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ABSTRACT

In modern high performance microprocessors, there has been a trend toward increased supersca-
larity and deeper speculation to extract instruction level parallelism. As issue rates rise, more ag-
gressive instruction fetch mechanisms are needed to be able to fetch multiple basic blocks in a
given cycle. One such fetch mechanism that shows a great deal of promise is the trace cache,
originally proposed by Rotenburg, et. al. In this thesis, critical design issues regarding the trace
cache fetch mechanism are explored in order to develop techniques to further improve trace cache
performance. The thesis research presents an optimized trace cache design that show an average
34.9% improvement for integer benchmarks and 11.0% improvement for floating-point bench-
marks, relative to the originally proposed trace cache design. This corresponds to a 67.9% and
16.3% improvement in fetch bandwidth over a traditional instruction cache, for integer and float-
ing-point benchmarks respectively. The results demonstrate the viability of the trace cache as a
high performance fetch mechanism and provide justification for additional research .
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Chapter 1

Introduction

1.1 Background and Motivation

In today's modern microprocessor, many aggressive techniques are employed in order to exploit

instruction level parallelism. The trend of these high performance superscalar microprocessors has

been to widen dispatch and issue paths in order to increase their effective IPC (instructions per cy-

cle). To this end, each successive microprocessor generation has increased parallel functional

units, more physical registers, larger instruction issue windows, and deeper branch speculation.

Currently, microprocessors such as the MIPS R10000, Sun UltraSPARC, and AMD K5 are capa-

ble of issuing up to four instructions per cycle [28], [29], [30]. Next generation microprocessors

will have even higher issue rates as hardware parallelism increases.

The focus on increasing instruction issue width in recent years has introduced a possible perform-

ance bottleneck in these superscalar architectures. In order to fully exploit instruction level paral-

lelism, it is necessary to balance the increased issue rate of these superscalar processors with suffi-

cient instruction fetch bandwidth. If instructions cannot be issued fast enough, then overall per-

formance will drop as execution resources lie idle. Thus, there is a need to explore new techniques

for increasing instruction fetch bandwidth. Increasing fetch bandwidth can improve overall per-

formance in two ways. First and foremost, the increased number of fetched instructions can be

used to fill idle functional unit resources. In addition, since there are more instructions, more inde-

pendent instructions can be found for issue.

Traditional superscalar architectures can be thought as being divided into two main components:

an instruction fetch unit and an execution unit. The fetch and execution units are connected by an

instruction issue buffer which serves to decouple the two components. The instruction fetch engine

fetches and decodes the dynamic sequence of instructions in the program and places them in the



instruction issue buffer. The instruction execution engine takes instructions from the issue buffer

and executes them as soon as data dependencies are resolved and resources become available.

Control dependencies, in the form of branch and jump instructions, provide a feedback mechanism

between the fetch and execution engines.

Instruction
Buffers

Figure 1-1: Typical Superscalar Design with Fetch and Execute Engines

From Figure 1-1, it is apparent that increasing instruction fetch bandwidth is necessary as the exe-

cution engine becomes more parallel and issue rates rise. Instruction fetch bandwidth has tradi-

tionally been controlled by factors such as the cache hit rate and branch prediction accuracy. The

cache hit rate affects fetch bandwidth because overall instruction cache performance is directly

proportional to it. Branch prediction accuracy affects the fetch bandwidth because of the mispre-

dict recovery time. These two factors have long been identified as fetch performance bottlenecks

and are relatively well-researched topics. The design of instruction caches has been studied in

great detail in order to lessen the impact of instruction cache misses on fetch bandwidth [31]-[36].

Likewise, there have been many studies done to improve branch prediction accuracy [16]-[25].

To date, the techniques developed to reduce instruction cache misses and increase branch predic-

tion accuracy have been very successful in improving fetch bandwidth. However, as the issue rates

for superscalar processors increase beyond four, other additional factors become increasingly im-

portant to instruction fetch performance. These factors include the frequency of control transfer

instructions, branch prediction throughput, noncontiguous instruction alignment, and fetch unit

latency. Conventional instruction caches are limited in their effectiveness by control transfer in-



structions present within the instruction stream. Since branch prediction is currently limited to the

one branch, an instruction cache can only fetch up to one basic block's worth of instructions per

cycle. Since control transfer instructions occur relatively frequently in an instruction stream

(approximately 1 in 5 instructions for common integer code), they create a bottleneck in the in-

struction fetch bandwidth of the processor. Table 1-1 provides the percentage of control transfer

instructions in a program and the resulting average basic block sizes for the SPECint95 bench-

marks.

SPECint95 % Control Transfer Average Basic
Benchmark Instructions Block Size

go 15.7% 6.32
m88ksim 16.8% 5.88
gcc 18.2% 5.41
compress 13.7% 7.33
ii 21.6% 4.63
ijpeg 6.7% 13.87
perl 18.8% 5.32
vortex 21.7% 4.62

Table 1-1: Average Dynamic Basic Block Sizes for SPECint95 Benchmarks

In order to increase instruction fetch bandwidth, one needs to either increase the basic block size or

fetch multiple basic blocks every cycle. A great deal of compiler research has been conducted in

order to increase the basic block length, including research on how to decrease the frequency of

taken branches [37], [38]. The other possibility is to increase the number of branch predictions, or

branch throughput, that can be made during a given cycle. Currently, only one branch can be pre-

dicted ahead of time. This limits the amount of instructions that can be fetched, given the fre-

quency of control transfer instructions in a typical fetch stream.

Unfortunately, increasing branch throughput does not solve everything. Even if multiple branch

prediction is employed, the presence of taken branches results in noncontiguous instruction fetch-

ing. Instruction caches store static instruction blocks from memory. With multiple branch predic-

tion, specialized interleaved instruction caches can be made to fetch beyond a control transfer in-

struction if the next basic block is contiguous [2]. However, in general dynamic instruction se-

quences do not always lie in contiguous cache locations, as in the case of taken branches and



jumps. This presents a problem, as a conventional instruction cache cannot fetch noncontiguous

blocks in a single cycle. Since taken conditional branches occur rather frequently (estimates of

around 70% of the time [41], instruction fetch bandwidth is severely limited. Figure 1-2 illustrates

the problem with taken branches and jumps:

Dynamic Instruction Stream

2 d.asic b lo c k -X . .. . .. .

taken jump

The instruction blocks lie in noncontigu-
ous locations within the instruction cache.
Since a conventional cache cannot align
these blocks in a single instruction block,
the presence of taken branches results in
the fetch of single basic blocks.

Figure 1-2: Noncontiguous Basic Blocks From Taken Branches

Finally, fetch unit lateny has a large effect on processor performance since incorrect control

transfer instruction speculation results in the need to flush the fetch pipeline. Increasing the fetch

latency, as is necessary for allowing higher branch prediction throughput and noncontiguous basic

block fetching, limits fetch bandwidth.

The above issues that are emerging as limiting factors in instruction fetching have prompted

several significant research studies. A fill mechanism to accomplish noncontigous basic block

fetching and alignment has been proposed [6], [7]. In addition, there has been significant work in

the area of multiple branch prediction in combination with multiple basic block fetching [2]. These

research studies all address the issues of branch throughput and noncontiguous instruction fetching

but at the cost of the last factor, namely fetch unit latency. This last issue is addressed with the

groundbreaking work in the development of trace caches. A trace cache provides a low latency

mechanism for concatenating basic blocks to form instruction traces that are dynamically created

during instruction fetching [1].

The trace cache captures and stores instruction sequences, called traces, from the dynamic fetch

stream. Later on during program execution, if the same instruction sequence is present in the

dynamic instruction stream, then the instruction sequence can be fetched from trace cache. Traces

Instruction Cache

- 2 basic block

" :



are specified by a start address as well as the branch outcomes of the control transfer instructions

present within it. For a given fetch iteration, if the starting address of a particular trace matches

the fetch address, and the predicted outcomes of the branches match the branch directions specified

in the trace, then the trace cache provides the trace to the instruction buffer. The basic idea is that

the stored instruction traces can cross basic block boundaries, allowing more than one basic block

to be fetched in a given cycle. Figure 1-3 shows the high level functioning of the trace cache

scheme:

Dynamic Instruction Stream

later... tf FAM
I'

A n t

trace with starting address A,
and two branches (not-taken, taken)

A completed trace is written
into the trace cache along with
branch status information.

V

' 1'

If the same trace (with starting address A
and same branch outcomes n,t) occurs
later, then the trace cache can provide
the instructions to the instruction buffers.

Figure 1-3: Basic Functioning of Trace Cache

The trace cache takes advantage of temporal locality by storing dynamic traces for reuse. The

trace cache is accessed in parallel with the instruction cache. Thus, in the worst case of a trace

cache miss, normal instruction fetching proceeds through the instruction cache. The basic block

concatenation for creating the traces is done off the critical path of the fetch mechanism so latency

Trace Cache

A I(n, t) 2M 2nd BB 3



is not increased. This is the primary advantage of the trace cache over other noncontiguous basic

block alignment mechanisms.

The concept of a trace cache exhibits great potential as a method to increase fetch bandwidth.

However, beyond the original design presented in [1], there has been no significant studies that

investigate the design space of trace caches. This lack of follow-up research on such a promising

idea presents the motivation for this thesis. The research for this thesis attempts to explore the

design space of trace caches by examining the performance effects of critical trace cache design

parameters. The ultimate goal is to design a high bandwidth instruction fetch mechanism suitable

for actual implementation into a future generation microprocessor.

1.2 Thesis Overview

The remaining portion of this thesis is presented in seven chapters. In Chapter 2, relevant previous

work is discussed. Chapter 3 describes the basic trace cache design and branch prediction mecha-

nisms. Chapter 4 summarizes the trace cache design issues that will be addressed in the thesis.

