
A Lightweight Multi-Database Execution Engine

by

Ricardo S. Ambrose

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

at the

Massachusetts Institute of Technology

June 1998

@ 1998 M.I.T.
All rights reserved

The author hereby grants to M.I.T. permission to reproduce and
distribute, publicly, paper and electronic copies of this thesis

and to grant others the right to do so.

.A i:7 /

Signature of Author

Certified by

Accepted by

Depart t of Electrical En ring and Computer Science
' / May 20, 1998

Prof. Stuart Madnick
SThesis Supervisor

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TFCH•NOtr'

JUL 1 41998
LIBRARIES

A Lightweight Multi-Database Execution Engine

Development of an Database Execution engine to deal with structural context differences
between data sources

by

Ricardo S. Ambrose

Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 1998 in partial fulfillment of the

requirements for the Degree of Master of Science in
Computer Science

Abstract

In this thesis, I describe the design and implementation of a lightweight multi database engine for
data intensive Web applications. The engine was designed to provide structured querying
(relational database access) to data from online data sources ranging from databases to semi-
structured documents. The implementation focused on allowing users to write queries, which
would interface with distributed data, sources on the World Wide Web. One of the major
problems dealt with was the automatic extraction and manipulation of data from distributed
sources, taking into consideration the structural differences and data stored in semi-structured
manner. The engine was implemented using an concurrent execution model that allowed much
higher network parallelism compared to earlier versions of the system.

Acknowledgements

My final year at MIT has by far been the toughest, most enjoyable and edifying year. Writing this
thesis allowed me to focus my skills on this project and realize that there are so many who
support me.

First of all I would like to thank the members of COIN research group. Professor Stuart Madnick
and Dr. Michael Siegel gave me the opportunity to join this group and were a real support
throughout. Dr. St6phane Bressan guided me from beginning to end, and was there to help with
any problem that I had. I also thank the other, current and past members, of the Team such as
Ahmed Ahzar, Tom Lee and Ozlem Ouzuner for being great a support.

My family, although many thousands of miles away, would always magnify the good and
downplay the bad. They prepared me to face these challenges and for that I give them all my
thanks.

My MIT friends were always there to help relax my mind, even when everyone was loaded with
work. I thank them for that, and also for helping me to focus when it was so easy to stray.

To my fiancee, Winnette McIntosh, through every day and night she has been there for me.
Supporting me, encouraging and caring for me have been her tasks throughout, and she has been
very successful at them all. I thank her for being here for me throughout this project and choosing
to be with me forever.

Finally and most importantly I thank God for everything, the opportunities that I have been given,
the ability to make good on those opportunities, the grace God has given me to live a life with
reference to him, the people he has put into my life and of course the strength to complete this
project.

Table of Contents
1 INTRODUCTION ... 6

1.1 ORGANIZATION OF THESIS 7

2 MOTIVATIONAL SCENARIO ... 8

3 DESIGN 14

3.1 SYSTEM ARCHITECTURE 14

4 THE QUERY EXECUTION ENGINE.. 16

4.1 THE G LOBAL PICTURE 16
4.2 Q UERY EXECUTION PLAN .. 17

4.2.1 Logical Operators ... 18
4.2.2 Physical Operators 19
4.2.3 The Buffered Data Streams between the Operators......................... 22
4.2.4 Execution 23
4.2.5 The System Scheduler 24

4.3 CONCURRENT EXECUTION........................... 25
4.3.1 Execution model 26
4.3.2 Non-Blocking Join 28
4.3.3 Relation Reuse 30
4.3.4 Parallel processors .. 30

5 THE PLANNER .. 31

5.1 THE GLOBAL PICTURE ... 31

5.2 SOURCE SPECIFICATION 32
5.2.1 H eader.. 32
5.2.2 Body.. 33
5.2.3 Capability 35
5.2.4 Views 35

5.3 O RDERING THE SOURCES 35
5.3.1 The Ordering Algorithm 36
5.3.2 Alternate Algorithm .. 37

5.4 T HE PLANN ING PHASE... 37
5.5 DYNAMIC OPTIMIZATION 39

6 IMPLEMENTATION DETAILS... 40

6.1 IMPLEMENTATION LANGUAGE.. 40
6.2 COMMUNICATION PROTOCOLS ... 41
6.3 DATA EXTRACTION 41
6.4 T YPING SYSTEM .. 41
6.5 PARSING AND COMPILATION .. 42
6.6 CODE STRUCTURE & API' 42

6.6.1 Relational Operators 42
6.6.2 Boolean Operators ... 43
6.6.3 D ata 44

7 SYSTEM EVALUATION AND CONCLUSION .. 45

7.1 RELATED W ORK.................................. 45
7.2 F UTU RE W O RK .. 46
7.3 CONCLUSION 46

List of Figures

WEB SITE DATA (YAHOO, NYSE, ZACKS) 2.1

DEMO INTERFACE .. 2.2

QUERY RESULTS .. 2.3

SYSTEM ACHITECTURE .. 3.1

QUERY PROCESSING STEPS .. 4.1

QUERY EXECUTION PLAN (GRAPHICAL) 4.2

SCHEDULER & CACHE .. 4.3

ALTERNATE EXECUTION MODELS .. 4.4

EXECUTION MODEL (AS IMPLEMENTED) 4.5

BALANCED JOIN DIAGRAM ... 4.6

THE PLANNER .. 5.1

NYSE WEB PAGE AND SOURCE (HTML) ... 5.2

SOURCE ORDERING ALGORITHM .. 5.3

BOOL OP CLASSES INHERITANCE TREE 6.1

DATATYPE CLASSES INHERITANCE TREE 6.2

Chapter 1

Introduction
The amount of data becoming available over the past few years has grown immensely and will

continue to do such in the future. One of the major factors behind this trend is the advance in

networking and telecommunication services, which allows the transfer of data between points to

be very fast. These advancements have incited a general use of the World Wide Web to transfer

information.

The data is readily available in many different forms from a variety of sources. Although the data

may exist there are often many difficulties when attempting to utilize the data stored in the

heterogeneous sources. How does one collate large amounts of data from a couple different

sources or small amounts of data from many sources? To answer this question possible data

sources must be identified. Web pages, databases (relational or not) and flat text files can all be

used as a store for data'. In many of these cases the data is in a semi-structured format, hence it is

not immediately clear how to automate the extraction of such data. The manipulation2 of the data

when extracted from the sources is equally important to the actual data extraction requirement in

such a process.

Unfortunately, the ability to exchange meaningful information has actually become more difficult

as the number of sources continue to steadily increase. Providing logical connectivity between

disparate sources is the base of the problems that we seek to address in this thesis. There is an

inherent bias in the implementation and design to accommodate for World Wide Web access.

This was because the hard problem lies within the attempt to extract the data from the semi-

structured sources as stored on the web combined with maintaining the logical connectivity

between the sources accessed. There is also the problem of time to access the data. When dealing

with large amounts of data from the WEB the issue of network delays becomes much more of an

issue.

In this thesis I seek to identify the major design decisions taken for the implementation of a query

execution engine. This takes a ordered list of sources to access with the and executes the sub-

queries to those sources and combines he result into a table to be presented to the user. Most of

L This list is not complete, as there are types of sources such as music files, news groups etc.
2 Querying the data to produce a table with the required result data.

the inovation in design and implementation went into he execution engine which was built to be

more robust, easy to migrate and which uses an execution model that takes advantage of the

network communication delays that are inherent in a web intensive application. In order to

demonstrate the effectiveness of the execution engine it was necessary to build a

planner/optimizer that is responsible for decomposing the user's SQL query into sub-queries and

for planning the order of execution for those queries.

1.1 Organization of Thesis

The thesis is divided into seven chapters and a set of three appendices. The second chapter gives a

detailed description of the motivation behind this thesis, specifically with a stock portfolio

application that gets it's information from various web sites. The third chapter gives an overview

of the different pieces in the system architecture for the execution engine and planner/optimizer.

Chapter four goes more into the details of the execution engine implementation, the reasons for

the implementation decisions and a discussion of the execution model being used. The fifth

chapter summarizes the planning algorithm that was implemented in the system. Details of all the

implementations decisions made to build the various components will be described in the sixth

chapter. The conclusion of this thesis and a number of ideas of how this system can be improved

and used to build other applications can be found in the final chapter. The appendices hold

various technical annotations; such as a simple installation guide, example specification files,

code statistics (size, use) and some results from a demo of the system, which can be referenced to

fully describe a few of the factors used in the actual implementation.

Chapter 2

Motivational Scenario

As an example consider a businessman who regularly updates his stock portfolio. Current and

historical information on the movement of the stock in the portfolio can be visualized in a

spreadsheet. To keep this up to date, the businessman must collect the relevant data for the stock

on a daily basis and then update the spreadsheet. The New York Stock Exchange (NYSE)

provides a very useful web site with pages for each of the companies trading on the exchange.

These pages hold information such as the last stock price and the company ticker. Zacks web site

provides, for most listed companies, the recommendation 3 (whether to buy, sell or hold) for the

companies' stock. Yahoo stock pages show the price, percentage and point changes, the volume

sold for the trading period and news headlines for each company. An example of the information

provided by all three sites can be seen below (fig 2.1 and 2.2) for Oracle Corporation.

Although the information is very easily accessible, the only way to get to this information is to

manually browse & click to load up the required pages. For a single company this may not be

very difficult but when dealing with a large portfolio, the manual gathering of the data becomes a

bit more tedious. An even graver problem occurs if the search set is not predefined to certain

companies. Below, two web-intensive data-extraction situations will be described and the

procedures, which can be used to automate this extraction, will be highlighted.

In the first example a businessman would like to get a list of companies, their tickers, last selling

price and any related headlines for which the stock price is less than $50 and with a

recommendation of 'buy'. This information is provided by the NYSE and Zacks websites as is

highlighted in the diagram below. He would have to go to each of the individual NYSE Company

web pages, if the stock price is less than $50 then add the company to a list. Using this list and the

Zacks web page determine which companies, on the list, meet the second requirement. Assuming

that it takes 30 seconds for a single page to load and the user record the required information,

given that there are over 1000 companies on the stock exchange, and two pages must be accessed

for each company, the entire process can take as long as a day. Hence although the information

can be very useful to a person deciding what stocks to buy, gathering this information carries with

it a very high cost. The problem exists not only in the business world but in other application

A figure which is used by traders to determine which stocks are good to buy.

domains. For instance travelers wanting information on flights, car rentals, weather etc.

Compiling this information from many different web sites may take a considerable amount of

time. In any situation where large amounts of data is being gathered from different sources or

many sources are being used to gather data we can find the time consumption problem embedded

within the process if done manually.

The second example is very similar to the first as it deals with stock information web sites, but in

this case the businessman has an investment portfolio with Tickers of a few companies along with

the last selling price, recommendation and any news headlines all stored in a text file formatted in

a manner which can be imported into a spreadsheet application. Manually updating this

information requires going to a couple of web sites and getting the pages specific to the

companies in the portfolio file. Although this is much more manageable than the example above,

it still can be automated as it is a monotonous everyday activity.

WEB Site Data

I~ITO
- NW Sack G4 P S

Lmý* w- -

ORACLE CORPPlfr~t yýj * yl

on. Ways i ~35 tmwuenrn IU6

Wit'skv rl W IN:9Mb

5 S1tki CIA "dFrsn No.

152 mi W :7l4 b"Payiaae DMI.

tkititaumtiat lmlm

!ak-jg ý

iak R" son Seim Wita 56 Pit: d Sim* 3

REmrtmidadc

St&k ice

tatis for 6 rtca~iEmi r ,2mm eyear GRT is ;dVeach

oM~iPme~l~klyvnset~ 2fe:T:a-x ~int sackaPanewiiease
lwe cas: ato east I stendT Ui

raMin&o ai trdhe Vt,trmx, aa
xac v~amsda cvct cshEaxer j

*.ato am o c dMO *Sawed rka Tdan * 2 at~I.

kwa re-- RV RSst e md wwad mtxx?.U; au
x~ear froma~a 'S~q 35ECS

TOP.PRICE GCRCL hasa4.=i 24 apr sh sx 7 N

im C= 1Pgfe. Vect UzsCM 00gab: ay
ak Saftm 4T=&m acxaidw a Etr ?-Pme freachs aci a-ite

amxPr ae o ased upm 13 weerk amaeragmes a; d= ax pun-a:, rWwk, MX= to erco ai=&ýC"
zame've ' !S1 mtmIa gmV I M.,Hntxe. ~ d= 11s;MI:b~rm i aaakfa3 xa9"ecr

S-1-_: 1

.·-. .:n . I """·I~

Figure 2.1

Solving the problems above requires a intermediary agent which will allow the user to formulate

a structured request, and then the agent will automatically extract the data from the required

sources manipulate the data to produce the desired results and then present this result to the user.

