 1 is
H/h --- 1

reached, the solution will vanish since diverging flow does not occur in channel flow.

Hence, as the contraction ratio increase from the channel- to the sink-flow limit, WiUp,cri t

will monotonically decrease, regardless of whether Scenario 1 or Scenario 2 applies. This

decrease reflects the importance of both nonlinear elastic effects (as parameterized by

WiUp) and the imposed boundary conditions (as parameterized by H/h) in determining

rearrangement to diverging flow; i.e. diverging flow is not noted in a channel of H/h = 1.

In contrast, WiDn,crit increases with contraction ratio, at least over a certain range of H/h.

Furthermore, WiDn,crit will not necessarily exhibit a monotonic dependence on H/h. These

considerations supported the use of the Weissenberg number defined in terms of upstream

flow conditions, WiUp, throughout this Chapter. A more detailed interpretation of the ori-

gin of the diverging flow phenomenon is given in §5.3.4.

5.3 Interpretation of Results

In §5.2, qualitative flow visualization studies and quantitative LDV measurements,

used to characterize the evolution of the flow field with increasing WiUp for a set of planar

contraction geometries, were described. These results are used in §5.3.1 to develop a uni-

fied picture of velocity field transitions in viscoelastic planar contraction flow which is

presented in the form of a transition map. Characteristic length and time scales of flow

structures after the transitions are identified and related to dimensions of the geometry in

§5.3.2. The "viscoelastic Girtler" scaling described in Chapter 2 is used in §5.3.3 to

understand the onset of instability in planar contraction flow in terms of the interaction of

elastic stresses oriented in the streamwise direction with streamline curvature. Finally, a

208



correlation between the onset of diverging flow and global, spatial flow transition is noted

in §5.3.4.

5.3.1 Flow Transition Map

The series of ordered flow transitions noted as WiUp was increased for a given contrac-

tion ratio are summarized in the transition map shown in Fig. 5.18a. The contraction ratio

for a given set of measurements is plotted as the abscissa; the critical upstream Weissen-

berg number for a given transition, WiUp crit, is plotted as the ordinate. 5 The 2:1 and 8:1

contractions exhibit a common transition sequence: two-dimensional rearrangement to

diverging flow, transition from two-dimensional to three-dimensional and steady flow, and

onset of time-dependent flow.

Transitions in the 2:1 and 8:1 Contractions

For contraction ratios of H/h = 2 and 8 the flow is two-dimensional and steady at low

WiUp. As WiUp is increased above a critical value, there is a change in the centerline

velocity profile; diverging flow upstream of the contraction plane and velocity overshoot

downstream of the contraction plane occur with an associated increase in the maximum

dimensionless centerline strain rate. As the flow rate is increased yet further, a supercriti-

cal bifurcation to three-dimensional and steady flow throughout the upstream region is

observed for the 2:1 and 8:1 contractions. For the case of the 2:1 contraction, wavenum-

ber-doubling behavior was detected at yet higher values of Wiup.

The next transition observed with increasing volumetric rate was a bifurcation to time-

dependent flow. As discussed in §5.2.2 the amplitude of the temporal oscillation of vz

grew continuously and monotonically with WiUp, consistent with the scaling of a super-

critical Hopf bifurcation. Transition via supercritical Hopf bifurcation implies that the

5. Error bars are indicated for the experimentally determined critical Weissenberg numbers (Wi)
for the transition to three-dimensional flow and for the transition to time-dependent flow in Figs.
5.18a and 5.18b (and in the subsequent Figs. 5.19a and 5.19b). The lower bound on the error bars
indicates the Wi at which the base state (two-dimensional or steady flow) was definitively
observed; the upper bound indicates the Wi at which the state to which transition is made (three-
dimensional or time-dependent flow) was definitively observed. The critical Wi predicted by the
square-root fit (cf. §5.2) is used for the symbol denoting onset of the instability when the value lies
between the bounds of the error bars. In cases where the square-root fit underpredicts the critical
Wi, the average of the bounds of the error bars is used for the symbol.
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Figure 5.18 Maps of transitions observed in viscoelastic planar contraction flow: (a) critical

WiUp vs. contraction ratio, H/h; (b) critical WiUp vs. upstream aspect ratio, W/2H. Experimentally

observed transitions are denoted: (*), onset of increase in maximum dimensionless centerline

strain rate with Wiup; (x) diverging flow; (0), transition from two-dimensional, steady base flow

to three-dimensional, steady flow; (0), transition from steady to time-dependent flow; (0), sec-

ondary spatial harmonics; (0) secondary spatio-temporal harmonics. Fits are denoted: (-),

transition from two-dimensional, steady base flow to three-dimensional, steady flow; (- - -),

transition from steady to time-dependent flow.
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Figure 5.19 Maps of transitions observed in viscoelastic planar contraction flow: (a) critical

WiDn vs. contraction ratio, H/h; (b) critical WiDn vs. upstream aspect ratio, W/2H. Experimentally

observed transitions are denoted: (*), onset of increase in maximum dimensionless centerline

strain rate with WiUp; (x) diverging flow; (0), transition from two-dimensional, steady base flow

to three-dimensional, steady flow; (0), transition from steady to time-dependent flow; (0), sec-

ondary spatial harmonics; (O) secondary spatio-temporal harmonics. Fits are denoted: ( ),

transition from two-dimensional, steady base flow to three-dimensional, steady flow; (- - -),

transition from steady to time-dependent flow.
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temporal oscillation (travelling waves) was superposed on the spatial oscillation (station-

ary waves). To understand this, consider the appearance of the time series if there were no

superposition and the waves associated with the spatial oscillation suddenly started to

move as a unit from the bounding wall at X = +32 toward the center of the flow; a sudden

jump, not a gradual increase, in the amplitude of temporal oscillation would be observed at

a given point in space. Videotaped streakline images in the xz-plane of the 2:1 contraction

were studied; there were indications that the spatio-temporal structure after onset of the

temporal instability was more complex than that of a single set of waves travelling at a

uniform velocity in the x-direction. However, the precise spatio-temporal structure could

not be determined from these streakline images.

The flow visualization observations of the temporal instability described in §5.2.1 for

the 8:1 contraction indicated that the "vortex bundles" travelled from the walls of the

geometry toward the center of the flow; no underlying stationary wave pattern was

observed. However, streakline visualization may not detect low amplitude oscillations

near onset. Only images of the central region of the flow, -23 < X < 23, could be acquired.

Since the amplitude of the temporal oscillation was greatest near the bounding walls (X =

±32), the flow visualization technique may not have been capable of resolving superposed

temporal and spatial waves near onset of the temporal instability. The observation via

light sheet visualization in the 8:1 contraction of moving streamline bundles (cf. Fig. 5.5),

without an underlying stationary pattern, is probably a result of the WiUp being substan-

tially greater than the critical value for onset of temporal instability, so that large ampli-

tude travelling waves dominated over low amplitude stationary waves.

Flow Transitions in the 32:1 Contraction

At low WiUp the flow was steady and two-dimensional in the 32:1 contraction. As the

WiUp was increased above a critical value an increase in the maximum dimensionless cen-

terline strain-rate was observed. However, diverging flow was not noted; the strain rate

was positive at all points on the centerline upstream of the contraction plane. The absence

of diverging flow is discussed in §5.3.4.

At yet higher WiUp a direct transition from globally steady, two-dimensional flow to

three-dimensional, time-dependent flow was found. This essential difference in the transi-
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tion sequence from that observed for the 2:1 and 8:1 contractions is attributed to the low

upstream aspect ratio, W/2H = 1. Specifically, the width of the geometry may have been

too narrow for the steady, three-dimensional flow, characterized by oscillation of vz in the

x-direction, to "fit into"; this is addressed in §5.3.2 below. Alternately, as discussed in

§5.2.3, it is possible that onset of the temporal flow transition is the result of an interaction

between the local flow transition noticed at the bounding wall, x = +32, and the global

flow field. For high upstream aspect ratios, the local vortex at the wall would have to grow

substantially, requiring high WiUp, before being able to interact with the entire flow field.

In contrast, for low upstream aspect ratio, only a small amount of growth of this bounding

wall vortex would be required, resulting in low WiUp for onset of the temporal instability.

Hence, for the 32:1 contraction the extreme case of unit aspect ratio induces onset of the

temporal oscillations before onset of steady, spatial oscillations. This view is supported by

LDV measurements which indicated that the amplitude of the temporal oscillation was

greatest near the bounding wall at X = -32 and weakest near the center of the flow (x = 0).

At elevated flow rates, onset of harmonics in the frequency spectrum was noted. As dis-

cussed above, the harmonics were believed to occur via spatial wavenumber doubling of

the wave structure and not doubling of the rate of wave propagation in the x-direction.

Summary of Transition Map

The map in Fig. 5.18a illustrates that there are commonalities in the sequence of tran-

sitions which occur for increasing WiUp for different contraction ratios; however, the criti-

cal values of WiUp for these transitions decrease with increasing contraction ratio. Note in

Fig. 5.18a that the ratio of critical onset values, Wiup T/WiUp S, decreases between the

contraction ratios 2:1 and 8:1 and apparently decreases to a value less than unity (no three-

dimensional, steady-state flow was observed) for the 32:1 contraction.

The critical value for onset of the spatial instability, WiUp s, appeared to be directly

related to the ratio of upstream to downstream half-height, H/h. This is addressed in

greater detail in §5.3.3 where the scaling relation is applied which considers how stream-

line curvature and streamwise elastic stress interact to induce flow transitions. On the

other hand, onset of the temporal flow transition was thought to be more closely related to

the upstream aspect ratio, W/2H. The WiUp Crit for the transitions is plotted as a function

213



of aspect ratio in Fig. 5.18b; the dependence of the WiUp Crit on aspect ratio is considered

in §5.3.3.

Transition Map in Terms of WiDn

The transition map was also plotted as the critical Weissenberg number defined in

terms of downstream flow parameters, WiDn Crit, as a function of contraction ratio or

aspect ratio in Figs. 5.19a and 5.19b. The transition from two- to three-dimensional flow is

considered first, the transition from steady to time-dependent flow is then discussed. Note

from Fig. 5.19a that the critical Weissenberg number defined in terms of the mean down-

stream shear rate for the spatial transition, WiDn S, increases by a factor or order two as the

contraction ratio increases from H/h = 2 to H/h = 8. This behavior may be contrasted with

the decrease by a factor of four of Wiup s for the same increase in contraction ratio (cf.

Fig. 5.18a). Thus, when the range is defined in terms of WiDn S, the curve associated with

the spatial transition appears "flatter" than when the upstream Weissenberg number is

used. Note, however, that whereas Wiup s decreases with contraction ratio in Fig. 5.18a,

WiDn S increases with contraction ratio in 5.19a. In §5.3.3 the relation of the critical Weis-

senberg number for the spatial transition to the streamline curvature around the outer cor-

ner which is induced by the greater-than-unity contraction ratio, H/h > 1, is discussed.

Consideration of the streamline-curvature interaction leads to the expectation that for

increased curvature the critical Weissenberg number will decrease. The observation that

the Weissenberg number decreases when defined in terms of upstream parameters (cf. Fig.

5.18a) but not when defined in terms of downstream parameters (cf. Fig. 5.19a) supports

the use of the upstream Weissenberg number, WiUp, throughout this Chapter.

The critical value for transition from steady to time-dependent flow, WiDn T, shown in

Fig. 5.19a, appears insensitive to contraction ratio, i.e. "flat". In contrast, WiUp T for the

temporal transition exhibits a strong dependence on contraction ratio, between H/h = 2 and

H/h = 8 the onset parameter decreases by a factor of nearly eight. Superficially, this obser-

vation appears to indicate that the transition to time-dependent behavior is controlled by

the parameter WiDn. However, as discussed in §5.2.3, the temporal transition appears to be

related to flow conditions induced by the presence of a wall bounding the x-dimension of

the upstream channel. In this case, the appropriate Weissenberg number could be defined
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in terms of the characteristic shear rate in the region near the centerplane, immediately

adjacent to the wall bounding the x-dimension, and close to the contraction plane;

Yxz, w - Yxz(X = +32, a) = 0, r =-1). Since the width of the channel, W, and the half-

height of the downstream channel, h, were fixed for all the experiments, the shear rate

Yxz, w is approximately proportional to the mean downstream shear rate, (vz)/h. There-

fore, the flatness of the curve describing the temporal transition in Fig. 5.19a does not nec-

essarily imply that downstream flow conditions control the spatial transition. Rather, this

flatness may be related to a critical value of the wall shear rate, Yxz, w, and the particular

geometry used for these experiments, in which the ratio of width to downstream half-

height was constant, W/2h = 32.

5.3.2 Characteristic Length and Time Scales of Flow Structures

Characteristic length scales were associated with rearrangement to diverging flow and

spatial transition to three-dimensional flow. These length scales were in turn related to

geometric parameters of the planar contraction, as discussed below. A characteristic time

scale was noted for the temporal oscillation; however, this time scale could not be related

to specific parameters of the flow or fluid rheology (e.g. the Xk's of the relaxation spec-

trum).

A length scale was associated with the diverging flow described in §5.2.4 by determin-

ing the distance of the point of minimum velocity on the centerline from the contraction

plane at ý = 0. In Fig. 5.20, the dimensionless distance is plotted as a function of WiUp for

flows through the 2:1 and 8:1 contractions. The point of minimum velocity in the diverg-

ing flow is found to be located a distance of the order of the upstream half-height, H, in

front of the contraction plane. Data for the 32:1 contraction could not be plotted in Fig.

5.20 because no minimum was seen; the velocity continuously decreased with distance

upstream from the contraction plane, out to the farthest point which could be probed, ý = -

40. Note that location of the minimum at ý < -40 is consistent with the distance scaling

with upstream half-height, H.

In Fig. 5.21, the wavenumber of the spatial oscillation after flow transition, made

dimensionless with the upstream half-height, is plotted as a function of WiUp for the 2:1
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Figure 5.20 Distance of the point of minimum centerline velocity, (vz min)l,

upstream of the contraction plane vs. WiUp after onset of diverging flow: ( A) 2:1 contrac-

tion; (0) 8:1 contraction.
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Figure 5.21 Dimensionless wavenumber, H/X x , vs. WiUp after onset of three-dimen-

sional flow: (E) primary peak for the 8:1 contraction, streakline visualization data used;

primary ( A) and secondary ( ) peaks for the 2:1 contraction, LDV data used, scans per-

formed over range -26 • X < -1.5 u = -1.75, ý = -1.80.
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and 8:1 contraction ratios. For the 8:1 contraction, the dimensionless wavenumber

increased with WiUp; for the case of the 2:1 contraction, no significant dependence of

wavenumber on WiUp was noted. Above a critical WiUp, before onset of time-dependent

flow, doubling of the spatial wavenumber in the 2:1 contraction was observed. Period

doubling in the 8:1 contraction was not observed, probably because the wavenumber was

estimated through analysis of videotaped streakline images, not LDV. The dimensionless

wavenumber of the primary peak is of the same order for both the 2:1 and 8:1 contraction

ratios, H/Ax = 0.7. As mentioned in §5.2.2, and discussed in §5.3.3 a three-dimensional

and steady flow state was not noted for the 32:1 contraction.

The characteristic frequency of the temporal oscillation is shown as a function of WiUp

for the 2:1 and 32:1 contraction ratios in Fig. 5.22. The time-series data used to determine

the frequency associated with each data point was acquired with the LDV measuring vol-

ume placed approximately half-way between the center of the flow and the bounding wall

of the channel: at X = -20 for the 2:1 contraction, and at X = -21 for the 32:1 contraction.

The data in Fig. 5.22 indicate only a weak dependence of frequency on contraction ratio:

the frequency of oscillation in the 2:1 contraction is higher than the frequency in the 32:1

contraction, but the frequency in both contractions was of the same order. Note that the

period associated with the oscillation was Tp = 180 [s] for the 2:1 contraction and Tp = 340

[s] for the 32:1 contraction - in both cases much greater than the estimated zero-shear-rate

relaxation time of the test fluid, X10 = W10/2%l0 - 1 [s] (cf. Chapter 4). No trend of the fre-

quency increasing or decreasing with WiUp, for a given contraction ratio, was observed.

Data for the 8:1 contraction is not shown since LDV measurements were not taken; data

was obtained via analysis of videotaped streakline images. As discussed above, flow visu-

alization is limited in its ability to obtain quantitative information near instability onset.

5.3.3 Mechanism Driving Transition in Viscoelastic Planar Contraction Flow:
Interaction of Streamwise Elastic Stress with Streamline Curvature

Consideration of structural features of the flow transitions and the scaling of onset

WiUp with contraction ratio has elucidated the mechanism of viscoelastic instability in the

planar contraction. In particular, these features were consistent with the interaction of

streamwise elastic stress with streamline curvature around the outer corners of the planar
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Figure 5.22 Frequency (v) vs. WiUp after onset of time-dependent flow: ( A), 2:1 con-

traction, vz vs. t series acquired at X = -20.0, a = -1.75, r = -1.80; (0), 32:1 contraction,

Vy vs. t series acquired at X = -21.0, a = -1.51, = -1.51.
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contraction acting to induce flow transitions. The first part of this Section considers struc-

tural features of the flows, the second, application of the "viscoelastic Gbrtler" scaling to

the flow transitions.

Shear flow rheological characterization of the Boger test fluid indicated that the fluid

had a high zero-shear-rate relaxation time of A10 > 1 [s]. Inertia was negligible, ReDn <• 7

x 10-4, for all the flows investigated, whereas elastic memory or nonlinear effects could

influence the flows, since WiUp as great as 1.8 were attained. Therefore, although some

structural features of the flow after onset of instability resemble those of G6rtler vortices

(Saric, 1994), the transitions were induced by the "elastic", not inertial, character of the

flows.

The characteristic length scales of flow structures indicate that the transitions were

driven by interaction of elastic stresses in the streamwise direction with streamline curva-

ture in the upstream region of the flow. Specifically, the extent of the oscillations associ-

ated with the flow transitions upstream of the contraction plane, as indicated by the

reattachment length of the outer corner vortex adjacent to the fast flow region, was of the

order of the upstream half-height, H. The wavelength of the spatial oscillation was quan-

titatively characterized via LDV scans in the neutral x-direction and found to scale with

upstream half-height. The characteristic dimensions of the oscillation in the x- and in the

z-directions indicate the relation of the flow transition to streamline curvature in the flow

around the outer corner, rather than around the reentrant corner.

The spatial structure of the flow after onset of the instability bore resemblance to vis-

cometric flows for which it has been concluded that interaction of streamwise normal

stresses with curved streamlines drives the instability (Joo and Shaqfeh, 1994; McKinley

et al., 1996). More detailed comparison of the instability noted in the viscoelastic flow

through the planar contraction with instabilities found in other complex and viscometric

flows follows in §5.4 below.

In Chapter 2, a number of successful applications of the "viscoelastic G6rtler" scaling

(McKinley et al., 1996) to transitions observed in viscometric and non-viscometric flows

were described. These examples serve to motivate the application of the scaling to the
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"elastically-driven" instabilities in the planar contraction, in particular, the experimental

data which were presented in the form of a transition map (cf. Figs. 5.18a and 5.18b).

Equation (2.3) is the starting point for the analysis; each term on the left side of the

equation must be considered. As discussed above, the upstream half-height, H, is the

characteristic length scale for the extent of the spatial oscillation upstream of the contrac-

tion plane and the wavelength of the oscillation; therefore, the flow transition seems to be

related to streamline curvature around the outer corner of the contraction. Hence, it is nat-

ural to use the upstream flow conditions to define the terms in eq. (2.3).

In the first term, the curvature, 1/Rc, must asymptotically approach zero as the contrac-

tion ratio approaches unity, H/h -- 1; this limit is equivalent to fully developed Poi-

seuille flow in a channel, where "elastically-driven" instabilities do not occur. As H/h

increases, the dimensionless curvature, H/R c, of the streamlines around the outer corner of

the contraction is expected to increase. A simple expression which captures this behavior

is

H _ H 1H B
H = AH 1 ) (5.6)

where A and B are constants which are greater than zero. The velocity, U, and shear rate,

,, terms are related to upstream flow conditions as

U Q
= ( )Up = -HW (5.7)

where W is the x-dimension of the geometry and Q, the volumetric flow rate. This shear

rate is used in the evaluation of the polymeric relaxation time, •1 p, and the streamwise

polymeric stress, rllp. The expression for the critical condition for onset of instability in

the planar contraction can then be rewritten in terms of a critical upstream shear-rate-

dependent Weissenberg number, WiUp (defined in §5.1) as
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WiUp, crit- MVG l 2 ) h(5.8)

Since A and MVG are both unknown, they can be combined into a single term,

S = MVG -T2 . Equation (5.8) can then be rewritten as

2-B/2

WiUp, crit = Sh I (5.9)

Experimental data for the critical upstream Weissenberg number, WiUp S, associated with

the spatial flow transition in the 2:1 and 8:1 contractions have been presented in Sections

5.2.2 and 5.3.1 and are used to fit the unknown parameters in eq. 5.9. Specifically, a good

match between eq. 5.9 and the data was obtained with Ss = 0.44 and Bs/2 = 0.64, as shown

in Figs. 5.18a and 5.18b. Thus, eq. 5.9 has the correct functional form to describe the rela-

tion between the contraction ratio and Wiup s-

The conditions governing transition to time-dependent flow may be more complex

than those controlling onset of three-dimensional, steady flow. As discussed above, a

local flow transition near the wall bounding the x-dimension seems to play a role in the

onset of the temporal transition; the vortex structure associated with this local transition

scales with the downstream half-height, h, rather than the upstream half-height, H. The

upstream aspect ratio, W/2H, in addition to the contraction ratio, HIh, may determine the

WiUp T for transition to time-dependent flow. Nevertheless, eq. (5.9) provides a good fit to

the data for the critical Wiup for transition to time-dependent flow in the geometries with

contraction ratio H/h = 2, 8, and 32, as shown in Figs. 5.18a and 5.18b. The fitted parame-

ters had values of ST = 1.4 and BT/2 = 1.1; the root mean square of the fractional error of

the fit was ±3%.

One can note from Fig. 5.18a that if the fit to the spatial transition data is extrapolated

to higher contraction ratios the neutral stability curves for the predicted spatial (two-

dimensional to three-dimensional flow) and temporal (steady to time-dependent flow)

transitions intersect at a contraction ratio of (H/h)sT = 15. In the experiments, the contrac-

tion ratio was adjusted by varying the upstream channel half-height for a fixed down-

stream half-height. Hence, an increase in the contraction ratio results in a decrease in the
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upstream aspect ratio. In Fig. 5.18b it is shown that the point of intersection of the neutral

stability curves corresponds to an upstream aspect ratio of (W/2H)sT = 2.1. In §5.3.2, the

dimensionless wavenumber for the 2:1 and 8:1 contractions was determined to be approx-

imately H/x = 0.7. Using this wavenumber, one can determine the number of wavecycles

which would fit into the half-width of a geometry with an upstream aspect ratio of two; W/

(2kx) = 1.5 - 1 is obtained. It is interesting that approximately one wave cycle of the spa-

tial oscillation would fit into the half-width of the geometry with a contraction ratio such

that WiUp is identical for onset of the spatial and temporal instabilities, WiUp S = WiUp T-

This supports the concept that transition to time-dependent flow is related to a three-

dimensional imperfection introduced by the wall bounding the x-dimension. In particular,

the base flow may make a direct transition to time-dependent flow in the 32:1 contraction

since a full cycle of the spatial oscillation cannot fit into the half-width of the upstream

channel.

It is interesting to speculate on the nature of the nonlinear dynamics at onset of insta-

bility for flow through a geometry in which the critical WiUp for the transition to spatial

and the transition to temporal oscillation are nearly identical. Specifically, a bifurcation of

codimension-2 exists at the point where the neutral stability curves for the spatial and the

temporal transitions intersect on the transition map (cf. Figs. 18a and 18b); i.e. at H/h = 15

(or W/2H = 2.1) and WiUp = 0.08. To achieve a bifurcation of codimension-2, two control

parameters, in this case H/h (or W/2H) and WiUp, must be tuned to specific values. A

dynamical system in the vicinity of a codimension-2 bifurcation can exhibit behavior

which is essentially different from that observed near the individual neutral stability

curves which intersect at the codimension-2 point. For example, a system may behave

quasiperiodically or even chaotically when control parameters are nearly equal to values

associated with the codimension-2 bifurcation, even if such behavior does not occur for

either of the individual neutral stability curves (Guckenheimer and Holmes, 1983). A

wider ranging discussion of the nature of flow transitions in viscoelastic flow through the

planar contraction is deferred to §5.5.
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5.3.4 Correlation between Onset of Diverging Flow and Flow Transitions

As shown in Figs. 5.18a and 5.18b for the 2:1 and 8:1 contractions, onset of three-

dimensional, steady flow occurs for a WiUp immediately greater than the WiUp for which

an increase in the maximum dimensionless centerline strain rate with WiUp is noted. As

discussed in §5.2.2, a global transition to three-dimensional flow, distinct from the transi-

tion to time-dependent flow, was not noted for the case of the 32:1 contraction. However,

the critical WiUp for direct transition from two-dimensional, steady to three-dimensional,

time-dependent flow in the 32:1 contraction is greater than the critical WiUp for onset of

increasing centerline maximum dimensionless strain rate with Wiup. Hence, the relation

between flow transition and the dependence of peak strain rate on Wiup for the case of the

32:1 contraction is consistent with the relation observed for the 2:1 and 8:1 contractions.

It is possible that the two-dimensional flow rearrangement associated with the diverg-

ing flow promotes onset of the three-dimensional and steady instability. In particular,

visualization of flow in the yz-plane indicates that after onset of diverging flow, the

streamlines near the outer corner become more tightly curved. A smaller characteristic

radius of curvature of the streamlines in conjunction with an increase in the local strain

rate, associated with shift of the streamlines toward the contraction plane, may allow the

critical "viscoelastic G6rtler number", MVG, (cf. eq. (2.3)) for onset of the instability, to be

exceeded for a lower volumetric flow rate than if this two-dimensional streamline rear-

rangement did not first occur. This could explain why the critical Weissenberg number for

transition to three-dimensional flow is immediately greater than the critical WiUp for onset

of diverging flow.

5.4 Comparison of Viscoelastic Instabilities in the Planar Contraction
with Instabilities in Other Flow Geometries

In §5.3, a map of the ordered series of flow transitions in the planar contraction was

presented; the spatio-temporal flow structure associated with these transitions was charac-

terized. Common spatial and temporal features of the instabilities in flows through geom-

etries of different contraction ratios were noted and used to identify the interaction of

streamwise stress with streamline curvature as the ("viscoelastic G6rtler") mechanism
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which drove the transitions. The role of the contraction ratio in setting the critical WiUp

for transition from the two-dimensional, base to the three-dimensional flow was eluci-

dated; the scaling of characteristic lengths in the velocity field with the upstream half-

height was presented.

In this Section, the characteristics of flow transitions in the planar contraction noted in

this study are contrasted with the results of previous investigations. Only aspects of prior

studies essential for the comparison are presented; note that a detailed and comprehensive

review of the literature is given in Chapter 2. Comparison of the findings of this study with

published observations for viscoelastic planar contraction flow are discussed first. Com-

mon features of flow transitions in the planar contraction with velocity field evolution and

structure in the axisymmetric contraction are then described. Other complex flows are

considered; these differ substantially in geometry from the planar contraction, but the flow

transitions are also thought to be driven by the interaction of streamwise elastic stresses

with streamline curvature. Comparison between flow transitions noted in the planar con-

traction with those found in viscometric flows is then made; one may note that viscometric

flows, which have a simple base flow structure, are amenable to analytical mathematical

treatment. The nature of flow transitions observed in different systems of viscoelastic flow

with curved streamlines is summarized at the end of this Section.

Planar Contraction Flows

Diverging flow has been observed in several investigations of viscoelastic flow

through the planar contraction (Binding and Walters, 1988; Evans and Walters, 1989;

Chiba et al., 1990; Chiba et al., 1992). This two-dimensional flow rearrangement was

observed to precede the onset of spatial instability, which is consistent with the findings

presented in Sections 5.2 and 5.3.

