A Lightweight Multi-Database Execution Engine
by
Ricardo S. Ambrose
Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Computer Science
at the

Massachusetts Institute of Technology

June 1998

© 1998 ML.L.T.
All rights reserved

The author hereby grants to M.L.T. permission to reproduce and
distribute, publicly, paper and electronic copies of this thesis
and to grant others the right to do so.

A -7 Ve

Signature of Author ” L
Departn%ﬁt of Electrical Eng}é@ring and Computer Science
/) May 20, 1998

Certified by L

~ } Prof. Stuart Madnick
/7 s _Thesis Supervisor
Accepted by - }) —_
~ e Arthur C. Smith

’ g Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 141998

LIBRARIES

e oy

A Lightweight Multi-Database Execution Engine

Development of an Database Execution engine to deal with structural context differences
between data sources

by

Ricardo S. Ambrose

Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 1998 in partial fulfillment of the
requirements for the Degree of Master of Science in
Computer Science

Abstract

In this thesis, I describe the design and implementation of a lightweight multi database engine for
data intensive Web applications. The engine was designed to provide structured querying
(relational database access) to data from online data sources ranging from databases to semi-
structured documents. The implementation focused on allowing users to write queries, which
would interface with distributed data, sources on the World Wide Web. One of the major
problems dealt with was the automatic extraction and manipulation of data from distributed
sources, taking into consideration the structural differences and data stored in semi-structured
manner. The engine was implemented using an concurrent execution model that allowed much
higher network parallelism compared to earlier versions of the system.

Acknowledgements

My final year at MIT has by far been the toughest, most enjoyable and edifying year. Writing this
thesis allowed me to focus my skills on this project and realize that there are so many who

support me.

First of all I would like to thank the members of COIN research group. Professor Stuart Madnick
and Dr. Michael Siegel gave me the opportunity to join this group and were a real support
throughout. Dr. Stéphane Bressan guided me from beginning to end, and was there to help with
any problem that I had. I also thank the other, current and past members, of the Team such as
Ahmed Ahzar, Tom Lee and Ozlem Ouzuner for being great a support.

My family, although many thousands of miles away, would always magnify the good and
downplay the bad. They prepared me to face these challenges and for that I give them all my
thanks.

My MIT friends were always there to help relax my mind, even when everyone was loaded with
work. I thank them for that, and also for helping me to focus when it was so easy to stray.

To my fiancée, Winnette McIntosh, through every day and night she has been there for me.
Supporting me, encouraging and caring for me have been her tasks throughout, and she has been
very successful at them all. I thank her for being here for me throughout this project and choosing
to be with me forever.

Finally and most importantly [thank God for everything, the opportunities that I have been given,
the ability to make good on those opportunities, the grace God has given me to live a life with
reference to him, the people he has put into my life and of course the strength to complete this
project.

Table of Contents

1 INTRODUCTION 6
1.1 ORGANIZATION OF THESIS ..ecuutvteeeirerecereesnraeeisuseeseaseteesssessssssesseesssssamsssssassssessssssssssssssssessesssseessssssesans 7

2 MOTIVATIONAL SCENARIO 8
3 DESIGN 14
3.1 SYSTEM ARCHITECTUREcesuetteeeneeiaseeresssseesassreeesasssesssssmsssnsessmsssssssssssssssssssssassssssessossssessssssssosssesssnsns 14

4 THE QUERY EXECUTION ENGINE 16
4.1 THE GLOBAL PICTURE ... uttteeeeeeuereeeeesirtrereressansessseessesasssetesessasaesessssssssssesssssessasesesesesssssssessesssssssesesesans 16
4.2 QUERY EXECUTION PLAN...c.cmtitiiittiitetetetc ettt et be et eas s a b s 17
4.2.] LOGICAL OPEIIOTS.cuounieiretireieierieeeeteeee ettt en st aae 18
4.2.2 PRYSIiCAL OPEIALOTS ..vvvneenveieneerenietetctete et ettt bttt et a st sttt b s et ssebeanan 19
4.2.3 The Buffered Data Streams between the ODerarors.............ccvcuiriceininiesiesciensencsesessesesesssens 22

B. 2.4 EXCCULION .veveeeeeeeveeirereesessaeneesesessassssessasessssssssssassasssssansasatesesosesesssesstsessnarssssessasssnsesssessaresesenenes 23
4.2.5 The System SCREAULETooueeouiiciiciiiiiiiicecceee sttt 24

4.3 CONCURRENT EXECUTION ... ttteectetteeeieeeeetteeceeeeeeeesasteeeeessseteeeetmseeseeeesnseeastessssssessseeesssesansesansneaeaassses 25
4.3, 1 EXCCULION IOMEL ..eeeveeeeeeeeeeeeeeeeeeeteeeeetreseeeaeessestsessbeasssseesteesasssessasessentsnssseseessasensssessansseanns 26
4.3.2 NON-BIOCKING JOUN ..ottt sttt sttt ettt s e me e s aee 28
B.3.3 REIALION REUSE ..vvvveveeeeieeeerieneessvreressssessesiasesssseesasssssessssssstnsessstesesesssesssssssssarsesseeseassssesasssssnsssssens 30
4.3.4 PArallel ProCeSSOTS ..uvvcuvueeecviniitiietetctiteectis e ettt s 30

5 THE PLANNER 31
5.1 THE GLOBAL PICTUREccueruttirueieteieteesrresisreisressssssasasssessssessassssessssnsseessesssessessssesssesnssssssssssesasesasssesse 31
5.2 SOURCE SPECIFICATION ...oiiiittiiiieteuneeseeruiereessenneessseserstnsassssssssnssaeessssssnsessssasssnsssssstaressessnssasssssssonsennsases 32
5.2] HEAAEE «eeeeaeeeeeeeeeeeeeeeeeeeeeeee e eees s e aassestsas e e sssassnsenssaasssetesssaesasssarsesanssaesataseesntnesnsassansesansanns 32

5.2 2 BOGY ettt e e e s b e s ae et s 33
5.2.3 CAPADILILY «..coveeceiieeiinietitice ettt stk eb e sa ettt e b nent e 35
5.2 VWS eeseeeeeeeereeeeeceeeeieeetaeseebte st e eesseeasssseesss bt s aeaabstear st as s st e ates e sR e e eaattenRes e betseretennbseesneesenreaeeraren 35

5.3 ORDERING THE SOURCES...cveeuvteresteesesieessessesseessessseessessesssesassssssessesssessessssssasessessssssessssssssssesssmntosseense 35
5.3.1 The Ordering AIGOTItAMc..cccoiviiecerinieenciicreii ettt sttt es e st esnenena 36
5.3.2 Alernate AIGOTItRMcc.oouicuiviiiiiiiiineciiie ettt ettt sae et sa v se s s s ssa s snsons 37

5.4 THE PLANNING PHASE....ceiteeuteceririesireeesteeeesinereeeossreesssesessseasstesssssessssseessssssesssnsessassassssasssnsnssensssananns 37
5.5 DYNAMIC OPTIMIZATION ..vveiueeeneiieneeeeteseeeestesesseseaseeesssensenssetesssesssesnssensssssesnssssssssnsesssssnsesssssensesans 39

6 IMPLEMENTATION DETAILS 40
6.1 IMPLEMENTATION LANGUAGE. ... uuviitiieeceieeectieeeetiee e et eseseeeseseessesnteeeaseeeeseseenssaeenssaeesseseesssaeeesnnneens 40
6.2 COMMUNICATION PROTOGCOLSeiiieeeeeeeeiititiieeseeesretassnnseseessessessesessessessnessassssssssasssnnsnnsasssssresssssnnnenees 41
6.3 DATA EXTRACTIONuuvviiiraesrereesrereeeseeaisssessesseeesassssssesesssassessasssssssassensosssasssssssssssssssesssesssssesassssssesssn 41
6.4 TYPING SYSTEM .eoiveuvreeeraieereersneeeseaeessneessessassassesssasasssseesssssasssssseseesssnnnsessssssssssannsstassesnseseeesomssmreneeees 41
6.5 PARSING AND COMPILATIONuuveeiiveeieneeeeseeeeesseeeaesseeeetseeeseessseseenssessssesssssesssssasssesassessassssasssnsesssssans 42
6.6 CODE STRUCTURE &L AP S ettt ettt eeeeete e e eeesasesstaeseeeeesesssssssnsseseesesansssssasssesnssssestessssssaanans 42
6.6.1 RelQtional OPErarOrsc.ocueceeceviriiiriceeieneecnritcstsinssessestsats st ssssese st sase e sacstossase s ssnsssesesaeon 42
6.6.2 BOOLEAN OPEIAIOTS....c.cuonineriiiirccriiirriciirieiectne sttt e r st s b b sas s asnsneneas 43
6.3 DIALA ooeeeeeeeeeeeeeeeeeeeeeeereeesree s tesesvesaabs s s sa s e essassanssaasssseasatesabersesatesabt s e saeesrsaaserbaeestseesararaeaanrnes 44

7 SYSTEM EVALUATION AND CONCLUSION 45
7.1 RELATED WORKooiitiiiiitetreeesiseeaisteseasssaassteeassressesssasessessassssasssssssssssssesnssessssasasssesssssesssesasssssssnnsssnn 45

T 2 FUTURE WORK ..ccveiriueesirieseeeeeasseresstesessussomsessaesssesasanssssasssasssssssnsesosssssnsessssessserasesessssessessersssssssenses 46
7.3 CONCLUSION ..eonvevereteeieetessesesssassesseessaseesesssessssssasasassseasesssaseastessassesseessessenssssensessasssesserssesssnsesesesssesnes 46

List of Figures

WEB SITE DATA (YAHOO, NYSE, ZACKS)

DEMO INTERFACE

QUERY RESULTS

SYSTEM ACHITECTURE

QUERY PROCESSING STEPS

QUERY EXECUTION PLAN (GRAPHICAL)

SCHEDULER & CACHE

ALTERNATE EXECUTION MODELS

EXECUTION MODEL (AS IMPLEMENTED)

BALANCED JOIN DIAGRAM

THE PLANNER

NYSE WEB PAGE AND SOURCE (HTML)

SOURCE ORDERING ALGORITHM

BOOL_OP CLASSES INHERITANCE TREE

DATATYPE CLASSES INHERITANCE TREE

2.1

2.2

23

31

4.1

4.2

4.3

44

4.5

4.6

51

5.2

5.3

6.1

6.2

Chapter 1

Introduction
The amount of data becoming available over the past few years has grown immensely and will

continue to do such in the future. One of the major factors behind this trend is the advance in
networking and telecommunication services, which allows the transfer of data between points to

be very fast. These advancements have incited a general use of the World Wide Web to transfer

information.

The data is readily available in many different forms from a variety of sources. Although the data
may exist there are often many difficulties when attempting to utilize the data stored in the
heterogeneous sources. How does one collate large amounts of data from a couple different
sources or small amounts of data from many sources? To answer this question possible data
sources must be identified. Web pages, databases (relational or not) and flat text files can all be
used as a store for data'. In many of these cases the data is in a semi-structured format, hence it is
not immediately clear how to automate the extraction of such data. The manipulation® of the data

when extracted from the sources is equally important to the actual data extraction requirement in

such a process.

Unfortunately, the ability to exchange meaningful information has actually become more difficult
as the number of sources continue to steadily increase. Providing logical connectivity between
disparate sources is the base of the problems that we seek to address in this thesis. There is an
inherent bias in the implementation and design to accommodate for World Wide Web access.
This was because the hard problem lies within the attempt to extract the data from the semi-
structured sources as stored on the web combined with maintaining the logical connectivity
between the sources accessed. There is also the problem of time to access the data. When dealing
with large amounts of data from the WEB the issue of network delays becomes much more of an

issue.

In this thesis I seek to identify the major design decisions taken for the implementation of a query
execution engine. This takes a ordered list of sources to access with the and executes the sub-

queries to those sources and combines he result into a table to be presented to the user. Most of

" This list is not complete, as there are types of sources such as music files, news groups etc.
* Querying the data to produce a table with the required result data.

the inovation in design and implementation went into he execution engine which was built to be
more robust, easy to migrate and which uses an execution model that takes advantage of the
network communication delays that are inherent in a web intensive application. In order to
demonstrate the effectiveness of the execution engine it was necessary to build a
planner/optimizer that is responsible for decomposing the user’s SQL query into sub-queries and

for planning the order of execution for those queries.