I

~srr~ ~jml

-' ~ -- ~~ -~- ~-~~~~

Figure

2.1

The automatic nature of such a system will definitely be limited by the varying structures of

stored data e.g. if one requires data from both a web site and an Excel spreadsheet to produce the

result of the request. The problems are even clearer when dealing with two different web sites,

where data may be stored in completely different formats.

Even though the sites can easily be seen as being tables (providing certain specific attribute)

automating the extraction still remains a problem due to the varying structures of the sites.

Wrapping the sources can hide these structural differences. By this, I mean using an object that

knows how to access a source and extract the information and can then provide information (e.g.

what attributes are provided) on that particular source. It's clear that the main information needed

here is the list of attributes provided along with the method of extraction, in this system this

information is stored in a source specification file. Consider the yahoo financial web site. Below

there is a extract from a specification file used to wrap this site. Highlighted are the means of

accessing the site (Method and URL) and also how the information must be extracted from the

site (Pattern); the make up of the specification file is explained in more detail in chapter 5.

<PAGE>
<METHOD> GET </METHOD>
<URL> http: //quote.yahoo.com/q?s=##Ticker##&d=vl&o=t </URL>
<PATTERN>

.*?\s+##LastTrade:(.*?)##\s+##Change:(.*?)#
#\s+##Changepts: (.*?)##\s{2,}##Changepct: (.*?)##\s+##Volume: (.*?)##
<small>

</ PATTERN>
</ PAGE>

Once the specification files are created the above example queries can be represented in SQL,

assuming the existence of the relations "nyse ", "finance" and "zacks ", as shown below.

QUERY_1
SELECT nyse.compname, nyse.stockprice, zacks.recommend
FROM nyse, zacks
WHERE nyse.ticker = zacks.ticker AND nyse.stockprice > 50 AND

zacks.recommend = 3

When executed this query gets all the company Tickers and associated company names from the

nyse web site. Using these Tickers, the system will access the zacks web site to extract the

recommendation for each company. This information is appended to the tuples with the company

name and Ticker. The system also uses the Tickers to access thefinance web site. The stock price

is extracted from this source and appended to the appropriate tuple. The result tuple is then

projected out to the user.

QUERY_2
SELECT nyse.compname, yahoo.price, yahoo.change, finance.headline
FROM nyse, yahoo, finance
WHERE ticker in ["IBM","ORCL","T","TNT","A"]4

In this query, the Tickers are bound to constant values. Hence when executed, the sources will

only be accessed for the tuples within the provided list of Tickers. Each source is accessed, as

above, to get the attribute that it provides. These attributes are all appended onto the result tuples

and then output.

This form of the query provides a common access to the available sources (relations). This

requires an access layer be put into place, which isolates the user from interacting directly with

the heterogeneous data sources. This layer will use the SQL query to determine which sources

should be used, what is required from each of the sources and how they should be accessed.

A sample application was built to show the functionality of the system. The interface (see below)

is a basic GUI, which allows the user to either type in an SQL (as above) directly, or to select

those attributes available from a set of sources. Once the query is entered the user can press the

'Execute' key which will launch the query compilation and execution. The results are then saved

in a user designated text file (also shown below) or sent to the GUI output.

'This can be extracted from a file given the name but for clarity within the example the list is shown.

The DEMO Interface

I hir1jrappe DemoIWE

SQL Statement
SELECT nyse.compname, yahoo.price, yahoo.change,

r Manual?

Options Execution

C Trace on

$ Trace off

Sources
nyse
yahoo
finance
fastquote

CONDITIONS

Ticker I
Price f [

nyse yahoo j fastquote finance
Ticker LastTrade Headline Date
Cname Change News
URL Changepct Time
Price Changeptr

Volume

Execute
, ,,

"" ~'~-~

`~` ̀ ~` "

Exit I

.-W ..
zocxj7,

-. - *#' *- "

-I -r

3/4,-1.06%,Astra Merck and Astra AB File Lawsuits Against Andrx J
3/4,-1.06%,1998 Eli Lilly and Company Award Presented to SIGA Ac
3/4,-1.06%,GM Earnings Drop 06 Percent
3/4,-1.06%,GM Earnings Drop 06 Percent in 1stQ
3/4,-1.06%,GM Earns $1.6B in the First Quarter
3/4,-1.06%,GM Earns $1.6B in the First Quarter
3/4,-1.06%,Astra Merck Offers Medical Community a New Internet R
3/4,-1.06%,Cos. Buy Sex Harassment Insurance
3/4,-1.06%,Can Doctors Make a Go of Their Own Managed Care Group
3/4,-1.06%,Experts: Drug Merger Merely Delayed

A, ASTRA
A, ASTRA
A, ASTRA
A, ASTRA
A, ASTRA
A, ASTRA
A, ASTRA
A, ASTRA

A, ASTRA
A, ASTRA
T, AT & T
T, AT & T
T, AT & T
T, AT & T
T, AT & T
T, AT & T
T, AT & T,
T, AT & T,
T, AT & T,
T, AT & T,
IBM, INTL
IBM, INTL
IBM, INTL
IBM, INTL
IBM, INTL
IBM, INTL
IBM, INTL
IBM, INTL
IBM, INTL
IBM, INTL

AB A
AB A
AB A
AB A
AB A
AB A
AB A
AB A
AB A
AB A

58

, 58
, 58

58
58

, 58
58

, 58
, 58
, 58

BUS
BUS
BUS
BUS
BUS
BUS
BUS
BUS
BUS
BUS

,122
,122
,122
,122
,122
,122
,122
,122
,122
,122

AT&T Begins Internet Telephony Trial In Atlanta For Releas
Infoseek Renews Premier Partner Relationship with Netscape
AP Financial News at 9:10 a.m. EDT
AP Financial News at 9:10 a.m. EDT
AT&T's Annual Meeting Wednesday May 20, 1998
Paul Kangas' Wall Street Wrap Up
1/4,+0.37%,Keynote Systems Audits Seinfeld for InternetPer
1/4,+0.37%,INTERNATIONAL BUSINESS MACHINES CORP (NYSE:IBM,
1/4,+0.37%,National Issue THE ENCRYPTION EXPORT DEBATE
1/4,+0.37%,Paul Kangas' Wall Street Wrap Up

1/4,+0.37%,Tivoli Fortifies Partnership with Compaq to Dev
1/4,+0.37%,IBM Top Sales Manager Quits
1/4,+0.37%,Wall Data Announces Quarterly Results to Confor:
1/4,+0.37%,Hitachi Semiconductor, America, Commits Documen
1/4,+0.37%,STC Announces $20 Million Equity Financing, App .
1/4,+0.37%,Norwest Venture Capital Invests $10 Million in

ADR,20
ADR,20
ADR,20
ADR, 20
ADR, 20
ADR,20
ADR, 20
ADR,20
ADR, 20
ADR, O
11/16,+0.21%,Infoseek Introduces 'E.S.P.' To Dramatically Improve Gener
11/16,+0.21%,Advanced Search Feature Lets Infoseek Customers Harness th
11/16,+0.21%,Paul Kangas' Wall Street Wrap Up
11/16,+0.21%,Preliminary AT&T 1998 Annual Meeting VotingResults
11/16,+0.21%,
11/16,+0.21%,
11/ 16,+0.2 1%,
11/16,+0.21%,
11/16,+0.21%,
11/16,+0.21%,
MACHINE
MACHINE

MACHINE

MACHINE

MACHINE
MACHINE
MACHINE
MACHINE
MACHINE
MACHINE
"• - --. ,

For HelpO prres R

· i

"

Chapter 3

Design

3.1 System Architecture
The System is essentially divided into two main components. These are the Compiler / Planner /

Optimizer and the Execution Engine (fig 3.1). The other identified pieces act as channels through

which data is put into the system. The focus of the thesis will be the execution engine as this is

where most of the effective innovation has gone. The planner / compiler was built to facilitate the

construction of a useful system. The engine is designed to be modular as possible in order to be

Figure 3.1
easily migrated from this version to future implementations. It can also be operated as a Java

library for querying various data sources which can be used by other applications.

The Query planner / optimizer compiles the user request5 into a query execution plan (QEP, see

fig 4.2 in section on Execution Model for more details). The plan is a tree of algebraic operators

and data access methods. Specification of the sources in the registry indicates what attributes each

5 The request can be made using an SQL query.

tsQuI

Execution Enginek---------------

ational Operators

ttern MatchingI

suit
,eam

SPEC. Piles

World Wide Web

source can supply. The user query indicates the required attributes. Combining the information

from the source specifications and the user query the planner generates the QEP.

The Execution engine is the system component that carries out the instructions held in the query

execution plan. It is based on a set of physical operators implementing the relational algebra. The

data access methods are also contained in this component. These access methods correspond to

the various types of data sources available, e.g. for semi-structured web sources the access

method consists of a network access client and a regular-expression based pattern matching

component. A sequential version of the engine had been implemented to validate the general

system architecture. But the concurrent model was be used to implement a final pipelined version

of the engine.

Using the information from the QEP, the execution engine executes the plan and returns the result

to the user. To do this the engine has been divided into three functional modules. These are the

'Net Access' module, 'Pattern Matching' module and the 'Relational Operators' module. All

access to data sources is requested through the 'Data Access' module, which, in the case of web

sources and flat files, will return a stream in which the result of the request will be accessible.

Using this stream, the 'Pattern Matching' module will then extract the attributes stored within the

stream. These attributes are collated as tuples, which are the base processing unit within the

system.

Chapter 4

The Query Execution Engine
The research associated with this thesis is focused on the creation of a framework that will allow

the effective and efficient execution of a query, which accesses multiple non-local data sources.

The engine will be designed to support read-only queries. The query execution engine is geared

toward dealing with the last step required for the processing of a query inputted to the system as

shown in the figure 4.1 below. These steps outline what is done from the input of a query, in

some pre-determined language, through the compilation and optimization of the query to the final

production of results (execution),

Query Processing Steps
Parsing

L *uery V lidation

View Resolution

I ,• Optimization

Plan C mpilation

EXECUTION

Figure 4.1

4.1 The Global Picture
The multi-database execution engine executes all the instructions required to produce a tabular

result. This is the system component which takes the Query Execution Plan generated by the

planner/optimizer, extracts the data from the required sources, combines this data in a format

described in the plan and returns the result as a table to the user. The web intensive nature of the

applications, for which the system will be used, would normally have a very high dependency on

the network operation. The time required to access web sites varies according to net congestion,

server speed and other factors that are not very easy to control. These delays may cause

unnecessary bottlenecks in an application that requires data from the web to produce a result. For

instance in our portfolio example getting information from the NYSE web site may take a lot

longer during working hours than in the night. Given that this information is required early on in

the first query, it will cause the processing to be slow. Even in normal operation, a request takes a

long time to respond compared to the local processing that needs to be done on that data. Hence

given the fact that servers may be able to handle multiple requests from the same source and also

that, in a single query, different sources may be required sending multiple simultaneous request

(network parallelism) will cut down the average wait required for a response. In an attempt to

take advantage of the time that is wasted in getting data from the web, the engine was built using

a concurrent model (see below). The reasoning behind this decision was to increase the effective

network parallelism. In this section the design of this module will be outlined.