Chiba et al. (1990, 1992) observed a three-dimensional "Gdrtler-like" flow pattern

with the same form as that described in §5.2. However, the dimensionless wavelength of

the velocity field, Xx/H, was found to depend on contraction ratio, H/h; in contrast, the

study presented in this Chapter found the dimensionless wavelength to be independent of

contraction ratio. Chiba et al. (1990, 1992) also noted transition to time-dependent flow at

volumetric rates above those associated with inception of three-dimensional, steady flow.
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However, Chiba et al. found that the vortex pairs oscillated in the neutral direction about a

fixed point rather than continuously moving from the walls bounding the x-dimension

toward the center. A possible cause for the discrepancies between the observations of this

study and those of Chiba et al. was the fact that inertia was a significant factor in the flows

used in the investigation of Chiba et al. For example, ReDn(y) - 0(100) at onset of time-

dependent flow in the 10:1 contraction. In general, at volumetric rates for which "elastic-

ity" had a substantial effect on the flow field, Wi > 1, shear-thinning of the fluid viscosity

resulted in Re > 1. The interaction of inertial with "elastic" phenomena can give rise to

essentially different behavior from that observed under inertialess conditions (Joseph,

1990).

Axisymmetric Contraction Flows

The transition sequence and spatio-temporal structure of flow transitions observed in

the planar contraction can be compared with observations in an analogous two-dimen-

sional abrupt geometry, the axisymmetric contraction. Diverging flow, and an associated

increase in the peak value of the dimensionless centerline strain rate, has been noted in the

axisymmetric contraction (McKinley et al., 1991). The scaling of the extent of the diverg-

ing flow region was different, specifically, the distance of the point of minimum centerline

velocity upstream from the contraction plane increased monotonically, although not lin-

early proportionally, with upstream tube radius, Rup. In contrast, for the planar contraction

flow, the location of the point of minimum centerline velocity upstream of the contraction

plane was linearly proportional to the upstream half-height, H (cf. §5.2). Diverging flow

was observed only for lower axisymmetric contraction ratios RUpRDn <- 5 by McKinley et

al. (McKinley et al., 1991) but was observed for contraction ratios at least as great as H/h

= 8 in the planar contraction flow study presented in this thesis. A rationale addressing

why diverging flow is observed at higher contraction ratios for the planar than for the axi-

symmetric geometry was given in Chapter 2. As found in the planar contraction, in the

axisymmetric contraction two-dimensional rearrangement to diverging flow was observed

to precede transition to three-dimensional flow.

The quantitative characterization of flow transitions in the axisymmetric contraction,

conducted by McKinley et al. (1991) was discussed in Chapter 2. Essential aspects of this
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study, required for the following contrast with the flow transitions observed in the planar

contraction, are reiterated here. McKinley et al. constructed a transition map of flow states

in the axisymmetric contraction for a range of Weissenberg number and contraction ratios.

At elevated flow rates, a transition from steady to time-dependent flow was observed. For

lower contraction ratios, RUpRDn _< 4, the vortex remained axisymmetric but grew and

decayed with a characteristic frequency (pulsating mode). In contrast, for RUpRDn 2 5 the

unstable vortex was nonaxisymmetric; as also noted by Binding and Walters (1988), in the

rz-plane the outer corner vortex in one half of the plane was larger than in the other half.

The nonaxisymmetric structure precessed around the perimeter of the cylinder with a char-

acteristic frequency (rotating mode).

A parallel between the rotating-mode flow in the axisymmetric contraction and the

time-dependent flow in the planar contraction, which consisted of vortices travelling in the

"neutral" x-direction, can be made. Specifically, imagine splitting the upstream tube of

the axisymmetric geometry into two halves, 0 < 0 < i [rad] and 0 < 0 < -x [rad],

"unwrapping" these halves, and opposing the halves. A precessing vortex structure would

equate to a large vortex travelling along one (call this the "top") of the halves of the map-

ping, opposed by a small vortex on the other ("bottom") half. In the middle of the tempo-

ral cycle, the large vortex will leave the "top" half and travel along the "bottom" half,

opposed by a region with a small vortex on the "top" half. This picture resembles the

time-dependent flow observed over a region spanning one wavelength in the "neutral" x-

direction in the planar contraction: a region of fast flow, associated with a large vortex on

one side of the centerplane, travels in the x-direction and is opposed by a region of slow

flow with a small corner vortex. Halfway through the temporal cycle, the pattern is

repeated, but this time on opposite sides of the centerplane.

An essential difference in the flow-transition sequence observed in the axisymmetric

contraction from that found for the planar contraction is that in the axisymmetric case a

three-dimensional, steady flow state is not observed. Full understanding of the structure

of the transition map of the axisymmetric contraction and why it differs from the map for

the planar contraction will probably require detailed three-dimensional and time-depen-

dent numerical simulations. However, it is interesting to consider how a conflict in the

axisymmetric contraction between required flow symmetry and the wavelength set by a
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characteristic length scale may induce a direct transition from the two-dimensional, base

state to the time-dependent, rotating-mode flow pattern.

Following the analogy between the 6-coordinate in the axisymmetric case and the x-

coordinate in the planar contraction, the circumference (Cup) of the upstream tube in the

axisymmetric contraction is analogous to the width in the planar contraction. Thus, for the

axisymmetric contraction the upstream "aspect ratio" is fixed at Cup/2 RUp = T. For the

three-dimensional flow state to be steady it must have an integer number of spatial cycles,

Ncyc, around the circumference of the tube; the dimensionless wavelength at the perimeter

of the upstream tube is then X&/RUp = 2n/Ncyc. In §5.3.2, it was noted that the wavelength

of the three-dimensional flow in the planar contraction was hx/H = 3/2. If the same

wavelength, made dimensionless with the upstream tube radius, Rup, were present in the

axisymmetric contraction one would obtain a symmetry number of Ncyc = 4T/3 - 4. How-

ever, note that in the planar contraction, a "fast" region of flow with an associated large

outer vortex is opposed by a "slow" region of flow with a small or absent outer vortex on

the other side of the centerplane. For the three-dimensional flow in the axisymmetric

contraction to have similar form (as is indicated by streakline images (Binding and

Walters, 1988; Nguyefi and Boger, 1979)), a "fast" region of flow would be opposed by a

"slow" region located in [rad] away in the 6-direction. The instability is then required to

have an odd symmetry number. The discrepancy between the wavenumber which would

be set by the upstream radius (Ncyc - 4) and the required symmetry number (Ncyc = odd)

may result in a steady, three-dimensional flow being inherently unstable and consequently

a direct transition from two-dimensional, steady to three-dimensional, time-dependent,

rotating-mode flow. In support of this reasoning is a similar conflict between a characteris-

tic wavelength and a constraint on the number of wavecycles, which may exist in the pla-

nar contraction. Specifically, as described in §5.3.2, for contraction ratios of low upstream

aspect ratio, W/2H < 3/2, a three-dimensional flow pattern of characteristic wavelength Xx/

H = 3/2 will not be able to fit into the half-width, W/2. Consequently, a direct transition

from two-dimensional and steady to three-dimensional and time-dependent flow is

observed.

For particular values of Wi, contraction ratio, and upstream aspect ratio, the three-

dimensional, time-dependent flow fields in the planar and in the axisymmetric contraction
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are analogous; however, there are distinct differences between the boundary conditions of

and the flow transitions seen in the axisymmetric and planar contraction geometries. As

discussed in §5.2.3, the walls bounding the x-direction in the planar contraction act as an

imperfection to the fully developed two-dimensional base flow. This imperfection was

thought to play a key role in inducing onset of the time-dependent flow. Hence, time-

dependent flow may not be an integral feature of a "perfect" two-dimensional planar con-

traction flow. Note that in the planar contraction, the upstream aspect ratio, W/2H, and the

contraction ratio, H/h, can, in principle, be independently varied. In contrast, the upstream

"aspect ratio" in the axisymmetric contraction, CUp/2Rup = 7c, is a fixed quantity; con-

straints imposed on the number of wavecycles and the symmetry are inherent to the geom-

etry. This characteristic may preclude observation of a three-dimensional, steady state.

Furthermore, because of the axisymmetric symmetry, there are no "preferred" locations

(e.g., at bounding walls) in the "neutral" 0-direction where time-dependent oscillations are

particularly large.

In the planar contraction, differences in the flow transition sequence among the vari-

ous planar contraction geometries investigated were ascribed to variations in upstream

aspect ratio, W/2H. The contraction ratio, H/h, was thought to influence the WiUp Crit for a

given flow transition, but not the order or the essential spatio-temporal structure of the

transition flow states. In contrast, for the axisymmetric contraction, variation of the con-

traction ratio, H/h, caused essential differences in transition sequence and spatio-temporal

structure; i.e., pulsating mode at low RUp/RDn versus rotating mode at high RUp/RDn. The

upstream "aspect ratio" of the axisymmetric contraction cannot be a governing parameter

since it is a fixed quantity, Cup/2 Rup = n. One could speculate that the dependence of spa-

tio-temporal structure on contraction ratio observed in the axisymmetric geometry is a

consequence of the difference in circumference of the upstream and downstream tubes,

specifically CUp/CDn = Rup/RDn; in contrast, in the planar contraction the width of the

upstream and downstream ducts is equal and independent of contraction ratio.

In McKinley et al. (1991), the bifurcation to axisymmetric and time-dependent flow

was not quantitatively characterized, precluding definitive classification. However, quali-

tative observation indicated that the bifurcation in the axisymmetric contraction flow was

probably supercritical (McKinley, 1997). This further supports the analogy between the
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fluid dynamics of viscoelastic flow through the axisymmetric contraction and through the

planar contraction. In the planar contraction flow both the spatial transition from two-

dimensional to three-dimensional flow and the temporal transition from steady to time-

dependent flow were associated with supercritical bifurcations.

Driven Cavity Flow

Pakdel and McKinley (1996) have observed a transition to three-dimensional and

time-dependent viscoelastic flow in the driven cavity. This transition was preceded by a

two-dimensional flow rearrangement: a shift of the elliptic point of the recirculation asso-

ciated with the base flow. Qualitative visual observation indicated that the spatio-temporal

structure of the instability was of the form of "Gdrtler-type" vortices. The "viscoelastic

Girtler" scaling presented in Chapter 2 was found to be valid, indicating that the interac-

tion of streamwise stress and streamline curvature was the driving mechanism.

A noteworthy parallel is that the dimensionless temporal period of the driven cavity

instability was of order T/X 1 (YUp) - 100, similar to the period of the temporal instabili-

ties observed in the planar contraction and discussed in §5.3.2. Pakdel and McKinley have

indicated that additional quantitative detail on the spatio-temporal structure of the driven

cavity instability is forthcoming, allowing for more detailed comparison.

Cylinder in Channel Flow

The transition sequence noted for the cylinder-in-channel flow (Byars, 1996; Ozetkin

et al., 1997; McKinley, 1991) resembled that observed for the planar contraction; i.e. two-

dimensional flow rearrangement followed by a supercritical bifurcation from two-dimen-

sional, steady flow to three-dimensional, steady flow and ultimately transition to three-

dimensional, time-dependent flow. Both the spatial and temporal structures of the insta-

bilities were similar to those observed in the planar contraction. The temporal instability

in the cylinder in channel flow differed from the instability in the planar contraction in that

the vortex pairs moved toward, rather than away from the walls bounding the "neutral" x-

dimension.
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Viscometric Flows

A "Gitrtler-type" instability has been observed in viscoelastic Couette cell flow (Lar-

son et al., 1990). The flow underwent a subcritical bifurcation from the base flow to a

three-dimensional state (Baumert and Muller, 1995); in contrast, a supercritical bifurca-

tion was observed in the planar contraction.

The behavior of the temporal instability observed in the Couette cell was substantially

different from that in the planar contraction. The temporal instability in the Couette cell

was a transient phenomenon; the flow eventually adopted a three-dimensional and steady

configuration (Baumert and Muller, 1995). In the planar contraction, after onset of the

time-dependent instability, the movement of the vortices was at a constant speed, in one

direction (from the bounding walls toward the center of the "neutral" x-direction); annihi-

lation of the vortices only occurred at the point where they met, in the center of the flow.

In contrast, in the Couette cell, the axial direction was divided into many "cells" in which

pairs of vortices were "born", collided, and were destroyed. Furthermore, Baumert and

Muller did not mention that for the unstable Couette cell flow the behavior near the walls

bounding the axial direction differed from that in the remainder of the gap. In contrast, the

bounding walls appeared to play a critical role in the planar contraction, setting the direc-

tion of movement of the vortices in, and probably influencing the critical onset value,

WiUp T, of time-dependent flow.

No evidence of transient nature of the temporal instability in the planar contraction

was noted. In the planar contraction the evolution of the flow at a given Wi was either

directly from the base flow to the steady and three-dimensional state or to the time-depen-

dent and three-dimensional state. None of the observations indicated that the three-dimen-

sional and steady state was preceded by a transient, time-dependent state. In the 8:1

contraction at WiUp = 0.23, well above the critical value of WiUp T = 0.17 ± 0.03, vortex

movement in the x-direction was observed for a total of 3.2 x 103 [s]; the flow did not "set-

tle down" to a steady state. Hence, while time-dependent behavior is a transient response

in the case of the Couette cell viscoelastic instability, it is a persistent state distinct from

the spatial instability in the case of the planar contraction flow.



"Gi~rtler-like" vortices were also noted in viscoelastic cone-and-plate flow (McKinley

et al., 1995). The base flow underwent a subcritical Hopf bifurcation to a time-dependent,

three-dimensional state. Unlike for the case of the Couette cell, the time-dependent flow

persisted and was not transient. The subcritical Hopf bifurcation noted in cone-and-plate

flow may be contrasted with the supercritical bifurcation observed in the planar contrac-

tion.

Summary of Viscoelastic Instabilities Observed in Flows with Curved Streamlines

In this Section, the transition sequences for viscoelastic flow through several different

geometries have been contrasted with the sequence observed in the planar contraction. A

common feature of the complex flows was that two-dimensional flow rearrangement pre-

ceded the transition to three-dimensional and/or time-dependent flow. As discussed here

and in Chapter 2, the velocity fields after transition had similar spatio-temporal structure;

i.e., the form of G6rtler vortices. A series of these counter-rotating vortex pairs was spaced

along a coordinate axis with no velocity gradient, the "neutral" direction. In all cases, the

transitions appeared to be driven by the interaction of streamwise stress with streamline

curvature. The "viscoelastic Gbrtler" scaling (cf. eq. (2.3)) has proven useful in identify-

ing this common mechanism. Of particular interest was the applicability of the "viscoelas-

tic Gortler" scaling to complex flows, such as in the driven cavity and in the planar

contraction, which are not amenable to analytical mathematical treatment (e.g., linear sta-

bility analysis). For the planar contraction, an empirical power-law relation between the

characteristic dimensionless streamline curvature (H/Rc) and a geometric parameter (con-

traction ratio, H/h) was used.

However, variation in boundary conditions among the flows considered above resulted

in distinct differences in the sequence of flow transitions with increasing Wi, the class of

bifurcation associated with the transitions, and the temporal structure of the flows after

transition. For example, in the planar contraction, the first transition was from two-dimen-

sional, steady to three-dimensional, steady flow, the second from steady to time-dependent

flow (for geometries with upstream aspect ratios substantially greater than unity). In con-

trast, in the axisymmetric contraction and in the cone-and-plate flows, the first transition

was from steady to time-dependent flow. Viscoelastic flow in the Couette cell showed an
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intermediate time-dependent state, which had long duration but was transient, before ulti-

mate transition to steady-state flow. The viscometric flows in the Couette cell and cone-

and-plate geometries exhibited subcritical bifurcations from the base state whereas the

complex flows in the abrupt contraction and cylinder-in-channel geometries underwent

supercritical bifurcations.

The characterization of instabilities observed in planar contraction flow, along with

results of previous investigations, has indicated a common driving mechanism and com-

mon spatio-temporal features of transitions in viscoelastic flow. However, substantial

work is still required before a unified framework for understanding the nature of transi-

tions induced by the interaction of streamwise elastic stress and streamline curvature can

be constructed.

5.5 Future Research Directions

The quantitative experimental results presented and discussed in Sections 5.2 and 5.3

support the concept that the interaction of streamwise stress with streamline curvature

induces transition to three-dimensional flow in complex flows, such as in the planar con-

traction. In this Section, future research is suggested to build on the work presented in this

Chapter and address the following issues: (1) more detailed information on the stress-cur-

vature mechanism which drives the transition to three-dimensional flow is required and (2)

the influence of three-dimensionality in the base flow, introduced by the wall bounding the

"neutral" x-dimension, on the flow transition sequence should be studied further. Both of

these avenues of research would use numerical simulation in conjunction with experi-

ments to extend the range of observed variables and accelerate the acquisition of data.

In viscometric flows, application of techniques such as linear stability analysis and

energy analysis have improved understanding of the mechanism through which the cou-

pling of the conformation of polymer molecules (modeled as dumbbells) to the macro-

scopic flow field can induce flow transition. Since flows through abrupt contractions are

not amenable to such analytical techniques, a more detailed understanding of the mecha-

nism which drives flow transition will require a numerical approach. The computational

simulation of flow transitions from two-dimensional and steady to three-dimensional and/
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or time-dependent states in complex flows remains a challenge. However, the increasing

availability of computational resources and the development of more efficient and accurate

algorithms should make such simulations possible in the near future.

By selectively varying parameters of the constitutive equation in such a simulation,

e.g. the modal relaxation times, insight will be gained into the relation between macromo-

lecular structure and instability onset. Specific information not attainable through experi-

ment can be acquired via these simulations. For example, detailed information on the

stress field may be obtained for a simulated three-dimensional flow; note that the flow

induced birefringence technique (cf. Chapters 2 and 6) is limited to two-dimensional, pla-

nar flows. Determination of the class of bifurcation associated with a given flow transition

via experimental means is often complicated by the difficulty of obtaining a sufficient

number of accurate data points near onset of instability; characterization of the bifurcation

is more readily achieved via numerical means. The experimental planar contraction flow

system is only approximately two-dimensional. The finite upstream aspect ratio affects the

flow transition sequence, as discussed in §5.3. In contrast, ideal two-dimensional bound-

ary conditions can be achieved in numerical simulations. Data for a range of boundary

conditions, e.g. different contraction ratios, can be acquired much more rapidly by compu-

tational than by experimental means. Note that three-dimensional, time-dependent numer-

ical simulations acts as a complement to, not a substitute for, experimental investigation of

viscoelastic flow through complex geometries. Specifically, the experimental data pre-

sented in this Chapter will play a crucial role in validating the accuracy of numerical sim-

ulations.

The experimental results presented in §5.2, and discussed in §5.3 have indicated that

the walls bounding the "neutral" x-dimension of the planar contraction geometry can act

as an imperfection to the nominally two-dimensional base flow and alter the essential

nature of the flow transition sequence. On the one hand, as mentioned in the preceding

paragraph, this additional complication can be an impediment to achieving detailed under-

standing of the mechanism driving the transition from the two-dimensional, steady base

flow to the three-dimensional, steady flow. On the other hand, such an imperfection can

give rise to a rich array of complex dynamics which present stimulating research opportu-

nities. Consideration of the influence of three-dimensionality in the base flow on the flow
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transition sequence is of practical, as well as theoretical, interest. An "expert system", use-

ful for the design and optimization of industrial polymer processes (cf. Chapter 1), must

be able to model three-dimensional, time-dependent flows.

The transition from the two-dimensional, steady base flow in the planar contraction is

thought to be driven by the interaction of streamwise stress with streamline curvature. This

implies that such a transition would be observed in an ideal, two-dimensional planar con-

traction flow. An imperfection in the form of finite, but large, upstream aspect ratio might

modify this transition but would not be expected to change its essential nature. In contrast,

the experimental results presented in this Chapter indicate that the upstream aspect ratio,

W/2H, plays an essential role in defining the critical conditions for transition from steady

to time-dependent flow. Supporting this idea is the observation that the amplitude of the

time-dependent oscillation was strongest in the vicinity of the wall bounding the "neutral"

x-dimension and weakest near the midpoint of the x-dimension.

The idea that the upstream aspect ratio is an important control parameter for the tem-

poral, but not for the spatial transition indicates that the transition map for viscoelastic

flow through a planar contraction of finite upstream aspect ratio is most appropriately rep-

resented in a three-parameter space. The upstream Weissenberg number (Wiup), the

upstream aspect ratio (W/2H), and the contraction ratio (H/h) are the independent parame-

ters which determine the flow state of the system and are each associated with a coordinate

axis of the space. Figure 5.23 shows a hypothetical transition map in this three-parameter

space for flow through the planar contraction which is consistent with the results presented

in Sections 5.2 and 5.3. The neutral-stability boundary for the spatial transition from two-

dimensional, steady base flow to three-dimensional, steady flow is represented as a two-

dimensional surface within this space; for Fig. 5.23 this "spatial transition surface" was

assumed to be independent of aspect ratio. The neutral-stability boundary identified with

the steady to time-dependent temporal transition is represented as a second surface; for

Fig. 5.23 this "temporal transition surface" was assumed to be independent of contraction

ratio. The intersection of the two neutral-stability surfaces defines a one-dimensional

curve on which a codimension-2 bifurcation occurs.
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Wiup

W/2H

Figure 5.23 Hypothetical representation of flow transition map for the planar contrac-

tion in three-parameter space: ((a), light gray plane) neutral-stability surface for spatial

transition from two- to three-dimensional steady flow; ((b), dark gray plane) neutral-sta-

bility surface for temporal transition from steady to time-dependent flow; ((c), M M -)

curve for codimension-2 bifurcation at the intersection of the neutral stability surfaces;

((d), M""MN*) projection of the experimental subspace onto the W/2H x H/h plane; con-

struction lines indicating the projection onto the WiUp x H/h plane of the intersection of

the experimental subspace with neutral stability surfaces ((e), -- - - --) and with the curve

representing the codimension-2 bifurcation ((f), -.. . ).
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In the experiments presented in §5.2 and discussed in §5.3, the upstream aspect ratio,

W/2H, and the contraction ratio, H/h, were simultaneously varied. The relation between

the two parameters was

(W/2H) =(W/2h) (5.10)
(H/h)

The downstream aspect ratio was constant throughout the experiments and is given as

(W/2h) = 32. Equation (5.10) defines a two-dimensional "experimental subspace",

which can be represented as a surface (invariant along the WiUp axis) in the three-dimen-

sional transition map. The intersection of the experimental subspace with a given neutral-

stability boundary described above is the one-dimensional subset of the boundary which

was probed in the experiments presented in §5.2. The projection of the one-dimensional

neutral-stability subsets onto the WiUp x H/h plane yields the two-dimensional transition

map shown in Fig. 5.18a; similarly, projection onto the WiUp x W/2H plane yields Fig.

5.18b.

The concept of a three-parameter transition map discussed above is consistent with the

experimental results presented in this Chapter but admittedly speculative. Moreover, the

form of the full three-parameter transition map outside of the "experimental subspace"

defined by eq. (5.10) can only be supposed. Nevertheless, the concept of a three-parameter

transition map provides guidance for the design of future experiments to conclusively

define the form of said map. Development of a complete three-parameter transition map

exclusively by experimental means would be extremely time consuming; the number of

possible combinations of the independent Wiup, H/h, and W/2H parameters which would

have to be probed is daunting. Three-dimensional, time-dependent numerical simulation

could facilitate the development of the map. Specifically, the flow state would be rapidly

determined via numerical means at a number of points in the (Wiup, H/h, W/2H) parame-

ter space; the neutral stability surfaces would be located. Experiments, performed for a

much smaller number of points in parameter space, would be used to check the accuracy

of the simulations. Certain regions in the three-dimensional parameter space of particular

interest for experimental study may be identified; two sets of experiments which would

answer specific questions are described here.
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1) A set of experiments could be conducted to verify that the neutral-stability surface

for the spatial transition (from the two-dimensional base state to three-dimensional, steady

flow) is only weakly dependent on the upstream aspect ratio. Specifically, the WiUp s

would be identified for a set of upstream aspect ratios while holding the contraction ratio

constant. This would be achieved by simultaneously varying the upstream and down-

stream channel half-heights.

2) In §5.3, it is noted that a codimension-2 bifurcation is likely to exist in the vicinity

of the point in parameter space with coordinates WiUp = 0.08, H/h = 15, and W/2H = 2.1.

The value of the upstream aspect ratio, W/2H, is interesting in that approximately one

cycle of the spatial oscillation could "fit into" the half-width of the geometry, W/2. It

would be interesting to determine whether the one-dimensional curve defining the location

of the codimension-2 bifurcation lies entirely within (or near to) the plane in parameter

space defined by W/2H = 2.6 For the set of experiments, the critical WiUp for the spatial

and temporal transitions would be determined for different contraction ratios, H/h, while

holding the upstream aspect ratio constant at W/2H = 2. This would be achieved by vary-

ing the downstream half-height, h, for a fixed upstream half-height, H.

In addition to these sets of experiments, designed to map the transitions in parameter

space, detailed characterization of the flow dynamics should be conducted for parameters

in the vicinity of the codimension-2 bifurcation. Of particular interest is whether the

dynamics are essentially different from behavior observed on the neutral stability surfaces

where the bifurcation has codimension-1. For example, the flow could exhibit complex

dynamics such as quasiperiodicity or chaos for control parameters in the vicinity of the

codimension-2 bifurcation (Guckenheimer and Holmes, 1983).

6. Note that because of the choice of the form of the two hypothetical neutral-stability surfaces,
shown in Fig. 5.23, their intersection, i.e. the curve associated with the codimension-2 bifurcation,
does not have W/2H constant. It must be emphasized that Fig. 5.23, although consistent with the
observations presented in §5.2, is a hypothetical representation intended only to facilitate visualiza-
tion of the concepts discussed in this Section.
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Chapter 6

Measurement of Centerline Stress and Velocity Fields
and Comparison with Predictions of Viscoelastic Consti-
tutive Models

This Chapter presents the measurements of the stress and velocity fields of fluid flow-

ing along the centerline of the planar contraction geometry. The experimental data are

used to develop a quantitative understanding of the elongational response of a viscoelastic

fluid in a transient shearfree flow. Limitations on the use of the test flow to evaluate the

accuracy of constitutive models are elucidated. In particular, it is shown that the centerline

flow in the planar contraction only probes the linear viscoelastic response of a fluid. Limi-

tations of the flow-induced birefringence (FIB) technique for acquisition of stress-field

information in the planar contraction flow also are discussed.

A brief review of the theoretical understanding of polymer molecular extension and

associated nonlinear behavior in elongational flows is given in §6.1. Constitutive models

used in this Chapter are briefly described and some aspects of the application of the flow-

induced birefringence measurement technique discussed. In §6.2 the experimental meth-

ods used in this Chapter are presented. In particular, experimental conditions were

selected to extend the range of the parameters of total Hencky strain and Weissenberg

number which have been attained in previously published investigations. In §6.3, the kine-

matic structure of the centerline flow is discussed in context of the effect on FIB measure-

ments. In particular, nonidealities and transitions in the flow are indicated and used to set

limits on where the FIB measurement may be directly interpreted in terms of stress.

Results of the investigation are presented in §6.4. The experimentally determined values

of the centerline velocity and stress fields are given and compared with predictions of lin-

ear and nonlinear constitutive models. In §6.5, it is shown that the form of the strain-rate

profile of flow on the centerline of the planar contraction is only capable of exciting a

weakly nonlinear viscoelastic response. The influence of the elongational response of the

fluid on the streamwise stress away from the centerline, and consequently on the critical

condition for transition from the base to three-dimensional flow is considered in §6.6.

239



Conclusions of the investigation presented in this Chapter and broader implications for the

study of elongational material properties of viscoelastic fluids are discussed in §6.7.