The simulation methodology is presented in Chapter 5. Simulation results and the ensuing discus-

sions are presented in Chapter 6. Finally, Chapter 7 provides conclusions to this research, fol-

lowed by a chapter on future work.



Chapter 2

Prior Work

There have been several techniques that has been proposed to overcome the bottleneck presented by

control transfer instructions within the dynamic instruction stream. These techniques were devel-

oped from a number of recent studies on high instruction fetching bandwidth and is closely related

to the research for this thesis. All of these studies deal with proposals for aligning multiple non-

contiguous basic blocks from the instruction cache in order to increase instruction fetch bandwidth.

The groundwork for the multiple basic block fetching was done by Yeh, Marr, and Patt, who pro-

posed the idea of a Branch Address Cache (BAC) as a fetch mechanism to increase instruction

fetch bandwidth [2]. This mechanism consists of an interleaved instruction cache, a multiple

branch predictor, an interchange and alignment network, and the branch address cache itself. The

BAC can be viewed as an extension to a branch target buffer, in which the starting address of the

next basic block is provided for a single given branch. The BAC is a generalized BTB in the sense

that it provides the starting addresses of the next m basic blocks, given the multiple branch predic-

tions for the next m branches (here, m is a small integer set by the implementation). These starting

addresses are fed into the instruction cache, which aligns the basic blocks together. A second fetch

mechanism proposed by Dutta and Franklin [3] also has a variant of a branch address cache for

multiple branch targets. However, they provide an alternative method of single-cycle multiple

branch prediction.

A third instruction fetch mechanism was proposed by Conte, Menezes, Mills, and Patel which

features a collapsing buffer (CB) [4]. It is composed of an interleaved branch target buffer, an

interleaved instruction cache, a multiple branch predictor, and an interchange and alignment net-

work with collapsing buffer logic. Two access iterations are made to the interleaved branch target

buffer, allowing two noncontiguous cache lines to be fetched. The collapsing buffer then merges

the appropriate instructions from the cache lines together to form the fetch block.



The fetch mechanisms proposed above have a number of disadvantages, namely:

1) An additional pipeline stage before the instruction fetch may be required, because the pointers

to all the noncontiguous instruction blocks must be generated before fetch can begin.

2) Additional hardware complexity in the instruction cache because multiple noncontiguous cache

lines must be accessed simultaneously.

3) An additional pipeline stage after the instruction fetch may be required, in order to merge and

align instruction blocks after they are fetched for the issue buffer.

More recently, another fetch mechanism was proposed by Rotenburg, Bennett, and Smith [1] that

eliminates the above disadvantages of the two previously discussed instruction fetching schemes. It

involves a special instruction cache called a trace cache to capture dynamic instruction sequences.

The trace cache removes the instruction fetch bandwidth bottleneck by storing these dynamic se-

quences of instructions (i.e. traces) as the program executes via a fill buffer. These traces can be

composed of multiple basic blocks and may contain one or more taken branches.

In this scheme, a trace cache would be used in conjunction with a standard instruction cache. The

branch predictor of the processor would provide the predicted branch direction of the next few

branches in the program, and if they matched the direction of the branches within a stored trace,

the trace cache is used to fill the issue buffer instead of the conventional instruction cache. If no

match is made, then fetching proceeds in a standard manner from the instruction cache. Instruc-

tions from the instruction cache are merged by a fill buffer over time and written to the trace cache

when the fill buffer is done with assembling the trace.

The advantage of this setup is the fact that the fill buffer does not lie on the critical path of the in-

struction fetch, and hence latency through this structure has little impact on overall performance.

The basic assumption is that augmenting an instruction cache with a trace cache and associated fill

buffer can significantly improve the fetch IPC performance of a microprocessor.

A trace cache only improves performance if dynamic sequences of instructions are commonly re-

executed. This seems to be the case, both because of temporal locality, in which instructions used

recently have a high probability of being used again, and branch behavior, since most branches are

usually heavily biased toward one direction.



There are two other previously proposed hardware mechanisms that exhibit similarities to the trace

cache scheme but were developed for other applications. Melvin, Shebanow, and Patt [5] pro-

posed a fill unit mechanism to cache RISC-like instructions from a CISC instruction stream.

Franklin and Smotherman [6], [7] extended the functionality of the fill unit to assemble instructions

from a fetch stream into VLIW-like instructions to be cached in a structure called a shadow cache.

The purpose of the shadow cache is to remove the need for dependency checking in the issue stage,

thereby reducing complexity in wide issue processors.

Work on multiple branch prediction is also very relevant, as all of the above schemes rely on it in

some form. Recently, Wallace and Bagherzadeh have proposed schemes for multiple branch and

block prediction [8]. Since the introduction of the trace cache, path prediction has also become a

topic of interest. Path prediction is a form of program execution prediction, where paths of execu-

tion are predicted. Both Rotenburg [9] and Conte [10] have made contributions to this area of re-

search.



Chapter 3

Trace Cache Fetch Mechanism

This chapter describes the implementation details of the trace cache fetch mechanism discussed in

the introduction. It is based on the original trace cache device proposed by Rotenburg, et. al. [1],

which forms the foundation for this thesis research. The basic trace cache mechanism is described

in detail first, followed by a description of the associated multiple branch predictor.

3.1 Trace Cache

The fetch scheme using a trace cache works in conjunction with a standard instruction cache. At

the beginning of each cycle, the trace cache is accessed in parallel with the instruction cache based

on the fetch address. The multiple branch predictor generates the branch outcomes for the next

couple of branches while the caches are being accessed. If there is a trace cache hit, then the trace

is read from the trace cache into the instruction issue buffer. A trace cache hit occurs when the

fetch address matches the address tag of a trace and the branch predictions match the branch di-

rections of the trace. If either of these conditions is not true, then there is a trace cache miss and

normal instruction fetching proceeds from the instruction cache. The complete trace cache fetch

mechanism is depicted in Figure 3-1.



Fetch Adc

:tion

Figure 3-1: Trace Cache Fetch Mechanism

The trace cache itself consists of instruction trace lines, control information, and line-fill buffer

logic. The trace lines hold the actual instructions in the trace. The maximum trace length n is

specified by the trace cache line width. Each trace is also constrained by the maximum number of

branches m present within the trace. Every trace line has associated with it some control informa-

tion, namely:

Valid Bit: Indicates whether or not a trace line contains a valid trace.

Tag: Identifies the starting address of the trace, i.e. the higher order bits of the address for the

first instruction of the trace.

Branch Flags: A single bit for each branch within the trace to indicate whether or not the

branch was taken or not taken. The m h branch of the trace does not need a flag since no in-

structions follow it. Therefore, only m - 1 bits are needed to encode the branch flags.



* Branch Mask: Some state is needed to indicate the number of branches within the trace. This

information is used by both the trace cache, to determine how many branch flags to check, and

by the branch predictor, for updating. The first log2 (m+1) bits encode the number of branches

present in the trace. The branch mask also has an extra bit to determine whether or not the last

instruction of the trace is a branch. If so, the corresponding branch flag does not have to be

checked since no instructions follow it.

* Trace Target Address: The next fetch address if the last instruction is a branch and is pre-

dicted taken.

* Trace Fall-through Address: The next fetch address if the last instruction to the trace is a

branch and is predicted not-taken.

For a 64-entry direct-mapped trace cache with 16 instruction traces (n=16, m=3), 4kbytes is

needed for instruction store, and a minimal 712 bytes is used for the control information.

The line-fill buffer is used to latch basic blocks together to form the traces to be written into the

trace cache. The basic blocks are latched one at a time into the fill buffer as instruction fetching

proceeds. The fill logic merges each new basic block with the instructions already in the line-fill

buffer. Filling is completed when either the maximum trace length n or the maximum number of

branches in the trace m is reached. When either case occurs, then the contents of the fill buffer are

written into the trace cache, along with the control information. The branch flags and mask is gen-

erated during the line-fill process, and the trace target and fall-through addresses are computed at

the end of the line fill. If the trace does not end in a branch, then the target address is set equal to

the fall-through address. The complete trace cache and line fill mechanism is described in the

Figure 3-2.

In order to simplify the fill logic for the trace cache, the trace cache simply does not store indirect

jumps, returns, or traps. Whenever one of these instructions is encountered, the trace fill truncates

at that instruction. In addition, unconditional branches and calls are simply treated as conditional

branches that are highly predictable. Thus, no special case is needed to deal with them.



Trace Cache

Control Information

branch fall-through

Instruction Trace (maximum n instructions)

Fet
Adl

From Branch Trace Next Fetch From Instruction Latch
Predictor Hit? Address

Figure 3-2: Trace Cache Line-fill Buffer Operation with n=16 and m=3.

In the above figure, the line-fill buffer combines 3 basic blocks fetched from the instruction cache

to form the trace. Each basic block is latched into the buffer one at a time. In this case, the branch

limit m is reached after the third basic block. After this point, the instruction trace and the appro-

priate control information are written into the trace cache.

The fill logic for the trace cache is complicated by the fact that there are different classes of control

transfer instructions that must be handled differently. Control transfer instructions can come as

conditional branches, unconditional branches, calls and direct jumps, indirect jumps, returns, and

traps. The trace cache design described is only capable of dealing with conditional branches. Indi-

rect jumps, returns, and trap instructions are not included in traces, as these instructions can have

an indeterminate number of targets. Since the predictor can only predict one of two targets (the



jump target or fall-through target), the trace cache scheme cannot handle these control transfer in-

structions. In addition, unconditional branches and calls should not be involved in prediction,

since their outcome is known. This complicates the trace cache hit logic, since the trace cache

must be able to identify these instructions within the trace and deal with them appropriately.