Query Execution Plan
Graphical Representation

Softrea
of tuples Join

7 N.

Uulion

Scan

T T
0 0 *o 0 0o o 6

Figure 4.2

4.2 Query Execution Plan
The engine must have a set of instructions to operate. The Query Execution Plan (QEP) is a data

structure that identifies the operations that need to be executed in order to get the results of a

query. Plans are made up of a tree of relational operators with their required parameters. The

specific parameters would differ depending on which operator is being used. For instance the join

requires a condition and two data sources, whereas a project requires only a single data source

and no condition. The plan is compiled into a directed graph where a single node in the graph

represents each relational operator. The QEP structure, figure 4.2 shown above, has examples of

the relational operators that may be used. The connections (edges) within the graph represent data

streams, which allow data to flow in one direction. A single data table is produced by each

relational operator, all edges out of a node represent the same data table produced by the node.

Hence the shared data table resource will be used in single producer, multiple consumer

framework, as is the case with the union operator (below) which has two consumers. This

functionality becomes useful when a QEP requires that a particular set of data be accessed more

than once, for example a particular implementation of the OR construct (see 5.3). Because of the

concurrency built into the system, this forces strict synchronization rules to be put in place when

accessing the data table Planner/Optimizer module.

4.2.1 Logical Operators
The logical operators maps out the data model that the system uses, they are basically the set of

standard operators on collections of structured data. In the system operators such as selection,

projection, union and join are considered. The select operator takes a table of tuples and chooses

only those tuples that meet the required condition. The project operator constructs a new tuple for

each tuple in the table and puts only the attributes that have been identified in a projection list.

The join operator creates a new tuple for each pair of tuples from the two input tables that meet

specified criteria, the new tuple is constructed by concatenating the two input tuples. The union

operator merges two or more input tables. Finally the scan operator reads in the data from the

external source. As a strictly relational model is used the operators do realize duplicate

elimination. Operators or operations combined with the above mentioned operators, such as the

nest and unnest operators for nested data structures or path expressions are not considered in this

document. A minimum set of operations are available for the basic types of the model allowing

for instance the evaluation of arithmetic expressions and the evaluation of boolean comparisons

and boolean expressions to verify the conditions of a selection or a join. The type of application

examples that are being targeted require the use of aggregation functions, the implementation of

these operators will not be elaborated on in the thesis. The implementation of the system does

provide for the extension of the base operators.

4.2.2 Physical Operators

A QEP is a directed graph of physical operators. The execution engine evaluates the operators in

the QEP in some order determined by the execution model that is used. Each physical operator

has zero, one or two sub-trees ordered from left to right. The algebra of logical operators is

implemented by means of a set of physical operators. The correspondence between logical and

physical operators is many to many. For example a join followed by a selection in the algebraic

representation of a query is likely to be implemented by single join-project physical operator.

Furthermore, the join-project operator can be one of nested loop join or balanced join6. The

design of the physical algebra is guided by the necessity to provide the planner with a sufficient

set of operations for the evaluation of a query and by the attempt to provide the optimizer with a

sufficient range of options to construct an efficient plan.

The main operators implemented are the select, join and union all of which are combined with the

projection operator. Duplicate elimination is explicitly performed by a separate operator and it's

use is controlled by system preferences which can be set by the user. join-submit, submit and

regex are the last operators which are implemented in the system.

The submit operator

The class constructor for this access operator is of the following form:

Submit (Sourceaddress, Sourcetype)

Sourceaddress: A string representation of the absolute address from where the required data has

to be extracted.

Sourcetype: The type of data source being accessed.

This is the first of two access operators. Both access operators send requests for data, located at

sourceaddress, to the system scheduler (see section 4.2.5). The response from the scheduler is a

handle to a data stream, which holds the result of the request - from this point on, all data within

the system needs to be transferred as sets of tuples passing through the buffered data streams

6 This join is based upon the loop-join but doesn't give outer or inner loop preference. It is used mainly
within the concurrent operation of the program. See details in implementation algorithms.

between operators (see section 4.2.3). The data stream is put into a new tuple, as the only

attribute, and passed along to the buffered data stream.

The ioin-submit operator

JoinSubmit (Sourceaddress, Sourcetype, Subtree)

Sourceaddress: A parametrized address that has to be completed by one or more attribute values.

Sourcetype: This is same as in the submit operator.

Subtree: This is the data structure for the sub-tree, which gives the set of tuples which are used in

this operator.

This operator is used when the address of a data source depends on the value of a particular

attribute, e.g. the stock information for IBM can be accessed from the following web address:

http://qs. cnnfn. com/cgi-bin/ stockquote? symbols=IBM

The address includes the value of the Ticker attribute IBM and is only a partial address without

this attribute. The attributes needed to construct the complete address are accessed from another

relation that is gotten from the Subtree. For each tuple in the Subtree relation a new address will

be constructed and a request sent to the scheduler. Once the resulting stream returns it will be

appended onto the appropriate tuple as a new attribute and the tuple is put on the buffered data

stream.

The regex operator

Regexfn (RegularExp, AttrList, Subtree)

RegularExp: A string parameter that holds the regular expression used in the pattern matching

process to extract data.

AttrList: The AttrList gives a list of all the attributes that the system extracts from the input

stream and the types of these attributes. The attributes are represented by the index into

the regular expression.

Once a stream result from a source is passed on from one of the access operators, the regex

operator will take this stream and extract the attributes stored in the stream. The input stream is

taken from the last attribute of the incoming result from the Subtree execution. Using the pattern

matching techniques with the RegularExp, this operator produces a list of attributes, which are all

appended to the tuple from which the attributes used to complete the address for the request were

taken.

The duplicate operator

Duplicate (KeyList, Subtree)

KeyList: This is a list of the key attributes in the relation. The attributes are represented as

indexes into their position in the relation.

The duplicate operator is actually used to remove all the duplicate entries from the results, which

are produced by the Subtree. It will initially compare only those attributes from the KeyList and if

there is a match then remove the second tuple being compared. The tuples are removed by simply

not propagating up the tree. Although there is still constant propagation up the tree, this operator

must have an internal buffer of all the tuples that it has processed, so that comparisons can be

made with new tuples.

The select operator

Select (ProjectionList, Conditions, Subtree)

ProjectionList: This is the list of attributes that have to be projected from the relation. These

attributes will be involved in the join conditions of the query and those in the

final projection list of the query.

Conditions: A set of boolean operations applied to the attributes of the relation. Each attribute

is replaced by an index into the relation.

The select node is used to apply conditions to intermediate results. Only the set of tuples that pass

the condition will be propagated up the tree.

The join operator

Join (Projectionlist, Conditions, Subtreel, Subtree2)

ProjectionList: This is very similar to that of the select, but the attributes are indices from both the

incoming relations.

Conditions: A set of join-conditions on the relations. If no conditions are given then the result of

the join will be a full cross product of the two relations.

For each pair of tuples in the two relations, gotten from Subtreel and Subtree2, the opertaor will

check to determine whether the join condition will hold. If it does hold, then concatenating the

two tuples forms a new tuple, which is then put onto the result stream for the join operator.

The union operator

Union (Subtree, Subtree)

This is used to get the union (concatenation) of the results obtained by executing the two

Subtrees.

4.2.3 The Buffered Data Streams between the Operators

The branches between two nodes represent a stream of tuples, which is buffered to compensate

for the difference in speeds of incoming and consumed tuples. The basic model for this buffer

stream is a producer consumer monitor. In the system it is implemented as a datatable structure

which gets the tuple from the producer and delivers it to the consumer. Normal processing

semantics for the execution engine can either be seen as a 'get_next' from the operators or a

'put_next' from the perspective of the datatables. In the traditional definition a stream can only be

consumed once, this poses problems if it has multiple consumers that all need all the tuples or is

used by a join with no memory. Hence the datatable has a mechanism to keep track of where

each consumer has reached and then only destroy the stream when all the consumers have used

the full set of tuples.

4.2.4 Execution

Once the plan has been compiled into the graph of operators, each node (thread) is started. Hence

the role of executing the different operators is then left mostly up to the scheduler for Java

threads. When an operator is active it will get the next tuple(s) from its data source(s), if no tuple

is available then the operator will wait to be notified by the data table when one does come

available. Once the tuple is available the operator will perform whatever operation it is supposed

to carry out then, if there is a resulting tuple it will be added to the outgoing data table attached to

the operator.

A Concurrent design allows the data to be streamed to the root of the graph, as each node can

process the data whenever that data is ready. There is no need to wait for the bottleneck problem

of collating all the results before proceeding to the next level of execution. Each relational

operator is a thread that can be executed whenever the scheduler runs it and there is data available

from its data source.

The data access routines have been structured so that full advantage can be taken of the data

streaming capabilities provided within the concurrent design. Access to flat files and web sites

hide the slow i/o time in the processing time. The stream of data is ready for use as soon as the

first line of data is read from a file or web page. To facilitate the continued flow without the

introduction of pipes, the data access routines for files and the web simply return the raw data,

with no parsing done. Pattern matching extraction from the strings is one aspect of the

functionality of the scan operator. Where the attributes are extracted from the string and put

together to form tuples and then data tables. There is one special operator built to deal with

compiling a table from multiple web pages. For instance the NYSE has a page with trading

details for each of the companies on its list. This join-submit operator will access the pages for

each company, extract the required information and add it to its result table.

Relational databases restrict duplicates within tables. This is a very significant requirement, as the

system is being developed in a relational model and hence has the overhead of checking for

duplicates. Projection of tables is the only relational operator that may cause duplicates. I have

chosen to unify the project and join into a single join and similarly with the project and select into

a single select. Hence duplicate elimination can be used after each of those relational operators.

This choice did not significantly affect the implementation, rather simply required one less

traversal of the result table per select or join operator, as in the normal case after one of those

operators the project would traverse the result table to get the required attributes.

4.2.5 The System Scheduler

Limited machine resources require that a monitor be used to ensure that the number of active data

access thread does not threaten to use all the available resources. This necessitated the

development of a scheduler that controlled the total number access threads that could be opened

simultaneously. Access operators can only make request for data through the scheduler. Once this

request is made the scheduler will assign a new accessthread to the operator's request. The thread

will only be started if the number of active requests is below some pre-determined number. In

addition to being a system that controls the use of machine resources, this functionality can

actually be used as a tuning device for the system. Given that the trade-off is between network

parallelism and thread processing overhead, changing the maximum number of active threads can

affect the both these factors and then observations can be used to determine what sort of

dependency the total execution time has on the two factor, and hence find the best setting. The

accessthread will initialize the data access for the request and deliver the resulting stream to the

operator that originally submitted the request to the scheduler. The diagram below (fig 4.3) shows

the scheduler's operation with the addition of a cache. All the data that is read is saved on the

local disk and the stream handle returned to the access operator is actually an output stream from

the local file. Whenever data is requested, the accessthread will check the cache registry to

determine whether that address has been accessed before and hence the data could be found in the

cache.

Scheduler & Cache

Figure 4.3

4.3 Concurrent Execution
Even though the system was operated on a single-processor machine the model used to

implement the concurrency was geared toward leveraging the ability for network parallelism and

hence reducing the average network access time. Although the average access time may be

reduced there is a definite overhead in the scheduling of various threads. Hence the sequential

version will require less local processing. However the concurrent model is fairer in that it

produces early results as soon as possible and is able, in this task, to avoid bottlenecks created by

data sources with low data rates (e.g. "slow" Web sites). As most of the time is spent on the

network retrieving data, the higher network parallelism (as per requests) should result in an

improved performance (although this is bound by the network bandwidth and the servers' ability

to handle multiple requests. No special effort has been made to explicitly control the concurrency.

The task is left to the Java thread scheduler. However, several elements in the plan, such as the

choice of an operator or the size of the buffered data stream will influence (in a distributed

manner as opposed to a centralized scheduling) the concurrent behavior. For instance, the

systematic choice of buffers of size 1 synchronizes the waves of single data production.

Figure 4.4

4.3.1 Execution model

The execution model being used is the iterator model described by Graefe in [Gra93]. This model

is characterized by a pipelined production of results. In this section, three possible execution

models7 that could all be used in this system will be outlined the chosen model will be justified.