1.1 Organization of Thesis

The thesis is divided into seven chapters and a set of three appendices. The second chapter gives a
detailed description of the motivation behind this thesis, specifically with a stock portfolio
application that gets it’s information from various web sites. The third chapter gives an overview
of the different pieces in the system architecture for the execution engine and planner/optimizer.
Chapter four goes more into the details of the execution engine implementation, the reasons for
the implementation decisions and a discussion of the execution model being used. The fifth
chapter summarizes the planning algorithm that was implemented in the system. Details of all the
implementations decisions made to build the various components will be described in the sixth
chapter. The conclusion of this thesis and a number of ideas of how this system can be improved
and used to build other applications can be found in the final chapter. The appendices hold
various technical annotations; such as a simple installation guide, example specification files,
code statistics (size, use) and some results from a demo of the system, which can be referenced to

fully describe a few of the factors used in the actual implementation.

Chapter 2

Motivational Scenario

As an example consider a businessman who regularly updates his stock portfolio. Current and
historical information on the movement of the stock in the portfolio can be visualized in a
spreadsheet. To keep this up to date, the businessman must collect the relevant data for the stock
on a daily basis and then update the spreadsheet. The New York Stock Exchange (NYSE)
provides a very useful web site with pages for each of the companies trading on the exchange.
These pages hold information such as the last stock price and the company ticker. Zacks web site
provides, for most listed companies, the recommendation’ (whether to buy, sell or hold) for the
companies’ stock. Yahoo stock pages show the price, percentage and point changes, the volume
sold for the trading period and news headlines for each company. An example of the information

provided by all three sites can be seen below (fig 2.1 and 2.2) for Oracle Corporation.

Although the information is very easily accessible, the only way to get to this information is to
manually browse & click to load up the required pages. For a single company this may not be
very difficult but when dealing with a large portfolio, the manual gathering of the data becomes a
bit more tedious. An even graver problem occurs if the search set is not predefined to certain
companies. Below, two web-intensive data-extraction situations will be described and the

procedures, which can be used to automate this extraction, will be highlighted.

In the first example a businessman would like to get a list of companies, their tickers, last selling
price and any related headlines for which the stock price is less than $50 and with a
recommendation of ‘buy’. This information is provided by the NYSE and Zacks websites as is
highlighted in the diagram below. He would have to go to each of the individual NYSE Company
web pages, if the stock price is less than $50 then add the company to a list. Using this list and the
Zacks web page determine which companies, on the list, meet the second requirement. Assuming
that it takes 30 seconds for a single page to load and the user record the required information,
given that there are over 1000 companies on the stock exchange, and two pages must be accessed
for each company, the entire process can take as long as a day. Hence although the information
can be very useful to a person deciding what stocks to buy, gathering this information carries with

it a very high cost. The problem exists not only in the business world but in other application

> A figure which 1s used by traders to determine which stocks are good to buy.

domains. For instance travelers wanting information on flights. car rentals, weather etc.
Compiling this information from many different web sites may take a considerable amount of
time. In any situation where large amounts of data is being gathered from different sources or

many sources are being used to gather data we can find the time consumption problem embedded

within the process if done manually.

The second example is very similar to the first as it deals with stock information web sites, but in
this case the businessman has an investment portfolio with Tickers of a few companies along with
the last selling price, recommendation and any news headlines all stored in a text file formatted in
a manner which can be imported into a spreadsheet application. Manually updating this
information requires going to a couple of web sites and getting the pages specific to the
companies in the portfolio file. Although this is much more manageable than the example above,

it still can be automated as it is a monotonous everyday activity.

WEB Site Data

fie (& Vew [0 (omnci fip

iy 34akadld ? ,&,;3’1&’:1537
Gk 7ol R How Seach Gus it Smmy @ 1 3 “u: ~ o0 Bood emm Somn Gue Pt ey S
jlm'm ¥ ’lﬂmmm@wiﬁﬁ;] ke § ettt e coneae et

GRT [\Jrowﬁleu; CRf'quadTul Y per e, TS s

o "-:x‘.xvzrvrsr-d'y i:ul‘i‘wsn:z
o te stock's Prce v merzace

cemiate eifect of al the VectarVg
parameters are desigaed b bep et ait, rdervaues sOCks Fheh e sy
2 once, 106 1 3vng or sel sk, cvervaiied socks whuch ae faling m e, J

VectarVest s tmsglo ge an gnal whea 3 tack's puce s approzmately
ID“Gmovearec:mIaw 2 an'S" gnal when the sock's pce ts apprommaey | %
b Smwmrawnn:awzd't:m'“"’&gw

Smek ik «11 Mpumn i}
Svekiv 134 tokesipyar Wlﬂ]

"ino T zunbiu r/mm
’mmMJ’SDl’B]
5 & 4
T i R
Fome LA | — e e CaneT -

Figure 2.1

Solving the problems above requires a intermediary agent which will allow the user to formulate
a structured request, and then the agent will automatically extract the data from the required

sources manipulate the data to produce the desired results and then present this result to the user.

The automatic nature of such a system will definitely be limited by the varying structures of
stored data e.g. if one requires data from both a web site and an Excel spreadsheet to produce the
result of the request. The problems are even clearer when dealing with two different web sites,

where data may be stored in completely different formats.

Even though the sites can easily be seen as being tables (providing certain specific attribute)
automating the extraction still remains a problem due to the varying structures of the sites.
Wrapping the sources can hide these structural differences. By this, I mean using an object that
knows how to access a source and extract the information and can then provide information (e.g.
what attributes are provided) on that particular source. It’s clear that the main information needed
here is the list of attributes provided along with the method of extraction, in this system this
information is stored in a source specification file. Consider the yahoo financial web site. Below
there is a extract from a specification file used to wrap this site. Highlighted are the means of
accessing the site (Method and URL) and also how the information must be extracted from the

site (Pattern); the make up of the specification file is explained in more detail in chapter 5.

<PAGE>
<METHOD> GET </METHOD>
<URL> http://quote.yahoo.com/g?s=##Ticker##&d=vli&o=t </URL>

<PATTERN>

.*?\s+##LastTrade: (.*?) ##\s+##Change: (.*?) #

#\s+##Changepts: (.*?) ##\s {2, } ##Changepct: (.*?) ##\s+##Volume: (.*?) ##

<small>
</PATTERN>
</PAGE>

Once the specification files are created the above example queries can be represented in SQL,

assuming the existence of the relations “nyse”, “finance” and “zacks”,as shown below.

QUERY_!
SELECT nyse.compnaime, nyse.stockprice, zacks.recommend

FROM nyse, zacks
WHERE nyse.ticker = zacks.ticker AND nyse.stockprice > 50 AND

zacks.recommend = 3
When executed this query gets all the company Tickers and associated company names from the
nyse web site. Using these Tickers, the system will access the zacks web site to extract the
recommendation for each company. This information is appended to the tuples with the company

name and Ticker. The system also uses the Tickers to access the finance web site. The stock price

10

is extracted from this source and appended to the appropriate tuple. The result tuple is then

projected out to the user.

QUERY_2
SELECT nyse.compname, yahoo.price, yahoo.change, finance.headline
FROM nyse, yahoo, finance

WHERE ticker in [“IBM”,”ORCL”,”’T”,”TNT”,”A”}*
In this query, the Tickers are bound to constant values. Hence when executed, the sources will
only be accessed for the tuples within the provided list of Tickers. Each source is accessed, as

above, to get the attribute that it provides. These attributes are all appended onto the result tuples

and then output.

This form of the query provides a common access to the available sources (relations). This
requires an access layer be put into place, which isolates the user from interacting directly with
the heterogeneous data sources. This layer will use the SQL query to determine which sources

should be used, what is required from each of the sources and how they should be accessed.

A sample application was built to show the functionality of the system. The interface (see below)
is a basic GUI, which allows the user to either type in an SQL (as above) directly, or to select
those attributes available from a set of sources. Once the query is entered the user can press the
‘Execute’ key which will launch the query compilation and execution. The results are then saved

in a user designated text file (also shown below) or sent to the GUI output.

* This can be extracted from a file given the name but for clarity within the example the list is shown.

11

The DEMO Interface

: SELECT nyse.compname, yahoo.price, yahoo.change,
SQL Statement |

l'_' Manual?

: Options } Execution]

k&4 Wiapper Demo =l E3

€ Trace on CONDITIONS
Ticker v
{® Trace off o |
. Price] _‘j
Sources nyse yahoo = | fastquote | finance
nyse Ticker LastTrade Headline Date
yahoo Cnhame Change News
finance URL Changepct Time
fastquote Price Changeptr
Yolume

Exit I - Execute }

|

12

Fle EQ Vew [met Fomat Hep ~ .0
A, ASTRA AB A ADR,20 3/4,-1.06%,istra Merck and Astra AB File Lawsuits Against indrx A
i, ASTRA AB A ADR,20 3/4,-1.06%,1998 Eli Lilly and Company Award Presented to SIGA ic i
i, ASTRA AB A ADR,20 3/4,-1.06%,GM Earnings Drop 06 Percent i
i, ASTRA AB A ADR,20 3/4,-1.06%,GM Earnings Drop 06 Percent in 1stQ
i, ASTRA AB A ADR,20 3/4,-1.06%,GM Earns $1.6B in the First Quarter
4, ASTRA AB X ADR,20 3/4,-1.06%,GM Earns $1.6B in the First Quarter
A, ASTRA AB i ADR,20 3/4,-1.06%,kstra Merck Offers Medical Community a New Internet R -
4, ASTRA AB 4 ADR,20 3/4,-1.06%,Cos. Buy Sex Harassment Insurance .
1, ASTRA AB A ADR,20 3/4,-1.06%,Can Doctors Make a Go of Their Own Managed Care Group |
4, ASTRA AB 4 ADR,?D 3/4,-1.06%,Experts: Drug Merger Merely Delayed g
T, &T & T, 58 11/16,+0.21%, Infoseek Introduces 'E.S5.P.' To Dramatically Improve Gener |
T, 4T ¢ T, 58 11/16,40.21%, Advanced Search Feature Lets Infoseek Customers Barness th j
T, AT & T, 58 11/16,+0.21%,Paul Kangas' Wall Street Wrap Up ;
T, 4T ¢ T, 58 11/16,40.21%,Preliminary AT¢T 1998 Ainnual Meeting VotingResults i
T, AT ¢ T, 58 11/16,+0.21%,4T&T Begins Internet Telephony Trial In Atlanta For Releas |
T, AT ¢ T, 58 11/16,+0.21%, Infoseek Renews Premier Partner Relationship with Netscape ,i
T, AT ¢ T, 58 11/16,40.21%, 4P Financial News at 9:10 a.m. EDT |
T, 4T ¢ T, 58 11/16,+40.21%, 4P Financial News at 9:10 a.m. EDT
T, AT &€ T, 58 11/16,+40.21%,4T¢T's Ainnual Meeting Wednesday Hay 20, 1998
T, AT & T, 58 11/16,40.21%,Paul Kangas' Wall Street Wrap Up
IBM, INTL BUS MACHINE ,122 1/4,+0.37%,Keynote Systems Audits Seinfeld for InternetPer
IBM, INTL BUS MACHINE ,122 1/4,+0.37%, INTERNATIONAL BUSINESS MACHINES CORP (NYSE:IBH, f‘
IBM, INTL BUS MACHINE ,122 1/4,40.37%,National Issue THE ENCRYPTION EXPORT DEBATE A%
IBM, INTL BUS MACHINE ,122 1/4,+0.37%,Paul Kangas' Wall Street Urap Up ;
IBM, INTL BUS MACHINE ,122 1/4,+0.37%,Tivoli Fortifies Partnership with Compaq to DEV‘f
IBM, INTL BUS MACHINE ,122 1/4,+0.37%,IBH Top Sales Hanager Quits)
IBM, INTL BUS MACHINE ,122 1/4,+0.37%,Wall Data innounces Quarterly Results to Confor
IBM, INTL BUS HACHINE ,122 1/4,+0.37%,Hitachi Semiconductor, America, Commits Documen -
IBM, INTL BUS MACHINE ,122 1/4,40.37%,STC Announces $20 Million Equity Financing, App -
IBM, INTL BUS MACHINE ,122 1/4,+0.37%,Norwest Venture Capital Invests $10 Million ine
‘}fr“i‘:?" UL, T VT T t . R . . . oo \(“; ~~;
“ForHelp, pressF1 . 2o ! r/j

Chapter 3
Design

3.1 System Architecture
The System is essentially divided into two main components. These are the Compiler / Planner /

Optimizer and the Execution Engine (fig 3.1). The other identified pieces act as channels through
which data is put into the system. The focus of the thesis will be the execution engine as this is
where most of the effective innovation has gone. The planner / compiler was built to facilitate the

construction of a useful system. The engine is designed to be modular as possible in order to be

Quer}/ l;esults
/ Interfaces \
SQL

,_AQ/ D\ Execution Engine
Compiler / QEP ; . E
Planner / — > | Relational Operators |
. .] y I
Optimizer ! \ i
' | Pattern Matching | |
Source : , :
Specification : l T :
REGISTRY L | NetAceess |
SubQuery I Result
: / Request — | Stream

SPEC. Files
World Wide Web
Figure 3.1

easily migrated from this version to future implementations. It can also be operated as a Java

library for querying various data sources which can be used by other applications.