6.1 Theoretical Background: Configurational State of Polymer Mole-
cules in Elongational Flows

In this Section, theoretical background is provided which is useful in understanding

the results presented and discussed in Sections 6.4 and 6.5. In §6.1.1 a physical description

of polymer molecular extension in elongational flow is given; specific phenomena repre-

sented by the models used in Sections 6.4 and 6.5 are described. In §6.1.2 a brief descrip-

tion and contrast of the behavior of linear and nonlinear constitutive models in the context

of planar elongational flow is given. In §6.1.3 the relation of the flow-induced birefrin-

gence of polymer solutions to configurational states of the polymer molecules attained in

elongational flows is discussed.

6.1.1 Polymer Extension in Elongational Flow

Previous theoretical and experimental work provides a basis for understanding the

response of a polymer molecule to an elongational flow field. The nature of the response

is dependent on the state of entanglement of the polymer molecules. The better under-

stood case of dilute solutions is discussed first in this Section; the case of concentrated

solutions and melts is then addressed. The response of semidilute solutions, such as the

0.30 wt% P1B in PB test fluid used in this study, is less well understood than the limiting

cases of dilute and concentrated solutions. Nevertheless, semidilute solutions are expected

to exhibit behavior intermediate between the dilute and concentrated solution responses.

For a dilute solution, the configuration of a polymer molecule is determined solely by

its interaction with the flow field of a surrounding Newtonian solvent (Larson, 1988). At

equilibrium, the mean configurational state of the molecule resembles a ball. At low elon-

gational strain rates, the molecule is slightly perturbed, specifically it deforms into a pro-

late ellipsoid with the long axis oriented along the principal axis of the rate-of-strain

tensor. When the molecule becomes progressively more distorted with increasing elonga-

tional strain rate but retains an essentially ellipsoidal form, the molecule is described as
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being in the "coiled" state. At a critical strain rate there is a change in response of the mol-

ecule. As the molecule becomes more extended, the entropic restoring force which acts to

the return the molecule to its equilibrium "ball" state increases. However, the velocity dif-

ference between the ends of the long axis of the ellipsoid also increases as Avz = ELz,

where Lz denotes the length of the long axis of the ellipsoid which represents the poly-

mer, E is the strain rate, and Avz indicates the velocity difference. The increase in the

velocity difference results in a corresponding increase in the hydrodynamic force which

acts to stretch the ellipsoid. Once the critical strain rate is exceeded, the hydrodynamic

forces dominate over the entropic forces and the molecule elongates to a "stretched" state

in which the long axis of the ellipsoid approaches the contour length of the polymer mole-

cule (de Gennes, 1974; Larson, 1988). The value of the critical strain rate and the precise

configuration of a molecule in the "stretched" state is dependent on details of the constitu-

tive model. The simple Oldroyd-B model represents the polymer molecule as two beads

connected by a linear (Hookean) spring; this representation is often termed a Hookean

"dumbbell". Each of the "dumbbells" are surrounded by Newtonian solvent; this "dumb-

bell solution" is dilute, i.e., the "dumbbells" do not interact with each other. Because of the

linearity of the entropic restoring ("spring") force, once the critical strain rate is exceeded,

the molecule will stretch indefinitely.' More realistic models recognize that the restoring

force is nonlinear. The nonlinear restoring force in the FENE-P model ensures that the

extension of the "dumbbell" is less than the finite contour length of the polymer chain.

Specifically, as the polymer molecule approaches a fully extended configuration, the non-

linearity in the restoring force becomes more pronounced; attainment of a fully stretched

configuration would require imposition of an infinite force (Bird et al., 1987b).

More sophisticated dilute solution models represent the polymer molecule more realis-

tically than as a "dumbbell". An example is consideration of the effect of intramolecular

shielding of the polymer chain in the interior of the molecule from the flow field. De

Gennes (1974, 1979) theoretically investigated the transition of a polymer molecule from

1. For the upper convected Maxwell model, the constitutive equation has the same for m as that of
Oldroyd-B, but the contribution of the solvent to the total stress tensor is excluded. Note that a con-
stitutive model with more that upper convected Maxwell mode, plus a solvent mode, is referred to
as a "multimode upper convected Maxwell plus solvent" or simply a "multimode upper convected
Maxwell" model.
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Figure 6.1 Coil-stretch transition in an elongational flow. The reduced extension, r/Lcontou r, is

shown as a function of the strain rate. C indicates the coiled state of the molecule, S, the stretched

state, and P, an unstable state. Estretch indicates the critical strain rate at which the molecule

abruptly unravels to the stretched state. Ecoil indicates the critical strain rate at which the mole-

cule suddenly collapses to the coiled configuration (Reproduced from (de Gennes, 1974)).
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the "coiled" to the "stretched" state with such a model. Specifically, in the coiled state,

only the relatively small fraction of monomers lying within the hydrodynamic penetration

depth of the surface are affected by the flow field. Therefore, the coil only gradually

becomes elongated with increasing strain rate (cf. Fig. 6.1). However, as the molecule is

extended, a greater fraction of the polymer molecule is exposed to the flow field. Eventu-

ally, at a critical strain rate, Estretch, the molecule abruptly unravels and the "stretched"

state is attained. The model predicts hysteretic behavior: when the strain rate is subse-

quently decreased the molecule remains in the "stretched" state, since essentially all of the

monomer units comprising the chain are exposed to the flow field. Only when the strain

rate drops below a second critical value, Estretch < Ecoil, do entropic effects overwhelm

hydrodynamic effects so that the molecule abruptly collapses to the coiled configuration.

However, as discussed in Sections 6.4 and 6.5, for the fluid/flow system investigated here,

the high molecular weight polymer molecule does not become highly extended. Conse-

quently, such hydrodynamic shielding and hysteretic phenomena are not considered fur-

ther.

One must recognize that the above descriptions are for homogeneous flow fields for

which the duration of the experiment is sufficiently long that the molecule can attain its

steady-state configuration. If the strain rate exceeds the critical value, but the duration for

which the molecule is exposed to the flow is short, the molecule will not have time to

extend very far. In the limiting case, for very high strain rate, the entropic restoring force

will be negligible when compared with the hydrodynamic force on the molecule (e.g., on

the "beads" of the "dumbbell"). Hence the ends of the molecule are convected away from

each other by the fluid, with essentially no "slip" between the polymer (bead) and the

fluid. For a finite time, the extension of the molecule will then be

Lz(t)/ ý =r2 exp(EAt), (6.1)

where At denotes the elapsed time, '(r2)o is the equilibrium root-mean-square (r.m.s.)

end-to-end length of the dumbbell, and Lz(t) represents the length after being convected

with the fluid. This idealized picture allows an estimate to be made of the minimum

Hencky strain which a polymer in solution must undergo to become fully elongated from
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an initial coiled state; specifically Eest = In(Lc/4 (r-)o), where Lc is the contour length

of the fully extended molecule and iJr)o is the length for the equilibrium configuration

as described in §4.1.2. From the ratio of these limiting lengths, for the PIB in PB fluid

used in this study (cf. eq. (4.5)), one obtains Eest = ln(80) = 4.4. This provides only a

simple estimate. For cases where the magnitude of the restoring force is substantial com-

pared with the hydrodynamic force, there will be "slip" between the "beads" and the sur-

rounding solvent, so that the extension of the molecule for a given duration of time, At,

will be less than prescribed by eq. (6.1) (Bird et al., 1987b). Other factors which may

affect the Hencky strain required to elongate the molecule include the effects of hydrody-

namic shielding discussed above or the formation of local "kinks" and entanglements dur-

ing the stretching process. Such "kinks" could retard the rate at which the polymer

unravels, lowering the required Hencky strain below Eest. Alternately, "knots" could pre-

vent the polymer molecule from ever extending fully; the smaller maximum extensible

distance could result in the required Hencky strain being below Cest (Hinch, 1994;

Shaqfeh, 1996). A polymer molecule exposed to a flow field for a short time will be only

slightly perturbed from the equilibrium configuration, even if the strain rate is much

greater than the critical value. Realization of the importance of the duration for which the

molecule is exposed to the flow field, in conjunction with the strain rate, in determining

extension of the molecule (Ferguson and Hudson, 1993; Malkin and Petrie, 1997) is essen-

tial to interpretation of the results of the experiment discussed in Sections 6.4 and 6.5.

Constitutive equations which accurately model concentrated (including melts) and

semidilute solutions must consider interactions between the polymer molecules. The rep-

tation concept of de Gennes has- found widespread acceptance (de Gennes, 1971; Doi and

Edwards, 1978; Doi and Edwards, 1979; Larson, 1988); the theory maintains that the

polymer molecules surrounding a given molecule in a melt form an enclosing "tube". The

molecule in the tube has anisotropic mobility; it can more easily move back and forth

along the contour of the tube than side to side. Incorporation of anisotropic mobility in a

constitutive model leads to prediction of the experimentally observed shear thinning of the

material functions (cf. Chapter 4).

The Giesekus model has proved useful in realistically describing the behavior of semi-

dilute and concentrated solutions (Giesekus, 1982b; Giesekus, 1982a; Bird et al., 1987a).
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The model incorporates the concept of anisotropic drag and Brownian motion, which is at

the core of de Gennes's (1971) reptation theory. As presented in §4.3.4, the Giesekus

model has the advantage of being relatively simple in form; in addition to the zero-shear

rate relaxation time and viscosity, there is only one adjustable parameter, cx, which

describes the anisotropic mobility. In addition to predicting thinning of the shear-flow

material functions, the Giesekus model predicts an upper bound to the steady-state elonga-

tional viscosity for all strain rates. This bound is a consequence of the anisotropic drag,

rather than finite extensibility of the chain. Specifically, the drag along the contour of the

polymer chain is less than the drag perpendicular to the contour. Consequently, there is

enhanced "slip" between the polymer molecule and the surrounding medium as the seg-

ments comprising the polymer chain become aligned in the flow direction. This results in

an upper bound on the elongational viscosity associated with the molecule (Bird et al.,

1987a; Bird et al., 1987b), without inclusion of a nonlinear spring force.

The Bird-DeAguiar model, which does simultaneously incorporate the phenomena of

finite chain extensibility and anisotropic mobility, is often referred to as an "encapsulated

dumbbell" model (Bird and DeAguiar, 1983; DeAguiar, 1983). Since the polymer mole-

cules were found not to become highly extended in the transient elongational flow on the

centerline of the planar contraction, consideration of the finite extensibility of the chain

via use of the Bird-DeAguiar model was not necessary for the investigation presented in

this Chapter.

6.1.2 Contrast of Linear, Quasilinear, and Nonlinear Constitutive Models

Linear, quasilinear, and nonlinear constitutive models have been described in §4.3.

Essential differences in the types of flow to which these models may be appropriately

applied are reiterated here. The differing responses of linear, quasilinear, and nonlinear

models to steady-state and start-up of planar elongational flow are contrasted.

Linear models can accurately describe flows in which a given fluid element has "mem-

ory" of only an infinitesimal amount of strain experienced. Such restricted "memory" can

arise in two limiting types of flow. The amount of total strain achieved in the flow may be

low; this is the case in the oscillating, small-amplitude shear flow in the cone-and-plate
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geometry discussed in §4.2.1. Alternately, if the flow is by some measure "slow" in con-

trast with the relaxation time or "memory" of the fluid, even if the total strain is high, the

strain "remembered" by the fluid at any given instant will be small. Linear constitutive

models have several essential features in common. In a transient flow, the profile of a rheo-

logical quantity (e.g. elongational viscosity) plotted as a function of the dimensionless

time, t/k 1 , is independent of the characteristic strain rate of the flow. At long times, the

Newtonian limit of the rheological quantity is approached. With regard to steady shearfree

flows, "elongational thickening" is not observed; the elongational viscosity conforms to

the Newtonian limit (cf. § 4.2.2) for all strain rates.

Quasilinear models, such as Oldroyd-B, may be applied to flows in which a fluid ele-

ment does have "memory" of a finite amount of strain. To incorporate accurately this fea-

ture in a frame-invariant manner, convected derivatives are used in the differential

formulation of a quasilinear model instead of the material derivatives used for the linear

models. 2 In contrast with a linear model, the profile of a rheological quantity as a function

of dimensionless time in a transient flow can depend on strain rate. As mentioned in

§6.1.1, quasilinear models can predict features of the stress response exhibited by real vis-

coelastic fluids in flows in which a fluid element "remembers" a finite amount of strain.

These features include induction of normal stresses by shear flows and, in steady shearfree

flows, "thickening" of the elongational viscosity above the Newtonian limit. However, the

accuracy with which quasilinear models can model viscoelastic fluid flows is limited; e.g.,

above a critical strain rate, a transient elongational viscosity which is unbounded and con-

tinuously increases with time is predicted.

Nonlinear models can more accurately represent the response of viscoelastic materials

to flows than quasilinear models. There are various aspects of the response of a polymer

molecule to a flow in which the nonlinearity can be incorporated; e.g., a nonlinear entropic

("spring") force can relate extension of the molecule to the imposed force (as in the case of

the FENE-P model), or a nonconstant, anisotropic "drag coefficient" can relate the

imposed hydrodynamic force to the flow field (as in the case of the Giesekus model). The

inclusion of nonlinear terms allows the models to make more realistic predictions of the

2. Note that when the material derivative term in the linear Jeffries model is replaced by a con-
vected derivative term, the Oldroyd-B (also called "convected Jeffreys") model is obtained.
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Figure 6.2 Plots of the first planar elongational viscosity made dimensionless with four times

the viscosity for a given mode of a constitutive model, 11 lk/ 4 11k, as a function of the strain rate

made dimensionless with the relaxation time of the mode, EXk . (i ) upper convected Max-

well model. Plots are shown of the Giesekus modes with different values of the anisotropy param-

eter:(- --- -) ak = 0.01; ( ------- ) ak = 0.1; (- - -) ak = 0.5. The prediction of the

linear Maxwell model superposes on that of the Giesekus mode with ak = 0.5.
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stress response of a viscoelastic fluid to a flow. As mentioned in §6.1.1, both the Giesekus

and the FENE-P models predict a bounded transient elongational viscosity for all strain

rates.

The differing responses of representative linear, quasilinear, and nonlinear constitutive

models to a shearfree steady planar elongational flow is shown in Fig. 6.2. Specifically, the

steady-state elongational viscosity of the kth mode of a given model, made dimensionless

with four times the viscosity, 1 lk/ 4 rlk, is plotted as a function of the strain rate made

dimensionless with the relaxation time associated with the kth mode, Exk. On Fig. 6.2 is

indicated the response of a mode of a linear Maxwell model, a mode of an upper con-

vected Maxwell model, and three different modes associated with a Giesekus model. Each

of the Giesekus modes has a different value of the anisotropy parameter ak. Recall that

the upper convected Maxwell model can be viewed as a limiting case of the Giesekus

model with ak -- 0.

As mentioned above, the linear Maxwell model predicts i 1/4rl = 1, the Newtonian

limit, for all strain rates. In contrast, the upper convected Maxwell model predicts

r11/4Tl = 1 only in the limit e•• -4 0. In physical terms, for these low strain rates, the

rate at which a fluid element accumulates strain is sufficiently slow that the polymer mol-

ecules "forget" all but the most recently experienced infinitesimal strain; the flow is said to

be in the linear viscoelastic limit. As the strain rate increases from zero, the elongational

viscosity rises above the prediction of the linear Maxwell model; this deviation is associ-

ated with the convected derivative in the quasilinear upper convected Maxwell model

which has replaced the material derivative in linear Maxwell. In physical terms, a fluid

element accumulates strain sufficiently fast enough that stress continually accumulates

with strain, despite the fact that the polymer molecules "forget" strain experienced far in

the past. The elongational viscosity predicted by the upper convected Maxwell model

increases monotonically until a critical strain rate Xh crit = 1/2 is reached. At this criti-

cal strain rate the predicted elongational viscosity is undefined; from a time-dependent

perspective, as long as a fluid element is strained, the stress will increase exponentially

with the accumulated strain. In the context of the Oldroyd-B "dumbbell" model (which is

identical to the upper convected Maxwell model with an additional Newtonian solvent

term), this is a consequence of the linear, Hookean "spring" which connects the "beads"
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and the isotropic, fixed value of the "drag coefficient" of the "beads". For strain rates

greater than the critical value, 1IE > 1/2, aphysical, negative elongational viscosities are

predicted.

For low to intermediate strain rates, the various modes of the Giesekus model display a

similar response as the upper convected Maxwell model. As the critical strain rate is

approached, there is a sudden increase in the steady-state elongational viscosity of the

Giesekus mode with strain rate. This increase indicates the domination of hydrodynamic

drag forces over entropic forces, which results in unraveling of the polymer molecules.

Note that the increase in transient elongational viscosity with strain rate exhibited by the

Giesekus mode is less than that of the upper convected Maxwell model; the Giesekus

modes diverge from the upper convected Maxwell model at high strain rates. From a phys-

ical perspective, viewing the polymer molecule as a "dumbbell", at the point where the

models diverge, the "dumbbell" has been sufficiently extended that the nonconstant, aniso-

tropic "drag coefficient" of the beads comes into play, which restricts the extension of the

"dumbbell" to a finite value.

The steady-state value of the elongational viscosity predicted by the Giesekus model is

bounded for all shear rates; in particular, the limiting value of the Trouton ratio at high

strain rates is set by the anisotropy parameter3 as lim rl1k/ 4Tlk = 1/ 2c(k. One may

note that the concept of a critical strain rate may also be applied to the multimode form of

the Giesekus model. One simply considers whether the strain rate is above the critical

value, Ecrit, k, for each mode having a characteristic relaxation time, Xk , to determine

whether the nonlinear response is excited for that particular mode.

The stress-growth response of the linear Maxwell, the quasilinear upper convected

Maxwell, and the nonlinear Giesekus models to start-up of planar elongational flow is

illustrated in Fig. 6.3 for several different dimensionless strain rates, Ekk; note that for

each of the Giesekus modes ak = 0.01. The dimensionless response time of the linear

Maxwell model is independent of Ekk ; 63% of the ultimate value of the elongational vis-

3. Note that for the Giesekus constitutive equation to be physically meaningful one must have

0< a-_ 1/2. In the limit a = 0, the Giesekus model reduces to the upper convected Maxwell

model. The upper limit is set by the fact that in steady shear flow, for a > 1/2, the steady-state
shear stress, tzy, plotted as a function of the shear rate Yzy, will exhibit an aphysical maximum for

finite K'zy (Giesekus, 1982a).
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Figure 6.3 Plots of the stress-growth response of the linear Maxwell (thick solid line,

-), upper convected Maxwell (thick dashed lines), and Giesekus (thin dashed lines) models

to start-up of planar elongational flow. The dimensionless transient first planar elongational vis-
-+

cosity, rl lk/ 4Tik, is given as a function of the dimensionless time, t/Xk . For the upper con-

vected Maxwell and Giesekus models plots are shown for different values of dimensionless strain

rate: (----) Xk = 0.2 ; (- - -) k = 0.5 ; ------ ) k 1(--) k k= 5.
-- +

For each of the Giesekus modes k = 0.01 ; limiting values of +lk/4rk as t/k -- o are indi-

cated.
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cosity is achieved at t/Ik = 1. For short times or low strain rates (cf. the upper convected

Maxwell prediction for Ekk = 0.2) the prediction of the upper convected Maxwell model

is close to the prediction of the linear Maxwell model. In the first limit, the polymer mole-

cule does not have sufficient time to extend far from its equilibrium conformation, even if

the strain rate is high. In the second limit, the low strain rate results in even the ultimate

conformation at t/Xk -- oo being only a mild perturbation from the equilibrium state, as

discussed in the context of steady planar elongational flow above. When the conditions of

sufficiently long time and sufficiently high strain rate are met, the polymer molecule

"recalls" a finite amount of strain so that the linear viscoelastic limit does not apply and

the predictions of the upper convected Maxwell and linear Maxwell models diverge; the

polymer molecule is stretched from the equilibrium configuration.

At strain rates substantially lower than the critical value the prediction of the Giesekus

model is close to that for the upper convected Maxwell model for all times (for E6k = 0.2

the predictions of the two models nearly superpose in Fig. 6.3); this is expected from com-

parison of steady-state values (cf. Fig. 6.2) which indicate that the "molecules" which

each model represents only become mildly stretched. As the strain rate is increased to

approach, but remain less than the critical value, EXk --> 1/2, the difference in the ulti-

mate values predicted by the Giesekus and upper convected Maxwell models increases

and the dimensionless time interval required to observe divergence of the model predic-

tions decreases. The polymer molecule represented by the Giesekus model is stretched

faster so that nonlinear effects manifest themselves sooner. As the strain rate is increased

beyond the critical value, this trend of divergence of the models at ever earlier dimension-

less times continues (cf. the predictions for ekk = 0.5, 1, and 5 in Fig. 6.3). As discussed

above, the steady-state solution for the upper convected Maxwell model becomes aphysi-

cal when the critical strain rate is exceeded. However, the transient solution can be calcu-

lated even for Ekk > 1/2, since when the "dumbbell" is stretched for a finite time, its

extent is finite.

Figure 6.4 also compares the response to start-up of elongational flow exhibited by the

linear Maxwell, the quasilinear upper convected Maxwell, and the nonlinear Giesekus

models; the first planar transient elongational viscosity is plotted as a function of dimen-

sionless time. For each of the models, the dimensionless strain rate is held fixed,
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Figure 6.4 Plots of the stress-growth response of the linear Maxwell (thick solid line,

- ), upper convected Maxwell (thick dashed line, - = "), and Giesekus (thin dashed lines)

models to start-up of planar elongational flow. The dimensionless transient first planar elonga-
-+

tional viscosity, 1k/4rlk, is given as a function of the dimensionless time, t/,k . For each of

the models Exk = 1 . Each Giesekus mode has a different value of the "anisotropy parameter":
-- +

(- --- -) k = 0.01; (- - - - - - -) o k = 0.1; (- - -) ak = 0.5. Limiting values of rllk/ 4_lk as

t/Xk -- oo are given for the predictions of the Giesekus model.
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Eklk = 1. As considered above, for short times, the prediction of the upper convected

Maxwell model is similar to that for linear Maxwell; at longer times, the models diverge.

The predictions of the Giesekus model superpose on the upper convected Maxwell predic-

tion for a certain interval of time, and then diverge. For low values of the anisotropy

parameter, the prediction of the Giesekus model conforms to that of the upper convected

Maxwell model for a long time interval. In physical terms, the molecule must become

greatly extended before nonlinear effects become significant. Also recall that in the limit

-k -- 0, the Giesekus model reduces to the upper convected Maxwell model. As the

anisotropy parameter is increased, nonlinear effects manifest themselves earlier and the

upper convected Maxwell and Giesekus models diverge at shorter time intervals. In the

limit ak = 0.5 the prediction of the Giesekus model remains close to (but does not

exactly superpose on) the linear Maxwell model for all time. This is expected since the

steady-state value of the Giesekus model in this limit is the same as that of the linear Max-

well model, rllk/ 4 lk = 1.

Figures 6.5a-d shows the response of the linear Maxwell, quasilinear upper convected

Maxwell, and nonlinear Giesekus models to start-up of planar elongational flow in terms
-+

of the dimensionless transient first planar elongational viscosity, Tllk/4r1k, plotted as a

function of the Hencky strain experienced by a fluid element, e. Graphs for different val-

ues of EXk are shown. Figure 6.5 indicates that at low strains, E < 1, regardless of the

value of exk , the prediction of the upper convected Maxwell model is close to that of the

linear Maxwell model. For strain rates at or above the critical value, Ekk > 1/ 2 (cf. Figs.

6.5b-d), a fluid element must experience a Hencky strain e > 1 before prediction of the

nonlinear model diverges substantially from that of the linear model; e.g.,

r'Giesekus/'lLinMax - 2 for E = 1. Referring back to Fig. 6.4, note that the criterion of an

Hencky strain of order unity for the prediction of the upper convected Maxwell model to

exceed that of the linear Maxwell model is insensitive to the value of the anisotropy

parameter, Ok, when E > ecrit and ak < 0.5. Conversely, if the steady-state elongational

viscosity predicted by the Giesekus model is approximately the same as that predicted by

the linear Maxwell model, the transient elongational viscosity profiles will be similar for

all times or Hencky strains. This is evident in Fig. 6.5a where sEk = 0.2 and in Fig. 6.4

for aok = 0.5. The above findings are consistent with the concept that a flow may be con-
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Figure 6.5 Plots of the stress-growth response of the linear Maxwell (- ), upper con-

vected Maxwell (- - - -), and Giesekus ( - - - - - ) models to start-up of planar elongational flow.
-+

The dimensionless transient first planar elongational viscosity, l k/471k, is given as a function of

the Hencky strain, E. Plots are shown for different values of dimensionless strain rate: (a)

EXlk = 0.2; (b) ehlk = 0.5; (c) E1lk = 1; (d) 01lk = 5. For each of the Giesekus modes

ock = 0.01.
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sidered to be in the linear viscoelastic regime when only small strains are experienced, i.e.,

E < 1, or the flow is "slow", i.e. Exk < 1/2. In Figs. 6.5b-d, divergence of the nonlinear

Giesekus model from the quasilinear upper convected Maxwell model is noted at a

Hencky strain substantially greater than unity. The particular Hencky strain at which the

quasilinear and nonlinear models diverge is dependent on the dimensionless strain rate,

E•k . In general, as the strain rate is increased the strain at which the models decreases

(cf. Figs. 6.5b-c). Note that in Fig. 6.5a, the quasilinear and nonlinear models superpose

for all Hencky strains; the strain rate of EXk = 0.2 is too low to extend the polymer mole-

cule to the point where nonlinear behavior is manifested.

The experimental results on the response of the test fluid to the transient, nonhomoge-

neous flow on the centerline of the planar contraction are presented and interpreted in Sec-

tions 6.4 and 6.5 of this Chapter. To facilitate understanding of the response to this

nonhomogeneous flow, it is useful to first estimate the transient response of the 0.30 wt%

PIB in PB test fluid to the simpler, homogeneous start-up of planar elongation flow (cf.

Fig. 6.6). The multimode linear Maxwell, quasilinear upper convected Maxwell, and non-

linear Giesekus models are used with the parameters given in Table 4.5. The strain rate for

this mock start-up of planar elongation flow was selected to be equal to the maximum

value, e = 3.21 [s-1], on the centerline of the 32:1 planar contraction for a test flow with

WiDn = 2.14, described in §6.4 of this Chapter.4 The profiles were computed up to a

Hencky strain of E = 3.5, which corresponds to the total strain experienced by a fluid ele-

ment traveling along the centerline of the 32:1 planar contraction. The Newtonian limit of

the planar elongational viscosity, 4100, is indicated on the diagram, note that the prediction

of the linear Maxwell model monotonically increases to this value. In contrast, the profile

of the quasilinear upper convected Maxwell model is observed to exceed the Newtonian

limit; at e = 3.5 the nonlinear model predicts a transient elongational viscosity a factor of

five greater than the prediction of the linear Maxwell model. At high strain rates the non-

linear Giesekus model diverges from the upper convected Maxwell model; however, at

S= 3.5 the difference between these models is only 8%. Table 6.1 gives the critical strain

rate, Ecrit, k, for each kth relaxation mode of the 0.30 wt% PIB in PB test fluid, and gives

4. WiDn is the shear-rate-dependent Weissenberg number defined in terms of the mean shear rate in
the downstream slit (cf. §6.2).
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Figure 6.6 Plots of the stress-growth response predicted by the multimode linear Maxwell

( ), quasilinear upper convected Maxwell (- -- -), and Giesekus (- -- -) models for
-+

start-up of planar elongational flow. The transient first planar elongational viscosity, 11lk, is

shown as a function of the Hencky strain, E. A strain rate of E = 3.21 [sl ] is used. Model param-

eters are fitted to the 0.30 wt% PIB in PB test fluid and are given in Table 4.5. Ultimate values of

S-+k for the multimode Giesekus model as - oo are indicated at the right of the graph.
rllk for the multimode Giesekus model as E -o o are indicated at the right of the graph.
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the viscosity ratio, l k/ 411k, predicted by the Giesekus model, which is associated with

steady planar elongational flow at a strain rate of Ecrit, k

Mode No. [Pas] 1 Ik( Ecrit, k)
crit,k k 4 rtlk.Ecrit, k 2k [S- l  1k [Pa s] 4rk

1 0.025 8.0 1.84

2 0.104 7.4 44

3 0.46 9.5 14

4 4.2 6.5 9.4

Solvent - 79 1

Table 6.1 Critical parameters and values of the four-mode Giesekus representation of

the 0.30 wt% PIB in PB test fluid for planar elongational flow.