For reference to the above diagrams, the light shaded blocks represent active operators.

Model (1)

In the sequential version, each operator is equipped with three methods: openO, close(), and

get_nexto, to initialize, finalize and request the production of data. The sequential version is set

oriented as it performs all the entire process (initializing, requests and finalizing) as a block

operation.

open()
getnext()

getnext()
close()

7 The first two models were used in previous versions of the implementation.
Model(1): grenouille verl.0, verl.1
Model(2): Grenouille ver2.0

At each stage of processing each operator produces the entire resulting set of tuples. This is stored

and then presented to the parent operator for processing. The graphical representation of the

model shows only the access node being active and that the only requests generated from this

node will be sent to the network. This model requires the least processing overhead of the three.

Model (2)

Inter-operator parallelism is basically pipelining, or parallel execution of different operators in a

single query. In this second model there is synchronous pipelining of data up a branch in a tree,

hence the name vertical inter-operator. Hence there are more operators working concurrently, but

it is always limited to a single line from root to leaf (there are now splits), this is shown by the

three stripped nodes in the model (2) diagram above. To achieve the concurrency in this model

the high level operations (get_next(), open(), close()) from the sequential model are interleaved

for the different relational operators. Using this model definitely increases the possibility of

parallel network request but at the cost of higher processing overhead.

Figure 4.5

Model (3)
The final model is the one that is implemented in the system. The concurrency goes both

vertically and horizontally. Each operator is thread that will start to execute once the engine

begins executing the QEP. This allows interleaving of lower level instructions, hence increased

parallelism. As shown in the diagram, the fact that all the operators can execute concurrently

maximizes the number of active access (leaf) nodes, where the higher network parallelism is

m - - -m

Model (3): As Implemented

....

manifested. The main difference between the three models is the number of operators that can be

active at any one time, and hence the level of network parallelism facilitated.

4.3.2 Non-Blocking Join
Elimination of possible bottlenecks is one of the major concerns within the system. The chosen

model does well to hide the effect of slow network responses, by sending a stream of results up

the tree. Any bottleneck within the system will nullify the effect of this average network access

speedup. The traditional nested-join algorithms all favor one of the input data steams. If the

favored data stream stems from a slow web site this will cause a delay. To alleviate this problem

we used a concurrent balanced-join, which opportunistically uses the next available tuple

produced by either input stream.

Consider the cross product of sets of tuples, this can be represented as a two dimensional array, as

in the diagram below, with one set (n tuples) on one axes and the other set (m tuples) on the other

axes (m and n not necessarily known). Once a new tuple comes, it can be identified by it's

position in the 2-dimensional array, given information on the position of the last entry. The next

step would be to join this tuple with all the tuples from the other set, which the operator has

already received and is ready to process. Hence at any point in time, with kl tuples from one set

and k2 tuples from the other, the operator would have completed the join operation on that subset

of tuples. From the diagram the shaded portions show the grouping which is made for a particular

sequence of tuple arrivals. The main idea would be to take the incremental subsets created after a

new tuple is added, produce an entry (as described below) for them which would describe the

bounds of the subset, and then do the join on all the subsets.

Figure 4.6

In the diagram the two tables in the join are represented on the two axes of the matrix referred to

as row and column axes. Whenever a row tuple becomes available, the new subset available for

processing is represented by the new set of horizontal stripes. The matrix after a row tuple is

available, has been placed directly next to the old available matrix whereas the matrix formed by

the entrance of a new column tuple is seen below. At each stage the coordinate of the incoming

tuple is recorded along with whether it was a row tuple or a column tuple. This information is

sufficient to describe the new set of tuples available to be processed and hence once these tuple

designations8 are queued there will be a serial ordering of tuple pairs that can be used within the

main join algorithm.

To take advantage of the serialized ordering and still allow tuples from either source to enter the

join in any arbitrary order, the algorithm needs to be implemented in a parallel mode. Three

parallel processes will be needed to: 1) get the tuples from the first source, 2) get the tuples from

the second source and 3) use the ordering and available tuples to carry out the actual join. The

algorithm for each process is shown below. There is one shared data structure that holds the

serialized entries, this is a queue with an additional method used to view the last entry without

a A data triplet containing (row number, column number, row/column)

removing it (implemented as a pop followed by a push, while a lock 9 is held on the queue). The

first two processes use this queue to determine what has come before and then place a new entry,

the third process takes the entries from the top of the queue to carry out the traditional join

algorithm on that subset of the tables. The implementation of the balanced join is just as efficient

as a normal join operation, as the same combinations of tuples are compared. The only significant

difference is the use of three processes rather than a single process, which add a little overhead,

but given the nature of the incoming data, this overhead is much less than the possible wait

because of input bottlenecks.

4.3.3 Relation Reuse
Another operation that the execution engine will provide is the reuse of the stream of results of a

sub-tree of operators. This can be very useful if a one operator requires the results form the same

sub-query that another of the relational operators in the QEP also uses. Instead of redoing the

query, the results can simply be shared between the multiple consumers. This function is

implemented within the buffered data stream (datatable). The QEP provided should ensure that

appropriate objects are physically linked as in the diagram above. Once this is done, the

consumers are 'registered' with the datatable and will all have access to all the tuples coming into

the datatable.

4.3.4 Parallel processors
There have been no experiments with parallel implementations of Java in which the threads can

take advantage of multiple processors. The standard Java abstract machines do not necessarily

take advantage of the multiple processors available on a machine nor do they usually take

advantage of the system native threads (as for instance the new Sun Solaris Java Thread Library).

Only one process can access the data structure at any one time.

Chapter 5

The Planner
Although the focus of the thesis was the execution, there was a missing connection between the

user supplied SQL query and a query execution plan. Hence, a compile/planner/optimizer had to

be developed to fill this gap. In this section, I will outline what the planner is required to do and

how the choice of design was able to meet with these requirements. As in the other components

of the system, the design is highly modularized to allow for easier updates to the functional

pieces.

5. 1 The Global Picture
The planner takes the user query and produces a query execution plan. The user query can

actually be in the form of an SQL or constructed from options selected in a graphical interface, as

described in chapter 2. The planner ensures that a QEP, which, if processed according to the API

definitions of the execution engine, will produce a result that adequately, satisfies the initial

query. The planner is divided into three integrated modules. These are the compiler, the planner

and the optimizer. Although their functional differences are very distinct the

In addition to the information fed in from the user query the planner also requires access

information on the various sources that will be used to answer the query. This data is encoded

within the specification files (referred to as SPEC files) which will all have entries in a registry.

Both the user query and the required SPEC files are compiled before the planner can use the

information. Using the compiled data structures produced from the SQL query and the SPEC

files, the planner tries to determine a possible ordering of the sources and then, with this ordered

list of sources, generate a suitable QEP with the appropriate graph of physical operators.

Planner

Figure 5.1

5.2 Source Specification
Before a source can be used by the system, information such as the type of source, the source

address a means of data extraction, a list of provided attributes and their types must be put into a

SPEC file. The type of source can vary from web pages to local flat files to relational databases.

Each of the source types require a particular set of access procedures hence the necessity of

having the source type as one of the parameters stored in the source specification. In addition to

the type, in the case of web pages the access method is also a necessary piece of information as

Web Sites use a combination of POST and GET access methods in the HTTP protocol. As a

guide to the user and for initial validation checks within the planner, the source description will

also have a list of the attributes that are provided. The SPEC files have a tagged-based syntax to

make it simple to identify the various parts of the specification description both for the system

administrators who will be writing the SPEC files and to simplify the SPEC file compiler. They

tagged components are neatly cased into the header and the body of the Specification.

5.2.1 Header
The header contains the general information for each source. Most of the information is not

actually used in the planning or execution but is there for identification and registry purposes. The

<HEADER> tags clearly identify the region of the file that represents the SPEC file header. The

name of the relation is also the name of the system file in which the information is stored. The

string between the <RELATION> tags always identify the relation. The example SPEC file below

User
(S(

describes the nyse (New York Stick Exchange) web source that was used in the example from

chapter 2. Another aesthetic parameter is the href, which holds the base address of the main'o

source stored within the file. Given the automated data extraction a lot of information from web

pages may be discarded, so this main address can give the user a start point to do further

investigation or it can be used by the administrator when updating the information stored in the

SPEC file.

<HEADER>

<RELATION> nyse </RELATION>

<HREF> http://www.nyse.com/ </HREF>

<SCHEMA>

Ticker:string, Compname: string, URL:string

</SCHEMA>

</HEADER>

The last and probably most important parameter in the header is the schema. All the attributes

that the source provides or requires is stored within the schema. Types are necessary to facilitate

comparisons and certain types of operations" (e.g. arithmetic) that may be carried out by the

execution engine. All the attributes in the schema are represented by the name and type separated

by a colon.

5.2.2 Body

The second section of the SPEC file is conveniently called the body and is demarked by the

<BODY> tags. This section is made up of all the information that is necessary to allow the

planner to make a QEP. The body is made up of a set of pages. Each page has a method, a URL

and pattern. In the case of pages with POST methods there may also be a content parameter.

Within the body section all attributes are referenced with the attribute name surrounded by two

pairs of # characters, as seen with Ticker, Compname and URL in the example below.

to Some SPEC files may describe a variety of sources, it's up to the SPEC file author to determine which
source can be referenced as the main source.
" Data within the system is all used within the data package which requires a type in order to create a
particular data object

<BODY>
<PAGE>

<METHOD> GET </METHOD>
<URL>

http://www.nyse.com/public/listed/3c/3cfm.htm
</URL>
<PATTERN>

##Ticker:(. *?)##.*?<BIG>##Cname:(. *?)##</BIG>
</PATTERN>

</PAGE>

</BODY>

The URL gives the access location of the source. The pattern is a regular expression that is used

to extract the attributes from the source. Each attribute that needs to be extracted is named along

with the regular expression with which it must be matched. This regular expression is applied to

page source. The diagram below shows the nyse web page from the specification file and the

source (HTML) of the specified nyse web page and the location of the attributes extracted.

I

NYSE Web Page

9e E& Yrew Go -ommurkaXor Hep

Back or,.,:d Reload Home Search Gude Prrt Secunty to:

1 'Bokdmarks 4 Netsejlhtp.//www nysecomipubic/isted/3ci3cm htm

SInernet Lookup r" Newcod

AOL.. America Online Inc.
__A America West Airlines
ABI American Bankers Insurance Group
AEP American Electric Power, Inc.

Page Source
... h•,,uc e cC Nesa eE i

C1JSHIEE*Rbttp://.Bnnr-izacaconfMEAIl e.1~Z - <I ;el.oeafpZtrolrwf819:C ? ~.· ·.

(A : .oEI(IEA>ipty mbac.cam9ABR~f <BISG>Imbah IncTiBII>

U 30EJihtp :e//w,. a.h.com WiZfA> <II>Gmabasaador kparentai Intc.</IQ>
(ItQfLl"nt)SIEF atp/ww hess.combABfIC</A . ,, .` . BIG~oaezed& Rea. CorporaPtioM/IBIG
0 iHE-"rtp: /nwww. ameren. com">AE BI...m.c<G er CrPoration</Ie>
Im 1lENMhrttp://vw.aol.cam">OL<fA>..<BIG>aerica Online nc.</BISG>

<) MEF=t"http ://rw.americavest.com'>AVJ</> <BIG.America Iest Airlinec3BIG>
,<a HIlnrttp://Tr.ahbig.com>ABI</A G<BIG>Amertcan Bankers Insurace Group</B
<I HXRErzhttpt/m/.aep.comAEP<./....... . .. B .. <IG>merican rlectric Power, Inc.</IG>
<Ak 1-ErPittp:/Jawericanexpress.com>AXP<JA> <BIU~aerican EXpress Company <1
<a HUMBEr=ttpd:/Uw.atri.czom'

t
fG<A> <.BIG>aerican Financial Group</BIS>

a(A H mhrttw://vwaIc.cOauc'SC< A ... ,. . . <BIG>Americam General Corv.<2IG9>

5.2.3 Capability
Due to the nature of some of the data sources, the planner doesn't guarantee full relational

capability. For example in the yahoo SPEC file (see appendix C) the schema indicates that the

Ticker is one of the attributes found on this site, but this attribute is actually required before the

site can be accessed. All attributes that are required are used in either the URL or content

parameters within the body, they cannot be inferred from the schema. The capability describes

which attributes it provides and which it requires.