The Query planner / optimizer compiles the user request’ into a query execution plan (QEP, see
fig 4.2 in section on Execution Model for more details). The plan is a tree of algebraic operators

and data access methods. Specification of the sources in the registry indicates what attributes each

* The request can be made using an SQL query.

source can supply. The user query indicates the required attributes. Combining the information

from the source specifications and the user query the planner generates the QEP.

The Execution engine is the system component that carries out the instructions held in the query
execution plan. It is based on a set of physical operators implementing the relational algebra. The
data access methods are also contained in this component. These access methods correspond to
the various types of data sources available, e.g. for semi-structured web sources the access
method consists of a network access client and a regular-expression based pattern matching
component. A sequential version of the engine had been implemented to validate the general

system architecture. But the concurrent model was be used to implement a final pipelined version

of the engine.

Using the information from the QEP, the execution engine executes the plan and returns the result
to the user. To do this the engine has been divided into three functional modules. These are the
‘Net Access’ module, ‘Pattern Matching’ module and the ‘Relational Operators’ module. All
access to data sources is requested through the ‘Data Access’ module, which, in the case of web
sources and flat files, will return a stream in which the result of the request will be accessible.
Using this stream, the ‘Pattern Matching’ module will then extract the attributes stored within the

stream. These attributes are collated as tuples, which are the base processing unit within the

system.

15

Chapter 4

The Query Execution Engine
The research associated with this thesis is focused on the creation of a framework that will allow

the effective and efficient execution of a query, which accesses multiple non-local data sources.
The engine will be designed to support read-only queries. The query execution engine is geared
toward dealing with the last step required for the processing of a query inputted to the system as
shown in the figure 4.1 below. These steps outline what is done from the input of a query, in
some pre-determined language, through the compilation and optimization of the query to the final

production of results (execution),

Query Processing Steps

Parsing

l——-}Query V{lidation
View Resolution

Optimization

Plan Cqmpilation

» EXECUTION
Figure 4.1

4.1 The Global Picture

The multi-database execution engine executes all the instructions required to produce a tabular
result. This is the system component which takes the Query Execution Plan generated by the
planner/optimizer, extracts the data from the required sources, combines this data in a format
described in the plan and returns the result as a table to the user. The web intensive nature of the
applications, for which the system will be used, would normally have a very high dependency on
the network operation. The time required to access web sites varies according to net congestion,
server speed and other factors that are not very easy to control. These delays may cause
unnecessary bottlenecks in an application that requires data from the web to produce a result. For
instance in our portfolio example getting information from the NYSE web site may take a lot
longer during working hours than in the night. Given that this information is required early on in
the first query, it will cause the processing to be slow. Even in normal operation, a request takes a

long time to respond compared to the local processing that needs to be done on that data. Hence

16

given the fact that servers may be able to handle multiple requests from the same source and also
that, in a single query, different sources may be required sending multiple simultaneous request
(network parallelism) will cut down the average wait required for a response. In an attempt to
take advantage of the time that is wasted in getting data from the web, the engine was built using
a concurrent model (see below). The reasoning behind this decision was to increase the effective

network parallelism. In this section the design of this module will be outlined.

Query Execution Plan

Graphical Representation

Stream
of tuples

Figure 4.2

4.2 Query Execution Plan
The engine must have a set of instructions to operate. The Query Execution Plan (QEP) is a data

structure that identifies the operations that need to be executed in order to get the results of a

17

query. Plans are made up of a tree of relational operators with their required parameters. The
specific parameters would differ depending on which operator is being used. For instance the join
requires a condition and two data sources, whereas a project requires only a single data source
and no condition. The plan is compiled into a directed graph where a single node in the graph
represents each relational operator. The QEP structure, figure 4.2 shown above, has examples of
the relational operators that may be used. The connections (edges) within the graph represent data
streams, which allow data to flow in one direction. A single data table is produced by each
relational operator, all edges out of a node represent the same data table produced by the node.
Hence the shared data table resource will be used in single producer, multiple consumer
framework, as is the case with the union operator (below) which has two consumers. This
functionality becomes useful when a QEP requires that a particular set of data be accessed more
than once, for example a particular implementation of the OR construct (see 5.3). Because of the
concurrency built into the system, this forces strict synchronization rules to be put in place when

accessing the data table Planner/Optimizer module.

4.2.1 Logical Operators
The logical operators maps out the data mode] that the system uses, they are basically the set of

standard operators on collections of structured data. In the system operators such as selection,
projection, union and join are considered. The select operator takes a table of tuples and chooses
only those tuples that meet the required condition. The project operator constructs a new tuple for
each tuple in the table and puts only the attributes that have been identified in a projection list.
The join operator creates a new tuple for each pair of tuples from the two input tables that meet
specified criteria, the new tuple is constructed by concatenating the two input tuples. The union
operator merges two or more input tables. Finally the scan operator reads in the data from the
external source. As a strictly relational model is used the operators do realize duplicate
elimination. Operators or operations combined with the above mentioned operators, such as the
nest and unnest operators for nested data structures or path expressions are not considered in this
document. A minimum set of operations are available for the basic types of the model allowing
for instance the evaluation of arithmetic expressions and the evaluation of boolean comparisons
and boolean expressions to verify the conditions of a selection or a join. The type of application
examples that are being targeted require the use of aggregation functions, the implementation of
these operators will not be elaborated on in the thesis. The implementation of the system does

provide for the extension of the base operators.

18

4.2.2 Physical Operators

A QEP is a directed graph of physical operators. The execution engine evaluates the operators in
the QEP in some order determined by the execution model that is used. Each physical operator
has zero, one or two sub-trees ordered from left to right. The algebra of logical operators is
implemented by means of a set of physical operators. The correspondence between logical and
physical operators is many to many. For example a join followed by a selection in the algebraic
representation of a query is likely to be implemented by single join-project physical operator.
Furthermore, the join-project operator can be one of nested loop join or balanced join®. The
design of the physical algebra is guided by the necessity to provide the planner with a sufficient
set of operations for the evaluation of a query and by the attempt to provide the optimizer with a

sufficient range of options to construct an efficient plan.

The main operators implemented are the select, join and union all of which are combined with the
projection operator. Duplicate elimination is explicitly performed by a separate operator and it’s
use is controlled by system preferences which can be set by the user. join-submit, submit and

regex are the last operators which are implemented in the system.

The submit operator

The class constructor for this access operator is of the following form:

Submit (Sourceaddress, Sourcetype)

Sourceaddress: A string representation of the absolute address from where the required data has

to be extracted.
Sourcetype: The type of data source being accessed.

This is the first of two access operators. Both access operators send requests for data, located at
sourceaddress, to the system scheduler (see section 4.2.5). The response from the scheduler is a
handle to a data stream, which holds the result of the request — from this point on, all data within

the system needs to be transferred as sets of tuples passing through the buffered data streams

® This join is based upon the loop-join but doesn’t give outer or inner loop preference. It is used mainly
within the concurrent operation of the program. See details in implementation algorithms.

19

between operators (see section 4.2.3). The data stream is put into a new tuple, as the only

attribute, and passed along to the buffered data stream.

The join-submit operator

JoinSubmit (Sourceaddress, Sourcetype, Subtree)

Sourceaddress: A parametrized address that has to be completed by one or more attribute values.
Sourcetype: This is same as in the submit operator.

Subtree: This is the data structure for the sub-tree, which gives the set of tuples which are used in

this operator.

This operator is used when the address of a data source depends on the value of a particular

attribute, e.g. the stock information for IBM can be accessed from the following web address:

http://gs .cnnfn.com/cgi-bin/stockquote?symbols=1IBM

The address includes the value of the Ticker attribute IBM and is only a partial address without
this attribute. The attributes needed to construct the complete address are accessed from another
relation that is gotten from the Subtree. For each tuple in the Subtree relation a new address will
be constructed and a request sent to the scheduler. Once the resulting stream returns it will be

appended onto the appropriate tuple as a new attribute and the tuple is put on the buffered data

stream.

The regex operator

Regexfn (RegularExp, AttrList, Subtree)

RegularExp: A string parameter that holds the regular expression used in the pattern matching

process to extract data.

20

AttrList: The AserList gives a list of all the attributes that the system extracts from the input
stream and the types of these attributes. The attributes are represented by the index into

the regular expression.

Once a stream result from a source is passed on from one of the access operators, the regex
operator will take this stream and extract the attributes stored in the stream. The input stream is
taken from the last attribute of the incoming result from the Subtree execution. Using the pattern
matching techniques with the RegularExp, this operator produces a list of attributes, which are all
appended to the tuple from which the attributes used to complete the address for the request were

taken.

The duplicate operator

Duplicate (KeyList, Subtree)

KeyList: This is a list of the key attributes in the relation. The attributes are represented as

indexes into their position in the relation.

The duplicate operator is actually used to remove all the duplicate entries from the results, which
are produced by the Subtree. It will initially compare only those attributes from the KeyList and if
there is a match then remove the second tuple being compared. The tuples are removed by simply
not propagating up the tree. Although there is still constant propagation up the tree, this operator

must have an internal buffer of all the tuples that it has processed, so that comparisons can be

made with new tuples.

The select operator

Select (ProjectionList, Conditions, Subtree)

ProjectionList: This is the list of attributes that have to be projected from the relation. These
attributes will be involved in the join conditions of the query and those in the

final projection list of the query.

21

Conditions: A set of boolean operations applied to the attributes of the relation. Each attribute

is replaced by an index into the relation.

The select node is used to apply conditions to intermediate results. Only the set of tuples that pass

the condition will be propagated up the tree.

The join operator

Join (Projectionlist, Conditions, Subtreel, Subtree2)
ProjectionList: This is very similar to that of the select, but the attributes are indices from both the

incoming relations.

Conditions: A set of join-conditions on the relations. If no conditions are given then the result of

the join will be a full cross product of the two relations.
For each pair of tuples in the two relations, gotten from Subtreel and Subtree2, the opertaor will

check to determine whether the join condition will hold. If it does hold, then concatenating the

two tuples forms a new tuple, which is then put onto the result stream for the join operator.

The union operator

Union (Subtree, Subtree)

This is used to get the union (concatenation) of the results obtained by executing the two

Subtrees.

4.2.3 The Buffered Data Streams between the Operators

The branches between two nodes represent a stream of tuples, which is buffered to compensate
for the difference in speeds of incoming and consumed tuples. The basic model for this buffer
stream is a producer consumer monitor. In the system it is implemented as a datatable structure
which gets the tuple from the producer and delivers it to the consumer. Normal processing
semantics for the execution engine can either be seen as a ‘get_next’ from the operators or a
‘put_next’ from the perspective of the datatables. In the traditional definition a stream can only be
consumed once, this poses problems if it has multiple consumers that all need all the tuples or is

used by a join with no memory. Hence the datatable has a mechanism to keep track of where

22

each consumer has reached and then only destroy the stream when all the consumers have used

the full set of tuples.

4.2.4 Execution

Once the plan has been compiled into the graph of operators, each node (thread) is started. Hence
the role of executing the different operators is then left mostly up to the scheduler for Java
threads. When an operator is active it will get the next tuple(s) from its data source(s), if no tuple
is available then the operator will wait to be notified by the data table when one does come
available. Once the tuple is available the operator will perform whatever operation it is supposed

to carry out then, if there is a resulting tuple it will be added to the outgoing data table attached to

the operator.

A Concurrent design allows the data to be streamed to the root of the graph, as each node can
process the data whenever that data is ready. There is no need to wait for the bottleneck problem
of collating all the results before proceeding to the next level of execution. Each relational

operator is a thread that can be executed whenever the scheduler runs it and there is data available

from its data source.

The data access routines have been structured so that full advantage can be taken of the data
streaming capabilities provided within the concurrent design. Access to flat files and web sites
hide the slow i/o time in the processing time. The stream of data is ready for use as soon as the
first line of data is read from a file or web page. To facilitate the continued flow without the
introduction of pipes, the data access routines for files and the web simply return the raw data,
with no parsing done. Pattern matching extraction from the strings is one aspect of the
functionality of the scan operator. Where the attributes are extracted from the string and put
together to form tuples and then data tables. There is one special operator built to deal with
compiling a table from multiple web pages. For instance the NYSE has a page with trading
details for each of the companies on its list. This join-submit operator will access the pages for

each company, extract the required information and add it to its result table.