An issue of importance is the fact that the instruction fill should include the associated delay slot of

the branch in question. In Rotenburg's implementation of the trace cache, a basic block ends in a

branch and does not include the associated delay slot. Since the delay slot can be assumed as part

of the basic block, the implementation that is considered in this research includes the delay slot

when possible (i.e. when the maximum trace length has not been reached).

The trace cache design implemented for this thesis research also places the additional restriction

whereby a trace cannot start with an instruction that is the delay slot of a branch. If a trace starts

with the delay slot of a control transfer instruction, then the control information for the trace cache

can inappropriately signal trace cache hits when it is not supposed to. Consider the following

situation diagrammed in Figure 3-3. In this scenario, the trace cache will signal a trace hit, since

the tag matches the fetch address and the branch directions match the branch predictions. This is

the case even if the trace corresponds to wrong path of execution, as long as the branch directions

of the trace happen to match the predictions. Based on existing control information, there is no

way of determining whether the trace represents the correct path of execution. Thus, it is impor-

tant to prevent traces starting with delay slots from being committed to the trace cache.

Dynamic Instruction Stream

Branch BranchBranch Delay Slot Branch Delay Slot
(taken) (-taken)

Branch Taken Path later.... Branch Not-TakenPath

ran later....
A \A

Trace with start address A Given the same start address A, it
stored in trace cache. is conceivable that the trace

cache will incorrectly fetch the
trace containing the branch taken
path if the branch predictions
happen to match.

Figure 3-3: Misrepresented Trace Cache Hit Resulting from Starting with Delay Slot



3.2 Multiple Branch Prediction

The trace cache relies on a multiple branch predictor in order to determine whether or not the

branch directions of a stored trace match the predicted branch outcomes of the instruction stream.

The prediction accuracy of the branch predictor is critical to the performance of the trace cache, as

mispredictions result in large trace abort penalties. Thus, the branch predictor used in this research

is the Gag correlated branch predictor [21], based on its high prediction accuracy and its ability to

be generalized to do multiple branch prediction.

In this scheme, a 16-bit global history register indexes into a pattern history table. The pattern

history table actually consists of four sets of counters, which are then selected based on the predic-

tion and history bits. Figure 3-4 shows the basic multiple branch prediction scheme:

Pattern History Table

C

assays ui luul.

3 branch predictions

Figure 3-4: Correlated Predictor Scheme Extended To Increase Predictor Throughput



Chapter 4

Contributions of Thesis

The concept of a trace cache shows a great deal of promise, as it provides a method of effectively

generating traces for instruction fetching that crosses basic block boundaries without increasing

fetch latency. However, this area of research remains relatively untouched and there are a great

deal of trace cache design issues that have not been explored. The focus of the research behind this

thesis attempts to further improve fetch bandwidth by exploring the design space of trace caches.

This thesis will attempt to refine and develop methods for improving fetch bandwidth beyond limits

achievable by currently proposed mechanisms. Specifically, techniques are explored to decrease

the trace cache miss rate and increase trace cache storage efficiency. The goal is to establish the

viability of the trace cache as a practical hardware device for future high performance

microprocessors.

4.1 Trace Cache Design Issues to Address

There is a considerable amount of research that can be done to expand upon Rotenburg, et. al.'s

initial work on trace caches. In their paper, the authors only discuss a simple trace cache design.

Important issues in trace cache design that this thesis research will address include:

1) Indexing: The simplest way of indexing into a trace cache is by directly using the bits from

the fetch address. There are alternative indexing schemes, some of which involve hashing, that

may result in more uniform trace distribution within the trace cache.

2) Trace Length: One of the most basic parameters in trace cache design is how long a maxi-

mum trace can be. If the trace length is set too high, then trace cache storage efficiency de-

creases as the extra space within the trace line is wasted. Specifying a trace length that is too



small may also have detrimental effects on trace cache performance by decreasing the effective

possible fetch bandwidth. It remains to be seen what the optimal length of a trace line should

be.

3) Branch Throughput: The currently accepted standard for multiple branch prediction is lim-

ited to a throughput of three. There is no reason to assume that this number is optimal for

trace cache fetching. Studies need to be done to see if there is any additional benefit from in-

creased branch throughput.

4) Fill Issues: There are a variety of different methods of how a trace is collected for the trace

cache. Specifying how to determine traces for the trace cache can have a significant effect on

performance. This includes issues of how the beginning of a trace is specified, how and when

instructions are committed to the fill buffer, and how to terminate a trace.

5) Partial Matches: A common situation that arises is when the fetch address matches the start

address of the trace but not all of the branch predictions match the path of the trace. In such a

situation, it is still feasible for the trace cache to provide instructions to the issue buffer, up to

the last valid branch where the prediction matches the taken path. This scheme results in addi-

tional complexity, including the additional costs of storing intermediate basic block addresses.

6) Associativity: One of the problems of indexing traces within the trace caches by a start ad-

dress is the fact that only one trace from a given address can be stored. An alternative method

of storage is to increase the trace cache associativity, which could reduce thrashing effects

from traces that start with the same address.

7) Sizing: Increasing the size of a trace cache can obviously have a deep impact on performance.

However, there has been no research done as to how performance scales with trace cache size.

8) Replacement Policy: As with standard caches, there are several different methods of choosing

which trace to replace when filling the cache. It is possible that the replacement algorithm

chosen might affect overall trace cache performance.

All the above design issues can be applied to the general trace cache framework proposed by Ro-

tenburg, in which the trace cache acts as a supplementary device to the instruction cache. There

also exists the possibility of generalizing the instruction cache by completely replacing it with a

trace cache. In this scheme, the trace cache acts as the main mechanism in the instruction fetch,



with a L2 cache used as the source for trace fills. The details of the viability of this scheme pres-

ents another focus area for this thesis.

4.2 Long-Term Roadmap of Research

The research for this thesis can be broken down into a number of general steps which are summa-

rized below:

1) Initial statistical gathering and infrastructure development. This includes writing a trace ana-

lyzer to collect basic statistics such as average trace lengths, basic block sizes, branch frequen-

cies, number of dynamic basic blocks in a trace, instruction cache hit rates, etc. for standard

representative programs.

2) Judiciously selecting metrics suitable in characterizing performance, such as fetch IPC and

trace cache miss rate.

3) Implementing a parameterizable trace cache simulator and doing extensive simulating on typi-

cal workloads to determine performance improvement of the different trace cache designs over

standard instruction fetch mechanisms.

4) Analyzing design issues and iterating refinements based on simulation results. The intent is to

refine the original trace cache design as much as possible to maximize trace cache

performance.



Chapter 5

Simulation Methodology

The research for this thesis is to be primarily simulation-based and entails the development of a

trace-driven simulator in order to gather results and validate trace cache design. In this chapter,

the simulation methodology such as the simulation environment, simulation model, performance

metrics, and test workload are each discussed in turn.

5.1 Simulation Environment

The simulator development for this research was done under the Mips Technologies Incorporated

(MTI) Architecture Simulation Environment. The Architecture Group at MTI is responsible for

performance and behavioral simulation for MTI's microprocessor line. In addition, the group is

involved with investigation of general architectural innovations for next-generation processors.

In order to facilitate the development of simulators, a well-developed simulation environment was

created by the Architecture group. The simulation environment consists of 1) standard benchmark

execution trace collections, 2) standard tools for running simulations, and 3) user-provided simu-

lators. The trace cache simulator was developed using this infrastructure. The standard bench-

mark trace collection is used as the source of simulator inputs, as discussed below under the test

workload section. The trace cache simulator is trace-driven, in which an instruction input trace is

fed to the simulator for statistics gathering (such as trace cache miss ratio, fetch bandwidth, over-

all, etc.).

5.1.1 Trace-driven Simulation

The simulation tools run simulations by feeding benchmark execution traces to the simulators.

Thus, this type of simulation is called trace-driven simulation. Trace-driven simulation is used

over other forms or simulation (such as cycle simulation) for a number of reasons. These reasons



include: 1) trace-driven simulation is much faster, 2) representative traces for the SPEC bench-

marks already existed, and 3) trace-driven simulation is architecture independent.

The data results collected from this study are all from trace-driven simulation. A distinction must

be made between the input traces used in the simulation of the trace cache and the dynamic traces

that the trace cache actually stores in the simulator. Trace-driven simulation refers not to the

traces stored within the trace cache but to the benchmark application instruction streams that the

simulator runs on in order to generate statistics.

There is a problem with trace-driven simulation, namely that incorrect speculation cannot be

simulated, as traces represent the actual correct path of execution. This may result in some inaccu-

racies in the model, as the cache structures do not see the contamination effects of fetching and

executing wrongly speculated instructions. However, it is assumed that such effects are negligible

and that trace-driven simulation is accurate enough for the purposes of this study.

5.2 Simulation Model

Since this research is focused on increasing instruction fetch bandwidth, the fetch engine of the mi-

croprocessor is the primary module of interest and is modeled in detail. The trace cache and in-

struction cache fetch mechanism, as described in the Trace Cache Mechanism chapter, is imple-

mented under the simulation environment.

In order to isolate the performance effects of the fetch mechanism, it is assumed that the machine

stalls for reasons only pertaining to the fetch mechanism and not from issues related to the instruc-

tion queue or execution backend. The fetch mechanism can stall on instruction cache misses and

incorrect branch predictions.