5.2.4 Views
Specification files can be used to represent a view on a set of data sources. In this mode, the

pages within the body can be from any set of sources, once the union of all required and provided

attributes are listed within the schema. Views are especially useful when used with sources whose

capabilities compliment each other, so that all the attributes in the schema can be provided by at

least one of the pages described within the SPEC file's body. The views are also useful when the

user wants to combine a set of regularly used sources.

5.3 Ordering the Sources
The capability and requirements of the sources implicitly determine the order in which the

selected sources can be accessed. This module determines if such an execution ordering is

necessary and returns the ordered list of sources, if such an ordering can be found. In essence this

module carries out the capability check and ordering of sources as one operation. The main idea

is to treat all pages (as defined within the SPEC files) as individual sources with a list of attributes

it requires and a list of attributes provided. Starting with the set of required attributes from the

query (combination of attributes in the result and those needed to handle the query conditions),

the system would construct the list of sources by checking for those that supplied the required

attributes. Query conditions normally simply adds to the initial list of required attributes, but in

the case of an assignment constraint 2 the condition statement then becomes a source. This source

will be represented as a constant data source in the execution engine, with tuples being made up

from the values used in the assignment. During the ordering and plan generation phases these

constant sources are treated as normal sources but with higher preference for their use, so that

they will be definitely be chosen once needed.

1 An attribute being set equal to a constant or needing to be in list of constants

5.3.1 The Ordering Algorithm
The ordering algorithm uses a beam search, which doesn't guarantee the best solution but has

many of it's own advantages. Implementation of the search is very simple as it is modeled after a

Depth First Search (DFS), with the major difference being the fact that at any one point in time

there are n (where n is the size of the beam) active nodes that can be extended. The beam search

is a heuristic based search which uses a distance to goal measure to determine the best n extended

paths with which to continue the search. Heuristics can be tuned to make the choice of sources be

more plausible.

The Source Ordering algorithm is shown below (fig 5.3).

Figure 5.3

5.3.2 Alternate Algorithm
The beam search does not give a optimal solution. To achieve such a solution a shortest path

algorithm could be used. This will ensure that only sources required to solve the query will be

accessed; in the present system, according to what source relation is being used in the join-submit

may cause extra, unnecessary web sites may be accessed. The shortest path algorithm should also

guarantee a solution once a path exists. In some cases, with a sufficiently small beam the

solutions may actually be removed from the beam, because they are not among the best beamsize

paths at that point.

5.4 The Planning Phase

Once an appropriate list of data sources is produced, the plan generation module takes the initial

set of required attributes, the query conditions and the resulting list of sources and uses them to

Algorithm:

Order (Beam B)
While no complete path found in B

NewP = new empty set of paths
For each path p in B

ExtendP = p.extendpaths
NewP = Union(NewP, ExtendP)

For each path p2in NewP
If p2.betterthan(B.pathAt(0))

B. setpathAt(p2, 0)
While ((i<bmsize) && (p2.betterthan(B.pathAt(pos))))

Shift B.pathAt(pos) down one position

Return first path in B that gives a complete path

Algorithm:
Betterthan(Path P)
Checks to determine which path is better using predetermined criteria. In this application
the number of attributes still to be provided along with the kind of source (WEB or
CONSTANT) is used to determine which is better.

Algorithm:
Extendpath()
Uses the sources that have not already been used in that path to determine which can supply
attributes still required. If a source supplies a set of required attributes, it is used to extend
the path. The new node will have one less unused source and only the attributes still
required after using the source. The algorithm returns a set of extended paths.

construct the final QEP. This is done by traversing the list of sources and creating the appropriate

set of relational operators needed to extract the attributes required from that source and to use

those attributes as they are need within the entire query execution. At each phase of the plan

construction the attributes extracted thus far are compared with those needed to apply a condition,

if sufficient attributes are available the condition is placed at that position in the plan.

Considering the portfolio example, the ordering module will output the following set of sources.

Source(Condition, [79], [])

Source(www.nyse.com/public/listed, [79,78,77], [])

Source(www.cnnfn.com/, [81], [79])

Source(fastquote, [80], [79])

Source(yahoo, [82, 83, 84, 85, 86, 87], [79])

In essence, given that each of the sources which have the data required to answer the query need

the Ticker before they can be accessed, the first source accessed must be one that supplies the

Ticker. For this example the condition sets the Ticker to particular values, which thus made the

condition a source (see 5.3). The condition source was then put as the first in the access order.

Plan constructed for query_2
project (true, true, true, true, false, true, false, false, false)

regex_fn(Perl5Pattern@lcefbb)

join-submit ((quote.yahoo.com/q?s=, 0, &d=vl&0=t])

select (true, true, true, false, true)

regexfn(Perl5Pattern@1cefbb)

join-submit ([fast.quote.com/fq/quotecom/headlines?symbols=,
0,&key=&mode=NewsHeadlines])

regex_fn (Perl5Pattern@lcf03e)

join ([(=,0,0)1)

join-submit ([qs.cnnfn.com/cgi-bin/stockquote?symbols=, 0,])

regexfn (Perl5Pattern@lcef32)

submit (www.nyse.com/public/listed/3c/3cfm.htm)

constanttable ([IBM,ORCL,T,TNT,A])

5.5 Dynamic Optimization
Whether the engine is to be used for ad hoc queries, i.e. queries which are not know ahead of time

and therefore need to go through the entire process of compilation, planning and optimization,

and execution, or queries which can be compiled, planned and optimized in advance (queries

which are systematically reused such as, for instance, the example query which monitors the

activities of an investment portfolio), the availability of dynamic optimization mechanisms is

critical for the system to be able to react to unpredictable and uncontrolled behaviors and

performances of the network and sources. Every user on the Web has experienced slow or non-

responding servers and networks being randomly congested. Given that many of these

phenomena are largely unpredictable, provision must be made for allowing the system to react

dynamically.

A very simple way to reduce the system susceptibility to these random events is to eliminate

unnecessary access. As sub-queries and requests may not be fully determined at planning-

optimization time, factoring may not be optimum in the QEP. The caching system implemented

in the data access module in the execution engine. A more general solution to the problem of

unexpected behaviors of the network and sources is the dynamic reorganization of the QEP. In

many cases sources are not-responding, taking into consideration that useful work towards

answering the original query can still be done with the remaining sites, a partial answer could be

returned using a form of query scrambling. A partial answer is twofold: it contains a incremental

query that can be later processed in order to obtain the complete answer, as well as some data that

could be obtained from the available sites using an auxiliary query.

Chapter 6

Implementation Details
As in the design the implementation focus is put on the modularity of the implementation so that

in each package extenuation can be easily made. This approach is useful when trying to enhance

the range of allowable queries that can come into the system. One of the main differences

between this system and the existing wrappers is the emphasis on parallel execution. At each

stage of the implementation modules were written in sequential and parallel modes. This helped

determine in which modules full advantage could be taken of the innate parallelism. In this

section I will outline some of the completed modules in this phase of the project.

6.1 Implementation Language
The entire system implementation was done in JAVA. The primary object was to develop a

lightweight database execution engine that could be integrated into the COIN system and several

other architectures including client software on personal computers. The fact that Java's abstract

machine is almost transparently supported for most operating systems allows for an

implementation that is very portable. The various Java APIs, JavaBeans, JDBC, RMI, allow the

smooth integration of the code into many system configurations. The garbage collected memory

management that is built into Java allowed for a much faster implementation time but was a

definite problem when dealing with very large data sets that require the use of many objects. This

is one pitfall to the choice of Java but the effects will be out-shadowed by the other benefits of

using Java. The availability of lightweight threads is probably the main reason for Java being the

implementation language of choice. Concurrent data access and processing are the primary means

of reducing bottlenecks that may develop when trying to import data not stored on the local disk.

This could be done on in another language such as Perl or C but the processes that these

languages launch will cause too much of a drain on the processor. Java provides a very good mix

of lightweight threads and synchronization primitives that greatly simplify the implementation of

concurrency. All of the implementation was done using Semantic Visual Caf6. The choice of

Caf6 over other programming environments was basically due to the fact that it offered the ability

to compile the Java code into Native Win32 DLLs or into a Win32 executable.

6.2 Communication Protocols
All communication to remote sources was done via the Hypertext Transfer Protocol (HTTP) or

File Transfer Protocol (FTP). They were accessed using the base java.net package and an

imported HTTPClient package downloaded from the WWW. The communication medium that

was provided by these protocols was general and widely used enough to facilitate the integration

of many data sources into the system.

6.3 Data Extraction
The wrappers will have general multi source access. An access interface between the classes that

require access to data sources and the actual data access routines for the particular sources is

necessary for a seamless implementation. This enables new data sources to be easily appended to

the system, with no change to other modules. The access routines implemented for this thesis

include flat file, http and ftp access classes.

Accessing the data from the sources is the first step to data extraction. Once the file is in main

memory (or as it is being read) a relation must be constructed to store the data. In the semi-

structured data sources (such as web pages) the string read during the access must be broken up

into tuples and fields. The data to do such is extracted by using pattern matching routines.

6.4 Typing System
An object relational model is being used to implement the typing in the system. All data that

flows through the system is instantiated as one of the type classes offered by the wrapper engine.

The datatypes used are implemented using a datatype package (see appendix). The system wraps

data into an object, with one method that indicates what data type it is. The base types are

integers, floats and strings. These are sub-classed to represent the different methods that are

necessary to access the values of the data, e.g. data_str_const is a subclass of data_str. In the

example, the subclass is a constant, which returns a str when as it's value (the actual string is a

attribute of the datastr_const class). This implementation extends to the attribute extraction from

a tuple, e.g. data_int_att is a class that returns an attribute of type int from a tuple. The position of

the attribute in the tuple is stored in the data_int_att class, hence when given a particular tuple the

attribute is extracted, wrapped as a data_int object and returned. Arithmetic operations are also

dealt with in the system. It is actually implemented quite similarly to the attribute extraction. In

the case of arithmetic operations a class such as data_float_calc will store the type of operation to

take place and the data to be used. This recursive structure conveniently allows for nested

operations. The value of float is calculated only when needed, to calculate the value the object

will be given the tuples required just as in the attribute data type. New data types are easily added

to the system by including the definition for the base class and the required subclasses.

6.5 Parsing and Compilation

The first phase in the planner/compiler is to parse the query and the specification files for the

relations identified in the query. The two parsers were actually implemented very differently.

Java Compiler Compiler (JavaCC) automatically generated the SQL parser with a limited

grammar used as input. JJTree, the tree building preprocessor which is used with JavaCC, enables

the generation of a compilation tree that can hold the components of the SQL that are needed. The

compilation tree is converted into an internal SQL data structure13 , which is used throughout the

planning. Specification files have been written in many different formats. The structure and

content has changed as the system developed. The final design of the SPEC files was simple

enough to write a parser from scratch. This compiler uses the same regular expression (pattern

matching) technology as in the data extraction. As with the SQL compilation, there is a SPEC

data struture that holds all the relavent parameters needed from the specificaion files.

6.6 Code Structure & API's

All of classes implemented in the system were grouped within packages of similar classes. In this

section, I will describe the three major packages built for the system.

6.6.1 Relational Operators

The system groups all data into tuples and then into tables which can be manipulated to get the

final result required from a query. The relational operators enable the manipulation of the tables.

Specific tuples can be extracted or specific attributes from a selected tuple can be combined to

build new tables. Five basic operators from relational algebra have been implemented. These are

Scan, Select, Project, Union and Join. Extensions of these operators, such as multi-join, are

implemented to make more efficient the execution of complex plans.