6.1.3 Flow-Induced Birefringence in Elongational Flows

The physical underpinnings of the stress-optical rule which postulates a linear rela-

tionship between the refractive index and stress tensors has been discussed in §3.4. In par-

ticular, the derivation of the stress-optical rule from polymer molecular theory by relation

of both the stress and refractive index tensors to the configurational state of the polymer

molecules was described (Doi and Edwards, 1986; Dupuis et al., 1986). It was further

indicated that this linear stress-optical relationship breaks down when the polymer mole-

cule approaches a fully extended state, either by "saturation" of the birefringence or the

development of pathological "kinked" configurational states (Wales, 1976; Janeschitz-

Kriegl, 1969; Kobe and Wiest, ; Shaqfeh, 1996). When considering the response of a poly-

mer molecule to an imposed velocity field it is useful to distinguish "strong" flows, in

which the velocity gradient tensor has at least one eigenvalue with positive real part, from

"weak" flows, for which no eigenvalue satisfies this condition (Tanner and Huilgol, 1975).

Steady shearfree flows are "strong": certain material lines grow exponentially in time. In

contrast, steady simple shear flow is "weak": material lines grow approximately linearly in

time. "Strong" flows are more "efficient" than "weak" flows in the sense that lower rates
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of strain are required to extend polymer molecules; the planar elongational flow on the

centerline of the planar contraction is such a "strong" flow (Larson, 1988; Hinch, 1977).

Nevertheless, in Sections 6.4 and 6.5 of this Chapter it is shown that polymer molecules in

the transient planar elongational flow on the centerline do not approach the fully extended

state. Consequently, the stress-optical rule was valid for all the flows investigated.

6.2 Experimental Methods

The construction and function of the planar contraction geometry used to produce the

shearfree centerline flow was presented in Chapter 3, along with the LDV and FIB mea-

surement techniques used to obtain velocity- and stress-field information, respectively.

Detailed information on the rheology of the test fluid was given in Chapter 4. This Section

focuses on aspects of the fluid flow and measurement techniques specific to the determi-

nation of the transient elongational viscosity profile. The nature of the flow generated in

the geometry is reviewed, and the "downstream shear-rate-dependent Weissenberg num-

ber" used throughout this Chapter, defined. The selection of specific experimental param-

eters for the investigation presented in this Chapter is then discussed; specifically, this

selection was guided by the results of previously published experiments. At the end of this

Section, limitations on the use of FIB to obtain stress-field information are briefly

addressed.

The planar contraction flow considered as a whole is complex; i.e. the rate-of-strain

tensor in most regions of the flow contains contributions from both the elongational and

the shear components of the velocity gradient tensor. However, on the centerline of the

flow, because of symmetry about the centerplane, the flow is shearfree: specifically, it is a

spatially nonhomogeneous planar elongational flow. The planarity of the flow field allows

for direct interpretation of birefringence measurements in terms of stress, as described in

§3.4. Therefore, the stress response of the viscoelastic fluid to a shearfree flow field may

be compared with the predictions of constitutive equations. One must recognize that

although the centerline flow is shearfree, it is not homogeneous; i.e., the strain rate and the

normal stress vary along the centerline. However, since the LDV and FIB techniques

obtain pointwise, quantitative information, comparison of measured values with the pre-
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dictions of constitutive equations can be made despite the non-homogeneous nature of the

centerline flow.

As discussed in Chapter 5, the downstream half-height, h, is the length scale which

controls the form of the region of high strain rate on the centerline. In particular, the max-

imum strain rate along the centerline, Emax, is of the same order as the average shear rate

in the downstream slit, (Y)Dn (vz)Dn/h. Therefore, throughout this Chapter, the shear-

rate-dependent Weissenberg number defined in terms of the downstream channel flow

conditions is used

WiDn "( (()Dn) (/)Dn (6.2)

In contrast, in Chapter 5, the shear-rate-dependent Weissenberg number defined in terms

of the upstream flow conditions was used.

In the investigations of Galante and Frattini (Galante and Frattini, 1993; Galante,

1991) and of Quinzani (Quinzani et al., 1994; Quinzani et al., 1995) viscoelastic flow

through a planar contraction geometry with an upstream to downstream half-height con-

traction ratio of H/h = 4 was used. Different viscoelastic fluids were used in the studies;

Galante and Frattini used a polymer melt whereas Quinzani used a concentrated polymer

solution. Nevertheless, in both investigations only low to moderate downstream, shear-

rate-dependent Weissenberg numbers were attained, WiDn < 1. In both of the investiga-

tions, the viscoelastic fluid was observed to exhibit an essentially linear response. This

finding was not surprising in view of the low total Hencky strains, e •< 1.4, and low Weis-

senberg numbers which were attained.

The limitations imposed by the geometry and test fluids used in these previous investi-

gations guided the selection of experimental conditions for the study presented in this

Chapter. As discussed in §3.1 the contraction ratio of the test geometry could be varied by

changing the upstream inserts. This allowed the influence of the total Hencky strain on the

viscoelastic fluid response to be investigated. Contraction ratios as great as H/h = 32 could

be studied, corresponding to a total Hencky strain of e = 3.5. It was shown in §6.1 that, for

a homogeneous flow in which such a Hencky strain is attained, the test fluid is expected to

exhibit a substantial nonlinear viscoelastic response.

259



A polymer solution consisting of 0.30 wt% polyisobutylene (PIB) in polybutene (PB)

was used as the test fluid. The nearly constant viscosity nature of the fluid allowed high

Weissenberg numbers to be attained without introducing effects of fluid inertia. Specific

details of the composition and shear rheology of the test fluid are given in Chapter 4; the

parameter fits of the linear Maxwell and Giesekus models used in this Chapter are also

described. Use of a two-component Boger test fluid was found to alleviate the problems of

beam divergence which had previously been observed when a ternary Boger fluid was

sheared in a Couette cell (Quinzani et al., 1992; Byars, 1992).

General information on the configuration, resolution, and accuracy of the two-color

flow birefringence (TCFIB) and laser Doppler velocimetry (LDV) systems used to obtain

the stress and velocity field information presented in this Chapter has been presented in

Sections 3.3 and 3.4. However, in the case of the TCFIB measurement one must also con-

sider limits on quantitative interpretation in terms of the stress field which are imposed by

the structure of the velocity field in the planar contraction flow; such limits are discussed

in §6.3.

6.3 Kinematic Structure of Centerline Flow: Effect on FIB Measure-
ments

In this Section, features of the velocity field and their effect on the direct interpretation

of a birefringence measurement in terms of stress are described. In §6.3.1 characteristics

of the velocity field present at all flow rates and consistent with an ideal two-dimensional

flow field are discussed. §6.3.2 describes how the presence of a boundary in the "neutral"

x-direction of the upstream duct may impart a non-ideal, three-dimensional character to

the flow. The effect of this three-dimensional aspect of the flow on interpretation of the

FIB measurement is examined. In §6.3.3 the importance of inhomogeneities in the stress

field over the area probed by the laser beam in the interpretation of FIB measurements is

discussed. In §6.3.4 nonidealities in the flow field associated with elastically-driven flow

transitions at elevated flow rates are considered. §6.3.5 addresses limits on FIB measure-

ment imposed by beam divergence induced by refractive index gradients associated with

thermal gradients generated by viscous heating. §6.3.6 contains a summary of these phe-
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nomena which impose restrictions on the interpretation of FIB measurements in terms of

the stress field for the experiments discussed in Sections 6.4 and 6.5.

6.3.1 Characteristics of Ideal, Two-Dimensional, Centerline Velocity Field

At sufficiently low flow rates and correspondingly low Weissenberg number the elastic

nature of the fluid plays an insignificant role in determining the structure of the velocity

field. The shearfree, nonhomogeneous planar elongational flow is on the centerline. The

total Hencky strain, e, experienced by a fluid element starting far upstream of the contrac-

tion plane and travelling into the downstream slit to a region of fully developed channel

flow can be determined by considering the flow velocities at these limiting points. Specif-

ically, one may write

S= ln(V1zDn (6.3)
= VzUp )

In the case of the constant viscosity test fluid used in this study, the velocity profile in fully

developed channel flow is parabolic and the maximum velocity in the channel for a given

volumetric flow rate is inversely proportional to the channel height so that

e = In(H (6.4)

One should note that consideration of the centerline velocity in fully developed upstream

and downstream channel flow does not allow for calculation of the strain experienced by a

fluid element located between these limiting points. In particular, when there is a transi-

tion to a diverging flow field, as discussed in §6.3.4, a fluid element at an intermediate

point has a velocity less than the upstream channel flow and consequently experiences a

negative Hencky strain.

As discussed in Chapter 5, the centerline base flow consists of two distinct regions.

The first regions includes a high strain-rate "spike", located immediately upstream of the

contraction plane. The downstream slit half-height, h, was the length scale which deter-

mined the upstream extent of and the maximum strain rate in the spike. Variation of the
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upstream half-height, H, had little effect on the strain-rate profile of the spike. The second

distinct region of flow was a long "tail" of low strain rate relative to that of the spike. The

tail extended from a position of order h upstream of the contraction plane to a position of

order H upstream. The upstream half-height H was the length scale which set the extent of

the "tail". As a result of the strain-rate profile consisting of the "spike" and "tail" being

controlled by different geometrical parameters, an increase in the contraction ratio, H/h,

resulted in an increase in the strain experienced by a fluid element travelling through the

"tail" region but did not induce a substantial increase in the strain experienced within the

"spike" region. This scaling behavior plays an essential influence on the ability of the pla-

nar contraction flow to excite a nonlinear viscoelastic response in flows of high Hencky

strain.

6.3.2 Nonidealities in the Base Flow: Effects of Three-Dimensional Flow Field on FIB
Measurement

A two-dimensional planar contraction flow is approximated by the flow geometry.

However, the presence of a bounding wall, specifically the side window shown in Fig. 3.2,

in the nominally "neutral" x-dimension introduces a locally three-dimensional character

into the flow. The downstream channel aspect ratio is high for all flows investigated:

ADn = W/2h = 32, where W indicates the width of the channel. In consequence, a two-

dimensional flow is closely approximated, except in the immediate vicinity of the walls

bounding the x-dimension. The aspect ratio in the upstream channel is lower and is

inversely proportional to the contraction ratio

W 32A = (6.5)Up 2H (H/h)

For the case of the 8:1 contraction, AUp = 4; consequently, the fully developed flow in the

upstream channel has pronounced three-dimensional character. As discussed in Chapter 3,

variation of the stress field along the direction of propagation of the probe beam can pre-

clude direct, quantitative interpretation of an FIB measurement in terms of the stress field.

However, the region of high elongational strain rate, vvz/az, located immediately

upstream of the contraction plane, and of interest for the measurements presented and dis-
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cussed in Sections 6.4 and 6.5, approximates two-dimensional flow over a region greater

in extent than for flow in the duct far upstream of the contraction plane. In this Section, the

region where the flow is nearly two-dimensional is identified via LDV measurements. The

case of the 8:1 contraction is used as an example, since several vz-versus-x profiles were

obtained for this flow. An order of magnitude analysis is used to show that the region adja-

cent to the walls has a small effect on the FIB measurement. The findings are extended to

other contraction ratios. At the end of this Section, the characteristic of "fluid memory" is

taken into account.

Profiles of the velocity, vz, as a function of position in the neutral x-direction, obtained

on the centerplane (u = 0) for several different axial positions, ý, are shown in Fig. 6.7.

The flow was through the 8:1 contraction at a volumetric rate corresponding to WiDn =

1.98; i.e., before the onset of diverging or unstable flow. Far upstream of the contraction

plane, e.g. at ý = -19.7, the velocity is highest in the middle of the channel (x = 0) and

remains nearly constant with increasing absolute position, Ixi, until the walls are closely

approached for positions lJXi 24. Because of the nearly constant viscosity of the fluid,

the flow on the centerplane, in the upstream duct, is similar to that for fully developed

Newtonian channel flow. A Newtonian profile was computed via a Fourier transformation

technique; the solution is

-3 [ + 1]sinh[prct ] + sinh[p rt(A Up - k)]
p 3 sin (9 + 1) - 1

A p sin 2  sinh[p7tAup ]
vz(X 9) p = 1, odd

Vz)Up 4 -4 cosh[ptAup]-l p 1

n pncAUpsinh[pnAUp] 2
p = 1, odd (6.6)

where the position variables are defined as ^ = (h/H)X and 9 = (h/H)'u. The average

velocity in the channel is represented by (vz)Up = Q/(2HW), where Q indicates the

volumetric flow rate. Twenty terms were used in computing the solution to eq. (6.6), the

profile vz(, uo = 0) is shown in Fig. 6.7. Note that the velocity exceeds 80% of the maxi-

mum value in the profile for the span -23.5 • X 5 23.5; the decrease in velocity near the

bounding wall occurs over a dimensionless distance of AXB = W/(2Ah). Equation (6.6)
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Figure 6.7 Profiles of the dimensionless velocity, vz/(Vz)Dn, versus position in the "neutral"

direction, x. All profiles are located within the centerplane, U = 0, at different axial positions:

(A), ý = 0.28; ( 0 ), ý = -5.72; (*), ý = -19.72. The measurements were conducted with flow

through the 8:1 contraction, at a flow rate corresponding to WiDn = 1.98. The Newtonian solution

for flow through the upstream W/2H = 4 duct is shown, (-).
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predicts that in the high-aspect-ratio downstream slit and on the centerplane, the velocity

is at 80% of the maximum value across the span -31 5 X < +31. The flow field is not fully

developed at ý = 0.28, however, the measured profile for vz, shown in Fig. 6.7, is consis-

tent with the prediction for the fully developed Newtonian profile. It is not clear why the

data points for X > 24, associated with the ý = 0.28 profile, are lower than in the remain-

der of the profile. This discrepancy may be attributable to experimental error resulting

from the attenuation of the backscattered light resulting from passage through the fluid

and across the width (W = 70 [mm]) of the geometry.

To adapt from the velocity field in the upstream to that in the downstream channel, the

flow assumed a nearly two-dimensional pattern in an intermediate region which extended

several half-heights, h, from either side of the centerplane (u = 0) and upstream of the con-

traction plane (ý = 0). This two-dimensionality is illustrated in Fig. 6.7 by the profile for

-= -5.7, which shows that the velocity remains at over 80% of the maximum value over

a span encompassing -28 5 <5 28, considerably broader than the span for the far

upstream region of the channel given above. This uniformity over the x-direction was also

maintained for off-centerplane positions. Figure 6.8 shows the velocity profile as a func-

tion of 'u-position near the contraction plane (ý = +0.27). Scans were performed near the

center of the width (x = -0.9) and approximately three-quarters of the way toward the wall

(X = -25.6). Within the error of the measurement, no significant difference was noted

between the y-scans taken at the different X-positions. In a similar manner, scans in the y-

direction were taken near the center of the flow and approximately three-quarters of the

way toward the wall at an axial position several half-heights upstream, C = -5.7. At a given

u-position, the value of the velocity for the scan closer to the wall was over 90% of that of

a corresponding point taken near the center of the flow;

vz(X = -25.6)/v,(X = -0.9) > 0.9. Thus, the information presented in Figs. 6.7 and 6.8,

indicates that in the region defined by >Ž -5.7, -1 < u • +1, and -28 < X • +28, two-

dimensional flow in the yz-plane was approximated. This region of approximate two-

dimensional flow encompassed the high strain-rate part of the centerline profile, shown in

Fig. 6.9; the strain rate at r 2 -5.7, (avz/az)(h/ (vz)Dn) = 0.02, is less than 5% of the

maximum value.
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Figure 6.8 Profiles of the dimensionless velocity, vz/ (Vz)Dn , versus 'u. Four different scans

are shown; these were conducted at the positions X = -0.9 (filled symbols) and -25.6 (open sym-

bols), and at the axial positions ý = +0.27 (A) and -5.72 ( 0 ). The measurements were con-

ducted with flow through the 8:1 contraction, at a flow rate corresponding to WiDn = 1.98.
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Given the approximate two-dimensionality of the flow over the region of high strain

rate, the effect of the walls bounding the x-dimension on the FIB measurement were

expected to be minimal; an order of magnitude analysis is now described to support this

intuition. In Sections 6.4 and 6.5 results of the FIB measurement are presented for the 8:1

contraction ratio for flow rates corresponding to WiDn _ 2.86; the maximum flow rate for

this range is used throughout the analysis. Chapter 5 indicated that at WiDn = 2.86 the flow

had a diverging and three-dimensional structure distinct from the form of the base flow.

However, at this flow rate the phenomena did not yet have a deleterious effect on the FIB

measurement. In the case of diverging flow, the region of high strain rate is shifted closer

to the contraction plane, consequently the bounding walls are expected to have even less of

an effect on the FIB measurement than for the base flow. At WiDn = 2.86, the three-dimen-

sional oscillation of the velocity in the x-direction within the contraction plane was small,

this point is addressed below. The profile in the x-direction on the centerplane at an axial

position ý = -5.7 is considered first. This scan lies at the boundary of the region which is

"nearly two-dimensional". In consequence, the influence of the "end effects" relative to

that of the ideal two-dimensional flow on the FIB measurement is expected to be greater

than in other regions of the "nearly two-dimensional" flow. This conservative estimate is

extended to other axial positions near to the end of this Section.

The effects of a three-dimensional flow field on an FIB measurement can be quantita-

tively assessed via integration of eq. (3.5) over a known stress field by invoking the stress-

optical rule, cf. eq. (3.3). Obtaining the required stress field information is problematic:

only a limited set of velocity field information is available, e.g., Figs. 6.7, 6.8, and 6.9, and

the accuracy of the constitutive model used for a streamwise integration procedure must be

assumed. However, such detailed quantitative analysis is not necessary; the objective of

this Section is simply to obtain an estimate of the error introduced by three-dimensional

"end effects" over the flow region where FIB measurements were performed. To facilitate

this estimation, two primary assumptions are made: 1) the x-dimension can be divided into

three regions within which the rate-of-strain field is essentially homogeneous and 2) non-

linear and memory viscoelastic effects may be neglected and the fluid response approxi-

mated via a Newtonian constitutive equation. These assumptions are justified below.
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Figure 6.9 Profile of the dimensionless strain rate, (dvz/dz)(h/(vz)Dn ) , in the axial direc-

tion, C, with X = 0 and u = 0. The measurements were conducted with flow through the 8:1 con-

traction, at a flow rate corresponding to WiDn = 1.98.
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The profiles presented in Fig. 6.7 indicate that on the centerplane of the flow, upstream

of the contraction plane, a scan in the x-direction passes through three domains: a "core

region" of uniform vz such that 'xz - 0, which is flanked on either side by "boundary

regions" characterized by an elevated shear component of the rate-of-strain tensor,

I7xzj > 0. For the specific case of the profile of vz-versus-X obtained at u = 0 and ý = -5.7,

the core region spans (-28 5 X 5 +28) and the boundary regions span -32 < X < -28 and

28 < X < 32. Identification of these distinct regions suggests use of a "sandwich model";

specifically, each of the regions is considered to have a uniform rate-of-shear field and the

effect on the FIB measurement, obtained via a light beam travelling in the x-direction,

analyzed accordingly (Galante, 1991).

Before proceeding to the actual order-of-magnitude analysis, it is necessary to give

consideration to the effect of the flow field on the configurational state of a polymer mole-

cule in each region of the "sandwich", and the consequent influence on the probe beam

used to perform the FIB interrogation. Note that the following discussion applies strictly

only to flow within the centerplane (C = 0). An orientation vector used to describe the

configuration of the polymer molecule is defined as an integral over the contour of the

polymer molecule

R =j ; r)l (6.7)

where L represents the contour length of the molecule, and r is the vector representing the

orientation of a segment at position I along the chain backbone (Doi and Edwards, 1986).

One can note that this orientation vector is related to the deviatoric part of the refractive

index tensor as

n' = J (RR- 3(R R)) (6.8)

where J is a scalar related to the anisotropic polarizability, Aa, of the chain backbone

(Doi and Edwards, 1986). In the core region, the planar elongational flow will cause the

orientation vector to lie in the xz-plane. The component of the orientation vector in the
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direction of flow (z) is non-zero. However, the magnitude of the x-component is not set by

the flow since planar extensional flow is strong, but only neutrally aligning (Larson,

1988). However, since the polymer molecules are randomly oriented before entering the

region of planar elongational flow, by symmetry the orientation vector must be parallel to

the z-axis.

In the boundary region, the smaller, but still non-zero, elongational components of the

rate-of-strain tensor, Yxx = Yzz # 0, cause the orientation vector to lie in the xz-plane.

However, in contrast to the core region, the non-zero y,z component sets the time-aver-

aged direction of the orientation vector within this plane. In particular, when the shear

components of the stress tensor dominates over the elongational components, the orienta-

tion vector lies in the xz-plane with an extinction angle Xxz = x/4 [rad] with respect to

the mean flow direction, z.

As discussed in Chapter 3, the birefringence and extinction angle of a flowing polymer

solution are related to the mean orientation of the segments comprising the polymer chain.

In particular, an FIB measurement is sensitive to the projection of the orientation vector

onto the plane perpendicular to the direction of beam propagation. The probe beam used to

perform the FIB interrogation travels in the x-direction and is sensitive to the configura-

tion of the polymer molecule as projected onto the yz-plane. The orientation vector pro-

jected onto the yz-plane is parallel to the z-axis both for polymer molecules in the core

region and in the boundary regions. In other words, the extinction angle detected by the

probe beam is Xyz = 0 with respect to the z-axis. The constant nature of the extinction

angle along the x-direction (the direction of beam propagation) greatly simplifies the anal-

ysis. For a constant extinction angle, the tensorial differential eq. (3.5) reduces to a scalar

integral equation, termed Wertheim's law (Theocaris and Gdoutos, 1979; Galante and

Frattini, 1993), which may be written as

(X1 - Xo)Anm = An(X')dX' (6.9)
Xo
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where An m indicates the birefringence "observed" by a probe beam travelling through the

flowing fluid from X0 to z1, and An(X') represents the birefringence locally associated

with a position X' in the flow; a prime denotes a "dummy" integration variable.

For a polymer molecule in the core region of the flow, since the orientation vector is

parallel to the z-direction, the stress-optical rule can be applied in its familiar form,

Anzy = C(tzz - "yy) . By contrast, in the boundary region, the orientation vector has no

component in the y-direction, but has non-zero components in both the x- and z-directions.

Since the vector does not lie in the yz-plane, but rather at an oblique angle to it, Xxz, the

projection of the refractive index tensor onto the yz-plane is used to determine the birefrin-

gence. One can then write

Anyz = cosXxzCALxz (6.10)

where the first term on the right side is the projection operator.

The contribution of the core region to the birefringence is considered first. The strain

rate at position C = -5.7 is shown in Fig. 6.9 as (v~vz/z)(h/(Vz)Dn) = 0.02. The fluid in

this region displays a linear viscoelastic response. In consequence, by using the constitu-

tive equation for a Newtonian fluid, the normal stress, N 1 = czz- -ryy = -4rl(avz/az),

is overestimated; however, this is inconsequential for the purpose of this order-of-magni-

tude analysis. The PIB and PB components of the fluid have different values of the stress-

optical coefficient, but since the ratio of their stress-optical coefficients is order one, spe-

cifically CpIB/CPB = 1.51, a single variable, C, will be used to describe the stress-opti-

cal coefficient of the fluid below. By invoking the stress-optical rule (cf. eq. (3.3)), the

integral on the right-side of eq. (6.9) is evaluated over the core region as

An(X')dX' = 4C1( z6 = 4.5C1(h (6.11)
X= -28

To facilitate consideration of the boundary regions adjoining the core region, it is use-

ful to assume that the elongational components of the rate-of-strain tensor may be

neglected in light of the greater magnitude of the shear components. The xz-component of

the rate-of-strain tensor is approximated by assuming a linear velocity gradient profile
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between the wall, at X = -32, and the boundary with the core region, at X = -28. The

velocity at the boundary is approximated as the maximum value in the v,-versus-x profile

for (v = 0, 5 (.z7), i.e., 0.25 (vz)Dn as shown in Fig. 6.7. The approximate shear rate

is then xz 4h = 0.063((vz)Dn/h). This is greater than (although of the same

order as) the elongational strain rate given above, Yzz = 0.02((vz)Dn/h); therefore, the

effect of elongational rate-of strain components will be neglected. The downstream shear

rate associated with the flow in question corresponds to (vz)Dn/h = 14 [s- 1 ]. In conse-

quence, the shear-rate-dependent Weissenberg number associated with the flow near the

wall is Wi(Yxz,B) = 0.4. In consequence, nonlinear viscoelastic effects are neglected in

this analysis. Also neglecting the effect of fluid memory allows use of the Newtonian con-

stitutive equation for flow in the boundary region, so that the stress field is linearly propor-

tional to the rate-of-strain field.

Since a Newtonian constitutive equation is used and elongational components of the

rate-of-strain tensor are considered negligible, the stress tensor in the boundary region

consists exclusively of the shear component, txz = ryxz; the extinction angle describing

the direction of the orientation vector is Xxz, = it/4 [rad]. As described above, the refrac-

tive index tensor must be projected onto the yz-plane to determine the birefringence mea-

sured by the probe beam; using the known extinction angle one obtains, via evaluation of

eq. (6.10), the expression Anyz = (C/,f2)ATxz. Then, using the Newtonian constitutive

equation and the estimated shear rate one has

C r((vz)Dn/h)
Anzy = (6.12)

,y F 16

as the birefringence associated with flow in the boundary region. Using eq. (6.12) to eval-

uate the right side of eq. (6.9)

= -28 2C ((vz)Dn/h) (vz)(
2 = An(')d' = 1 4 = 0.35C VzDn (6.13)

X = -32 16 h

is obtained; the prefactor of 2 indicates that a boundary region is on either side of the core

region. Comparison of eq. (6.13) with eq. (6.11) indicates that the contribution of the
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boundary region relative to the contribution of the core region to the measured birefrin-

gence is small

= -28

2 An(X')dX'
X= -32=28 = 0.078 (6.14)

An(X')dX'
X = -28

The error introduced by the boundary regions is only of order 10%, this may be partially

cancelled by the lower elongational contribution to the rate-of-strain tensor in the bound-

ary regions.

The conclusions on the influence of "end effects" on the FIB measurement are now

extended to axial positions of ý > -5.7. The characteristic shear rate associated with the
Vz,max

flow in the boundary region on the centerplane is ,xz, B = Ax ; where the bar on the

right indicates that the expression is evaluated at axial position ý, ind the subscript "max"

indicates the velocity in the center of the flow; i.e. at position (x = 0,o = 0). The contri-

bution of the two boundary regions to the birefringence is then written as

2 f An(X',ý)dX'=Cf21rvz,maxI . (6.15)

axB(r)

where AXB(ý) = AxB(ý)/h. At r = -5.7, the core region extends over a distance Axc

such that Axc/W = 0.9 ; i.e., most of the width. This fraction of the width can only

increase to a slightly greater value as the contraction plane is approached (since it is

already nearly equal to unity). In consequence, when assessing the contribution of the core

region to the birefringence, the change in extent of the core region with axial position can

be neglected. Taking the ratio of eqs. (6.15) and (6.11), evaluated at arbitrary axial posi-

tion ý, one obtains
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2 f An(X',ý)dX'
AXB(;) vz / (VzD)n f22

S(avz/az)(h/(vz)Dn)4 - 56
nc( %', )d%'(6.16)

V/3 (Vz)Dn
10 vz/ z)(h/ (vz)Dn

Thus, the ratio of the dimensionless velocity to the dimensionless strain rate is the relevant

quantity for assessing the influence of end effects on the birefringence measurement. In

order for the contribution of the boundary regions to the birefringence to be less than 10%,

the ratio of the dimensionless velocity to the dimensionless strain rate must be less than

16. Note from Fig. 6.10 that this condition is met for axial positions in the range

-5.7 _ 5 0.8.
Scans in the x-direction were not obtained for the 32:1 contraction flow; this precluded

direct assessment of the three-dimensionality of the flow. In the far upstream region, the
W

A = ~ = 1 aspect ratio, corresponding to a square duct, results in vz varying substan-

tially over the entire x-dimension; in the downstream slit, the 32:1 aspect ratio results in a

good approximation to two-dimensional flow over nearly the entire width of the channel.