When using a real branch predictor, an incorrectly predicted branch results in a misprediction pen-

alty. This penalty arises from the need to abort all instructions fetched after the misprediction

point. Since the simulator only deals with the fetch portion of the machine (i.e., the execution

backend of the processor is not simulated), this mispredict penalty must be approximated. In order

to simplify the development of the machine model, all the details of the instruction issue queue and

execute engine are abstracted away. For the simulations that involve real branch prediction, the

mispredict penalty is simply assumed to be six cycles [2]. This means that instructions following

an incorrectly predicted branch will not be fetched until six cycles after the branch is fetched. In



effect, the mispredict penalty embodies all the effects of a mispredicted branch, including aborting

the trace and flushing instructions from the instruction queues, etc.

Although the misprediction penalty determination is very simple, it provides an effective way of

approximating the effect of branch prediction accuracy on trace cache performance. Using an av-

erage misprediction penalty gives a rough estimate on how mispredicted branches affect fetch IPC

and is deemed sufficiently accurate for the purposes of this research.

5.3 Performance Metric

The primary performance metric used for this research is fetch IPC (instructions per cycle) from

the fetch mechanism. The fetch IPC represents the number of instructions that can be fetched by

either the trace cache or primary instruction cache and gives a basic performance gauge of the

trace cache and its improvement over using just an instruction cache.

Other metrics of interest include the trace cache miss rate, the miss rate per instruction, and the

instruction miss rate. The trace cache miss rate indicates the percentage of attempted trace cache

accesses that result in a trace cache miss. The instruction miss rate represents the trace cache

miss rate normalized by the number of instructions fetched. The misses/instruction is usually used

as the traditional performance metric for caches. Finally, one can measure the miss instruction

ratio, or the percentage of instructions fetched not supplied by the trace cache. One goal of this

research is to reduce these trace cache miss metrics to the lowest level possible.

5.4 Test Workload

In order to determine the performance of the trace cache fetch mechanism, a suite of programs rep-

resentative of actual program behavior must be chosen to base performance measurements on. The

SPEC benchmark suite is the most widely recognized and used benchmark suite in industry as well

as academia, and thus will be used in this research as the primary benchmark source to gauge per-

formance. The SPEC benchmark suite consists of eight integer benchmarks written in C, and ten

floating point benchmarks written in Fortran. A brief description of each benchmark is provided in

Table 5-1 below:



Benchmark Description
SPEC95, INT
099.go Artificial Intelligence, plays the game of Go.
124.m88ksim Motorola 88K RISC CPU simulator, runs test program.
126.gcc New Version of GCC, the GNU C Compiler, builds SPARC code.

129.compress Compresses and uncompresses file in memory using Lempel-Ziv coding.

130.1i Lisp interpreter.
132.ijpeg Graphic compression and decompression. (JPEG)
134.perl Manipulate strings (anagrams) and prime numbers in Perl.
147.vortex A database program.
SPEC95, FP
101.tomcatv Tomcatv is a mesh generation program.

102.swim Shallow Water Model with 513 x 513 grid.

103.su2cor Quantum physics. Monte Carlo simulation.

104.hydro2d Astrophysics. Hydrodynamical Navier Stokes equations

107.mgrid Multi-grid solver in 3D potential field.

110O.applu Parabolic/elliptic partial differential equations.
125.turb3d Simulate isotropic, homogeneous turbulence in a cube.
141.apsi Solve weather conditions (temp., wind, velocity) and distribution of pollutants.

145.fpppp Quantum chemistry
#146.wave5 Plasma physics. Electromagnetic particle simulation.

Table 5-1: Description of SPEC95 Benchmarks

5.4.1 General Characteristics of SPEC95 Benchmarks

The integer programs represent the bottleneck in instruction fetching, resulting from an average

basic block size of around 5. The dynamic basic blocks of the floating-point benchmarks are all

significantly larger than the corresponding numbers for the integer benchmarks. This is because

the floating-point benchmarks contain more scientific-based code and thus have large parallel loop

structures to iterate computations. This is in contrast with the tighter, more complex looping be-

havior of integer benchmarks. Among the integer benchmarks themselves, the most interesting

ones to look at are 099.go and 126.gcc because they exhibit the most erratic behavior and stress the

ability of the fetch mechanism to fetch instructions.

5.4.2 Trace Generation

The benchmarks in the SPEC95 suite range from between 25 billion to 90 billion instructions,

making it virtually impossible to run the simulator through the complete inputs given the computa-

tion resources. Thus, it is necessary to generate a set of reasonable length instruction traces that



are still representative of the original benchmarks. There are two strategies for generating traces of

reasonable size. The first involves using input sets that result in shorter benchmark run times. The

second is to sample through the actual full trace at even intervals (such as recording 10 million in-

structions, then skipping the next 90 million instructions and so on). The problem with the first

approach is that reducing the problem size may significantly alter the program's behavior on the

system. The problem with the second method is that making tradeoffs between accuracy and trace

size is non-trivial.

Because it is paramount that the input traces encapsulate actual program behavior, the traces used

for this research were created by sampling. The sampling strategy was tweaked for each applica-

tion benchmark within the SPEC95 suite in order to capture the significant behavioral aspects of

each program.

Profiling information for each benchmark was obtained by utilizing the R10000 hardware per-

formance counters when running the benchmarks on a R10000 processor system. This profiling

includes basic block, instruction, and instruction class distributions as well as data and instruction

cache misses, branch mispredicts, and TLB misses.

Some benchmarks (specifically 099.go and 126.gcc) show dramatic changes in behavior through-

out their program runs. For these benchmarks, an ordinary on/off sampling strategy is used. Spe-

cial attention was given to the periods in the program runs that exhibited the most variation by

taking more samples in those periods. For example, 126.gcc does not show any regular behavior

for any of its inputs, so a number of the larger inputs were chosen and evenly sampled. In contrast,

099.go shows more drastic changes in the earlier parts of the program. Therefore, the benchmark

was divided into 4 sections, with the earlier sections being smaller, and a specified number of 10-

million instruction samples were evenly obtained from each section.

Other benchmarks have a cyclic pattern, with their periods comparable to trace lengths that a

simulator could execute in reasonable amount of time (around 200 million instructions). For these

benchmarks, one or more slices of 200 million instructions were taken consecutively so that one

entire cycle of behavior is captured. The programs that exhibit cyclic behavior include the integer

benchmarks 129.compress and 132.ijpeg and the FP benchmarks 147.vortex, 102.swim,

104.hydro2d, 107.mgrid, l 10.applu, 125.turbo3d, 146.wave5. For a couple of these benchmarks

(namely 147.vortex and 146.wave5), the periods of their cyclic behavior was larger than 200M



instructions. For 147.vortex, sampling was done in chunks around the interesting areas whereas

for 146.wave5, the behavior was captured over two trace slices.

Finally, some benchmarks do not exhibit any sort of pattern but have different periods of varying

behavior. In this case, each period is sampled by different strategies such as in variable length

chunks, or on/off sampling, etc. Benchmarks that exhibit such behavior include 124.m88ksim,

130.1i, 134.perl, 101.tomcatv,103.su2cor, 141.apsi, and 145.fpppp.

By applying a sampling strategy in this way, only about one billion instructions were needed to

generate the sampled traces which represent the entire 717 billion instruction run of the SPEC95

reference set. These traces were created by the MTI Architecture Group and are used as the source

of instruction traces for this research. Since the trace samples represent less than 0.15% of the

actual benchmark runs, it is important to verify that the sampled traces actually represent actual

benchmark behavior. To provide an independent check on how representative the sampled traces

are, the profile information for a complete program run was compared to the behavior of the sam-

pled traces. Since the profile results for the sampled trace matched the distributions for the actual

program run, there is some assurance that the samples are accurate representations of actual code

execution. Table 5-2 lists the benchmarks traces that are used in this study.

Integer Number of Traces Floating Point Number of Traces

Benchmarks (-200M Inst. each) Benchmarks (-200M Inst. each)

099.go 2 101.tomcatv 3

124.m88ksim 2 102.swim 1

126.gcc 2 103.su2cor 3

129.compress 2 104.hydro2d 2

130.1i 3 107.mgrid 1

132.ijpeg 3 110.applu 2

134.perl 2 125.turb3d 3

147.vortex 4 141.apsi 1

145.fpppp 3

146.wave5 3

Table 5-2: Traces for Benchmarks



Chapter 6

Simulation Results and Analysis

In this chapter, the general results of the thesis research are presented. Using the simulation meth-

odology described in the previous chapter, the effects of various parameters on trace cache per-

formance and efficiency are explored. The results section starts by presenting the simulation re-

sults for a conventional instruction fetching mechanism, as compared with a base trace cache de-

sign. Different aspects of the trace cache design are then explored in turn. The section concludes

with the effects of using a real branch predictor.

6.1 Instruction Cache Results

As a base method of comparison, the trace cache performance results are compared to a conven-

tional instruction cache fetch mechanism. Table 6-1 summarizes the instruction cache parameters

used as the comparison base:

Primary Instruction Cache

Size 128KB
Block Size 64B

Associativity 2

Replacement LRU
Miss Penalty 10 cycles

Table 6-1: Instruction Cache Parameters

For these simulations, the maximum fetch bandwidth is set at 16 instructions/cycle. The resulting

fetch IPC values when just using an instruction cache are show in Figure 6-1.



Figure 6-1: Fetch IPC for Instruction Cache Fetch Mechanism

From the figure, we notice several things immediately. For the integer benchmarks (first 8 bench-

marks), the average fetch IPC out of the instruction cache is comparable to the average basic block

size of the benchmark that was run. This is indicative of the fact that the basic block size is the

limiting factor in the fetch IPC, as the instruction cache can only fetch up to one basic block at a

time. This would mean for most common non-scientific applications, the bandwidth ceiling is lim-

ited to an average of 5-6 instructions per cycle, regardless of the parallelism of functional units that

might exist.

The fetch IPC values for the floating-point benchmarks are much higher than the corresponding

values for the integer benchmarks. Since the branch frequencies are much smaller for these

benchmarks than the integer benchmarks, the instruction cache can fetch more instructions in a

given cycle. This results in fetch IPC values that are much closer to the maximum fetch limit.