Relational databases restrict duplicates within tables. This is a very significant requirement, as the
system is being developed in a relational model and hence has the overhead of checking for

duplicates. Projection of tables is the only relational operator that may cause duplicates. I have

chosen to unify the project and join into a single join and similarly with the project and select into
a single select. Hence duplicate elimination can be used after each of those relational operators.
This choice did not significantly affect the implementation, rather simply required one less
traversal of the result table per select or join operator, as in the normal case after one of those

operators the project would traverse the result table to get the required attributes.

4.2.5 The System Scheduler

Limited machine resources require that a monitor be used to ensure that the number of active data
access thread does not threaten to use all the available resources. This necessitated the
development of a scheduler that controlled the total number access threads that could be opened
simultaneously. Access operators can only make request for data through the scheduler. Once this
request is made the scheduler will assign a new accessthread to the operator’s request. The thread
will only be started if the number of active requests is below some pre-determined number. In
addition to being a system that controls the use of machine resources, this functionality can
actually be used as a tuning device for the system. Given that the trade-off is between network
parallelism and thread processing overhead, changing the maximum number of active threads can
affect the both these factors and then observations can be used to determine what sort of
dependency the total execution time has on the two factor, and hence find the best setting. The
accessthread will initialize the data access for the request and deliver the resulting stream to the
operator that originally submitted the request to the scheduler. The diagram below (fig 4.3) shows
the scheduler’s operation with the addition of a cache. All the data that is read is saved on the
local disk and the stream handle returned to the access operator is actually an output stream from
the local file. Whenever data is requested, the accessthread will check the cache registry to

determine whether that address has been accessed before and hence the data could be found in the

cache.

24

Scheduler & Cache
Handle onto the
ACCCSS mnut <tream
Operator
. Requests
. Launches data .
accessthreads
. Requests .
Access
accessthread
Operator Handle onto the M
innnt ctream
Figure 4.3

4.3 Concurrent Execution
Even though the system was operated on a single-processor machine the model used to

implement the concurrency was geared toward leveraging the ability for network parallelism and
hence reducing the average network access time. Although the average access time may be
reduced there is a definite overhead in the scheduling of various threads. Hence the sequential
version will require less local processing. However the concurrent model is fairer in that it
produces early results as soon as possible and is able, in this task, to avoid bottlenecks created by
data sources with low data rates (e.g. “slow” Web sites). As most of the time is spent on the
network retrieving data, the higher network parallelism (as per requests) should result in an
improved performance (although this is bound by the network bandwidth and the servers’ ability
to handle multiple requests. No special effort has been made to explicitly control the concurrency.
The task is left to the Java thread scheduler. However, several elements in the plan, such as the
choice of an operator or the size of the buffered data stream will influence (in a distributed
manner as opposed to a centralized scheduling) the concurrent behavior. For instance, the

systematic choice of buffers of size 1 synchronizes the waves of single data production.

25

Alternate Execution Models

relational ‘

operators

Model(1): Set Oriented Model(2):Graefe’s

Figure 4.4

4.3.1 Execution model

The execution model being used is the iterator model described by Graefe in [Gra93]. This model
is characterized by a pipelined production of results. In this section, three possible execution
models’ that could all be used in this system will be outlined the chosen model will be justified.

For reference to the above diagrams, the light shaded blocks represent active operators.

Model (1)

In the sequential version, each operator is equipped with three methods: open(), close(), and
get_next(), to initialize, finalize and request the production of data. The sequential version is set
oriented as it performs all the entire process (initializing, requests and finalizing) as a block

operation.
open()
get_next()

get_r;ext()
close()

” The first two models were used in previous versions of the implementation.
Model(1): grenouille verl.0, verl.1
Model(2): Grenouille ver2.0

At each stage of processing each operator produces the entire resulting set of tuples. This is stored
and then presented to the parent operator for processing. The graphical representation of the
model shows only the access node being active and that the only requests generated from this

node will be sent to the network. This model requires the least processing overhead of the three.

Model (2)
Inter-operator parallelism is basically pipelining, or parallel execution of different operators in a

single query. In this second model there is synchronous pipelining of data up a branch in a tree,
hence the name vertical inter-operator. Hence there are more operators working concurrently, but
it is always limited to a single line from root to leaf (there are now splits), this is shown by the
three stripped nodes in the model (2) diagram above. To achieve the concurrency in this model
the high level operations (get_next(), open(), close()) from the sequential model are interleaved
for the different relational operators. Using this model definitely increases the possibility of

parallel network request but at the cost of higher processing overhead.

Model (3): As Implemented

Figure 4.5

Model (3)
The final model is the one that is implemented in the system. The concurrency goes both

vertically and horizontally. Each operator is thread that will start to execute once the engine
begins executing the QEP. This allows interleaving of lower level instructions, hence increased
parallelism. As shown in the diagram, the fact that all the operators can execute concurrently

maximizes the number of active access (leaf) nodes, where the higher network parallelism is

manifested. The main difference between the three models is the number of operators that can be

active at any one time, and hence the level of network parallelism facilitated.

4.3.2 Non-Blocking Join
Elimination of possible bottlenecks is one of the major concerns within the system. The chosen

model does well to hide the effect of slow network responses, by sending a stream of results up
the tree. Any bottleneck within the system will nullify the effect of this average network access
speedup. The traditional nested-join algorithms all favor one of the input data steams. If the
favored data stream stems from a slow web site this will cause a delay. To alleviate this problem
we used a concurrent balanced-join, which opportunistically uses the next available tuple

produced by either input stream.

Consider the cross product of sets of tuples, this can be represented as a two dimensional array, as
in the diagram below, with one set (n tuples) on one axes and the other set (m tuples) on the other
axes (m and n not necessarily known). Once a new tuple comes, it can be identified by it’s
position in the 2-dimensional array, given information on the position of the last entry. The next
step would be to join this tuple with all the tuples from the other set, which the operator has
already received and is ready to process. Hence at any point in time, with k1 tuples from one set
and k2 tuples from the other, the operator would have completed the join operation on that subset
of tuples. From the diagram the shaded portions show the grouping which is made for a particular
sequence of tuple arrivals. The main idea would be to take the incremental subsets created after a
new tuple is added, produce an entry (as described below) for them which would describe the

bounds of the subset, and then do the join on all the subsets.

28

Balanced Join Diagram
Row Tuple:l......... n
Lir — — [4lr
21r 3,1 escsae
n 2 =
11 13
L 22.c > 32.c
I,Z.C seesoe cesses
T 2241 I
| I L 1 32r >
3
] | —
Tow I 1.3.c I 23.c
column =
Figure 4.6

In the diagram the two tables in the join are represented on the two axes of the matrix referred to
as row and column axes. Whenever a row tuple becomes available, the new subset available for
processing is represented by the new set of horizontal stripes. The matrix after a row tuple is
available, has been placed directly next to the old available matrix whereas the matrix formed by
the entrance of a new column tuple is seen below. At each stage the coordinate of the incoming
tuple is recorded along with whether it was a row tuple or a column tuple. This information is
sufficient to describe the new set of tuples available to be processed and hence once these tuple
designations® are queued there will be a serial ordering of tuple pairs that can be used within the

main join algorithm.

To take advantage of the serialized ordering and still allow tuples from either source to enter the
join in any arbitrary order, the algorithm needs to be implemented in a parallel mode. Three
parallel processes will be needed to: 1) get the tuples from the first source, 2) get the tuples from
the second source and 3) use the ordering and available tuples to carry out the actual join. The
algorithm for each process is shown below. There is one shared data structure that holds the

serialized entries, this is a queue with an additional method used to view the last entry without

* A data triplet containing (row number, column number, row/column)

29

removing it (implemented as a pop followed by a push, while a lock’ is held on the queue). The
first two processes use this queue to determine what has come before and then place a new entry,
the third process takes the entries from the top of the queue to carry out the traditional join
algorithm on that subset of the tables. The implementation of the balanced join is just as efficient
as a normal join operation, as the same combinations of tuples are compared. The only significant
difference is the use of three processes rather than a single process, which add a little overhead,
but given the nature of the incoming data, this overhead is much less than the possible wait

because of input bottlenecks.

4.3.3 Relation Reuse
Another operation that the execution engine will provide is the reuse of the stream of results of a

sub-tree of operators. This can be very useful if a one operator requires the results form the same
sub-query that another of the relational operators in the QEP also uses. Instead of redoing the
query, the results can simply be shared between the multiple consumers. This function is
implemented within the buffered data stream (datatable). The QEP provided should ensure that
appropriate objects are physically linked as in the diagram above. Once this is done, the

consumers are ‘registered’ with the datatable and will all have access to all the tuples coming into

the datatable.

4.3.4 Parallel processors
There have been no experiments with parallel implementations of Java in which the threads can

take advantage of multiple processors. The standard Java abstract machines do not necessarily
take advantage of the multiple processors available on a machine nor do they usually take

advantage of the system native threads (as for instance the new Sun Solaris Java Thread Library).

’ Only one process can access the data structure at any one time.

30

Chapter 5

The Planner
Although the focus of the thesis was the execution, there was a missing connection between the

user supplied SQL query and a query execution plan. Hence, a compile/planner/optimizer had to
be developed to fill this gap. In this section, I will outline what the planner is required to do and
how the choice of design was able to meet with these requirements. As in the other components

of the system, the design is highly modularized to allow for easier updates to the functional

pieces.

5.1 The Global Picture

The planner takes the user query and produces a query execution plan. The user query can
actually be in the form of an SQL or constructed from options selected in a graphical interface, as
described in chapter 2. The planner ensures that a QEP, which, if processed according to the API
definitions of the execution engine, will produce a result that adequately, satisfies the initial
query. The planner is divided into three integrated modules. These are the compiler, the planner
and the optimizer. Although their functional differences are very distinct the

In addition to the information fed in from the user query the planner also requires access
information on the various sources that will be used to answer the query. This data is encoded
within the specification files (referred to as SPEC files) which will all have entries in a registry.
Both the user query and the required SPEC files are compiled before the planner can use the
information. Using the compiled data structures produced from the SQL query and the SPEC
files, the planner tries to determine a possible ordering of the sources and then, with this ordered

list of sources, generate a suitable QEP with the appropriate graph of physical operators.

31

Planner

Plan
Generation

SPEC files _U

Figure 5.1

5.2 Source Specification
Before a source can be used by the system, information such as the type of source, the source

address a means of data extraction, a list of provided attributes and their types must be put into a
SPEC file. The type of source can vary from web pages to local flat files to relational databases.
Each of the source types require a particular set of access procedures hence the necessity of
having the source type as one of the parameters stored in the source specification. In addition to
the type, in the case of web pages the access method is also a necessary piece of information as
Web Sites use a combination of POST and GET access methods in the HTTP protocol. As a
guide to the user and for initial validation checks within the planner, the source description will
also have a list of the attributes that are provided. The SPEC files have a tagged-based syntax to
make it simple to identify the various parts of the specification description both for the system
admunistrators who will be writing the SPEC files and to simplify the SPEC file compiler. They

tagged components are neatly cased into the header and the body of the Specification.

5.2.1 Header
The header contains the general information for each source. Most of the information is not

actually used in the planning or execution but is there for identification and registry purposes. The
<HEADER> tags clearly identify the region of the file that represents the SPEC file header. The
name of the relation is also the name of the system file in which the information is stored. The

string between the <RELATION> tags always identify the relation. The example SPEC file below

32

describes the nyse (New York Stick Exchange) web source that was used in the example from
chapter 2. Another aesthetic parameter is the href, which holds the base address of the main'®
source stored within the file. Given the automated data extraction a lot of information from web
pages may be discarded, so this main address can give the user a start point to do further
investigation or it can be used by the administrator when updating the information stored in the

SPEC file.

<HEADER>
<RELATION> nyse </RELATION>
<HREF> http://www.nyse.com/ </HREF>
<SCHEMA>
Ticker:string, Compname:string, URL:string
</SCHEMA>
</HEADER>

The last and probably most important parameter in the header is the schema. All the attributes
that the source provides or requires is stored within the schema. Types are necessary to facilitate
comparisons and certain types of operations'' (e.g. arithmetic) that may be carried out by the

execution engine. All the attributes in the schema are represented by the name and type separated

by a colon.