As for the case of the 8:1 contraction, in the region of intermediate axial position the flow

must adapt from the form of the upstream to that of the downstream slit. In consequence, a

nearly two-dimensional region of flow is expected to extend several half-heights upstream

of the contraction plane. As described at the beginning of this Section, in fully developed

Newtonian channel flow the extent of the boundary region scales as AxB = W/A. For a

fixed volumetric flow rate and channel width, the maximum velocity on the centerplane of
3QAthe duct scales as vz, max 2 These scalings lead to the relation
2W

3Q
AXB() = 2Whv, max() (6.17)

Equation (6.17) is used to relate the extent of the boundary region at a given axial position,

ý, to the velocity in the center of the flow at that axial position. In Fig. 6.11, the velocity
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Figure 6.10 Centerline profiles of the dimensionless velocity, vz/(vz)Dn - - - -), and strain

rate, (avz/az)(h/(vz)Dn ) ( , as a function of axial position, ý. Indicated on the plot are

the points were the dimensionless velocity exceeds the strain rate by a factor no greater than 16.

For intermediate axial positions, -5.7 5 • 5 0.8, the influence of the "boundary regions" on the

FIB measurement may be neglected. The profiles are derived from measurements conducted with

flow through the 8:1 contraction, at a flow rate corresponding to WiDn = 1.98.
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Figure 6.11 Centerline profiles of the dimensionless velocity, vz/(Vz)Dn, as a function of

axial position, ý, for flows through the 8:1 (- - - -) and 32:1 ( - - - - - ) contractions. Flow rates

were similar for the two flows, WiDn = 1.98 and WiDn = 2.14, respectively. Note the coincidence

of the curves, to within a fractional discrepancy of ±+10% for ý 2 -5.
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Figure 6.12 Centerline profiles of the dimensionless velocity, vz/(v z) Dn ( ------- ), and strain

rate, (avz/az)(h/(vz)Dn) ( ), as a function of axial position, ý. Indicated on the plot is the

rightmost point where the dimensionless velocity exceeds the strain rate by a factor no greater

than 16. The profiles are derived from measurements conducted with flow through the 32:1 con-

traction, at a flow rate corresponding to WiDn = 2.14.
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profiles for the base flow through the 8:1 and 32:1 contractions at flow rates corresponding

to WiDn = 1.98 and 2.14, respectively, are compared. The profiles are identical to within

±10% for axial positions of 2> -5. Since the "nearly two-dimensional" region in the 8:1

contraction was located at axial positions ý 2 -5.7, the 32:1 contraction flow is expected

to be "nearly two-dimensional" for at least the range 2> -5. The influence of the "end

effects" on the birefringence measurement may then be assessed via eq. (6.16). A plot of

the centerline dimensionless velocity and strain rate is shown for flow through the 32:1

contraction at a volumetric rate corresponding to WiDn = 2.14. Equation (6.16) is less than

0.1 for an axial range extending over -12 < 5 < 0.5 . Hence, Figs. 6.11 and 6.12 indicate

that the flow in the 32:1 planar contraction may be treated as two-dimensional for the pur-

pose of evaluation of the FIB measurement for a range -5 • !• 0.5.

The assumption which was mentioned at the beginning of this Section, that memory

effects resulting from the elastic nature of the fluid are negligible, is now examined. The

specific question is: does the effect of the three-dimensional flow field on the stress of a

given fluid element in the far upstream region of the flow persist into the region of nearly

two-dimensional flow? To answer this question, a characteristic "relaxation length", lk, is

calculated from the product of a characteristic relaxation time of the fluid and a character-

istic velocity in the flow, and compared with the size of the two-dimensional region. The

"relaxation length", written in dimensionless terms, is

I VA (vz() (Vz)Dn (6.18)
0 ( v z) Dn 

ý

The zero-shear-rate plateau for the viscometric material functions could not be experimen-

tally determined (cf. Chapter 4); therefore, the extrapolated value from the Giesekus fit

described in Chapter 4, X0 = 1.9 [s-l], is used in eq. (6.18). The downstream shear rate for

a flow through the 8:1 contraction corresponding to WiDn = 2.9 is (vz)Dn/h = 14 [s-1].

When this shear rate is used, and eq. (6.18) is evaluated at ý = -5.0, using the dimen-

sionless velocity profile shown in Fig. 6.11, a "relaxation length" of lx/h = 7 is

obtained. This length is of the same order as the distance which the two-dimensional

region extends upstream of the contraction plane. Equation (6.18) provides a conservative
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estimate; specifically, use of the zero-shear-rate relaxation time should overestimate the

"relaxation length". Fluid memory of the strain experienced in the three-dimensional

region of the flow may have an influence on the degree to which the flow in the boundary

regions affects the FIB measurement. However, for the purpose of this order-of-magnitude

analysis, the general conclusions presented above, for which memory effects were

neglected, is expected to remain valid.

6.3.3 Nonidealities in the Base Flow: Effect of Finite Beam Area on the FIB Measure-
ment

The flow field along the centerline is shearfree. As one moves away from the center-

line, the contribution of shear velocity gradient components to the rate-of-strain tensor

must be considered. In consequence, the stress field will not be perfectly homogeneous

over the area of the FIB probe beam even when the beam is centered on the centerline of

the flow. The magnitude of stress-field variation associated with this inhomogeneity

depends on the velocity gradient tensor associated with the flow and the diameter of the

probe beam. As discussed in §3.4, the radius of the FIB beam is rb/h = 0.2. In the upstream

region, e.g. ý = -5.7, shown in Fig. 6.8, the variation in velocity over this distance is very

small. However, near the contraction plane (ý = +0.27) and within the downstream slit the

variation of the velocity gradient tensor over this area cannot be neglected and will affect

the FIB measurement. A set of assumptions is invoked to show that in the upstream region

defined by ý _ -0.5 the stress field is effectively homogeneous over the beam area, but for

ý > -0.5 inhomogeneity in the stress field prevents direct interpretation of the FIB mea-

surement in terms of the stress field.

The effect of stress field inhomogeneities over the area of the probe beam on an FIB

measurement was described for a general flow. A beam-averaged Muller matrix, (M), is

calculated by integrating over local values of the Muller matrix, M(y, z), weighted by the

local beam intensity, I(y, z), according to eq. (3.7). The problem is reconsidered here for

the specific case of flow on the centerline of the planar contraction. For this purpose, only

one beam of the TCFIB system need be considered; essential components of the optical

train are schematically represented in Fig. 3.5a. A beam of the TCFIB system is repre-

sented by means of the Muller calculus

279



ID = [1 0 0 0] *1

0
MPA 0

0

000 1

1
* (Ms) *

0
MPG 0

0000 1

000 1

0

Ii

S. (6.19)

Si3

Si4

The terms (representing optical elements) on the right-hand side of eq. (6.19) are now

defined from right-to-left order, as parallels the propagation of light through the system.

The Stokes vector on the extreme right of eq. (6.19) represents a laser beam of arbitrary

polarization and intensity, Ii; the actual polarization of the initial laser beam can be cor-

rected for by a normalization procedure as described in §3.4.3. The light is then linearly

polarized at a specific angle a by the polarization state generator (PSG), represented by

the second matrix element from the right of the equation. One may note that the compo-

nents in the fourth row and fourth column of the Muller matrix representing the PSG

(MPG) are all zero except for MPG 44, which is unity. The remaining components in the

upper-left section are represented by the 3 x 3 submatrix MPG. The beam averaged Muller

matrix of the sample (third term from the right) is represented by (Ms) . The polarization

state analyzer (PSA) is the fourth term in the product. The PSA is oriented 7r/2 [rad] with

respect to the PSG and can be completely described by means of the 3 x 3 submatrix

MPA. The photodetector measures the intensity of the light, ID, transmitted through the

entire optical train. The unit vector simply selects the intensity component from the Stokes

vector which is the product of multiplication of the right-most four terms. The zero com-

ponents of the matrix and vector elements of eq. (6.19) allow reduction of the system to a

3 x 3 matrix equation

1D 0 0 1
[ - -cos2a -sin2 * 0 (MS22) (M32 * cos2a (6.20)

(M 23 (MS33) sin2a

Where the Muller matrix for the sample, (Ms) , has been expanded into component form.

The off-diagonal components in the first row and column of the Muller matrix for the sam-

ple, which exhibits birefringence but not dichroism, are zero. The local values of the com-
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ponents MS23(y, z) and MS32(Y, z) of the sample exhibit even functional dependence on

the extinction angle, X. Since the flow is symmetric about the centerline, and the probe

beam over which the integration is performed is centered on the centerline, the beam aver-

aged value of components which exhibit such even functional dependence is zero

(MS 32) = (MS 23) = 0 (6.21)

Consideration of the specific dependence of the diagonal components of a Muller

matrix representing a birefringent sample on the extinction angle and retardation allows

for calculation of an apparent retardation, 8'm, which will be observed by the probe beam

of finite diameter

8'm = cos-((MS22) + (MS 33) - 1) (6.22)

Using the fact that the averaging operator, ( ), is linear, the apparent retardation can then

be related to the local, actual retardation, 5'(y, z), throughout the probe beam area

8'M = cos - 1 ('(y, z)) (6.23)

Because of symmetry about the centerline, the apparent extinction angle is zero, Xm = 0.

The apparent retardation, 8'm, is dependent, via eq. (6.23), upon the local retardation,

but not the extinction angle, throughout the probe beam. This is a consequence of the sym-

metry of the stress field about the centerline and the center of the beam. Consequently,

when estimating the influence of -inhomogeneity in the stress field on the apparent retarda-

tion, only the magnitude of the local retardation, 6'(y, z), throughout the area probed by

the beam must be considered.

Relation of the apparent retardation observed by each of the probe beams in the TCFIB

system to the birefringence determined by the system is not straightforward; this is a con-

sequence of the fact that the probe beams have different wavelength. However, such

detailed consideration is not necessary here. Specifically, if the inhomogeneities in the

stress field affect either the blue or green beams, a simple (directly proportional) interpre-

tation of the measured birefringence in terms of the normal stress difference,
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N1 = tzz- Tyy, on the centerline is not possible. The goal of this presentation is simply

determination of the degree of stress-field inhomogeneity within the beam area which is

tolerable, and consequently the identification of the region of flow where the FIB mea-

surement may be directly interpreted in terms of stress. Equation (6.23) simplifies this task

by rigorously showing that it suffices to consider only the retardation over the area of the

probe beam; consideration of the local extinction angle is not necessary. For the following

discussion, one should note that the retardation is linearly proportional to the birefringence

2ndAn
6' - (6.24)

A

The region of the flow where the treatment of the stress field as approximately homoge-

neous over the beam area is valid is identified by making a number of simplifying assump-

tions; these are described in the remainder of this Section.

A complicating factor in the determination of the stress field from the FIB measure-

ment arises from the fact that the test fluid used for the investigations comprising this the-

sis is a polymer blend. Specifically, the birefringence is linearly related to the first

principal stresses (defined as At = 4Tzy + (r 11 - 22) 2 ) of the components of the blend

weighted by the respective stress-optical coefficients, as given in eq. (3.4). The stress of

the Newtonian polybutene component, IpB, is directly related to the velocity gradient ten-

sor of the flow at a point in space which is interrogated by the beam. However, because the

polyisobutylene component is viscoelastic, in principle, the entire strain history of a fluid

element must be considered in order to determine the stress, TpIB , at a given point.

Consequently, a rigorous assessment of heterogeneity in the stress field across the

streamlines would require a two-dimensional flow simulation or streamline integration of

a constitutive model along the paths of individual streamlines, in conjunction with a

known velocity field. In either case, an accurate constitutive equation must be selected for

the integration along the streamlines. Such a constitutive equation could be fit to the shear

rheological data for the test fluid described in Chapter 4. However, a complete set of

unambiguous elongational rheological data is not available. Furthermore, even if a consti-

tutive equation could be fit to both accurate shear and rheological data, one could not be

certain that the model would accurately predict the response of a viscoelastic fluid in a
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complex flow. The need for only an order-of-magnitude estimate of the importance of

inhomogeneities in the stress field, in conjunction with the necessity of assuming the accu-

racy of a constitutive model does not justify the effort required to conduct streamwise inte-

gration of the stress along the streamlines or a two-dimensional flow simulation.

An evaluation which is less "rigorous" but much simpler to conduct considers the

components of the rate-of-strain tensor along the path of the streamlines. Specifically, the

rate-of-strain tensor for the streamline on the centerline of the flow has a contribution only

from the elongational, not from the shear components. As one moves off the centerline in

the y-direction, the rate-of-strain tensor has progressively greater contributions from the

shear components, while the elongational component remains essentially the same. This is

illustrated via the profile of v,-versus-,u of Fig. 6.8 which indicates that the velocity is

nearly constant across the streamlines at a given position ý, even in the vicinity of the con-

traction plane, ý = +0.27. As a consequence, the elongational component of the rate-of-

strain tensor, avz/Dz, will be nearly constant across the streamlines which pass through

the probe beam at the contraction plane, ý = 0. However, as discussed above, the magni-

tude of the derivative of the profile, lavz/yl , is not constant. Therefore, any inhomogene-

ity in the stress field within the probe beam can be considered to arise from differences in

the shear component of the rate-of-strain tensor for the different streamlines. It seems rea-

sonable to assume that if the contribution from the elongational component to the rate-of-

strain tensor is much greater than the contribution from the shear component at all points

along a given streamline, the stress profile along that streamline should be similar to the

profile along the centerline. Alternately, if the contribution from the shear component is

greater than or equal to the contribution from the elongational component, the stress pro-

file may differ substantially from that of the centerline. The elongational (avz/az) and

shear (avz/ay) components of the rate-of-strain tensor at different points in the flow are

plotted in Fig. 6.13. The elongational component on the shearfree centerline is plotted for

different positions, ý; this profile is expected to be nearly the same for all of the stream-

lines which pass through the probe beam at ý = 0. The shear component is plotted for a

profile with constant y = rb, i.e., the outer limit of the probe beam area from the centerline.

A more conservative estimate of the importance of the shear component considers not

only the value at a given point, but accounts for the memory of the fluid by considering the
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Figure 6.13 Dimensionless components of the velocity gradient tensor as a function of axial

position, ý: (- ) elongational component, (avz/az)(h/(vz)Dn ) , on the centerline, u = 0;

(- - -) shear component, (avz/ay)(h/(Vz)Dn), for u = rb/h; (- -) shear component,

(avz/ay)(h/ (Vz)Dn ) , for streamline passing through the point (v, 5) = (rb/h, 0) described by

0 = (rb/h)(vz(O)/vz(ý)). The profiles shown are for flow through the 8:1 contraction with

WiDn = 1.59.
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contribution of the shear component to the rate-of-strain tensor at previous points occu-

pied by the fluid element on the streamline in question. Therefore, the shear contribution is

also plotted for points on the streamline which passes through the outer limit of the probe

beam, at the contraction plane; i.e., the point (v = rb/h, ý = 0). This represents an

upper bound on the importance of the shear contribution to the rate-of-strain tensor for an

FIB measurement taken with a probe beam centered on the centerline and upstream of the

contraction plane, ý • 0. Using this conservative estimate, it is noted from Fig. 6.13 that

the elongational contribution to the centerline rate-of-strain tensor is at least a factor of 3.3

greater than the shear contribution over the range -5.7 • ý < -1.0. The contribution of the

elongational component to the rate-of-strain tensor then levels out while the shear contri-

bution continues to increase: the ratio of the components narrows to a factor
avz/az
Vz/y -= 2.0 at the point ý = -0.5. The shear contribution slightly exceeds the elonga-

tional contribution at the contraction plane, ý = 0. In consequence, the assumption of a

homogeneous stress field should be valid up to at least ý = -1, and possibly ý = -0.5, but is

almost certainly invalid for 2> 0. For the results presented in §6.4, direct interpretation of

the birefringence measurement in terms of the stress field will be taken to be valid for

axial positions of-5.75 < 5 -0.5 .5

6.3.4 Nonidealities Resulting from Transitions at Elevated Flow Rates

As discussed in Chapter 5, at an elevated volumetric rate a flow transition occurs, as

detected in the dimensionless strain rate versus ý profile. Specifically, a region of diverg-

ing flow, having negative strain rate, is found in the upstream region. Also associated with

this transition is a high strain rate "spike" having greater maximum dimensionless strain

rate than for the base flow. The change in the dimensionless strain-rate profile prevents

direct comparison of transient elongational viscosity profiles with those for the base flow

in §6.4. However, since flow rearrangement is two-dimensional in nature, the ability to

directly interpret birefringence measurements in terms of the stress field is not compro-

mised, and the data can be used to test constitutive models as originally intended.

5. On the Figures of §6.4, some data points outside of this range are also shown.
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At a flow rate greater than, but of the same order as that associated with the two-

dimensional flow rearrangement, a transition to three-dimensional, steady flow (discussed

in Chapter 5) occurs. The magnitude of the spatial oscillation was greatest near the bound-

ing walls at y = +H and weakest near the centerplane. Consequently, near the centerplane

(u = 0), the three-dimensional and steady instability is not expected to have a deleterious

effect on the use of FIB to obtain stress-field information.

At yet a higher flow rate, a transition to three-dimensional, time-dependent flow was

observed; this instability is described in Chapter 5. As in the case of the preceding three-

dimensional and steady instability, the amplitude of oscillation is greatest near the bound-

ing walls at y = +H and weakest near the centerplane. At a flow rate corresponding to

WiDn = 2.90 in the 8:1 contraction, greater than but close to the estimated critical value for

onset of the instability, a scan over the x-direction on the centerplane (cf. Fig. 6.14) indi-

cates that although there is variation in the velocity, the variation is sufficiently small that

it may be neglected for the purpose of obtaining stress-field information from the birefrin-

gence measurement. However, when the flow rate is increased such that WiDn = 3.10, the

spatial variation in the x-direction associated with the instability, even near the center-

plane, becomes sufficiently great that birefringence measurements cannot be directly

interpreted in terms of stress, as shown in Fig. 6.15. One should note that the velocity data

in Figs. 6.14 and 6.15 were obtained via LDV operating in the burst-analysis mode.

Acquisition of each data point takes on the order of 60 [s]. Since the flow is time-depen-

dent, the data shown in Figs. 6.14 and 6.15 do not represent instantaneous profiles. Conse-

quently, the variation of the data points for the scan over x at a fixed p-position provides a

lower bound on the magnitude of the oscillation; the "time averaging" acts to smooth vari-

ations.

6.3.5 Beam Divergence Induced by Thermal Gradients

As mentioned in §4.2.1, when a viscous fluid is sheared, mechanical energy is con-

verted to heat. Consequently, a fluid of finite thermal conductivity driven through a planar

contraction exhibits thermal gradients. Materials exhibit a correlation between tempera-

ture and the magnitude of the refractive index; specifically, an increase in temperature
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Figure 6.14 Profiles of dimensionless velocity, Vz/(vz)Dn, as a function of position in the

"neutral" direction, X. Scans are taken on the centerplane, -u = 0, at different axial positions: (A)

= -0.00; (0) = -0.51; ( ) D = -1.01; (0) = -2.01. Flow is through the 8:1 contraction with

WiDn = 2 .9 0.
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X

Figure 6.15 Profiles of dimensionless velocity, vz/ (vz)Dn , as a function of position in the

"neutral" direction X. Scans are taken on the centerplane, i = 0, at different axial positions: (A) ý

= -0.05; (0) ý= -0.56; (0) ý= -1.05; (-) ~ = -1.55; (0) = -2.05. Flow is through the 8:1

contraction with WiDn = 3.10.
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results in a decrease in the refractive index. As a result, the 0.30 wt% PIB in PB test fluid

exhibits refractive index gradients in the planar contraction flow. A sufficiently high varia-

tion in refractive index in the plane normal to the direction of propagation of the FIB probe

beam causes the fluid flowing through the channel to act as a gradient refractive index

lens. This lensing characteristic can induce deflection and/or divergence of the probe beam

as it travels in the "neutral" direction through the channel and prevent an FIB measure-

ment from being taken.

Galante (1991) discussed the effect of thermal gradients on beam deflection in detail;

he presented a quantitative analysis for the case of fully developed flow and experimental

data for flow of a polymer melt through the planar contraction. Beam deflection was

detected but was sufficiently small so as not to have a deleterious effect on experimental

measurements. Stress gradients can also induce beam deflection and broadening (Pindera

and Hecker, 1987); Galante reviewed this phenomenon in the context of viscoelastic fluid

flow. Galante found that in his experiments the effect of stress gradients on beam deflec-

tion was a factor of order ten less than the effect of thermal gradients (Galante, 1991). For

the case of the fluid, flow rates, and geometry used in this investigation, beam divergence

induced via thermal and/or stress gradients was noted in the vicinity of the entry of and

within the downstream slit. The phenomenon was only observed for high flow rates corre-

sponding to WiDn > 3.1.

6.3.6 Summary of Factors which Limit Use of FIB Measurement to Determine Stress

A summary of factors which limit the flow rate for which FIB information may be

directly interpreted in terms of the stress field, for flow of the viscoelastic test fluid

through the planar contraction, is provided in Table 6.2.
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H/h 8 32

Downstream Downstream
Upstream & Contr. Plane Upstream & Contr. Plane
(_ • -0.5) > -0.5) -0.5) (> -0.5)

Base Flow: Inhomogeneous WiDn > 0 for WiDn > 0 for
Stress along Beam Path < -5.7, 0.8 < r ~ < -5, 0.5 <

Three-Dimensional Flow > 2.9 - > 2.9

Inhomogeneous Stress over - > 0 -> 0
Beam Area

Thermal- and/or Stress- - > 3.1 - > 3.1
Gradient Induced Beam Div.

Table 6.2 WiDn associated with flow phenomena which limit FIB measurement in the 8:1

and 32:1 planar contractions.

For the case of the base flow, the boundary regions within which the stress field is dif-

ferent than in the core region are expected to preclude the direct interpretation of FIB mea-

surements in terms of the stress field in the regions far upstream of the contraction plane

and in the downstream slit; i.e, axial positions of ý < -5.7, 0.8 < ý for the 8:1 contraction

and positions of ý < -5, 0.5 < ý for the 32:1 contraction. In the upstream region over

which the stress field is determined, i.e. -5.7 <5 5 0.8 for the 8:1 contraction and

-5 5 ý < 0.5 for the 32:1 contraction, the limiting factor is variation of the velocity field

along the "neutral" x-direction following onset of the three-dimensional, time-dependent

instability. The critical Weissenberg number defined in terms of the downstream parame-

ters, WiDn, increases with contraction ratio. If the Weissenberg number is defined in terms

of the upstream parameters, as in Chapter 5, the critical Wiup decreases with the contrac-

tion ratio. As discussed in §6.3.4, FIB measurements can be made for WiDn somewhat

greater than the value associated with transition to three-dimensional, time-dependent

flow.

In the region in the vicinity of the contraction plane and in the downstream slit, ý > -

0.5, inhomogeneities in the stress field within the yz-plane normal to the direction of beam

propagation, rather than variation in the direction of beam propagation (x-direction) pre-
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vent direct interpretation of the FIB measurement in terms of the stress field. Since both

the elongational and shear components of the velocity gradient tensor scale proportionally

with the volumetric flow rate (when viscoelastic effects are neglected and before onset of

flow instabilities) inhomogeneities in the stress field limit FIB measurements in the vicin-

ity of the contraction plane and in the downstream region at all flow rates. The factors of

three-dimensional unstable flow and stress inhomogeneities over the beam area preclude

the direct interpretation of the birefringence measurement in terms of the stress field in the

upstream and downstream regions of the flow before thermal- and/or stress-induced beam

divergence must be considered. Thus, the onset of thermal- and/or stress-induced beam

divergence is not a limiting factor.

6.4 Results: Comparison of Experimentally Determined Centerline
Stress-Field Information with Model Predictions

In this Section, the results of the FIB measurements in terms of the centerline stress

field for a set of flows are presented. In §6.4.1 the determination of the stress-optical coef-

ficients, required to calculate the stress tensor from birefringence information, is dis-

cussed. The transient elongational viscosity which is used throughout this Section to

present the stress field on the centerline is defined in §6.4.2. The effect on the transient

elongational viscosity profile of varying the flow rate is presented in §6.4.3. The transient

elongational viscosity profiles for flows through the 8:1 contraction geometry and through

the 32:1 contraction geometry are compared in §6.4.4.

6.4.1 Determination of Stress-Optical Coefficients

The stress-optical coefficients were determined using the Couette cell apparatus

described in §3.4. The inner spindle of the filled cell was rotated at a fixed angular veloc-

ity; the associated shear rate in the annular gap was calculated using the dimensions of the

Couette cell. The stress tensor in the fluid was determined from the known shear rate and

the steady shear rheology described in §4.4. The birefringence and extinction angle of the

shearing fluid were measured using the TCFIB system. A set of data comprised of mea-

surements taken at several rotation rates with the spindle rotated in both clockwise and
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counter-clockwise directions was obtained. A plot of either the diagonal or the off-diago-

nal components of the refractive index tensor versus the stress tensor are used to calculate

the stress-optical coefficient.

The birefringence in the flow of a polymer blend is related by eq. (3.4) to the contribu-

tions to the stress field caused by the component polymers. The determination of stress in

the flow of the 0.30 wt% PIB in PB test fluid through the planar contraction requires the

stress-optical coefficients of both the high MW polyisobutylene solute component and the

medium MW polybutene solvent component. The measurement of the stress-optical coef-

ficient for the polybutene solvent, CPB, is first discussed; the calculation of the coefficient

for the polyisobutylene solute is then presented. The stress-optical coefficients determined

in this investigation are then compared with results previously presented in the literature.

As described in Chapter 4, for the flows considered in the planar contraction and for

the range of shear rates accessible with the rheometer, the polybutene solvent is inelastic

and non-shear-thinning; it acts as a Newtonian fluid. Consequently, in the Couette cell

flow, the polybutene will exhibit zero normal stress; the only nonzero component of the

stress tensor is rO . A plot of the off-diagonal component of the refractive index tensor,

n21, as a function of the shear stress, tr0, is shown in Fig. 6.16. The linear relation of the

quantities is evident; the stress-optical rule is consistent with the experimentally observed

behavior. The stress-optical coefficient of the polybutene is equivalent to the slope of the

line, CPB = 0.98 x 10-9 + 0.07 x 10-9 [Pa-1]. The range of shear stress for making measure-

ments is limited by two factors. The DC gear motor (Electro-Craft Motomatic, E652-

MGHD) which drives the spindle is specified to have a speed range of

0.004 • Qmotor • 3.0 [rad s-l]. For the experiments, it was found that the slowest speed for

which the motor rotation was steady, as required to obtain accurate birefringence data, was

equivalent to a shear rate in the Couette cell of approximately 1 [s-l]. The maximum shear

rate which can be generated in the Couette cell is limited by the torque output of the motor,

33 [N m], and slip of the drive belt. Within the bounds set by the minimum speed and max-

imum torque output of the motor, measurements were conducted over a full decade of

shear stress, 1 x102 < < 1 x103 [Pa], allowing accurate determination of CPB.