In the next section, we will see that by simply adding a trace cache in conjunction with the instruc-

tion cache, we can significantly improve the fetch IPC and hence overall performance of the micro-

processor.

6.2 Base Trace Cache

The results derived above for the instruction cache fetch mechanism are first compared to that of

the most basic trace cache design. For initial measurements, the original trace cache model from

Rotenburg's design is used, as described in his paper [1]. This basic trace cache design has the

following parameters:



Base Trace Cache Model
Trace Entries 64
Trace Length 16 Instructions
Max. # Brs. 3
Associativity 1 (direct-mapped)
Overall Size 4 Kbytes

Table 6-2: Base Trace Cache Design

For these simulations, the maximum fetch rate for the simulator is equal to the trace cache line

size, which is equal to 16 instructions in this case. Also, in order to isolate the effects of the trace

cache itself, perfect branch prediction is assumed for the present. The results of the simulation

runs are shown in Figure 6-2:

Figure 6-2: Fetch IPC for Base Trace Cache Fetch Mechanism

From the fetch IPC results for the basic trace cache design, we see immediately that augmenting

the instruction cache with a small trace cache results in considerable fetch performance improve-

ments. Figure 6-3 summaries the performance improvement of the trace cache fetch mechanism

over a traditional instruction cache fetch device:
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Figure 6-3: Performance Improvement of Base Trace Cache

From Figure 6-3, it is apparent that the trace cache improves the performance of the integer

benchmarks much more than the floating-point benchmarks. In fact, a number of the floating-

point benchmarks do not improve much at all. The reason is the trace cache only removes the

limitation of fetching a single basic block. For the integer benchmarks, a basic block is only 5-6

instructions in length on average, so fetch IPC improves dramatically. However, the average basic

block size for the floating-point benchmarks is already larger than the maximum fetch limit (16

instructions), so only marginal improvements in the fetch IPC can be made. The statistics for the

average trace that is written into the trace cache and the average trace that is actually read from the

trace cache are summarized in Table 6-3.

The statistics give an gauge as to how the instruction traces are being utilized by the fetch mecha-

nism. From the table, it seems that there is not too much variation between the traces that are

written into the trace cache and what is actually used by the fetch mechanism. The lack of varia-

tion is a good indication that the traces stored in the trace cache are being equitably utilized by the

fetch mechanism. Were this not the case, such as if the trace cache only used short traces or traces

containing only one or two basic blocks, then there would be a greater disparity between the writ-

ten and read trace statistics.
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INTEGER go m88ksim gcc compress ii ijpeg perl vortex

trace written 11.3 11.0 10.2 10.7 10.8 13.1 11.6 9.3

basic blks written 1.94 1.73 1.92 1.66 2.05 0.82 1.82 2.09

trace read 10.4 9.5 9.9 11.3 9.4 11.7 11.0 9.0

basic blks read 1.83 1.86 1.77 1.53 1.91 0.97 1.90 2.02

FP tomcatv su2cor swim hydro2d mgrid applu turbo3d apsi fppp

trace written 13.8 14.3 13.0 15.1 15.0 14.0 12.0 13.6 15.3

basic blks written 0.58 0.34 0.87 0.22 0.15 0.59 0.83 0.64 0.18

trace read 12.3 13.6 13.6 12.8 13.2 13.2 12.9 13.4 13.5

basic blks read 0.80 0.32 0.88 0.53 0.34 0.69 0.63 0.62 0.55

Table 6-3: Average Written/Read Trace Statistics

It is pleasantly surprising to note that the average trace lengths for the integer benchmarks are ac-

tually on par with that of the floating-point benchmarks. This fact shows how effective a trace

cache is in improving the fetch bandwidth of the integer benchmarks. However, the traces for the

integer benchmarks contain, between 1.5 to 2 basic blocks on average. This is in contrast to the

floating-point benchmarks, which only store on average around half of a basic block. This con-

forms to expectations, as the floating-point benchmarks have much larger basic blocks. Sections

6.3-6.7 describe results for attempts to further improve these trace statistics.

The final results of interest for the base trace cache design are the miss statistics. These trace

cache miss rates are shown in Figure 6-4. The miss rates for the basic trace cache design are

abysmal. For a majority of the benchmarks, more accesses occur from the instruction cache than

from the trace cache. This is a noted problem with the implementation proposed by Rotenburg in

his original paper. The corresponding instruction miss rates are an order of magnitude off from

miss rates for current instruction caches.



Figure 6-4: Base Trace Cache Miss Statistics

One possible fetch mechanism design optimization is to have the trace cache completely replace the

instruction cache as the primary fetching device, with a L2 cache used as a fill mechanism for the

trace cache. However, it is not possible to realize such an implementation using the original trace

cache design. The instruction miss rates are much too high, which would result in unacceptable

performance losses given the miss penalty. Figure 6-5 shows the breakdown of the cause of a trace

cache miss:
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A trace cache miss occurs if either 1) the trace cache tag doesn't match the fetch address or 2) the

branch flags do not match the branch predictions. From the breakdowns, we see that most of the

trace misses result from tag mismatches, indicating either that there are a great deal of collisions

within the trace cache, or that the trace cache is simply too small to store enough useful traces.

Both these problems can be rectified by increasing the associativity and/or size of the trace cache,

as will be shown in sections 6.8 and 6.9 respectively.

6.3 Effects of Hashed Indexing

Given the base trace cache results, this research first explores the possibility of altering the index-

ing scheme of the trace cache to improve performance. The multiple branch predictor that is nec-

essary as part of the trace cache fetch mechanism represents a very large amount of space over-

head. As an alternative to having a branch predictor, one can have the trace cache indexed as a

hash of the global history register and the fetch address (such as an XOR function). This well-

known scheme is known as the gshare indexing method [18], used originally to index into a branch

prediction table. The gshare indexing methodology can be adapted for use with the trace cache.

Using this indexing scheme, a trace cache hit is then simply based on whether or not the fetch ad-

dress matches the tag of the trace. There are several aspects of this design that significantly sim-

plifies the trace cache fetch mechanism. First of all, trace status information is reduced only to a

tag, reducing trace storage overhead. In effect, the branch global history information that is used

to derive the index is used as the "branch prediction" of the trace. Thus, the branch prediction

hardware can be completely removed from the fetch mechanism, saving a great deal of space and

complexity. Also, because of the nature of the XOR hash performed to derive the index, traces can

be more uniformly spaced within the trace cache. Figure 6-6 depicts the hashed indexing into the

trace cache.
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Figure 6-6: Hashed Indexing into the Trace Cache

The resulting fetch IPC for this indexing scheme is shown in Figure 6-7:

Figure 6-7: Fetch IPC of Trace Cache with Hashed Indexing

From the fetch IPC results, we see that hashed indexing into the trace cache does not work very

effectively at all. The resulting IPC values are far worse than using the original indexing scheme,

and marginally greater than just using an instruction cache. The main reason is the extremely bad

trace cache miss rates using the XOR hash, as shown in Figure 6-8:
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Trace Cache Miss Rate from Hashed Indexing

Figure 6-8: Trace Cache Miss Rate from Hashed Indexing

Although hashed indexing is not a bad idea in and of itself, we see that unless we improve the re-

sulting trace cache miss rate, the idea is not very feasible.

6.4 Effects of Trace Line Length

The trace line length is one of the basic parameters of the trace cache, dictating the maximum

length of the trace that can be stored. Since longer traces can be stored, it is intuitive that increas-

ing the line size would increase trace cache performance. However, it is necessary to explore how

performance scales with increased trace length and whether or not this increase in performance is

commensurate with the additional storage cost of increasing the maximum trace length. Since the

maximum trace length specifies exactly how much storage is set aside for a single trace regardless

of how long the actual trace is, setting an overly long trace line size would result in wasted storage.

The maximum line constraint can also feasibly affect performance based on the way existing traces

are incorporated into a trace fill. Consider the case where a trace hit occurs while the fill buffer is

still collecting instructions for a trace fill. Only complete traces can be stored in the fill buffer

during the fill process; no partial traces fills are allowed since it is not possible to determine the

number of control instructions in the partial trace given existing control information. This, coupled

by the fact that a trace cache hit occurs relatively frequently, results in the possibility of having

only small traces stored. This can occur when a fill starts with a basic block, followed by a long

trace. If both the basic block and trace cannot fit in the fill buffer, only a single basic block will be

stored. By increasing the maximum trace length, this possibility is reduced.
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Increasing the trace length size beyond 16 has a modest effect on the fetch IPC performance of

both the integer and floating-point benchmarks. However, the performance curve for the integer

benchmarks tapers off with larger trace line lengths whereas the floating point benchmarks still

improve slightly. Figure 6-9 shows the integer fetch IPC results when the maximum trace length is

varied from between 10 to 24 instructions, in increments of 2.