5.2.2 Body

The second section of the SPEC file is conveniently called the body and is demarked by the
<BODY> tags. This section is made up of all the information that is necessary to allow the
planner to make a QEP. The body is made up of a set of pages. Each page has a method, a URL
and pattern. In the case of pages with POST methods there may also be a content parameter.
Within the body section all attributes are referenced with the attribute name surrounded by two

pairs of # characters, as seen with Ticker, Compname and URL in the example below.

° Some SPEC files may describe a variety of sources, it’s up to the SPEC file author to determine which

source can be referenced as the main source.
"' Data within the system is all used within the data package which requires a type in order to create a

particular data object

33

<BODY>
<PAGE>

<METHOD> GET <“METHOD>
<URL>
http://www.nyse.com/public/listed/3¢/3cfm.htm
</URL>
<PATTERN>
#Ticker: (. * DiH</ A>. * 7<BIG>###Cname: (. * D##</BIG>
</PATTERN>

</PAGE>

.

</BODY>

The URL gives the access location of the source. The pattern is a regular expression that is used
to extract the attributes from the source. Each attribute that needs to be extracted is named along
with the regular expression with which it must be matched. This regular expression is applied to
page source. The diagram below shows the nyse web page from the specification file and the

source (HTML) of the specified nyse web page and the location of the attributes extracted.

NYSE Web Page
% NYSE Listed Companies - Netscape !Ejm

fle Edt View Go Communicalor Help

{5 3 A2 tadil | g
B
A

Back roraad Reload Home Seach Gude Pt Secusly Stoc
;f'soosmks Jy Netsie: Pt/ s ryse comipuble/isted/ e/ Sem im
B intemet __, Lookup % NewiCoo

T RMETET CULTPOTITIvN :
ML America Online Inc.

AL America West Airlines :
ABI American Bankers Insurance Group

AP American Electric Power, Inc.

Avn Amanwts mmm Temwnmm Mamemancs

Page Source

&2 Sowrce of http: 2/ nyse.com/public/listed/3c/3cfm him - Netscape

.. <k HREF="htvps//wuw, aab.comP>RAEC/A> . * BIG>inbassador Xpazmncs. Inc.</BI6>
(<R MREP="HULD://Wwd. hess.Com">AHCC/E> . ., . . . <BIG>izerads Hess-Corporationc</BIE>
7 < HREF="hrtp://uww.smeren.com">ALEC/A> . . ., . . . <HIG>imeren: Cacporation</BIE> -~ © |
<. <A HREF="http://uww.aol.com”»AO0L <BlGxwerice Online Inc.</BIG> . -
% ¥A</R> <BIG>kmerice Uesc u:nnexnm)
“ABI» <BIGDAmerican Bankers Insurance Group</B

<& HREF="hrey://uvw aep.com">AEPC/A> ,Qstne:icun Electric. Power, Inc.</BIG>

m HBEP="4ttp://americanexprass.cop>AIP . . . » +.<BI8>American Exprass Company <1
{ "<& MREF="hettp://vuw.amtnl.com">AFG/A> mswm.—im Financial emux/nw) N
v AGC <BIGrimerican. General Corp.</BIS> .

34

5.2.3 Capability
Due to the nature of some of the data sources, the planner doesn’t guarantee full relational

capability. For example in the yahoo SPEC file (see appendix C) the schema indicates that the
Ticker is one of the attributes found on this site, but this attribute is actually required before the
site can be accessed. All attributes that are required are used in either the URL or content
parameters within the body, they cannot be inferred from the schema. The capability describes

which attributes it provides and which it requires.

5.2.4 Views
Specification files can be used to represent a view on a set of data sources. In this mode, the

pages within the body can be from any set of sources, once the union of all required and provided
attributes are listed within the schema. Views are especially useful when used with sources whose
capabilities compliment each other, so that all the attributes in the schema can be provided by at

least one of the pages described within the SPEC file’s body. The views are also useful when the

user wants to combine a set of regularly used sources.

5.3 Ordering the Sources
The capability and requirements of the sources implicitly determine the order in which the

selected sources can be accessed. This module determines if such an execution ordering is
necessary and returns the ordered list of sources, if such an ordering can be found. In essence this
module carries out the capability check and ordering of sources as one operation. The main idea
is to treat all pages (as defined within the SPEC files) as individual sources with a list of attributes
it requires and a list of attributes provided. Starting with the set of required attributes from the
query (combination of attributes in the result and those needed to handle the query conditions),
the system would construct the list of sources by checking for those that supplied the required
attributes. Query conditions normally simply adds to the initial list of required attributes, but in
the case of an assignment constraint' the condition statement then becomes a source. This source
will be represented as a constant data source in the execution engine, with tuples being made up
from the values used in the assignment. During the ordering and plan generation phases these

constant sources are treated as normal sources but with higher preference for their use, so that

they will be definitely be chosen once needed.

 An attribute being set equal to a constant or needing to be in list of constants

35

5.3.1 The Ordering Algorithm

The ordering algorithm uses a beam search, which doesn’t guarantee the best solution but has
many of it’s own advantages. Implementation of the search is very simple as it is modeled after a
Depth First Search (DFS), with the major difference being the fact that at any one point in time
there are n (where n is the size of the beam) active nodes that can be extended. The beam search
is a heuristic based search which uses a distance to goal measure to determine the best n extended
paths with which to continue the search. Heuristics can be tuned to make the choice of sources be

more plausible.

36

The Source Ordering algorithm is shown below (fig 5.3).

Order (Beam B)
While no complete path found in B
NewP = new empty set of paths
For each pathp in B
ExtendP = p.extendpaths
NewP = Union(NewP, ExtendP)

For each path p2in NewP
If p2.betterthan(B.pathAt(0))
B.setpathAt(p2, 0)
While ((i<bmsize) && (p2 .betterthan(B.pathAt(pos))))
Shift B.pathAt(pos} down one position

Return first path in B that gives a complete path

Algorithm:

Betterthan(Path P)

Checks to determine which path is better using predetermined criteria. In this application
the number of attributes still to be provided along with the kind of source (WEB or
CONSTANT) is used to determine which is better.

Algorithm:

Extendpath()

Uses the sources that have not already been used in that path to determine which can supply
attributes still required. If a source supplies a set of required attributes, it is used to extend
the path. The new node will have one less unused source and only the attributes still
required after using the source. The algorithm returns a set of extended paths.

Figure 5.3

5.3.2 Alternate Algorithm
The beam search does not give a optimal solution. To achieve such a solution a shortest path

algorithm could be used. This will ensure that only sources required to solve the query will be
accessed; in the present system, according to what source relation is being used in the join-submit
may cause extra, unnecessary web sites may be accessed. The shortest path algorithm should also
guarantee a solution once a path exists. In some cases, with a sufficiently small beam the

solutions may actually be removed from the beam, because they are not among the best beamsize

paths at that point.

5.4 The Planning Phase

Once an appropriate list of data sources is produced, the plan generation module takes the initial

set of required attributes, the query conditions and the resulting list of sources and uses them to

37

construct the final QEP. This is done by traversing the list of sources and creating the appropriate
set of relational operators needed to extract the attributes required from that source and to use
those attributes as they are need within the entire query execution. At each phase of the plan
construction the attributes extracted thus far are compared with those needed to apply a condition,

if sufficient attributes are available the condition is placed at that position in the plan.

Considering the portfolio example, the ordering module will output the following set of sources.
Source(Condition, [79], (1)
Source(www.nyse.com/public/listed, [79,78,77], [1)
Source(www.cnnfn.com/, [81], [79])
Source(fastquote, [80], [79])
Source(yahoo, [82, 83, 84, 85, 86, 871, [79])

In essence, given that each of the sources which have the data required to answer the query need
the Ticker before they can be accessed, the first source accessed must be one that supplies the
Ticker. For this example the condition sets the Ticker to particular values, which thus made the

condition a source (see 5.3). The condition source was then put as the first in the access order.

Plan constructed for query_2
project (true, true, true, true, false, true, false, false, false)

regex_fn(Perl5Pattern@lcefbb)

join-submit ([quote.yahoo.com/g?s=, 0, &d=v1&0=t])
select (true, true, true, false, true)

regex_fn(PerlSPattern@lcefbb)

join-submit ([fast.quote.com/fg/quotecom/headlines?symbols=,
0, &key=&mode=NewsHeadlines])

regex_fn (PerlS5Pattern@lcf03e)

join ([(=,0,0)])
join-submit ([gs.cnnfn.com/cgi-bin/stockgquote?symbols=, 0,])

regex_fn (Perl5Pattern@lcef32)

submit (www.nyse.com/public/listed/3c/3cfm.htm)

constanttable ([IBM,ORCL,T,TNT,A])

38

5.5 Dynamic Optimization
Whether the engine is to be used for ad hoc queries, i.e. queries which are not know ahead of time

and therefore need to go through the entire process of compilation, planning and optimization,
and execution, or queries which can be compiled, planned and optimized in advance (queries
which are systematically reused such as, for instance, the example query which monitors the
activities of an investment portfolio), the availability of dynamic optimization mechanisms is
critical for the system to be able to react to unpredictable and uncontrolled behaviors and
performances of the network and sources. Every user on the Web has experienced slow or non-
responding servers and networks being randomly congested. Given that many of these
phenomena are largely unpredictable, provision must be made for allowing the system to react

dynamically.

A very simple way to reduce the system susceptibility to these random events is to eliminate
unnecessary access. As sub-queries and requests may not be fully determined at planning-
optimization time, factoring may not be optimum in the QEP. The caching system implemented
in the data access module in the execution engine. A more general solution to the problem of
unexpected behaviors of the network and sources is the dynamic reorganization of the QEP. In
many cases sources are not-responding, taking into consideration that useful work towards
answering the original query can still be done with the remaining sites, a partial answer could be
returned using a form of query scrambling. A partial answer is twofold: it contains a incremental
query that can be later processed in order to obtain the complete answer, as well as some data that

could be obtained from the available sites using an auxiliary query.

39

Chapter 6

Implementation Details
As in the design the implementation focus is put on the modularity of the implementation so that

in each package extenuation can be easily made. This approach is useful when trying to enhance
the range of allowable queries that can come into the system. One of the main differences
between this system and the existing wrappers is the emphasis on parallel execution. At each
stage of the implementation modules were written in sequential and parallel modes. This helped
determine in which modules full advantage could be taken of the innate parallelism. In this

section I will outline some of the completed modules in this phase of the project.

6.1 Implementation Language
The entire system implementation was done in JAVA. The primary object was to develop a

lightweight database execution engine that could be integrated into the COIN system and several
other architectures including client software on personal computers. The fact that Java’s abstract
machine is almost transparently supported for most operating systems allows for an
implementation that is very portable. The various Java APIs, JavaBeans, JDBC, RM], allow the
smooth integration of the code into many system configurations. The garbage collected memory
management that is built into Java allowed for a much faster implementation time but was a
definite problem when dealing with very large data sets that require the use of many objects. This
is one pitfall to the choice of Java but the effects will be out-shadowed by the other benefits of
using Java. The availability of lightweight threads is probably the main reason for Java being the
implementation language of choice. Concurrent data access and processing are the primary means
of reducing bottlenecks that may develop when trying to import data not stored on the local disk.
This could be done on in another language such as Perl or C but the processes that these
languages launch will cause too much of a drain on the processor. Java provides a very gobd mix
of lightweight threads and synchronization primitives that greatly simplify the implementation of
concurrency. All of the implementation was done using Semantic Visual Café. The choice of
Café over other programming environments was basically due to the fact that it offered the ability

to compile the Java code into Native Win32 DLLs or into a Win32 executable.

40

6.2 Communication Protocols
All communication to remote sources was done via the Hypertext Transfer Protocol (HTTP) or

File Transfer Protocol (FTP). They were accessed using the base java.net package and an
imported HTTPClient package downloaded from the WWW. The communication medium that

was provided by these protocols was general and widely used enough to facilitate the integration

of many data sources into the system.

6.3 Data Extraction
The wrappers will have general multi source access. An access interface between the classes that

require access to data sources and the actual data access routines for the particular sources is
necessary for a seamless implementation. This enables new data sources to be easily appended to

the system, with no change to other modules. The access routines implemented for this thesis

include flat file, http and ftp access classes.

Accessing the data from the sources is the first step to data extraction. Once the file is in main
memory (or as it is being read) a relation must be constructed to store the data. In the semi-
structured data sources (such as web pages) the string read during the access must be broken up

into tuples and fields. The data to do such is extracted by using pattern matching routines.