A plan consists of a sequence operators acting on one or more data sources. The plans are

constructed a tree of relational operators. The degree of each node in the tree depends on the type

of operator situated at that node e.g. select will have a single branch, join will have two branches

and the multi-join can have any number of edges. Within the plan each edge represents a link

between two relational operators. Whereas during the execution phase the edges represent the

stream of tuples (data table) resulting from the child operator and being used as input to the

parent. All the leaf nodes on the plan hold scan operators.

6.6.2 Boolean Operators
The where clause in an SQL query must evaluate to true or false. The conditions involved in the

clause can be broken up into various specific elements. The Boolean Operators package is used to

represent those specific elements and provide an effective way of constructing and evaluating a

conditional statement. The base operators (true, false) always return their named values (true,

false). Another set of operators (and, or, not) use the results from other operators to determine

their value. Hence a condition can be described as a tree of Boolean operator. This structure lent

itself to a few optimizations in the experimental concurrent implementation, as not all sub-trees

(sub conditions) had to be evaluated. Even though evaluation of all children would be started, in

some cases the result for an operator could be determined by simply using the fastest returning

result.

bool_op == const_boolop I staticbooleval norm_bool_op

const_bool_op == true I false
norm_bool_op == not boolop I and bool_op bool_op I or boolop bool_op

staticbool_eval == static_op data data

static_op == >1=>1 < = I<=

" A class developed for the express use of this system.

6.6.3 Data
This package is primarily used for the containers it offers that makes manipulation of single and

multiple pieces of data more manageable. The Hierarchy of classes can be represented as an n-

span tree. As will be evident in most of the other packages that have been implemented, only

classes that are leaves of the inheritance tree can be instantiated. All inner nodes are abstract

classes. The major class in the package is <data.class>.

Data Classes Inheritance Tree

Abstract

Non-Abstract

Container: this class is the base for implementation of the tuple and datatable classes. A tuple is a

container for attributes and a datatable is a container for tuples. Hence all access to data stored in

the system will be via a container. This demands that the container allow for fast searches and

updates. Additions to the container should take constant 0(1) time, whereas searches should be at

least as efficient as a linear O(n) time search. These crude requirements can be meet by many data

structures. Two data structures have been used in the current implementation. The initial one is

the Vector class offered in the java.util package, this class provides the functionality of a

dynamically growing array. The management of memory required to increase the size of an array

is abstracted away from the user. The other method used was a standard linked list. This structure

gave a better handle on adding and removing elements from the list. Querying the list took O(n)

time. Although with the specific use of the list, the cost of access should be 0(1) as all in the

general case most or all elements of a table or tuple are accessed sequentially.

Chapter 7

System Evaluation and Conclusion
The execution engine described in this document promises to be a very useful lightweight tool

that can be easily used as a stand-alone application or incorporated into a bigger system such as

COIN. It is very effective in providing answers to a very broad range of SQL queries and has

been successfully used to demonstrate a portfolio upkeep application (see chapter 2). The next

step would be to extend the system into a fully multi-database engine.

The use of the updated system in coin is a relatively simple process, if only the bare features are

required. All API calls can be adjusted to accept the format of the query, which comes out of the

mediator, and a procedure can be written to make the output into a tabular HTML format. In the

current COIN implementation no provision is made for streamed results to be output from the

execution engine, so this fact may require adjustments made to the COIN top layer. Once all the

APIs are properly set and the system made capable to accept a stream rather than all the results

together, there should be a black box installation of the multi-database engine into COIN. This

installation can actually be functionally divided; i.e. Initially the system can be integrated as a

Web Wrapper, and hence be called by the ODBC drivers or current multi-database engine to

carry out web access queries. The next phase would be integration as a multi-database engine,

which requires the addition of more types of sources and protocols for accessing the data. The

planner would need to be altered to account for the fact that sources may be able to accept

queries, hence the source capability has more direct influence in planning.

7.1 Related Work
During the development of this thesis work, a couple very interesting and similar projects have

been identified. The Disco project at Dyade and the WinMWrap project at the University of

Maryland are both developing prototype mediation networks, which encounter the problem of

getting a structured query-processing engine to provide the basic functionality for the

construction of mediators and wrappers.

The Disco research is very similar to this project. They are developing the system to study

dynamic optimization, partial answers and scrambling, i.e. what can be done during query

execution to change the plan if one or more sources is not responsive. Their system runs in a

sequential execution mode.

WinMWrap is also very similar. They need to use the system as a backbone for source selection

research. It is uses OQL rather than SQL and has an 00 data model. Their execution engine is

also runs in concurrent mode.

7.2 Future Work
There are a number of improvements that can be made to the current implementation to improve

the execution and range of functionality. The major changes are the migration to a totally multi-

database mode and secondly, use of OR statements in query condition and arithmetic parsing for

the planner. An accessdata package was written to deal with getting the data into the system. This

package has classes that deal with Web access and local file access. Classes need to be added to

deal with additional types of sources, such as ODBC sources. This change doesn't require much

effort, but it goes hand in hand with improvements required in the planner, so that queries, which

can be handled at the other sources, are sent to the sources in and SQL format. If the sources use a

different query language, the accessdata class written for the source should be able to convert the

SQL to whatever type of query is required.

The second set of improvements deals specifically with the planner. Given that the focus was on

the execution engine, the currently available planner wasn't implemented in a manner that would

guarantee the best QEP solution. An improvement would be to use a shortest path algorithm for

the implementation. There could also be some changes made to factors being considered when

comparing two paths. Currently the choice of sources is based on which decreases the number of

required attributes by the highest amount. Taking the cost of accessing the data from the source

into account would improve the efficiency of the resultant QEP. Allocating a cost to this access

requires a cost model and an extension of the algorithm to include the costs.

7.3 Conclusion
Overall the implementation matches up very well with the initial requirements of the system and

in some ways surpasses those expectations. Given the inconsistency of WWW access it is very

difficult to measure the execution improvements over past implementation, but there is a definite

observable difference for queries that require a lot of data from web sites. After this thesis, I hope

to help in any improvements being made to the system, as I do believe that the software can be

very useful to very large range of applications.

Appendix A: User Guide

Installation
All the required class files along with the source code are stored in a fixed directory structure in a

zip file on the installation diskette. The software has not been compiled into an executable due to

the unavailability of certain libraries which were used for the implementation. Using the Semantic

Caf6 development environment the user can exeute the demo by simply typying:

java demo

A base interface is being built which will allow the user to execute this program even if Caf6 is

not available. Hence once Java is installed on the machine the above command can be executed.

Specification Files
All specification files must be put into the registry. The syntax is very similar to the HTML

tagged syntax.

Creating

The specification file

- Find a source that you want to wrap (this can be a single page or a set of pages).

- Determine what attributes can be extracted from the source, using these attributes, along with

their type (you specify), put together the schema for the specification file.

- For each page determine the regular expression needed to extract the attributes. Put this

regular expression in the pattern section of the page.

Place the name of the attribute along with the expression required to extract the attribute,

separated by a colon, between two pairs of #'s

e.g. ##Ticker:(.*?)##

- Save the file as whatever relation name you like, something that represents the source being

accessed would be better. Thhe file should be saved yourrelation_name.spec in the

registry.

Using

Once the specification file is placed into the registry directory, which is a directory called registry

in the directory to which the software is installed, then it can be accessed by the system, simply

using the name of the spec file in an SQL statement.

Appendix B: Code Statistics

The first 8 packages listed below have been implemented within the system, and the last 2 were
downloaded from the web. All other packages used are core Java classes.

PAKG.Pbi.Piae Coe Dscito

200

bool_op

datatype

SQLParser

SPECParser

planner

myutil

rel_op

HTTPClient

OROMatcher

accessdata The interface between the engine and the data
sources that it must access. Each class in the
package allows access to a particular type of
data source. There is one main class
'data_access' that the system calls which
activates the correct object.
Boolean Operators which when evaluated
return true or false. These operators have
logical and comparative types. New
comparative operators can be appended if
following the format of the bool_It or bool_eq
operators. Additional logical operators can be
added following the format of the bool_and or
bool_not operators.
All data that passed through the system is
contained within a specific datatype object.
These objects represent all the types that the
system can handle. Each class represents a
different data type. Using any of the classes as
a base, new data type classes can be added to
the system.
JJTree and JavaCC automatically generated
this set of classes. Once generated the classes
were amended so that the stored information
could be extracted from the parse tree.
This package is made up of a single class
SPECRegex which uses the regular expression
package to parse the specification files.
This package has data structures required to
store and manipulate source information and
SQL attributes. The central planning
algorithms are held in the class planner,
This contains all the classes that are used
throughout the system but do not lie within
one of the functional descriptions of the other
packages.
Relational Operator classes are held in this
package. Once again,each operator is
represented by a single class. There are a
couple classes which are used to store the
relational operator which are only used within
the rel_op package.
Used for net access using HTTP, FTP and
other common protocols. This packages was
downloaded from ...
Allows Perl regular expression in Java.

12

14

23

1

3

3

16

n/a

n/a

3

0

0

0

9

0

3

n/a

n/a

800

700

1360

120

1400

200

1200

n/a

n/a
rffa
n/a

Appendix C: Specification Files

Fastquote Specification

<HEADER>
<RELATION> fastquote </RELATION>
<HREF> GET http://fast.quote.com </HREF>
<SCHEMA> Ticker:string, NewsURL:string, Headline:string </SCHEMA>
</HEADER>

<BODY>
<PAGE>

<METHOD> GET </METHOD>
<URL>

http://fast.quote.com/fq/quotecom/headlines?symbols=##Ticker##&key=&mod
e=NewsHeadlines </URL>

<PATTERN> <TD>\s*<FONT\sSIZE\=\-1>##Headline:(.*?)##
 </PATTERN>
</PAGE>
</BODY>

Yahoo Specification

<HEADER>
<RELATION>yahoo</RELATION>
<HREF>GET http://quote.yahoo.com</HREF>
<SCHEMA> Ticker:string, LastTrade:string, Change:real, Changepts:real,
Changepct:real, Volume:integer </SCHEMA>
</HEADER>
<BODY>
<PAGE>

<METHOD> GET </METHOD>
<URL> http://quote.yahoo.com/q?s=##Ticker##&d=vl&o=t </URL>
<PATTERN>

<ahref="/q\?s=.*?&d=t">.*?\s+##LastTrade:(.*?)##\s+##Change:(.*?
)##\s+##Changepts:(.*?)##\s(2,}##Changepct:(.*?)##\s+##Volume:(.*?)
<small>

</PATTERN>
</PAGE>

</BODY>

New York Stock Exchange (nyse) Specification

<HEADER>
<RELATION> nyse </RELATION>
<HREF> GET http://www.nyse.com/ </HREF>
<SCHEMA> Ticker:string, Cname:string, URL:string, Rec:string,
Last:string </SCHEMA>
</HEADER>
<BODY>

<PAGE>
<METHOD> GET </METHOD>
<URL> http://www.nyse.com/public/listed/3c/3cfm.htm </URL>

<PATTERN> ##Ticker:(.*?)##.*?<BIG>##Cname:(.*?)##</BIG>

</PATTERN>

</PAGE>

<PAGE>
<METHOD> POST </METHOD>
<URL>
http://www.ultra.zacks.com/cgi-

bin/ShowFreeCompRepUSAToday?ticker=##Ticker##
</URL>

<PATTERN>
Current Average Recommendation: <font

color=#4003a6>[\s]*##Rec:(.*?)##[\s]*<\/font>
</PATTERN>

</PAGE>

<PAGE>
<METHOD> GET </METHOD>
<URL>

http://qs.cnnfn.com/cgi-bin/stockquote?symbols=##Ticker##
</URL>

<PATTERN> >last.*?##Last:(.*?)##<\/FONT> </PATTERN>

</PAGE>

</BODY>

Finance Specification

<HEADER>
<RELATION> finance </RELATION>
<HREF> GET http://www.moneynet.com/ </HREF>
<SCHEMA> Ticker:string, News:string, Time:string, Date:string </SCHEMA>
</HEADER>
<BODY>
<PAGE>

<METHOD> GET </METHOD>
<URL>

http://www.moneynet.com/MONEYNET/coNews/newsHeadlines.mhtml?SYMBOL=##Ti
cker## </URL>