Figure 6-9: Fetch IPC as a Function of Maximum Trace Length

From Figure 6-9, we see that integer fetch IPC monotonically increases for trace lengths under 20,

after which point improvement levels off. Given an average basic block size of 5 instructions, a

branch throughput limit of 3 would result in a trace just about the size of the maximum trace length

for the base trace cache design. The fact that fetch IPC improves for longer trace lengths seems to

indicate that the variance of basic block sizes could result in situations where increased trace line

size is beneficial. It is possible that further IPC improvement with trace line lengths greater than

20 may be caused by a limitation of the branch throughput. However, in the next section, we will

see that this is not the case. The fetch IPC improvement for a trace line length of 20 is shown in

Figure 6-10:
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Figure 6-10: IPC Improvement from Increased Trace Line Length

The corresponding average trace lengths that are written/read are shown in Table 6-4:

o E

E

INTEGER go m88ksim gcc compress ii ijpeg perl vortex

trace written 12.1 11.6 10.9 11.2 11.4 13.3 12.8 9.9

basic blks written 2.05 1.82 2.02 1.71 2.21 0.96 1.99 2.14

trace read 11.7 10.1 10.4 11.8 9.8 12.1 12.1 9.6

basic blks read 1.96 2.00 1.83 1.66 2.13 1.04 2.07 2.10

FP tomcatv su2cor swim hydro2d mgrid applu turbo3d apsi fppp

trace written 14.1 14.7 13.3 15.9 15.1 14.4 12.6 14.2 15.5

basic blks written 0.64 0.37 0.95 0.28 0.22 0.67 0.86 0.69 0.23

trace read 13.1 14.1 13.9 13.4 13.3 13.8 13.5 13.7 13.6

basic blks read 0.85 0.35 0.93 0.57 0.46 0.72 0.70 0.67 0.61

Table 6-4: Average Trace Written/Read Statistics for Trace Line Size = 20

We see that increasing the maximum trace line size results in an increase in both the trace length

written into the trace cache as well as the average trace length read from the trace cache during a

hit.
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6.5 Effects of Increasing Branch Throughput

Based on the results from the preceding section, it is legitimate to ask whether or not increasing

branch throughput, and hence the number of basic blocks that can be stored in the trace cache,

would further improve fetch IPC.

In order to support additional branch throughput, several modifications are necessary to both the

trace cache and branch predictor. The trace cache modifications amount to simply adding branch

flags and branch number bits to the trace cache control information. These changes are very

straightforward and do not add much to the implementation cost. However, the changes to the

multiple branch predictor represent a much larger overhead. Increased branch throughput support

entails adding an additional set of counters to the multiple branch predictor. Thus, the pure hard-

ware cost is very large for each additional branch prediction that is to be added. In addition, there

is no reason to assume that the proposed multiple branch prediction strategy would scale well be-

yond three predictions. Thus, increasing branch throughput can possibly affect branch prediction

accuracy as well as increasing the space overhead.

Because of the large space overhead, there must be significant performance gains in order to justify

increasing branch throughput. However, simulation results indicate that increasing branch

throughput does not have any significant effects on fetch IPC. The effects of varying branch

throughput between 1 to 5 for the integer benchmarks are shown in Figure 6-11. For these simula-

tions, the maximum trace line length is set to infinity in order to prevent the line length from being

the limiting factor.

From Figure 6-11, we see that increasing branch throughput is highly effective for improving in-

teger fetch IPC only past the third branch. Any additional branch throughput does not improve

fetch IPC at all. Simulations show the same trend for the floating-point benchmarks. These results

are not surprising; there is a diminishing return from increased throughput.



Fetch IPC as a Function of Branch Throughput

Figure 6-11: Integer Fetch IPC as a Function of Branch Throughput

Storing traces that contain more than 3 basic blocks are not utilized as often, as they represent

more specific paths of execution. This fact can be verified by looking at the written/read trace sta-

tistics for the higher branch throughput simulations, as shown in Figure 6-12:

INTEGER go m88ksim gcc compress ii ijpeg perl vortex

trace written 12.6 12.1 11.8 12.2 11.6 13.9 12..9 10.4

basic blks written 2.10 1.96 2.25 2.01 2.69 1.32 2.30 2.41

trace read 10.9 9.7 9.9 11.4 9.7 12.0 11.3 9.4

basic blks read 1.86 1.89 1.75 1.58 1.95 1.03 2.07 2.22

FP tomcatv su2cor swim hydro2d mgrid applu turbo3d apsi fppp

trace written 13.9 14.1 13.3 15.4 15.1 14.4 12.2 13.9 15.4

basic blks written 0.61 0.32 0.92 0.24 0.17 0.60 0.86 0.65 0.18

trace read 12.7 13.6 13.9 13.2 13.4 13.8 13.4 13.7 13.7

basic blks read 0.82 0.37 0.91 0.57 0.33 0.72 0.69 0.66 0.56

Figure 6-12: Average Written/Read Trace Statistics for Branch Throughput = 5

Whereas the statistics for the floating-point benchmark are much the same as before, the corre-

sponding figures for the integer benchmarks are slightly different. The trace written statistics show

that for the integer benchmarks, the trace cache stores longer traces consisting of more basic

blocks. However, the trace read statistics illuminate why fetch IPC does not actually improve.
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The trace read statistics are almost identical to that of the base trace cache design, indicating that

the trace cache preferentially fetches the shorter traces. Again, this may be because of the fact that

the traces that contain more basic blocks cannot be fetched unless all the branch predictions match.

Since these conditions are more restrictive, they are not fetched as often. Thus, according to the

simulation results, a branch throughput of 3 is perfectly adequate for fetching purposes. One way

of relaxing the trace hit requirements is to allow partial hits, as will be shown in section 6.7.

6.6 Effects of Modifying the Fill Mechanism

Looking at the trace cache miss rates for the base design, we can see that the trace cache is not

very efficient at all. It is obvious that we can further improve the performance of the trace cache

by reducing the miss rates. There are several issues related to the fill mechanism that can possibly

be changed to improve trace cache performance.

6.6.1 Storing Only Complete Basic Blocks

The original trace cache design allows trace fills up to the third branch that it encounters or up to a

maximum of 16 instructions, whichever comes first. There is an argument that can be made to

only include instructions that end on a basic block boundary. First of all, this results in the next

fetch IPC to be the start of a basic block. This restriction works well as it allows the trace cache to

be accessed; if a delay slot is the start address, then the trace cache must miss as a trace cannot

start with a delay slot (see Chapter 3).

However, the most compelling reason to limit trace fills to include only complete basic blocks is to

reduce the amount of storage needed to store trace information. Given a loop, it is conceivable that

multiple traces are generated from offset addresses. A reason may be that the trace length(s) re-

sults in an access stride that does not match the loop length. This mismatch can cause a great deal

of unnecessary trace storage for a single loop, as well as cause collisions in the trace cache. This

effect is depicted in Figure 6-13.



Dynamic Instruction Stream

A A

A 111111111l Ill lll 111111 HUTM 1l ii , ,ijH'
Trace 1 with start address A Trace 2 with start address B Trace 3 with start address C

Consider the followingConsider the following The above instruction stream shows the loop
loop: unrolled for three iterations. In this pathological
A: Instruction 1 case, 16 instruction traces (max. length) are stored.

Instruction 2 This ultimately results in a total of 16 total traces
stored in the trace cache, each of which is offset by
one. This results in extra space necessary to store
the instructions in the trace cache, possibly dis-

Instruction 14 placing other useful traces. Note also that it takes
Jump A 16 iterations of the loop before the trace cache will
Delay Slot actually start hitting.

Figure 6-13: Unnecessary Trace Storage from Offset Traces

The above example shows a pathological case where every stored trace is just one instruction offset

from each other. This means 16 different traces are stored in the trace cache for the same loop,

resulting in highly redundant storage. In this scenario, the trace cache will also be forced to ini-

tially miss the first 16 iterations of the loop while all the traces are being generated.

By a simple modification to the trace fill logic for the trace cache, instructions can be committed to

the fill buffer only when the end of a basic block is encountered (i.e., the delay slot of a control

transfer instruction). During the beginning of a trace fill, the fill buffer initially commits all in-

structions that are fetched. After the first complete basic block is committed, all following instruc-

tions must wait until a complete basic block is available before committing to the fill buffer. Al-

though this complicates the fill logic, the performance improvement from treating basic blocks as

atomic units is considerable. Figure 6-14 summarizes the fetch results for a 64-entry trace cache

identical to the base trace cache design with this modification.
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Figure 6-14: Fetch IPC When Only Storing Complete Basic Blocks

From Figure 6-14, we see that the modification to the fill mechanism has the greatest affect on the

integer benchmarks. For most of the integer benchmarks, limiting the trace fill to complete basic

blocks results in considerable performance gains. In contrast, the floating-point benchmarks re-

sults are not affected much at all. The performance improvement is shown in Figure 6-15:

Figure 6-15: Improvement When Only Storing Complete Basic Blocks
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14

12

10

8

6

4

2

0

10 Bf ll

IPC Improvement When Only Storing Complete Basic Blocks

C,

0t
6

E > 9- E 0 0. -0 F 0

co 0. a) o 0 CV L a-0 2 a' >' as
(M E 0 U)
E 0e

Benchmark



Miss Rate When Only Storing Complete Basic Blocks

Figure 6-16: Miss Rate When Only Storing Complete Basic Blocks

We see that the trace cache miss rates also drop considerably using the modified fill mechanism.

Based on the reasoning explained above, it seems valid that the reduced storage overhead and asso-

ciated effects of only storing complete basic blocks would result in the lowered miss rates. The

decrease in the miss rates, between 13% to 46% for the integer benchmarks, is most likely the pre-

dominant reason for the fetch IPC improvement.

6.6.2 Aborting a Trace Fill on a Trace Hit

Another possible fill mechanism modification is to not include traces as part of a trace fill. With

this proposed modification, a trace fill terminates when a trace hit occurs. In the original trace

cache design, it is possible for a trace fill to include a previously existing trace if a trace cache hit

occurs during the fill. This reduces the efficiency of the trace cache as now two identical traces are

present in different locations within the trace cache, except one is prefixed by some instructions

that were committed to the fill buffer prior to the concatenation of the trace. This may not be a bad

thing, depending on how long the prefix length is, but redundancy is still present. Figure 6-17 il-

lustrates this effect:
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Dynamic Instruction Stream
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trace 1 with starting address A

B

A

trace 2 with starting address B
that includes trace 1zx

Redundant trace storage arising
from allowing trace fills to
append other traces.