6.4 Typing System
An object relational model is being used to implement the typing in the system. All data that

flows through the system is instantiated as one of the type classes offered by the wrapper engine.
The datatypes used are implemented using a datatype package (see appendix). The system wraps
data into an object, with one method that indicates what data type it is. The base types are
integers, floats and strings. These are sub-classed to represent the different methods that are
necessary to access the values of the data, e.g. data_str_const is a subclass of data_str. In the
example, the subclass is a constant, which returns a str when as it's value (the actual string is a
attribute of the data_str_const class). This implementation extends to the attribute extraction from
a tuple, e.g. data_int_att is a class that returns an attribute of type int from a tuple. The position of
the attribute in the tuple is stored in the data_int_att class, hence when given a particular tuple the
attribute is extracted, wrapped as a data_int object and returned. Arithmetic operations are also
dealt with in the system. It is actually implemented quite similarly to the attribute extraction. In
the case of arithmetic operations a class such as data_float_calc will store the type of operation to

take place and the data to be used. This recursive structure conveniently allows for nested

41

operations. The value of float is calculated only when needed, to calculate the value the object
will be given the tuples required just as in the attribute data type. New data types are easily added

to the system by including the definition for the base class and the required subclasses.

6.5 Parsing and Compilation

The first phase in the planner/compiler is to parse the query and the specification files for the
relations identified in the query. The two parsers were actually implemented very differently.
Java Compiler Compiler (JavaCC) automatically generated the SQL parser with a limited
grammar used as input. JJTree, the tree building preprocessor which is used with JavaCC, enables
the generation of a compilation tree that can hold the components of the SQL that are needed. The
compilation tree is converted into an internal SQL data structure", which is used throughout the
planning. Specification files have been written in many different formats. The structure and
content has changed as the system developed. The final design of the SPEC files was simple
enough to write a parser from scratch. This compiler uses the same regular expression (pattern
matching) technology as in the data extraction. As with the SQL compilation, there is a SPEC

data struture that holds all the relavent parameters needed from the specificaion files.

6.6 Code Structure & API’s

All of classes implemented in the system were grouped within packages of similar classes. In this

section, I will describe the three major packages built for the system.

6.6.1 Relational Operators

The system groups all data into tuples and then into tables which can be manipulated to get the
final result required from a query. The relational operators enable the manipulation of the tables.
Specific tuples can be extracted or specific attributes from a selected tuple can be combined to
build new tables. Five basic operators from relational algebra have been implemented. These are
Scan, Select, Project, Union and Join. Extensions of these operators, such as multi-join, are

implemented to make more efficient the execution of complex plans.
A plan consists of a sequence operators acting on one or more data sources. The plans are

constructed a tree of relational operators. The degree of each node in the tree depends on the type

of operator situated at that node e.g. select will have a single branch, join will have two branches

42

and the multi-join can have any number of edges. Within the plan each edge represents a link
between two relational operators. Whereas during the execution phase the edges represent the
stream of tuples (data table) resulting from the child operator and being used as input to the

parent. All the leaf nodes on the plan hold scan operators.

6.6.2 Boolean Operators
The where clause in an SQL query must evaluate to true or false. The conditions involved in the

clause can be broken up into various specific elements. The Boolean Operators package is used to
represent those specific elements and provide an effective way of constructing and evaluating a
conditional statement. The base operators (true, false) always return their named values (true,
false). Another set of operators (and, or, not) use the results from other operators to determine
their value. Hence a condition can be described as a tree of Boolean operator. This structure lent
itself to a few optimizations in the experimental concurrent implementation, as not all sub-trees
(sub conditions) had to be evaluated. Even though evaluation of all children would be started, in

some cases the result for an operator could be determined by simply using the fastest returning

result.

bool_op == const_bool_op | static_bool_eval | norm_bool_op
const_bool_op == true | false

norm_bool_op == not bool_op | and bool_op bool_op | or bool_op bool_op
static_bool_eval == static_op data data

static_op = A =

Bool op Classes Inheritance Tree

mol_andl l bool_or | ﬁool_true|

'bool comp.

oo]

bosl 1
floatbool
Key Mool || [Vooe |

bool_gteq

Depends on
Abstract

[nheritance

Non-Abstract :]

" A class developed for the express use of this system.

6.6.3 Data

This package is primarily used for the containers it offers that makes manipulation of single and
multiple pieces of data more manageable. The Hierarchy of classes can be represented as an n-
span tree. As will be evident in most of the other packages that have been implemented, only
classes that are leaves of the inheritance tree can be instantiated. All inner nodes are abstract

classes. The major class in the package is <data.class>.

Data Classes Inheritance Tree

l datalnt_att J

IEment_const I

Key [dataStr_const—, | dataStr_att '
Inheritance
Depends on Fiamﬂoat_coxﬂ dataFloat_att
Abstract
Non-Abstract :]

Container : this class is the base for implementation of the tuple and datatable classes. A tuple is a
container for attributes and a datatable is a container for tuples. Hence all access to data stored in
the system will be via a container. This demands that the container allow for fast searches and
updates. Additions to the container should take constant O(1) time, whereas searches should be at
least as efficient as a linear O(n) time search. These crude requirements can be meet by many data
structures. Two data structures have been used in the current implementation. The initial one is
the Vector class offered in the java.util package, this class provides the functionality of a
dynamically growing array. The management of memory required to increase the size of an array
is abstracted away from the user. The other method used was a standard linked list. This structure
gave a better handle on adding and removing elements from the list. Querying the list took O(n)
time. Although with the specific use of the list, the cost of access should be O(1) as all in the

general case most or all elements of a table or tuple are accessed sequentially.

Chapter 7

System Evaluation and Conclusion
The execution engine described in this document promises to be a very useful lightweight tool

that can be easily used as a stand-alone application or incorporated into a bigger system such as
COIN. It is very effective in providing answers to a very broad range of SQL queries and has
been successfully used to demonstrate a portfolio upkeep application (see chapter 2). The next

step would be to extend the system into a fully multi-database engine.

The use of the updated system in coin is a relatively simple process, if only the bare features are
required. All API calls can be adjusted to accept the format of the query, which comes out of the
mediator, and a procedure can be written to make the output into a tabular HTML format. In the
current COIN implementation no provision is made for streamed results to be output from the
execution engine, so this fact may require adjustments made to the COIN top layer. Once all the
APIs are properly set and the system made capable to accept a stream rather than all the results
together, there should be a black box installation of the multi-database engine into COIN. This
installation can actually be functionally divided; i.e. Initially the system can be integrated as a
Web Wrapper, and hence be called by the ODBC drivers or current multi-database engine to
carry out web access queries. The next phase would be integration as a multi-database engine,
which requires the addition of more types of sources and protocols for accessing the data. The
planner would need to be altered to account for the fact that sources may be able to accept

queries, hence the source capability has more direct influence in planning.

7.1 Related Work

During the development of this thesis work, a couple very interesting and similar projects have
been identified. The Disco project at Dyade and the WinMWTrap project at the University of
Maryland are both developing prototype mediation networks, which encounter the problem of
getting a structured query-processing engine to provide the basic functionality for the

construction of mediators and wrappers.

The Disco research is very similar to this project. They are developing the system to study
dynamic optimization. partial answers and scrambling, i.e. what can be done during query
execution to change the plan if one or more sources is not responsive. Their system runs in a

sequential execution mode.

45

WinMWorap is also very similar. They need to use the system as a backbone for source selection
research. It is uses OQL rather than SQL and has an OO data model. Their execution engine is

also runs in concurrent mode.

7.2 Future Work

There are a number of improvements that can be made to the current implementation to improve
the execution and range of functionality. The major changes are the migration to a totally multi-
database mode and secondly, use of OR statements in query condition and arithmetic parsing for
the planner. An accessdata package was written to deal with getting the data into the system. This
package has classes that deal with Web access and local file access. Classes need to be added to
deal with additional types of sources, such as ODBC sources. This change doesn’t require much
effort, but it goes hand in hand with improvements required in the planner, so that queries, which
can be handled at the other sources, are sent to the sources in and SQL format. If the sources use a

different query language, the accessdata class written for the source should be able to convert the

SQL. to whatever type of query is required.

The second set of improvements deals specifically with the planner. Given that the focus was on
the execution engine, the currently available planner wasn’t implemented in a manner that would
guarantee the best QEP solution. An improvement would be to use a shortest path algorithm for
the implementation. There could also be some changes made to factors being considered when
comparing two paths. Currently the choice of sources is based on which decreases the number of
required attributes by the highest amount. Taking the cost of accessing the data from the source
into account would improve the efficiency of the resultant QEP. Allocating a cost to this access

requires a cost model and an extension of the algorithm to include the costs.

7.3 Conclusion
Overall the implementation matches up very well with the initial requirements of the system and

in some ways surpasses those expectations. Given the inconsistency of WWW access it is very
difficult to measure the execution improvements over past implementation, but there is a definite
observable difference for queries that require a lot of data from web sites. After this thesis, I hope

to help in any improvements being made to the system, as I do believe that the software can be

very useful to very large range of applications.

46

Appendix A: User Guide

Installation

All the required class files along with the source code are stored in a fixed directory structure in a
zip file on the installation diskette. The software has not been compiled into an executable due to
the unavailability of certain libraries which were used for the implementation. Using the Semantic
Café development environment the user can exeute the demo by simply typying:

java demo
A base interface is being built which will allow the user to execute this program even if Café is

not available. Hence once Java is installed on the machine the above command can be executed.

Specification Files
All specification files must be put into the registry. The syntax is very similar to the HTML

tagged syntax.

Creating

The specification file

- Find a source that you want to wrap (this can be a single page or a set of pages).

- Determine what attributes can be extracted from the source, using these attributes, along with
their type (you specify), put together the schema for the specification file.

- For each page determine the regular expression needed to extract the attributes. Put this
regular expression in the pattern section of the page.
Place the name of the attribute along with the expression required to extract the attribute,
separated by a colon, between two pairs of #'s
e.g. ##Ticker:(* N

- Save the file as whatever relation name you like, something that represents the source being

accessed would be better. Thhe file should be saved your_relation_name.spec in the

registry.

Using
Once the specification file is placed into the registry directory, which is a directory called registry
in the directory to which the software is installed, then it can be accessed by the system, simply

using the name of the spec file in an SQL statement.

47

Appendix B: Code Statistics

The first 8 packages listed below have been implemented within the system, and the last 2 were
downloaded from the web. All other packages used are core Java classes.

PACKAGE Public Private Code Description

Classes Classes Size

The interface between the engine and the data
sources that it must access. Each class in the
package allows access to a particular type of
data source. There is one main class
‘data_access’ that the system calls which
activates the correct object.

bool_op 12 3 800 | Boolean Operators which when evaluated
return true or false. These operators have
logical and comparative types. New
comparative operators can be appended if
following the format of the bool_It or bool_eq
operators. Additional logical operators can be
added following the format of the bool_and or
bool_not operators.

datatype 14 0 700 | All data that passed through the system is
contained within a specific datatype object.
These objects represent all the types that the
system can handle. Each class represents a
different data type. Using any of the classes as
a base, new data type classes can be added to
the system.

SQLParser 23 0 1360 | JJTree and JavaCC automatically generated
this set of classes. Once generated the classes
were amended so that the stored information
could be extracted from the parse tree.
SPECParser 1 0 120 | This package is made up of a single class
SPECRegex which uses the regular expression
package to parse the specification files.
planner 3 9 1400 | This package has data structures required to
store and manipulate source information and
SQL attributes. The central planning
algorithms are held in the class planner,
myutil 3 0 200 | This contains all the classes that are used
throughout the system but do not lie within
one of the functional descriptions of the other
packages.

rel_op 16 3 1200 | Relational Operator classes are held in this
package. Once again,each operator is
represented by a single class. There are a
couple classes which are used to store the
relational operator which are only used within
the rel_op package.

HTTPClient n/a na n/a Used for net access using HTTP, FTP and
other common protocols. This packages was
downloaded from ...