In contrast with the pure polybutene solvent, the 0.30 wt% PIB in PB solution is elas-

tic. Consequently, a non-zero normal, or "hoop", stress, N 1 = Tee - Trr , is observed in the
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Figure 6.16 Determination of the stress-optical coefficient of polybutene, CPB, in the Couette

cell. The experimentally measured shear component of the refractive index tensor, n21, is plotted

as a function of the shear stress, rro, via the 0 symbols. The slope of the fitted line (- )

corresponds to CPB = 0.98 x 10-9 [Pa-1]. The error bar shown at the right of the graph indicates the

±7% standard deviation of the fit to the data.
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Figure 6.17 Determination of the stress-optical coefficient of polyisobutylene, CpIB in the Cou-

ette cell. The experimentally measured difference of the normal components of the refractive

index tensor, n 11 - n22 , is plotted as a function of the first normal stress difference, too - Trr, via

the 0 symbols. The slope of the fitted line (- ) corresponds to CPIB = 1.48 x 10-9 [Pa-1].

The error bar shown at the right of the graph indicates the ± 12% standard deviation of the fit to the

data.
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Couette cell flow. Since, as described in the preceding paragraph the polybutene solvent

does not contribute to the normal stress in the flow, the normal stress in the solution must

arise exclusively from the contribution of the polyisobutylene solute component,
.2

N1 = NIPIB = -- 1 PIBY . Consequently, the stress-optical rule for polymer blends, eq.

(3.4), reduces to

n - n22 = CPIBN1IPIB (6.25)

for the difference of the diagonal components of the refractive index and stress tensors.

The refractive index tensor was measured via TCFIB and the stress tensor determined

for a set of rotation rates in the Couette cell for the 0.30 wt% PIB in PB test fluid; a plot of

the results is given in Fig. 6.17. A straight line provides a good fit to the data, indicating

consistency of the experimental results with the stress-optical rule. From the slope of the

line, the stress-optical coefficient of the polyisobutylene solute component was deter-

mined to be CPIB = 1.48 x 10-9 ± 0.18 x 10-9 [Pa- 1]. The lower bound on the normal stress

difference, N 1, for which data could be obtained was set by the lowest speed of the DC

motor which could be maintained without fluctuation in the rate of revolution. The upper

bound on N1 was set by onset of a three-dimensional instability which precluded quantita-

tive FIB measurements from being made (the effect of variation of the stress tensor in the

direction of beam propagation on FIB measurement has been discussed in Sections 3.4

and 6.3). The instability is induced by the interaction of streamwise elastic "hoop" stresses

with the streamline curvature. The nature of this class of instability and theoretical and

experimental studies of the elastically driven Couette cell instability in particular has been

discussed in Chapter 5. Within the bounds set by the specifications of the DC motor and

onset of flow instability, data are obtained over one-and-one-half decades of normal stress,

1 x10 2 < N< 4x10 3 [Pa], enabling accurate calculation of CPIB-

There are previously published values of the stress-optical coefficient for polyisobuty-

lene. A summary of values of CPIB obtained in bulk and in solution with different solvents

is given in Table 6.3. These literature results are interpreted below and then compared with

the stress-optical coefficient of polyisobutylene obtained for the PIB in PB solution used

in this study.
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Solvent (n) C [10 -9 Pa-1] c [g/100 cm 3] Reference

1.4 - Stein et al. (1954)
Bulk (npIB = 1.50) a

1.50

1.50 0.2 - 9.0 Brodnyan et al. (1957)

Decalin (1.47) b 1.65 3.0 Philippoff (1962)

PIB Oligomer (1.50)a 1.80 0.2 - 2.0 den Otter (1967)

Tetradecane (1.43) b  1.87 3.8 Quinzani (1991)

1.7 not reported Tsvetkov (1957)
Benzene (1 .50 )b 2.18 3.0

Tetralin (1.54) b  2.49 3.0 Philippoff (1962)
n-Octane (1 .4 0 )b 3.07 3.0

Table 6.3 Published literature values for the stress-optical coefficient of

polyisobutylene, CpIB, in bulk and in various solvents. The invariant refractive index, n,

of the solvent is given in the leftmost column; the concentration, c, of PIB solute in

solvent is given.
a. PIB invariant refractive index from Philippoff (1962).
b. Solvent invariant refractive indices from Weast (1987).

The stress-optical rule was found to be independent of concentration of high molecular

weight (MW) polymer solute in solvent (Brodnyan et al., 1957) and independent of the

MW of the solute (Fuller, 1995). However, as one may note from Table 6.3, the stress-opti-

cal coefficient is dependent on the chemical nature of the solvent (Philippoff, 1962); the

origins of this dependency are considered below.

Form birefringence caused the PIEB stress-optical coefficient reported for the PIB/sol-

vent systems listed in Table 6.3 to differ from the value found for bulk PIB. The form bire-

fringence phenomenon can be understood by considering a suspension of bodies in a

medium. Both within the suspended particles and the suspending fluid the refractive index

tensor is homogeneous and isotropic; however, the isotropic component of the refractive

index tensor, n = trace(n), here termed the "invariant refractive index", is different for the
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fluid and the particles. Despite the internal isotropy of the suspended particles, if the parti-

cles have a mean characteristic anisotropic shape, the net, macroscopically observed

refractive index tensor will be anisotropic. This anisotropy is represented as the form bire-

fringence, Anf (Doi and Edwards, 1986; Fuller, 1995; Quinzani, 1991).

To consider the form birefringence of a polymer/solvent system, the individual poly-

mer molecules may be approximated as spheroids having homogeneous invariant refrac-

tive index. When subjected to a flow field of a characteristic velocity gradient, the

spheroid will deform. If the polymer molecule is surrounded by a solvent with the same

invariant refractive index, i.e. a "matching solvent", there will be no form contribution to

the birefringence, despite the mean anisotropy of the particles. The macroscopically

observed birefringence is then equal to the intrinsic birefringence, which is associated

with the orientation of segments within the polymer chains and the anisotropic polarizabil-

ity of the polymer backbone (cf. Chapter 3). However, if the invariant refractive indices of

the polymer and the solvent differ, there is a form, in addition to an intrinsic, contribution

to the observed birefringence, Anobs = Anf + Ani. If the polymer molecule is deformed

into a prolate ellipsoid, as is the case for the shearing flows used to obtain the results pre-

sented in Table 6.3, the form birefringence causes a positive increase in the value of the

ratio of the birefringence to the principle stress difference, An/At, above the value which

would be observed if only intrinsic birefringence were present. The contribution of the

form birefringence to the stress-birefringence ratio is always positive for particles of a pro-

late form, irrespective of whether the polymer or the solvent has the greater invariant

refractive index. Note that unlike the intrinsic birefringence, the form birefringence does

not exhibit a linear dependence on the imposed principle stress difference; this can result

in a deviation from the linear stress-optical rule which is generally undesirable from an

experimental viewpoint (Doi and Edwards, 1986; Fuller, 1995; Quinzani, 1991).

When a matching solvent is used, the birefringence-stress ratio for the polymer solute

will be minimized and the stress-optical rule strictly apply: C = An/At for all imposed

stresses, for which the polymer chains have an approximately Gaussian configurational

distribution (cf. Chapter 3). Note that the invariant refractive indices of the decalin, tetra-

lin, tetradecane, and n-octane solvents differ from the value for the polyisobutylene poly-

mer, nPIB = 1.50, as shown in Table 6.3. With the possible exception of the decalin solvent
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system (for which reported values differ by 10%), the stress-optical coefficients reported

for the investigations using these solvents were all greater than that observed for PIB in

bulk, 1.4 • CPIB < 1.50. However, this reasoning does not explain the elevated values of

the stress-optical coefficient reported for solvents of benzene or PIB oligomer, both of

which matched the refractive index of PIB to within 1%. The elevated value is especially

surprising for the latter case, wherein the chemical structure of the solvent was identical to

the PIB solute, differing only in molecular weight.

The solvent "quality" is not expected to directly affect the stress-optical coefficient.

Specifically, when only intrinsic birefringence is considered, the relation between the

stress-optical coefficient and the anisotropic polarizability, (t - CI)pIB is

2 2
27t (nplB + 2)

CpB = 45kBT nIB - (6.26)

where kB is Boltzmann's constant and T is the absolute temperature. Microstructural terms

such as the segment length or the number of segments in the polymer do not enter into eq.

(6.26). In consequence, it does not matter if the polymer coil is relatively more expanded

or compacted with respect to its configuration in a theta solvent (Doi and Edwards, 1986;

Philippoff, 1956; Lodge, 1956; Kuhn and Kuhn, 1943).

It has been hypothesized that the high MW polymer chains may act locally to orient

surrounding solvent molecules (Fukuda et al., 1971). This mechanism may explain how

the stress-optical coefficient for a high MW PIB solute in an oligomeric PIB solvent could

differ from the value obtained in bulk. However, the concept of "local solvent orientation"

is difficult to verify experimentally and is not considered further in this thesis. The poten-

tial role of experimental error must be considered when interpreting the data presented in

Table 6.3; specifically, compare the results of different investigations which used the same

polymer/solvent system (bulk PIB, PIB in decalin, or PIB in benzene). The values of the

PIB stress-optical coefficient reported for a given polymer/solvent system differed from

10% to 30%.

The PIB in PB solution is well suited for use in birefringence investigations in that the

PB solvent has an invariant refractive index of npg = 1.50 (Amoco Chemical Company,
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1992) and is a matching solvent for PIB. The value of the stress-optical coefficient, CPIB =

1.48 x 10-9 [Pa-1], obtained in the experiments presented here is within the range of values

reported for investigations with bulk PIB, 1.4 • CPIB < 1.50, as shown in Table 6.3. This

consistency in the results supports the conclusion that form birefringence is negligible and

the intrinsic birefringence associated with polymer segment orientation is the only contrib-

uting factor to the macroscopically observed birefringence for the 0.30 wt% PIB in PB test

fluid.

Previously published stress-optical coefficient data for the polybutene solvent used in

the composition of the test fluid were not available. The polybutene backbone is com-

prised of isobutylene and 1- and 2-butene monomer units (Amoco Chemical Company,

1992). The stress-optical coefficient for polyisobutylene has been discussed above. Stress-

optical data for polypropylene are available in the literature; polypropylene has a back-

bone structure similar to poly(1-butene); i.e., alternate backbone carbons have a single

attached side chain. A value stated in the literature for bulk isotactic polypropylene was

Cpp = 0.94 x 10-9 [Pa-1] (Adamse et al., 1968). Note that the stress-optical coefficient for

the polybutene solvent obtained in this investigation, CpB = 0.98 x 10-9 [Pa-1], has a value

between those found for bulk polyisobutylene and bulk polypropylene.

6.4.2 Transient First Planar Elongational Viscosity

The stress response of the viscoelastic fluid to the transient planar elongational flow

along the centerline may be conveniently represented by the "transient first planar elonga-

tional viscosity", jc(ý) (Quinzani et al., 1995).6 Specifically, the profile of the normal

stress difference, N1 (I) = zz - nyy, is normalized with the maximum strain rate experi-

enced by fluid travelling along the centerline of the flow, Emax, to obtain

c() = N() (6.27)
Emax

6. Throughout the remainder of the text, for conciseness, r,(ý) will be referred to simply as the

"transient elongational viscosity profile".
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One may note that for a Newtonian fluid in a planar elongational flow the transient elonga-

tional viscosity profile would have the same shape as the strain-rate profile, avz(ý)/az,

but be scaled with the factor 4g, where .t is the viscosity of the Newtonian fluid. The

"memory" characteristic of viscoelastic fluids will generally result in a more complex

relation between the strain-rate and the transient elongational viscosity profiles. To under-

stand the nature of a viscoelastic fluid from the transient elongational viscosity profile one

must concurrently use the strain-rate profile. Specifically, the experimentally determined

rjc() is compared with the profile predicted by a linear or nonlinear constitutive model

with the strain-rate profile. If the experimental and predicted profiles match, the constitu-

tive model accurately represents the behavior of the viscoelastic fluid in the given transient

planar elongational flow.

Representative stress and strain-rate profiles obtained in the 8:1 contraction at a flow

rate corresponding to WiDn = 1.59 are shown in Fig. 6.18. As discussed in Chapter 5, the

strain-rate profile is characterized by a long "tail" of low strain rate extending far

upstream, and a "spike" of high strain rate which reaches a maximum approximately 0.5h

in front of the contraction plane. The profile of tLc exhibits similar features; specific

aspects of the response of the fluid are discussed in the remainder of §6.4 and in §6.5. One

may note that an abscissa other than axial position, ý, can be useful for interpreting the

transient elongational viscosity data; time (defined as t = 0 for a given fluid element at r =

0) and strain (defined as £ = 0 at ý = 0) are used in §6.5.

6.4.3 Effect of Flow Rate on Transient Elongational Viscosity Profile

In this Section, centerline transient elongational viscosity profiles are shown for differ-

ent volumetric flow rates through the 8:1 contraction. Comparison is made with two con-

stitutive models: linear Maxwell and the nonlinear Giesekus model. The lowest flow rate

for which a complete set of data was obtained corresponded to WiDn = 1.24. The results

for this flow rate are discussed first and in detail; the results serve as a reference to which

data obtained for other flow rates are compared. Specifically, later in this Section the

results for flows with WiDn = 0.83, 1.59, 1.98, and 2.86 are discussed.
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Figure 6.18 Representative experimentally determined centerline profiles of the transient first

planar elongational viscosity, mlc , ( E, plotted against the left axis) and the dimensionless elonga-

tional strain rate, (avz/az)(h/(vz)Dn), (- , plotted against the right axis). Both quantities are

shown as functions of dimensionless axial position, ý. Flow was through the 8:1 contraction with

WiDn = 1.59, which corresponds to a mean downstream shear rate of h/ (vz)Dn = 4.0 [S- ] .

301

_ __



A semilog plot of the experimentally measured transient elongational viscosity as a

function of axial position is shown in Fig. 6.19a for flow through the 8:1 contraction with

an associated WiDn = 1.24. The shape of the profile is similar to that of the strain-rate pro-

file for the flow shown in Fig. 6.19b. Specifically, far upstream of the contraction plane the

strain rate and the transient elongational viscosity are low. As the contraction plane is

approached, both quantities increase. The predictions of the linear Maxwell and nonlinear

Giesekus constitutive equations also are shown in Fig. 6.19a; detail on the specific steps

used to obtain these predictions is provided below. Far upstream, where the strain rate is

low, the predictions of the linear and nonlinear models superimpose. This is expected

because at a low "local elongational Weissenberg number", WiLE = ,lcharE(ý) (Xlchar

represents a characteristic relaxation time), any viscoelastic fluid responds linearly. Closer

to the contraction plane, the strain rate rises to a sufficiently high level that the predictions

of the linear and nonlinear constitutive models diverge. The semilog plot of Figure 6.19a

highlights the increase in the percentage difference between the predictions of the linear

and nonlinear models as the contraction plane (ý = 0) is approached. This divergence is a

result of the increase in local strain rate and of accumulated strain; detailed discussion of

the response of linear and nonlinear constitutive models to the centerline strain-rate profile

characteristic of planar contraction flow is deferred to §6.5.

As discussed in §6.3, stress-field inhomogeneities restrict quantitative interpretation of

the birefringence measurement in terms of the stress field to axial positions ý < -0.5. How-

ever, the predictions of the constitutive models imply that mic continues to increase for r

slightly greater than the point where the maximum strain rate is attained, ý = -0.4; such

behavior can be attributed to the "memory" characteristic of the viscoelastic fluid. For the

remainder of the flow on the centerline, over which the local strain rate was observed to

decrease with increasing axial position, ý > - 0.25, the most dramatic difference is noted

between the predictions of the linear and nonlinear models. Again, the downstream region

of the flow is not experimentally accessible to quantitative FIB measurements.

From Figure 6.19a, the distance between the experimental data and the model predic-

tions of Tc is seen to be nearly constant over all the upstream axial positions shown on the

semilog plot: the experimental data is greater than the prediction of the models by a con-

stant percentage. This constant factor indicates a systematic error on the order of 20%.
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Figure 6.19 Centerline profiles as a function of axial position, ý. Flow was through the 8:1 con-

traction with WiDn = 1.24. (a) Transient elongational viscosity profile, Tc: i , experimental data

points; (- ) prediction of linear Maxwell; ( --- ) prediction of Giesekus. (b) Dimensionless

elongational strain rate, (Dvz/az)(h/ (vz)Dn)
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The basis for this interpretation and possible sources of error is discussed here. Far

upstream of the contraction plane, the predictions shown in Fig. 6.19a of the linear and

nonlinear models coincide. Consequently, if there were no error in the measurements, the

fact that the flow in the upstream region only excited a linear response should result in the

measured data superposing on the model predictions. This was not observed, the percent-

age offset of the data from the models was essentially the same in the upstream region as

near the contraction plane, where the models indicated that a mildly nonlinear response

could be excited. Consequently, the discrepancy of the experimental data with the predic-

tion of the nonlinear model cannot be ascribed to inaccuracy in the fitted nonlinear param-

eters or to the inappropriateness of the Giesekus model.

A discrepancy of 20% is not surprising when one considers the steps in the data reduc-

tion required to obtain the transient elongational viscosity profile from the experimental

data, shown in Figs. 6.19a and 6.19b. The propagation of error is now considered and is

used to estimate the error associated with the experimentally determined transient elonga-

tional viscosity profile. Consider a multivariate function, y = f(x), where

x = { xI ... x n } are uncorrelated independent variables. Take x0 to be the mean value of

the dependent variables and rex = { •X, ... ox } to be the standard deviation of the depen-

dent variables about this mean. If the function is linear, the standard deviation of the

dependent variable, oy, is related to the standard deviation of the independent variables as

n

2 2
a = .•-f(x0 ) (6.28)

i=l

Alternately, consider a function which is nonlinear, but differentiable about the point xo,

so that for sufficiently small variation, x = xo + E, the value of the function varies lin-

early with E; i.e., y = f(yo) + (af/ax) -. , where yo = f(xo). Equation (6.28) can be

applied to the function within this linear region (Box et al., 1978). If f(x) is a nonlinear

function which is a product of the independent variables each raised to a power
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n

f(x) = fx (6.29)

i=l

then the fractional standard deviation of the dependent variable, 68 = (y/YO, is related to

those of the independent variables, 8x = (a,l/xo,1)... (oxl/xo,n) }, as

68• (6.30)

The transient elongational viscosity profile, defined in eq. (6.27), was calculated from

the experimentally determined stress-optical coefficient, the birefringence profile, and the

maximum value of the strain rate profile. Tests conducted with a quarter-wave plate indi-

cated error in the retardation measured by the TCFIB apparatus (described in §3.4) of

order 6 An = 2 %; the fractional error for the lower retardations which are typically mea-

sured in the Couette cell and along the centerline of the planar contraction flow are

expected to be greater. Furthermore, stress-field inhomogeneities along the beam path (x-

direction), and within the plane for which the components of the refractive index tensor

are determined (yz-plane) can affect the birefringence measurement, as discussed in Sec-

tions 6.3.2 and 6.3.3. Stress-field variation along the beam path could have induced error

as great as 6An, x = 10 % within the range -5.7 5 : 5 0.8 ; variation within the beam area

as great as An, y = 30 % over the range -5.75 • • -1 . Both of these estimates are con-

servative, the actual error introduced was probably less. Taking the root mean square of

the three factors, one obtains an estimate of the fractional deviation of the measured bire-

fringence from the value associated with the stress field on the centerline for ideal two-

dimensional flow; 8An, P1 Contr = An + An, x + An, yz = 32%.

Determination of the stress-optical coefficients has been discussed in §6.4.1; the frac-

tional standard deviations associated with the fits to the data were 8CpiB,fit = +12% and

6 CpB,fit = +7%. The relation of the stress-optical coefficient to the birefringence and the

stress is of the form in eq. (6.30). Given the 6 an = 2% error associated with the measure-

ment of birefringence (end effects in the Couette cell are negligible), the 81 = 5% error
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associated with the measurement of the viscosity, and the 6•, = 10% error associated

with measurement of the first normal stress coefficient, the expected fractional standard

deviations for the stress-optical coefficients are = 8n + 8 = 10% and

CpB n + 8' , = 5%. This is similar to the fractional standard deviations found

when the data presented in Figs. 6.16 and 6.17 were fitted.

Velocity data on flow through the planar contraction was acquired via LDV, with an

accuracy of order +2%; the differential pressure which drove the fluid flow was measured

to within ±5%. The centerline velocity profile was fit with a cubic spline, and the fit differ-

entiated to determine the centerline strain-rate profile; note that the differentiation opera-

tion has the effect of increasing measurement noise. The volumetric flow rate through the

system was measured via LDV for several pressure drops; the relation between volumetric

flow rate and pressure differential was linear for all the experiments conducted for this the-

sis. The centerline birefringence and velocity data were obtained in separate runs; conse-

quently, the imposed pressure drop, AP, could differ slightly. This discrepancy in the

pressure differential was corrected for by using the linear relation between volumetric rate

and pressure differential. Knowledge of the volumetric flow rate also allowed estimation

of the Weissenberg numbers defined in terms of the upstream and downstream flow

parameters, WiUp and WiDn. When the different stress-optical coefficients of the PIB sol-

ute and the PB solvent are taken into account, the equation for reduction of the data to

obtain the transient elongational viscosity profile is

1 (An • PLDv TBE() ( CPB (6.31)
Tc() = 4 C PIBAPFIB + 1 CPIB (6.31)

4max iB + Emax PIB

A rigorous analysis of the propagation of the error would require application of eq.

(6.28) to eq. (6.31); the error associated with each data point would have to be evaluated

separately. This rigorous analysis is not justified since correlation between the standard

deviations of the e(ý) and Emax terms exists in eq. (6.31); correlation may exist between

the CPB and CpIB terms and between the APLDV and APFIB terms but cannot be quantified.

Since only a general estimate of the error is sought, only the first term on the right side of

eq. (6.31) is considered. This allows application of eq. (6.30) to obtain
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2 2 +82 2(
ic = An, P Contr CIB+  + 2 (6.32)

The fractional standard deviations of the terms on the right side of eq. (6.32) were

8An, PlContr = 32%, 58C = 10%, 8. = 2%, and 6,p = 5%, which yields a frac-

tional standard deviation of the calculated transient elongational viscosity of 6- = 34%.
1tc

This conservative estimate of the error is similar to the 20% discrepancy between the

experimental and the predicted transient elongational viscosity profiles. Note that the error

defined by eq. (6.32) is dominated by the 6An, Pl Contr term. It is described above that the

magnitude of this term is set primarily by the error associated with stress-field inhomoge-

neity along the beam path, 6 An, x = 10 %, and within the beam area, 5An, yz = 25%. Note

that the error terms associated with stress-field inhomogeneity along the beam path and

within the beam area both act to increase the experimentally determined stress above the

value for flow along the centerline of an ideal, two-dimensional planar contraction. This is

consistent with the results shown in Fig. 6.19a and for most of the results presented

throughout Sections 6.4.3 and 6.4.4, for which the experimentally determined stress was

approximately 20% greater than the predicted value.

Note that the shape of the experimental and predicted profiles in Figure 6.19a over the

upstream region (specifically 2> -0.5) was clearly similar. A downward shift of 20% of

the experimental data would result in good superposition of the experimental and the pre-

dicted profiles. One can note that the difference between the profiles predicted by the lin-

ear and nonlinear models is small, even near the peak of the profile at ý = -0.25. This

indicates that only a mildly nonlinear response of the fluid is expected. Consequently,

comparison of the shape of the experimental profile with the Giesekus prediction cannot

unambiguously verify the accuracy of this or any other nonlinear constitutive model.

Transient elongational viscosity profiles for flow through the 8:1 contraction corre-

sponding to WiDn = 0.83 are shown in Fig. 6.20a and the associated strain-rate profile is

given in Fig. 6.20b. Essential features of the experimentally determined, and of the linear

and nonlinear model predicted profiles are the same as for the WiDn = 1.24 flow discussed

above. Only a few experimental data points near the contraction plane were obtained for

the flow corresponding to WiDn = 0.83. The anomalous, sudden decrease in the predicted
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Figure 6.20 Centerline profiles as a function of axial position, ý. Flow was through the 8:1 con-

traction with WiDn = 0.83. (a) Transient elongational viscosity profile, ic: E , experimental data

points; ( ) prediction of linear Maxwell; ( - - ) prediction of Giesekus. (b) Dimensionless

elongational strain rate, ()avz/z)(h/ (vz)Dn).
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transient elongational viscosity profiles at ý = -4, (cf. Fig. 6.20a) is not significant. This

artifact results from a spurious "dip" in the strain-rate profile (cf. Fig. 6.20b), which is a

consequence of limited accuracy of the velocity measurement in the upstream region of

low velocity and strain rate.

Good superposition of the experimentally measured and the predicted elongational

viscosity profiles may be noted in Fig. 6.21a, which corresponds to a flow with WiDn =

1.59. One must realize that this agreement does not necessarily indicate more accurate

data than that obtained for the WiDn = 1.24 flow described above. Again, of primary

importance is the match in the shapes of the experimental and the predicted profiles.

Profiles for a flow corresponding to WiDn = 1.98 are shown in Fig. 6.22a. Both the

shape and the relative displacement of the experimentally determined and the predicted

transient elongation profiles resemble those shown for the WiDn = 1.24 flow described

above. The experimental data is shifted upward from the predicted profile by a constant

factor of order 20%. The increased discrepancy for axial positions r 2 -0.5 is attributed to

the effect of stress-field inhomogeneities over the beam area.

At WiDn = 2.86 the magnitude of the centerline strain-rate profile, shown in Fig. 6.23b,

is greater for axial positions near the contraction plane than the profile for WiDn = 1.98 (cf.

Fig. 6.22b); in particular, the peak value of the dimensionless strain rate is higher. This

rearrangement of the velocity (and consequently the rate-of-strain) fields has been dis-

cussed in Chapter 5. The flow has undergone a transition to a three-dimensional flow pat-

tern at this flow rate. However, as discussed in §6.3, the effect of the instability on the

variation of centerline strain-rate profile in the "neutral" or x-direction is minimal, allow-

ing for quantitative interpretation of the birefringence data in terms of the stress field. The

experimentally determined profile shown in Fig. 6.23a is order 20% greater than the pre-

dicted transient elongational viscosity profile. The curves in the stress-growth region (ý < -

0.5) are similar to each other, although the match in the shape of the experimental and pre-

dicted profiles is not as close for the lower volumetric flow rate described above. Even at

this elevated flow rate, with concomitant high values of the dimensional strain rate, there

is little difference between the profiles predicted by the linear and the nonlinear constitu-

tive models for axial positions <• 0. The nature of a strain-rate profile capable of exciting

a nonlinear viscoelastic response is discussed in greater detail in §6.5.
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Figure 6.21 Centerline profiles as a function of axial position, ý. Flow was through the 8:1 con-

traction with WiDn = 1.59. (a) Transient elongational viscosity profile, tc": E , experimental data

points; ( ) prediction of linear Maxwell; ( - - ) prediction of Giesekus. (b) Dimensionless

elongational strain rate, (avz/az)(h/(vz)Dn).
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Figure 6.22 Centerline profiles as a function of axial position, ý. Flow was through the 8:1 con-

traction with WiDn = 1.98. (a) Transient elongational viscosity profile, Tc: O , experimental data

points; ( ) prediction of linear Maxwell; ( - -- ) prediction of Giesekus. (b) Dimensionless

elongational strain rate, (avz/az)(h/(vz)Dn).
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Figure 6.23 Centerline profiles as a function of axial position, ý. Flow was through the 8:1 con-

traction with WiDn = 2.86. (a) Transient elongational viscosity profile, rc: E , experimental data

points; (- ) prediction of linear Maxwell; ( -- - ) prediction of Giesekus. (b) Dimensionless

elongational strain rate, (avz/az)(h/ (Vz)Dn).
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6.4.4 Effect of Contraction Ratio on Transient Elongational Viscosity Profile

Transient elongational viscosity profiles for flow along the centerline of the 32:1 con-

traction with an associated WiDn = 0.95 are shown in Fig. 6.24a. One may compare the

dimensionless centerline strain-rate profiles for the 32:1 and the 8:1 contractions, taken at

similar WiDn, in Figs. 6.24b and 6.20b. The effect of varying the contraction ratio on the

centerline dimensionless strain-rate profile was discussed in detail in Chapter 5. The shape

of the profile near the contraction plane is not affected by increasing the contraction ratio.