<PATTERN> <FONT SIZE=-
1>\s*##Date:(.*?)##\s+##Time:(.*?)##\s+\s+</TD>\s+<TD
VALIGN=BASELINE>\s*##News: (.*?)##\s*<\/TD> </PATTERN>

</PAGE>
</BODY>

Appendix D: Query Results

11. 9 eutD od2dIS

5 e Etr hetFm li

ADR, 20
ADR,20
ADR, 20
ADR, 20
ADR, 20
ADR, 20
ADR,20
ADR,20
ADR, 20
ADR, O

3/4,-1.06%,Astra Merck and Astra AB File Lawsuits Against indrx
3/4,-1.06%,1998 Eli Lilly and Company Award Presented to SIGA Ac
3/4,-1.06%,GM Earnings Drop 06 Percent

3/4,-1.06%,GM Earnings Drop 06 Percent in 1stQ

3/4,-1.06k,GM Earns $1.6B in the First Quarter
3/4,-1.06%,GH Earns $1.6B in the First Quarter
3/4,-1.06%,Astra Merck Offers Medical Community a New Internet R
3/4,-1.06%,Cos. Buy Sex Harassment Insurance
3/4,-1.06%,Can Doctors Make a Go of Their Own Managed Care Group
3/4,-1.06",Experts: Drug Merger Merely Delayed

T, AT & T, 58 11/16,+0.21l,Infoseek Introduces 'E.S.P.' To Dramatically Improve Gener
16,+0.21i,Advanced Search Feature Lets Infoseek Customers Harness th
16,+0.21%,Paul Kangas' Wall Street Wrap Up
16,+0.21%,Preliminary AT&T 1998 Annual Meeting VotingResults
16,+0.21%,AT&T Begins Internet Telephony Trial In Atlanta For Releas
16,+0.21%,Infoseek Renews Premier Partner Relationship with Netscape
16,+0.21A,AP Financial News at 9:10 a.m. EDT
16,+0.21%,AP Financial News at 9:10 a.m. EDT

16,+0.21%,AT&T's Annual Meeting Wednesday May 20, 1998
16,+0.21%,Paul Kangas' Wall Street Wrap Up

HINE ,122 1/4,+0.37%,Keynote Systems Audits Seinfeld for InternetPer

HINE ,122 1/4,+0.37ý,INTEPNATIONAL BUSINESS MACHINES CORP (NYSE:IBM,
HINE ,122 1/4,+0.37%,National Issue THE ENCRYPTION EXPORT DEBATE
HINE ,122 1/4,+0.37%,Paul Kangas' Wall Street Wrap Up
HINE ,122 1/4,+0.37%,Tivoli Fortifies Partnership with Compaq to Dev

iINE ,122 1/4,+0.37%,IBM Top Sales Manager Quits

HINE ,122 1/4,+0.37%,Wall Data Announces Quarterly Results to Conforc
HINE ,i122 1/4,+0.37%,Hitachi Semiconductor, America, Commits Documen
HINE ,122 1/4,+0.37%,STC Announces $20 Million Equity Financing, App
HINE ,122 1/4,+0.37%,Norwest Venture Capital Invests $10 Million ins

- F l

ASTRA

ASTRA

ASTRA

ASTRA

ASTRA

ASTRA

ASTRA

ASTRA

ASTRA

ASTRA

58
58
58
58
58
58

11/

11/

11/

11/
11/

11/

& T,
£ T,
& T,
& T,
& T,
& T,
& T,
& T,
& T,
NTL
:NTL
MTL
NTL
NTL
NTL
NTL
NTL
NTL
NTL

T, AT
T, AT
T, AT
T, AT
T, AT
T, AT

T, AT

T, AT
T, AT
IBM, I
IBM, I
IBM, I
IBM, I
IBM, I
IBM, I
IBM, I
IBM, I
IBM, I
IBM, I

58 11/
58 11/
58 11/

BUS MAC
BUS MAC:
BUS MAC
BUS MAC]
BUS MACI
BUS MAC]
BUS MACI
BUS MAC]
BUS MACI

BUS MACI

FoN K Fl

I -

-- ------ ---

Appendix E: Main Packages

In the following pages you will find the Java Documentation created for the packages in the
system. Each package is made up of a set of classes and each class is made up of a set of methods
and attributes. The list of classes in the package will be shown and then selected classes with the
method and attributes will be shown.

The packages shown are as follows:

Relational Operator Package (relop)

Boolean Operator Package (bool_op)

Data Access Package (accessdata)

Data Package (datatype)

PacýKage Index

API User's Guide Class Hierarchy Index

- ~;; ,, . .--,-- - ---------- ------ ~ · ·

Package index

Other Packages

* package accessdata
* package boolean operator
* package datatype
* package mask
* package myutil
* package rel op

5/12/98 4:59 PN

Ille.illL~lW INY)/UeskrlopllYew roluer ~~II~IIVIL, pa~KLi~r;~ .;

file'///Cl/WIN95/Desktop/New Folder (2)/HTML Package-accessdata.htm

All Packaaes Class Hierarchy Index

package accessdata

Class index

* data access
* web naie

5/22/98 12:33 PM

Ickage accessdata

of I

iss accessdata.data access lle://i/ WIN9/iesk-top/New tolder (2)-1n iL, accessaama.aaaaccess.ntmi

All Packa•es Class Hierarchy This Package Previous Next Index

Class accessdata.data. access

Class accessdata.data access
accessdata.data access

public class data_access

Constructor index

Sdata access(String)

Method index

F et data()
* egetdata()

Constructo:rs

-' data access

public data access(String address)

Methods

* getdata

public DataInputStream getdata()

Sget_data

public String get data()

0 done

public boolean done()

..

All Packages Class Hierarchy T-is Package Previous Next Index

5/22/98 12:33 PM

file:///Cl/WIN95/Desktop/New Folder (2)/HTML/accessdata.web page.html

All Packages Class Hierarchy This Package Previous Next Index

Class accessdata.web_page
accessdata.webpage

public class web_page

Constructor index

Sweb page(String)

Method index

* get page()
S2Pet pare(String)

* getpage(String)
" main(String[])

Constructors

a web_page

public webpage (String address)

Methods

0 main

public static void main(String arg[])

* getpage

public DataInputStream getpage(String args)

* get_page

public static String get_page(String args)

* getpage

5/22/98 12:36 PM

Class accessdata.web page

file:///C /WIN95/Desktop/New Folder (2)/HTML/accessdata.webpage.html

public String get_page()

All Packages Class Hierarchy This Package Previous Next Index

5/22/98 12:36 PM

Class accessdata.web page

2 of 2

file:///C'/WIN95/Desktop/New Folder (2)/HTML'Package-booleanroperator.htm

All Packaces Class Hierarchy Index

package boolean operator

Class index

* bool and
* bool eq
* bool false

* bool steq
* bool like
* bool It
* bool Iteq
* bool not
* bool op
* bool or
* bool true
* int bool op
* str bool op

5/22/98 12:32 PM

ickage boolean_operator

lass boo lean operator.bool_and file:///CV/WIN95/DesktopiNew Folder (2)/HTMLbooleanoperator.bool_and.htmi

Overrides:
run in class bool op

0 killprocesses

public void killprocesses()

Overrides:
killprocesses in class bool op

All Packag:- Class Hierarchy Th. P:ckac. Previous Next Index

5/22/98 12:31 PMof 2

file:///C;/WIN95/Desktop/New Folder (2)/HTMLibooleanoperator.bool_eq.htmi

.A!li Packaces Class Hierarchy This Packace Fr-ev ous Next Index

........- -- - --··- -··-

Class boolean_operator.bool_eq
boolean operator.bool op

+----boolean operator.booleq

public class booleq
extends bool op

Constructor index

bool ea(data, data)
. bool ea(data int, data int)
Sbool ea(data_str, data str)

Met:hod index

.eva(llist)

. killDrocesseso
" run()
. toStrin()

Constructors

,a booleq

public booleq(data str left,
data str right)

. booleq

public bool eq(data left,
data right)

A booleq

public bool_eq(data Int left,
data Int right)

Methods

5/22/98 12:31 PM

iss booleanoperator.bool_eq

Package datatype

PI1 Packages Class Hierarchy Index

-------·--·--·------ --- ----------------~~~l~~~~~~

package datatype

Class index

* data
* data float
* data float att
* data float const
* data instream
* data int
* data int att
* data int const
* data str
* data str att
* data str const
* datatable
* llist
" tuple

5/12/98 4:58 PN

XIIC:IIILi/ WIIY7~,1Ur;~l(LUPIIUt;w I~VIIl~L \L·/lllllrlW1 OCI\4~~~urrrurJ~ru rlcr~

ass datatype.data file:'//C'/WIN95/DesktopiNew Folder (2)/h 1 ML/datatype.data.htmi

.All Packaces Class Hierarchy This Packace Prevlious Next Index

Class datatype.data
datatype.data

public abstract class data

Constructor i ndex

Method index

* disolav 0
a toStrin 0()

Constructo:)rs

4 data

public data()

Methods

0 type

public abstract String type()

* display

public abstract void display()

* toString

public abstract String toString()

All Packalges Class Hierarchy This Package Previous Next Index

5/22/98 11:01 AM

tfle///l'/ wrvsiNv:JuesKiOp/iNew ro ucr y-rl ±vi uyI.uaiu-L•.m

All Packages Class Hierarchy This Package Previous Next Index

Class datatype.datatable
datatype.data

i
+----datatype. datatable

public class datatable
extends data

Const:ru ctor i ndex

Sdatatable0
,datatable(int)

datatable(String)

Method index

a addtuple(tuple)
a cwritefirstO
* disply()

Sgettupleat(int)
Sgotostart()
.hasMoreElementsO
b nexttuple0
* setdone()
* sizeO0
* toString()

* writeto(DataOutputStream)

Constructors

datatable

public datatable()

.4 datatable

5/12/98 4'58 P.

Class datatype.datatable

tile.///CI/WIN9/LDesICtopiNew tolaer L))/I I tyvi aaarype.aatatawoe.nu

public datatable(String strdata)

'i datatable

public datatable(int n)

Methods

* size

public int size()

0 type

public String type()

Overrides:
te in class data

0 addtuple

public void addtuple(tuple t)

0 hasMoreElements

public boolean hasMoreElements()

0 setdone

public void setdone()

* gettupleat

public t:uple gettupleat(int pos)

* gotostart

public void gotostart()

* getpos

public String getpos()

* cwritefirst

public void cwritefirst()

0 nexttuple

public tuple nexttuple()

0 toString

public String toString()

5/12/98 4:58 PN

Class datatype.datatable

2 oft'3

tile:'///L WIN3/DUesk-top/New toliaer L)l/ri NILa aatarytvpe.uaLaLauia..i

Overrides:
toString in class data

0 display

public void display()

Overrides:
display in class data

* writeto

public void writeto(DataOutputStream dos)

All Packages Class Hierarchy This Package Previous Next Index

5/12/98 4:58 P•

Class datatype.datatable

3 of 3

lass datatype.tuple file:///Ci/WIN95/Desktop/New Folder (2)/HTML/datatype.tuple.htm

All Packages Class Hierarchy This Package Previous Next Index

Class datatype.tuple
data:ype.data

+----datatype. tuple

public class tuple
extends data

Constructor index

.tunle()

S•lu•p(String)
ltulle(tuple)

NMet:hod i ndex

* addelernernt(data)
* displavO
* elementAt(int)
*. etDisplavStrin 0()
a numattributes()
* size()

a toString()

Constructors

S tuple

public tuple()

, tuple

public tuple (tiule orig)

o tuple

public tuple(String sdata)

5/22/98 10:59 AM

file:i//C /WIN95/Desktop/New Folder (2)/HTML/datatype.tuple.htm

Methods

e size

public int size()

i type

public String type()

Overrides:
type in class data

0 toString

public String toString()

Overrides:
toString in class data

* getDisplayString

public String getDisplayString()

* display

public void display()

Overrides:
display in class data

O addelement

public void addelement(data d)

* elementAt

public data elementAt(int pos)

* numattributes

public int numattributes()

All Package. Class Hierarchy Th.3 Package Previous N,:ext Index

5/22/98 10:59 AM

lass datatype.tuple

file:///C/iWIN95/Desktop/New Folder (2)/HTML datatype.data_int.htmi

All Packages Class Hierarchy This Package Previous Next Index

Class datatype.data int
datatype.data

+----datatype.data int

public abstract class data_int
extends data

Constructor index

,data into

Method index

.value(llist)

Consm tructors

4 dataint

public data int()

Met:hod.s

0 type

public String type()

Overrides:
=ygp in class data

0 value

public abstract int value()

* value

5/22/98 11:00 AM

-- -....- -.... - -......