Figure 6-17: Redundant Traces from Trace Fills Allowing Trace Hits

By having trace fills abort on a trace hit, the trace cache can achieve a higher level of storage effi-

ciency. However, based on simulation results, the fetch IPC does not improve much at all; in fact,

fetch performance actually decreases for a majority of the benchmarks. Figure 6-18 shows the

simulation results, as compared with the base trace cache design:
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Figure 6-18: Fetch IPC When Aborting a Trace Fill on a Trace Hit
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It appears that since trace hits occur relatively frequently, the no-trace requirement results in many

truncated trace fills. This requirement causes much smaller traces to be written into the trace

cache, which is ultimately detrimental to fetch IPC. Apparently, the reduced trace redundancy from

not allowing traces in a trace fill is outweighed by the truncation problem. Ironically, this negative

effect on fetch IPC becomes more pronounced as the trace cache hit rate increases. For example,

for larger sized trace caches, overall fetch IPC actually decreases as the probability of truncated

traces becomes larger and overrides the benefits of having a larger cache.

Although the fetch IPC suffers from this fill mechanism modification, there is actually a decrease

in the trace cache miss rates, as shown in Figure 6-19:

Figure 6-19: Miss Rate When Aborting a Trace Fill on a Trace Hit

Thus, although fetch IPC does not improve, not including traces in a trace fill results in better trace

cache miss statistics. This may be because there is a higher probability that a smaller trace result-

ing in a trace cache hit, since it depends less on branch outcomes than longer traces with more ba-

sic blocks. This interesting result presents a tradeoff of using this trace fill modification. One may

want to use trace fills that do not include exiting traces depending on whether the goal is to increase

fetch IPC or to decrease miss rates.
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6.6.3 Specifying End Branch Direction

In the original trace cache design, a target address as well as a fall-through address is designated.

This may cause unnecessary overhead in the case where a branch does not terminate the trace, in

which case the target address and fall-through address are set as the same thing. An alternative to

storing both the target address and the fall-through address is to just add a third branch flag and do

a prediction comparison on the third branch flag as well. Only one target address is specified,

based on how the direction of the original branch that ended the trace. Although this reduces the

flexibility of using the trace (for example, a trace miss will be generated from the last iteration of a

loop where the fall-through case is used), the fetch performance results do not suffer much at all:

Figure 6-20: Fetch IPC for Traces with Specified End Br. Direction

Based on the results, it is apparent that the benefits of having a fall-through address is limited.

This makes sense, since falling out of a loop is not the common case. Thus, specifying the end

branch direction in the trace does not affect fetch performance much. Effectively, this saves 4

bytes in storage for every trace line, which can become considerable given the trace cache sizes

that maximize fetch IPC (see section 6.9).
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6.7 Effects of Partial Hits

One of the prime restrictions with the way traces are stored in the base trace cache design is that

the predicted path of execution must match the complete path of a trace. A way of removing this

restriction is to allow partial trace hits, where not all the branch predictions have to match in order

for there to be a trace cache hit. In this case, if the fetch address matches the trace cache tag, the

basic blocks up to the first branch prediction that doesn't match the trace cache branch flags are

used, thereby allowing partial traces to be fetched. This is in contrast to the "all or nothing" ap-

proach used in the original trace cache design.

In order to support partial hits, intermediary addresses must be stored for each basic block. For

every branch that exists within the trace, there is an associated address that indicates where pro-

gram execution is to continue if the predicted branch direction doesn't match the branch flag. In

addition, the trace cache must have some way of determining the end of the associated basic block

of a branch. This means that either a pointer for each basic block is needed, or the read logic has a

way of identifying the presence of a branch and mask the rest of the instructions. Since it is pro-

hibitively expensive to do an associative search of all the instructions in a trace to determine where

the branches are, pointers are stored as part of the trace cache control information. The modifica-

tions to allow partial hits entail an additional 8 bytes for intermediate addresses and approximately

1 byte to store pointers.

The trace cache fetch process is modified in the following manner to allow partial hits: the fetch

address is again compared with the trace cache tag. If there is a match, then the branch flags are

compared with the branch predictions. If there is a mismatch between the prediction and flag, then

the associated pointer is used to determine the instructions within the trace that are valid. These

instructions are then fed into the instruction latch. The associated intermediary address is then

used as the next fetch address. Figure 6-21 shows the modification necessary for the trace cache to

support partial hits.
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trace with starting address A and two
branches (not-taken, taken) written into
trace cache

Later, the instruction stream contains
the first two basic blocks of the trace,
but not the third (the branch outcome
of the 2nd basic block is different).
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Figure 6-21: Trace Cache Modifications to Allow Partial Hits

By allowing partial hits, we relax the strict requirement that a complete trace must match the pre-

dicted program execution path. This dramatically improves trace cache performance, as shown in

Figure 6-22. The simulation results show the fetch IPC for the base trace cache design with only

the partial hit modification.

The integer benchmarks show an average 9.4% improvement from allowing partial hits, justifying

the additional storage overhead needed to support partial hits. An important fact to realize is that

now at the very least, one basic block will be read from the trace cache as long as the trace cache

tag match occurs. Thus, in the worst case scenario, a trace cache can act as an instruction cache.
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Figure 6-22: Fetch IPC of Trace Cache Allowing Partial Hits

Allowing partial hits also results in much lower trace cache miss rates, as Figure 6-23 indicates:

Figure 6-23: Trace Cache Miss Rate from Allowing Partial Hits

The decreased trace cache miss rates can be attributed to the fact that branch prediction mis-

matches do not cause trace misses anymore. In fact, after initial cold start misses, the only way

that a trace cache will miss is because of a tag mismatch. Thus, in a way, allowing partial hits in a

trace provides a degree of path associativity, where multiple paths can exist within the trace cache.

In this case, paths with common starts can simultaneously exist in trace cache. Another way al-
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lowing multiple paths from the same start address is to simply provide associativity in the trace

cache, as shown in the next section.

6.8 Effects of Associativity

Another simple method of providing path associativity and preventing collisions within the trace

cache is to increase the associativity of the trace cache. Associativity effectively provides a form

of multiple path selection whereby different traces based on the same start address can be stored

simultaneously in the trace cache. Thus, associativity allows the trace cache to store complete al-

ternative traces with the same start address, or completely different traces that happen to be

mapped to the same line in the trace cache. This is in contrast to partial hits, which can only pro-

vide the prefix of a trace if another path of execution with the same start address root is chosen.

Figure 6-24 show the integer fetch IPC results for a 4 Kbyte set-associative trace cache corre-

sponding to a 64-entry direct mapped trace cache:
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Figure 6-24: Integer Fetch IPC from Increased Cache Associativity

From Figure 6-24, we see a slight improvement in the fetch IPC provided by associativity, with

diminishing returns after 2-way associativity. Because of the modest gains in fetch improvement,

we can conclude that the majority of the misses within the trace cache are capacity misses rather

than conflict misses. This makes design decisions easy because increasing the associativity results



in increased access time and replacement logic complexity and is not economical beyond a certain

size. However, providing a small degree of associativity such as 2-way is justifiable for improving

performance. It must be noted that these results are based on small trace cache configurations. It

remains to be seen what the effects of associativity are for larger sized trace caches.

We can see how the associativity improves trace cache performance from decreasing address colli-

sions by measuring the percentage of trace cache misses that arise from starting tag mismatches.

For a 2-way set associative trace cache, the trace cache miss breakdown is as follows:

Figure 6-25: Trace Cache Miss Cause Breakdown for a 2-way Set
Associative Trace Cache

From Figure 6-25, we see that by providing associativity over a direct-mapped cache, there is a

significant decrease in the trace cache misses from a tag mismatch. This reduction indicates that

associativity is very effective in reducing the number of misses due to strict address collisions as

well as replaced traces with the same start address.

6.9 Effects of Trace Cache Size

Thus far, all the results have been presented for a small 64-entry trace cache. For such a small

number of entries, not many useful traces can be stored in the trace cache. Also, there is a much

greater probability of address collisions, resulting in possibly useful traces being displaced from

the cache. Trace cache performance can be improved dramatically by increasing the trace cache
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size. This section attempts to explore how trace cache performance scales with increased trace

cache size.

For these simulations, the best fill mechanism that maximizes performance is used (storing com-

plete basic blocks, allowing traces in fills, specifying the end branch direction, and partial hits).

The trace cache size is doubled from between 64 entries to 4096 entries. The results for the integer

benchmarks are shown in Figure 6-26:
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Figure 6-26: Integer Fetch IPC as a Function of Trace Cache Size

and for the floating point benchmarks:
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Figure 6-27: FP Fetch IPC as a Function of Trace Cache Size
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From the graphs, we see that increasing the number of trace cache entries has a great impact on the

fetch IPC performance. We see that in general, fetch performance increases significantly as the

trace cache is doubled up to 512 entries. However, beyond 1024 entries, corresponding to a 64K

trace cache, fetch IPC improvement drops dramatically. Although the fetch IPC does not com-

pletely level off as the trace cache size after 1024 entries, this improvement does not justify the

associated costs of doubling the storage space. The fact that fetch IPC improves even for very

large trace caches indicates that collisions within the trace cache is always a factor, unless the

complete program can be stored in the trace cache. Looking at the trace cache miss rates, we can

see that increasing the number of entries has a dramatic effect on trace cache efficiency as well:

Figure 6-28: Integer Miss Rate as a Function of Trace Cache Size
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Figure 6-29: FP Miss Rate as a Function of Trace Cache Size
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The miss rates drop sharply as the cache size is increased from 64 entries, indicating that at that

size, there are a great deal of collisions with the trace cache. From the figures, it appears that the

trace cache miss rates level off after 1024-entries. For a 1024-entry trace cache, compress, li and

ijpeg reach a remarkably low miss rate of around 4%. The integer benchmark gcc improves the

most, dropping from 45% to a mere 6%. In general, the trace cache miss rates drop to around 10%

for integer benchmarks, and 13% for floating-point benchmarks. Again, although these miss rates

are much lower than for the original 64-entry trace cache, they are still not comparable to the miss

rates that can be found for standard instruction caches.