However, the strain rate at a given axial position within the upstream "tail" (ý < -3) is

greater for the 32:1 contraction flow than for the 8:1 contraction. As discussed in Chapter

5, a fluid element traveling along the centerline of the flow through the geometry of larger

contraction ratio experiences greater total Hencky strain; this additional Hencky strain

occurs in the upstream "tail".

The general shape of the experimental and of the predicted transient elongational vis-

cosity profiles in the 8:1 and 32:1 contraction flows with WiDn - 1.0 are shown in Figs.

6.20a and 6.24a and are similar in the vicinity of the contraction plane, -3 _5 5 0. Despite

the greater Hencky strain along the centerline of the 32:1 contraction, the difference

between the linear and nonlinear profiles near their peak is not much greater than in the

8:1 contraction: a substantial nonlinear response is not excited in the 32:1 contraction

flow. The experimental profile has a shape similar to the predicted profiles, and, as in the

case of the 8:1 contraction flows, is offset from the predicted profiles by approximately

20%.

The transient elongational viscosity profile measured for the 32:1 contraction at a flow

rate corresponding to WiDn = 2.14 is shown in Fig. 6.25a. The experimental and predicted

profiles are similar to corresponding profiles shown in Figure 6.24a for the lower flow rate

of WiDn = 0.95. One can note that despite the increase in the dimensional strain rate at a

given position along the profile a substantial nonlinear response is neither observed exper-

imentally nor predicted by the models.

The profiles for a flow corresponding to WiDn = 2.92 through the 32:1 contraction are

shown in Figs. 6.26a and 6.26b. The dimensionless strain-rate profile shown in Fig. 6.26b

is slightly more sharply peaked and the magnitude of the maximum strain rate is greater
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Figure 6.24 Centerline profiles as a function of axial position, ý. Flow was through the 32:1

contraction with WiDn = 0.95. (a) Transient elongational viscosity profile, t1c:: E , experimental

data points; (- ) prediction of linear Maxwell; ( - -- ) prediction of Giesekus. (b) Dimension-

less elongational strain rate, (avz/az)(h/(vz)Dn).
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Figure 6.25 Centerline profiles as a function of axial position, ý. Flow was through the 32:1

contraction with WiDn = 2.14. (a) Transient elongational viscosity profile, 7c: E , experimental

data points; (- ) prediction of linear Maxwell; ( - - - ) prediction of Giesekus. (b) Dimension-

less elongational strain rate, (av,/az)(h/ (vz)Dn )
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Figure 6.26 Centerline profiles as a function of axial position, ý. Flow was through the 32:1

contraction with WiDn = 2.92. (a) Transient elongational viscosity profile, ihc: O , experimental

data points; ( ) prediction of linear Maxwell; ( - - - ) prediction of Giesekus. (b) Dimension-

less elongational strain rate, (avz/az)(h/ (vz)Dn).
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than for the lower flow rates shown in Figs. 6.24b and 6.25b. This transition in the dimen-

sionless elongational viscosity profile was described in detail in Chapter 5. The difference

in the strain-rate profile is manifested as slightly more sharply peaked transient elonga-

tional viscosity profiles in Fig. 6.26a than observed for the lower flow rates. Neither the

experimental data nor the predictions indicate a substantial nonlinear elongational

response in the region of increasing strain rate (ý < -0.5), even at this elevated flow rate.

The predictions of the models indicate substantial difference in the stress decay for ý > -

0.25; the nonlinear Giesekus model predicts a much slower decay than the linear Maxwell

model. However, as discussed in §6.3, inhomogeneities in the stress field within the probe

beam prevent quantitative interpretation of birefringence measurements in terms of stress

for ý > -0.5.

6.5 Interpretation of Results

The results presented in §6.4 indicate that for the flow conditions and geometries used

in this investigation, a strong nonlinear viscoelastic response was not excited; the transient

elongational viscosity profile predicted by the nonlinear Giesekus model was only slightly

higher than the response predicted by the linear Maxwell model. This difference was less

than the experimental error of the FIB measurement. Consequently, the measurement

could not be used to assess the accuracy of the Giesekus model, of which only a weakly

nonlinear response was excited. The inefficaciousness of the 32:1 contraction flow in

exciting a nonlinear planar elongational flow response is surprising when one considers

the predicted nonlinear response of the test fluid to a homogeneous planar contraction

flow as discussed in §6.1.2. The factor of five difference between the prediction of the lin-

ear and the nonlinear models at a Hencky strain of e = ln(32) = 3.47 would have been

readily detected by the FIB measurement technique. Consequently, a homogeneous planar

elongational flow is much more "efficient" at stretching a polymer molecule than the

strain-rate profile associated with centerline flow through the planar contraction, despite

the fact that the flows have comparable total strains and strain rates. The importance of the

shape of the strain-rate profile is a result of the finite response time and the finite strain

required to observe a substantial nonlinear response.
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The question is: why was a strong nonlinear response not stimulated by the centerline

planar contraction flow? This question is answered in this Section. In §6.5.1 the response

of the individual modes comprising the Giesekus model are compared with corresponding

modes of the linear Maxwell of the upper convected Maxwell models. Understanding is

gained by recalling the characteristic response of linear and nonlinear models to planar

elongational flow, discussed in §6.1. An increase of the flow rate and variation of geomet-

rical parameters are considered in Sections 6.5.2 and 6.5.3 as means to elicit a nonlinear

response in the planar contraction flow.

6.5.1 Response of Individual Modes of Linear, Quasilinear, and Nonlinear Constitu-
tive Equations

The response of individual modes of the linear and nonlinear constitutive equations to

the planar contraction flow are compared here; the centerline velocity profile associated

with the WiDn = 2.14 flow through the 32:1 planar contraction is used as an example.

Experimental velocity data could only be obtained along the centerline of the planar

contraction flow for axial positions ý > -10. At locations farther upstream from the con-

traction plane, the velocity could not be measured with sufficient accuracy to allow for

determination of the strain rate: calculation of the strain rate from the velocity, a differen-

tiation operation, acts to aggravate measurement noise. However, one cannot necessarily

neglect the effect of the far upstream region, ý < -10, on a fluid element; as discussed in

Chapter 5, a substantial part of the Hencky strain which a particle along the centerline

undergoes is experienced in the low strain-rate "tail" which extends far upstream from the

contraction plane.

The strain-rate profile determined from experimental velocity measurements at WiDn

= 2.14 is shown in Fig. 6.27 together with the profile obtained via a two-dimensional

finite-element simulation of Newtonian flow 7; the calculated and experimental strain-rate

profiles are in close agreement. At this flow rate, which corresponds to Wiup = 0.011,

below the critical value for onset of the flow transitions described in Chapter 5, the veloc-

ity field is primarily determined by the viscous nature of the fluid. Since the test fluid has

7. The finite element simulations of Newtonian flow through the planar contraction used through-
out §6.5 were performed by M.D. Smith (1997).

318



.4 I~i
IU

10 o

-10

N
( 10

10-2

3-q
1U

-48 -40 -32 -24 -16 -8 O

Figure 6.27 Centerline elongational strain-rate profile, (avz/az), as a function of axial posi-

tion, ý. Plot corresponds to flow through the 32:1 contraction with WiDn = 2.14. ( - -- ) profile

determined from spline fit to measured velocity data; ( ) prediction of Newtonian flow simu-

lation. The critical strain rate, Scrit,k, is shown for each relaxation mode.
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nearly constant viscosity, the velocity field is similar to that for a Newtonian fluid. The

advantage of using a numerically computed, rather than an experimentally measured cen-

terline profile in the remainder of this Section is that accurate values of the strain rate for

axial-positions far upstream of the contraction plane are obtained. The critical strain rates

associated with individual modes of the upper convected Maxwell and Giesekus models,

described in §6.1 and listed in Table 6.1, are shown in Fig. 6.27. A similar plot of the

numerically calculated centerline strain rate with the Hencky strain as the domain is given

in Fig. 6.28. The Hencky strain is specifically defined as E( ) = ln((VzA())/vz(r = 0));

i.e., negative in the upstream region and zero at the contraction plane. One may note from

Fig. 6.28 that the critical strain rate for Mode 1 is exceeded at e = -2.83. The critical strain

rate for Mode 2 is reached at e = -2.21, for Mode 3 at E = -1.48 and is not attained for

Mode 4. The centerline strain-rate profile is plotted as a function of time in Fig. 6.29.

The response of individual modes of the linear Maxwell and the nonlinear Giesekus

equations to the simulated centerline flow are shown in Fig. 6.30a for the volumetric rate

corresponding to WiDn = 2.14 through the 32:1 abrupt planar contraction. The transient

elongational viscosity, jc, for a given mode is plotted on a log scale as a function of axial

position, ý. A similar plot in which the modes of the Giesekus model are compared to

those of the upper convected Maxwell model is given in Fig. 6.30b. Note the superposition

of the predictions of the models for a given mode, with the exception of the curves for

Mode 1, associated with the longest relaxation time. As discussed in §6.1, it has been

empirically observed and is predicted by constitutive models that in start-up of elonga-

tional flow (transient, but homogeneous), for a nonlinear response to be excited (i.e diver-

gence of the predictions of linear and nonlinear models) the critical strain rate must be

exceeded, and the total strain experienced by a fluid element must be greater than order

unity, E ! 1 . Although the strain rate is not constant in the flow on the centerline of the

planar contraction, one would expect a similar dependence of the response of a fluid ele-

ment on the experienced Hencky strain to hold. Divergence of the linear and nonlinear

models is defined here as having occurred at the point where the nonlinear constitutive

model predicts a value of rc approximately twice that predicted by the linear model for a

given relaxation mode. In Fig. 6.3 l1a, the response of the linear Maxwell and the Giesekus

modes to the simulated flow through the 32:1 contraction with volumetric rate correspond-
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Figure 6.28 Centerline elongational strain-rate profile, (avz/az), as a function of Hencky

strain, E. Prediction by Newtonian flow simulation for flow through the 32:1 contraction at a volu-

metric rate corresponding to WiDn = 2.14. The critical strain rate, Ecrit,k, is shown for each relax-

ation mode.
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Figure 6.29 Centerline elongational strain-rate profile, (avz/az), as a function of time, t. Pre-

diction by Newtonian flow simulation for flow through the 32:1 contraction at a volumetric rate

corresponding to WiDn = 2.14. The critical strain rate, Ecrit,k, is shown for each relaxation mode.
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Figure 6.30 Profiles of the transient elongational viscosity, Tic, as a function of axial position,

C. Flow is through the 32:1 contraction for a volumetric rate corresponding to WiDn = 2.14. Each

line indicates a prediction of a constitutive model for a given mode of the relaxation spectrum:

(- ) X1 = 20 [s]; (- -- * ) X2 = 4.8 [s]; (- --) X3 = 1.1 [s]; (- - - -) X4 = 0.12 [s]. The upper-

most dashed line indicates the profile for the Newtonian solvent (- -). (a) Profiles predicted by

the linear Maxwell model are shown as thick lines; profiles predicted by the Giesekus model are

shown as thin lines. (b) Profiles predicted by the upper convected Maxwell model are shown as

thick lines; profiles predicted by the Giesekus model are shown as thin lines.
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Figure 6.31 Profiles of the transient elongational viscosity, ic, as a function of Hencky strain, E.

Flow is through the 32:1 contraction for a volumetric rate corresponding to WiDn = 2.14. Each line

indicates a prediction of a constitutive model for a given mode of the relaxation spectrum: (- ) X,

= 20 [s]; (- - ) X2 = 4.8 [s]; (- - - ) X3 = 1.1 [s]; ( - - - ) 4 = 0.12 [s]. The uppermost dashed line

indicates the profile for the Newtonian solvent (- -). (a) Profiles predicted by the linear Maxwell

model are shown as thick lines; profiles predicted by the Giesekus model are shown as thin lines. (b)

Profiles predicted by the upper convected Maxwell model are shown as thick lines; profiles predicted

by the Giesekus model are shown as thin lines.
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ing to WiDn = 2.14 is plotted as a function of Hencky strain. Mode 1 exhibits divergence at

E = -1.79 on the graph, approximately one unit of strain beyond the point where the cen-

terline strain rate exceeded the critical value. The linear and nonlinear predictions for the

second mode diverge at E = -1.34, and for the third mode at E = -0.62, in both cases

approximately one unit of strain after the critical strain rate for the given mode was

exceeded. Figure 6.31b compares the predictions of the Giesekus and upper convected

Maxwell models for the individual modes. As shown in Fig. 6.30b the predictions for a

given mode superpose, with the exception of the Mode 1, associated with the longest

relaxation time. These results are consistent with the observations made for the responses

of the linear Maxwell, quasilinear upper-convected Maxwell, and nonlinear Giesekus

models to start-up of planar elongational flow in §6.1.2, and specifically illustrated via

Fig. 6.5. The quasilinear and nonlinear models first diverge from the linear model at a

strain of order unity. Only at strains substantially greater than unity does the nonlinearity

of the Giesekus model manifest itself, in that the predictions of the Giesekus and upper

convected Maxwell models diverge. Modes 2, 3, and 4 (cf. Fig. 6.3 1b) do not experience a

sufficient interval of strain, in which the strain rate exceeds the critical value for the given

mode, for the nonlinearity to manifest itself. Mode 1 is the only mode which exhibits sub-

stantial divergence between the predictions of the upper convected Maxwell and Giesekus

models; this mode is associated with the longest relaxation time and consequently experi-

ences the greatest interval of strain for which the strain rate exceeds the critical value. The

profiles predicted by the linear Maxwell, upper convected Maxwell, and Giesekus consti-

tutive models (sum of all relaxation modes, including solvent) are shown in Fig. 6.32. The

profiles for the sum of the non-solvent modes predicted by linear Maxwell, upper con-

vected Maxwell, and Giesekus models are given in Fig. 6.33; these plots are used for com-

parison in §6.5.2.

6.5.2 Effect of Strain-Rate Magnitude on Response of Linear, Quasilinear, and Non-
linear Constitutive Equations

Increasing the volumetric rate was considered as a route to excitation of a more pro-

nounced nonlinear response of a viscoelastic fluid to the shearfree flow on the centerline

of the planar contraction. As discussed in Chapter 5, increasing the flow rate eventually
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Figure 6.32 Profiles of the summed contributions of all the modes (including solvent) to the tran-

sient elongational viscosity, i9, as a function of Hencky strain, E. Flow is through the 32:1 contrac-

tion for a volumetric rate corresponding to WiDn = 2.14. The profiles predicted by the linear Maxwell

( ), upper convected Maxwell (- - ), and Giesekus (- - --. ) models are shown.
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Figure 6.33 Profiles of the summed contributions of all the non-solvent modes to the transient

elongational viscosity, ic, as a function of Hencky strain, e. Flow is through the 32:1 contraction

for a volumetric rate corresponding to WiDn = 2.14. The profiles predicted by the linear Maxwell

(- ), upper convected Maxwell (- - ), and Giesekus (- -- -- ) models are shown.
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induces flow transitions which alter the dimensionless strain-rate profile. Nevertheless, to

explore the effect of increased strain rate on the viscoelastic response, a hypothetical case

is considered in this Section for which the dimensionless strain-rate profile is the same as

for the base flow (i.e. identical to that considered in §6.5.1), but the dimensional strain-rate

profile has a magnitude ten times as great. For this case, the criterion of E > Ecrit for a

given viscoelastic mode is met at axial positions farther upstream; consequently, there is a

greater interval of accumulated strain over which the response of a given mode of a non-

linear model diverges from that of the linear model.

Figure 6.34 shows the dimensional strain-rate profile along the centerline for this

hypothetical flow of high volumetric rate; the Ecrit for the individual modes, listed in

Table 6.1, are indicated. Note in Fig. 6.35 that the critical strain rate for a given mode is

attained at a lower strain (corresponding to a position farther upstream) than in the case of

the lower volumetric rate flow considered in §6.5.1. The response of the individual modes

of the linear Maxwell and nonlinear Giesekus models to the strain-rate profile associated

with the higher volumetric rate flow is shown by plotting 71c as a function of Hencky

strain in Fig. 6.36a. As discussed in §6.5.1, a strain interval of approximately unity beyond

the point where the strain rate exceeded Ecrit was required to observe divergence of the

nonlinear prediction from that of the linear prediction for a given mode. Since the critical

strain rate is achieved earlier for a given mode, the ratio of the values of Trc predicted by

the Giesekus model at, say, the contraction plane (E = 0) are greater than for the case of

the lower flow rate.

However, it is interesting to note in Fig. 6.36b, that divergence between the quasilinear

upper convected Maxwell and the nonlinear Giesekus models was noted only for the mode

of longest relaxation time, despite the elevated flow rate. In fact, divergence occurs later

and the ratio of predicted transient elongational viscosities at the contraction plane

(E = 0) is lower than for the lower flow rate (cf. Fig. 6.31b). Although counterintuitive,

this result is consistent with observations for the case of start-up of planar elongational

flow. Specifically, in Fig. 6.5b, at a strain interval of 2.5, the transient elongational viscos-

ity predicted by the upper convected Maxwell model exceeds that of the Giesekus model

by 7%. When the strain rate is increased, for a fixed relaxation time, (cf. Fig. 6.5c) the

fractional difference between the models at E = 0 increases to 15%. However, when the
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Figure 6.34 Centerline elongational strain-rate profile, (dv,/dz), as a function of axial posi-

tion, ý. Newtonian flow simulation is used to predict the profile corresponding to flow through the

32:1 contraction for a volumetric rate ten times greater than that associated with WiDn = 2.14. The

critical strain rate, Ecrit,k, is shown for each relaxation mode.
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Figure 6.35 Centerline elongational strain-rate profile, (avz/az), as a function of Hencky

strain, e. Newtonian flow simulation is used to predict the profile corresponding to flow through

the 32:1 contraction for a volumetric rate ten times greater than that associated with WiDn = 2.14.

The critical strain rate, Ecrit,k, is shown for each relaxation mode.
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Figure 6.36 Profiles of the transient elongational viscosity, -i, as a function of Hencky strain,

e. Flow is through the 32:1 contraction for a volumetric rate ten times greater than that associated

with WiDn = 2.14. Each line indicates a prediction of a constitutive model for a given mode of the

relaxation spectrum: (- ) X1 = 20 [s]; (- ---. ) X2 = 4.8 [s]; (- - ) X3 = 1.1 [s]; ( - - ) C 4 =

0.12 [s]. The uppermost dashed line indicates the profile for the Newtonian solvent (- -). (a)

Profiles predicted by the linear Maxwell model are shown as thick lines; profiles predicted by the

Giesekus model are shown as thin lines. (b) Profiles predicted by the upper convected Maxwell

model are shown as thick lines; profiles predicted by the Giesekus model are shown as thin lines.
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strain rate is increased yet further (cf. 6.5d), the fractional difference between the upper

convected Maxwell and Giesekus models decreases to 10%.

The sum of the transient elongational viscosities predicted for the non-solvent modes

with the linear Maxwell and Giesekus models is shown in Fig. 6.37 for the higher volu-

metric rate flow. These profiles are compared with those obtained for the lower flow rate

discussed in §6.5.1 and shown in Fig. 6.33. The magnitude of the sum-of-nonsolvent-

modes profile calculated by linear Maxwell decreases with increased flow rate. This result

is expected; a given fluid element has less time to respond to the imposed strain in the case

of the higher volumetric rate flow. For the case of the Giesekus model, as discussed in the

preceding paragraph, divergence from the prediction of the linear model occurs at a lower

Hencky strain than for the case of the lower volumetric rate. In consequence, the differ-

ence in magnitude of the transient elongational viscosity profiles predicted by the linear

and nonlinear models is greater for the higher volumetric rate flow. The dependence of the

magnitude of the Giesekus and upper convected Maxwell predictions for the sum of non-

solvent modes on the volumetric rate is the result of two competing influences; the shorter

time interval available for response, and the divergence of the linear and nonlinear model

predictions at lower Hencky strain. Comparison of Figs. 6.37 and 6.33 reveals that the

magnitude of the transient elongational viscosity predicted by the upper convected Max-

well and Giesekus models at e = 0 for the higher flow rate decreases slightly from the

values predicted for the lower flow rate. Hence, increasing the volumetric rate does not

increase the magnitude of the quasilinear or nonlinear responses. In addition, as discussed

above, the fractional difference between the prediction for a mode by the nonlinear

Giesekus and by the quasilinear upper convected Maxwell models at a given Hencky strain

is less for the higher than for the lower flow rate. In Fig. 6.33, the curves for the upper con-

vected Maxwell and for the Giesekus models are distinguishable; in contrast, the super-

pose in Fig. 6.37. In consequence, increasing the volumetric flow rate does not offer a

route for facilitating evaluation of the accuracy of a given nonlinear model via comparison

of model predictions with an experimentally determined transient elongational viscosity

profile. Moreover, it is evident from comparison of Figs. 6.36 and 6.37 and from compari-

son of Figs. 6.31 and 6.33 that the contribution of the solvent mode is of the same order as

the sum of the nonsolvent modes for the linear, quasilinear, or nonlinear model predic-
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Figure 6.37 Profiles of the summed contributions of all the non-solvent modes to the transient

elongational viscosity, ic, as a function of Hencky strain, e. Flow is through the 32:1 contraction

for a volumetric rate ten times greater than that associated with WiDn = 2.14. Profiles predicted by

the linear Maxwell ( ), upper convected Maxwell (- - ), and Giesekus (- . ) models are

shown.
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Figure 6.38 Profiles of the summed contributions of all the modes (including solvent) to the

transient elongational viscosity, ic, as a function of Hencky strain, e. Flow is through the 32:1

contraction for a volumetric rate ten times greater than that associated with WiDn = 2.14. Profiles

predicted by the linear Maxwell (-- ), upper convected Maxwell (- - ), and Giesekus

(- - - - - ) models are shown.
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tions. In consequence, the solvent contribution dominates over the difference between the

predictions of the Giesekus and linear Maxwell models of the sum of the nonsolvent

modes. The total elongational viscosity (sum of viscoelastic modes plus the solvent contri-

bution) is shown in Figs. 6.38 and 6.32; these Figures indicate that the prediction of the

quasilinear model is only slightly greater than the prediction of the linear Maxwell model

and the predictions of the quasilinear and nonlinear models are essentially indistinguish-

able, irrespective of the volumetric rate.

6.5.3 Effect of Variation of Geometrical Parameters on Response of Linear, Quasilin-
ear, and Nonlinear Constitutive Models

In §6.4.2, it was indicated that the relative magnitude of the linear and nonlinear

responses at comparable maximum strain rates exhibited little dependence on the contrac-

tion ratio. An explanation was given in §6.5.2 as to why only a weakly nonlinear response

was excited, even for the case of flow through the 32:1 contraction which induced a sub-

stantial total Hencky strain of 3.5. Because the downstream half-height, h, is the relevant

length scale controlling the form of the high strain-rate region, increasing the contraction

ratio does not, in and of itself, provide a route to enhance the nonlinear viscoelastic

response in the planar contraction.

As discussed in §6.5, the homogeneous strain rate in start-up of planar elongational

flow is more "efficient" at elongating the polymer molecule and exciting a nonlinear

response than the transient elongational flow which is evoked in the planar contraction.

This dependence of the response of a viscoelastic fluid element on the shape of the strain-

rate versus strain profile implied that alteration of the shape of the profile associated with

centerline flow through the planar contraction to more closely resemble a homogeneous

profile could favor excitation of a nonlinear response. In particular, tapering of the entry

region of the planar contraction flow was explored as a means to this end. As discussed

above in §6.5.1 a centerline strain-rate profile which was computed via a numerical simu-

lation of flow through the abrupt planar contraction was in good agreement with the exper-

imentally determined strain-rate profile for flow of the test fluid. Consequently, numerical

simulation of Newtonian flow through a tapered-entry planar contraction should provide a

reasonable estimate of the actual flow of the viscoelastic test fluid (at flow rates lower than
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those for which the elastically driven transitions discussed in Chapter 5 occur). The result

of the Newtonian simulation for flow through a tapered contraction with an included half-

angle of K = -n/16 (cf. Fig. 6.39) at a volumetric rate corresponding to WiDn = 2.14 is

shown as a plot of the strain rate as a function of axial position in Fig. 6.40. The strain rate

on the centerline is plotted as a function of Hencky strain in Fig. 6.41; the shape of the

profile closely resembles that for the abrupt contraction (cf. Fig. 6.28). The only substan-

tial difference is that the maximum strain rate in the tapered geometry is a factor of five

less than that observed for flow through the abrupt contraction. A plot of the strain rate as

a function of time is shown in Fig. 6.42. Again, the profile resembles that observed for the

abrupt contraction (cf. Fig. 6.29) with the exception that the maximum strain rate is lower

and the profile is stretched by a factor of approximately five along the time axis. A factor

of five increase in the flow rate through the tapered contraction over the flow rate through

the abrupt contraction would result in the strain-rate versus strain and strain-rate versus

time profiles for the flows through the different geometries being identical. Consequently,

tapering the entry region of the contraction does not provide a route to making the strain-

rate profile along the centerline of the planar contraction "more homogeneous". One

should note that the "no-slip" boundary condition in the tapered-entry planar contraction

distinguishes this flow from the "lubricated die" configuration described in §4.2.2.

As discussed in Chapter 5, at elevated flow rates a rearrangement of the velocity field

occurs, with the peak in the strain-rate versus axial position profile shifting closer to the

contraction plane and increasing in magnitude. However, the essential nonhomogeneous

form of the strain-rate profile was not altered from that observed for lower flow rates.

Consequently, the profile is not expected to favor excitation of a nonlinear response. This

is consistent with the results for WiDn = 2.9 for the 8:1 and 32:1 contractions shown in

Figs. 6.23a and 6.26a.

6.6 Consideration of the Influence of the Fluid Elongational Response on
Flow Transitions

The findings described in Sections 6.4 and 6.5 are now used to gain insight into the

effect of the elongational response of the test fluid on the off-centerline stress field. In par-
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Figure 6.39 Diagram of a tapered-entry planar contraction geometry with

included half-angle
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Figure 6.40 Centerline strain rate, (avz/ z), as a function of axial position, ý, for flow

through a tapered contraction with an included half-angle of iK = it/16 [rad]. Profile was calculated

via a Newtonian flow simulation with a volumetric flow rate corresponding to WiDn = 2.14.
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Figure 6.41 Centerline strain rate, (vVz/az), as a function of Hencky strain, E, for flow

through a tapered contraction with an included half-angle of ic = r/16 [rad]. Profile was calculated

via a Newtonian flow simulation with a volumetric flow rate corresponding to WiDn = 2.14.
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Figure 6.42 Centerline strain rate, (avz/az), as a function of time, t, for flow through a

tapered contraction with an included half-angle of K = 7r/16 [rad]. Profile was calculated via a

Newtonian flow simulation with a volumetric flow rate corresponding to WiDn = 2.14.
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ticular, the influence of the elongational response on the flow transitions described in

Chapter 5 is considered. Near the centerline of the planar contraction, the flow is exclu-

sively elongational. However, as one moves toward the bounding wall in the upstream

channel, u = H/h, the flow becomes complex; the rate-of-strain tensor has both shear and

elongational components. In Chapter 5 it was shown that onset of the instability is driven

by an interaction of streamwise stress with streamline curvature. The question then arises:

what are the relative contributions of the elongational and shear components of the rate-of-

strain tensor to the streamwise stress? The highest curvature in the flow occurs in the

vicinity of the outer corner; however, quantitative, experimental velocity field data for this

region is not available. Progress can be made if the velocity field is assumed to resemble

the Moffatt solution for Stokes flow around a corner; this assumption is consistent with the

flow visualization results reported in Chapter 5. A cylindrical coordinate system is used to

present the Moffat solution, as shown in Fig. 6.43. The origin, r = 0, is located at the outer

corner. The angle included by the corner is represented as 2a; the bisector of the angle

defines 0 = 0. Along the upstream channel wall 0 = -a, and along the wall defining the

contraction plane 0 = a. The antisymmetric solution is then given in the form of the stream

function as

W = Kr { cos (' 10)cos(( 1 - 2)a) - cos((X1 - 2)0)cos( 1 a) } (6.33)

where X• is the eigenvalue which dominates the solution near the corner and K is a con-

stant which depends on boundary conditions far from the corner. For an included angle of

2a = rt/2, the eigenvalue is complex, X1 = 3.74 + 1.13i (Moffat, 1964). The form of a

streamline associated with the antisymmetric solution is depicted in Fig. 6.43. Note that

the complex value of X1 implies the existence of a series of vortices whose elliptic points

are located on the 0 = 0 bisector; in the experiment presented in Chapter 5 only one vortex

(not a sequence of vortices) was observed near the corner since the intensity of the succes-

sive vortices rapidly decreases with decreasing radial distance, r (Moffat, 1964).