.rur~·rru· ·ur·r· rrr·ur ·~·~·rr~urrurrwu·~ruwwu~·r~-rurr~ur~·r~u* u^ur~ru~ru ··ru-·uru~· ·~uu~-rrrrurrr uuurrurruur~ur-rrurur· rrw ··*·~uurru-u·r u*rrurrurr-u· r·~~u~r· rr·r

ass datatype.data_mt

lass datatype.datajint file:///Ci/WVhN95/Desktop/New Folder (2)/HTML/datatype.data int.htm;

public abstract int value(llist lotup)

......................

Al1 2ackages Class Hierarchy T'hils Packacre Previous Next Index

5/22/98 11:00 AM
of 2

[ass datatype.data int att file:///C/WIN95/Desktop/New Folder (2)/HTMLdatatype.data int att.htm

21ll .Packaces Class Hierarchy This Package Previcus Next Index

Class datatype.data int att
datarvype. data

I
+----ciata-yce .data int

+----datatype.data int att

public class dataintatt
extends data int

Constructor index

:, ata int att(int, int)

Method index

* disinav()
a toStrin()
Svalue()

* value(llist)

Constructors

J dataintatt

public data int att(int tn,
int an)

Methods

0 value

public int value (l i st lotup)

Overrides:
value in class data int

* value

5/22/98 11:00 AM

file:,'//iC/WIN95/Desktop/New Folder (2)/HTML datatvpe.data_ ntatt.htmi

public int value()

Overrides:
value in class data int

0 toString

public String toString()

Overrides:
toString in class data

0 display

public void display()

Overrides:
display in class data

All Packagýes Class Hierarchy This Packag" e Previcus Next Index

5/22/98 11:00 AM

ass datatype.data intatt

of 2

file:///C /WIN95iDesktop/New Folder (2)/HIML1 datatype.data mnt const.ftm'

All Packaaes Class Hierarchy This Packaae Previous Next Index

Class datatype.data int const
datatvDe.data

+---- -,ta .d a int
+---- datatype.data_int_const

.... -, -- ---

public class data_int_const
extends data int

Constructor indlex

,data int const(int)

Method index

disnlavO(
, toStrin 0()
SvalueO()

. value (llist)

Constructors

3 data int const

public data int const(int intval)

Methods

1 value

public int value()

Overrides:
value in class data int

* value

5/22/98 11:00 AM

ass datatype.data nt_const

ass datatype.data_ nt_const file.///C /WIN95iDesktop/New Folder (2)/HTML datatype.data_mt_const.html

public int value(llist lotup)

Overrides:
value in class data int

* toString

public String toString()

Overrides:
toString in class data

* display

public void display()

Overrides:
display in class data

All Packagaes Class Hierarchy This Package PreviCou Next Index

5/22/98 11:00 AM

tlle ;il/U W IN Y/ esctop/New -oltaer (,i)lni ivlL, aatarype.uatamnstream.ntml

aLjl P-ackaoes Class Hierarchy Thils Packace Previous Next Index

Class datatype.data instream
.- a d• :a

I
+----datatype.data instream

public class data_instream
extends data

Constructor i ndex

, data instream(InputStream)

Method index

u disolav()
9 toStrino()
S1vne()

Constructors

" data instream

public data instream(InputStream ins)

Methods

0 type

public String type()

Overrides:
tZpe in class data

0 display

public void display()

5/22/98 11:01 AM

ass datatype.data_mstream

file:i//CA/WIN95/Desktop/New Folder (2)/HTMLidatatype.data_instream.htm

Overrides:
display in class data

0 toString

public String toString()

Overrides:
toString in class data

0 value

public InputStream value()

All Packaaes Class Hierarchy This Package Previous Next Index

5/22/98 11:01 AM

__YW___YUIU··IY____·YUYIYU ·YYIIU··~-WYUI-IUUIWL· UUIIU·*·~·Y~.~-YLWYUIIIUU ·W)·Y·YIYIU·YIIUYIUUIUUI·CUUIWYIYU·_-UU~ ·YUYU~---IUUYY.·YI

lass datatype.datainstream

of 2

file:///CV/WIN95/DesktopiNew Folder (2)/HTML.•Package-rel _op.htn

All Packaces Class Hierarchy Index

package relop

Class index

* constanttable
* environment
* frmAccess
* join
* Ilist new
* multiscan
* paramaddress
* plan
* project
* regex fn
* relational op
* scan
* scheduler
* select
* submit
* union

5/12/98 5:00 PM

Package relop

file:///C/WIN95/DesktopiNew Folder (2)/HTML rel_op.select.htmi

All Packaces Class Hierarchy This Package Previous Next Index

Class rel_op.select
rel op.relational op

+----relop.select

public class select
extends relational op

Constructor i n-dex

select(llist_new, Ilist, bool_op)

Method index

a execute()

a toString()

Conr:structors

,o select

public select(list new lstorelop,
llist Istomask,
bool op bo)

NMethobd

0 execute

public datatable execute()

Overrides:
execute in class relational op

W run

public void run()

5/22/98 10:58 AM

~`LY`~""""-"-'-'·-Y·······~-YUU·)UI

ass rel_op.select

of 2

ass relop.select fl±e:///C/WIN95/iDesktop/New f~older (2•L vIL, rel_op.select.nftm

* toString

public String toString()

- - - - - - - -- - - - - - - - - - -.- u

All Packaces Class Hierarchy This Packace Previous Next Index

5/22/98 10:58 AM

file:///C'/WIN95/Desktop/New Folder (2)/HTML'rel_op constanttable.htm

All Packaces Class Hierarchy This Packace P£r'ev3ous Next Index

Class rel_op.constanttable
rel op.relational op

+----rel_op.constanttable

public class constanttable
extends relational op

Constructor index

: constanttable(Vector)

Method index

4 execute()

StoStrin()

Construcbto)rs

.4 constanttable

public constanttable(Vector vct)

Methods

0 run

public void run()

0 execute

public dat.atable execute()

Overrides:
execute in class relational op

* toString

5/22/98 10:40 AM

"~··'L·~'·l·-·-"···'-'·~~L'····"*'-'··

lass rel_op.constanttable

of 2

ass rel_op.constanttable file:u,//C /WIN95iDesktopiNew Folder (2)/HTML/'rel_op.constanttable.htm

public String toString()

All Packaaes Class Hierarchy This Package 2Previcus Next Index

:f 2 5/22/98 10:40 AM

lass rel_op.scheduler

All Packaaes Class Hierarchy This Package Previous Next

Class rel_op.scheduler
rel_op. scheduler

public class scheduler

Constru ctor i ndex

• scheduler()

Method index

caschedule(String, sub_rel_op, int)
; rn-o-
* schedule(String)
. setdone()

Constructors

.scheduler

public scheduler()

Methods

* schedule

public DataInputStream schedule(String addr)

0 cschedule

public synchronized void cschedule(String addr,
sub_rel_op sro,
int tn)

0 run

public void run()

5/22/98 10:43 AM

Index

-....

- .--... - -............YU _

file:///C /WIN95 iDesktop/New Folder (2)/HTML rel_op.scheduler.htm

of 2

lass rel_op.scheduler file:/iiC/W'IWN95/Desktop/New Folder (2)/niYML,rel_op.scheduler.itm'

B setdone

public void setdone()

AIl Packaces Class Hierarchy This Packace Previous Next Index

5/22/98 10:43 AMof 2

ass rel_op.regex tfnh

All Packa.es Class Hierarchy This Package Previous Next Index

...

Class rel_op.regex fn
rel op.relational op

+----relop.regexfn

public class regexfn
extends relational op

Constru ctor i ndex

reeex fn(llist new, String, Vector)

Method index

Sexecute()

* toString()

Con.st:ructFors

• regex_fn

public regexfn(llist new lorelops,
String regex,
Vector loattr)

Methods

0 execute

public datata:l e execute()

Overrides:
execute in class relational op

0 run

public void run()

5/22/98 10:44 AM

tile:/iCU:/ WIN 9Y Uesctop/ New I-older 2)lf I IL rel_op.regex_m.ntm

lass relop.regex th file:///Ci/WIN95/Desktop/New Folder (2)/HTML/'rel_op.regexfl.htm

0 toString

public String toString()

~..... .. ¢ ,-''- ,,'•., ,,~wu UUUU~wr

-All Packaczes Class Hierarchy This Packace Previous Next Index

5/22/98 10:44 AM

file:i//C' /WIN95iDesktop/New Folder (2)/HTML rel_op.environmnent.htm

All Packaces Class Hierarchy This .ackac7e Previous Next Index

Class rel_op.environment
rel_op. environment

public class environment

Constru ctor i1ndex

,environment()

Method index

closestream()
o etregistrvlocation()
g retscheduler(

. numstreams 0
* openstream()

setregistrvlocation(String)

Cons.tructors

4 environment

public environment()

Methods

* numstreams

public int numstreams()

0 openstream

public void openstream()

0 closestream

public void closestream()

5/22/98 10:48 AM

1 - -.............. -....... · · Y

'lass rel_op.environment

lass rel_op.environment

* getscheduler

public scheduler getscheduler()

0 getregistrylocation

public String getregistrylocation()

0 setregistrylocation

public void setregistrylocation(String addr)

All Packa -- Class Hierarchy Thl.. Paca.. Previous Next Index

5/22/98 10:48 AM

file:///C ý/WIN9 5, Desktop/ New Folder (2)/ ill ML rel_op.environment.htm

of-2'

ass booleanoperator.bool_false

Al.l Packaces Class Hierarchy This Package £revious Next Index

Class boolean_operator.boolfalse
boolean operator.booi op

+----booleanoperator.bool_false

public class boolfalse
extends bool op

Constructor index

,bool falseO

Method index

Seval (llist)
* killprocesses(

StoString)

Constructors

: bool false

public bool_false()

Methods

0 eval

public boolean eval (liJst lotup)

Overrides:
eval in class bool op

a run

public void run()

5/22/98 11:02 AM

tile:/ilCI/WIN9 5/Desk-topi New Folder (2)/HI ML, boolean _operator tooitalse.ntm

of 2

tlle-///C:/WIN 93/DesKtop/New f oler)it-i 1 M L.v ooiean operator.D0 0l_ISe.ILtrM

Overrides:
run in class bool op

0 killprocesses

public void killprocesses()

Overrides:
killprocesses in class bool op

0 toString

public String toString()

-All Packages Class Hierarchy This Package Previcus Next Index

5/22/98 11:02 AM

.ruur...rr-·-.~l-ruuu-··-ru~u·*·u*r-rru-

lass boolean_operator.bool_false

of 2

Bibliography

1. Cheng Hian Goh. Representing and Reasoning about Data Semantics in Heterogeneous
Systems. PhD dissertation, Massachusetts Institue of Technology, Sloan School of
Management, December 1996.

2. Ricardo Ambrose, Phillipe Bonnet, St6phane Bressan, and Jean-Robert Gruser. Three Light-
Weight Execution Engines in Java for Web Data-Intensive Applications. MIT Sloan School of
Management, March 1998

3. Marta Jakobisiak. Programming the web - design and implementation of a multidatabase
browser. Technical Report CISL WP #96-04, MIT Sloan School of Management, May 1996

4. G. Graefe. Query evaluation techniques for large database.ACM Computing Surveys, 1993.

5. Kofi Duodu Fynn. A Planner/Optimizer/Executioner for Context Mediated Queries.MIT
Sl6an School of Management, May 1997