OROMatcher n/a n/a n/a Allows Perl regular expression in Java.

accessdata

49

Appendix C: Specification Files

Fastquote Specification

<HEADER>

<RELATION> fastgquote </RELATION>

<HREF> GET http://fast.quote.com </HREF>

<SCHEMA> Ticker:string, NewsURL:string, Headline:string </SCHEMA>

</HEADER>

<BODY>
<PAGE>

<METHOD> GET </METHOD>

<URL>
http://fast.quote.com/fq/quotecom/headlines?symbols=##Ticker##&key=&mod
e=NewsHeadlines </URL>

<PATTERN> <TD>\s*<FONT\sSIZE\=\-1>##Headline: (. *?) ##
 </PATTERN>
</PAGE>
</BODY>

Yahoo Specification

<HEADER>
<RELATION>yahoo</RELATION>
<HREF>GET http://quote.yahoo.com</HREF>
<SCHEMA> Ticker:string, LastTrade:string, Change:real, Changepts:real,
Changepct:real, Volume:integer </SCHEMA>
</HEADER>
<BODY>
<PAGE>
<METHOD> GET </METHOD>
<URL> http://quote.yahoo.com/g?s=##Ticker##&d=vi&o=t </URL>
<PATTERN>
<ahref="/q\?s=.*?&d=t">.*?\s+##LastTrade: (. *?) ##\s+##Change: (. *?
) ##\s+##Changepts: (. *?) ##\s{2, } ##Changepct: (.*?) ##\s+##Volume: (.*?)
<small>
</PATTERN>
</PAGE>

</BODY>

50

New York Stock Exchange (nyse) Specification

<HEADER>

<RELATION> nyse </RELATION>

<HREF> GET http://www.nyse.com/ </HREF>

<SCHEMA> Ticker:string, Cname:string, URL:string, Rec:string,
Last:string </SCHEMA>

</HEADER>

<BODY>

<PAGE>
<METHOD> GET </METHOD>
<URL> http://www.nyse.com/public/listed/3¢c/3cfm.htm </URL>

<PATTERN> ##Ticker: (.*?) ##. *?<BIG>##Cname: (.*?) ##</BIG>
</PATTERN>

</PAGE>

<PAGE>
<METHOD> POST </METHOD>
<URL>
http://www.ultra.zacks.com/cgi-
bin/ShowFreeCompRepUSAToday?ticker=##Ticker##
</URL>

<PATTERN>
Current Average Recommendation: [\s] *##Rec: (. *?) ##[\s] *<\/font>
</PATTERN>

</PAGE>

<PAGE>
<METHOD> GET </METHOD>
<URL>
http://gs.cnnfn.com/cgi-bin/stockquote?symbols=##Ticker##
</URL>

<PATTERN> >last.*?##Last: (.*?) ##<\/FONT> </PATTERN>

</PAGE>

</BODY>

51

Finance Specification

<HEADER>
<RELATION> finance </RELATION>
<HREF> GET http://www.moneynet.com/ </HREF>
<SCHEMA> Ticker:string, News:string, Time:string, Date:string </SCHEMA>
</HEADER>
<BODY>
<PAGE>
<METHOD> GET </METHOD>
<URL>
http://www.moneynet .com/MONEYNET/coNews/newsHeadlines . .mhtml? SYMBOL=##T1
cker## </URL>

<PATTERN> <FONT SIZE=-
1>\s*##Date: (.*?) ##\s+##Time: (.*?) ##\s+\s+</TD>\s+<TD
VALIGN=BASELINE>\s*##News: (.*?) ##\s*<\/TD> </PATTERN>

</PAGE>
</BODY>

52

He ‘Edt Vew lheett Fomal Help -

Appendix D: Query Results

Ko S S el ol o

-

-

e e e

—3
- - - -

-

- -

—l—i-—i:—‘l*—l*—l'—!

-~

—
jus)
=

'

IBH,
IBH,
IBH,
IBH,
IBH,
IBH,

AT ¢ T,
AT ¢ T, 58 11/16,40.21%,
AT ¢ T, 58 11/16,40.21%,
AT & T, 58 11/16,40.21%,
AT ¢ T, 58 11/16,40.21%,
AT & T, 58 11/16,40.21%,
AT § T, 58 11/16,40.21%,
AT & T, 58 11/16,40.21%,
AT £ T, 58 11/16,40.215,
iT & T, 58 11/16,40.21%,

ASTRA AB 4 ADR,20 3/4,-1.06%, Astra Merck and Astra AB File Lawsuits Against indrx ‘
ASTRA AB i 4DR,20 3/4,-1.06%,1998 Eli Lilly and Company Award Presented to SIGA Ac E
ASTRA 4B i ADR,20 3/4,-1.06%,GM Earnings Drop 06 Percent]
ASTRA 1B A ADR,20 3/4,-1.06%,GM Earnings Drop 06 Percent in 1stQ
ASTRA AB A ADR,20 3/4,-1.06%,GN Earns $1.6B in the First Quarter
ASTRA AB i ADR,20 3/4,-1.06%,GM Earns $1.6B in the First Quarter o
ASTRA AB A ADR,20 3/4,-1.06%,Astra Merck Offers Medical Community a New Internet R
ASTRA 4B i ADR,20 3/4,-1.06%,Cos. Buy Sex Harassment Insurance ”
ASTRA AB A ADR,20 3/4,-1.06%,Can Doctors Make a Go of Their Own Nanaged Care Group
ASTRA 4B 4 ADR ko 3/4,-1.06%, Experts: Drug Merger Merely Delayed

58 11/16,40.21%, Infoseek Introduces 'E.5.P.' To Dramatically Improve Gener

INTL BUS MACHINE , 122
INTL BUS MACHINE ,122
INTL BUS MACHINE , 122
INTL BUS MACHINE , 122
INTL BUS HACHINE ,122
INTL BUS HACHINE ,122
INTL BUS MACHINE ,122
INTL BUS MACHINE ,122
INTL BUS MACHINE ,122
INTL BUS MACHINE ,122

ddvanced Search Feature Lets Infoseek Customers Harness th
Paul Kangas' Wall Street Wrap Up ’
Preliminary AT&T 1998 innual Meeting VotingResults

ATeT Begins Internet Telephony Trial In Atlanta For Releas f
Infoseek Renews Premier Partner Relationship with Netscape *
AP Financial News at 9:10 a.m. EDT £
AP Financial Nevs at 9:10 a.m. EDT %
AT¢T's Annual Meeting Vednesday May 20, 1998 i
Paul Kangas' Wall 3treet Wrap Up ot
1/4,+0.37%,Keynote Systems Audits Seinfeld for InternetPer -
1/4,+40.37%, INTERNATIONAL BUSINESS MACHINES CORP (NYSE:IBN,
1/4,+0.37%,National Issue THE ENCRYPTION EXPORT DEBATE
1/4,+0.37%,Paul Kangas' Wall Street Wrap Up

1/4,40.37%, Tivoli Fortifies Partnership with Compaq to Dev ,
1/4,+0.37%, IBY Top Sales Manager Quits %
1/4,+0.37%,Vall Data innounces Quarterly Results to Confor
1/4,+40.37%,Hitachi Semiconductor, imerica, Commits Documen’f
1/4,40.37%,5TC Announces $20 Million Equity Financing, dpp -
1/4,40.37%,Norwest Venture Capital Invests §10 Nillion inv

33

Appendix E: Main Packages

In the following pages you will find the Java Documentation created for the packages in the
system. Each package is made up of a set of classes and each class is made up of a set of methods
and attributes. The list of classes in the package will be shown and then selected classes with the

method and attributes will be shown.

The packages shown are as follows:
Relational Operator Package (rel_op)
Boolean Operator Package (bool_op)
Data Access Package (accessdata)

Data Package (datatype)

54

Package Index L€/ WLINY 3/ LUESKIOP/ INEW ['OIUET (4)/ [11 IVIL, PACKAKES 1L

BPI User's Guide Class Hierarchy Index

Package index

Other Packages

* package accessdata

* package boolean_operator
® package datatvpe

package mask

package myutil

package rel_op

1otl 5/12/98 4:59 PM

ickage accessdata file-///C/WIN9S/Desktop/New Folder (2)YHTML, Package-accessdata.htm

521l Packages Class Hierarchy Index

package accessdata
Class index

e data access
* web page

of 1 5/22/98 12:33 PM

1ss accessdata.data_access

2

Bll Packages Class Hierarchy This

Package

tilex/7Cy WINY 3/ Desktops New bolder (£)/H 1ML, accessdata.aala_access.nim!

Frevicus Next Index

Class accessdata.data_access

accessdata.data_access

public class data_access

Constructor index

« data_access(String)

Method index

» done()
» get_data()
» getdata()

Constructors

w data_access

public data_access(String address)

Methods

@ getdata

public DatalInputStream getdataf()
@ get_data

public String get_data()
@ done

public boolean done()

All Packages

Class Hierarchy

Xxage Previous

Next Index

u

5/22/98 12:33 PM

Class accessdata.web_page

lof2

All Packages Class Hierarchy This Package

Previous

file:///C}/WIN95/Desktop/New Folder (2)/HTML/accessdata.web_page.html

Next Index

Class accessdata.web_page

accessdata.web_page

public class web_page

Constructor index

- web_page(String)

Method index

» get page()

» get page(String)
» getpage(String)
» main(Stringf[])

Constructors

@ web_page

public web_page(String address)

Methods

€ main

public static void main(String arg(l)

W getpage

public DatalInputStream getpage (String args)
@ get_page

public static String get_page(String args)

W% get_page

5/22/98 12:36 PM

Class accessdata.web_page file:///C}/WIN9S5/Desktop/New Folder (2)/HTML/accessdata.web_page.htm]

public String get _page()

All Packages Class Hierarchy This Package Previous Next Index

20f2 5/22/98 12:36 PM

ickage boolean_operator

of 1

5]l Packages

Class Hierarchy

Index

file:s//C!/WIN9S, Desktop/New Folder (2HTML. Package-boolean_operator.htm

package boolean_operator

Class index

bool_and
bool_eq
bool false
bool_gt
bool_gteq
bool_like
bool 1t

bool_lteq
bool not

bool_op
bool or
bool true

int_bool_op
str_bool_op

5/22/98 12:32 PM

lass boolean_operator.bool_and A) file:///C}/WIN9S5/Desktop/New Folder (2)/HTML/boolean_operator.bool_and.htmi

Overrides:
run in class bool_op

@ killprocesses
public void killprocesses ()

Overrides:
killprocesses in class bool_op

All Pachkages Class Hierarchy This Pachkages Previous MNext Index

of 2 5/22/98 12:31 PM

1ss boolean_operator.bool_eq file:///C./WIN95/Desktop/New Folder (2)/HTML/boolean_operator.bool_eq.htmi

511 Packaces Class Hierarchy This Package Fravicus Next Index

Class boolean_operator.bool eq

boolean cperator.bool op

[
+----boolean_operator.bool_eg

public class bool_eq
extends bool_op

Constructor index

- bool_eq(data, data)
- bool_eq(data_int, data_int)
> bool_eq(data_str, data_str)

Method index

o gval(llist)
« killprocesses()

» run()

Constructors

= bool_eq

public bool eqg(data str left,
data str right)

« bool_eq

public bool_eq(data left,

+#+bool_eq

public bool_eq(data int left,
data int right)

Methods

5/22/98 12:31 PM
"2

Package datatype

lotl

B11 Packages Class Hierarchy Index

TN/ W LNT I/ LJESKLOP/ INEW LUIUCE (&) L1111 L avhagv baar PV aa

package datatype

Class index

(=

ata

o data float

data_float_att
data float const
data_instream
data_int

data int_att

5/12/98 4:58 PA

ass datatype.data tile:///C/YWIN95/Desktop/New Folder (2)/H1ML/datatype.data.htm)

211 Packages Class Hierarchy This Package Fravicus Next Index

Class datatype.data

datatype.data

public abstract class data

Constructor index

« data()

Method index

displav()
» toString()
tvpe()

¢ &

©

Constructors

« data

public data()

Methods

& type

public abstract String type()
& display

public abstract void display()
& toString

public abstract String toString()

All Packages Class Hierarchy This Package Previcus Nerxt Index

of 2 5/22/98 11:01 AM

Lie /10T WINY D/ LJESKIOP/ INEW TOIUET (L)/ [T L1VIL Uataly pPu.uaidiauiS. it

Class datatype.datatable

Bl1l Packages Class Hierarchy This Package Previous Next Index

Class datatype.datatable

datatype.data
| .
+----datatype.datatable

public class datatable
extends data

Constructor index

~ datatable()
. datatable(int)
. datatable(String)

Method index

» addtuple(tuple)

o cwritefirst()

o display()

» getpos()

» gettupleat(int)

» gotostart()

» hasMoreElements()
= Nex :[!mlg()

» setdone()

o size()

« toString()

= type()

o writeto(DataOutputStream)

Constructors

» datatable
public datatable()

+ datatable

1of3 5/12/98 4-58 P}

Class datatype.datatable

public datatable(String strdata)
« datatable

public datatable(int n)

Methods

P size

public int size()

& type

public String type ()