The maximum curvature along a given streamline occurs on the bisector, 0 = 0. Since

the instability arises via an interaction between the curvature and the stress, in this Section
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Figure 6.43 Illustration of a streamline of flow around a corner as predicted by the antisymmet-

ric solution of the analysis of Moffatt (1964). A cylindrical coordinate system is used. In the con-

text of flow around the outer corner of the planar contraction, 0 = -a = -n/4 [rad] corresponds

to the upstream channel wall, 0 = a = rt/4 [rad] corresponds to the wall defining the contrac-

tion plane, and 0 = 0 is the bisector of the angle included by the corner.
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attention is focused on the flow in the vicinity of the bisector. Within this region the

streamline is nearly tangent to the 0-direction; specifically, the velocity components are

y 2- 1  22

vr=Kr Ik{-0, 1 cos((X1 -2)a) + 0(•1 -2) cos (,a)}
(6.34)

vo= K 1lr=  {-cos(((k1 - 2)a) + cos(, a1))}

Note that approximations have been made using the fact that 0 is small in the vicinity of

the bisector; specifically, for 0 : 0.1 [rad] , trigonometric expressions are approximated as

cos(0 1X) = 1, sin(0X1 ) = Oki , cos(0(X1 - 2)) = 0(X 1 - 2), and

sin(0(k1 - 2)) = 0(k 1 - 2). The components of the velocity gradient tensor are

{VV }rr = 0Kr - 2 - 2)XS) )2cos(1

{v}re=Kr ( I I -- 1){-, cos(( -2)a)+( -2 os( a)

= -0(14 + 170i)Kr
h,-2

{Vv}re = Kr• 1  l(l 1 - 1){-COS((Xl - 2)Cx) + cos(,(la)}

=(33 + 61i)Kr 
- 2

{Vv}er = Kr1  {(1 - X)cos((Xl - 2)o) + ((k, -2)2 - 1)cos(X 1 1)}

=(21 + 49i)Kr -2

{Vv = 0Kr ( + 1){-XIcos(( - 2)a) + (X - 2 )2cos(1 a) }

=-0(67 + 270i)Kr X - 2

(6.35)

For the purpose of this approximate analysis, only the order of magnitude of the real part

of the terms shown in eq. (6.35) are of interest. Note that on the bisector, 0 = 0, the shear

components of the velocity gradient tensor have approximately equal magnitude and the

elongational components are zero; in the vicinity of the bisector (0 is small), the shear

components dominate over the elongational components.

Note that the Moffat solution can only be valid for a restricted region in the planar con-

traction flow. Equation (6.35) indicates that for 0 < 0, { Vv } > 0, i.e. the fluid is acceler-

ating as the bisector, 0 = 0, is approached. Conversely, for 0 > 0, { Vv }10 < 0, i.e. the fluid

decelerates. More specifically, the 00-component of the velocity gradient tensor is anti-
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symmetric about the bisector: {Vv(r, 0)}ee = -{Vv(r, -)}ee. This antisymmetry

holds true for the rr-component of the velocity gradient tensor as well. In consequence,

when a fluid element travels from the point (r, -0) to the point (r, 0) the net Hencky strain

experienced by the element is zero. However, in the planar contraction, after the fluid ele-

ment passes the bisector and approaches the entry to the downstream slit, it must eventu-

ally accelerate. Furthermore, the net Hencky strain, E, experienced by a fluid element

travelling from the fully-developed flow in the upstream region to the fully-developed

flow in the downstream region along any streamline is nonzero. Specifically, consider a

fluid element moving along a streamline Wj which passes near the outer upstream wall; the

net Hencky strain experienced is

E (x) = In (6.36)

Since the fully developed flow in both the upstream and downstream ducts is parabolic,

the net Hencky strain is e(xV) = In(H/h), the same as for a fluid element travelling on

the centerline. However, if the Moffat analysis is valid in the vicinity of the bisector, a

fluid element at 0 = 0 will be at a local maximum in accumulated Hencky strain. How-

ever, the Moffat analysis cannot determine whether the Hencky strain which has been

experienced by the fluid element up to this point is less than or greater than the total strain

(as defined by eq. (6.36)) which it will ultimately experience.

Keeping the restricted validity of the Moffatt analysis in mind, the contribution of the

elongational components of the velocity gradient tensor to the streamwise stress, in the

vicinity of the bisector, is now considered from two perspectives. First, assume that the

fluid has a short relaxation time. In this case, a fluid element on the bisector will only

recall strain history experienced for 1lel 1 [rad]. As shown in eq. (6.35) the elongational

components of the velocity gradient tensor are then very small. In consequence, the fluid

response will be dominated by the shear components of the velocity gradient tensor; the

elongational response of the fluid is not important.

In the second case, assume that the fluid has a long relaxation time. In this case the

stress of a fluid element on the bisector will be a function of the strain history which it has
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experienced, extending far upstream. As mentioned above, the Hencky strain experienced

by a fluid element is at a local maximum on the bisector. In consequence, the strain history

of the fluid element is substantially different from that of an element travelling on the cen-

terline, where no such local maximum of Hencky strain exists upstream of the contraction

plane. Since the fluid element recalls its strain history, it is possible that the streamwise

stress of the fluid element on the bisector will be substantially greater than if the elonga-

tional components of the velocity gradient tensor had been neglected. In this case, the

elongational response of the fluid may be important.

Use of the Moffat solution alone cannot answer whether elongational components of

the velocity gradient tensor induce stresses on streamlines of high curvature substantially

greater than if only the shear components were present. A definitive answer to this ques-

tion can be obtained via two-dimensional, steady numerical simulation of viscoelastic

flow. The limiting cases of a fluid with short, and a fluid with long relaxation time dis-

cussed above should help guide interpretation of the results from such a simulation.

6.7 Summary

The shearfree centerline flow in the planar contraction geometry was considered for

use in evaluating the accuracy of constitutive equations in predicting the nonlinear elonga-

tional response of a viscoelastic fluid. However, both the experimental results and calcula-

tions presented in Sections 6.4 and 6.5 indicated that the centerline of the planar

contraction flow only stimulates a weak deviation from the linear viscoelastic response.

Furthermore, the predictions of the quasilinear upper convected Maxwell and nonlinear

Giesekus models were essentially indistinguishable. The inefficacy of the flow in stimulat-

ing a nonlinear response was attributed to the particular form of the nonhomogeneous

strain-rate versus strain profile on the centerline. One should note that flows with Hencky

strains as high as 3.5 and maximum strain rates well above the expected critical value for

the coil-stretch transition could not excite a substantial nonlinear response. This observa-

tion underscores the necessity of considering the entire strain history of a viscoelastic fluid

element, which has "memory", in a flow (Ferguson and Hudson, 1993; Malkin and Petrie,

1997). Modification of the strain-rate profile via use of a tapered contraction was explored
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computationally; however, this strategy proved ineffective in altering the essential struc-

ture of the strain-rate versus strain profile.

The planar contraction flow may find application in the evaluation of the accuracy of

the nonlinear elongational response predicted by constitutive equations for test fluids and

in experimental configurations different from those used in this study. Specifically, greater

deviation from the linear response may possibly be observed for test fluids with a low sol-

vent contribution to the viscosity (e.g. concentrated solutions or melts). The solvent contri-

bution would not dominate the data in the stress-growth region. However, even if the

deviation from the linear viscoelastic response were substantial, it is not certain that the

flow would prove useful in distinguishing between constitutive models with different form

of a nonlinearity (e.g. upper convected Maxwell versus Giesekus).

The flow on the centerline excites only a weakly nonlinear response, but regions of

complex flow (with the rate-of-strain tensor having both shear and elongational compo-

nents), such as in the vicinity of the reentrant corner, may excite a nonlinear response.

Note, however, that the high velocity and stress gradients in the flow near the reentrant

corner and the limited resolution of the FIB probe beam may preclude such studies from

providing accurate quantitative information which is useful for the evaluation of constitu-

tive models. The influence of the elongational response of the viscoelastic fluid on the

streamwise stress away from the centerline was considered in §6.6. Of particular interest

was the stress in the region of high streamline curvature in the vicinity of the outer corner

where the critical condition for transition from the two-dimensional, base flow to three-

dimensional flow, as specified by eq. (2.3), is expected to first be met. Two limiting cases

were identified when the flow near the outer corner was assumed to conform to the Moffat

solution (Moffat, 1964). For a fluid with short relaxation time, the small magnitude of the

elongational components of the velocity gradient tensor in the region of high curvature

imply that their contribution to the streamwise stress is negligible. Alternately, if the fluid

has a long relaxation time, a fluid element "recalls" the finite Hencky strain accumulated

during its passage from the upstream region to the region of high curvature. This may

result in a substantial elevation of the streamwise stress, in the high curvature region,

above the level which would be determined if only the shear components of the velocity

gradient tensor along the streamline were considered.

346



The study presented in this Chapter underscores the necessity of using multiple, well-

characterized experimental techniques to understand the elongational response of a vis-

coelastic fluid. In a practical context, understanding of the role of the elongational

response in an industrial polymer process can be best gained via study of a test flow with

similar boundary conditions. For example, a fiber-spinning operation typically incorpo-

rates high draw ratios (and consequently, high Hencky strains); the response of the spun

material to such high strains could not be probed with the planar contraction geometry. To

study such a response, it would be necessary to use a device such as the fiber-spinning or

filament-pulling apparatus described in §3.2.2. However, these devices have their own

associated limitations and sources of ambiguity in measurement. The planar contraction

flow resembles industrial polymer flows upstream of a die land or in injection-molding

operations. Of particular interest for developing understanding of flow field evolution in

such industrial systems are the stress and velocity fields in the region of high streamline

curvature where the transition from the base flow to three-dimensional flow is expected to

first be manifested. Full-field flow simulations should prove valuable in quantifying the

stress and velocity fields in regions of complex flow near the outer corner, in which exper-

imental data may be difficult to obtain. The considerations of §6.6 provide guidance for

the interpretation of computational results.
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Chapter 7

Conclusions

This thesis contains investigations of two aspects of the flow of a viscoelastic polymer

solution through the planar contraction. In Chapter 5, the spatiotemporal structure of a

sequence of flow transitions was quantitatively defined; the mechanism driving the first,

spatial transition to three-dimensional flow was attributed to interaction between stream-

line curvature and streamwise stress. In Chapter 6, the response of the viscoelastic test

fluid to the shearfree planar elongational flow along the centerline was measured. Interpre-

tation of the results in terms of integration of linear and nonlinear constitutive models indi-

cated that the form of the strain-rate profile on the centerline could only stimulate an

essentially linear response. In this Chapter, essential findings of these two investigations

are reviewed, conclusions are summarized in terms of the physical nature of the phenom-

ena, and broader implications of the studies are described which may motivate future

work.

Quantitative LDV measurement in conjunction with qualitative velocity-field visual-

ization was used to characterize the spatial structure of a transition to three-dimensional,

steady viscoelastic flow observed in the planar contraction. After transition, the velocity

field had the form of pairs of counter-rotating vortices, arrayed in the "neutral" x-direction

and interlaced across the centerplane (cf. Fig. 5.7); this representation was consistent with

the findings of previously published studies which have been reviewed in Chapter 2

(Chiba et al., 1990; Chiba et al., 1992). However, in these prior studies, the onset of the

transition was not unambiguously attributed to the elastic nature of the fluid, because iner-

tia was a factor in the flows. One significant contribution of this thesis was the develop-

ment and use of a Boger test fluid, so that the influence of inertia was negligible and

deviations of the velocity field from that of Stokes flow could be unambiguously attributed

to the elastic nature of the fluid.

The wavelength of the three-dimensional, steady flow in the "neutral" x-direction

scaled with the upstream half-height, H, and extended on the order of H upstream of the

contraction plane. These scalings indicated that the global instability described in Chapter
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5 was associated with flow around the outer corner of the contraction, instead of the reen-

trant corner. The spatial structure of the flow in the planar contraction resembled the

"G6rtler-like" vortices observed in simple, viscoelastic shear flows with curved stream-

lines. This resemblance, in conjunction with the noted importance of curved streamlines

around the outer corner, led to the hypothesis that the transition to three-dimensional,

steady flow in the planar contraction was driven by the interaction between streamline cur-

vature and stress along the streamlines (McKinley et al., 1996; Larson et al., 1990; Joo

and Shaqfeh, 1994). To quantitatively explore the role of the stress-curvature interaction,

the concept of a "viscoelastic G6rtler" scaling proposed by McKinley et al. (1996) was

applied. The functional form of the relation between the critical upstream Weissenberg

number for onset of the spatial instability (Wiup s) and the contraction ratio of the geome-

try derived from the scaling was able to fit the data. However, the relation contained an

additional parameter, not present in the relation used by McKinley et al. (1996), which

probably played the role of relating the characteristic curvature of the streamlines to the

contraction ratio of the flow.

A second, temporal transition to time-dependent flow was identified which generally

occurred at a critical upstream Weissenberg number (WiUp T) greater than that associated

with transition from two- to three-dimensional flow, i.e. WiUp T > WiUp S- Observation of

a decrease in amplitude of the temporal oscillation with increasing distance from the wall

bounding the "neutral" x-dimension supported the hypothesis that the time-dependent

flow was induced not only by the interaction of streamwise stress with streamline curva-

ture in the yz-plane of the flow but also by a three-dimensional perturbation to the flow

introduced by the wall bounding the x-dimension. The temporal instability appeared to be

a fundamentally local phenomenon, most pronounced near the bounding wall. Similarities

in the temporal structure of time-dependent flows through planar geometries of different

contraction ratios were identified. Specifically, the period of temporal oscillation was of

the same order for all the geometries, approximately 100 [s]. However, relation of this

value of the period to specific parameters characteristic of the test fluid and/or the flow

was not obvious; the characteristic relaxation time of the test fluid was much shorter, on

the order of 1 [s]. Despite the greater complexity of the conditions which induce transition

to time-dependent flow, the same functional form of the relation between the critical Weis-
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senberg number and the contraction ratio, used for fitting the transition to three-dimen-

sional, steady flow, was applied to the temporal transition. A good fit to the data was

obtained. The curves obtained from the fits to the onset conditions (WiUp s = Wiup s(H/ h))

for the spatial transition and for the temporal transition (Wiup T = WiUp T(H/h)) were

observed to intersect at a value of H/h such that for the corresponding upstream aspect

ratio, W/2H, only order one wavelength would fit across half the width of the "neutral" x-

dimension of the test geometry. This observation further supported the idea that the transi-

tion to time-dependent flow was related to the presence of walls bounding the x-dimen-

sion.

Parallels between the spatiotemporal structure of flow transitions observed in the pla-

nar contraction and transitions in viscoelastic flow through other geometries were identi-

fied. For example, the form of counter-rotating vortices was common to the planar

contraction, cylinder-in-channel, and driven-cavity flows [Byars, 1996 #14; McKinley,

1991 #15; Ozetkin, 1995 #38; McKinley, 1996 #10]. The findings presented in Chapter 5

serve to develop understanding of conditions which control flow transition in the planar

contraction and the spatiotemporal structure of the resultant flow. This information is use-

ful for future investigations. Specifically, the determination of critical parameters for onset

of three-dimensional flow and identification of regions in which three-dimensional flow

occurs indicates where and under what conditions birefringence measurements may be

directly interpreted in terms of stress. Identification of onset conditions for transition to

three-dimensional and time-dependent flow also provides bounds on the validity of two-

dimensional, steady numerical simulations of viscoelastic flow.

Three-dimensional and time-dependent simulations of viscoelastic flows are expected

to become tractable in the near future. The quantitative data presented in Chapter 5 pro-

vide a benchmark with which the accuracy of these computations may be assessed. Such

simulations may be necessary to obtain a deeper, more quantitative understanding of the

role played by interaction between streamline curvature and streamwise stress in the tran-

sition from the base flow to three-dimensional, steady flow. Specifically, transition in

flows for which the velocity-gradient field of the base flow is complex (has both shear and

elongational components) are not amenable to study via analytical methods, such as have



been applied to transitions associated with simple base flows (Larson et al., 1990; Joo and

Shaqfeh, 1994; Ozetkin and Brown, 1994; McKinley et al., 1995).

Numerical simulations may play a crucial role in elucidating the mechanism which

induces transition from steady to time-dependent flow. Stress- and velocity-field informa-

tion can be rapidly acquired for geometries in which boundary conditions can be ideal

(e.g. truly two-dimensional) and chosen at will. This quality could facilitate the develop-

ment of a map of viscoelastic flow transitions in planar contraction geometries with finite

upstream aspect ratio. In particular, the neutral stability boundary for onset of time-depen-

dent flow would lie in a three-dimensional parameter space with WiUp, upstream aspect

ratio (W/2H), and contraction ratio (H/h) as independent variables. Computational fluid

dynamics, in conjunction with selected experiments, could elucidate the form of the curve

which demarcates the codimension-2 bifurcation at the intersection of the neutral stability

boundary associated with transition from two-dimensional to three-dimensional flow with

the boundary associated with transition from steady to time-dependent flow. Location of

the curve in parameter space could be coupled with experiments directed at determination

of spatiotemporal dynamics in the vicinity of the codimension-2 bifurcation and identifi-

cation of any essential differences with the dynamics associated with other regions in

parameter space. For example, quasiperiodic or chaotic behavior may occur near the codi-

mension-2 bifurcation.

The stress response of a viscoelastic fluid to the transient shearfree elongational flow

on the centerline of the planar contraction was investigated and described in Chapter 6.

Two sets of conclusions were drawn from the study. First, the efficacy of transient strain-

rate profiles of the type on the centerline of the planar contraction in exciting a nonlinear

viscoelastic response was assessed. Second, information on the application of the FIB

technique to acquisition of stress-field data in complex viscoelastic flows was obtained.

Experimental results in conjunction with the predictions of linear and nonlinear consti-

tutive models indicated that the centerline flow could only excite a weakly nonlinear vis-

coelastic response. This result was surprising; the total Hencky strain of e = 3.5 (for the

32:1 contraction) and high maximum strain rates attained on the centerline of the planar

contraction would have resulted in excitation of a nonlinear response if the flow were

homogeneous. The stimulation of an essentially linear response on the centerline of the
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planar contraction was attributed to the particular form of the transient and nonhomoge-

neous elongational strain-rate profile, in conjunction with the large contribution of the

Newtonian solvent which masked any deviation from a linear response. This finding

underscored the need to consider the entire strain history of a viscoelastic fluid element

when estimating its stress response (Ferguson and Hudson, 1993; Malkin and Petrie,

1997); the representation of the strain history by a small subset of characteristic values

(e.g. total Hencky strain and maximum strain rate) can lead to erroneous conclusions.

Different approaches to modify the flow field in order to enhance a nonlinear response

were explored. Increasing the volumetric flow rate to increase the magnitude of the strain-

rate profile or increasing the contraction ratio to increase the total Hencky strain did not

result in stimulation of a strong nonlinear response. Modification of the form of the center-

line strain-rate profile to more closely approximate a homogeneous flow, which can

induce a strong nonlinear response, was then considered. In particular, tapering of the

entry region of the planar contraction was explored computationally. However, tapering of

the entry region did not modify the essential form of the centerline strain-rate profile.

In §6.6, the streamwise stress along the off-centerline curved streamlines was consid-

ered in light of the results presented and discussed in Sections 6.4 and 6.5. Since the stress

and strain history along streamlines away from the centerline were not measured, the cor-

ner-flow solution of Moffat (1964) was used. Consideration of the Moffat solution alone

could not determine whether the elongational strain experienced by a fluid element mov-

ing along a curved streamline would result in streamwise stresses substantially greater

than if only the shear components of the velocity-gradient tensor were present. However,

two limiting scenarios were identified. In the first scenario, the fluid has a short relaxation

time, so that at the point of maximum curvature on the streamline nearly all prior strain

history will have been "forgotten". Since the elongational components of the velocity-gra-

dient tensor are vanishingly small near the point of maximum curvature, the streamwise

stress is not be affected by the response of the fluid to the elongational components. In the

second scenario, the fluid has a long relaxation time, such that a fluid element recalls the

elongational strain experienced during its passage from the upstream region to the point of

maximum curvature. In consequence, the streamwise stress may be substantially elevated

above the level associated with the shear components of the velocity-gradient tensor. Since

353



the Moffat solution is restricted to the corner region (and strictly only applies to Newto-

nian flows) full-field numerical simulation is required to determine which of these scenar-

ios is appropriate for a given flow and to calculate the magnitude of the streamwise

stresses in the regions of high curvature.

Information pertaining to application of the FIB technique for determination of the

stress field in complex viscoelastic flows was obtained in this thesis. Shear-induced tur-

bidity, which has been observed for polymer solutions, can induce beam divergence and

prevent FIB measurements from being taken (Byars, 1992; Quinzani et al., 1992; Helfand

and Frederickson, 1989; Kraimer-Lucas et al., 1988a; Krimer-Lucas et al., 1988b; Osaki et

al., 1979; Rangel-Nafaile et al., 1984; Yanase et al., 1991). To avoid this problem, a two-

component Boger test fluid was developed for the experiments of this thesis. Exclusion of

a ternary cosolvent eliminated the problem of shear-induced turbidity. Additional research

must be performed to elucidate the mechanism of shear-induced turbidity; this active area

of investigation lies outside of the scope of this thesis. However, the development of a

Boger fluid for which shear-induced turbidity is not observed provides a useful tool for

experimental viscoelastic fluid mechanics research.

This thesis delineated the effect of inhomogeneities in the stress field on interpretation

of FIB measurements in terms of the stress field. Stress-field inhomogeneities over the

area of the probe beam prevented direct interpretation of the birefringence measurement in

terms of the stress field in the region of the flow downstream of the contraction plane. The

effect of variation of the stress field along the beam path was also considered. The order of

magnitude of the error introduced by stress-field inhomogeneities along the path and

within the cross-sectional area of the probe beam for measurements conducted in the

upstream region of the planar contraction flow was estimated.

The investigation presented in Chapter 6 has advanced understanding of the response

of viscoelastic fluids to transient nonhomogeneous elongational flows. Knowledge of the

potential and limitations of the FIB technique in determining the stress field in viscoelastic

flows has also been developed. These findings may motivate new research. For example,

one of the primary contributions of the thesis has been the identification of the inefficacy

of the stress-growth region on the centerline of planar contraction flow in characterizing

the nonlinear elongational response of fluids in which a large contribution to the viscosity
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arises from the Newtonian solvent. However, in other viscoelastic materials, which do not

have a large solvent contribution to the viscosity (e.g. polymer melts), the accuracy of a

given nonlinear constitutive model could possibly be assessed.

Another potential area for future investigation is determination of the stress field in

regions of complex flow in the planar contraction and elucidation of the role the stress

field plays in transition from the two-dimensional base flow. As alluded to above, numeri-

cal simulation could be used to assess the influence of elongational components of the

velocity gradient tensor on the streamwise stress along streamlines of high curvature. Ver-

ification of the accuracy of the constitutive equation for this complex flow could possibly

be attained via FIB measurement along the streamlines. However, high velocity gradients

may be present in the vicinity of streamlines of high curvature. As discussed in Chapter 5,

stress-field inhomogeneities within the area probed by the FIB beam complicate interpre-

tation of the birefringence measurement in terms of the stress field. Hence, FIB measure-

ments in this region of the flow may not be practical.

Another motivation for study of the stress response in complex flow is to achieve bet-

ter understanding of the mechanism which drives the two-dimensional rearrangement of

streamlines to the diverging flow configuration. Note that two-dimensional, steady numer-

ical simulations of flow through the planar contraction have not predicted the diverging

flow which was experimentally observed (Coates, 1992). This may indicate that the con-

stitutive model did not accurately capture the stress response of the fluid to the complex

flow away from the centerline, for which elongational and shear components of the veloc-

ity-gradient tensor were of similar magnitude. In particular, as discussed in Chapter 2, the

shear components may have resulted in "elasticity thinning" and a consequent redistribu-

tion of fluid from the centerline to the region closer to the wall bounding the y-dimension

(McKinley, 1991). Should FIB measurement along the streamlines which have high curva-

ture prove feasible, the information could prove useful in elucidating the factors which

induce streamline rearrangement to the diverging flow configuration. From a rheological

point of view, comparison of numerical predictions of stress with experimental measure-

ments along streamlines away from the centerline will allow evaluation of constitutive

models in regions of complex flow. In particular, the question can be addressed: does

accuracy of a constitutive equation in the context of exclusively shear or shearfree rate-of-
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strain fields necessarily imply that the equation will be accurate for a complex rate-of-

strain field having both shear and elongational character?

A considerable challenge is the acquisition of stress-field information for three-dimen-

sional and/or nonplanar flows via the FIB technique. As discussed above, three-dimen-

sional and time-dependent flow simulation may provide insight into the mechanism

driving flow transition in the planar contraction. In general, the stress field of a flow is a

more sensitive function of the rheological properties of a viscoelastic fluid (or the parame-

ters of the constitutive equation for the case of numerical simulation) than the velocity

field. In consequence, experimental determination of the stress field in complex flows

would be a useful tool for evaluating the accuracy of three-dimensional, time-dependent

numerical simulations. As discussed in Chapter 3, deconvolution of birefringence data in

three-dimensional or nonplanar flows via a tomographic technique is probably only possi-

ble for flows with a high degree of symmetry, such as axisymmetric flows (Funatsu and

Kajiwara, 1988; Funatsu et al., 1988; Andrienko et al., 1992b; Andrienko et al., 1992a).

However, an alternative to deconvolution is the direct comparison of measured birefrin-

gence with birefringence predicted from numerical simulation. Specifically, birefringence

data, in conjunction with full-field velocity information, can be experimentally acquired

for a three-dimensional flow. The velocity-field information can then be used, together

with a constitutive model, to predict the stress field. The computed three-dimensional

stress field are then be used to predict the apparent birefringence (and extinction angle) for

a set of FIB probe beams (Li and Burghardt, 1995). The predicted birefringence can then

be compared with the measured quantities; a match confirms the accuracy of the constitu-

tive equation for the particular flow. One problem in this approach is the potential for non-

uniqueness; i.e., different stress fields can yield the same apparent birefringence for a

given probe beam. However, knowledge of the full velocity field - possibly obtained via

DPIV - in conjunction with multiple FIB measurements, especially if these are taken along

different directions, should allow identification of a unique solution. A second challenge is

analysis of deviation of the predicted from the measured birefringence. Specifically, it is

unlikely that a given constitutive equation provides an exact match to the data. Criteria

must be developed to quantitatively characterize how accurate a constitutive model is,

based on the closeness of the predicted and measured birefringence data.
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The study of Chapter 6 highlighted the importance of using multiple approaches to

understand the response of a viscoelastic fluid to an elongational flow. In particular, to

assess the influence of the elongational response in a particular industrial flow, it is gener-

ally necessary to use a test system with a similar flow configuration. For example, in fiber-

spinning operations, high Hencky strains are achieved. Such high Hencky strains cannot

be attained on the centerline of the planar contraction, but can be attained in devices such

as the filament-spinning apparatus or the filament-stretching apparatus (Tirtaatmadja and

Sridhar, 1995; Sridhar et al., 1991; Spiegelberg et al., 1996; Sridhar et al., 1986; Gupta et

al., 1986). However, as discussed in Chapters 2 and 4, such experimental configurations

also have associated limitations. In addition to the insight which a particular experimental

configuration may provide into a given industrial process, data from a number of such

configurations should allow development of an accurate constitutive equation of general

applicability to elongational flows.
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