6.10 Replacement policy

Another basic specification of a cache is the replacement strategy when deciding what elements of

the cache are to be replaced. In the associativity section, the trace cache replacement policy was

implemented as a random selection from the trace cache entries. There are other alternatives that

could possibly improve the trace cache performance. The most common policies include Least

Recently Used (LRU) and simple Round Robin replacement.

A comparison of the different replacement policies on a 1024-entry, 2-way set associative trace

cache are shown in Figure 6-30:
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In general, the LRU replacement algorithm performs the best, followed by random replacement.

However, there is a negligible difference in performance between the three replacement strategies.

This is probably due to the large size of the trace cache that the replacement strategy was tested on.

The results seem to indicate that it makes little difference what replacement strategy is chosen for

the trace cache. Whatever is easiest or least expensive to implement should be the chosen algo-

rithm.

6.11 Effects of Real Branch Prediction

All of the results presented above have assumed the presence of a perfect branch prediction mecha-

nism in order to isolate the performance of the trace cache. As such, the results represent the

maximum achievable performance by the trace cache. Since the performance of the branch pre-

dictor has a direct impact the trace cache performance, this section provides trace cache statistics

using a real branch predictor.

For the branch prediction simulations, the correlated multiple branch predictor discussed in section

3.2 is used. The simulations assume a 16 Kbyte PHT with a 16-bit global history register. Figure

6-31 shows the results of using real branch predicton:

Benchmark

Figure 6-31: Fetch IPC from Using Real Branch Predictor
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The fetch IPC results from using real branch prediction are much smaller than the perfect branch

prediction values. The cause of the drop in fetch IPC is the branch mispredictions from the real

branch predictor. These mispredictions necessitate that the corresponding mispredicted traces be

aborted, which causes instructions to be flushed from the pipeline. The disparity between the per-

fect and real branch prediction IPC values indicates that the potential of the trace cache to increase

fetch IPC is highly dependent on an accuracy of the branch predictor. From the Figure 6-31, we

see that the integer benchmarks suffer much more from using a real branch predictor. This can be

understood from Figure 6-32, which shows the branch misprediction rates for the different bench-

marks:

Figure 6-32: Branch Misprediction Rates

As we can see, the branch mispredict rates are much higher for the integer benchmarks than for the

floating-point benchmarks, with an average of 9.5% and 4.3% respectively. This makes sense,

because the floating-point benchmarks generally have highly predictable loops and exhibit fewer

complicated branch structures.

These misprediction rates seem respectively low, but represent only single branch mispredictions.

Given a prediction accuracy of p (where 0 p 1) and a trace that contains three branches, the

chances that the trace will be predicted correctly drops to p3. For example, given a single branch

prediction accuracy of 90%, the chances that a trace contains three branches will be predicted cor-



rectly is only 73%. This example clearly illustrates the absolute need for high branch prediction

accuracy in order to make trace caches effective.



Chapter 7

Conclusions

There has been a trend toward increased superscalarity and aggressive speculation techniques to

extract instruction level parallelism in modern microprocessors. As such, much more aggressive

instruction fetch mechanisms are needed to be able to fetch multiple basic blocks in a given cycle.

One such fetch mechanism that shows a great deal of promise is the trace cache, originally pro-

posed by Rotenburg, et. al. In this thesis, a number of critical design issues regarding the trace

cache fetch mechanism were explored.

The results indicate that the fill mechanism for the trace cache can significantly affect overall trace

cache performance. One important trace cache optimization involves storing complete basic blocks

for a trace instead of being able to truncate a trace arbitrarily. By storing only complete basic

blocks, redundancy within the trace cache is significantly reduced, resulting in an average 6.4%

improvement in the fetch IPC and a 17.2% decrease in the trace cache miss rate for integer bench-

marks.

Another important conclusion, perhaps the most significant, is the performance benefits of sup-

porting partial hits within traces. By relaxing the trace cache hit requirement, the trace cache can

be made to act effectively as an instruction cache in the worst case, with the potential of providing

more basic blocks depending on the branch predictions. This decreases the trace cache miss rate

by 29.8% and 18.3% for integer and floating-point benchmarks respectively. These trace cache

miss rate reductions result in an average integer fetch IPC improvement of 9.4% for the smallest

trace cache configuration.

This research also demonstrates the dependency of the trace cache on the branch predictor accu-

racy. Since the primary motivation behind the trace cache is to be able to fetch multiple basic

blocks every cycle, an accurate multiple branch predictor is of paramount importance. The branch



predictor presented by Rotenburg, has an average prediction accuracy of 90.5% for integer bench-

marks and 95.7% for floating-point benchmarks. Although these prediction rates are very admira-

ble, there is still a great deal of room for improvement. Multiple branch prediction performance is

becoming an important research area. The performance of the trace cache will undoubtedly in-

crease as techniques to enhance multiple branch predictor performance continue to be developed

[25]-[27].

Finally, the simulation results point out the important fact that size does matter. By increasing the

trace cache from the original 4Kbyte size to a 64Kbyte configuration, there is an average fetch IPC

improvement of 15.2% for integer benchmarks, and 5.8% improvement for floating-point bench-

marks. This 64Kbyte configuration is on par with the size of the primary instruction cache (128

Kbytes), indicating that a respectably-sized trace cache can considerably improve fetch perform-

ance.

One idea that was mentioned in the course of this thesis was the possibility of having the trace

cache completely replace the primary instruction cache as the main fetch mechanism. In this sce-

nario, the L2 cache would be used as a fetch mechanism for the trace cache. However, this idea

requires that the trace cache hit rate be very high in order to be effective. Based on the simulation

results of this research, such a fetch mechanism is not feasible; the miss rate of trace cache is in-

herently higher than instruction cache (average of 10.2% and 13.3% for integer and floating point

benchmarks respectively).

With all of beneficial design attributes included, an optimized trace cache design performs an aver-

age of 34.9% better for integer benchmarks, and 11.0% better for floating-point benchmarks than

the originally proposed trace cache design. This corresponds to a 67.9% and 16.3% improvement

in fetch bandwidth over a traditional instruction cache, for integer and floating-point benchmarks

respectively. The results presented demonstrate that the concept of a trace cache is still very nas-

cent and open to innovation. More studies like the one done in this thesis are warranted to further

develop the viability of the trace cache as a high performance fetch mechanism.



Chapter 8

Future work

The concept of the trace cache is gaining support as a feasible fetch mechanism to increase fetch

bandwidth. In fact, several groups have proposed new processor architectures based on the trace

cache [13], [14]. Although this research addresses a number of important facets of trace cache

design, there is still a great deal of research that can be done, including exploration of the following

topics:

* Victim Caches: A well-known concept for caches, whereby a replaced trace from a cache can

be stored in a small buffer instead of being thrown out completely. This is to reduce the possi-

bility that an address collision might cause a useful trace from being displaced permanently

from the trace cache.

* Judicious Trace Selection: The current trace cache implementation simply stores all com-

pleted traces from a trace miss fill. More judicious trace selection algorithms might improve

performance. One example is creating a commit buffer that commits a completed trace fill to

the trace cache only if a hit to that trace occurs. Another idea is to only commit a trace if it is

longer than the existing trace that it is to replace.

* Trace Storage: There are many issues of how to store traces within the trace cache. The sim-

plest method is to simply allocate a specified trace length as the cache block size, truncating

traces that are too long and leaving empty space with traces that are too short. Alternatively,

there may be more ambitious indexing methods that can increase storage efficiency, at the cost

of complexity as a result of non-uniform trace sizes.

* Path Associativity: In this research, only standard associativity is considered. With standard

associativity, if multiple traces within a set match the fetch address, the first trace is used. An

optimization is to compare all trace hits and provide the longest trace to the instruction latch.



* Fill Issues: The fill mechanism assumed in this research simply serialized trace fills, only al-

lowing one fill at a time and ignoring new trace misses until a trace is completely written.

There are alternative fill mechanism designs, such as delaying servicing new misses until after

a trace fill in progress is completed or allowing for concurrent fills. Also, in the trace cache

implementation used in this research, a trace fill automatically truncates when a return instruc-

tion is encountered. One can allow returns in a trace if the next fetch address is provided by

the return address stack (RAS) instead of the trace cache.

* Non-speculative Trace Fills: In the current implementation of the trace cache, trace fills are

speculative in the sense that they do not wait for branch outcomes before committing the trace

to the trace cache. An alternative is to do the trace fill from graduated instructions, so only

traces from the real path of execution are stored.

* Indexing: The only form of indexing addressed in this thesis was the gshare indexing algo-

rithm. There are other indexing schemes based on concatenation of fetch address and branch

prediction bits or global history that may be more effective.

* Branch Prediction: As we saw in section 6.11, branch prediction accuracy affects fetch per-

formance of the trace cache tremendously. There are other possible multiple branch prediction

schemes, many of which are based on existing branch predicting techniques that may be incor-

porated to improve prediction accuracy [16] - [27].

Many of the above ideas complicate the trace cache control logic and may increase access latency.

In addition, multiple design choices can interact in complicated and subtle ways. Detailed simula-

tion studies are needed to determine their relative performance benefits. In addition, more thorough

analysis of how increased instruction fetch bandwidth affects overall processor performance is

warranted.
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