Overrides:
tvpe in class data

& addtuple
public void addtuple(tuple t)
@ hasMoreElements
public boolean hasMoreElements()
@ setdone
public void setdone()
@ gettupleat
public tuple gettupleat(int pos)
@ gotostart
public void gotostart()
@ getpos
public String getpos()
@ cwritefirst
public veoid cwritefirst()
@ nexttuple
public tuple nexttuple()
@ toString

public String toString()

tile.///C/WIN95/Desktop/New rolder (£)11Vl dalarype.qalatanie. nu

5/12/98 4:58 PM

Class datatype.datatable

Overrides:
toString in class data
@ display

public void display{()

Overrides:
display in class data
P writeto

public void writeto(DataOutputStream dos)

hiley//CY WINY S/ Desktop/INew Folder (£)/I1 L V1L, dalarype.aaldlaoic. it

All Packages Class Hierarchy This Faclkage

Previous Next Index

Jof3

5/12/98 4:38 P?

lass datatype.tuple

51l Packages Class Hierarchy This Package

tile:///C{/WIN95/Desktop/New Folder (2)/HTML/datatype.tuple.htm

Previous Next Index

Class datatype.tuple

datatype.data
|
+----datatype.tuple

public class tuple
extends data

Constructor index

- tuple()
- tuple(String)
. tuple(tuple)

Method index

» addelement(data)
o« displav()

» elementAt(int)

» getDisplayString()
» pumattributes()

» size()

o toString()

» type()

Constructors

@ tuple

public tuple()
tuple
«» tuple

public tuple(String sdata)

5/22/98 10:59 AM

lass datatype.tuple B file:///C|/WIN95/Desktop/New Folder (2)/HTML/datatype.tuple.htm

Methods

W size

public int size()
2 type

public String type()

Overrides:
type in class data

@ toString
public String toString()

Overrides:
toString in class data

@ getDisplayString

public String getDisplayString({)
@ display

public void display()

Overrides:
display in class data

@ addelement

public void addelement (data d)
@ elementAt

public data elementAt (int pos)
@ numattributes

public int numattributes()

All Packagesz Class Hierarchy This Package Previous dext Index

of2 5/22/98 10:59 AM

ass datatype.data_mt

511l Packages

Class Hierarchy

This Package

file//CI/WIN9S/Desktop/New Folder (2YHTML/datatype.data_int.htm!

Previous Next Index

Class datatype.data_int

datactyp=.data
I

+----datatype.data_int

public abstract class data_int

extends data

Constructor index

. data_int()

Method index

s type()
» yalue()
o yalue(llist)

Constructors

«# data_int

public data_int ()

Methods

& type
public String

Overrides:

type ()

type in class data

@ value
public abstra

@ value

ct int value()

5/22/98 11:00 AM

lass datatype.data_int file:///Cl//WIN95/Desktop/New Folder (2YHTML/datatype.data_int.htm

1

public abstract int value(lliist lotup)

511 Packaces Class Hierarchy This Package Previous Next Index

of 2 5/22/98 11:00 AM

lass datatype.data_nt_att file:///C//WIN95/Desktop/New Folder (2)’HTML. datatype.data_int_att.htm:

811 Packaces Class Hierarchy This Package Fravicus Next Index

Class datatype.data_int_att

datactypa.data
|
Fe———— datatyps.data int

|
+----datatype.data_int_att

public class data_int_att
extends data_int

Constructor index

w dﬂ !a in! a!!(mt, mt) -

Method index

- Qigplav()

o toString()
° zglug()

o value(llist)

Constructors

« data_int_att

public data_int_att(int tn,
int an)

Methods

@ value

Overrides:
value in class Jata_int

& value

of 2 5/22/98 11:00 AM

ass datatype.data_int_att

public int value()

Overrides:
value in class data_int

@ toString
public String teString()

Overrides:
toString in class data

@ display
public void display()

Overrides:
display in class data

tile//C\/WIN95/Desktop/New Folder (2yHTML, datatype.data_int_att.htm|

All Packages Class Hierarchy This Package

Previcuz Next Index

of 2

5/22/98 11:00 AM

ass datatype.data_mt_const file///C/WIN95/Desktop/New Folder (2)/H1MLsdatatype.data_int_const.htm:

511 Packages Class Hierarchy This Package Pravicus Next Index

Class datatype.data_int_const

datatyp=.data
|
+----datatyps.daza int

I
+----datatype.data_int_const

public class data_int_const
extends data_int

Constructor index

- data_int_const(int)

Method index

» displav()

o toString()
» yalue()

o yalue(llist)

Constructors

<+ data_int_const

public data_int_const(int intval)

Methods

@ value
public int value()

Overrides:
value 1n class data_int

2 value

ot2 5/22/98 11:00 AM

ass datatype.data_int_const

public int value(liist lotup)

Overrides:
value in class data_int

@ toString
public String toString()

Overrides:
toString in class data

@ display
public void display ()

Overrides:
displav in class data

file.///C/WINSS/DesktopsNew Folder (2)/HTMLvdatatype.data_int_const.htm!

All Packages Class Hierarchy

This

rackage

Previcus

Next

Index

of 2

5/22/98 11:00 AM

‘ass datatype.data_mstream tiler///C1 WINY s esktop/ New Folder (£)/ 111 Vil Qalatype.dala_nsirean. num;

511 Packaces Class Hierarchy This Package Previous Nazxt Index

Class datatype.data_instream

Aatatypa.data

+-~---datatype.data_instream

public class data_instream
extends data

Constructor index

.« data_instream(InputStream)

Method index

> gigplav()
e thi gring ()
o type()

o yalue()
Constructors

‘« data_instream

public data_instream(InputStream ins)

Methods

@ type
public String type()

Overrides:
tvpe in class data

@ display

public void display() -

5/22/98 11:01 AM

lass datatype.data_instream tile:///C/WIN95/Desktop/New Folder (2)yHTML/datatype.data_instream.htm

Overrides:
display in class data

& toString
public String toString()

Overrides:
toString in class data

@ value

public InputStream value()

All Packages Class Hierarchy This Package Previous Nezt Index

of 2 5/22/98 11:01 AM

Package rel_op

of 1

A1l

Packages Class Hierarchy

Index

file:///Cl/WIN95/Desktop/New Folder (2)/HT. ML/Package-}el_op.htn

package rel op

Class index

constanttable
environment
frmAccess
join
llist_new
multiscan

paramaddress
plan

project
regex_fn

relational_op
scan

scheduler

5/12/98 5:00 PM

ass rel_op.select

21l Packages Class Hierarchy This Package

CY2VICGUS

file:///C/WIN9S5/Desktop/New Folder (2)/HTML.rel_op.select.html

Class rel_op.select

rel op.relational op

+----rel op.select

public class select
extends relational_op

Constructor index
- gelect(llist_new, llist, bool_op)

Method index

» gxggu;g()
» run()
o toString()

Constructors

< select
public select(llist new lstorelop,

llist lstomask,

ool op bo)

Methods

& execute
public datatable execute()

Overrides:
execute in class relational_op

@ run

public void runf()

5/22/98 10:58 AM

ass rel_op.select

@ toString

public String toString()

tile:///C/WIN9S/Desktop/New rolder (2)/H LML, rel_op.select.htm|

ALl PacXkages

Class Hierarchy

This

Package

Previou

Next Index

of2

5/22/98 10:38 AM

lass rel_op.constanttable file:///C/WIN9S/Desktop/New Folder (2)/HTML:rel_op constanttable.htm

Al]l Packages Class Hierarchy This Packace FPravicus Next Index

Class rel_op.constanttable

rel op.relational op

+----rel_op.constanttable

public class constanttable
extends relational_op

Constructor index
« constanttable(Vector)

Method index

» execute()
» run()

o toString()

Constructors

% constanttable

public constanttable(Vector vct)

Methods

@ run
public void run()

@ execute

Overrides:
execute in class relational op

@ toString

of 2 5/22/98 10:40 AM

ass rel_op.constanttabie tile://CI/WIN9S/Desktop/New Folder (2)yHTMLitel_op.constanttable. htm'

public String toString()

211 Packages Class Hierarchy This Package Pravicus Next Index

of 2 5/22/98 10:40 AM

lass rel _op.scheduler tile:///C//WIN95/Desktop/New Folder (2)/HI'MLirel_op.scheduler.ntm

21l Packaces Class Hierarchy This Package Previous Next Index

Class rel_op.scheduler

rel op.scheduler

public class scheduler

Constructor index

. scheduler()

Method index

» ¢schedule(String, sub_rel_op, int)
» run()

o schedule(String)

« setdone()

Constructors

» scheduler

public scheduler()

Methods

@ schedule

public DataInputStream schedule(String addr)

@ cschedule

public synchronized void cschedule(String addr,
sub_rel op sro,
int tn)

run

public void run{()

of 2 5/22/98 10:43 AM

lass rel_op.scheduler tile:s//CyWINS5/Desktop/New Folder (2)/H1ML:rel_op.scheduler.ntm’

@ setdone

public void setdone()

Bll Packages Class Hierarchy This Package Previous Next Index

of2 5/22/98 10:43 AM

ass rel_op.regex tn

511 Packages Class Hierarchy This Package Previous

Next

Index

file:s//C/ WINY S Desktop/ New Folder (£)/I11VL/Tel_op.regex_In.nim

Class rel op.regex fn

rel op.relational op

l
+----rel op.regex_fn

public class regex_fn
extends relational_op

Constructor index
«regex_fn(llist_new, String, Vector)

Method index

? gxeg!gg()
» run()
e !95 ;ring()

Constructors

+# regex_fn

public regex_fn(llist new lorelops,
String regex,
Vector loattr)

Methods

& execute
public datataple execute()

Overrides:
execute in class relational_op

run

public void run{)

5/22/98 10:44 AM

lass rel_op.regex_fn file:///Cl/WIN9S/Desktop/New Folder 2y HTML/rei_op.regex_fn.htm

@ toString

public String toString()

All Packages Class Hierarchy This Package Previous Next Index

5/22/98 10:44 AM

lass rel_op.environment

511 Packages Class Hierarchy This Package

file:///C/WIN95/Desktop/New Folder (2YHTML rel_op.environment.htm

Pravicus Next Index

Class rel_op.environment

rel op.environment

public class environment

Constructor index
- environment()

Method index

» closestream()

» getregistryvlocation()

o getscheduler()

« numstreams()

» openstream)()

» setregistrvliocation(String)

{Constructors

« environment

public environment ()

Methods

@ numstreams

public int numstreams ()
@ openstream

public void openstream()
@ closestream

public void closestream()

5/22/98 10:48 AM

lass rel_op.environment file//C/WINYS/Desktop/New Folder (2)/H 1 ML/rel_op.environment.htm

@ getscheduler

public =zcheduler getscheduler ()
@ getregistrylocation

public String getregistrylocation()
@ setregistrylocation

public void setregistrylocation(String addr)

All Packages Class Hierarchy Thiz Packags Previous Next Index

5/22/98 10:48 AM

ass boolean_operator.bool_false tile://C/WIN95/Desktop/ New Folder (2)/H 1 ML, boolean_operator bool_ralse.atm!

51l Packages Class Hierarchy This Package Fravicus Next Index

Class boolean_operator.bool false

boolean coperator.bocl op

+----boolean_operator.bool_false

public class bool_false
extends bool_op

Constructor index

~hool_false()

Method index

3 ﬂﬂ(lllst)

» killprocesses()
o run()

@ :gﬁtring()

Constructors

« bool_false

public bool_false()

Methods

& eval

Overrides:
eval in class bool_op

@ run

public void run()

5/22/98 11:02 AM

lass boolean_operator.bool_talse
Overrides:
run in class bool _op
@ killprocesses
public void killprocesses ()

Overrides:
killprocesses in class bool_op

@ toString

public String toString()

tile///CY WINYS/LesKtop/ New Folder (£)/H 1 IVIL/poolean _operator.nool_Laise.num:

Next Index

of 2

5/22/98 11:02 AM

Bibliography

L

Cheng Hian Goh. Representing and Reasoning about Data Semantics in Heterogeneous
Systems. PhD dissertation, Massachusetts Institue of Technology, Sloan School of
Management, December 1996.

Ricardo Ambrose, Phillipe Bonnet, Stéphane Bressan, and Jean-Robert Gruser. Three Light-
Weight Execution Engines in Java for Web Data-Intensive Applications. MIT Sloan School of

Management, March 1998

Marta Jakobisiak. Programming the web — design and implementation of a multidatabase
browser. Technical Report CISL WP #96-04, MIT Sloan School of Management, May 1996

G. Graefe. Query evaluation techniques for large database. ACM Computing Surveys, 1993.

Kofi Duodu Fynn. A Planner/Optimizer/Executioner for Context Mediated Queries. MIT
Sloan School of Management, May 1997

